memcontrol.c revision 261fb61a8bf6d3bd964ae6f1e6af49585d30db51
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/limits.h>
31#include <linux/mutex.h>
32#include <linux/slab.h>
33#include <linux/swap.h>
34#include <linux/spinlock.h>
35#include <linux/fs.h>
36#include <linux/seq_file.h>
37#include <linux/vmalloc.h>
38#include <linux/mm_inline.h>
39#include <linux/page_cgroup.h>
40#include "internal.h"
41
42#include <asm/uaccess.h>
43
44struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45#define MEM_CGROUP_RECLAIM_RETRIES	5
46struct mem_cgroup *root_mem_cgroup __read_mostly;
47
48#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
49/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
50int do_swap_account __read_mostly;
51static int really_do_swap_account __initdata = 1; /* for remember boot option*/
52#else
53#define do_swap_account		(0)
54#endif
55
56static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
57
58/*
59 * Statistics for memory cgroup.
60 */
61enum mem_cgroup_stat_index {
62	/*
63	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
64	 */
65	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
66	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
67	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
68	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
69	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
70
71	MEM_CGROUP_STAT_NSTATS,
72};
73
74struct mem_cgroup_stat_cpu {
75	s64 count[MEM_CGROUP_STAT_NSTATS];
76} ____cacheline_aligned_in_smp;
77
78struct mem_cgroup_stat {
79	struct mem_cgroup_stat_cpu cpustat[0];
80};
81
82/*
83 * For accounting under irq disable, no need for increment preempt count.
84 */
85static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
86		enum mem_cgroup_stat_index idx, int val)
87{
88	stat->count[idx] += val;
89}
90
91static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
92		enum mem_cgroup_stat_index idx)
93{
94	int cpu;
95	s64 ret = 0;
96	for_each_possible_cpu(cpu)
97		ret += stat->cpustat[cpu].count[idx];
98	return ret;
99}
100
101static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
102{
103	s64 ret;
104
105	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
106	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
107	return ret;
108}
109
110/*
111 * per-zone information in memory controller.
112 */
113struct mem_cgroup_per_zone {
114	/*
115	 * spin_lock to protect the per cgroup LRU
116	 */
117	struct list_head	lists[NR_LRU_LISTS];
118	unsigned long		count[NR_LRU_LISTS];
119
120	struct zone_reclaim_stat reclaim_stat;
121};
122/* Macro for accessing counter */
123#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
124
125struct mem_cgroup_per_node {
126	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
127};
128
129struct mem_cgroup_lru_info {
130	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
131};
132
133/*
134 * The memory controller data structure. The memory controller controls both
135 * page cache and RSS per cgroup. We would eventually like to provide
136 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
137 * to help the administrator determine what knobs to tune.
138 *
139 * TODO: Add a water mark for the memory controller. Reclaim will begin when
140 * we hit the water mark. May be even add a low water mark, such that
141 * no reclaim occurs from a cgroup at it's low water mark, this is
142 * a feature that will be implemented much later in the future.
143 */
144struct mem_cgroup {
145	struct cgroup_subsys_state css;
146	/*
147	 * the counter to account for memory usage
148	 */
149	struct res_counter res;
150	/*
151	 * the counter to account for mem+swap usage.
152	 */
153	struct res_counter memsw;
154	/*
155	 * Per cgroup active and inactive list, similar to the
156	 * per zone LRU lists.
157	 */
158	struct mem_cgroup_lru_info info;
159
160	/*
161	  protect against reclaim related member.
162	*/
163	spinlock_t reclaim_param_lock;
164
165	int	prev_priority;	/* for recording reclaim priority */
166
167	/*
168	 * While reclaiming in a hiearchy, we cache the last child we
169	 * reclaimed from.
170	 */
171	int last_scanned_child;
172	/*
173	 * Should the accounting and control be hierarchical, per subtree?
174	 */
175	bool use_hierarchy;
176	unsigned long	last_oom_jiffies;
177	atomic_t	refcnt;
178
179	unsigned int	swappiness;
180
181	/* set when res.limit == memsw.limit */
182	bool		memsw_is_minimum;
183
184	/*
185	 * statistics. This must be placed at the end of memcg.
186	 */
187	struct mem_cgroup_stat stat;
188};
189
190enum charge_type {
191	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
192	MEM_CGROUP_CHARGE_TYPE_MAPPED,
193	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
194	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
195	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
196	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
197	NR_CHARGE_TYPE,
198};
199
200/* only for here (for easy reading.) */
201#define PCGF_CACHE	(1UL << PCG_CACHE)
202#define PCGF_USED	(1UL << PCG_USED)
203#define PCGF_LOCK	(1UL << PCG_LOCK)
204/* Not used, but added here for completeness */
205#define PCGF_ACCT	(1UL << PCG_ACCT)
206
207/* for encoding cft->private value on file */
208#define _MEM			(0)
209#define _MEMSWAP		(1)
210#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
211#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
212#define MEMFILE_ATTR(val)	((val) & 0xffff)
213
214static void mem_cgroup_get(struct mem_cgroup *mem);
215static void mem_cgroup_put(struct mem_cgroup *mem);
216static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
217
218static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
219					 struct page_cgroup *pc,
220					 bool charge)
221{
222	int val = (charge)? 1 : -1;
223	struct mem_cgroup_stat *stat = &mem->stat;
224	struct mem_cgroup_stat_cpu *cpustat;
225	int cpu = get_cpu();
226
227	cpustat = &stat->cpustat[cpu];
228	if (PageCgroupCache(pc))
229		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
230	else
231		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
232
233	if (charge)
234		__mem_cgroup_stat_add_safe(cpustat,
235				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
236	else
237		__mem_cgroup_stat_add_safe(cpustat,
238				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
239	put_cpu();
240}
241
242static struct mem_cgroup_per_zone *
243mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
244{
245	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
246}
247
248static struct mem_cgroup_per_zone *
249page_cgroup_zoneinfo(struct page_cgroup *pc)
250{
251	struct mem_cgroup *mem = pc->mem_cgroup;
252	int nid = page_cgroup_nid(pc);
253	int zid = page_cgroup_zid(pc);
254
255	if (!mem)
256		return NULL;
257
258	return mem_cgroup_zoneinfo(mem, nid, zid);
259}
260
261static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
262					enum lru_list idx)
263{
264	int nid, zid;
265	struct mem_cgroup_per_zone *mz;
266	u64 total = 0;
267
268	for_each_online_node(nid)
269		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
270			mz = mem_cgroup_zoneinfo(mem, nid, zid);
271			total += MEM_CGROUP_ZSTAT(mz, idx);
272		}
273	return total;
274}
275
276static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
277{
278	return container_of(cgroup_subsys_state(cont,
279				mem_cgroup_subsys_id), struct mem_cgroup,
280				css);
281}
282
283struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
284{
285	/*
286	 * mm_update_next_owner() may clear mm->owner to NULL
287	 * if it races with swapoff, page migration, etc.
288	 * So this can be called with p == NULL.
289	 */
290	if (unlikely(!p))
291		return NULL;
292
293	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
294				struct mem_cgroup, css);
295}
296
297static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
298{
299	struct mem_cgroup *mem = NULL;
300
301	if (!mm)
302		return NULL;
303	/*
304	 * Because we have no locks, mm->owner's may be being moved to other
305	 * cgroup. We use css_tryget() here even if this looks
306	 * pessimistic (rather than adding locks here).
307	 */
308	rcu_read_lock();
309	do {
310		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
311		if (unlikely(!mem))
312			break;
313	} while (!css_tryget(&mem->css));
314	rcu_read_unlock();
315	return mem;
316}
317
318/*
319 * Call callback function against all cgroup under hierarchy tree.
320 */
321static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
322			  int (*func)(struct mem_cgroup *, void *))
323{
324	int found, ret, nextid;
325	struct cgroup_subsys_state *css;
326	struct mem_cgroup *mem;
327
328	if (!root->use_hierarchy)
329		return (*func)(root, data);
330
331	nextid = 1;
332	do {
333		ret = 0;
334		mem = NULL;
335
336		rcu_read_lock();
337		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
338				   &found);
339		if (css && css_tryget(css))
340			mem = container_of(css, struct mem_cgroup, css);
341		rcu_read_unlock();
342
343		if (mem) {
344			ret = (*func)(mem, data);
345			css_put(&mem->css);
346		}
347		nextid = found + 1;
348	} while (!ret && css);
349
350	return ret;
351}
352
353static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
354{
355	return (mem == root_mem_cgroup);
356}
357
358/*
359 * Following LRU functions are allowed to be used without PCG_LOCK.
360 * Operations are called by routine of global LRU independently from memcg.
361 * What we have to take care of here is validness of pc->mem_cgroup.
362 *
363 * Changes to pc->mem_cgroup happens when
364 * 1. charge
365 * 2. moving account
366 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
367 * It is added to LRU before charge.
368 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
369 * When moving account, the page is not on LRU. It's isolated.
370 */
371
372void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
373{
374	struct page_cgroup *pc;
375	struct mem_cgroup_per_zone *mz;
376
377	if (mem_cgroup_disabled())
378		return;
379	pc = lookup_page_cgroup(page);
380	/* can happen while we handle swapcache. */
381	if (!TestClearPageCgroupAcctLRU(pc))
382		return;
383	VM_BUG_ON(!pc->mem_cgroup);
384	/*
385	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
386	 * removed from global LRU.
