memcontrol.c revision 1faf8e40a8ab12ae1f7f474965e6fb031e43f8d6
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
25#include <linux/page-flags.h>
26#include <linux/backing-dev.h>
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
29#include <linux/slab.h>
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
33#include <linux/seq_file.h>
34#include <linux/vmalloc.h>
35
36#include <asm/uaccess.h>
37
38struct cgroup_subsys mem_cgroup_subsys;
39static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
40static struct kmem_cache *page_cgroup_cache;
41
42/*
43 * Statistics for memory cgroup.
44 */
45enum mem_cgroup_stat_index {
46	/*
47	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
48	 */
49	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
50	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
51
52	MEM_CGROUP_STAT_NSTATS,
53};
54
55struct mem_cgroup_stat_cpu {
56	s64 count[MEM_CGROUP_STAT_NSTATS];
57} ____cacheline_aligned_in_smp;
58
59struct mem_cgroup_stat {
60	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
61};
62
63/*
64 * For accounting under irq disable, no need for increment preempt count.
65 */
66static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
67		enum mem_cgroup_stat_index idx, int val)
68{
69	int cpu = smp_processor_id();
70	stat->cpustat[cpu].count[idx] += val;
71}
72
73static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
74		enum mem_cgroup_stat_index idx)
75{
76	int cpu;
77	s64 ret = 0;
78	for_each_possible_cpu(cpu)
79		ret += stat->cpustat[cpu].count[idx];
80	return ret;
81}
82
83/*
84 * per-zone information in memory controller.
85 */
86
87enum mem_cgroup_zstat_index {
88	MEM_CGROUP_ZSTAT_ACTIVE,
89	MEM_CGROUP_ZSTAT_INACTIVE,
90
91	NR_MEM_CGROUP_ZSTAT,
92};
93
94struct mem_cgroup_per_zone {
95	/*
96	 * spin_lock to protect the per cgroup LRU
97	 */
98	spinlock_t		lru_lock;
99	struct list_head	active_list;
100	struct list_head	inactive_list;
101	unsigned long count[NR_MEM_CGROUP_ZSTAT];
102};
103/* Macro for accessing counter */
104#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
105
106struct mem_cgroup_per_node {
107	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
108};
109
110struct mem_cgroup_lru_info {
111	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
112};
113
114/*
115 * The memory controller data structure. The memory controller controls both
116 * page cache and RSS per cgroup. We would eventually like to provide
117 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
118 * to help the administrator determine what knobs to tune.
119 *
120 * TODO: Add a water mark for the memory controller. Reclaim will begin when
121 * we hit the water mark. May be even add a low water mark, such that
122 * no reclaim occurs from a cgroup at it's low water mark, this is
123 * a feature that will be implemented much later in the future.
124 */
125struct mem_cgroup {
126	struct cgroup_subsys_state css;
127	/*
128	 * the counter to account for memory usage
129	 */
130	struct res_counter res;
131	/*
132	 * Per cgroup active and inactive list, similar to the
133	 * per zone LRU lists.
134	 */
135	struct mem_cgroup_lru_info info;
136
137	int	prev_priority;	/* for recording reclaim priority */
138	/*
139	 * statistics.
140	 */
141	struct mem_cgroup_stat stat;
142};
143static struct mem_cgroup init_mem_cgroup;
144
145/*
146 * We use the lower bit of the page->page_cgroup pointer as a bit spin
147 * lock.  We need to ensure that page->page_cgroup is at least two
148 * byte aligned (based on comments from Nick Piggin).  But since
149 * bit_spin_lock doesn't actually set that lock bit in a non-debug
150 * uniprocessor kernel, we should avoid setting it here too.
