memcontrol.c revision 2c26fdd70c3094fa3e84caf9ef434911933d5477
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/mutex.h>
31#include <linux/slab.h>
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
35#include <linux/seq_file.h>
36#include <linux/vmalloc.h>
37#include <linux/mm_inline.h>
38#include <linux/page_cgroup.h>
39#include "internal.h"
40
41#include <asm/uaccess.h>
42
43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44#define MEM_CGROUP_RECLAIM_RETRIES	5
45
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account		(0)
52#endif
53
54
55/*
56 * Statistics for memory cgroup.
57 */
58enum mem_cgroup_stat_index {
59	/*
60	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61	 */
62	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
63	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
64	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
65	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
66
67	MEM_CGROUP_STAT_NSTATS,
68};
69
70struct mem_cgroup_stat_cpu {
71	s64 count[MEM_CGROUP_STAT_NSTATS];
72} ____cacheline_aligned_in_smp;
73
74struct mem_cgroup_stat {
75	struct mem_cgroup_stat_cpu cpustat[0];
76};
77
78/*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
81static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
82		enum mem_cgroup_stat_index idx, int val)
83{
84	stat->count[idx] += val;
85}
86
87static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88		enum mem_cgroup_stat_index idx)
89{
90	int cpu;
91	s64 ret = 0;
92	for_each_possible_cpu(cpu)
93		ret += stat->cpustat[cpu].count[idx];
94	return ret;
95}
96
97/*
98 * per-zone information in memory controller.
99 */
100struct mem_cgroup_per_zone {
101	/*
102	 * spin_lock to protect the per cgroup LRU
103	 */
104	struct list_head	lists[NR_LRU_LISTS];
105	unsigned long		count[NR_LRU_LISTS];
106};
107/* Macro for accessing counter */
108#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
109
110struct mem_cgroup_per_node {
111	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
112};
113
114struct mem_cgroup_lru_info {
115	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
116};
117
118/*
119 * The memory controller data structure. The memory controller controls both
120 * page cache and RSS per cgroup. We would eventually like to provide
121 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
122 * to help the administrator determine what knobs to tune.
123 *
124 * TODO: Add a water mark for the memory controller. Reclaim will begin when
125 * we hit the water mark. May be even add a low water mark, such that
126 * no reclaim occurs from a cgroup at it's low water mark, this is
127 * a feature that will be implemented much later in the future.
128 */
129struct mem_cgroup {
130	struct cgroup_subsys_state css;
131	/*
132	 * the counter to account for memory usage
133	 */
134	struct res_counter res;
135	/*
136	 * the counter to account for mem+swap usage.
137	 */
138	struct res_counter memsw;
139	/*
140	 * Per cgroup active and inactive list, similar to the
141	 * per zone LRU lists.
142	 */
143	struct mem_cgroup_lru_info info;
144
145	int	prev_priority;	/* for recording reclaim priority */
146
147	/*
148	 * While reclaiming in a hiearchy, we cache the last child we
149	 * reclaimed from. Protected by cgroup_lock()
150	 */
151	struct mem_cgroup *last_scanned_child;
152	/*
153	 * Should the accounting and control be hierarchical, per subtree?
154	 */
155	bool use_hierarchy;
156	unsigned long	last_oom_jiffies;
157	int		obsolete;
158	atomic_t	refcnt;
159	/*
160	 * statistics. This must be placed at the end of memcg.
161	 */
162	struct mem_cgroup_stat stat;
163};
164
165enum charge_type {
166	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
167	MEM_CGROUP_CHARGE_TYPE_MAPPED,
168	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
169	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
170	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
171	NR_CHARGE_TYPE,
172};
173
174/* only for here (for easy reading.) */
175#define PCGF_CACHE	(1UL << PCG_CACHE)
176#define PCGF_USED	(1UL << PCG_USED)
177#define PCGF_LOCK	(1UL << PCG_LOCK)
178static const unsigned long
179pcg_default_flags[NR_CHARGE_TYPE] = {
180	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
181	PCGF_USED | PCGF_LOCK, /* Anon */
182	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
183	0, /* FORCE */
184};
185
186
187/* for encoding cft->private value on file */
188#define _MEM			(0)
189#define _MEMSWAP		(1)
190#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
191#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
192#define MEMFILE_ATTR(val)	((val) & 0xffff)
193
194static void mem_cgroup_get(struct mem_cgroup *mem);
195static void mem_cgroup_put(struct mem_cgroup *mem);
196
197static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
198					 struct page_cgroup *pc,
199					 bool charge)
200{
201	int val = (charge)? 1 : -1;
202	struct mem_cgroup_stat *stat = &mem->stat;
203	struct mem_cgroup_stat_cpu *cpustat;
204	int cpu = get_cpu();
205
206	cpustat = &stat->cpustat[cpu];
207	if (PageCgroupCache(pc))
208		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
209	else
210		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
211
212	if (charge)
213		__mem_cgroup_stat_add_safe(cpustat,
214				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
215	else
216		__mem_cgroup_stat_add_safe(cpustat,
217				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
218	put_cpu();
219}
220
221static struct mem_cgroup_per_zone *
222mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
223{
224	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
225}
226
227static struct mem_cgroup_per_zone *
228page_cgroup_zoneinfo(struct page_cgroup *pc)
229{
230	struct mem_cgroup *mem = pc->mem_cgroup;
231	int nid = page_cgroup_nid(pc);
232	int zid = page_cgroup_zid(pc);
233
234	return mem_cgroup_zoneinfo(mem, nid, zid);
235}
236
237static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
238					enum lru_list idx)
239{
240	int nid, zid;
241	struct mem_cgroup_per_zone *mz;
242	u64 total = 0;
243
244	for_each_online_node(nid)
245		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
246			mz = mem_cgroup_zoneinfo(mem, nid, zid);
247			total += MEM_CGROUP_ZSTAT(mz, idx);
248		}
249	return total;
250}
251
252static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
253{
254	return container_of(cgroup_subsys_state(cont,
255				mem_cgroup_subsys_id), struct mem_cgroup,
256				css);
257}
258
259struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
260{
261	/*
262	 * mm_update_next_owner() may clear mm->owner to NULL
263	 * if it races with swapoff, page migration, etc.
264	 * So this can be called with p == NULL.
265	 */
266	if (unlikely(!p))
267		return NULL;
268
269	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
270				struct mem_cgroup, css);
271}
272
273/*
274 * Following LRU functions are allowed to be used without PCG_LOCK.
275 * Operations are called by routine of global LRU independently from memcg.
276 * What we have to take care of here is validness of pc->mem_cgroup.
277 *
278 * Changes to pc->mem_cgroup happens when
279 * 1. charge
280 * 2. moving account
281 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
282 * It is added to LRU before charge.
283 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
284 * When moving account, the page is not on LRU. It's isolated.