387	 */
388	mz = page_cgroup_zoneinfo(pc);
389	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
390	if (mem_cgroup_is_root(pc->mem_cgroup))
391		return;
392	VM_BUG_ON(list_empty(&pc->lru));
393	list_del_init(&pc->lru);
394	return;
395}
396
397void mem_cgroup_del_lru(struct page *page)
398{
399	mem_cgroup_del_lru_list(page, page_lru(page));
400}
401
402void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
403{
404	struct mem_cgroup_per_zone *mz;
405	struct page_cgroup *pc;
406
407	if (mem_cgroup_disabled())
408		return;
409
410	pc = lookup_page_cgroup(page);
411	/*
412	 * Used bit is set without atomic ops but after smp_wmb().
413	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
414	 */
415	smp_rmb();
416	/* unused or root page is not rotated. */
417	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
418		return;
419	mz = page_cgroup_zoneinfo(pc);
420	list_move(&pc->lru, &mz->lists[lru]);
421}
422
423void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
424{
425	struct page_cgroup *pc;
426	struct mem_cgroup_per_zone *mz;
427
428	if (mem_cgroup_disabled())
429		return;
430	pc = lookup_page_cgroup(page);
431	VM_BUG_ON(PageCgroupAcctLRU(pc));
432	/*
433	 * Used bit is set without atomic ops but after smp_wmb().
434	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
435	 */
436	smp_rmb();
437	if (!PageCgroupUsed(pc))
438		return;
439
440	mz = page_cgroup_zoneinfo(pc);
441	MEM_CGROUP_ZSTAT(mz, lru) += 1;
442	SetPageCgroupAcctLRU(pc);
443	if (mem_cgroup_is_root(pc->mem_cgroup))
444		return;
445	list_add(&pc->lru, &mz->lists[lru]);
446}
447
448/*
449 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
450 * lru because the page may.be reused after it's fully uncharged (because of
451 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
452 * it again. This function is only used to charge SwapCache. It's done under
453 * lock_page and expected that zone->lru_lock is never held.
454 */
455static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
456{
457	unsigned long flags;
458	struct zone *zone = page_zone(page);
459	struct page_cgroup *pc = lookup_page_cgroup(page);
460
461	spin_lock_irqsave(&zone->lru_lock, flags);
462	/*
463	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
464	 * is guarded by lock_page() because the page is SwapCache.
465	 */
466	if (!PageCgroupUsed(pc))
467		mem_cgroup_del_lru_list(page, page_lru(page));
468	spin_unlock_irqrestore(&zone->lru_lock, flags);
469}
470
471static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
472{
473	unsigned long flags;
474	struct zone *zone = page_zone(page);
475	struct page_cgroup *pc = lookup_page_cgroup(page);
476
477	spin_lock_irqsave(&zone->lru_lock, flags);
478	/* link when the page is linked to LRU but page_cgroup isn't */
479	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
480		mem_cgroup_add_lru_list(page, page_lru(page));
481	spin_unlock_irqrestore(&zone->lru_lock, flags);
482}
483
484
485void mem_cgroup_move_lists(struct page *page,
486			   enum lru_list from, enum lru_list to)
487{
488	if (mem_cgroup_disabled())
489		return;
490	mem_cgroup_del_lru_list(page, from);
491	mem_cgroup_add_lru_list(page, to);
492}
493
494int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
495{
496	int ret;
497	struct mem_cgroup *curr = NULL;
498
499	task_lock(task);
500	rcu_read_lock();
501	curr = try_get_mem_cgroup_from_mm(task->mm);
502	rcu_read_unlock();
503	task_unlock(task);
504	if (!curr)
505		return 0;
506	if (curr->use_hierarchy)
507		ret = css_is_ancestor(&curr->css, &mem->css);
508	else
509		ret = (curr == mem);
510	css_put(&curr->css);
511	return ret;
512}
513
514/*
515 * prev_priority control...this will be used in memory reclaim path.
516 */
517int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
518{
519	int prev_priority;
520
521	spin_lock(&mem->reclaim_param_lock);
522	prev_priority = mem->prev_priority;
523	spin_unlock(&mem->reclaim_param_lock);
524
525	return prev_priority;
526}
527
528void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
529{
530	spin_lock(&mem->reclaim_param_lock);
531	if (priority < mem->prev_priority)
532		mem->prev_priority = priority;
533	spin_unlock(&mem->reclaim_param_lock);
534}
535
536void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
537{
538	spin_lock(&mem->reclaim_param_lock);
539	mem->prev_priority = priority;
540	spin_unlock(&mem->reclaim_param_lock);
541}
542
543static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
544{
545	unsigned long active;
546	unsigned long inactive;
547	unsigned long gb;
548	unsigned long inactive_ratio;
549
550	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
551	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
552
553	gb = (inactive + active) >> (30 - PAGE_SHIFT);
554	if (gb)
555		inactive_ratio = int_sqrt(10 * gb);
556	else
557		inactive_ratio = 1;
558
559	if (present_pages) {
560		present_pages[0] = inactive;
561		present_pages[1] = active;
562	}
563
564	return inactive_ratio;
565}
566
567int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
568{
569	unsigned long active;
570	unsigned long inactive;
571	unsigned long present_pages[2];
572	unsigned long inactive_ratio;
573
574	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
575
576	inactive = present_pages[0];
577	active = present_pages[1];
578
579	if (inactive * inactive_ratio < active)
580		return 1;
581
582	return 0;
583}
584
585int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
586{
587	unsigned long active;
588	unsigned long inactive;
589
590	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
591	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
592
593	return (active > inactive);
594}
595
596unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
597				       struct zone *zone,
598				       enum lru_list lru)
599{
600	int nid = zone->zone_pgdat->node_id;
601	int zid = zone_idx(zone);
602	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
603
604	return MEM_CGROUP_ZSTAT(mz, lru);
605}
606
607struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
608						      struct zone *zone)
609{
610	int nid = zone->zone_pgdat->node_id;
611	int zid = zone_idx(zone);
612	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
613
614	return &mz->reclaim_stat;
615}
616
617struct zone_reclaim_stat *
618mem_cgroup_get_reclaim_stat_from_page(struct page *page)
619{
620	struct page_cgroup *pc;
621	struct mem_cgroup_per_zone *mz;
622
623	if (mem_cgroup_disabled())
624		return NULL;
625
626	pc = lookup_page_cgroup(page);
627	/*
628	 * Used bit is set without atomic ops but after smp_wmb().
629	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
630	 */
631	smp_rmb();
632	if (!PageCgroupUsed(pc))
633		return NULL;
634
635	mz = page_cgroup_zoneinfo(pc);
636	if (!mz)
637		return NULL;
638
639	return &mz->reclaim_stat;
640}
641
642unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
643					struct list_head *dst,
644					unsigned long *scanned, int order,
645					int mode, struct zone *z,
646					struct mem_cgroup *mem_cont,
647					int active, int file)
648{
649	unsigned long nr_taken = 0;
650	struct page *page;
651	unsigned long scan;
652	LIST_HEAD(pc_list);
653	struct list_head *src;
654	struct page_cgroup *pc, *tmp;
655	int nid = z->zone_pgdat->node_id;
656	int zid = zone_idx(z);
657	struct mem_cgroup_per_zone *mz;
658	int lru = LRU_FILE * file + active;
659	int ret;
660
661	BUG_ON(!mem_cont);
662	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
663	src = &mz->lists[lru];
664
665	scan = 0;
666	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
667		if (scan >= nr_to_scan)
668			break;
669
670		page = pc->page;
671		if (unlikely(!PageCgroupUsed(pc)))
672			continue;
673		if (unlikely(!PageLRU(page)))
674			continue;
675
676		scan++;
677		ret = __isolate_lru_page(page, mode, file);
678		switch (ret) {
679		case 0:
680			list_move(&page->lru, dst);
681			mem_cgroup_del_lru(page);
682			nr_taken++;
683			break;
684		case -EBUSY:
685			/* we don't affect global LRU but rotate in our LRU */
686			mem_cgroup_rotate_lru_list(page, page_lru(page));
687			break;
688		default:
689			break;
690		}
691	}
692
693	*scanned = scan;
694	return nr_taken;
695}
696
697#define mem_cgroup_from_res_counter(counter, member)	\
698	container_of(counter, struct mem_cgroup, member)
699
700static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
701{
702	if (do_swap_account) {
703		if (res_counter_check_under_limit(&mem->res) &&
704			res_counter_check_under_limit(&mem->memsw))
705			return true;
706	} else
707		if (res_counter_check_under_limit(&mem->res))
708			return true;
709	return false;
710}
711
712static unsigned int get_swappiness(struct mem_cgroup *memcg)
713{
714	struct cgroup *cgrp = memcg->css.cgroup;
715	unsigned int swappiness;
716
717	/* root ? */
718	if (cgrp->parent == NULL)
719		return vm_swappiness;
720
721	spin_lock(&memcg->reclaim_param_lock);
722	swappiness = memcg->swappiness;
723	spin_unlock(&memcg->reclaim_param_lock);
724
725	return swappiness;
726}
727
728static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
729{
730	int *val = data;
731	(*val)++;
732	return 0;
733}
734
735/**
736 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
737 * @memcg: The memory cgroup that went over limit
738 * @p: Task that is going to be killed
739 *
740 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
741 * enabled
742 */
743void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
744{
745	struct cgroup *task_cgrp;
746	struct cgroup *mem_cgrp;
747	/*
748	 * Need a buffer in BSS, can't rely on allocations. The code relies
749	 * on the assumption that OOM is serialized for memory controller.