151 */
152#define PAGE_CGROUP_LOCK_BIT 	0x0
153#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
154#define PAGE_CGROUP_LOCK 	(1 << PAGE_CGROUP_LOCK_BIT)
155#else
156#define PAGE_CGROUP_LOCK	0x0
157#endif
158
159/*
160 * A page_cgroup page is associated with every page descriptor. The
161 * page_cgroup helps us identify information about the cgroup
162 */
163struct page_cgroup {
164	struct list_head lru;		/* per cgroup LRU list */
165	struct page *page;
166	struct mem_cgroup *mem_cgroup;
167	int ref_cnt;			/* cached, mapped, migrating */
168	int flags;
169};
170#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
171#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
172
173static int page_cgroup_nid(struct page_cgroup *pc)
174{
175	return page_to_nid(pc->page);
176}
177
178static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
179{
180	return page_zonenum(pc->page);
181}
182
183enum charge_type {
184	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
185	MEM_CGROUP_CHARGE_TYPE_MAPPED,
186};
187
188/*
189 * Always modified under lru lock. Then, not necessary to preempt_disable()
190 */
191static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
192					bool charge)
193{
194	int val = (charge)? 1 : -1;
195	struct mem_cgroup_stat *stat = &mem->stat;
196
197	VM_BUG_ON(!irqs_disabled());
198	if (flags & PAGE_CGROUP_FLAG_CACHE)
199		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
200	else
201		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
202}
203
204static struct mem_cgroup_per_zone *
205mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
206{
207	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
208}
209
210static struct mem_cgroup_per_zone *
211page_cgroup_zoneinfo(struct page_cgroup *pc)
212{
213	struct mem_cgroup *mem = pc->mem_cgroup;
214	int nid = page_cgroup_nid(pc);
215	int zid = page_cgroup_zid(pc);
216
217	return mem_cgroup_zoneinfo(mem, nid, zid);
218}
219
220static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
221					enum mem_cgroup_zstat_index idx)
222{
223	int nid, zid;
224	struct mem_cgroup_per_zone *mz;
225	u64 total = 0;
226
227	for_each_online_node(nid)
228		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
229			mz = mem_cgroup_zoneinfo(mem, nid, zid);
230			total += MEM_CGROUP_ZSTAT(mz, idx);
231		}
232	return total;
233}
234
235static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
236{
237	return container_of(cgroup_subsys_state(cont,
238				mem_cgroup_subsys_id), struct mem_cgroup,
239				css);
240}
241
242struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
243{
244	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
245				struct mem_cgroup, css);
246}
247
248static inline int page_cgroup_locked(struct page *page)
249{
250	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
251}
252
253static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
254{
255	VM_BUG_ON(!page_cgroup_locked(page));
256	page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
257}
258
259struct page_cgroup *page_get_page_cgroup(struct page *page)
260{
261	return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
262}
263
264static void lock_page_cgroup(struct page *page)
265{
266	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
267}
268
269static int try_lock_page_cgroup(struct page *page)
270{
271	return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
272}
273
274static void unlock_page_cgroup(struct page *page)
275{
276	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
277}
278
279static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
280			struct page_cgroup *pc)
281{
282	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
283
284	if (from)
285		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
286	else
287		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
288
289	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
290	list_del_init(&pc->lru);
291}
292
293static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
294				struct page_cgroup *pc)
295{
296	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
297
298	if (!to) {
299		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
300		list_add(&pc->lru, &mz->inactive_list);
301	} else {
302		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
303		list_add(&pc->lru, &mz->active_list);
304	}
305	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
306}
307
308static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
309{
310	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
311	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
312
313	if (from)
314		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
315	else
316		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
317
318	if (active) {
319		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
320		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
321		list_move(&pc->lru, &mz->active_list);
322	} else {
323		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
324		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
325		list_move(&pc->lru, &mz->inactive_list);
326	}
327}
328
329int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
330{
331	int ret;
332
333	task_lock(task);
334	ret = task->mm && mm_match_cgroup(task->mm, mem);
335	task_unlock(task);
336	return ret;
337}
338
339/*
340 * This routine assumes that the appropriate zone's lru lock is already held
341 */
342void mem_cgroup_move_lists(struct page *page, bool active)
343{
344	struct page_cgroup *pc;
345	struct mem_cgroup_per_zone *mz;
346	unsigned long flags;
347
348	/*
349	 * We cannot lock_page_cgroup while holding zone's lru_lock,
350	 * because other holders of lock_page_cgroup can be interrupted
351	 * with an attempt to rotate_reclaimable_page.  But we cannot
352	 * safely get to page_cgroup without it, so just try_lock it:
353	 * mem_cgroup_isolate_pages allows for page left on wrong list.
354	 */
355	if (!try_lock_page_cgroup(page))
356		return;
357
358	pc = page_get_page_cgroup(page);
359	if (pc) {
360		mz = page_cgroup_zoneinfo(pc);
361		spin_lock_irqsave(&mz->lru_lock, flags);
362		__mem_cgroup_move_lists(pc, active);
363		spin_unlock_irqrestore(&mz->lru_lock, flags);
364	}
365	unlock_page_cgroup(page);
366}
367
368/*
369 * Calculate mapped_ratio under memory controller. This will be used in
370 * vmscan.c for deteremining we have to reclaim mapped pages.
