memcontrol.c revision 4be4489feae6da890765cc1bdc1af5e4f8c4b75f
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account		(0)
74#endif
75
76
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81	/*
82	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83	 */
84	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90	MEM_CGROUP_STAT_NSTATS,
91};
92
93enum mem_cgroup_events_index {
94	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
95	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
96	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97	MEM_CGROUP_EVENTS_NSTATS,
98};
99/*
100 * Per memcg event counter is incremented at every pagein/pageout. With THP,
101 * it will be incremated by the number of pages. This counter is used for
102 * for trigger some periodic events. This is straightforward and better
103 * than using jiffies etc. to handle periodic memcg event.
104 */
105enum mem_cgroup_events_target {
106	MEM_CGROUP_TARGET_THRESH,
107	MEM_CGROUP_TARGET_SOFTLIMIT,
108	MEM_CGROUP_NTARGETS,
109};
110#define THRESHOLDS_EVENTS_TARGET (128)
111#define SOFTLIMIT_EVENTS_TARGET (1024)
112
113struct mem_cgroup_stat_cpu {
114	long count[MEM_CGROUP_STAT_NSTATS];
115	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
116	unsigned long targets[MEM_CGROUP_NTARGETS];
117};
118
119/*
120 * per-zone information in memory controller.
121 */
122struct mem_cgroup_per_zone {
123	/*
124	 * spin_lock to protect the per cgroup LRU
125	 */
126	struct list_head	lists[NR_LRU_LISTS];
127	unsigned long		count[NR_LRU_LISTS];
128
129	struct zone_reclaim_stat reclaim_stat;
130	struct rb_node		tree_node;	/* RB tree node */
131	unsigned long long	usage_in_excess;/* Set to the value by which */
132						/* the soft limit is exceeded*/
133	bool			on_tree;
134	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
135						/* use container_of	   */
136};
137/* Macro for accessing counter */
138#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
139
140struct mem_cgroup_per_node {
141	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_lru_info {
145	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
146};
147
148/*
149 * Cgroups above their limits are maintained in a RB-Tree, independent of
150 * their hierarchy representation
151 */
152
153struct mem_cgroup_tree_per_zone {
154	struct rb_root rb_root;
155	spinlock_t lock;
156};
157
158struct mem_cgroup_tree_per_node {
159	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
160};
161
162struct mem_cgroup_tree {
163	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
164};
165
166static struct mem_cgroup_tree soft_limit_tree __read_mostly;
167
168struct mem_cgroup_threshold {
169	struct eventfd_ctx *eventfd;
170	u64 threshold;
171};
172
173/* For threshold */
174struct mem_cgroup_threshold_ary {
175	/* An array index points to threshold just below usage. */
176	int current_threshold;
177	/* Size of entries[] */
178	unsigned int size;
179	/* Array of thresholds */
180	struct mem_cgroup_threshold entries[0];
181};
182
183struct mem_cgroup_thresholds {
184	/* Primary thresholds array */
185	struct mem_cgroup_threshold_ary *primary;
186	/*
187	 * Spare threshold array.
188	 * This is needed to make mem_cgroup_unregister_event() "never fail".
189	 * It must be able to store at least primary->size - 1 entries.
190	 */
191	struct mem_cgroup_threshold_ary *spare;
192};
193
194/* for OOM */
195struct mem_cgroup_eventfd_list {
196	struct list_head list;
197	struct eventfd_ctx *eventfd;
198};
199
200static void mem_cgroup_threshold(struct mem_cgroup *mem);
201static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
202
203/*
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
208 *
209 * TODO: Add a water mark for the memory controller. Reclaim will begin when
210 * we hit the water mark. May be even add a low water mark, such that
211 * no reclaim occurs from a cgroup at it's low water mark, this is
212 * a feature that will be implemented much later in the future.
213 */
214struct mem_cgroup {
215	struct cgroup_subsys_state css;
216	/*
217	 * the counter to account for memory usage
218	 */
219	struct res_counter res;
220	/*
221	 * the counter to account for mem+swap usage.
222	 */
223	struct res_counter memsw;
224	/*
225	 * Per cgroup active and inactive list, similar to the
226	 * per zone LRU lists.
227	 */
228	struct mem_cgroup_lru_info info;
229	/*
230	 * While reclaiming in a hierarchy, we cache the last child we
231	 * reclaimed from.
232	 */
233	int last_scanned_child;
234	/*
235	 * Should the accounting and control be hierarchical, per subtree?
236	 */
237	bool use_hierarchy;
238	atomic_t	oom_lock;
239	atomic_t	refcnt;
240
241	unsigned int	swappiness;
242	/* OOM-Killer disable */
243	int		oom_kill_disable;
244
245	/* set when res.limit == memsw.limit */
246	bool		memsw_is_minimum;
247
248	/* protect arrays of thresholds */
249	struct mutex thresholds_lock;
250
251	/* thresholds for memory usage. RCU-protected */
252	struct mem_cgroup_thresholds thresholds;
253
254	/* thresholds for mem+swap usage. RCU-protected */
255	struct mem_cgroup_thresholds memsw_thresholds;
256
257	/* For oom notifier event fd */
258	struct list_head oom_notify;
259
260	/*
261	 * Should we move charges of a task when a task is moved into this
262	 * mem_cgroup ? And what type of charges should we move ?
263	 */
264	unsigned long 	move_charge_at_immigrate;
265	/*
266	 * percpu counter.
267	 */
268	struct mem_cgroup_stat_cpu *stat;
269	/*
270	 * used when a cpu is offlined or other synchronizations
271	 * See mem_cgroup_read_stat().
272	 */
273	struct mem_cgroup_stat_cpu nocpu_base;
274	spinlock_t pcp_counter_lock;
275};
276
277/* Stuffs for move charges at task migration. */
278/*
279 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
280 * left-shifted bitmap of these types.
281 */
282enum move_type {
283	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
284	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
285	NR_MOVE_TYPE,
286};
287
288/* "mc" and its members are protected by cgroup_mutex */
289static struct move_charge_struct {
290	spinlock_t	  lock; /* for from, to */
291	struct mem_cgroup *from;
292	struct mem_cgroup *to;
293	unsigned long precharge;
294	unsigned long moved_charge;
295	unsigned long moved_swap;
296	struct task_struct *moving_task;	/* a task moving charges */
297	wait_queue_head_t waitq;		/* a waitq for other context */
298} mc = {
299	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
300	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
301};
302
303static bool move_anon(void)
304{
305	return test_bit(MOVE_CHARGE_TYPE_ANON,
306					&mc.to->move_charge_at_immigrate);
307}
308
309static bool move_file(void)
310{
311	return test_bit(MOVE_CHARGE_TYPE_FILE,
312					&mc.to->move_charge_at_immigrate);
313}
314
315/*
316 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
317 * limit reclaim to prevent infinite loops, if they ever occur.
318 */
319#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
320#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
321
322enum charge_type {
323	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
324	MEM_CGROUP_CHARGE_TYPE_MAPPED,
325	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
326	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
327	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
328	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
329	NR_CHARGE_TYPE,
330};
331
332/* for encoding cft->private value on file */
333#define _MEM			(0)
334#define _MEMSWAP		(1)
335#define _OOM_TYPE		(2)
336#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
337#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
338#define MEMFILE_ATTR(val)	((val) & 0xffff)
339/* Used for OOM nofiier */
340#define OOM_CONTROL		(0)
341
342/*
343 * Reclaim flags for mem_cgroup_hierarchical_reclaim
344 */
345#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
346#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
347#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
348#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
349#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
350#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
351
352static void mem_cgroup_get(struct mem_cgroup *mem);
353static void mem_cgroup_put(struct mem_cgroup *mem);
354static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
355static void drain_all_stock_async(void);
356
357static struct mem_cgroup_per_zone *
358mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
359{
360	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
361}
362
363struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
364{
365	return &mem->css;
366}
367
368static struct mem_cgroup_per_zone *
369page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
370{
371	int nid = page_to_nid(page);
372	int zid = page_zonenum(page);
373
374	return mem_cgroup_zoneinfo(mem, nid, zid);
375}
376
377static struct mem_cgroup_tree_per_zone *
378soft_limit_tree_node_zone(int nid, int zid)
379{
380	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
381}
382
383static struct mem_cgroup_tree_per_zone *
384soft_limit_tree_from_page(struct page *page)
385{
386	int nid = page_to_nid(page);
387	int zid = page_zonenum(page);
388
389	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static void
393__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
394				struct mem_cgroup_per_zone *mz,
395				struct mem_cgroup_tree_per_zone *mctz,
396				unsigned long long new_usage_in_excess)
397{
398	struct rb_node **p = &mctz->rb_root.rb_node;
399	struct rb_node *parent = NULL;
400	struct mem_cgroup_per_zone *mz_node;
401
402	if (mz->on_tree)
403		return;
404
405	mz->usage_in_excess = new_usage_in_excess;
406	if (!mz->usage_in_excess)
407		return;
408	while (*p) {
409		parent = *p;
410		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
411					tree_node);
412		if (mz->usage_in_excess < mz_node->usage_in_excess)
413			p = &(*p)->rb_left;
414		/*
415		 * We can't avoid mem cgroups that are over their soft
416		 * limit by the same amount
417		 */
418		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
419			p = &(*p)->rb_right;
420	}
421	rb_link_node(&mz->tree_node, parent, p);
422	rb_insert_color(&mz->tree_node, &mctz->rb_root);
423	mz->on_tree = true;
424}
425
426static void
427__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
428				struct mem_cgroup_per_zone *mz,
429				struct mem_cgroup_tree_per_zone *mctz)
430{
431	if (!mz->on_tree)
432		return;
433	rb_erase(&mz->tree_node, &mctz->rb_root);
434	mz->on_tree = false;
435}
436
437static void
438mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
439				struct mem_cgroup_per_zone *mz,
440				struct mem_cgroup_tree_per_zone *mctz)
441{
442	spin_lock(&mctz->lock);
443	__mem_cgroup_remove_exceeded(mem, mz, mctz);
444	spin_unlock(&mctz->lock);
445}
446
447
448static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
449{
450	unsigned long long excess;
451	struct mem_cgroup_per_zone *mz;
452	struct mem_cgroup_tree_per_zone *mctz;
453	int nid = page_to_nid(page);
454	int zid = page_zonenum(page);
455	mctz = soft_limit_tree_from_page(page);
456
457	/*
458	 * Necessary to update all ancestors when hierarchy is used.
459	 * because their event counter is not touched.
460	 */
461	for (; mem; mem = parent_mem_cgroup(mem)) {
462		mz = mem_cgroup_zoneinfo(mem, nid, zid);
463		excess = res_counter_soft_limit_excess(&mem->res);
464		/*
465		 * We have to update the tree if mz is on RB-tree or
466		 * mem is over its softlimit.
467		 */
468		if (excess || mz->on_tree) {
469			spin_lock(&mctz->lock);
470			/* if on-tree, remove it */
471			if (mz->on_tree)
472				__mem_cgroup_remove_exceeded(mem, mz, mctz);
473			/*
474			 * Insert again. mz->usage_in_excess will be updated.
475			 * If excess is 0, no tree ops.
476			 */
477			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
478			spin_unlock(&mctz->lock);
479		}
480	}
481}
482
483static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
484{
485	int node, zone;
486	struct mem_cgroup_per_zone *mz;
487	struct mem_cgroup_tree_per_zone *mctz;
488
489	for_each_node_state(node, N_POSSIBLE) {
490		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
491			mz = mem_cgroup_zoneinfo(mem, node, zone);
492			mctz = soft_limit_tree_node_zone(node, zone);
493			mem_cgroup_remove_exceeded(mem, mz, mctz);
494		}
495	}
496}
497
498static struct mem_cgroup_per_zone *
499__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
500{
501	struct rb_node *rightmost = NULL;
502	struct mem_cgroup_per_zone *mz;
503
504retry:
505	mz = NULL;
506	rightmost = rb_last(&mctz->rb_root);
507	if (!rightmost)
508		goto done;		/* Nothing to reclaim from */
509
510	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
511	/*
512	 * Remove the node now but someone else can add it back,
513	 * we will to add it back at the end of reclaim to its correct
514	 * position in the tree.
515	 */
516	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
517	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
518		!css_tryget(&mz->mem->css))
519		goto retry;
520done:
521	return mz;
522}
523
524static struct mem_cgroup_per_zone *
525mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
526{
527	struct mem_cgroup_per_zone *mz;
528
529	spin_lock(&mctz->lock);
530	mz = __mem_cgroup_largest_soft_limit_node(mctz);
531	spin_unlock(&mctz->lock);
532	return mz;
533}
534
535/*
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronizion of counter in memcg's counter.
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threashold and synchonization as vmstat[] should be
552 * implemented.