750	 * If this assumption is broken, revisit this code.
751	 */
752	static char memcg_name[PATH_MAX];
753	int ret;
754
755	if (!memcg)
756		return;
757
758
759	rcu_read_lock();
760
761	mem_cgrp = memcg->css.cgroup;
762	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
763
764	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
765	if (ret < 0) {
766		/*
767		 * Unfortunately, we are unable to convert to a useful name
768		 * But we'll still print out the usage information
769		 */
770		rcu_read_unlock();
771		goto done;
772	}
773	rcu_read_unlock();
774
775	printk(KERN_INFO "Task in %s killed", memcg_name);
776
777	rcu_read_lock();
778	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
779	if (ret < 0) {
780		rcu_read_unlock();
781		goto done;
782	}
783	rcu_read_unlock();
784
785	/*
786	 * Continues from above, so we don't need an KERN_ level
787	 */
788	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
789done:
790
791	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
792		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
793		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
794		res_counter_read_u64(&memcg->res, RES_FAILCNT));
795	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
796		"failcnt %llu\n",
797		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
798		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
799		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
800}
801
802/*
803 * This function returns the number of memcg under hierarchy tree. Returns
804 * 1(self count) if no children.
805 */
806static int mem_cgroup_count_children(struct mem_cgroup *mem)
807{
808	int num = 0;
809 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
810	return num;
811}
812
813/*
814 * Visit the first child (need not be the first child as per the ordering
815 * of the cgroup list, since we track last_scanned_child) of @mem and use
816 * that to reclaim free pages from.
817 */
818static struct mem_cgroup *
819mem_cgroup_select_victim(struct mem_cgroup *root_mem)
820{
821	struct mem_cgroup *ret = NULL;
822	struct cgroup_subsys_state *css;
823	int nextid, found;
824
825	if (!root_mem->use_hierarchy) {
826		css_get(&root_mem->css);
827		ret = root_mem;
828	}
829
830	while (!ret) {
831		rcu_read_lock();
832		nextid = root_mem->last_scanned_child + 1;
833		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
834				   &found);
835		if (css && css_tryget(css))
836			ret = container_of(css, struct mem_cgroup, css);
837
838		rcu_read_unlock();
839		/* Updates scanning parameter */
840		spin_lock(&root_mem->reclaim_param_lock);
841		if (!css) {
842			/* this means start scan from ID:1 */
843			root_mem->last_scanned_child = 0;
844		} else
845			root_mem->last_scanned_child = found;
846		spin_unlock(&root_mem->reclaim_param_lock);
847	}
848
849	return ret;
850}
851
852/*
853 * Scan the hierarchy if needed to reclaim memory. We remember the last child
854 * we reclaimed from, so that we don't end up penalizing one child extensively
855 * based on its position in the children list.
856 *
857 * root_mem is the original ancestor that we've been reclaim from.
858 *
859 * We give up and return to the caller when we visit root_mem twice.
860 * (other groups can be removed while we're walking....)
861 *
862 * If shrink==true, for avoiding to free too much, this returns immedieately.
863 */
864static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
865				   gfp_t gfp_mask, bool noswap, bool shrink)
866{
867	struct mem_cgroup *victim;
868	int ret, total = 0;
869	int loop = 0;
870
871	/* If memsw_is_minimum==1, swap-out is of-no-use. */
872	if (root_mem->memsw_is_minimum)
873		noswap = true;
874
875	while (loop < 2) {
876		victim = mem_cgroup_select_victim(root_mem);
877		if (victim == root_mem)
878			loop++;
879		if (!mem_cgroup_local_usage(&victim->stat)) {
880			/* this cgroup's local usage == 0 */
881			css_put(&victim->css);
882			continue;
883		}
884		/* we use swappiness of local cgroup */
885		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
886						   get_swappiness(victim));
887		css_put(&victim->css);
888		/*
889		 * At shrinking usage, we can't check we should stop here or
890		 * reclaim more. It's depends on callers. last_scanned_child
891		 * will work enough for keeping fairness under tree.
892		 */
893		if (shrink)
894			return ret;
895		total += ret;
896		if (mem_cgroup_check_under_limit(root_mem))
897			return 1 + total;
898	}
899	return total;
900}
901
902bool mem_cgroup_oom_called(struct task_struct *task)
903{
904	bool ret = false;
905	struct mem_cgroup *mem;
906	struct mm_struct *mm;
907
908	rcu_read_lock();
909	mm = task->mm;
910	if (!mm)
911		mm = &init_mm;
912	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
913	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
914		ret = true;
915	rcu_read_unlock();
916	return ret;
917}
918
919static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
920{
921	mem->last_oom_jiffies = jiffies;
922	return 0;
923}
924
925static void record_last_oom(struct mem_cgroup *mem)
926{
927	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
928}
929
930/*
931 * Currently used to update mapped file statistics, but the routine can be
932 * generalized to update other statistics as well.
933 */
934void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
935{
936	struct mem_cgroup *mem;
937	struct mem_cgroup_stat *stat;
938	struct mem_cgroup_stat_cpu *cpustat;
939	int cpu;
940	struct page_cgroup *pc;
941
942	if (!page_is_file_cache(page))
943		return;
944
945	pc = lookup_page_cgroup(page);
946	if (unlikely(!pc))
947		return;
948
949	lock_page_cgroup(pc);
950	mem = pc->mem_cgroup;
951	if (!mem)
952		goto done;
953
954	if (!PageCgroupUsed(pc))
955		goto done;
956
957	/*
958	 * Preemption is already disabled, we don't need get_cpu()
959	 */
960	cpu = smp_processor_id();
961	stat = &mem->stat;
962	cpustat = &stat->cpustat[cpu];
963
964	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
965done:
966	unlock_page_cgroup(pc);
967}
968
969/*
970 * Unlike exported interface, "oom" parameter is added. if oom==true,
971 * oom-killer can be invoked.
972 */
973static int __mem_cgroup_try_charge(struct mm_struct *mm,
974			gfp_t gfp_mask, struct mem_cgroup **memcg,
975			bool oom)
976{
977	struct mem_cgroup *mem, *mem_over_limit;
978	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
979	struct res_counter *fail_res;
980
981	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
982		/* Don't account this! */
983		*memcg = NULL;
984		return 0;
985	}
986
987	/*
988	 * We always charge the cgroup the mm_struct belongs to.
989	 * The mm_struct's mem_cgroup changes on task migration if the
990	 * thread group leader migrates. It's possible that mm is not
991	 * set, if so charge the init_mm (happens for pagecache usage).
992	 */
993	mem = *memcg;
994	if (likely(!mem)) {
995		mem = try_get_mem_cgroup_from_mm(mm);
996		*memcg = mem;
997	} else {
998		css_get(&mem->css);
999	}
1000	if (unlikely(!mem))
1001		return 0;
1002
1003	VM_BUG_ON(css_is_removed(&mem->css));
1004
1005	while (1) {
1006		int ret;
1007		bool noswap = false;
1008
1009		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1010		if (likely(!ret)) {
1011			if (!do_swap_account)
1012				break;
1013			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1014							&fail_res);
1015			if (likely(!ret))
1016				break;
1017			/* mem+swap counter fails */
1018			res_counter_uncharge(&mem->res, PAGE_SIZE);
1019			noswap = true;
1020			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1021									memsw);
1022		} else
1023			/* mem counter fails */
1024			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1025									res);
1026
1027		if (!(gfp_mask & __GFP_WAIT))
1028			goto nomem;
1029
1030		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
1031							noswap, false);
1032		if (ret)
1033			continue;
1034
1035		/*
1036		 * try_to_free_mem_cgroup_pages() might not give us a full
1037		 * picture of reclaim. Some pages are reclaimed and might be
1038		 * moved to swap cache or just unmapped from the cgroup.
1039		 * Check the limit again to see if the reclaim reduced the
1040		 * current usage of the cgroup before giving up
1041		 *
1042		 */
1043		if (mem_cgroup_check_under_limit(mem_over_limit))
1044			continue;
1045
1046		if (!nr_retries--) {
1047			if (oom) {
1048				mutex_lock(&memcg_tasklist);
1049				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1050				mutex_unlock(&memcg_tasklist);
1051				record_last_oom(mem_over_limit);
1052			}
1053			goto nomem;
1054		}
1055	}
1056	return 0;
1057nomem:
1058	css_put(&mem->css);
1059	return -ENOMEM;
1060}
1061
1062
1063/*
1064 * A helper function to get mem_cgroup from ID. must be called under
1065 * rcu_read_lock(). The caller must check css_is_removed() or some if
1066 * it's concern. (dropping refcnt from swap can be called against removed
1067 * memcg.)