285 */
286
287void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
288{
289	struct page_cgroup *pc;
290	struct mem_cgroup *mem;
291	struct mem_cgroup_per_zone *mz;
292
293	if (mem_cgroup_disabled())
294		return;
295	pc = lookup_page_cgroup(page);
296	/* can happen while we handle swapcache. */
297	if (list_empty(&pc->lru))
298		return;
299	mz = page_cgroup_zoneinfo(pc);
300	mem = pc->mem_cgroup;
301	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
302	list_del_init(&pc->lru);
303	return;
304}
305
306void mem_cgroup_del_lru(struct page *page)
307{
308	mem_cgroup_del_lru_list(page, page_lru(page));
309}
310
311void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
312{
313	struct mem_cgroup_per_zone *mz;
314	struct page_cgroup *pc;
315
316	if (mem_cgroup_disabled())
317		return;
318
319	pc = lookup_page_cgroup(page);
320	smp_rmb();
321	/* unused page is not rotated. */
322	if (!PageCgroupUsed(pc))
323		return;
324	mz = page_cgroup_zoneinfo(pc);
325	list_move(&pc->lru, &mz->lists[lru]);
326}
327
328void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
329{
330	struct page_cgroup *pc;
331	struct mem_cgroup_per_zone *mz;
332
333	if (mem_cgroup_disabled())
334		return;
335	pc = lookup_page_cgroup(page);
336	/* barrier to sync with "charge" */
337	smp_rmb();
338	if (!PageCgroupUsed(pc))
339		return;
340
341	mz = page_cgroup_zoneinfo(pc);
342	MEM_CGROUP_ZSTAT(mz, lru) += 1;
343	list_add(&pc->lru, &mz->lists[lru]);
344}
345/*
346 * To add swapcache into LRU. Be careful to all this function.
347 * zone->lru_lock shouldn't be held and irq must not be disabled.
348 */
349static void mem_cgroup_lru_fixup(struct page *page)
350{
351	if (!isolate_lru_page(page))
352		putback_lru_page(page);
353}
354
355void mem_cgroup_move_lists(struct page *page,
356			   enum lru_list from, enum lru_list to)
357{
358	if (mem_cgroup_disabled())
359		return;
360	mem_cgroup_del_lru_list(page, from);
361	mem_cgroup_add_lru_list(page, to);
362}
363
364int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
365{
366	int ret;
367
368	task_lock(task);
369	ret = task->mm && mm_match_cgroup(task->mm, mem);
370	task_unlock(task);
371	return ret;
372}
373
374/*
375 * Calculate mapped_ratio under memory controller. This will be used in
376 * vmscan.c for deteremining we have to reclaim mapped pages.
377 */
378int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
379{
380	long total, rss;
381
382	/*
383	 * usage is recorded in bytes. But, here, we assume the number of
384	 * physical pages can be represented by "long" on any arch.
385	 */
386	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
387	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
388	return (int)((rss * 100L) / total);
389}
390
391/*
392 * prev_priority control...this will be used in memory reclaim path.
393 */
394int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
395{
396	return mem->prev_priority;
397}
398
399void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
400{
401	if (priority < mem->prev_priority)
402		mem->prev_priority = priority;
403}
404
405void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
406{
407	mem->prev_priority = priority;
408}
409
410/*
411 * Calculate # of pages to be scanned in this priority/zone.
412 * See also vmscan.c
413 *
414 * priority starts from "DEF_PRIORITY" and decremented in each loop.
415 * (see include/linux/mmzone.h)
416 */
417
418long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
419					int priority, enum lru_list lru)
420{
421	long nr_pages;
422	int nid = zone->zone_pgdat->node_id;
423	int zid = zone_idx(zone);
424	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
425
426	nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
427
428	return (nr_pages >> priority);
429}
430
431unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
432					struct list_head *dst,
433					unsigned long *scanned, int order,
434					int mode, struct zone *z,
435					struct mem_cgroup *mem_cont,
436					int active, int file)
437{
438	unsigned long nr_taken = 0;
439	struct page *page;
440	unsigned long scan;
441	LIST_HEAD(pc_list);
442	struct list_head *src;
443	struct page_cgroup *pc, *tmp;
444	int nid = z->zone_pgdat->node_id;
445	int zid = zone_idx(z);
446	struct mem_cgroup_per_zone *mz;
447	int lru = LRU_FILE * !!file + !!active;
448
449	BUG_ON(!mem_cont);
450	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
451	src = &mz->lists[lru];
452
453	scan = 0;
454	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
455		if (scan >= nr_to_scan)
456			break;
457
458		page = pc->page;
459		if (unlikely(!PageCgroupUsed(pc)))
460			continue;
461		if (unlikely(!PageLRU(page)))
462			continue;
463
464		scan++;
465		if (__isolate_lru_page(page, mode, file) == 0) {
466			list_move(&page->lru, dst);
467			nr_taken++;
468		}
469	}
470
471	*scanned = scan;
472	return nr_taken;
473}
474
475#define mem_cgroup_from_res_counter(counter, member)	\
476	container_of(counter, struct mem_cgroup, member)
477
478/*
479 * This routine finds the DFS walk successor. This routine should be
480 * called with cgroup_mutex held
481 */
482static struct mem_cgroup *
483mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
484{
485	struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
486
487	curr_cgroup = curr->css.cgroup;
488	root_cgroup = root_mem->css.cgroup;
489
490	if (!list_empty(&curr_cgroup->children)) {
491		/*
492		 * Walk down to children
493		 */
494		mem_cgroup_put(curr);
495		cgroup = list_entry(curr_cgroup->children.next,
496						struct cgroup, sibling);
497		curr = mem_cgroup_from_cont(cgroup);
498		mem_cgroup_get(curr);
499		goto done;
500	}
501
502visit_parent:
503	if (curr_cgroup == root_cgroup) {
504		mem_cgroup_put(curr);
505		curr = root_mem;
506		mem_cgroup_get(curr);
507		goto done;
508	}
509
510	/*
511	 * Goto next sibling
512	 */
513	if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
514		mem_cgroup_put(curr);
515		cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
516						sibling);
517		curr = mem_cgroup_from_cont(cgroup);
518		mem_cgroup_get(curr);
519		goto done;
520	}
521
522	/*
523	 * Go up to next parent and next parent's sibling if need be
524	 */
525	curr_cgroup = curr_cgroup->parent;
526	goto visit_parent;
527
528done:
529	root_mem->last_scanned_child = curr;
530	return curr;
531}
532
533/*
534 * Visit the first child (need not be the first child as per the ordering
535 * of the cgroup list, since we track last_scanned_child) of @mem and use
536 * that to reclaim free pages from.
537 */
538static struct mem_cgroup *
539mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
540{
541	struct cgroup *cgroup;
542	struct mem_cgroup *ret;
543	bool obsolete = (root_mem->last_scanned_child &&
544				root_mem->last_scanned_child->obsolete);
545
546	/*
547	 * Scan all children under the mem_cgroup mem
548	 */
549	cgroup_lock();
550	if (list_empty(&root_mem->css.cgroup->children)) {
551		ret = root_mem;
552		goto done;
553	}
554
555	if (!root_mem->last_scanned_child || obsolete) {
556
557		if (obsolete)
558			mem_cgroup_put(root_mem->last_scanned_child);
559
560		cgroup = list_first_entry(&root_mem->css.cgroup->children,
561				struct cgroup, sibling);
562		ret = mem_cgroup_from_cont(cgroup);
563		mem_cgroup_get(ret);
564	} else
565		ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
566						root_mem);
567
568done:
569	root_mem->last_scanned_child = ret;
570	cgroup_unlock();
571	return ret;
572}
573
574/*
575 * Dance down the hierarchy if needed to reclaim memory. We remember the
576 * last child we reclaimed from, so that we don't end up penalizing
577 * one child extensively based on its position in the children list.