371 */
372int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
373{
374	long total, rss;
375
376	/*
377	 * usage is recorded in bytes. But, here, we assume the number of
378	 * physical pages can be represented by "long" on any arch.
379	 */
380	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
381	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
382	return (int)((rss * 100L) / total);
383}
384
385/*
386 * This function is called from vmscan.c. In page reclaiming loop. balance
387 * between active and inactive list is calculated. For memory controller
388 * page reclaiming, we should use using mem_cgroup's imbalance rather than
389 * zone's global lru imbalance.
390 */
391long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
392{
393	unsigned long active, inactive;
394	/* active and inactive are the number of pages. 'long' is ok.*/
395	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
396	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
397	return (long) (active / (inactive + 1));
398}
399
400/*
401 * prev_priority control...this will be used in memory reclaim path.
402 */
403int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
404{
405	return mem->prev_priority;
406}
407
408void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
409{
410	if (priority < mem->prev_priority)
411		mem->prev_priority = priority;
412}
413
414void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
415{
416	mem->prev_priority = priority;
417}
418
419/*
420 * Calculate # of pages to be scanned in this priority/zone.
421 * See also vmscan.c
422 *
423 * priority starts from "DEF_PRIORITY" and decremented in each loop.
424 * (see include/linux/mmzone.h)
425 */
426
427long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
428				   struct zone *zone, int priority)
429{
430	long nr_active;
431	int nid = zone->zone_pgdat->node_id;
432	int zid = zone_idx(zone);
433	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
434
435	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
436	return (nr_active >> priority);
437}
438
439long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
440					struct zone *zone, int priority)
441{
442	long nr_inactive;
443	int nid = zone->zone_pgdat->node_id;
444	int zid = zone_idx(zone);
445	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
446
447	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
448	return (nr_inactive >> priority);
449}
450
451unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
452					struct list_head *dst,
453					unsigned long *scanned, int order,
454					int mode, struct zone *z,
455					struct mem_cgroup *mem_cont,
456					int active)
457{
458	unsigned long nr_taken = 0;
459	struct page *page;
460	unsigned long scan;
461	LIST_HEAD(pc_list);
462	struct list_head *src;
463	struct page_cgroup *pc, *tmp;
464	int nid = z->zone_pgdat->node_id;
465	int zid = zone_idx(z);
466	struct mem_cgroup_per_zone *mz;
467
468	BUG_ON(!mem_cont);
469	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
470	if (active)
471		src = &mz->active_list;
472	else
473		src = &mz->inactive_list;
474
475
476	spin_lock(&mz->lru_lock);
477	scan = 0;
478	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
479		if (scan >= nr_to_scan)
480			break;
481		page = pc->page;
482
483		if (unlikely(!PageLRU(page)))
484			continue;
485
486		if (PageActive(page) && !active) {
487			__mem_cgroup_move_lists(pc, true);
488			continue;
489		}
490		if (!PageActive(page) && active) {
491			__mem_cgroup_move_lists(pc, false);
492			continue;
493		}
494
495		scan++;
496		list_move(&pc->lru, &pc_list);
497
498		if (__isolate_lru_page(page, mode) == 0) {
499			list_move(&page->lru, dst);
500			nr_taken++;
501		}
502	}
503
504	list_splice(&pc_list, src);
505	spin_unlock(&mz->lru_lock);
506
507	*scanned = scan;
508	return nr_taken;
509}
510
511/*
512 * Charge the memory controller for page usage.
513 * Return
514 * 0 if the charge was successful
515 * < 0 if the cgroup is over its limit
516 */
517static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
518				gfp_t gfp_mask, enum charge_type ctype)
519{
520	struct mem_cgroup *mem;
521	struct page_cgroup *pc;
522	unsigned long flags;
523	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
524	struct mem_cgroup_per_zone *mz;
525
526	if (mem_cgroup_subsys.disabled)
527		return 0;
528
529	/*
530	 * Should page_cgroup's go to their own slab?