1068 */
1069static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1070{
1071	struct cgroup_subsys_state *css;
1072
1073	/* ID 0 is unused ID */
1074	if (!id)
1075		return NULL;
1076	css = css_lookup(&mem_cgroup_subsys, id);
1077	if (!css)
1078		return NULL;
1079	return container_of(css, struct mem_cgroup, css);
1080}
1081
1082static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1083{
1084	struct mem_cgroup *mem;
1085	struct page_cgroup *pc;
1086	unsigned short id;
1087	swp_entry_t ent;
1088
1089	VM_BUG_ON(!PageLocked(page));
1090
1091	if (!PageSwapCache(page))
1092		return NULL;
1093
1094	pc = lookup_page_cgroup(page);
1095	lock_page_cgroup(pc);
1096	if (PageCgroupUsed(pc)) {
1097		mem = pc->mem_cgroup;
1098		if (mem && !css_tryget(&mem->css))
1099			mem = NULL;
1100	} else {
1101		ent.val = page_private(page);
1102		id = lookup_swap_cgroup(ent);
1103		rcu_read_lock();
1104		mem = mem_cgroup_lookup(id);
1105		if (mem && !css_tryget(&mem->css))
1106			mem = NULL;
1107		rcu_read_unlock();
1108	}
1109	unlock_page_cgroup(pc);
1110	return mem;
1111}
1112
1113/*
1114 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1115 * USED state. If already USED, uncharge and return.
1116 */
1117
1118static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1119				     struct page_cgroup *pc,
1120				     enum charge_type ctype)
1121{
1122	/* try_charge() can return NULL to *memcg, taking care of it. */
1123	if (!mem)
1124		return;
1125
1126	lock_page_cgroup(pc);
1127	if (unlikely(PageCgroupUsed(pc))) {
1128		unlock_page_cgroup(pc);
1129		res_counter_uncharge(&mem->res, PAGE_SIZE);
1130		if (do_swap_account)
1131			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1132		css_put(&mem->css);
1133		return;
1134	}
1135
1136	pc->mem_cgroup = mem;
1137	/*
1138	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1139	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1140	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1141	 * before USED bit, we need memory barrier here.
1142	 * See mem_cgroup_add_lru_list(), etc.
1143 	 */
1144	smp_wmb();
1145	switch (ctype) {
1146	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1147	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1148		SetPageCgroupCache(pc);
1149		SetPageCgroupUsed(pc);
1150		break;
1151	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1152		ClearPageCgroupCache(pc);
1153		SetPageCgroupUsed(pc);
1154		break;
1155	default:
1156		break;
1157	}
1158
1159	mem_cgroup_charge_statistics(mem, pc, true);
1160
1161	unlock_page_cgroup(pc);
1162}
1163
1164/**
1165 * mem_cgroup_move_account - move account of the page
1166 * @pc:	page_cgroup of the page.
1167 * @from: mem_cgroup which the page is moved from.
1168 * @to:	mem_cgroup which the page is moved to. @from != @to.
1169 *
1170 * The caller must confirm following.
1171 * - page is not on LRU (isolate_page() is useful.)
1172 *
1173 * returns 0 at success,
1174 * returns -EBUSY when lock is busy or "pc" is unstable.
1175 *
1176 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1177 * new cgroup. It should be done by a caller.
1178 */
1179
1180static int mem_cgroup_move_account(struct page_cgroup *pc,
1181	struct mem_cgroup *from, struct mem_cgroup *to)
1182{
1183	struct mem_cgroup_per_zone *from_mz, *to_mz;
1184	int nid, zid;
1185	int ret = -EBUSY;
1186	struct page *page;
1187	int cpu;
1188	struct mem_cgroup_stat *stat;
1189	struct mem_cgroup_stat_cpu *cpustat;
1190
1191	VM_BUG_ON(from == to);
1192	VM_BUG_ON(PageLRU(pc->page));
1193
1194	nid = page_cgroup_nid(pc);
1195	zid = page_cgroup_zid(pc);
1196	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1197	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1198
1199	if (!trylock_page_cgroup(pc))
1200		return ret;
1201
1202	if (!PageCgroupUsed(pc))
1203		goto out;
1204
1205	if (pc->mem_cgroup != from)
1206		goto out;
1207
1208	res_counter_uncharge(&from->res, PAGE_SIZE);
1209	mem_cgroup_charge_statistics(from, pc, false);
1210
1211	page = pc->page;
1212	if (page_is_file_cache(page) && page_mapped(page)) {
1213		cpu = smp_processor_id();
1214		/* Update mapped_file data for mem_cgroup "from" */
1215		stat = &from->stat;
1216		cpustat = &stat->cpustat[cpu];
1217		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1218						-1);
1219
1220		/* Update mapped_file data for mem_cgroup "to" */
1221		stat = &to->stat;
1222		cpustat = &stat->cpustat[cpu];
1223		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1224						1);
1225	}
1226
1227	if (do_swap_account)
1228		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1229	css_put(&from->css);
1230
1231	css_get(&to->css);
1232	pc->mem_cgroup = to;
1233	mem_cgroup_charge_statistics(to, pc, true);
1234	ret = 0;
1235out:
1236	unlock_page_cgroup(pc);
1237	/*
1238	 * We charges against "to" which may not have any tasks. Then, "to"
1239	 * can be under rmdir(). But in current implementation, caller of
1240	 * this function is just force_empty() and it's garanteed that
1241	 * "to" is never removed. So, we don't check rmdir status here.
1242	 */
1243	return ret;
1244}
1245
1246/*
1247 * move charges to its parent.
1248 */
1249
1250static int mem_cgroup_move_parent(struct page_cgroup *pc,
1251				  struct mem_cgroup *child,
1252				  gfp_t gfp_mask)
1253{
1254	struct page *page = pc->page;
1255	struct cgroup *cg = child->css.cgroup;
1256	struct cgroup *pcg = cg->parent;
1257	struct mem_cgroup *parent;
1258	int ret;
1259
1260	/* Is ROOT ? */
1261	if (!pcg)
1262		return -EINVAL;
1263
1264
1265	parent = mem_cgroup_from_cont(pcg);
1266
1267
1268	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1269	if (ret || !parent)
1270		return ret;
1271
1272	if (!get_page_unless_zero(page)) {
1273		ret = -EBUSY;
1274		goto uncharge;
1275	}
1276
1277	ret = isolate_lru_page(page);
1278
1279	if (ret)
1280		goto cancel;
1281
1282	ret = mem_cgroup_move_account(pc, child, parent);
1283
1284	putback_lru_page(page);
1285	if (!ret) {
1286		put_page(page);
1287		/* drop extra refcnt by try_charge() */
1288		css_put(&parent->css);
1289		return 0;
1290	}
1291
1292cancel:
1293	put_page(page);
1294uncharge:
1295	/* drop extra refcnt by try_charge() */
1296	css_put(&parent->css);
1297	/* uncharge if move fails */
1298	res_counter_uncharge(&parent->res, PAGE_SIZE);
1299	if (do_swap_account)
1300		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1301	return ret;
1302}
1303
1304/*
1305 * Charge the memory controller for page usage.
1306 * Return
1307 * 0 if the charge was successful
1308 * < 0 if the cgroup is over its limit
1309 */
1310static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1311				gfp_t gfp_mask, enum charge_type ctype,
1312				struct mem_cgroup *memcg)
1313{
1314	struct mem_cgroup *mem;
1315	struct page_cgroup *pc;
1316	int ret;
1317
1318	pc = lookup_page_cgroup(page);
1319	/* can happen at boot */
1320	if (unlikely(!pc))
1321		return 0;
1322	prefetchw(pc);
1323
1324	mem = memcg;
1325	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1326	if (ret || !mem)
1327		return ret;
1328
1329	__mem_cgroup_commit_charge(mem, pc, ctype);
1330	return 0;
1331}
1332
1333int mem_cgroup_newpage_charge(struct page *page,
1334			      struct mm_struct *mm, gfp_t gfp_mask)
1335{
1336	if (mem_cgroup_disabled())
1337		return 0;
1338	if (PageCompound(page))
1339		return 0;
1340	/*
1341	 * If already mapped, we don't have to account.
1342	 * If page cache, page->mapping has address_space.
1343	 * But page->mapping may have out-of-use anon_vma pointer,
1344	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1345	 * is NULL.
1346  	 */
1347	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1348		return 0;
1349	if (unlikely(!mm))
1350		mm = &init_mm;
1351	return mem_cgroup_charge_common(page, mm, gfp_mask,
1352				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1353}
1354
1355static void
1356__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1357					enum charge_type ctype);
1358
1359int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1360				gfp_t gfp_mask)
1361{
1362	struct mem_cgroup *mem = NULL;
1363	int ret;
1364
1365	if (mem_cgroup_disabled())
1366		return 0;
1367	if (PageCompound(page))
1368		return 0;
1369	/*
1370	 * Corner case handling. This is called from add_to_page_cache()
1371	 * in usual. But some FS (shmem) precharges this page before calling it
1372	 * and call add_to_page_cache() with GFP_NOWAIT.
1373	 *
1374	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1375	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1376	 * charge twice. (It works but has to pay a bit larger cost.)
1377	 * And when the page is SwapCache, it should take swap information
1378	 * into account. This is under lock_page() now.