578 *
579 * root_mem is the original ancestor that we've been reclaim from.
580 */
581static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
582						gfp_t gfp_mask, bool noswap)
583{
584	struct mem_cgroup *next_mem;
585	int ret = 0;
586
587	/*
588	 * Reclaim unconditionally and don't check for return value.
589	 * We need to reclaim in the current group and down the tree.
590	 * One might think about checking for children before reclaiming,
591	 * but there might be left over accounting, even after children
592	 * have left.
593	 */
594	ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
595	if (res_counter_check_under_limit(&root_mem->res))
596		return 0;
597
598	next_mem = mem_cgroup_get_first_node(root_mem);
599
600	while (next_mem != root_mem) {
601		if (next_mem->obsolete) {
602			mem_cgroup_put(next_mem);
603			cgroup_lock();
604			next_mem = mem_cgroup_get_first_node(root_mem);
605			cgroup_unlock();
606			continue;
607		}
608		ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
609		if (res_counter_check_under_limit(&root_mem->res))
610			return 0;
611		cgroup_lock();
612		next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
613		cgroup_unlock();
614	}
615	return ret;
616}
617
618bool mem_cgroup_oom_called(struct task_struct *task)
619{
620	bool ret = false;
621	struct mem_cgroup *mem;
622	struct mm_struct *mm;
623
624	rcu_read_lock();
625	mm = task->mm;
626	if (!mm)
627		mm = &init_mm;
628	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
629	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
630		ret = true;
631	rcu_read_unlock();
632	return ret;
633}
634/*
635 * Unlike exported interface, "oom" parameter is added. if oom==true,
636 * oom-killer can be invoked.
637 */
638static int __mem_cgroup_try_charge(struct mm_struct *mm,
639			gfp_t gfp_mask, struct mem_cgroup **memcg,
640			bool oom)
641{
642	struct mem_cgroup *mem, *mem_over_limit;
643	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
644	struct res_counter *fail_res;
645
646	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
647		/* Don't account this! */
648		*memcg = NULL;
649		return 0;
650	}
651
652	/*
653	 * We always charge the cgroup the mm_struct belongs to.
654	 * The mm_struct's mem_cgroup changes on task migration if the
655	 * thread group leader migrates. It's possible that mm is not
656	 * set, if so charge the init_mm (happens for pagecache usage).
657	 */
658	if (likely(!*memcg)) {
659		rcu_read_lock();
660		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
661		if (unlikely(!mem)) {
662			rcu_read_unlock();
663			return 0;
664		}
665		/*
666		 * For every charge from the cgroup, increment reference count
667		 */
668		css_get(&mem->css);
669		*memcg = mem;
670		rcu_read_unlock();
671	} else {
672		mem = *memcg;
673		css_get(&mem->css);
674	}
675
676	while (1) {
677		int ret;
678		bool noswap = false;
679
680		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
681		if (likely(!ret)) {
682			if (!do_swap_account)
683				break;
684			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
685							&fail_res);
686			if (likely(!ret))
687				break;
688			/* mem+swap counter fails */
689			res_counter_uncharge(&mem->res, PAGE_SIZE);
690			noswap = true;
691			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
692									memsw);
693		} else
694			/* mem counter fails */
695			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
696									res);
697
698		if (!(gfp_mask & __GFP_WAIT))
699			goto nomem;
700
701		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
702							noswap);
703
704		/*
705		 * try_to_free_mem_cgroup_pages() might not give us a full
706		 * picture of reclaim. Some pages are reclaimed and might be
707		 * moved to swap cache or just unmapped from the cgroup.
708		 * Check the limit again to see if the reclaim reduced the
709		 * current usage of the cgroup before giving up
710		 *
711		 */
712		if (do_swap_account) {
713			if (res_counter_check_under_limit(&mem_over_limit->res) &&
714			    res_counter_check_under_limit(&mem_over_limit->memsw))
715				continue;
716		} else if (res_counter_check_under_limit(&mem_over_limit->res))
717				continue;
718
719		if (!nr_retries--) {
720			if (oom) {
721				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
722				mem_over_limit->last_oom_jiffies = jiffies;
723			}
724			goto nomem;
725		}
726	}
727	return 0;
728nomem:
729	css_put(&mem->css);
730	return -ENOMEM;
731}
732
733/**
734 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
735 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
736 * @gfp_mask: gfp_mask for reclaim.
737 * @memcg: a pointer to memory cgroup which is charged against.
738 *
739 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
740 * memory cgroup from @mm is got and stored in *memcg.
741 *
742 * Returns 0 if success. -ENOMEM at failure.
743 * This call can invoke OOM-Killer.
744 */
745
746int mem_cgroup_try_charge(struct mm_struct *mm,
747			  gfp_t mask, struct mem_cgroup **memcg)
748{
749	return __mem_cgroup_try_charge(mm, mask, memcg, true);
750}
751
752/*
753 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
754 * USED state. If already USED, uncharge and return.
755 */
756
757static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
758				     struct page_cgroup *pc,
759				     enum charge_type ctype)
760{
761	/* try_charge() can return NULL to *memcg, taking care of it. */
762	if (!mem)
763		return;
764
765	lock_page_cgroup(pc);
766	if (unlikely(PageCgroupUsed(pc))) {
767		unlock_page_cgroup(pc);
768		res_counter_uncharge(&mem->res, PAGE_SIZE);
769		if (do_swap_account)
770			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
771		css_put(&mem->css);
772		return;
773	}
774	pc->mem_cgroup = mem;
775	smp_wmb();
776	pc->flags = pcg_default_flags[ctype];
777
778	mem_cgroup_charge_statistics(mem, pc, true);
779
780	unlock_page_cgroup(pc);
781}
782
783/**
784 * mem_cgroup_move_account - move account of the page
785 * @pc:	page_cgroup of the page.
786 * @from: mem_cgroup which the page is moved from.
787 * @to:	mem_cgroup which the page is moved to. @from != @to.
788 *
789 * The caller must confirm following.
790 * - page is not on LRU (isolate_page() is useful.)
791 *
792 * returns 0 at success,
793 * returns -EBUSY when lock is busy or "pc" is unstable.
794 *
795 * This function does "uncharge" from old cgroup but doesn't do "charge" to
796 * new cgroup. It should be done by a caller.