531	 * One could optimize the performance of the charging routine
532	 * by saving a bit in the page_flags and using it as a lock
533	 * to see if the cgroup page already has a page_cgroup associated
534	 * with it
535	 */
536retry:
537	lock_page_cgroup(page);
538	pc = page_get_page_cgroup(page);
539	/*
540	 * The page_cgroup exists and
541	 * the page has already been accounted.
542	 */
543	if (pc) {
544		VM_BUG_ON(pc->page != page);
545		VM_BUG_ON(pc->ref_cnt <= 0);
546
547		pc->ref_cnt++;
548		unlock_page_cgroup(page);
549		goto done;
550	}
551	unlock_page_cgroup(page);
552
553	pc = kmem_cache_zalloc(page_cgroup_cache, gfp_mask);
554	if (pc == NULL)
555		goto err;
556
557	/*
558	 * We always charge the cgroup the mm_struct belongs to.
559	 * The mm_struct's mem_cgroup changes on task migration if the
560	 * thread group leader migrates. It's possible that mm is not
561	 * set, if so charge the init_mm (happens for pagecache usage).
562	 */
563	if (!mm)
564		mm = &init_mm;
565
566	rcu_read_lock();
567	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
568	/*
569	 * For every charge from the cgroup, increment reference count
570	 */
571	css_get(&mem->css);
572	rcu_read_unlock();
573
574	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
575		if (!(gfp_mask & __GFP_WAIT))
576			goto out;
577
578		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
579			continue;
580
581		/*
582		 * try_to_free_mem_cgroup_pages() might not give us a full
583		 * picture of reclaim. Some pages are reclaimed and might be
584		 * moved to swap cache or just unmapped from the cgroup.
585		 * Check the limit again to see if the reclaim reduced the
586		 * current usage of the cgroup before giving up
587		 */
588		if (res_counter_check_under_limit(&mem->res))
589			continue;
590
591		if (!nr_retries--) {
592			mem_cgroup_out_of_memory(mem, gfp_mask);
593			goto out;
594		}
595	}
596
597	pc->ref_cnt = 1;
598	pc->mem_cgroup = mem;
599	pc->page = page;
600	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
601	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
602		pc->flags = PAGE_CGROUP_FLAG_CACHE;
603
604	lock_page_cgroup(page);
605	if (page_get_page_cgroup(page)) {
606		unlock_page_cgroup(page);
607		/*
608		 * Another charge has been added to this page already.
609		 * We take lock_page_cgroup(page) again and read
610		 * page->cgroup, increment refcnt.... just retry is OK.
611		 */
612		res_counter_uncharge(&mem->res, PAGE_SIZE);
613		css_put(&mem->css);
614		kmem_cache_free(page_cgroup_cache, pc);
615		goto retry;
616	}
617	page_assign_page_cgroup(page, pc);
618
619	mz = page_cgroup_zoneinfo(pc);
620	spin_lock_irqsave(&mz->lru_lock, flags);
621	__mem_cgroup_add_list(mz, pc);
622	spin_unlock_irqrestore(&mz->lru_lock, flags);
623
624	unlock_page_cgroup(page);
625done:
626	return 0;
627out:
628	css_put(&mem->css);
629	kmem_cache_free(page_cgroup_cache, pc);
630err:
631	return -ENOMEM;
632}
633
634int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
635{
636	return mem_cgroup_charge_common(page, mm, gfp_mask,
637				MEM_CGROUP_CHARGE_TYPE_MAPPED);
638}
639
640int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
641				gfp_t gfp_mask)
642{
643	if (!mm)
644		mm = &init_mm;
645	return mem_cgroup_charge_common(page, mm, gfp_mask,
646				MEM_CGROUP_CHARGE_TYPE_CACHE);
647}
648
649/*
650 * Uncharging is always a welcome operation, we never complain, simply
651 * uncharge.