1379	 */
1380	if (!(gfp_mask & __GFP_WAIT)) {
1381		struct page_cgroup *pc;
1382
1383
1384		pc = lookup_page_cgroup(page);
1385		if (!pc)
1386			return 0;
1387		lock_page_cgroup(pc);
1388		if (PageCgroupUsed(pc)) {
1389			unlock_page_cgroup(pc);
1390			return 0;
1391		}
1392		unlock_page_cgroup(pc);
1393	}
1394
1395	if (unlikely(!mm && !mem))
1396		mm = &init_mm;
1397
1398	if (page_is_file_cache(page))
1399		return mem_cgroup_charge_common(page, mm, gfp_mask,
1400				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1401
1402	/* shmem */
1403	if (PageSwapCache(page)) {
1404		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1405		if (!ret)
1406			__mem_cgroup_commit_charge_swapin(page, mem,
1407					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1408	} else
1409		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1410					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1411
1412	return ret;
1413}
1414
1415/*
1416 * While swap-in, try_charge -> commit or cancel, the page is locked.
1417 * And when try_charge() successfully returns, one refcnt to memcg without
1418 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1419 * "commit()" or removed by "cancel()"
1420 */
1421int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1422				 struct page *page,
1423				 gfp_t mask, struct mem_cgroup **ptr)
1424{
1425	struct mem_cgroup *mem;
1426	int ret;
1427
1428	if (mem_cgroup_disabled())
1429		return 0;
1430
1431	if (!do_swap_account)
1432		goto charge_cur_mm;
1433	/*
1434	 * A racing thread's fault, or swapoff, may have already updated
1435	 * the pte, and even removed page from swap cache: return success
1436	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1437	 */
1438	if (!PageSwapCache(page))
1439		return 0;
1440	mem = try_get_mem_cgroup_from_swapcache(page);
1441	if (!mem)
1442		goto charge_cur_mm;
1443	*ptr = mem;
1444	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1445	/* drop extra refcnt from tryget */
1446	css_put(&mem->css);
1447	return ret;
1448charge_cur_mm:
1449	if (unlikely(!mm))
1450		mm = &init_mm;
1451	return __mem_cgroup_try_charge(mm, mask, ptr, true);
1452}
1453
1454static void
1455__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1456					enum charge_type ctype)
1457{
1458	struct page_cgroup *pc;
1459
1460	if (mem_cgroup_disabled())
1461		return;
1462	if (!ptr)
1463		return;
1464	cgroup_exclude_rmdir(&ptr->css);
1465	pc = lookup_page_cgroup(page);
1466	mem_cgroup_lru_del_before_commit_swapcache(page);
1467	__mem_cgroup_commit_charge(ptr, pc, ctype);
1468	mem_cgroup_lru_add_after_commit_swapcache(page);
1469	/*
1470	 * Now swap is on-memory. This means this page may be
1471	 * counted both as mem and swap....double count.
1472	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1473	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1474	 * may call delete_from_swap_cache() before reach here.
1475	 */
1476	if (do_swap_account && PageSwapCache(page)) {
1477		swp_entry_t ent = {.val = page_private(page)};
1478		unsigned short id;
1479		struct mem_cgroup *memcg;
1480
1481		id = swap_cgroup_record(ent, 0);
1482		rcu_read_lock();
1483		memcg = mem_cgroup_lookup(id);
1484		if (memcg) {
1485			/*
1486			 * This recorded memcg can be obsolete one. So, avoid
1487			 * calling css_tryget
1488			 */
1489			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1490			mem_cgroup_put(memcg);
1491		}
1492		rcu_read_unlock();
1493	}
1494	/*
1495	 * At swapin, we may charge account against cgroup which has no tasks.
1496	 * So, rmdir()->pre_destroy() can be called while we do this charge.
1497	 * In that case, we need to call pre_destroy() again. check it here.
1498	 */
1499	cgroup_release_and_wakeup_rmdir(&ptr->css);
1500}
1501
1502void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1503{
1504	__mem_cgroup_commit_charge_swapin(page, ptr,
1505					MEM_CGROUP_CHARGE_TYPE_MAPPED);
1506}
1507
1508void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1509{
1510	if (mem_cgroup_disabled())
1511		return;
1512	if (!mem)
1513		return;
1514	res_counter_uncharge(&mem->res, PAGE_SIZE);
1515	if (do_swap_account)
1516		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1517	css_put(&mem->css);
1518}
1519
1520
1521/*
1522 * uncharge if !page_mapped(page)
1523 */
1524static struct mem_cgroup *
1525__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1526{
1527	struct page_cgroup *pc;
1528	struct mem_cgroup *mem = NULL;
1529	struct mem_cgroup_per_zone *mz;
1530
1531	if (mem_cgroup_disabled())
1532		return NULL;
1533
1534	if (PageSwapCache(page))
1535		return NULL;
1536
1537	/*
1538	 * Check if our page_cgroup is valid
1539	 */
1540	pc = lookup_page_cgroup(page);
1541	if (unlikely(!pc || !PageCgroupUsed(pc)))
1542		return NULL;
1543
1544	lock_page_cgroup(pc);
1545
1546	mem = pc->mem_cgroup;
1547
1548	if (!PageCgroupUsed(pc))
1549		goto unlock_out;
1550
1551	switch (ctype) {
1552	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1553	case MEM_CGROUP_CHARGE_TYPE_DROP:
1554		if (page_mapped(page))
1555			goto unlock_out;
1556		break;
1557	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1558		if (!PageAnon(page)) {	/* Shared memory */
1559			if (page->mapping && !page_is_file_cache(page))
1560				goto unlock_out;
1561		} else if (page_mapped(page)) /* Anon */
1562				goto unlock_out;
1563		break;
1564	default:
1565		break;
1566	}
1567
1568	res_counter_uncharge(&mem->res, PAGE_SIZE);
1569	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1570		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1571	mem_cgroup_charge_statistics(mem, pc, false);
1572
1573	ClearPageCgroupUsed(pc);
1574	/*
1575	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1576	 * freed from LRU. This is safe because uncharged page is expected not
1577	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1578	 * special functions.
1579	 */
1580
1581	mz = page_cgroup_zoneinfo(pc);
1582	unlock_page_cgroup(pc);
1583
1584	/* at swapout, this memcg will be accessed to record to swap */
1585	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1586		css_put(&mem->css);
1587
1588	return mem;
1589
1590unlock_out:
1591	unlock_page_cgroup(pc);
1592	return NULL;
1593}
1594
1595void mem_cgroup_uncharge_page(struct page *page)
1596{
1597	/* early check. */
1598	if (page_mapped(page))
1599		return;
1600	if (page->mapping && !PageAnon(page))
1601		return;
1602	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1603}
1604
1605void mem_cgroup_uncharge_cache_page(struct page *page)
1606{
1607	VM_BUG_ON(page_mapped(page));
1608	VM_BUG_ON(page->mapping);
1609	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1610}
1611
1612#ifdef CONFIG_SWAP
1613/*
1614 * called after __delete_from_swap_cache() and drop "page" account.
1615 * memcg information is recorded to swap_cgroup of "ent"
1616 */
1617void
1618mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1619{
1620	struct mem_cgroup *memcg;
1621	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1622
1623	if (!swapout) /* this was a swap cache but the swap is unused ! */
1624		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1625
1626	memcg = __mem_cgroup_uncharge_common(page, ctype);
1627
1628	/* record memcg information */
1629	if (do_swap_account && swapout && memcg) {
1630		swap_cgroup_record(ent, css_id(&memcg->css));
1631		mem_cgroup_get(memcg);
1632	}
1633	if (swapout && memcg)
1634		css_put(&memcg->css);
1635}
1636#endif
1637
1638#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1639/*
1640 * called from swap_entry_free(). remove record in swap_cgroup and
1641 * uncharge "memsw" account.
1642 */
1643void mem_cgroup_uncharge_swap(swp_entry_t ent)
1644{
1645	struct mem_cgroup *memcg;
1646	unsigned short id;
1647
1648	if (!do_swap_account)
1649		return;
1650
1651	id = swap_cgroup_record(ent, 0);
1652	rcu_read_lock();
1653	memcg = mem_cgroup_lookup(id);
1654	if (memcg) {
1655		/*
1656		 * We uncharge this because swap is freed.
1657		 * This memcg can be obsolete one. We avoid calling css_tryget
1658		 */
1659		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1660		mem_cgroup_put(memcg);
1661	}
1662	rcu_read_unlock();
1663}
1664#endif
1665
1666/*
1667 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1668 * page belongs to.
1669 */
1670int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1671{
1672	struct page_cgroup *pc;
1673	struct mem_cgroup *mem = NULL;
1674	int ret = 0;
1675
1676	if (mem_cgroup_disabled())
1677		return 0;
1678
1679	pc = lookup_page_cgroup(page);
1680	lock_page_cgroup(pc);
1681	if (PageCgroupUsed(pc)) {
1682		mem = pc->mem_cgroup;
1683		css_get(&mem->css);
1684	}
1685	unlock_page_cgroup(pc);
1686
1687	if (mem) {
1688		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1689		css_put(&mem->css);
1690	}
1691	*ptr = mem;
1692	return ret;
1693}
1694
1695/* remove redundant charge if migration failed*/
1696void mem_cgroup_end_migration(struct mem_cgroup *mem,
1697		struct page *oldpage, struct page *newpage)
1698{
1699	struct page *target, *unused;
1700	struct page_cgroup *pc;
1701	enum charge_type ctype;
1702
1703	if (!mem)
1704		return;
1705	cgroup_exclude_rmdir(&mem->css);
1706	/* at migration success, oldpage->mapping is NULL. */
1707	if (oldpage->mapping) {
1708		target = oldpage;
1709		unused = NULL;
1710	} else {
1711		target = newpage;
1712		unused = oldpage;
1713	}
1714
1715	if (PageAnon(target))
1716		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1717	else if (page_is_file_cache(target))
1718		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1719	else
1720		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1721
1722	/* unused page is not on radix-tree now. */
1723	if (unused)
1724		__mem_cgroup_uncharge_common(unused, ctype);
1725
1726	pc = lookup_page_cgroup(target);
1727	/*
1728	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1729	 * So, double-counting is effectively avoided.