553 */
554static long mem_cgroup_read_stat(struct mem_cgroup *mem,
555				 enum mem_cgroup_stat_index idx)
556{
557	long val = 0;
558	int cpu;
559
560	get_online_cpus();
561	for_each_online_cpu(cpu)
562		val += per_cpu(mem->stat->count[idx], cpu);
563#ifdef CONFIG_HOTPLUG_CPU
564	spin_lock(&mem->pcp_counter_lock);
565	val += mem->nocpu_base.count[idx];
566	spin_unlock(&mem->pcp_counter_lock);
567#endif
568	put_online_cpus();
569	return val;
570}
571
572static long mem_cgroup_local_usage(struct mem_cgroup *mem)
573{
574	long ret;
575
576	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
577	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
578	return ret;
579}
580
581static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
582					 bool charge)
583{
584	int val = (charge) ? 1 : -1;
585	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
586}
587
588static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
589					    enum mem_cgroup_events_index idx)
590{
591	unsigned long val = 0;
592	int cpu;
593
594	for_each_online_cpu(cpu)
595		val += per_cpu(mem->stat->events[idx], cpu);
596#ifdef CONFIG_HOTPLUG_CPU
597	spin_lock(&mem->pcp_counter_lock);
598	val += mem->nocpu_base.events[idx];
599	spin_unlock(&mem->pcp_counter_lock);
600#endif
601	return val;
602}
603
604static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
605					 bool file, int nr_pages)
606{
607	preempt_disable();
608
609	if (file)
610		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
611	else
612		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
613
614	/* pagein of a big page is an event. So, ignore page size */
615	if (nr_pages > 0)
616		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617	else {
618		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619		nr_pages = -nr_pages; /* for event */
620	}
621
622	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
623
624	preempt_enable();
625}
626
627static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
628					enum lru_list idx)
629{
630	int nid, zid;
631	struct mem_cgroup_per_zone *mz;
632	u64 total = 0;
633
634	for_each_online_node(nid)
635		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
636			mz = mem_cgroup_zoneinfo(mem, nid, zid);
637			total += MEM_CGROUP_ZSTAT(mz, idx);
638		}
639	return total;
640}
641
642static bool __memcg_event_check(struct mem_cgroup *mem, int target)
643{
644	unsigned long val, next;
645
646	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
647	next = this_cpu_read(mem->stat->targets[target]);
648	/* from time_after() in jiffies.h */
649	return ((long)next - (long)val < 0);
650}
651
652static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
653{
654	unsigned long val, next;
655
656	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
657
658	switch (target) {
659	case MEM_CGROUP_TARGET_THRESH:
660		next = val + THRESHOLDS_EVENTS_TARGET;
661		break;
662	case MEM_CGROUP_TARGET_SOFTLIMIT:
663		next = val + SOFTLIMIT_EVENTS_TARGET;
664		break;
665	default:
666		return;
667	}
668
669	this_cpu_write(mem->stat->targets[target], next);
670}
671
672/*
673 * Check events in order.
674 *
675 */
676static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
677{
678	/* threshold event is triggered in finer grain than soft limit */
679	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
680		mem_cgroup_threshold(mem);
681		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
682		if (unlikely(__memcg_event_check(mem,
683			MEM_CGROUP_TARGET_SOFTLIMIT))){
684			mem_cgroup_update_tree(mem, page);
685			__mem_cgroup_target_update(mem,
686				MEM_CGROUP_TARGET_SOFTLIMIT);
687		}
688	}
689}
690
691static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
692{
693	return container_of(cgroup_subsys_state(cont,
694				mem_cgroup_subsys_id), struct mem_cgroup,
695				css);
696}
697
698struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
699{
700	/*
701	 * mm_update_next_owner() may clear mm->owner to NULL
702	 * if it races with swapoff, page migration, etc.
703	 * So this can be called with p == NULL.
704	 */
705	if (unlikely(!p))
706		return NULL;
707
708	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
709				struct mem_cgroup, css);
710}
711
712static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
713{
714	struct mem_cgroup *mem = NULL;
715
716	if (!mm)
717		return NULL;
718	/*
719	 * Because we have no locks, mm->owner's may be being moved to other
720	 * cgroup. We use css_tryget() here even if this looks
721	 * pessimistic (rather than adding locks here).
722	 */
723	rcu_read_lock();
724	do {
725		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
726		if (unlikely(!mem))
727			break;
728	} while (!css_tryget(&mem->css));
729	rcu_read_unlock();
730	return mem;
731}
732
733/* The caller has to guarantee "mem" exists before calling this */
734static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
735{
736	struct cgroup_subsys_state *css;
737	int found;
738
739	if (!mem) /* ROOT cgroup has the smallest ID */
740		return root_mem_cgroup; /*css_put/get against root is ignored*/
741	if (!mem->use_hierarchy) {
742		if (css_tryget(&mem->css))
743			return mem;
744		return NULL;
745	}
746	rcu_read_lock();
747	/*
748	 * searching a memory cgroup which has the smallest ID under given
749	 * ROOT cgroup. (ID >= 1)
750	 */
751	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
752	if (css && css_tryget(css))
753		mem = container_of(css, struct mem_cgroup, css);
754	else
755		mem = NULL;
756	rcu_read_unlock();
757	return mem;
758}
759
760static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
761					struct mem_cgroup *root,
762					bool cond)
763{
764	int nextid = css_id(&iter->css) + 1;
765	int found;
766	int hierarchy_used;
767	struct cgroup_subsys_state *css;
768
769	hierarchy_used = iter->use_hierarchy;
770
771	css_put(&iter->css);
772	/* If no ROOT, walk all, ignore hierarchy */
773	if (!cond || (root && !hierarchy_used))
774		return NULL;
775
776	if (!root)
777		root = root_mem_cgroup;
778
779	do {
780		iter = NULL;
781		rcu_read_lock();
782
783		css = css_get_next(&mem_cgroup_subsys, nextid,
784				&root->css, &found);
785		if (css && css_tryget(css))
786			iter = container_of(css, struct mem_cgroup, css);
787		rcu_read_unlock();
788		/* If css is NULL, no more cgroups will be found */
789		nextid = found + 1;
790	} while (css && !iter);
791
792	return iter;
793}
794/*
795 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
796 * be careful that "break" loop is not allowed. We have reference count.
797 * Instead of that modify "cond" to be false and "continue" to exit the loop.
798 */
799#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
800	for (iter = mem_cgroup_start_loop(root);\
801	     iter != NULL;\
802	     iter = mem_cgroup_get_next(iter, root, cond))
803
804#define for_each_mem_cgroup_tree(iter, root) \
805	for_each_mem_cgroup_tree_cond(iter, root, true)
806
807#define for_each_mem_cgroup_all(iter) \
808	for_each_mem_cgroup_tree_cond(iter, NULL, true)
809
810
811static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
812{
813	return (mem == root_mem_cgroup);
814}
815
816/*
817 * Following LRU functions are allowed to be used without PCG_LOCK.
818 * Operations are called by routine of global LRU independently from memcg.
819 * What we have to take care of here is validness of pc->mem_cgroup.
820 *
821 * Changes to pc->mem_cgroup happens when
822 * 1. charge
823 * 2. moving account
824 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
825 * It is added to LRU before charge.
826 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
827 * When moving account, the page is not on LRU. It's isolated.
828 */
829
830void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
831{
832	struct page_cgroup *pc;
833	struct mem_cgroup_per_zone *mz;
834
835	if (mem_cgroup_disabled())
836		return;
837	pc = lookup_page_cgroup(page);
838	/* can happen while we handle swapcache. */
839	if (!TestClearPageCgroupAcctLRU(pc))
840		return;
841	VM_BUG_ON(!pc->mem_cgroup);
842	/*
843	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
844	 * removed from global LRU.
845	 */
846	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
847	/* huge page split is done under lru_lock. so, we have no races. */
848	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
849	if (mem_cgroup_is_root(pc->mem_cgroup))
850		return;
851	VM_BUG_ON(list_empty(&pc->lru));
852	list_del_init(&pc->lru);
853}
854
855void mem_cgroup_del_lru(struct page *page)
856{
857	mem_cgroup_del_lru_list(page, page_lru(page));
858}
859
860/*
861 * Writeback is about to end against a page which has been marked for immediate
862 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
863 * inactive list.
864 */
865void mem_cgroup_rotate_reclaimable_page(struct page *page)
866{
867	struct mem_cgroup_per_zone *mz;
868	struct page_cgroup *pc;
869	enum lru_list lru = page_lru(page);
870
871	if (mem_cgroup_disabled())
872		return;
873
874	pc = lookup_page_cgroup(page);
875	/* unused or root page is not rotated. */
876	if (!PageCgroupUsed(pc))
877		return;
878	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
879	smp_rmb();
880	if (mem_cgroup_is_root(pc->mem_cgroup))
881		return;
882	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
883	list_move_tail(&pc->lru, &mz->lists[lru]);
884}
885
886void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
887{
888	struct mem_cgroup_per_zone *mz;
889	struct page_cgroup *pc;
890
891	if (mem_cgroup_disabled())
892		return;
893
894	pc = lookup_page_cgroup(page);
895	/* unused or root page is not rotated. */
896	if (!PageCgroupUsed(pc))
897		return;
898	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
899	smp_rmb();
900	if (mem_cgroup_is_root(pc->mem_cgroup))
901		return;
902	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
903	list_move(&pc->lru, &mz->lists[lru]);
904}
905
906void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
907{
908	struct page_cgroup *pc;
909	struct mem_cgroup_per_zone *mz;
910
911	if (mem_cgroup_disabled())
912		return;
913	pc = lookup_page_cgroup(page);
914	VM_BUG_ON(PageCgroupAcctLRU(pc));
915	if (!PageCgroupUsed(pc))
916		return;
917	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
918	smp_rmb();
919	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
920	/* huge page split is done under lru_lock. so, we have no races. */
921	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
922	SetPageCgroupAcctLRU(pc);
923	if (mem_cgroup_is_root(pc->mem_cgroup))
924		return;
925	list_add(&pc->lru, &mz->lists[lru]);
926}
927
928/*
929 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
930 * lru because the page may.be reused after it's fully uncharged (because of
931 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
932 * it again. This function is only used to charge SwapCache. It's done under
933 * lock_page and expected that zone->lru_lock is never held.
934 */
935static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
936{
937	unsigned long flags;
938	struct zone *zone = page_zone(page);
939	struct page_cgroup *pc = lookup_page_cgroup(page);
940
941	spin_lock_irqsave(&zone->lru_lock, flags);
942	/*
943	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
944	 * is guarded by lock_page() because the page is SwapCache.
945	 */
946	if (!PageCgroupUsed(pc))
947		mem_cgroup_del_lru_list(page, page_lru(page));
948	spin_unlock_irqrestore(&zone->lru_lock, flags);
949}
950
951static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
952{
953	unsigned long flags;
954	struct zone *zone = page_zone(page);
955	struct page_cgroup *pc = lookup_page_cgroup(page);
956
957	spin_lock_irqsave(&zone->lru_lock, flags);
958	/* link when the page is linked to LRU but page_cgroup isn't */
959	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
960		mem_cgroup_add_lru_list(page, page_lru(page));
961	spin_unlock_irqrestore(&zone->lru_lock, flags);
962}
963
964
965void mem_cgroup_move_lists(struct page *page,
966			   enum lru_list from, enum lru_list to)
967{
968	if (mem_cgroup_disabled())
969		return;
970	mem_cgroup_del_lru_list(page, from);
971	mem_cgroup_add_lru_list(page, to);
972}
973
974int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
975{
976	int ret;
977	struct mem_cgroup *curr = NULL;
978	struct task_struct *p;
979
980	p = find_lock_task_mm(task);
981	if (!p)
982		return 0;
983	curr = try_get_mem_cgroup_from_mm(p->mm);
984	task_unlock(p);
985	if (!curr)
986		return 0;
987	/*
988	 * We should check use_hierarchy of "mem" not "curr". Because checking
989	 * use_hierarchy of "curr" here make this function true if hierarchy is
990	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
991	 * hierarchy(even if use_hierarchy is disabled in "mem").