652 */
653void mem_cgroup_uncharge_page(struct page *page)
654{
655	struct page_cgroup *pc;
656	struct mem_cgroup *mem;
657	struct mem_cgroup_per_zone *mz;
658	unsigned long flags;
659
660	if (mem_cgroup_subsys.disabled)
661		return;
662
663	/*
664	 * Check if our page_cgroup is valid
665	 */
666	lock_page_cgroup(page);
667	pc = page_get_page_cgroup(page);
668	if (!pc)
669		goto unlock;
670
671	VM_BUG_ON(pc->page != page);
672	VM_BUG_ON(pc->ref_cnt <= 0);
673
674	if (--(pc->ref_cnt) == 0) {
675		mz = page_cgroup_zoneinfo(pc);
676		spin_lock_irqsave(&mz->lru_lock, flags);
677		__mem_cgroup_remove_list(mz, pc);
678		spin_unlock_irqrestore(&mz->lru_lock, flags);
679
680		page_assign_page_cgroup(page, NULL);
681		unlock_page_cgroup(page);
682
683		mem = pc->mem_cgroup;
684		res_counter_uncharge(&mem->res, PAGE_SIZE);
685		css_put(&mem->css);
686
687		kmem_cache_free(page_cgroup_cache, pc);
688		return;
689	}
690
691unlock:
692	unlock_page_cgroup(page);
693}
694
695/*
696 * Returns non-zero if a page (under migration) has valid page_cgroup member.
697 * Refcnt of page_cgroup is incremented.
698 */
699int mem_cgroup_prepare_migration(struct page *page)
700{
701	struct page_cgroup *pc;
702
703	if (mem_cgroup_subsys.disabled)
704		return 0;
705
706	lock_page_cgroup(page);
707	pc = page_get_page_cgroup(page);
708	if (pc)
709		pc->ref_cnt++;
710	unlock_page_cgroup(page);
711	return pc != NULL;
712}
713
714void mem_cgroup_end_migration(struct page *page)
715{
716	mem_cgroup_uncharge_page(page);
717}
718
719/*
720 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
721 * And no race with uncharge() routines because page_cgroup for *page*
722 * has extra one reference by mem_cgroup_prepare_migration.
723 */
724void mem_cgroup_page_migration(struct page *page, struct page *newpage)
725{
726	struct page_cgroup *pc;
727	struct mem_cgroup_per_zone *mz;
728	unsigned long flags;
729
730	lock_page_cgroup(page);
731	pc = page_get_page_cgroup(page);
732	if (!pc) {
733		unlock_page_cgroup(page);
734		return;
735	}
736
737	mz = page_cgroup_zoneinfo(pc);
738	spin_lock_irqsave(&mz->lru_lock, flags);
739	__mem_cgroup_remove_list(mz, pc);
740	spin_unlock_irqrestore(&mz->lru_lock, flags);
741
742	page_assign_page_cgroup(page, NULL);
743	unlock_page_cgroup(page);
744
745	pc->page = newpage;
746	lock_page_cgroup(newpage);
747	page_assign_page_cgroup(newpage, pc);
748
749	mz = page_cgroup_zoneinfo(pc);
750	spin_lock_irqsave(&mz->lru_lock, flags);
751	__mem_cgroup_add_list(mz, pc);
752	spin_unlock_irqrestore(&mz->lru_lock, flags);
753
754	unlock_page_cgroup(newpage);
755}
756
757/*
758 * This routine traverse page_cgroup in given list and drop them all.
759 * This routine ignores page_cgroup->ref_cnt.
760 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
761 */
762#define FORCE_UNCHARGE_BATCH	(128)
763static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
764			    struct mem_cgroup_per_zone *mz,
765			    int active)
766{
767	struct page_cgroup *pc;
768	struct page *page;
769	int count = FORCE_UNCHARGE_BATCH;
770	unsigned long flags;
771	struct list_head *list;
772
773	if (active)
774		list = &mz->active_list;
775	else
776		list = &mz->inactive_list;
777
778	spin_lock_irqsave(&mz->lru_lock, flags);
779	while (!list_empty(list)) {
780		pc = list_entry(list->prev, struct page_cgroup, lru);
781		page = pc->page;
782		get_page(page);
783		spin_unlock_irqrestore(&mz->lru_lock, flags);
784		mem_cgroup_uncharge_page(page);
785		put_page(page);
786		if (--count <= 0) {
787			count = FORCE_UNCHARGE_BATCH;
788			cond_resched();
789		}
790		spin_lock_irqsave(&mz->lru_lock, flags);
791	}
792	spin_unlock_irqrestore(&mz->lru_lock, flags);
793}
794
795/*
796 * make mem_cgroup's charge to be 0 if there is no task.
797 * This enables deleting this mem_cgroup.
798 */
799static int mem_cgroup_force_empty(struct mem_cgroup *mem)
800{
801	int ret = -EBUSY;
802	int node, zid;
803
804	if (mem_cgroup_subsys.disabled)
805		return 0;
806
807	css_get(&mem->css);
808	/*
809	 * page reclaim code (kswapd etc..) will move pages between
810	 * active_list <-> inactive_list while we don't take a lock.