1730	 */
1731	__mem_cgroup_commit_charge(mem, pc, ctype);
1732
1733	/*
1734	 * Both of oldpage and newpage are still under lock_page().
1735	 * Then, we don't have to care about race in radix-tree.
1736	 * But we have to be careful that this page is unmapped or not.
1737	 *
1738	 * There is a case for !page_mapped(). At the start of
1739	 * migration, oldpage was mapped. But now, it's zapped.
1740	 * But we know *target* page is not freed/reused under us.
1741	 * mem_cgroup_uncharge_page() does all necessary checks.
1742	 */
1743	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1744		mem_cgroup_uncharge_page(target);
1745	/*
1746	 * At migration, we may charge account against cgroup which has no tasks
1747	 * So, rmdir()->pre_destroy() can be called while we do this charge.
1748	 * In that case, we need to call pre_destroy() again. check it here.
1749	 */
1750	cgroup_release_and_wakeup_rmdir(&mem->css);
1751}
1752
1753/*
1754 * A call to try to shrink memory usage on charge failure at shmem's swapin.
1755 * Calling hierarchical_reclaim is not enough because we should update
1756 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1757 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1758 * not from the memcg which this page would be charged to.
1759 * try_charge_swapin does all of these works properly.
1760 */
1761int mem_cgroup_shmem_charge_fallback(struct page *page,
1762			    struct mm_struct *mm,
1763			    gfp_t gfp_mask)
1764{
1765	struct mem_cgroup *mem = NULL;
1766	int ret;
1767
1768	if (mem_cgroup_disabled())
1769		return 0;
1770
1771	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1772	if (!ret)
1773		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1774
1775	return ret;
1776}
1777
1778static DEFINE_MUTEX(set_limit_mutex);
1779
1780static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1781				unsigned long long val)
1782{
1783	int retry_count;
1784	int progress;
1785	u64 memswlimit;
1786	int ret = 0;
1787	int children = mem_cgroup_count_children(memcg);
1788	u64 curusage, oldusage;
1789
1790	/*
1791	 * For keeping hierarchical_reclaim simple, how long we should retry
1792	 * is depends on callers. We set our retry-count to be function
1793	 * of # of children which we should visit in this loop.
1794	 */
1795	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1796
1797	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1798
1799	while (retry_count) {
1800		if (signal_pending(current)) {
1801			ret = -EINTR;
1802			break;
1803		}
1804		/*
1805		 * Rather than hide all in some function, I do this in
1806		 * open coded manner. You see what this really does.
1807		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1808		 */
1809		mutex_lock(&set_limit_mutex);
1810		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1811		if (memswlimit < val) {
1812			ret = -EINVAL;
1813			mutex_unlock(&set_limit_mutex);
1814			break;
1815		}
1816		ret = res_counter_set_limit(&memcg->res, val);
1817		if (!ret) {
1818			if (memswlimit == val)
1819				memcg->memsw_is_minimum = true;
1820			else
1821				memcg->memsw_is_minimum = false;
1822		}
1823		mutex_unlock(&set_limit_mutex);
1824
1825		if (!ret)
1826			break;
1827
1828		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1829						   false, true);
1830		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1831		/* Usage is reduced ? */
1832  		if (curusage >= oldusage)
1833			retry_count--;
1834		else
1835			oldusage = curusage;
1836	}
1837
1838	return ret;
1839}
1840
1841static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1842					unsigned long long val)
1843{
1844	int retry_count;
1845	u64 memlimit, oldusage, curusage;
1846	int children = mem_cgroup_count_children(memcg);
1847	int ret = -EBUSY;
1848
1849	/* see mem_cgroup_resize_res_limit */
1850 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1851	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1852	while (retry_count) {
1853		if (signal_pending(current)) {
1854			ret = -EINTR;
1855			break;
1856		}
1857		/*
1858		 * Rather than hide all in some function, I do this in
1859		 * open coded manner. You see what this really does.
1860		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1861		 */
1862		mutex_lock(&set_limit_mutex);
1863		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1864		if (memlimit > val) {
1865			ret = -EINVAL;
1866			mutex_unlock(&set_limit_mutex);
1867			break;
1868		}
1869		ret = res_counter_set_limit(&memcg->memsw, val);
1870		if (!ret) {
1871			if (memlimit == val)
1872				memcg->memsw_is_minimum = true;
1873			else
1874				memcg->memsw_is_minimum = false;
1875		}
1876		mutex_unlock(&set_limit_mutex);
1877
1878		if (!ret)
1879			break;
1880
1881		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1882		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1883		/* Usage is reduced ? */
1884		if (curusage >= oldusage)
1885			retry_count--;
1886		else
1887			oldusage = curusage;
1888	}
1889	return ret;
1890}
1891
1892/*
1893 * This routine traverse page_cgroup in given list and drop them all.
1894 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1895 */
1896static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1897				int node, int zid, enum lru_list lru)
1898{
1899	struct zone *zone;
1900	struct mem_cgroup_per_zone *mz;
1901	struct page_cgroup *pc, *busy;
1902	unsigned long flags, loop;
1903	struct list_head *list;
1904	int ret = 0;
1905
1906	zone = &NODE_DATA(node)->node_zones[zid];
1907	mz = mem_cgroup_zoneinfo(mem, node, zid);
1908	list = &mz->lists[lru];
1909
1910	loop = MEM_CGROUP_ZSTAT(mz, lru);
1911	/* give some margin against EBUSY etc...*/
1912	loop += 256;
1913	busy = NULL;
1914	while (loop--) {
1915		ret = 0;
1916		spin_lock_irqsave(&zone->lru_lock, flags);
1917		if (list_empty(list)) {
1918			spin_unlock_irqrestore(&zone->lru_lock, flags);
1919			break;
1920		}
1921		pc = list_entry(list->prev, struct page_cgroup, lru);
1922		if (busy == pc) {
1923			list_move(&pc->lru, list);
1924			busy = 0;
1925			spin_unlock_irqrestore(&zone->lru_lock, flags);
1926			continue;
1927		}
1928		spin_unlock_irqrestore(&zone->lru_lock, flags);
1929
1930		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1931		if (ret == -ENOMEM)
1932			break;
1933
1934		if (ret == -EBUSY || ret == -EINVAL) {
1935			/* found lock contention or "pc" is obsolete. */
1936			busy = pc;
1937			cond_resched();
1938		} else
1939			busy = NULL;
1940	}
1941
1942	if (!ret && !list_empty(list))
1943		return -EBUSY;
1944	return ret;
1945}
1946
1947/*
1948 * make mem_cgroup's charge to be 0 if there is no task.
1949 * This enables deleting this mem_cgroup.
1950 */
1951static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1952{
1953	int ret;
1954	int node, zid, shrink;
1955	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1956	struct cgroup *cgrp = mem->css.cgroup;
1957
1958	css_get(&mem->css);
1959
1960	shrink = 0;
1961	/* should free all ? */
1962	if (free_all)
1963		goto try_to_free;
1964move_account:
1965	while (mem->res.usage > 0) {
1966		ret = -EBUSY;
1967		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1968			goto out;
1969		ret = -EINTR;
1970		if (signal_pending(current))
1971			goto out;
1972		/* This is for making all *used* pages to be on LRU. */
1973		lru_add_drain_all();
1974		ret = 0;
1975		for_each_node_state(node, N_HIGH_MEMORY) {
1976			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1977				enum lru_list l;
1978				for_each_lru(l) {
1979					ret = mem_cgroup_force_empty_list(mem,
1980							node, zid, l);
1981					if (ret)
1982						break;
1983				}
1984			}
1985			if (ret)
1986				break;
1987		}
1988		/* it seems parent cgroup doesn't have enough mem */
1989		if (ret == -ENOMEM)
1990			goto try_to_free;
1991		cond_resched();
1992	}
1993	ret = 0;
1994out:
1995	css_put(&mem->css);
1996	return ret;
1997
1998try_to_free:
1999	/* returns EBUSY if there is a task or if we come here twice. */
2000	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2001		ret = -EBUSY;
2002		goto out;
2003	}
2004	/* we call try-to-free pages for make this cgroup empty */
2005	lru_add_drain_all();
2006	/* try to free all pages in this cgroup */
2007	shrink = 1;
2008	while (nr_retries && mem->res.usage > 0) {
2009		int progress;
2010
2011		if (signal_pending(current)) {
2012			ret = -EINTR;
2013			goto out;
2014		}
2015		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2016						false, get_swappiness(mem));
2017		if (!progress) {
2018			nr_retries--;
2019			/* maybe some writeback is necessary */
2020			congestion_wait(BLK_RW_ASYNC, HZ/10);
2021		}
2022
2023	}
2024	lru_add_drain();
2025	/* try move_account...there may be some *locked* pages. */
2026	if (mem->res.usage)
2027		goto move_account;
2028	ret = 0;
2029	goto out;
2030}
2031
2032int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2033{
2034	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2035}
2036
2037
2038static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2039{
2040	return mem_cgroup_from_cont(cont)->use_hierarchy;
2041}
2042
2043static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2044					u64 val)
2045{
2046	int retval = 0;
2047	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2048	struct cgroup *parent = cont->parent;
2049	struct mem_cgroup *parent_mem = NULL;
2050
2051	if (parent)
2052		parent_mem = mem_cgroup_from_cont(parent);
2053
2054	cgroup_lock();
2055	/*
2056	 * If parent's use_hiearchy is set, we can't make any modifications
2057	 * in the child subtrees. If it is unset, then the change can
2058	 * occur, provided the current cgroup has no children.