797 */
798
799static int mem_cgroup_move_account(struct page_cgroup *pc,
800	struct mem_cgroup *from, struct mem_cgroup *to)
801{
802	struct mem_cgroup_per_zone *from_mz, *to_mz;
803	int nid, zid;
804	int ret = -EBUSY;
805
806	VM_BUG_ON(from == to);
807	VM_BUG_ON(PageLRU(pc->page));
808
809	nid = page_cgroup_nid(pc);
810	zid = page_cgroup_zid(pc);
811	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
812	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
813
814	if (!trylock_page_cgroup(pc))
815		return ret;
816
817	if (!PageCgroupUsed(pc))
818		goto out;
819
820	if (pc->mem_cgroup != from)
821		goto out;
822
823	css_put(&from->css);
824	res_counter_uncharge(&from->res, PAGE_SIZE);
825	mem_cgroup_charge_statistics(from, pc, false);
826	if (do_swap_account)
827		res_counter_uncharge(&from->memsw, PAGE_SIZE);
828	pc->mem_cgroup = to;
829	mem_cgroup_charge_statistics(to, pc, true);
830	css_get(&to->css);
831	ret = 0;
832out:
833	unlock_page_cgroup(pc);
834	return ret;
835}
836
837/*
838 * move charges to its parent.
839 */
840
841static int mem_cgroup_move_parent(struct page_cgroup *pc,
842				  struct mem_cgroup *child,
843				  gfp_t gfp_mask)
844{
845	struct page *page = pc->page;
846	struct cgroup *cg = child->css.cgroup;
847	struct cgroup *pcg = cg->parent;
848	struct mem_cgroup *parent;
849	int ret;
850
851	/* Is ROOT ? */
852	if (!pcg)
853		return -EINVAL;
854
855
856	parent = mem_cgroup_from_cont(pcg);
857
858
859	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
860	if (ret || !parent)
861		return ret;
862
863	if (!get_page_unless_zero(page))
864		return -EBUSY;
865
866	ret = isolate_lru_page(page);
867
868	if (ret)
869		goto cancel;
870
871	ret = mem_cgroup_move_account(pc, child, parent);
872
873	/* drop extra refcnt by try_charge() (move_account increment one) */
874	css_put(&parent->css);
875	putback_lru_page(page);
876	if (!ret) {
877		put_page(page);
878		return 0;
879	}
880	/* uncharge if move fails */
881cancel:
882	res_counter_uncharge(&parent->res, PAGE_SIZE);
883	if (do_swap_account)
884		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
885	put_page(page);
886	return ret;
887}
888
889/*
890 * Charge the memory controller for page usage.
891 * Return
892 * 0 if the charge was successful
893 * < 0 if the cgroup is over its limit
894 */
895static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
896				gfp_t gfp_mask, enum charge_type ctype,
897				struct mem_cgroup *memcg)
898{
899	struct mem_cgroup *mem;
900	struct page_cgroup *pc;
901	int ret;
902
903	pc = lookup_page_cgroup(page);
904	/* can happen at boot */
905	if (unlikely(!pc))
906		return 0;
907	prefetchw(pc);
908
909	mem = memcg;
910	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
911	if (ret || !mem)
912		return ret;
913
914	__mem_cgroup_commit_charge(mem, pc, ctype);
915	return 0;
916}
917
918int mem_cgroup_newpage_charge(struct page *page,
919			      struct mm_struct *mm, gfp_t gfp_mask)
920{
921	if (mem_cgroup_disabled())
922		return 0;
923	if (PageCompound(page))
924		return 0;
925	/*
926	 * If already mapped, we don't have to account.
927	 * If page cache, page->mapping has address_space.
928	 * But page->mapping may have out-of-use anon_vma pointer,
929	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
930	 * is NULL.
931  	 */
932	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
933		return 0;
934	if (unlikely(!mm))
935		mm = &init_mm;
936	return mem_cgroup_charge_common(page, mm, gfp_mask,
937				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
938}
939
940int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
941				gfp_t gfp_mask)
942{
943	if (mem_cgroup_disabled())
944		return 0;
945	if (PageCompound(page))
946		return 0;
947	/*
948	 * Corner case handling. This is called from add_to_page_cache()
949	 * in usual. But some FS (shmem) precharges this page before calling it
950	 * and call add_to_page_cache() with GFP_NOWAIT.
951	 *
952	 * For GFP_NOWAIT case, the page may be pre-charged before calling
953	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
954	 * charge twice. (It works but has to pay a bit larger cost.)
955	 */
956	if (!(gfp_mask & __GFP_WAIT)) {
957		struct page_cgroup *pc;
958
959
960		pc = lookup_page_cgroup(page);
961		if (!pc)
962			return 0;
963		lock_page_cgroup(pc);
964		if (PageCgroupUsed(pc)) {
965			unlock_page_cgroup(pc);
966			return 0;
967		}
968		unlock_page_cgroup(pc);
969	}
970
971	if (unlikely(!mm))
972		mm = &init_mm;
973
974	if (page_is_file_cache(page))
975		return mem_cgroup_charge_common(page, mm, gfp_mask,
976				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
977	else
978		return mem_cgroup_charge_common(page, mm, gfp_mask,
979				MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
980}
981
982int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
983				 struct page *page,
984				 gfp_t mask, struct mem_cgroup **ptr)
985{
986	struct mem_cgroup *mem;
987	swp_entry_t     ent;
988
989	if (mem_cgroup_disabled())
990		return 0;
991
992	if (!do_swap_account)
993		goto charge_cur_mm;
994
995	/*
996	 * A racing thread's fault, or swapoff, may have already updated
997	 * the pte, and even removed page from swap cache: return success
998	 * to go on to do_swap_page()'s pte_same() test, which should fail.
999	 */
1000	if (!PageSwapCache(page))
1001		return 0;
1002
1003	ent.val = page_private(page);
1004
1005	mem = lookup_swap_cgroup(ent);
1006	if (!mem || mem->obsolete)
1007		goto charge_cur_mm;
1008	*ptr = mem;
1009	return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1010charge_cur_mm:
1011	if (unlikely(!mm))
1012		mm = &init_mm;
1013	return __mem_cgroup_try_charge(mm, mask, ptr, true);
1014}
1015
1016#ifdef CONFIG_SWAP
1017
1018int mem_cgroup_cache_charge_swapin(struct page *page,
1019			struct mm_struct *mm, gfp_t mask, bool locked)
1020{
1021	int ret = 0;
1022
1023	if (mem_cgroup_disabled())
1024		return 0;
1025	if (unlikely(!mm))
1026		mm = &init_mm;
1027	if (!locked)
1028		lock_page(page);
1029	/*
1030	 * If not locked, the page can be dropped from SwapCache until
1031	 * we reach here.