992	 */
993	if (mem->use_hierarchy)
994		ret = css_is_ancestor(&curr->css, &mem->css);
995	else
996		ret = (curr == mem);
997	css_put(&curr->css);
998	return ret;
999}
1000
1001static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1002{
1003	unsigned long active;
1004	unsigned long inactive;
1005	unsigned long gb;
1006	unsigned long inactive_ratio;
1007
1008	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1009	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1010
1011	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1012	if (gb)
1013		inactive_ratio = int_sqrt(10 * gb);
1014	else
1015		inactive_ratio = 1;
1016
1017	if (present_pages) {
1018		present_pages[0] = inactive;
1019		present_pages[1] = active;
1020	}
1021
1022	return inactive_ratio;
1023}
1024
1025int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1026{
1027	unsigned long active;
1028	unsigned long inactive;
1029	unsigned long present_pages[2];
1030	unsigned long inactive_ratio;
1031
1032	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1033
1034	inactive = present_pages[0];
1035	active = present_pages[1];
1036
1037	if (inactive * inactive_ratio < active)
1038		return 1;
1039
1040	return 0;
1041}
1042
1043int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1044{
1045	unsigned long active;
1046	unsigned long inactive;
1047
1048	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1049	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1050
1051	return (active > inactive);
1052}
1053
1054unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1055				       struct zone *zone,
1056				       enum lru_list lru)
1057{
1058	int nid = zone_to_nid(zone);
1059	int zid = zone_idx(zone);
1060	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1061
1062	return MEM_CGROUP_ZSTAT(mz, lru);
1063}
1064
1065struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1066						      struct zone *zone)
1067{
1068	int nid = zone_to_nid(zone);
1069	int zid = zone_idx(zone);
1070	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1071
1072	return &mz->reclaim_stat;
1073}
1074
1075struct zone_reclaim_stat *
1076mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1077{
1078	struct page_cgroup *pc;
1079	struct mem_cgroup_per_zone *mz;
1080
1081	if (mem_cgroup_disabled())
1082		return NULL;
1083
1084	pc = lookup_page_cgroup(page);
1085	if (!PageCgroupUsed(pc))
1086		return NULL;
1087	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1088	smp_rmb();
1089	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1090	return &mz->reclaim_stat;
1091}
1092
1093unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1094					struct list_head *dst,
1095					unsigned long *scanned, int order,
1096					int mode, struct zone *z,
1097					struct mem_cgroup *mem_cont,
1098					int active, int file)
1099{
1100	unsigned long nr_taken = 0;
1101	struct page *page;
1102	unsigned long scan;
1103	LIST_HEAD(pc_list);
1104	struct list_head *src;
1105	struct page_cgroup *pc, *tmp;
1106	int nid = zone_to_nid(z);
1107	int zid = zone_idx(z);
1108	struct mem_cgroup_per_zone *mz;
1109	int lru = LRU_FILE * file + active;
1110	int ret;
1111
1112	BUG_ON(!mem_cont);
1113	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1114	src = &mz->lists[lru];
1115
1116	scan = 0;
1117	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1118		if (scan >= nr_to_scan)
1119			break;
1120
1121		if (unlikely(!PageCgroupUsed(pc)))
1122			continue;
1123
1124		page = lookup_cgroup_page(pc);
1125
1126		if (unlikely(!PageLRU(page)))
1127			continue;
1128
1129		scan++;
1130		ret = __isolate_lru_page(page, mode, file);
1131		switch (ret) {
1132		case 0:
1133			list_move(&page->lru, dst);
1134			mem_cgroup_del_lru(page);
1135			nr_taken += hpage_nr_pages(page);
1136			break;
1137		case -EBUSY:
1138			/* we don't affect global LRU but rotate in our LRU */
1139			mem_cgroup_rotate_lru_list(page, page_lru(page));
1140			break;
1141		default:
1142			break;
1143		}
1144	}
1145
1146	*scanned = scan;
1147
1148	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1149				      0, 0, 0, mode);
1150
1151	return nr_taken;
1152}
1153
1154#define mem_cgroup_from_res_counter(counter, member)	\
1155	container_of(counter, struct mem_cgroup, member)
1156
1157/**
1158 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1159 * @mem: the memory cgroup
1160 *
1161 * Returns the maximum amount of memory @mem can be charged with, in
1162 * pages.
1163 */
1164static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1165{
1166	unsigned long long margin;
1167
1168	margin = res_counter_margin(&mem->res);
1169	if (do_swap_account)
1170		margin = min(margin, res_counter_margin(&mem->memsw));
1171	return margin >> PAGE_SHIFT;
1172}
1173
1174static unsigned int get_swappiness(struct mem_cgroup *memcg)
1175{
1176	struct cgroup *cgrp = memcg->css.cgroup;
1177
1178	/* root ? */
1179	if (cgrp->parent == NULL)
1180		return vm_swappiness;
1181
1182	return memcg->swappiness;
1183}
1184
1185static void mem_cgroup_start_move(struct mem_cgroup *mem)
1186{
1187	int cpu;
1188
1189	get_online_cpus();
1190	spin_lock(&mem->pcp_counter_lock);
1191	for_each_online_cpu(cpu)
1192		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1193	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1194	spin_unlock(&mem->pcp_counter_lock);
1195	put_online_cpus();
1196
1197	synchronize_rcu();
1198}
1199
1200static void mem_cgroup_end_move(struct mem_cgroup *mem)
1201{
1202	int cpu;
1203
1204	if (!mem)
1205		return;
1206	get_online_cpus();
1207	spin_lock(&mem->pcp_counter_lock);
1208	for_each_online_cpu(cpu)
1209		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1210	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1211	spin_unlock(&mem->pcp_counter_lock);
1212	put_online_cpus();
1213}
1214/*
1215 * 2 routines for checking "mem" is under move_account() or not.
1216 *
1217 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1218 *			  for avoiding race in accounting. If true,
1219 *			  pc->mem_cgroup may be overwritten.
1220 *
1221 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1222 *			  under hierarchy of moving cgroups. This is for
1223 *			  waiting at hith-memory prressure caused by "move".
1224 */
1225
1226static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1227{
1228	VM_BUG_ON(!rcu_read_lock_held());
1229	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1230}
1231
1232static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1233{
1234	struct mem_cgroup *from;
1235	struct mem_cgroup *to;
1236	bool ret = false;
1237	/*
1238	 * Unlike task_move routines, we access mc.to, mc.from not under
1239	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1240	 */
1241	spin_lock(&mc.lock);
1242	from = mc.from;
1243	to = mc.to;
1244	if (!from)
1245		goto unlock;
1246	if (from == mem || to == mem
1247	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1248	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1249		ret = true;
1250unlock:
1251	spin_unlock(&mc.lock);
1252	return ret;
1253}
1254
1255static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1256{
1257	if (mc.moving_task && current != mc.moving_task) {
1258		if (mem_cgroup_under_move(mem)) {
1259			DEFINE_WAIT(wait);
1260			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1261			/* moving charge context might have finished. */
1262			if (mc.moving_task)
1263				schedule();
1264			finish_wait(&mc.waitq, &wait);
1265			return true;
1266		}
1267	}
1268	return false;
1269}
1270
1271/**
1272 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1273 * @memcg: The memory cgroup that went over limit
1274 * @p: Task that is going to be killed
1275 *
1276 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1277 * enabled
1278 */
1279void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1280{
1281	struct cgroup *task_cgrp;
1282	struct cgroup *mem_cgrp;
1283	/*
1284	 * Need a buffer in BSS, can't rely on allocations. The code relies
1285	 * on the assumption that OOM is serialized for memory controller.
1286	 * If this assumption is broken, revisit this code.
1287	 */
1288	static char memcg_name[PATH_MAX];
1289	int ret;
1290
1291	if (!memcg || !p)
1292		return;
1293
1294
1295	rcu_read_lock();
1296
1297	mem_cgrp = memcg->css.cgroup;
1298	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1299
1300	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1301	if (ret < 0) {
1302		/*
1303		 * Unfortunately, we are unable to convert to a useful name
1304		 * But we'll still print out the usage information
1305		 */
1306		rcu_read_unlock();
1307		goto done;
1308	}
1309	rcu_read_unlock();
1310
1311	printk(KERN_INFO "Task in %s killed", memcg_name);
1312
1313	rcu_read_lock();
1314	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1315	if (ret < 0) {
1316		rcu_read_unlock();
1317		goto done;
1318	}
1319	rcu_read_unlock();
1320
1321	/*
1322	 * Continues from above, so we don't need an KERN_ level
1323	 */
1324	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1325done:
1326
1327	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1328		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1329		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1330		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1331	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1332		"failcnt %llu\n",
1333		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1334		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1335		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1336}
1337
1338/*
1339 * This function returns the number of memcg under hierarchy tree. Returns
1340 * 1(self count) if no children.
1341 */
1342static int mem_cgroup_count_children(struct mem_cgroup *mem)
1343{
1344	int num = 0;
1345	struct mem_cgroup *iter;
1346
1347	for_each_mem_cgroup_tree(iter, mem)
1348		num++;
1349	return num;
1350}
1351
1352/*
1353 * Return the memory (and swap, if configured) limit for a memcg.
1354 */
1355u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1356{
1357	u64 limit;
1358	u64 memsw;
1359
1360	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1361	limit += total_swap_pages << PAGE_SHIFT;
1362
1363	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1364	/*
1365	 * If memsw is finite and limits the amount of swap space available
1366	 * to this memcg, return that limit.
1367	 */
1368	return min(limit, memsw);
1369}
1370
1371/*
1372 * Visit the first child (need not be the first child as per the ordering
1373 * of the cgroup list, since we track last_scanned_child) of @mem and use
1374 * that to reclaim free pages from.
1375 */
1376static struct mem_cgroup *
1377mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1378{
1379	struct mem_cgroup *ret = NULL;
1380	struct cgroup_subsys_state *css;
1381	int nextid, found;
1382
1383	if (!root_mem->use_hierarchy) {
1384		css_get(&root_mem->css);
1385		ret = root_mem;
1386	}
1387
1388	while (!ret) {
1389		rcu_read_lock();
1390		nextid = root_mem->last_scanned_child + 1;
1391		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1392				   &found);
1393		if (css && css_tryget(css))
1394			ret = container_of(css, struct mem_cgroup, css);
1395
1396		rcu_read_unlock();
1397		/* Updates scanning parameter */
1398		if (!css) {
1399			/* this means start scan from ID:1 */
1400			root_mem->last_scanned_child = 0;
1401		} else
1402			root_mem->last_scanned_child = found;
1403	}
1404
1405	return ret;
1406}
1407
1408/*
1409 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1410 * we reclaimed from, so that we don't end up penalizing one child extensively
1411 * based on its position in the children list.
1412 *
1413 * root_mem is the original ancestor that we've been reclaim from.
1414 *
1415 * We give up and return to the caller when we visit root_mem twice.
1416 * (other groups can be removed while we're walking....)
1417 *
1418 * If shrink==true, for avoiding to free too much, this returns immedieately.
1419 */
1420static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1421						struct zone *zone,
1422						gfp_t gfp_mask,
1423						unsigned long reclaim_options)
1424{
1425	struct mem_cgroup *victim;
1426	int ret, total = 0;
1427	int loop = 0;
1428	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1429	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1430	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1431	unsigned long excess;
1432
1433	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1434
1435	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1436	if (root_mem->memsw_is_minimum)
1437		noswap = true;
1438
1439	while (1) {
1440		victim = mem_cgroup_select_victim(root_mem);
1441		if (victim == root_mem) {
1442			loop++;
1443			if (loop >= 1)
1444				drain_all_stock_async();
1445			if (loop >= 2) {
1446				/*
1447				 * If we have not been able to reclaim
1448				 * anything, it might because there are
1449				 * no reclaimable pages under this hierarchy
1450				 */
1451				if (!check_soft || !total) {
1452					css_put(&victim->css);
1453					break;
1454				}
1455				/*
1456				 * We want to do more targetted reclaim.
1457				 * excess >> 2 is not to excessive so as to
1458				 * reclaim too much, nor too less that we keep
1459				 * coming back to reclaim from this cgroup
1460				 */
1461				if (total >= (excess >> 2) ||
1462					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1463					css_put(&victim->css);
1464					break;
1465				}
1466			}
1467		}
1468		if (!mem_cgroup_local_usage(victim)) {
1469			/* this cgroup's local usage == 0 */
1470			css_put(&victim->css);
1471			continue;
1472		}
1473		/* we use swappiness of local cgroup */
1474		if (check_soft)
1475			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1476				noswap, get_swappiness(victim), zone);
1477		else
1478			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1479						noswap, get_swappiness(victim));
1480		css_put(&victim->css);
1481		/*
1482		 * At shrinking usage, we can't check we should stop here or
1483		 * reclaim more. It's depends on callers. last_scanned_child
1484		 * will work enough for keeping fairness under tree.
1485		 */
1486		if (shrink)
1487			return ret;
1488		total += ret;
1489		if (check_soft) {
1490			if (!res_counter_soft_limit_excess(&root_mem->res))
1491				return total;
1492		} else if (mem_cgroup_margin(root_mem))
1493			return 1 + total;
1494	}
1495	return total;
1496}
1497
1498/*
1499 * Check OOM-Killer is already running under our hierarchy.
1500 * If someone is running, return false.