2059	 *
2060	 * For the root cgroup, parent_mem is NULL, we allow value to be
2061	 * set if there are no children.
2062	 */
2063	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2064				(val == 1 || val == 0)) {
2065		if (list_empty(&cont->children))
2066			mem->use_hierarchy = val;
2067		else
2068			retval = -EBUSY;
2069	} else
2070		retval = -EINVAL;
2071	cgroup_unlock();
2072
2073	return retval;
2074}
2075
2076static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2077{
2078	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2079	u64 val = 0;
2080	int type, name;
2081
2082	type = MEMFILE_TYPE(cft->private);
2083	name = MEMFILE_ATTR(cft->private);
2084	switch (type) {
2085	case _MEM:
2086		val = res_counter_read_u64(&mem->res, name);
2087		break;
2088	case _MEMSWAP:
2089		val = res_counter_read_u64(&mem->memsw, name);
2090		break;
2091	default:
2092		BUG();
2093		break;
2094	}
2095	return val;
2096}
2097/*
2098 * The user of this function is...
2099 * RES_LIMIT.
2100 */
2101static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2102			    const char *buffer)
2103{
2104	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2105	int type, name;
2106	unsigned long long val;
2107	int ret;
2108
2109	type = MEMFILE_TYPE(cft->private);
2110	name = MEMFILE_ATTR(cft->private);
2111	switch (name) {
2112	case RES_LIMIT:
2113		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2114			ret = -EINVAL;
2115			break;
2116		}
2117		/* This function does all necessary parse...reuse it */
2118		ret = res_counter_memparse_write_strategy(buffer, &val);
2119		if (ret)
2120			break;
2121		if (type == _MEM)
2122			ret = mem_cgroup_resize_limit(memcg, val);
2123		else
2124			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2125		break;
2126	default:
2127		ret = -EINVAL; /* should be BUG() ? */
2128		break;
2129	}
2130	return ret;
2131}
2132
2133static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2134		unsigned long long *mem_limit, unsigned long long *memsw_limit)
2135{
2136	struct cgroup *cgroup;
2137	unsigned long long min_limit, min_memsw_limit, tmp;
2138
2139	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2140	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2141	cgroup = memcg->css.cgroup;
2142	if (!memcg->use_hierarchy)
2143		goto out;
2144
2145	while (cgroup->parent) {
2146		cgroup = cgroup->parent;
2147		memcg = mem_cgroup_from_cont(cgroup);
2148		if (!memcg->use_hierarchy)
2149			break;
2150		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2151		min_limit = min(min_limit, tmp);
2152		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2153		min_memsw_limit = min(min_memsw_limit, tmp);
2154	}
2155out:
2156	*mem_limit = min_limit;
2157	*memsw_limit = min_memsw_limit;
2158	return;
2159}
2160
2161static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2162{
2163	struct mem_cgroup *mem;
2164	int type, name;
2165
2166	mem = mem_cgroup_from_cont(cont);
2167	type = MEMFILE_TYPE(event);
2168	name = MEMFILE_ATTR(event);
2169	switch (name) {
2170	case RES_MAX_USAGE:
2171		if (type == _MEM)
2172			res_counter_reset_max(&mem->res);
2173		else
2174			res_counter_reset_max(&mem->memsw);
2175		break;
2176	case RES_FAILCNT:
2177		if (type == _MEM)
2178			res_counter_reset_failcnt(&mem->res);
2179		else
2180			res_counter_reset_failcnt(&mem->memsw);
2181		break;
2182	}
2183	return 0;
2184}
2185
2186
2187/* For read statistics */
2188enum {
2189	MCS_CACHE,
2190	MCS_RSS,
2191	MCS_MAPPED_FILE,
2192	MCS_PGPGIN,
2193	MCS_PGPGOUT,
2194	MCS_INACTIVE_ANON,
2195	MCS_ACTIVE_ANON,
2196	MCS_INACTIVE_FILE,
2197	MCS_ACTIVE_FILE,
2198	MCS_UNEVICTABLE,
2199	NR_MCS_STAT,
2200};
2201
2202struct mcs_total_stat {
2203	s64 stat[NR_MCS_STAT];
2204};
2205
2206struct {
2207	char *local_name;
2208	char *total_name;
2209} memcg_stat_strings[NR_MCS_STAT] = {
2210	{"cache", "total_cache"},
2211	{"rss", "total_rss"},
2212	{"mapped_file", "total_mapped_file"},
2213	{"pgpgin", "total_pgpgin"},
2214	{"pgpgout", "total_pgpgout"},
2215	{"inactive_anon", "total_inactive_anon"},
2216	{"active_anon", "total_active_anon"},
2217	{"inactive_file", "total_inactive_file"},
2218	{"active_file", "total_active_file"},
2219	{"unevictable", "total_unevictable"}
2220};
2221
2222
2223static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2224{
2225	struct mcs_total_stat *s = data;
2226	s64 val;
2227
2228	/* per cpu stat */
2229	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2230	s->stat[MCS_CACHE] += val * PAGE_SIZE;
2231	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2232	s->stat[MCS_RSS] += val * PAGE_SIZE;
2233	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2234	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2235	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2236	s->stat[MCS_PGPGIN] += val;
2237	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2238	s->stat[MCS_PGPGOUT] += val;
2239
2240	/* per zone stat */
2241	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2242	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2243	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2244	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2245	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2246	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2247	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2248	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2249	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2250	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2251	return 0;
2252}
2253
2254static void
2255mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2256{
2257	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2258}
2259
2260static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2261				 struct cgroup_map_cb *cb)
2262{
2263	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2264	struct mcs_total_stat mystat;
2265	int i;
2266
2267	memset(&mystat, 0, sizeof(mystat));
2268	mem_cgroup_get_local_stat(mem_cont, &mystat);
2269
2270	for (i = 0; i < NR_MCS_STAT; i++)
2271		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2272
2273	/* Hierarchical information */
2274	{
2275		unsigned long long limit, memsw_limit;
2276		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2277		cb->fill(cb, "hierarchical_memory_limit", limit);
2278		if (do_swap_account)
2279			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2280	}
2281
2282	memset(&mystat, 0, sizeof(mystat));
2283	mem_cgroup_get_total_stat(mem_cont, &mystat);
2284	for (i = 0; i < NR_MCS_STAT; i++)
2285		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2286
2287
2288#ifdef CONFIG_DEBUG_VM
2289	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2290
2291	{
2292		int nid, zid;
2293		struct mem_cgroup_per_zone *mz;
2294		unsigned long recent_rotated[2] = {0, 0};
2295		unsigned long recent_scanned[2] = {0, 0};
2296
2297		for_each_online_node(nid)
2298			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2299				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2300
2301				recent_rotated[0] +=
2302					mz->reclaim_stat.recent_rotated[0];
2303				recent_rotated[1] +=
2304					mz->reclaim_stat.recent_rotated[1];
2305				recent_scanned[0] +=
2306					mz->reclaim_stat.recent_scanned[0];
2307				recent_scanned[1] +=
2308					mz->reclaim_stat.recent_scanned[1];
2309			}
2310		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2311		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2312		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2313		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2314	}
2315#endif
2316
2317	return 0;
2318}
2319
2320static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2321{
2322	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2323
2324	return get_swappiness(memcg);
2325}
2326
2327static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2328				       u64 val)
2329{
2330	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2331	struct mem_cgroup *parent;
2332
2333	if (val > 100)
2334		return -EINVAL;
2335
2336	if (cgrp->parent == NULL)
2337		return -EINVAL;
2338
2339	parent = mem_cgroup_from_cont(cgrp->parent);
2340
2341	cgroup_lock();
2342
2343	/* If under hierarchy, only empty-root can set this value */
2344	if ((parent->use_hierarchy) ||
2345	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2346		cgroup_unlock();
2347		return -EINVAL;
2348	}
2349
2350	spin_lock(&memcg->reclaim_param_lock);
2351	memcg->swappiness = val;
2352	spin_unlock(&memcg->reclaim_param_lock);
2353
2354	cgroup_unlock();
2355
2356	return 0;
2357}
2358
2359
2360static struct cftype mem_cgroup_files[] = {
2361	{
2362		.name = "usage_in_bytes",
2363		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2364		.read_u64 = mem_cgroup_read,
2365	},
2366	{
2367		.name = "max_usage_in_bytes",
2368		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2369		.trigger = mem_cgroup_reset,
2370		.read_u64 = mem_cgroup_read,
2371	},
2372	{
2373		.name = "limit_in_bytes",
2374		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2375		.write_string = mem_cgroup_write,
2376		.read_u64 = mem_cgroup_read,
2377	},
2378	{
2379		.name = "failcnt",
2380		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2381		.trigger = mem_cgroup_reset,
2382		.read_u64 = mem_cgroup_read,
2383	},
2384	{
2385		.name = "stat",
2386		.read_map = mem_control_stat_show,
2387	},
2388	{
2389		.name = "force_empty",
2390		.trigger = mem_cgroup_force_empty_write,
2391	},
2392	{
2393		.name = "use_hierarchy",
2394		.write_u64 = mem_cgroup_hierarchy_write,
2395		.read_u64 = mem_cgroup_hierarchy_read,
2396	},
2397	{
2398		.name = "swappiness",
2399		.read_u64 = mem_cgroup_swappiness_read,
2400		.write_u64 = mem_cgroup_swappiness_write,
2401	},
2402};
2403
2404#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2405static struct cftype memsw_cgroup_files[] = {
2406	{
2407		.name = "memsw.usage_in_bytes",
2408		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2409		.read_u64 = mem_cgroup_read,
2410	},
2411	{
2412		.name = "memsw.max_usage_in_bytes",
2413		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2414		.trigger = mem_cgroup_reset,
2415		.read_u64 = mem_cgroup_read,
2416	},
2417	{
2418		.name = "memsw.limit_in_bytes",
2419		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2420		.write_string = mem_cgroup_write,
2421		.read_u64 = mem_cgroup_read,
2422	},
2423	{
2424		.name = "memsw.failcnt",
2425		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2426		.trigger = mem_cgroup_reset,
2427		.read_u64 = mem_cgroup_read,
2428	},
2429};
2430
2431static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2432{
2433	if (!do_swap_account)
2434		return 0;
2435	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2436				ARRAY_SIZE(memsw_cgroup_files));
2437};
2438#else
2439static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2440{
2441	return 0;
2442}
2443#endif
2444
2445static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2446{
2447	struct mem_cgroup_per_node *pn;
2448	struct mem_cgroup_per_zone *mz;
2449	enum lru_list l;
2450	int zone, tmp = node;
2451	/*
2452	 * This routine is called against possible nodes.