1032	 */
1033	if (PageSwapCache(page)) {
1034		struct mem_cgroup *mem = NULL;
1035		swp_entry_t ent;
1036
1037		ent.val = page_private(page);
1038		if (do_swap_account) {
1039			mem = lookup_swap_cgroup(ent);
1040			if (mem && mem->obsolete)
1041				mem = NULL;
1042			if (mem)
1043				mm = NULL;
1044		}
1045		ret = mem_cgroup_charge_common(page, mm, mask,
1046				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1047
1048		if (!ret && do_swap_account) {
1049			/* avoid double counting */
1050			mem = swap_cgroup_record(ent, NULL);
1051			if (mem) {
1052				res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1053				mem_cgroup_put(mem);
1054			}
1055		}
1056	}
1057	if (!locked)
1058		unlock_page(page);
1059	/* add this page(page_cgroup) to the LRU we want. */
1060	mem_cgroup_lru_fixup(page);
1061
1062	return ret;
1063}
1064#endif
1065
1066void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1067{
1068	struct page_cgroup *pc;
1069
1070	if (mem_cgroup_disabled())
1071		return;
1072	if (!ptr)
1073		return;
1074	pc = lookup_page_cgroup(page);
1075	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1076	/*
1077	 * Now swap is on-memory. This means this page may be
1078	 * counted both as mem and swap....double count.
1079	 * Fix it by uncharging from memsw. This SwapCache is stable
1080	 * because we're still under lock_page().
1081	 */
1082	if (do_swap_account) {
1083		swp_entry_t ent = {.val = page_private(page)};
1084		struct mem_cgroup *memcg;
1085		memcg = swap_cgroup_record(ent, NULL);
1086		if (memcg) {
1087			/* If memcg is obsolete, memcg can be != ptr */
1088			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1089			mem_cgroup_put(memcg);
1090		}
1091
1092	}
1093	/* add this page(page_cgroup) to the LRU we want. */
1094	mem_cgroup_lru_fixup(page);
1095}
1096
1097void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1098{
1099	if (mem_cgroup_disabled())
1100		return;
1101	if (!mem)
1102		return;
1103	res_counter_uncharge(&mem->res, PAGE_SIZE);
1104	if (do_swap_account)
1105		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1106	css_put(&mem->css);
1107}
1108
1109
1110/*
1111 * uncharge if !page_mapped(page)
1112 */
1113static struct mem_cgroup *
1114__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1115{
1116	struct page_cgroup *pc;
1117	struct mem_cgroup *mem = NULL;
1118	struct mem_cgroup_per_zone *mz;
1119
1120	if (mem_cgroup_disabled())
1121		return NULL;
1122
1123	if (PageSwapCache(page))
1124		return NULL;
1125
1126	/*
1127	 * Check if our page_cgroup is valid
1128	 */
1129	pc = lookup_page_cgroup(page);
1130	if (unlikely(!pc || !PageCgroupUsed(pc)))
1131		return NULL;
1132
1133	lock_page_cgroup(pc);
1134
1135	mem = pc->mem_cgroup;
1136
1137	if (!PageCgroupUsed(pc))
1138		goto unlock_out;
1139
1140	switch (ctype) {
1141	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1142		if (page_mapped(page))
1143			goto unlock_out;
1144		break;
1145	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1146		if (!PageAnon(page)) {	/* Shared memory */
1147			if (page->mapping && !page_is_file_cache(page))
1148				goto unlock_out;
1149		} else if (page_mapped(page)) /* Anon */
1150				goto unlock_out;
1151		break;
1152	default:
1153		break;
1154	}
1155
1156	res_counter_uncharge(&mem->res, PAGE_SIZE);
1157	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1158		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1159
1160	mem_cgroup_charge_statistics(mem, pc, false);
1161	ClearPageCgroupUsed(pc);
1162
1163	mz = page_cgroup_zoneinfo(pc);
1164	unlock_page_cgroup(pc);
1165
1166	css_put(&mem->css);
1167
1168	return mem;
1169
1170unlock_out:
1171	unlock_page_cgroup(pc);
1172	return NULL;
1173}
1174
1175void mem_cgroup_uncharge_page(struct page *page)
1176{
1177	/* early check. */
1178	if (page_mapped(page))
1179		return;
1180	if (page->mapping && !PageAnon(page))
1181		return;
1182	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1183}
1184
1185void mem_cgroup_uncharge_cache_page(struct page *page)
1186{
1187	VM_BUG_ON(page_mapped(page));
1188	VM_BUG_ON(page->mapping);
1189	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1190}
1191
1192/*
1193 * called from __delete_from_swap_cache() and drop "page" account.
1194 * memcg information is recorded to swap_cgroup of "ent"
1195 */
1196void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1197{
1198	struct mem_cgroup *memcg;
1199
1200	memcg = __mem_cgroup_uncharge_common(page,
1201					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1202	/* record memcg information */
1203	if (do_swap_account && memcg) {
1204		swap_cgroup_record(ent, memcg);
1205		mem_cgroup_get(memcg);
1206	}
1207}
1208
1209#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1210/*
1211 * called from swap_entry_free(). remove record in swap_cgroup and
1212 * uncharge "memsw" account.
1213 */
1214void mem_cgroup_uncharge_swap(swp_entry_t ent)
1215{
1216	struct mem_cgroup *memcg;
1217
1218	if (!do_swap_account)
1219		return;
1220
1221	memcg = swap_cgroup_record(ent, NULL);
1222	if (memcg) {
1223		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1224		mem_cgroup_put(memcg);
1225	}
1226}
1227#endif
1228
1229/*
1230 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1231 * page belongs to.
1232 */
1233int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1234{
1235	struct page_cgroup *pc;
1236	struct mem_cgroup *mem = NULL;
1237	int ret = 0;
1238
1239	if (mem_cgroup_disabled())
1240		return 0;
1241
1242	pc = lookup_page_cgroup(page);
1243	lock_page_cgroup(pc);
1244	if (PageCgroupUsed(pc)) {
1245		mem = pc->mem_cgroup;
1246		css_get(&mem->css);
1247	}
1248	unlock_page_cgroup(pc);
1249
1250	if (mem) {
1251		ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
1252		css_put(&mem->css);
1253	}
1254	*ptr = mem;
1255	return ret;
1256}
1257
1258/* remove redundant charge if migration failed*/
1259void mem_cgroup_end_migration(struct mem_cgroup *mem,
1260		struct page *oldpage, struct page *newpage)
1261{
1262	struct page *target, *unused;
1263	struct page_cgroup *pc;
1264	enum charge_type ctype;
1265
1266	if (!mem)
1267		return;
1268
1269	/* at migration success, oldpage->mapping is NULL. */
1270	if (oldpage->mapping) {
1271		target = oldpage;
1272		unused = NULL;
1273	} else {
1274		target = newpage;
1275		unused = oldpage;
1276	}
1277
1278	if (PageAnon(target))
1279		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1280	else if (page_is_file_cache(target))
1281		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1282	else
1283		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1284
1285	/* unused page is not on radix-tree now. */
1286	if (unused)
1287		__mem_cgroup_uncharge_common(unused, ctype);
1288
1289	pc = lookup_page_cgroup(target);
1290	/*
1291	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1292	 * So, double-counting is effectively avoided.
1293	 */
1294	__mem_cgroup_commit_charge(mem, pc, ctype);
1295
1296	/*
1297	 * Both of oldpage and newpage are still under lock_page().
1298	 * Then, we don't have to care about race in radix-tree.
1299	 * But we have to be careful that this page is unmapped or not.
1300	 *
1301	 * There is a case for !page_mapped(). At the start of
1302	 * migration, oldpage was mapped. But now, it's zapped.