1501 */
1502static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1503{
1504	int x, lock_count = 0;
1505	struct mem_cgroup *iter;
1506
1507	for_each_mem_cgroup_tree(iter, mem) {
1508		x = atomic_inc_return(&iter->oom_lock);
1509		lock_count = max(x, lock_count);
1510	}
1511
1512	if (lock_count == 1)
1513		return true;
1514	return false;
1515}
1516
1517static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1518{
1519	struct mem_cgroup *iter;
1520
1521	/*
1522	 * When a new child is created while the hierarchy is under oom,
1523	 * mem_cgroup_oom_lock() may not be called. We have to use
1524	 * atomic_add_unless() here.
1525	 */
1526	for_each_mem_cgroup_tree(iter, mem)
1527		atomic_add_unless(&iter->oom_lock, -1, 0);
1528	return 0;
1529}
1530
1531
1532static DEFINE_MUTEX(memcg_oom_mutex);
1533static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1534
1535struct oom_wait_info {
1536	struct mem_cgroup *mem;
1537	wait_queue_t	wait;
1538};
1539
1540static int memcg_oom_wake_function(wait_queue_t *wait,
1541	unsigned mode, int sync, void *arg)
1542{
1543	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1544	struct oom_wait_info *oom_wait_info;
1545
1546	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1547
1548	if (oom_wait_info->mem == wake_mem)
1549		goto wakeup;
1550	/* if no hierarchy, no match */
1551	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1552		return 0;
1553	/*
1554	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1555	 * Then we can use css_is_ancestor without taking care of RCU.
1556	 */
1557	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1558	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1559		return 0;
1560
1561wakeup:
1562	return autoremove_wake_function(wait, mode, sync, arg);
1563}
1564
1565static void memcg_wakeup_oom(struct mem_cgroup *mem)
1566{
1567	/* for filtering, pass "mem" as argument. */
1568	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1569}
1570
1571static void memcg_oom_recover(struct mem_cgroup *mem)
1572{
1573	if (mem && atomic_read(&mem->oom_lock))
1574		memcg_wakeup_oom(mem);
1575}
1576
1577/*
1578 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1579 */
1580bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1581{
1582	struct oom_wait_info owait;
1583	bool locked, need_to_kill;
1584
1585	owait.mem = mem;
1586	owait.wait.flags = 0;
1587	owait.wait.func = memcg_oom_wake_function;
1588	owait.wait.private = current;
1589	INIT_LIST_HEAD(&owait.wait.task_list);
1590	need_to_kill = true;
1591	/* At first, try to OOM lock hierarchy under mem.*/
1592	mutex_lock(&memcg_oom_mutex);
1593	locked = mem_cgroup_oom_lock(mem);
1594	/*
1595	 * Even if signal_pending(), we can't quit charge() loop without
1596	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1597	 * under OOM is always welcomed, use TASK_KILLABLE here.
1598	 */
1599	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1600	if (!locked || mem->oom_kill_disable)
1601		need_to_kill = false;
1602	if (locked)
1603		mem_cgroup_oom_notify(mem);
1604	mutex_unlock(&memcg_oom_mutex);
1605
1606	if (need_to_kill) {
1607		finish_wait(&memcg_oom_waitq, &owait.wait);
1608		mem_cgroup_out_of_memory(mem, mask);
1609	} else {
1610		schedule();
1611		finish_wait(&memcg_oom_waitq, &owait.wait);
1612	}
1613	mutex_lock(&memcg_oom_mutex);
1614	mem_cgroup_oom_unlock(mem);
1615	memcg_wakeup_oom(mem);
1616	mutex_unlock(&memcg_oom_mutex);
1617
1618	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1619		return false;
1620	/* Give chance to dying process */
1621	schedule_timeout(1);
1622	return true;
1623}
1624
1625/*
1626 * Currently used to update mapped file statistics, but the routine can be
1627 * generalized to update other statistics as well.
1628 *
1629 * Notes: Race condition
1630 *
1631 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1632 * it tends to be costly. But considering some conditions, we doesn't need
1633 * to do so _always_.
1634 *
1635 * Considering "charge", lock_page_cgroup() is not required because all
1636 * file-stat operations happen after a page is attached to radix-tree. There
1637 * are no race with "charge".
1638 *
1639 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1640 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1641 * if there are race with "uncharge". Statistics itself is properly handled
1642 * by flags.
1643 *
1644 * Considering "move", this is an only case we see a race. To make the race
1645 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1646 * possibility of race condition. If there is, we take a lock.
1647 */
1648
1649void mem_cgroup_update_page_stat(struct page *page,
1650				 enum mem_cgroup_page_stat_item idx, int val)
1651{
1652	struct mem_cgroup *mem;
1653	struct page_cgroup *pc = lookup_page_cgroup(page);
1654	bool need_unlock = false;
1655	unsigned long uninitialized_var(flags);
1656
1657	if (unlikely(!pc))
1658		return;
1659
1660	rcu_read_lock();
1661	mem = pc->mem_cgroup;
1662	if (unlikely(!mem || !PageCgroupUsed(pc)))
1663		goto out;
1664	/* pc->mem_cgroup is unstable ? */
1665	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1666		/* take a lock against to access pc->mem_cgroup */
1667		move_lock_page_cgroup(pc, &flags);
1668		need_unlock = true;
1669		mem = pc->mem_cgroup;
1670		if (!mem || !PageCgroupUsed(pc))
1671			goto out;
1672	}
1673
1674	switch (idx) {
1675	case MEMCG_NR_FILE_MAPPED:
1676		if (val > 0)
1677			SetPageCgroupFileMapped(pc);
1678		else if (!page_mapped(page))
1679			ClearPageCgroupFileMapped(pc);
1680		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1681		break;
1682	default:
1683		BUG();
1684	}
1685
1686	this_cpu_add(mem->stat->count[idx], val);
1687
1688out:
1689	if (unlikely(need_unlock))
1690		move_unlock_page_cgroup(pc, &flags);
1691	rcu_read_unlock();
1692	return;
1693}
1694EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1695
1696/*
1697 * size of first charge trial. "32" comes from vmscan.c's magic value.
1698 * TODO: maybe necessary to use big numbers in big irons.
1699 */
1700#define CHARGE_BATCH	32U
1701struct memcg_stock_pcp {
1702	struct mem_cgroup *cached; /* this never be root cgroup */
1703	unsigned int nr_pages;
1704	struct work_struct work;
1705};
1706static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1707static atomic_t memcg_drain_count;
1708
1709/*
1710 * Try to consume stocked charge on this cpu. If success, one page is consumed
1711 * from local stock and true is returned. If the stock is 0 or charges from a
1712 * cgroup which is not current target, returns false. This stock will be
1713 * refilled.
1714 */
1715static bool consume_stock(struct mem_cgroup *mem)
1716{
1717	struct memcg_stock_pcp *stock;
1718	bool ret = true;
1719
1720	stock = &get_cpu_var(memcg_stock);
1721	if (mem == stock->cached && stock->nr_pages)
1722		stock->nr_pages--;
1723	else /* need to call res_counter_charge */
1724		ret = false;
1725	put_cpu_var(memcg_stock);
1726	return ret;
1727}
1728
1729/*
1730 * Returns stocks cached in percpu to res_counter and reset cached information.
1731 */
1732static void drain_stock(struct memcg_stock_pcp *stock)
1733{
1734	struct mem_cgroup *old = stock->cached;
1735
1736	if (stock->nr_pages) {
1737		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1738
1739		res_counter_uncharge(&old->res, bytes);
1740		if (do_swap_account)
1741			res_counter_uncharge(&old->memsw, bytes);
1742		stock->nr_pages = 0;
1743	}
1744	stock->cached = NULL;
1745}
1746
1747/*
1748 * This must be called under preempt disabled or must be called by
1749 * a thread which is pinned to local cpu.
1750 */
1751static void drain_local_stock(struct work_struct *dummy)
1752{
1753	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1754	drain_stock(stock);
1755}
1756
1757/*
1758 * Cache charges(val) which is from res_counter, to local per_cpu area.
1759 * This will be consumed by consume_stock() function, later.
1760 */
1761static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1762{
1763	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1764
1765	if (stock->cached != mem) { /* reset if necessary */
1766		drain_stock(stock);
1767		stock->cached = mem;
1768	}
1769	stock->nr_pages += nr_pages;
1770	put_cpu_var(memcg_stock);
1771}
1772
1773/*
1774 * Tries to drain stocked charges in other cpus. This function is asynchronous
1775 * and just put a work per cpu for draining localy on each cpu. Caller can
1776 * expects some charges will be back to res_counter later but cannot wait for
1777 * it.
1778 */
1779static void drain_all_stock_async(void)
1780{
1781	int cpu;
1782	/* This function is for scheduling "drain" in asynchronous way.
1783	 * The result of "drain" is not directly handled by callers. Then,
1784	 * if someone is calling drain, we don't have to call drain more.
1785	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1786	 * there is a race. We just do loose check here.
1787	 */
1788	if (atomic_read(&memcg_drain_count))
1789		return;
1790	/* Notify other cpus that system-wide "drain" is running */
1791	atomic_inc(&memcg_drain_count);
1792	get_online_cpus();
1793	for_each_online_cpu(cpu) {
1794		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1795		schedule_work_on(cpu, &stock->work);
1796	}
1797 	put_online_cpus();
1798	atomic_dec(&memcg_drain_count);
1799	/* We don't wait for flush_work */
1800}
1801
1802/* This is a synchronous drain interface. */
1803static void drain_all_stock_sync(void)
1804{
1805	/* called when force_empty is called */
1806	atomic_inc(&memcg_drain_count);
1807	schedule_on_each_cpu(drain_local_stock);
1808	atomic_dec(&memcg_drain_count);
1809}
1810
1811/*
1812 * This function drains percpu counter value from DEAD cpu and
1813 * move it to local cpu. Note that this function can be preempted.
1814 */
1815static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1816{
1817	int i;
1818
1819	spin_lock(&mem->pcp_counter_lock);
1820	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1821		long x = per_cpu(mem->stat->count[i], cpu);
1822
1823		per_cpu(mem->stat->count[i], cpu) = 0;
1824		mem->nocpu_base.count[i] += x;
1825	}
1826	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
1827		unsigned long x = per_cpu(mem->stat->events[i], cpu);
1828
1829		per_cpu(mem->stat->events[i], cpu) = 0;
1830		mem->nocpu_base.events[i] += x;
1831	}
1832	/* need to clear ON_MOVE value, works as a kind of lock. */
1833	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1834	spin_unlock(&mem->pcp_counter_lock);
1835}
1836
1837static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1838{
1839	int idx = MEM_CGROUP_ON_MOVE;
1840
1841	spin_lock(&mem->pcp_counter_lock);
1842	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1843	spin_unlock(&mem->pcp_counter_lock);
1844}
1845
1846static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1847					unsigned long action,
1848					void *hcpu)
1849{
1850	int cpu = (unsigned long)hcpu;
1851	struct memcg_stock_pcp *stock;
1852	struct mem_cgroup *iter;
1853
1854	if ((action == CPU_ONLINE)) {
1855		for_each_mem_cgroup_all(iter)
1856			synchronize_mem_cgroup_on_move(iter, cpu);
1857		return NOTIFY_OK;
1858	}
1859
1860	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1861		return NOTIFY_OK;
1862
1863	for_each_mem_cgroup_all(iter)
1864		mem_cgroup_drain_pcp_counter(iter, cpu);
1865
1866	stock = &per_cpu(memcg_stock, cpu);
1867	drain_stock(stock);
1868	return NOTIFY_OK;
1869}
1870
1871
1872/* See __mem_cgroup_try_charge() for details */
1873enum {
1874	CHARGE_OK,		/* success */
1875	CHARGE_RETRY,		/* need to retry but retry is not bad */
1876	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1877	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1878	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1879};
1880
1881static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1882				unsigned int nr_pages, bool oom_check)
1883{
1884	unsigned long csize = nr_pages * PAGE_SIZE;
1885	struct mem_cgroup *mem_over_limit;
1886	struct res_counter *fail_res;
1887	unsigned long flags = 0;
1888	int ret;
1889
1890	ret = res_counter_charge(&mem->res, csize, &fail_res);
1891
1892	if (likely(!ret)) {
1893		if (!do_swap_account)
1894			return CHARGE_OK;
1895		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1896		if (likely(!ret))
1897			return CHARGE_OK;
1898
1899		res_counter_uncharge(&mem->res, csize);
1900		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1901		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1902	} else
1903		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1904	/*
1905	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
1906	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
1907	 *
1908	 * Never reclaim on behalf of optional batching, retry with a
1909	 * single page instead.
1910	 */
1911	if (nr_pages == CHARGE_BATCH)
1912		return CHARGE_RETRY;
1913
1914	if (!(gfp_mask & __GFP_WAIT))
1915		return CHARGE_WOULDBLOCK;
1916
1917	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1918					      gfp_mask, flags);
1919	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1920		return CHARGE_RETRY;
1921	/*
1922	 * Even though the limit is exceeded at this point, reclaim
1923	 * may have been able to free some pages.  Retry the charge
1924	 * before killing the task.