811	 * So, we have to do loop here until all lists are empty.
812	 */
813	while (mem->res.usage > 0) {
814		if (atomic_read(&mem->css.cgroup->count) > 0)
815			goto out;
816		for_each_node_state(node, N_POSSIBLE)
817			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
818				struct mem_cgroup_per_zone *mz;
819				mz = mem_cgroup_zoneinfo(mem, node, zid);
820				/* drop all page_cgroup in active_list */
821				mem_cgroup_force_empty_list(mem, mz, 1);
822				/* drop all page_cgroup in inactive_list */
823				mem_cgroup_force_empty_list(mem, mz, 0);
824			}
825	}
826	ret = 0;
827out:
828	css_put(&mem->css);
829	return ret;
830}
831
832static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
833{
834	*tmp = memparse(buf, &buf);
835	if (*buf != '\0')
836		return -EINVAL;
837
838	/*
839	 * Round up the value to the closest page size
840	 */
841	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
842	return 0;
843}
844
845static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
846{
847	return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
848				    cft->private);
849}
850
851static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
852				struct file *file, const char __user *userbuf,
853				size_t nbytes, loff_t *ppos)
854{
855	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
856				cft->private, userbuf, nbytes, ppos,
857				mem_cgroup_write_strategy);
858}
859
860static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
861{
862	struct mem_cgroup *mem;
863
864	mem = mem_cgroup_from_cont(cont);
865	switch (event) {
866	case RES_MAX_USAGE:
867		res_counter_reset_max(&mem->res);
868		break;
869	case RES_FAILCNT:
870		res_counter_reset_failcnt(&mem->res);
871		break;
872	}
873	return 0;
874}
875
876static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
877{
878	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
879}
880
881static const struct mem_cgroup_stat_desc {
882	const char *msg;
883	u64 unit;
884} mem_cgroup_stat_desc[] = {
885	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
886	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
887};
888
889static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
890				 struct cgroup_map_cb *cb)
891{
892	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
893	struct mem_cgroup_stat *stat = &mem_cont->stat;
894	int i;
895
896	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
897		s64 val;
898
899		val = mem_cgroup_read_stat(stat, i);
900		val *= mem_cgroup_stat_desc[i].unit;
901		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
902	}
903	/* showing # of active pages */
904	{
905		unsigned long active, inactive;
906
907		inactive = mem_cgroup_get_all_zonestat(mem_cont,
908						MEM_CGROUP_ZSTAT_INACTIVE);
909		active = mem_cgroup_get_all_zonestat(mem_cont,
910						MEM_CGROUP_ZSTAT_ACTIVE);
911		cb->fill(cb, "active", (active) * PAGE_SIZE);
912		cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
913	}
914	return 0;
915}
916
917static struct cftype mem_cgroup_files[] = {
918	{
919		.name = "usage_in_bytes",
920		.private = RES_USAGE,
921		.read_u64 = mem_cgroup_read,
922	},
923	{
924		.name = "max_usage_in_bytes",
925		.private = RES_MAX_USAGE,
926		.trigger = mem_cgroup_reset,
927		.read_u64 = mem_cgroup_read,
928	},
929	{
930		.name = "limit_in_bytes",
931		.private = RES_LIMIT,
932		.write = mem_cgroup_write,
933		.read_u64 = mem_cgroup_read,
934	},
935	{
936		.name = "failcnt",
937		.private = RES_FAILCNT,
938		.trigger = mem_cgroup_reset,
939		.read_u64 = mem_cgroup_read,
940	},
941	{
942		.name = "force_empty",
943		.trigger = mem_force_empty_write,
944	},
945	{
946		.name = "stat",
947		.read_map = mem_control_stat_show,
948	},
949};
950
951static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
952{
953	struct mem_cgroup_per_node *pn;
954	struct mem_cgroup_per_zone *mz;
955	int zone, tmp = node;
956	/*
957	 * This routine is called against possible nodes.
958	 * But it's BUG to call kmalloc() against offline node.
959	 *
960	 * TODO: this routine can waste much memory for nodes which will
961	 *       never be onlined. It's better to use memory hotplug callback
962	 *       function.