1303	 * But we know *target* page is not freed/reused under us.
1304	 * mem_cgroup_uncharge_page() does all necessary checks.
1305	 */
1306	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1307		mem_cgroup_uncharge_page(target);
1308}
1309
1310/*
1311 * A call to try to shrink memory usage under specified resource controller.
1312 * This is typically used for page reclaiming for shmem for reducing side
1313 * effect of page allocation from shmem, which is used by some mem_cgroup.
1314 */
1315int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1316{
1317	struct mem_cgroup *mem;
1318	int progress = 0;
1319	int retry = MEM_CGROUP_RECLAIM_RETRIES;
1320
1321	if (mem_cgroup_disabled())
1322		return 0;
1323	if (!mm)
1324		return 0;
1325
1326	rcu_read_lock();
1327	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1328	if (unlikely(!mem)) {
1329		rcu_read_unlock();
1330		return 0;
1331	}
1332	css_get(&mem->css);
1333	rcu_read_unlock();
1334
1335	do {
1336		progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
1337		progress += res_counter_check_under_limit(&mem->res);
1338	} while (!progress && --retry);
1339
1340	css_put(&mem->css);
1341	if (!retry)
1342		return -ENOMEM;
1343	return 0;
1344}
1345
1346static DEFINE_MUTEX(set_limit_mutex);
1347
1348static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1349				unsigned long long val)
1350{
1351
1352	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1353	int progress;
1354	u64 memswlimit;
1355	int ret = 0;
1356
1357	while (retry_count) {
1358		if (signal_pending(current)) {
1359			ret = -EINTR;
1360			break;
1361		}
1362		/*
1363		 * Rather than hide all in some function, I do this in
1364		 * open coded manner. You see what this really does.
1365		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1366		 */
1367		mutex_lock(&set_limit_mutex);
1368		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1369		if (memswlimit < val) {
1370			ret = -EINVAL;
1371			mutex_unlock(&set_limit_mutex);
1372			break;
1373		}
1374		ret = res_counter_set_limit(&memcg->res, val);
1375		mutex_unlock(&set_limit_mutex);
1376
1377		if (!ret)
1378			break;
1379
1380		progress = try_to_free_mem_cgroup_pages(memcg,
1381				GFP_KERNEL, false);
1382  		if (!progress)			retry_count--;
1383	}
1384	return ret;
1385}
1386
1387int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1388				unsigned long long val)
1389{
1390	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1391	u64 memlimit, oldusage, curusage;
1392	int ret;
1393
1394	if (!do_swap_account)
1395		return -EINVAL;
1396
1397	while (retry_count) {
1398		if (signal_pending(current)) {
1399			ret = -EINTR;
1400			break;
1401		}
1402		/*
1403		 * Rather than hide all in some function, I do this in
1404		 * open coded manner. You see what this really does.
1405		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1406		 */
1407		mutex_lock(&set_limit_mutex);
1408		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1409		if (memlimit > val) {
1410			ret = -EINVAL;
1411			mutex_unlock(&set_limit_mutex);
1412			break;
1413		}
1414		ret = res_counter_set_limit(&memcg->memsw, val);
1415		mutex_unlock(&set_limit_mutex);
1416
1417		if (!ret)
1418			break;
1419
1420		oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1421		try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
1422		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1423		if (curusage >= oldusage)
1424			retry_count--;
1425	}
1426	return ret;
1427}
1428
1429/*
1430 * This routine traverse page_cgroup in given list and drop them all.
1431 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1432 */
1433static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1434				int node, int zid, enum lru_list lru)
1435{
1436	struct zone *zone;
1437	struct mem_cgroup_per_zone *mz;
1438	struct page_cgroup *pc, *busy;
1439	unsigned long flags, loop;
1440	struct list_head *list;
1441	int ret = 0;
1442
1443	zone = &NODE_DATA(node)->node_zones[zid];
1444	mz = mem_cgroup_zoneinfo(mem, node, zid);
1445	list = &mz->lists[lru];
1446
1447	loop = MEM_CGROUP_ZSTAT(mz, lru);
1448	/* give some margin against EBUSY etc...*/
1449	loop += 256;
1450	busy = NULL;
1451	while (loop--) {
1452		ret = 0;
1453		spin_lock_irqsave(&zone->lru_lock, flags);
1454		if (list_empty(list)) {
1455			spin_unlock_irqrestore(&zone->lru_lock, flags);
1456			break;
1457		}
1458		pc = list_entry(list->prev, struct page_cgroup, lru);
1459		if (busy == pc) {
1460			list_move(&pc->lru, list);
1461			busy = 0;
1462			spin_unlock_irqrestore(&zone->lru_lock, flags);
1463			continue;
1464		}
1465		spin_unlock_irqrestore(&zone->lru_lock, flags);
1466
1467		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1468		if (ret == -ENOMEM)
1469			break;
1470
1471		if (ret == -EBUSY || ret == -EINVAL) {
1472			/* found lock contention or "pc" is obsolete. */
1473			busy = pc;
1474			cond_resched();
1475		} else
1476			busy = NULL;
1477	}
1478
1479	if (!ret && !list_empty(list))
1480		return -EBUSY;
1481	return ret;
1482}
1483
1484/*
1485 * make mem_cgroup's charge to be 0 if there is no task.
1486 * This enables deleting this mem_cgroup.
1487 */
1488static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1489{
1490	int ret;
1491	int node, zid, shrink;
1492	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1493	struct cgroup *cgrp = mem->css.cgroup;
1494
1495	css_get(&mem->css);
1496
1497	shrink = 0;
1498	/* should free all ? */
1499	if (free_all)
1500		goto try_to_free;
1501move_account:
1502	while (mem->res.usage > 0) {
1503		ret = -EBUSY;
1504		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1505			goto out;
1506		ret = -EINTR;
1507		if (signal_pending(current))
1508			goto out;
1509		/* This is for making all *used* pages to be on LRU. */
1510		lru_add_drain_all();
1511		ret = 0;
1512		for_each_node_state(node, N_POSSIBLE) {
1513			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1514				enum lru_list l;
1515				for_each_lru(l) {
1516					ret = mem_cgroup_force_empty_list(mem,
1517							node, zid, l);
1518					if (ret)
1519						break;
1520				}
1521			}
1522			if (ret)
1523				break;
1524		}
1525		/* it seems parent cgroup doesn't have enough mem */
1526		if (ret == -ENOMEM)
1527			goto try_to_free;
1528		cond_resched();
1529	}
1530	ret = 0;
1531out:
1532	css_put(&mem->css);
1533	return ret;
1534
1535try_to_free:
1536	/* returns EBUSY if there is a task or if we come here twice. */
1537	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1538		ret = -EBUSY;
1539		goto out;
1540	}
1541	/* we call try-to-free pages for make this cgroup empty */
1542	lru_add_drain_all();
1543	/* try to free all pages in this cgroup */
1544	shrink = 1;
1545	while (nr_retries && mem->res.usage > 0) {
1546		int progress;
1547
1548		if (signal_pending(current)) {
1549			ret = -EINTR;
1550			goto out;
1551		}
1552		progress = try_to_free_mem_cgroup_pages(mem,
1553						  GFP_KERNEL, false);
1554		if (!progress) {
1555			nr_retries--;
1556			/* maybe some writeback is necessary */
1557			congestion_wait(WRITE, HZ/10);
1558		}
1559
1560	}
1561	lru_add_drain();
1562	/* try move_account...there may be some *locked* pages. */
1563	if (mem->res.usage)
1564		goto move_account;
1565	ret = 0;
1566	goto out;
1567}
1568
1569int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1570{
1571	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1572}
1573
1574
1575static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1576{
1577	return mem_cgroup_from_cont(cont)->use_hierarchy;
1578}
1579
1580static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1581					u64 val)
1582{
1583	int retval = 0;
1584	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1585	struct cgroup *parent = cont->parent;
1586	struct mem_cgroup *parent_mem = NULL;
1587
1588	if (parent)
1589		parent_mem = mem_cgroup_from_cont(parent);
1590
1591	cgroup_lock();
1592	/*
1593	 * If parent's use_hiearchy is set, we can't make any modifications
1594	 * in the child subtrees. If it is unset, then the change can
1595	 * occur, provided the current cgroup has no children.