1925	 *
1926	 * Only for regular pages, though: huge pages are rather
1927	 * unlikely to succeed so close to the limit, and we fall back
1928	 * to regular pages anyway in case of failure.
1929	 */
1930	if (nr_pages == 1 && ret)
1931		return CHARGE_RETRY;
1932
1933	/*
1934	 * At task move, charge accounts can be doubly counted. So, it's
1935	 * better to wait until the end of task_move if something is going on.
1936	 */
1937	if (mem_cgroup_wait_acct_move(mem_over_limit))
1938		return CHARGE_RETRY;
1939
1940	/* If we don't need to call oom-killer at el, return immediately */
1941	if (!oom_check)
1942		return CHARGE_NOMEM;
1943	/* check OOM */
1944	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1945		return CHARGE_OOM_DIE;
1946
1947	return CHARGE_RETRY;
1948}
1949
1950/*
1951 * Unlike exported interface, "oom" parameter is added. if oom==true,
1952 * oom-killer can be invoked.
1953 */
1954static int __mem_cgroup_try_charge(struct mm_struct *mm,
1955				   gfp_t gfp_mask,
1956				   unsigned int nr_pages,
1957				   struct mem_cgroup **memcg,
1958				   bool oom)
1959{
1960	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1961	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1962	struct mem_cgroup *mem = NULL;
1963	int ret;
1964
1965	/*
1966	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1967	 * in system level. So, allow to go ahead dying process in addition to
1968	 * MEMDIE process.
1969	 */
1970	if (unlikely(test_thread_flag(TIF_MEMDIE)
1971		     || fatal_signal_pending(current)))
1972		goto bypass;
1973
1974	/*
1975	 * We always charge the cgroup the mm_struct belongs to.
1976	 * The mm_struct's mem_cgroup changes on task migration if the
1977	 * thread group leader migrates. It's possible that mm is not
1978	 * set, if so charge the init_mm (happens for pagecache usage).
1979	 */
1980	if (!*memcg && !mm)
1981		goto bypass;
1982again:
1983	if (*memcg) { /* css should be a valid one */
1984		mem = *memcg;
1985		VM_BUG_ON(css_is_removed(&mem->css));
1986		if (mem_cgroup_is_root(mem))
1987			goto done;
1988		if (nr_pages == 1 && consume_stock(mem))
1989			goto done;
1990		css_get(&mem->css);
1991	} else {
1992		struct task_struct *p;
1993
1994		rcu_read_lock();
1995		p = rcu_dereference(mm->owner);
1996		/*
1997		 * Because we don't have task_lock(), "p" can exit.
1998		 * In that case, "mem" can point to root or p can be NULL with
1999		 * race with swapoff. Then, we have small risk of mis-accouning.
2000		 * But such kind of mis-account by race always happens because
2001		 * we don't have cgroup_mutex(). It's overkill and we allo that
2002		 * small race, here.
2003		 * (*) swapoff at el will charge against mm-struct not against
2004		 * task-struct. So, mm->owner can be NULL.
2005		 */
2006		mem = mem_cgroup_from_task(p);
2007		if (!mem || mem_cgroup_is_root(mem)) {
2008			rcu_read_unlock();
2009			goto done;
2010		}
2011		if (nr_pages == 1 && consume_stock(mem)) {
2012			/*
2013			 * It seems dagerous to access memcg without css_get().
2014			 * But considering how consume_stok works, it's not
2015			 * necessary. If consume_stock success, some charges
2016			 * from this memcg are cached on this cpu. So, we
2017			 * don't need to call css_get()/css_tryget() before
2018			 * calling consume_stock().
2019			 */
2020			rcu_read_unlock();
2021			goto done;
2022		}
2023		/* after here, we may be blocked. we need to get refcnt */
2024		if (!css_tryget(&mem->css)) {
2025			rcu_read_unlock();
2026			goto again;
2027		}
2028		rcu_read_unlock();
2029	}
2030
2031	do {
2032		bool oom_check;
2033
2034		/* If killed, bypass charge */
2035		if (fatal_signal_pending(current)) {
2036			css_put(&mem->css);
2037			goto bypass;
2038		}
2039
2040		oom_check = false;
2041		if (oom && !nr_oom_retries) {
2042			oom_check = true;
2043			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2044		}
2045
2046		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2047		switch (ret) {
2048		case CHARGE_OK:
2049			break;
2050		case CHARGE_RETRY: /* not in OOM situation but retry */
2051			batch = nr_pages;
2052			css_put(&mem->css);
2053			mem = NULL;
2054			goto again;
2055		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2056			css_put(&mem->css);
2057			goto nomem;
2058		case CHARGE_NOMEM: /* OOM routine works */
2059			if (!oom) {
2060				css_put(&mem->css);
2061				goto nomem;
2062			}
2063			/* If oom, we never return -ENOMEM */
2064			nr_oom_retries--;
2065			break;
2066		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2067			css_put(&mem->css);
2068			goto bypass;
2069		}
2070	} while (ret != CHARGE_OK);
2071
2072	if (batch > nr_pages)
2073		refill_stock(mem, batch - nr_pages);
2074	css_put(&mem->css);
2075done:
2076	*memcg = mem;
2077	return 0;
2078nomem:
2079	*memcg = NULL;
2080	return -ENOMEM;
2081bypass:
2082	*memcg = NULL;
2083	return 0;
2084}
2085
2086/*
2087 * Somemtimes we have to undo a charge we got by try_charge().
2088 * This function is for that and do uncharge, put css's refcnt.
2089 * gotten by try_charge().
2090 */
2091static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2092				       unsigned int nr_pages)
2093{
2094	if (!mem_cgroup_is_root(mem)) {
2095		unsigned long bytes = nr_pages * PAGE_SIZE;
2096
2097		res_counter_uncharge(&mem->res, bytes);
2098		if (do_swap_account)
2099			res_counter_uncharge(&mem->memsw, bytes);
2100	}
2101}
2102
2103/*
2104 * A helper function to get mem_cgroup from ID. must be called under
2105 * rcu_read_lock(). The caller must check css_is_removed() or some if
2106 * it's concern. (dropping refcnt from swap can be called against removed
2107 * memcg.)
2108 */
2109static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2110{
2111	struct cgroup_subsys_state *css;
2112
2113	/* ID 0 is unused ID */
2114	if (!id)
2115		return NULL;
2116	css = css_lookup(&mem_cgroup_subsys, id);
2117	if (!css)
2118		return NULL;
2119	return container_of(css, struct mem_cgroup, css);
2120}
2121
2122struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2123{
2124	struct mem_cgroup *mem = NULL;
2125	struct page_cgroup *pc;
2126	unsigned short id;
2127	swp_entry_t ent;
2128
2129	VM_BUG_ON(!PageLocked(page));
2130
2131	pc = lookup_page_cgroup(page);
2132	lock_page_cgroup(pc);
2133	if (PageCgroupUsed(pc)) {
2134		mem = pc->mem_cgroup;
2135		if (mem && !css_tryget(&mem->css))
2136			mem = NULL;
2137	} else if (PageSwapCache(page)) {
2138		ent.val = page_private(page);
2139		id = lookup_swap_cgroup(ent);
2140		rcu_read_lock();
2141		mem = mem_cgroup_lookup(id);
2142		if (mem && !css_tryget(&mem->css))
2143			mem = NULL;
2144		rcu_read_unlock();
2145	}
2146	unlock_page_cgroup(pc);
2147	return mem;
2148}
2149
2150static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2151				       struct page *page,
2152				       unsigned int nr_pages,
2153				       struct page_cgroup *pc,
2154				       enum charge_type ctype)
2155{
2156	lock_page_cgroup(pc);
2157	if (unlikely(PageCgroupUsed(pc))) {
2158		unlock_page_cgroup(pc);
2159		__mem_cgroup_cancel_charge(mem, nr_pages);
2160		return;
2161	}
2162	/*
2163	 * we don't need page_cgroup_lock about tail pages, becase they are not
2164	 * accessed by any other context at this point.
2165	 */
2166	pc->mem_cgroup = mem;
2167	/*
2168	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2169	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2170	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2171	 * before USED bit, we need memory barrier here.
2172	 * See mem_cgroup_add_lru_list(), etc.
2173 	 */
2174	smp_wmb();
2175	switch (ctype) {
2176	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2177	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2178		SetPageCgroupCache(pc);
2179		SetPageCgroupUsed(pc);
2180		break;
2181	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2182		ClearPageCgroupCache(pc);
2183		SetPageCgroupUsed(pc);
2184		break;
2185	default:
2186		break;
2187	}
2188
2189	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2190	unlock_page_cgroup(pc);
2191	/*
2192	 * "charge_statistics" updated event counter. Then, check it.
2193	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2194	 * if they exceeds softlimit.
2195	 */
2196	memcg_check_events(mem, page);
2197}
2198
2199#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2200
2201#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2202			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2203/*
2204 * Because tail pages are not marked as "used", set it. We're under
2205 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2206 */
2207void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2208{
2209	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2210	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2211	unsigned long flags;
2212
2213	if (mem_cgroup_disabled())
2214		return;
2215	/*
2216	 * We have no races with charge/uncharge but will have races with
2217	 * page state accounting.
2218	 */
2219	move_lock_page_cgroup(head_pc, &flags);
2220
2221	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2222	smp_wmb(); /* see __commit_charge() */
2223	if (PageCgroupAcctLRU(head_pc)) {
2224		enum lru_list lru;
2225		struct mem_cgroup_per_zone *mz;
2226
2227		/*
2228		 * LRU flags cannot be copied because we need to add tail
2229		 *.page to LRU by generic call and our hook will be called.
2230		 * We hold lru_lock, then, reduce counter directly.
2231		 */
2232		lru = page_lru(head);
2233		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2234		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2235	}
2236	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2237	move_unlock_page_cgroup(head_pc, &flags);
2238}
2239#endif
2240
2241/**
2242 * mem_cgroup_move_account - move account of the page
2243 * @page: the page
2244 * @nr_pages: number of regular pages (>1 for huge pages)
2245 * @pc:	page_cgroup of the page.
2246 * @from: mem_cgroup which the page is moved from.
2247 * @to:	mem_cgroup which the page is moved to. @from != @to.
2248 * @uncharge: whether we should call uncharge and css_put against @from.
2249 *
2250 * The caller must confirm following.
2251 * - page is not on LRU (isolate_page() is useful.)
2252 * - compound_lock is held when nr_pages > 1
2253 *
2254 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2255 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2256 * true, this function does "uncharge" from old cgroup, but it doesn't if
2257 * @uncharge is false, so a caller should do "uncharge".
2258 */
2259static int mem_cgroup_move_account(struct page *page,
2260				   unsigned int nr_pages,
2261				   struct page_cgroup *pc,
2262				   struct mem_cgroup *from,
2263				   struct mem_cgroup *to,
2264				   bool uncharge)
2265{
2266	unsigned long flags;
2267	int ret;
2268
2269	VM_BUG_ON(from == to);
2270	VM_BUG_ON(PageLRU(page));
2271	/*
2272	 * The page is isolated from LRU. So, collapse function
2273	 * will not handle this page. But page splitting can happen.
2274	 * Do this check under compound_page_lock(). The caller should
2275	 * hold it.
2276	 */
2277	ret = -EBUSY;
2278	if (nr_pages > 1 && !PageTransHuge(page))
2279		goto out;
2280
2281	lock_page_cgroup(pc);
2282
2283	ret = -EINVAL;
2284	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2285		goto unlock;
2286
2287	move_lock_page_cgroup(pc, &flags);
2288
2289	if (PageCgroupFileMapped(pc)) {
2290		/* Update mapped_file data for mem_cgroup */
2291		preempt_disable();
2292		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2293		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2294		preempt_enable();
2295	}
2296	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2297	if (uncharge)
2298		/* This is not "cancel", but cancel_charge does all we need. */
2299		__mem_cgroup_cancel_charge(from, nr_pages);
2300
2301	/* caller should have done css_get */
2302	pc->mem_cgroup = to;
2303	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2304	/*
2305	 * We charges against "to" which may not have any tasks. Then, "to"
2306	 * can be under rmdir(). But in current implementation, caller of
2307	 * this function is just force_empty() and move charge, so it's
2308	 * garanteed that "to" is never removed. So, we don't check rmdir
2309	 * status here.
2310	 */
2311	move_unlock_page_cgroup(pc, &flags);
2312	ret = 0;
2313unlock:
2314	unlock_page_cgroup(pc);
2315	/*
2316	 * check events
2317	 */
2318	memcg_check_events(to, page);
2319	memcg_check_events(from, page);
2320out:
2321	return ret;
2322}
2323
2324/*
2325 * move charges to its parent.