963	 */
964	if (!node_state(node, N_NORMAL_MEMORY))
965		tmp = -1;
966	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
967	if (!pn)
968		return 1;
969
970	mem->info.nodeinfo[node] = pn;
971	memset(pn, 0, sizeof(*pn));
972
973	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
974		mz = &pn->zoneinfo[zone];
975		INIT_LIST_HEAD(&mz->active_list);
976		INIT_LIST_HEAD(&mz->inactive_list);
977		spin_lock_init(&mz->lru_lock);
978	}
979	return 0;
980}
981
982static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
983{
984	kfree(mem->info.nodeinfo[node]);
985}
986
987static struct mem_cgroup *mem_cgroup_alloc(void)
988{
989	struct mem_cgroup *mem;
990
991	if (sizeof(*mem) < PAGE_SIZE)
992		mem = kmalloc(sizeof(*mem), GFP_KERNEL);
993	else
994		mem = vmalloc(sizeof(*mem));
995
996	if (mem)
997		memset(mem, 0, sizeof(*mem));
998	return mem;
999}
1000
1001static void mem_cgroup_free(struct mem_cgroup *mem)
1002{
1003	if (sizeof(*mem) < PAGE_SIZE)
1004		kfree(mem);
1005	else
1006		vfree(mem);
1007}
1008
1009
1010static struct cgroup_subsys_state *
1011mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1012{
1013	struct mem_cgroup *mem;
1014	int node;
1015
1016	if (unlikely((cont->parent) == NULL)) {
1017		mem = &init_mem_cgroup;
1018		page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1019	} else {
1020		mem = mem_cgroup_alloc();
1021		if (!mem)
1022			return ERR_PTR(-ENOMEM);
1023	}
1024
1025	res_counter_init(&mem->res);
1026
1027	for_each_node_state(node, N_POSSIBLE)
1028		if (alloc_mem_cgroup_per_zone_info(mem, node))
1029			goto free_out;
1030
1031	return &mem->css;
1032free_out:
1033	for_each_node_state(node, N_POSSIBLE)
1034		free_mem_cgroup_per_zone_info(mem, node);
1035	if (cont->parent != NULL)
1036		mem_cgroup_free(mem);
1037	return ERR_PTR(-ENOMEM);
1038}
1039
1040static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1041					struct cgroup *cont)
1042{
1043	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1044	mem_cgroup_force_empty(mem);
1045}
1046
1047static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1048				struct cgroup *cont)
1049{
1050	int node;
1051	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1052
1053	for_each_node_state(node, N_POSSIBLE)
1054		free_mem_cgroup_per_zone_info(mem, node);
1055
1056	mem_cgroup_free(mem_cgroup_from_cont(cont));
1057}
1058
1059static int mem_cgroup_populate(struct cgroup_subsys *ss,
1060				struct cgroup *cont)
1061{
1062	if (mem_cgroup_subsys.disabled)
1063		return 0;
1064	return cgroup_add_files(cont, ss, mem_cgroup_files,
1065					ARRAY_SIZE(mem_cgroup_files));
1066}
1067
1068static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1069				struct cgroup *cont,
1070				struct cgroup *old_cont,
1071				struct task_struct *p)
1072{
1073	struct mm_struct *mm;
1074	struct mem_cgroup *mem, *old_mem;
1075
1076	if (mem_cgroup_subsys.disabled)
1077		return;
1078
1079	mm = get_task_mm(p);
1080	if (mm == NULL)
1081		return;
1082
1083	mem = mem_cgroup_from_cont(cont);
1084	old_mem = mem_cgroup_from_cont(old_cont);
1085
1086	if (mem == old_mem)
1087		goto out;
1088
1089	/*
1090	 * Only thread group leaders are allowed to migrate, the mm_struct is
1091	 * in effect owned by the leader
1092	 */
1093	if (!thread_group_leader(p))
1094		goto out;
1095
1096out:
1097	mmput(mm);
1098}
1099
1100struct cgroup_subsys mem_cgroup_subsys = {
1101	.name = "memory",
1102	.subsys_id = mem_cgroup_subsys_id,
1103	.create = mem_cgroup_create,
1104	.pre_destroy = mem_cgroup_pre_destroy,
1105	.destroy = mem_cgroup_destroy,
1106	.populate = mem_cgroup_populate,
1107	.attach = mem_cgroup_move_task,
1108	.early_init = 0,
1109};
1110