1596	 *
1597	 * For the root cgroup, parent_mem is NULL, we allow value to be
1598	 * set if there are no children.
1599	 */
1600	if ((!parent_mem || !parent_mem->use_hierarchy) &&
1601				(val == 1 || val == 0)) {
1602		if (list_empty(&cont->children))
1603			mem->use_hierarchy = val;
1604		else
1605			retval = -EBUSY;
1606	} else
1607		retval = -EINVAL;
1608	cgroup_unlock();
1609
1610	return retval;
1611}
1612
1613static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1614{
1615	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1616	u64 val = 0;
1617	int type, name;
1618
1619	type = MEMFILE_TYPE(cft->private);
1620	name = MEMFILE_ATTR(cft->private);
1621	switch (type) {
1622	case _MEM:
1623		val = res_counter_read_u64(&mem->res, name);
1624		break;
1625	case _MEMSWAP:
1626		if (do_swap_account)
1627			val = res_counter_read_u64(&mem->memsw, name);
1628		break;
1629	default:
1630		BUG();
1631		break;
1632	}
1633	return val;
1634}
1635/*
1636 * The user of this function is...
1637 * RES_LIMIT.
1638 */
1639static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1640			    const char *buffer)
1641{
1642	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1643	int type, name;
1644	unsigned long long val;
1645	int ret;
1646
1647	type = MEMFILE_TYPE(cft->private);
1648	name = MEMFILE_ATTR(cft->private);
1649	switch (name) {
1650	case RES_LIMIT:
1651		/* This function does all necessary parse...reuse it */
1652		ret = res_counter_memparse_write_strategy(buffer, &val);
1653		if (ret)
1654			break;
1655		if (type == _MEM)
1656			ret = mem_cgroup_resize_limit(memcg, val);
1657		else
1658			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1659		break;
1660	default:
1661		ret = -EINVAL; /* should be BUG() ? */
1662		break;
1663	}
1664	return ret;
1665}
1666
1667static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1668{
1669	struct mem_cgroup *mem;
1670	int type, name;
1671
1672	mem = mem_cgroup_from_cont(cont);
1673	type = MEMFILE_TYPE(event);
1674	name = MEMFILE_ATTR(event);
1675	switch (name) {
1676	case RES_MAX_USAGE:
1677		if (type == _MEM)
1678			res_counter_reset_max(&mem->res);
1679		else
1680			res_counter_reset_max(&mem->memsw);
1681		break;
1682	case RES_FAILCNT:
1683		if (type == _MEM)
1684			res_counter_reset_failcnt(&mem->res);
1685		else
1686			res_counter_reset_failcnt(&mem->memsw);
1687		break;
1688	}
1689	return 0;
1690}
1691
1692static const struct mem_cgroup_stat_desc {
1693	const char *msg;
1694	u64 unit;
1695} mem_cgroup_stat_desc[] = {
1696	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1697	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1698	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1699	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1700};
1701
1702static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1703				 struct cgroup_map_cb *cb)
1704{
1705	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1706	struct mem_cgroup_stat *stat = &mem_cont->stat;
1707	int i;
1708
1709	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1710		s64 val;
1711
1712		val = mem_cgroup_read_stat(stat, i);
1713		val *= mem_cgroup_stat_desc[i].unit;
1714		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1715	}
1716	/* showing # of active pages */
1717	{
1718		unsigned long active_anon, inactive_anon;
1719		unsigned long active_file, inactive_file;
1720		unsigned long unevictable;
1721
1722		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1723						LRU_INACTIVE_ANON);
1724		active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1725						LRU_ACTIVE_ANON);
1726		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1727						LRU_INACTIVE_FILE);
1728		active_file = mem_cgroup_get_all_zonestat(mem_cont,
1729						LRU_ACTIVE_FILE);
1730		unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1731							LRU_UNEVICTABLE);
1732
1733		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1734		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1735		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1736		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1737		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1738
1739	}
1740	return 0;
1741}
1742
1743
1744static struct cftype mem_cgroup_files[] = {
1745	{
1746		.name = "usage_in_bytes",
1747		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1748		.read_u64 = mem_cgroup_read,
1749	},
1750	{
1751		.name = "max_usage_in_bytes",
1752		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1753		.trigger = mem_cgroup_reset,
1754		.read_u64 = mem_cgroup_read,
1755	},
1756	{
1757		.name = "limit_in_bytes",
1758		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1759		.write_string = mem_cgroup_write,
1760		.read_u64 = mem_cgroup_read,
1761	},
1762	{
1763		.name = "failcnt",
1764		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1765		.trigger = mem_cgroup_reset,
1766		.read_u64 = mem_cgroup_read,
1767	},
1768	{
1769		.name = "stat",
1770		.read_map = mem_control_stat_show,
1771	},
1772	{
1773		.name = "force_empty",
1774		.trigger = mem_cgroup_force_empty_write,
1775	},
1776	{
1777		.name = "use_hierarchy",
1778		.write_u64 = mem_cgroup_hierarchy_write,
1779		.read_u64 = mem_cgroup_hierarchy_read,
1780	},
1781};
1782
1783#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1784static struct cftype memsw_cgroup_files[] = {
1785	{
1786		.name = "memsw.usage_in_bytes",
1787		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1788		.read_u64 = mem_cgroup_read,
1789	},
1790	{
1791		.name = "memsw.max_usage_in_bytes",
1792		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1793		.trigger = mem_cgroup_reset,
1794		.read_u64 = mem_cgroup_read,
1795	},
1796	{
1797		.name = "memsw.limit_in_bytes",
1798		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1799		.write_string = mem_cgroup_write,
1800		.read_u64 = mem_cgroup_read,
1801	},
1802	{
1803		.name = "memsw.failcnt",
1804		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1805		.trigger = mem_cgroup_reset,
1806		.read_u64 = mem_cgroup_read,
1807	},
1808};
1809
1810static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1811{
1812	if (!do_swap_account)
1813		return 0;
1814	return cgroup_add_files(cont, ss, memsw_cgroup_files,
1815				ARRAY_SIZE(memsw_cgroup_files));
1816};
1817#else
1818static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1819{
1820	return 0;
1821}
1822#endif
1823
1824static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1825{
1826	struct mem_cgroup_per_node *pn;
1827	struct mem_cgroup_per_zone *mz;
1828	enum lru_list l;
1829	int zone, tmp = node;
1830	/*
1831	 * This routine is called against possible nodes.