2326 */
2327
2328static int mem_cgroup_move_parent(struct page *page,
2329				  struct page_cgroup *pc,
2330				  struct mem_cgroup *child,
2331				  gfp_t gfp_mask)
2332{
2333	struct cgroup *cg = child->css.cgroup;
2334	struct cgroup *pcg = cg->parent;
2335	struct mem_cgroup *parent;
2336	unsigned int nr_pages;
2337	unsigned long uninitialized_var(flags);
2338	int ret;
2339
2340	/* Is ROOT ? */
2341	if (!pcg)
2342		return -EINVAL;
2343
2344	ret = -EBUSY;
2345	if (!get_page_unless_zero(page))
2346		goto out;
2347	if (isolate_lru_page(page))
2348		goto put;
2349
2350	nr_pages = hpage_nr_pages(page);
2351
2352	parent = mem_cgroup_from_cont(pcg);
2353	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2354	if (ret || !parent)
2355		goto put_back;
2356
2357	if (nr_pages > 1)
2358		flags = compound_lock_irqsave(page);
2359
2360	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2361	if (ret)
2362		__mem_cgroup_cancel_charge(parent, nr_pages);
2363
2364	if (nr_pages > 1)
2365		compound_unlock_irqrestore(page, flags);
2366put_back:
2367	putback_lru_page(page);
2368put:
2369	put_page(page);
2370out:
2371	return ret;
2372}
2373
2374/*
2375 * Charge the memory controller for page usage.
2376 * Return
2377 * 0 if the charge was successful
2378 * < 0 if the cgroup is over its limit
2379 */
2380static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2381				gfp_t gfp_mask, enum charge_type ctype)
2382{
2383	struct mem_cgroup *mem = NULL;
2384	unsigned int nr_pages = 1;
2385	struct page_cgroup *pc;
2386	bool oom = true;
2387	int ret;
2388
2389	if (PageTransHuge(page)) {
2390		nr_pages <<= compound_order(page);
2391		VM_BUG_ON(!PageTransHuge(page));
2392		/*
2393		 * Never OOM-kill a process for a huge page.  The
2394		 * fault handler will fall back to regular pages.
2395		 */
2396		oom = false;
2397	}
2398
2399	pc = lookup_page_cgroup(page);
2400	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2401
2402	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2403	if (ret || !mem)
2404		return ret;
2405
2406	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2407	return 0;
2408}
2409
2410int mem_cgroup_newpage_charge(struct page *page,
2411			      struct mm_struct *mm, gfp_t gfp_mask)
2412{
2413	if (mem_cgroup_disabled())
2414		return 0;
2415	/*
2416	 * If already mapped, we don't have to account.
2417	 * If page cache, page->mapping has address_space.
2418	 * But page->mapping may have out-of-use anon_vma pointer,
2419	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2420	 * is NULL.
2421  	 */
2422	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2423		return 0;
2424	if (unlikely(!mm))
2425		mm = &init_mm;
2426	return mem_cgroup_charge_common(page, mm, gfp_mask,
2427				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2428}
2429
2430static void
2431__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2432					enum charge_type ctype);
2433
2434int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2435				gfp_t gfp_mask)
2436{
2437	int ret;
2438
2439	if (mem_cgroup_disabled())
2440		return 0;
2441	if (PageCompound(page))
2442		return 0;
2443	/*
2444	 * Corner case handling. This is called from add_to_page_cache()
2445	 * in usual. But some FS (shmem) precharges this page before calling it
2446	 * and call add_to_page_cache() with GFP_NOWAIT.
2447	 *
2448	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2449	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2450	 * charge twice. (It works but has to pay a bit larger cost.)
2451	 * And when the page is SwapCache, it should take swap information
2452	 * into account. This is under lock_page() now.
2453	 */
2454	if (!(gfp_mask & __GFP_WAIT)) {
2455		struct page_cgroup *pc;
2456
2457		pc = lookup_page_cgroup(page);
2458		if (!pc)
2459			return 0;
2460		lock_page_cgroup(pc);
2461		if (PageCgroupUsed(pc)) {
2462			unlock_page_cgroup(pc);
2463			return 0;
2464		}
2465		unlock_page_cgroup(pc);
2466	}
2467
2468	if (unlikely(!mm))
2469		mm = &init_mm;
2470
2471	if (page_is_file_cache(page))
2472		return mem_cgroup_charge_common(page, mm, gfp_mask,
2473				MEM_CGROUP_CHARGE_TYPE_CACHE);
2474
2475	/* shmem */
2476	if (PageSwapCache(page)) {
2477		struct mem_cgroup *mem;
2478
2479		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2480		if (!ret)
2481			__mem_cgroup_commit_charge_swapin(page, mem,
2482					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2483	} else
2484		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2485					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2486
2487	return ret;
2488}
2489
2490/*
2491 * While swap-in, try_charge -> commit or cancel, the page is locked.
2492 * And when try_charge() successfully returns, one refcnt to memcg without
2493 * struct page_cgroup is acquired. This refcnt will be consumed by
2494 * "commit()" or removed by "cancel()"
2495 */
2496int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2497				 struct page *page,
2498				 gfp_t mask, struct mem_cgroup **ptr)
2499{
2500	struct mem_cgroup *mem;
2501	int ret;
2502
2503	*ptr = NULL;
2504
2505	if (mem_cgroup_disabled())
2506		return 0;
2507
2508	if (!do_swap_account)
2509		goto charge_cur_mm;
2510	/*
2511	 * A racing thread's fault, or swapoff, may have already updated
2512	 * the pte, and even removed page from swap cache: in those cases
2513	 * do_swap_page()'s pte_same() test will fail; but there's also a
2514	 * KSM case which does need to charge the page.
2515	 */
2516	if (!PageSwapCache(page))
2517		goto charge_cur_mm;
2518	mem = try_get_mem_cgroup_from_page(page);
2519	if (!mem)
2520		goto charge_cur_mm;
2521	*ptr = mem;
2522	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2523	css_put(&mem->css);
2524	return ret;
2525charge_cur_mm:
2526	if (unlikely(!mm))
2527		mm = &init_mm;
2528	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2529}
2530
2531static void
2532__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2533					enum charge_type ctype)
2534{
2535	struct page_cgroup *pc;
2536
2537	if (mem_cgroup_disabled())
2538		return;
2539	if (!ptr)
2540		return;
2541	cgroup_exclude_rmdir(&ptr->css);
2542	pc = lookup_page_cgroup(page);
2543	mem_cgroup_lru_del_before_commit_swapcache(page);
2544	__mem_cgroup_commit_charge(ptr, page, 1, pc, ctype);
2545	mem_cgroup_lru_add_after_commit_swapcache(page);
2546	/*
2547	 * Now swap is on-memory. This means this page may be
2548	 * counted both as mem and swap....double count.
2549	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2550	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2551	 * may call delete_from_swap_cache() before reach here.
2552	 */
2553	if (do_swap_account && PageSwapCache(page)) {
2554		swp_entry_t ent = {.val = page_private(page)};
2555		unsigned short id;
2556		struct mem_cgroup *memcg;
2557
2558		id = swap_cgroup_record(ent, 0);
2559		rcu_read_lock();
2560		memcg = mem_cgroup_lookup(id);
2561		if (memcg) {
2562			/*
2563			 * This recorded memcg can be obsolete one. So, avoid
2564			 * calling css_tryget
2565			 */
2566			if (!mem_cgroup_is_root(memcg))
2567				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2568			mem_cgroup_swap_statistics(memcg, false);
2569			mem_cgroup_put(memcg);
2570		}
2571		rcu_read_unlock();
2572	}
2573	/*
2574	 * At swapin, we may charge account against cgroup which has no tasks.
2575	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2576	 * In that case, we need to call pre_destroy() again. check it here.
2577	 */
2578	cgroup_release_and_wakeup_rmdir(&ptr->css);
2579}
2580
2581void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2582{
2583	__mem_cgroup_commit_charge_swapin(page, ptr,
2584					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2585}
2586
2587void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2588{
2589	if (mem_cgroup_disabled())
2590		return;
2591	if (!mem)
2592		return;
2593	__mem_cgroup_cancel_charge(mem, 1);
2594}
2595
2596static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2597				   unsigned int nr_pages,
2598				   const enum charge_type ctype)
2599{
2600	struct memcg_batch_info *batch = NULL;
2601	bool uncharge_memsw = true;
2602
2603	/* If swapout, usage of swap doesn't decrease */
2604	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2605		uncharge_memsw = false;
2606
2607	batch = &current->memcg_batch;
2608	/*
2609	 * In usual, we do css_get() when we remember memcg pointer.
2610	 * But in this case, we keep res->usage until end of a series of
2611	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2612	 */
2613	if (!batch->memcg)
2614		batch->memcg = mem;
2615	/*
2616	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2617	 * In those cases, all pages freed continously can be expected to be in
2618	 * the same cgroup and we have chance to coalesce uncharges.
2619	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2620	 * because we want to do uncharge as soon as possible.
2621	 */
2622
2623	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2624		goto direct_uncharge;
2625
2626	if (nr_pages > 1)
2627		goto direct_uncharge;
2628
2629	/*
2630	 * In typical case, batch->memcg == mem. This means we can
2631	 * merge a series of uncharges to an uncharge of res_counter.
2632	 * If not, we uncharge res_counter ony by one.
2633	 */
2634	if (batch->memcg != mem)
2635		goto direct_uncharge;
2636	/* remember freed charge and uncharge it later */
2637	batch->nr_pages++;
2638	if (uncharge_memsw)
2639		batch->memsw_nr_pages++;
2640	return;
2641direct_uncharge:
2642	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2643	if (uncharge_memsw)
2644		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2645	if (unlikely(batch->memcg != mem))
2646		memcg_oom_recover(mem);
2647	return;
2648}
2649
2650/*
2651 * uncharge if !page_mapped(page)
2652 */
2653static struct mem_cgroup *
2654__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2655{
2656	struct mem_cgroup *mem = NULL;
2657	unsigned int nr_pages = 1;
2658	struct page_cgroup *pc;
2659
2660	if (mem_cgroup_disabled())
2661		return NULL;
2662
2663	if (PageSwapCache(page))
2664		return NULL;
2665
2666	if (PageTransHuge(page)) {
2667		nr_pages <<= compound_order(page);
2668		VM_BUG_ON(!PageTransHuge(page));
2669	}
2670	/*
2671	 * Check if our page_cgroup is valid
2672	 */
2673	pc = lookup_page_cgroup(page);
2674	if (unlikely(!pc || !PageCgroupUsed(pc)))
2675		return NULL;
2676
2677	lock_page_cgroup(pc);
2678
2679	mem = pc->mem_cgroup;
2680
2681	if (!PageCgroupUsed(pc))
2682		goto unlock_out;
2683
2684	switch (ctype) {
2685	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2686	case MEM_CGROUP_CHARGE_TYPE_DROP:
2687		/* See mem_cgroup_prepare_migration() */
2688		if (page_mapped(page) || PageCgroupMigration(pc))
2689			goto unlock_out;
2690		break;
2691	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2692		if (!PageAnon(page)) {	/* Shared memory */
2693			if (page->mapping && !page_is_file_cache(page))
2694				goto unlock_out;
2695		} else if (page_mapped(page)) /* Anon */
2696				goto unlock_out;
2697		break;
2698	default:
2699		break;
2700	}
2701
2702	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2703
2704	ClearPageCgroupUsed(pc);
2705	/*
2706	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2707	 * freed from LRU. This is safe because uncharged page is expected not
2708	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2709	 * special functions.
2710	 */
2711
2712	unlock_page_cgroup(pc);
2713	/*
2714	 * even after unlock, we have mem->res.usage here and this memcg
2715	 * will never be freed.
2716	 */
2717	memcg_check_events(mem, page);
2718	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2719		mem_cgroup_swap_statistics(mem, true);
2720		mem_cgroup_get(mem);
2721	}
2722	if (!mem_cgroup_is_root(mem))
2723		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2724
2725	return mem;
2726
2727unlock_out:
2728	unlock_page_cgroup(pc);
2729	return NULL;
2730}
2731
2732void mem_cgroup_uncharge_page(struct page *page)
2733{
2734	/* early check. */
2735	if (page_mapped(page))
2736		return;
2737	if (page->mapping && !PageAnon(page))
2738		return;
2739	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2740}
2741
2742void mem_cgroup_uncharge_cache_page(struct page *page)
2743{
2744	VM_BUG_ON(page_mapped(page));
2745	VM_BUG_ON(page->mapping);
2746	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2747}
2748
2749/*
2750 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2751 * In that cases, pages are freed continuously and we can expect pages
2752 * are in the same memcg. All these calls itself limits the number of
2753 * pages freed at once, then uncharge_start/end() is called properly.