2453	 * But it's BUG to call kmalloc() against offline node.
2454	 *
2455	 * TODO: this routine can waste much memory for nodes which will
2456	 *       never be onlined. It's better to use memory hotplug callback
2457	 *       function.
2458	 */
2459	if (!node_state(node, N_NORMAL_MEMORY))
2460		tmp = -1;
2461	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2462	if (!pn)
2463		return 1;
2464
2465	mem->info.nodeinfo[node] = pn;
2466	memset(pn, 0, sizeof(*pn));
2467
2468	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2469		mz = &pn->zoneinfo[zone];
2470		for_each_lru(l)
2471			INIT_LIST_HEAD(&mz->lists[l]);
2472	}
2473	return 0;
2474}
2475
2476static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2477{
2478	kfree(mem->info.nodeinfo[node]);
2479}
2480
2481static int mem_cgroup_size(void)
2482{
2483	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2484	return sizeof(struct mem_cgroup) + cpustat_size;
2485}
2486
2487static struct mem_cgroup *mem_cgroup_alloc(void)
2488{
2489	struct mem_cgroup *mem;
2490	int size = mem_cgroup_size();
2491
2492	if (size < PAGE_SIZE)
2493		mem = kmalloc(size, GFP_KERNEL);
2494	else
2495		mem = vmalloc(size);
2496
2497	if (mem)
2498		memset(mem, 0, size);
2499	return mem;
2500}
2501
2502/*
2503 * At destroying mem_cgroup, references from swap_cgroup can remain.
2504 * (scanning all at force_empty is too costly...)
2505 *
2506 * Instead of clearing all references at force_empty, we remember
2507 * the number of reference from swap_cgroup and free mem_cgroup when
2508 * it goes down to 0.
2509 *
2510 * Removal of cgroup itself succeeds regardless of refs from swap.
2511 */
2512
2513static void __mem_cgroup_free(struct mem_cgroup *mem)
2514{
2515	int node;
2516
2517	free_css_id(&mem_cgroup_subsys, &mem->css);
2518
2519	for_each_node_state(node, N_POSSIBLE)
2520		free_mem_cgroup_per_zone_info(mem, node);
2521
2522	if (mem_cgroup_size() < PAGE_SIZE)
2523		kfree(mem);
2524	else
2525		vfree(mem);
2526}
2527
2528static void mem_cgroup_get(struct mem_cgroup *mem)
2529{
2530	atomic_inc(&mem->refcnt);
2531}
2532
2533static void mem_cgroup_put(struct mem_cgroup *mem)
2534{
2535	if (atomic_dec_and_test(&mem->refcnt)) {
2536		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2537		__mem_cgroup_free(mem);
2538		if (parent)
2539			mem_cgroup_put(parent);
2540	}
2541}
2542
2543/*
2544 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2545 */
2546static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2547{
2548	if (!mem->res.parent)
2549		return NULL;
2550	return mem_cgroup_from_res_counter(mem->res.parent, res);
2551}
2552
2553#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2554static void __init enable_swap_cgroup(void)
2555{
2556	if (!mem_cgroup_disabled() && really_do_swap_account)
2557		do_swap_account = 1;
2558}
2559#else
2560static void __init enable_swap_cgroup(void)
2561{
2562}
2563#endif
2564
2565static struct cgroup_subsys_state * __ref
2566mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2567{
2568	struct mem_cgroup *mem, *parent;
2569	long error = -ENOMEM;
2570	int node;
2571
2572	mem = mem_cgroup_alloc();
2573	if (!mem)
2574		return ERR_PTR(error);
2575
2576	for_each_node_state(node, N_POSSIBLE)
2577		if (alloc_mem_cgroup_per_zone_info(mem, node))
2578			goto free_out;
2579	/* root ? */
2580	if (cont->parent == NULL) {
2581		enable_swap_cgroup();
2582		parent = NULL;
2583		root_mem_cgroup = mem;
2584	} else {
2585		parent = mem_cgroup_from_cont(cont->parent);
2586		mem->use_hierarchy = parent->use_hierarchy;
2587	}
2588
2589	if (parent && parent->use_hierarchy) {
2590		res_counter_init(&mem->res, &parent->res);
2591		res_counter_init(&mem->memsw, &parent->memsw);
2592		/*
2593		 * We increment refcnt of the parent to ensure that we can
2594		 * safely access it on res_counter_charge/uncharge.
2595		 * This refcnt will be decremented when freeing this
2596		 * mem_cgroup(see mem_cgroup_put).
2597		 */
2598		mem_cgroup_get(parent);
2599	} else {
2600		res_counter_init(&mem->res, NULL);
2601		res_counter_init(&mem->memsw, NULL);
2602	}
2603	mem->last_scanned_child = 0;
2604	spin_lock_init(&mem->reclaim_param_lock);
2605
2606	if (parent)
2607		mem->swappiness = get_swappiness(parent);
2608	atomic_set(&mem->refcnt, 1);
2609	return &mem->css;
2610free_out:
2611	__mem_cgroup_free(mem);
2612	root_mem_cgroup = NULL;
2613	return ERR_PTR(error);
2614}
2615
2616static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2617					struct cgroup *cont)
2618{
2619	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2620
2621	return mem_cgroup_force_empty(mem, false);
2622}
2623
2624static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2625				struct cgroup *cont)
2626{
2627	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2628
2629	mem_cgroup_put(mem);
2630}
2631
2632static int mem_cgroup_populate(struct cgroup_subsys *ss,
2633				struct cgroup *cont)
2634{
2635	int ret;
2636
2637	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2638				ARRAY_SIZE(mem_cgroup_files));
2639
2640	if (!ret)
2641		ret = register_memsw_files(cont, ss);
2642	return ret;
2643}
2644
2645static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2646				struct cgroup *cont,
2647				struct cgroup *old_cont,
2648				struct task_struct *p,
2649				bool threadgroup)
2650{
2651	mutex_lock(&memcg_tasklist);
2652	/*
2653	 * FIXME: It's better to move charges of this process from old
2654	 * memcg to new memcg. But it's just on TODO-List now.
2655	 */
2656	mutex_unlock(&memcg_tasklist);
2657}
2658
2659struct cgroup_subsys mem_cgroup_subsys = {
2660	.name = "memory",
2661	.subsys_id = mem_cgroup_subsys_id,
2662	.create = mem_cgroup_create,
2663	.pre_destroy = mem_cgroup_pre_destroy,
2664	.destroy = mem_cgroup_destroy,
2665	.populate = mem_cgroup_populate,
2666	.attach = mem_cgroup_move_task,
2667	.early_init = 0,
2668	.use_id = 1,
2669};
2670
2671#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2672
2673static int __init disable_swap_account(char *s)
2674{
2675	really_do_swap_account = 0;
2676	return 1;
2677}
2678__setup("noswapaccount", disable_swap_account);
2679#endif
2680