1832	 * But it's BUG to call kmalloc() against offline node.
1833	 *
1834	 * TODO: this routine can waste much memory for nodes which will
1835	 *       never be onlined. It's better to use memory hotplug callback
1836	 *       function.
1837	 */
1838	if (!node_state(node, N_NORMAL_MEMORY))
1839		tmp = -1;
1840	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1841	if (!pn)
1842		return 1;
1843
1844	mem->info.nodeinfo[node] = pn;
1845	memset(pn, 0, sizeof(*pn));
1846
1847	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1848		mz = &pn->zoneinfo[zone];
1849		for_each_lru(l)
1850			INIT_LIST_HEAD(&mz->lists[l]);
1851	}
1852	return 0;
1853}
1854
1855static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1856{
1857	kfree(mem->info.nodeinfo[node]);
1858}
1859
1860static int mem_cgroup_size(void)
1861{
1862	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1863	return sizeof(struct mem_cgroup) + cpustat_size;
1864}
1865
1866static struct mem_cgroup *mem_cgroup_alloc(void)
1867{
1868	struct mem_cgroup *mem;
1869	int size = mem_cgroup_size();
1870
1871	if (size < PAGE_SIZE)
1872		mem = kmalloc(size, GFP_KERNEL);
1873	else
1874		mem = vmalloc(size);
1875
1876	if (mem)
1877		memset(mem, 0, size);
1878	return mem;
1879}
1880
1881/*
1882 * At destroying mem_cgroup, references from swap_cgroup can remain.
1883 * (scanning all at force_empty is too costly...)
1884 *
1885 * Instead of clearing all references at force_empty, we remember
1886 * the number of reference from swap_cgroup and free mem_cgroup when
1887 * it goes down to 0.
1888 *
1889 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1890 * entry which points to this memcg will be ignore at swapin.
1891 *
1892 * Removal of cgroup itself succeeds regardless of refs from swap.
1893 */
1894
1895static void mem_cgroup_free(struct mem_cgroup *mem)
1896{
1897	int node;
1898
1899	if (atomic_read(&mem->refcnt) > 0)
1900		return;
1901
1902
1903	for_each_node_state(node, N_POSSIBLE)
1904		free_mem_cgroup_per_zone_info(mem, node);
1905
1906	if (mem_cgroup_size() < PAGE_SIZE)
1907		kfree(mem);
1908	else
1909		vfree(mem);
1910}
1911
1912static void mem_cgroup_get(struct mem_cgroup *mem)
1913{
1914	atomic_inc(&mem->refcnt);
1915}
1916
1917static void mem_cgroup_put(struct mem_cgroup *mem)
1918{
1919	if (atomic_dec_and_test(&mem->refcnt)) {
1920		if (!mem->obsolete)
1921			return;
1922		mem_cgroup_free(mem);
1923	}
1924}
1925
1926
1927#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1928static void __init enable_swap_cgroup(void)
1929{
1930	if (!mem_cgroup_disabled() && really_do_swap_account)
1931		do_swap_account = 1;
1932}
1933#else
1934static void __init enable_swap_cgroup(void)
1935{
1936}
1937#endif
1938
1939static struct cgroup_subsys_state *
1940mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1941{
1942	struct mem_cgroup *mem, *parent;
1943	int node;
1944
1945	mem = mem_cgroup_alloc();
1946	if (!mem)
1947		return ERR_PTR(-ENOMEM);
1948
1949	for_each_node_state(node, N_POSSIBLE)
1950		if (alloc_mem_cgroup_per_zone_info(mem, node))
1951			goto free_out;
1952	/* root ? */
1953	if (cont->parent == NULL) {
1954		enable_swap_cgroup();
1955		parent = NULL;
1956	} else {
1957		parent = mem_cgroup_from_cont(cont->parent);
1958		mem->use_hierarchy = parent->use_hierarchy;
1959	}
1960
1961	if (parent && parent->use_hierarchy) {
1962		res_counter_init(&mem->res, &parent->res);
1963		res_counter_init(&mem->memsw, &parent->memsw);
1964	} else {
1965		res_counter_init(&mem->res, NULL);
1966		res_counter_init(&mem->memsw, NULL);
1967	}
1968
1969	mem->last_scanned_child = NULL;
1970
1971	return &mem->css;
1972free_out:
1973	for_each_node_state(node, N_POSSIBLE)
1974		free_mem_cgroup_per_zone_info(mem, node);
1975	mem_cgroup_free(mem);
1976	return ERR_PTR(-ENOMEM);
1977}
1978
1979static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1980					struct cgroup *cont)
1981{
1982	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1983	mem->obsolete = 1;
1984	mem_cgroup_force_empty(mem, false);
1985}
1986
1987static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1988				struct cgroup *cont)
1989{
1990	mem_cgroup_free(mem_cgroup_from_cont(cont));
1991}
1992
1993static int mem_cgroup_populate(struct cgroup_subsys *ss,
1994				struct cgroup *cont)
1995{
1996	int ret;
1997
1998	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
1999				ARRAY_SIZE(mem_cgroup_files));
2000
2001	if (!ret)
2002		ret = register_memsw_files(cont, ss);
2003	return ret;
2004}
2005
2006static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2007				struct cgroup *cont,
2008				struct cgroup *old_cont,
2009				struct task_struct *p)
2010{
2011	struct mm_struct *mm;
2012	struct mem_cgroup *mem, *old_mem;
2013
2014	mm = get_task_mm(p);
2015	if (mm == NULL)
2016		return;
2017
2018	mem = mem_cgroup_from_cont(cont);
2019	old_mem = mem_cgroup_from_cont(old_cont);
2020
2021	/*
2022	 * Only thread group leaders are allowed to migrate, the mm_struct is
2023	 * in effect owned by the leader
2024	 */
2025	if (!thread_group_leader(p))
2026		goto out;
2027
2028out:
2029	mmput(mm);
2030}
2031
2032struct cgroup_subsys mem_cgroup_subsys = {
2033	.name = "memory",
2034	.subsys_id = mem_cgroup_subsys_id,
2035	.create = mem_cgroup_create,
2036	.pre_destroy = mem_cgroup_pre_destroy,
2037	.destroy = mem_cgroup_destroy,
2038	.populate = mem_cgroup_populate,
2039	.attach = mem_cgroup_move_task,
2040	.early_init = 0,
2041};
2042
2043#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2044
2045static int __init disable_swap_account(char *s)
2046{
2047	really_do_swap_account = 0;
2048	return 1;
2049}
2050__setup("noswapaccount", disable_swap_account);
2051#endif
2052