2754 * This may be called prural(2) times in a context,
2755 */
2756
2757void mem_cgroup_uncharge_start(void)
2758{
2759	current->memcg_batch.do_batch++;
2760	/* We can do nest. */
2761	if (current->memcg_batch.do_batch == 1) {
2762		current->memcg_batch.memcg = NULL;
2763		current->memcg_batch.nr_pages = 0;
2764		current->memcg_batch.memsw_nr_pages = 0;
2765	}
2766}
2767
2768void mem_cgroup_uncharge_end(void)
2769{
2770	struct memcg_batch_info *batch = &current->memcg_batch;
2771
2772	if (!batch->do_batch)
2773		return;
2774
2775	batch->do_batch--;
2776	if (batch->do_batch) /* If stacked, do nothing. */
2777		return;
2778
2779	if (!batch->memcg)
2780		return;
2781	/*
2782	 * This "batch->memcg" is valid without any css_get/put etc...
2783	 * bacause we hide charges behind us.
2784	 */
2785	if (batch->nr_pages)
2786		res_counter_uncharge(&batch->memcg->res,
2787				     batch->nr_pages * PAGE_SIZE);
2788	if (batch->memsw_nr_pages)
2789		res_counter_uncharge(&batch->memcg->memsw,
2790				     batch->memsw_nr_pages * PAGE_SIZE);
2791	memcg_oom_recover(batch->memcg);
2792	/* forget this pointer (for sanity check) */
2793	batch->memcg = NULL;
2794}
2795
2796#ifdef CONFIG_SWAP
2797/*
2798 * called after __delete_from_swap_cache() and drop "page" account.
2799 * memcg information is recorded to swap_cgroup of "ent"
2800 */
2801void
2802mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2803{
2804	struct mem_cgroup *memcg;
2805	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2806
2807	if (!swapout) /* this was a swap cache but the swap is unused ! */
2808		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2809
2810	memcg = __mem_cgroup_uncharge_common(page, ctype);
2811
2812	/*
2813	 * record memcg information,  if swapout && memcg != NULL,
2814	 * mem_cgroup_get() was called in uncharge().
2815	 */
2816	if (do_swap_account && swapout && memcg)
2817		swap_cgroup_record(ent, css_id(&memcg->css));
2818}
2819#endif
2820
2821#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2822/*
2823 * called from swap_entry_free(). remove record in swap_cgroup and
2824 * uncharge "memsw" account.
2825 */
2826void mem_cgroup_uncharge_swap(swp_entry_t ent)
2827{
2828	struct mem_cgroup *memcg;
2829	unsigned short id;
2830
2831	if (!do_swap_account)
2832		return;
2833
2834	id = swap_cgroup_record(ent, 0);
2835	rcu_read_lock();
2836	memcg = mem_cgroup_lookup(id);
2837	if (memcg) {
2838		/*
2839		 * We uncharge this because swap is freed.
2840		 * This memcg can be obsolete one. We avoid calling css_tryget
2841		 */
2842		if (!mem_cgroup_is_root(memcg))
2843			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2844		mem_cgroup_swap_statistics(memcg, false);
2845		mem_cgroup_put(memcg);
2846	}
2847	rcu_read_unlock();
2848}
2849
2850/**
2851 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2852 * @entry: swap entry to be moved
2853 * @from:  mem_cgroup which the entry is moved from
2854 * @to:  mem_cgroup which the entry is moved to
2855 * @need_fixup: whether we should fixup res_counters and refcounts.
2856 *
2857 * It succeeds only when the swap_cgroup's record for this entry is the same
2858 * as the mem_cgroup's id of @from.
2859 *
2860 * Returns 0 on success, -EINVAL on failure.
2861 *
2862 * The caller must have charged to @to, IOW, called res_counter_charge() about
2863 * both res and memsw, and called css_get().
2864 */
2865static int mem_cgroup_move_swap_account(swp_entry_t entry,
2866		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2867{
2868	unsigned short old_id, new_id;
2869
2870	old_id = css_id(&from->css);
2871	new_id = css_id(&to->css);
2872
2873	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2874		mem_cgroup_swap_statistics(from, false);
2875		mem_cgroup_swap_statistics(to, true);
2876		/*
2877		 * This function is only called from task migration context now.
2878		 * It postpones res_counter and refcount handling till the end
2879		 * of task migration(mem_cgroup_clear_mc()) for performance
2880		 * improvement. But we cannot postpone mem_cgroup_get(to)
2881		 * because if the process that has been moved to @to does
2882		 * swap-in, the refcount of @to might be decreased to 0.
2883		 */
2884		mem_cgroup_get(to);
2885		if (need_fixup) {
2886			if (!mem_cgroup_is_root(from))
2887				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2888			mem_cgroup_put(from);
2889			/*
2890			 * we charged both to->res and to->memsw, so we should
2891			 * uncharge to->res.
2892			 */
2893			if (!mem_cgroup_is_root(to))
2894				res_counter_uncharge(&to->res, PAGE_SIZE);
2895		}
2896		return 0;
2897	}
2898	return -EINVAL;
2899}
2900#else
2901static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2902		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2903{
2904	return -EINVAL;
2905}
2906#endif
2907
2908/*
2909 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2910 * page belongs to.
2911 */
2912int mem_cgroup_prepare_migration(struct page *page,
2913	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2914{
2915	struct mem_cgroup *mem = NULL;
2916	struct page_cgroup *pc;
2917	enum charge_type ctype;
2918	int ret = 0;
2919
2920	*ptr = NULL;
2921
2922	VM_BUG_ON(PageTransHuge(page));
2923	if (mem_cgroup_disabled())
2924		return 0;
2925
2926	pc = lookup_page_cgroup(page);
2927	lock_page_cgroup(pc);
2928	if (PageCgroupUsed(pc)) {
2929		mem = pc->mem_cgroup;
2930		css_get(&mem->css);
2931		/*
2932		 * At migrating an anonymous page, its mapcount goes down
2933		 * to 0 and uncharge() will be called. But, even if it's fully
2934		 * unmapped, migration may fail and this page has to be
2935		 * charged again. We set MIGRATION flag here and delay uncharge
2936		 * until end_migration() is called
2937		 *
2938		 * Corner Case Thinking
2939		 * A)
2940		 * When the old page was mapped as Anon and it's unmap-and-freed
2941		 * while migration was ongoing.
2942		 * If unmap finds the old page, uncharge() of it will be delayed
2943		 * until end_migration(). If unmap finds a new page, it's
2944		 * uncharged when it make mapcount to be 1->0. If unmap code
2945		 * finds swap_migration_entry, the new page will not be mapped
2946		 * and end_migration() will find it(mapcount==0).
2947		 *
2948		 * B)
2949		 * When the old page was mapped but migraion fails, the kernel
2950		 * remaps it. A charge for it is kept by MIGRATION flag even
2951		 * if mapcount goes down to 0. We can do remap successfully
2952		 * without charging it again.
2953		 *
2954		 * C)
2955		 * The "old" page is under lock_page() until the end of
2956		 * migration, so, the old page itself will not be swapped-out.
2957		 * If the new page is swapped out before end_migraton, our
2958		 * hook to usual swap-out path will catch the event.
2959		 */
2960		if (PageAnon(page))
2961			SetPageCgroupMigration(pc);
2962	}
2963	unlock_page_cgroup(pc);
2964	/*
2965	 * If the page is not charged at this point,
2966	 * we return here.
2967	 */
2968	if (!mem)
2969		return 0;
2970
2971	*ptr = mem;
2972	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
2973	css_put(&mem->css);/* drop extra refcnt */
2974	if (ret || *ptr == NULL) {
2975		if (PageAnon(page)) {
2976			lock_page_cgroup(pc);
2977			ClearPageCgroupMigration(pc);
2978			unlock_page_cgroup(pc);
2979			/*
2980			 * The old page may be fully unmapped while we kept it.
2981			 */
2982			mem_cgroup_uncharge_page(page);
2983		}
2984		return -ENOMEM;
2985	}
2986	/*
2987	 * We charge new page before it's used/mapped. So, even if unlock_page()
2988	 * is called before end_migration, we can catch all events on this new
2989	 * page. In the case new page is migrated but not remapped, new page's
2990	 * mapcount will be finally 0 and we call uncharge in end_migration().
2991	 */
2992	pc = lookup_page_cgroup(newpage);
2993	if (PageAnon(page))
2994		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2995	else if (page_is_file_cache(page))
2996		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2997	else
2998		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2999	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3000	return ret;
3001}
3002
3003/* remove redundant charge if migration failed*/
3004void mem_cgroup_end_migration(struct mem_cgroup *mem,
3005	struct page *oldpage, struct page *newpage, bool migration_ok)
3006{
3007	struct page *used, *unused;
3008	struct page_cgroup *pc;
3009
3010	if (!mem)
3011		return;
3012	/* blocks rmdir() */
3013	cgroup_exclude_rmdir(&mem->css);
3014	if (!migration_ok) {
3015		used = oldpage;
3016		unused = newpage;
3017	} else {
3018		used = newpage;
3019		unused = oldpage;
3020	}
3021	/*
3022	 * We disallowed uncharge of pages under migration because mapcount
3023	 * of the page goes down to zero, temporarly.
3024	 * Clear the flag and check the page should be charged.
3025	 */
3026	pc = lookup_page_cgroup(oldpage);
3027	lock_page_cgroup(pc);
3028	ClearPageCgroupMigration(pc);
3029	unlock_page_cgroup(pc);
3030
3031	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3032
3033	/*
3034	 * If a page is a file cache, radix-tree replacement is very atomic
3035	 * and we can skip this check. When it was an Anon page, its mapcount
3036	 * goes down to 0. But because we added MIGRATION flage, it's not
3037	 * uncharged yet. There are several case but page->mapcount check
3038	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3039	 * check. (see prepare_charge() also)
3040	 */
3041	if (PageAnon(used))
3042		mem_cgroup_uncharge_page(used);
3043	/*
3044	 * At migration, we may charge account against cgroup which has no
3045	 * tasks.
3046	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3047	 * In that case, we need to call pre_destroy() again. check it here.
3048	 */
3049	cgroup_release_and_wakeup_rmdir(&mem->css);
3050}
3051
3052/*
3053 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3054 * Calling hierarchical_reclaim is not enough because we should update
3055 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3056 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3057 * not from the memcg which this page would be charged to.
3058 * try_charge_swapin does all of these works properly.
3059 */
3060int mem_cgroup_shmem_charge_fallback(struct page *page,
3061			    struct mm_struct *mm,
3062			    gfp_t gfp_mask)
3063{
3064	struct mem_cgroup *mem;
3065	int ret;
3066
3067	if (mem_cgroup_disabled())
3068		return 0;
3069
3070	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3071	if (!ret)
3072		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3073
3074	return ret;
3075}
3076
3077#ifdef CONFIG_DEBUG_VM
3078static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3079{
3080	struct page_cgroup *pc;
3081
3082	pc = lookup_page_cgroup(page);
3083	if (likely(pc) && PageCgroupUsed(pc))
3084		return pc;
3085	return NULL;
3086}
3087
3088bool mem_cgroup_bad_page_check(struct page *page)
3089{
3090	if (mem_cgroup_disabled())
3091		return false;
3092
3093	return lookup_page_cgroup_used(page) != NULL;
3094}
3095
3096void mem_cgroup_print_bad_page(struct page *page)
3097{
3098	struct page_cgroup *pc;
3099
3100	pc = lookup_page_cgroup_used(page);
3101	if (pc) {
3102		int ret = -1;
3103		char *path;
3104
3105		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3106		       pc, pc->flags, pc->mem_cgroup);
3107
3108		path = kmalloc(PATH_MAX, GFP_KERNEL);
3109		if (path) {
3110			rcu_read_lock();
3111			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3112							path, PATH_MAX);
3113			rcu_read_unlock();
3114		}
3115
3116		printk(KERN_CONT "(%s)\n",
3117				(ret < 0) ? "cannot get the path" : path);
3118		kfree(path);
3119	}
3120}
3121#endif
3122
3123static DEFINE_MUTEX(set_limit_mutex);
3124
3125static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3126				unsigned long long val)
3127{
3128	int retry_count;
3129	u64 memswlimit, memlimit;
3130	int ret = 0;
3131	int children = mem_cgroup_count_children(memcg);
3132	u64 curusage, oldusage;
3133	int enlarge;
3134
3135	/*
3136	 * For keeping hierarchical_reclaim simple, how long we should retry
3137	 * is depends on callers. We set our retry-count to be function
3138	 * of # of children which we should visit in this loop.
3139	 */
3140	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3141
3142	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3143
3144	enlarge = 0;
3145	while (retry_count) {
3146		if (signal_pending(current)) {
3147			ret = -EINTR;
3148			break;
3149		}
3150		/*
3151		 * Rather than hide all in some function, I do this in
3152		 * open coded manner. You see what this really does.
3153		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3154		 */
3155		mutex_lock(&set_limit_mutex);
3156		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3157		if (memswlimit < val) {
3158			ret = -EINVAL;
3159			mutex_unlock(&set_limit_mutex);
3160			break;
3161		}
3162
3163		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3164		if (memlimit < val)
3165			enlarge = 1;
3166
3167		ret = res_counter_set_limit(&memcg->res, val);
3168		if (!ret) {
3169			if (memswlimit == val)
3170				memcg->memsw_is_minimum = true;
3171			else
3172				memcg->memsw_is_minimum = false;
3173		}
3174		mutex_unlock(&set_limit_mutex);
3175
3176		if (!ret)
3177			break;
3178
3179		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3180						MEM_CGROUP_RECLAIM_SHRINK);
3181		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3182		/* Usage is reduced ? */
3183  		if (curusage >= oldusage)
3184			retry_count--;
3185		else
3186			oldusage = curusage;
3187	}
3188	if (!ret && enlarge)
3189		memcg_oom_recover(memcg);
3190
3191	return ret;
3192}
3193
3194static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3195					unsigned long long val)
3196{
3197	int retry_count;
3198	u64 memlimit, memswlimit, oldusage, curusage;
3199	int children = mem_cgroup_count_children(memcg);
3200	int ret = -EBUSY;
3201	int enlarge = 0;
3202
3203	/* see mem_cgroup_resize_res_limit */
3204 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3205	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3206	while (retry_count) {
3207		if (signal_pending(current)) {
3208			ret = -EINTR;
3209			break;
3210		}
3211		/*
3212		 * Rather than hide all in some function, I do this in
3213		 * open coded manner. You see what this really does.
3214		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3215		 */
3216		mutex_lock(&set_limit_mutex);
3217		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3218		if (memlimit > val) {
3219			ret = -EINVAL;
3220			mutex_unlock(&set_limit_mutex);
3221			break;
3222		}
3223		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3224		if (memswlimit < val)
3225			enlarge = 1;
3226		ret = res_counter_set_limit(&memcg->memsw, val);
3227		if (!ret) {
3228			if (memlimit == val)
3229				memcg->memsw_is_minimum = true;
3230			else
3231				memcg->memsw_is_minimum = false;
3232		}
3233		mutex_unlock(&set_limit_mutex);
3234
3235		if (!ret)
3236			break;
3237
3238		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3239						MEM_CGROUP_RECLAIM_NOSWAP |
3240						MEM_CGROUP_RECLAIM_SHRINK);
3241		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3242		/* Usage is reduced ? */
3243		if (curusage >= oldusage)
3244			retry_count--;
3245		else
3246			oldusage = curusage;
3247	}
3248	if (!ret && enlarge)
3249		memcg_oom_recover(memcg);
3250	return ret;
3251}
3252
3253unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3254					    gfp_t gfp_mask)
3255{
3256	unsigned long nr_reclaimed = 0;
3257	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3258	unsigned long reclaimed;
3259	int loop = 0;
3260	struct mem_cgroup_tree_per_zone *mctz;
3261	unsigned long long excess;
3262
3263	if (order > 0)
3264		return 0;
3265
3266	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3267	/*
3268	 * This loop can run a while, specially if mem_cgroup's continuously
3269	 * keep exceeding their soft limit and putting the system under
3270	 * pressure
3271	 */
3272	do {
3273		if (next_mz)
3274			mz = next_mz;
3275		else
3276			mz = mem_cgroup_largest_soft_limit_node(mctz);
3277		if (!mz)
3278			break;
3279
3280		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3281						gfp_mask,
3282						MEM_CGROUP_RECLAIM_SOFT);
3283		nr_reclaimed += reclaimed;
3284		spin_lock(&mctz->lock);
3285
3286		/*
3287		 * If we failed to reclaim anything from this memory cgroup
3288		 * it is time to move on to the next cgroup
3289		 */
3290		next_mz = NULL;
3291		if (!reclaimed) {
3292			do {
3293				/*
3294				 * Loop until we find yet another one.
3295				 *
3296				 * By the time we get the soft_limit lock
3297				 * again, someone might have aded the
3298				 * group back on the RB tree. Iterate to
3299				 * make sure we get a different mem.
3300				 * mem_cgroup_largest_soft_limit_node returns
3301				 * NULL if no other cgroup is present on
3302				 * the tree
3303				 */
3304				next_mz =
3305				__mem_cgroup_largest_soft_limit_node(mctz);
3306				if (next_mz == mz) {
3307					css_put(&next_mz->mem->css);
3308					next_mz = NULL;
3309				} else /* next_mz == NULL or other memcg */
3310					break;
3311			} while (1);
3312		}
3313		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3314		excess = res_counter_soft_limit_excess(&mz->mem->res);
3315		/*
3316		 * One school of thought says that we should not add
3317		 * back the node to the tree if reclaim returns 0.
3318		 * But our reclaim could return 0, simply because due
3319		 * to priority we are exposing a smaller subset of
3320		 * memory to reclaim from. Consider this as a longer
3321		 * term TODO.
3322		 */
3323		/* If excess == 0, no tree ops */
3324		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3325		spin_unlock(&mctz->lock);
3326		css_put(&mz->mem->css);
3327		loop++;
3328		/*
3329		 * Could not reclaim anything and there are no more
3330		 * mem cgroups to try or we seem to be looping without
3331		 * reclaiming anything.
3332		 */
3333		if (!nr_reclaimed &&
3334			(next_mz == NULL ||
3335			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3336			break;
3337	} while (!nr_reclaimed);
3338	if (next_mz)
3339		css_put(&next_mz->mem->css);
3340	return nr_reclaimed;
3341}
3342
3343/*
3344 * This routine traverse page_cgroup in given list and drop them all.
3345 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3346 */
3347static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3348				int node, int zid, enum lru_list lru)
3349{
3350	struct zone *zone;
3351	struct mem_cgroup_per_zone *mz;
3352	struct page_cgroup *pc, *busy;
3353	unsigned long flags, loop;
3354	struct list_head *list;
3355	int ret = 0;
3356
3357	zone = &NODE_DATA(node)->node_zones[zid];
3358	mz = mem_cgroup_zoneinfo(mem, node, zid);
3359	list = &mz->lists[lru];
3360
3361	loop = MEM_CGROUP_ZSTAT(mz, lru);
3362	/* give some margin against EBUSY etc...*/
3363	loop += 256;
3364	busy = NULL;
3365	while (loop--) {
3366		struct page *page;
3367
3368		ret = 0;
3369		spin_lock_irqsave(&zone->lru_lock, flags);
3370		if (list_empty(list)) {
3371			spin_unlock_irqrestore(&zone->lru_lock, flags);
3372			break;
3373		}
3374		pc = list_entry(list->prev, struct page_cgroup, lru);
3375		if (busy == pc) {
3376			list_move(&pc->lru, list);
3377			busy = NULL;
3378			spin_unlock_irqrestore(&zone->lru_lock, flags);
3379			continue;
3380		}
3381		spin_unlock_irqrestore(&zone->lru_lock, flags);
3382
3383		page = lookup_cgroup_page(pc);
3384
3385		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3386		if (ret == -ENOMEM)
3387			break;
3388
3389		if (ret == -EBUSY || ret == -EINVAL) {
3390			/* found lock contention or "pc" is obsolete. */
3391			busy = pc;
3392			cond_resched();
3393		} else
3394			busy = NULL;
3395	}
3396
3397	if (!ret && !list_empty(list))
3398		return -EBUSY;
3399	return ret;
3400}
3401
3402/*
3403 * make mem_cgroup's charge to be 0 if there is no task.
3404 * This enables deleting this mem_cgroup.
3405 */
3406static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3407{
3408	int ret;
3409	int node, zid, shrink;
3410	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3411	struct cgroup *cgrp = mem->css.cgroup;
3412
3413	css_get(&mem->css);
3414
3415	shrink = 0;
3416	/* should free all ? */
3417	if (free_all)
3418		goto try_to_free;
3419move_account:
3420	do {
3421		ret = -EBUSY;
3422		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3423			goto out;
3424		ret = -EINTR;
3425		if (signal_pending(current))
3426			goto out;
3427		/* This is for making all *used* pages to be on LRU. */
3428		lru_add_drain_all();
3429		drain_all_stock_sync();
3430		ret = 0;
3431		mem_cgroup_start_move(mem);
3432		for_each_node_state(node, N_HIGH_MEMORY) {
3433			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3434				enum lru_list l;
3435				for_each_lru(l) {
3436					ret = mem_cgroup_force_empty_list(mem,
3437							node, zid, l);
3438					if (ret)
3439						break;
3440				}
3441			}
3442			if (ret)
3443				break;
3444		}
3445		mem_cgroup_end_move(mem);
3446		memcg_oom_recover(mem);
3447		/* it seems parent cgroup doesn't have enough mem */
3448		if (ret == -ENOMEM)
3449			goto try_to_free;
3450		cond_resched();
3451	/* "ret" should also be checked to ensure all lists are empty. */
3452	} while (mem->res.usage > 0 || ret);
3453out:
3454	css_put(&mem->css);
3455	return ret;
3456
3457try_to_free:
3458	/* returns EBUSY if there is a task or if we come here twice. */
3459	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3460		ret = -EBUSY;
3461		goto out;
3462	}
3463	/* we call try-to-free pages for make this cgroup empty */
3464	lru_add_drain_all();
3465	/* try to free all pages in this cgroup */
3466	shrink = 1;
3467	while (nr_retries && mem->res.usage > 0) {
3468		int progress;
3469
3470		if (signal_pending(current)) {
3471			ret = -EINTR;
3472			goto out;
3473		}
3474		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3475						false, get_swappiness(mem));
3476		if (!progress) {
3477			nr_retries--;
3478			/* maybe some writeback is necessary */
3479			congestion_wait(BLK_RW_ASYNC, HZ/10);
3480		}
3481
3482	}
3483	lru_add_drain();
3484	/* try move_account...there may be some *locked* pages. */
3485	goto move_account;
3486}
3487
3488int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3489{
3490	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3491}
3492
3493
3494static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3495{
3496	return mem_cgroup_from_cont(cont)->use_hierarchy;
3497}
3498
3499static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3500					u64 val)
3501{
3502	int retval = 0;
3503	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3504	struct cgroup *parent = cont->parent;
3505	struct mem_cgroup *parent_mem = NULL;
3506
3507	if (parent)
3508		parent_mem = mem_cgroup_from_cont(parent);
3509
3510	cgroup_lock();
3511	/*
3512	 * If parent's use_hierarchy is set, we can't make any modifications
3513	 * in the child subtrees. If it is unset, then the change can
3514	 * occur, provided the current cgroup has no children.
3515	 *
3516	 * For the root cgroup, parent_mem is NULL, we allow value to be
3517	 * set if there are no children.
3518	 */
3519	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3520				(val == 1 || val == 0)) {
3521		if (list_empty(&cont->children))
3522			mem->use_hierarchy = val;
3523		else
3524			retval = -EBUSY;
3525	} else
3526		retval = -EINVAL;
3527	cgroup_unlock();
3528
3529	return retval;
3530}
3531
3532
3533static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3534					       enum mem_cgroup_stat_index idx)
3535{
3536	struct mem_cgroup *iter;
3537	long val = 0;
3538
3539	/* Per-cpu values can be negative, use a signed accumulator */
3540	for_each_mem_cgroup_tree(iter, mem)
3541		val += mem_cgroup_read_stat(iter, idx);
3542
3543	if (val < 0) /* race ? */
3544		val = 0;
3545	return val;
3546}
3547
3548static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3549{
3550	u64 val;
3551
3552	if (!mem_cgroup_is_root(mem)) {
3553		if (!swap)
3554			return res_counter_read_u64(&mem->res, RES_USAGE);
3555		else
3556			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3557	}
3558
3559	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3560	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3561
3562	if (swap)
3563		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3564
3565	return val << PAGE_SHIFT;
3566}
3567
3568static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3569{
3570	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3571	u64 val;
3572	int type, name;
3573
3574	type = MEMFILE_TYPE(cft->private);
3575	name = MEMFILE_ATTR(cft->private);
3576	switch (type) {
3577	case _MEM:
3578		if (name == RES_USAGE)
3579			val = mem_cgroup_usage(mem, false);
3580		else
3581			val = res_counter_read_u64(&mem->res, name);
3582		break;
3583	case _MEMSWAP:
3584		if (name == RES_USAGE)
3585			val = mem_cgroup_usage(mem, true);
3586		else
3587			val = res_counter_read_u64(&mem->memsw, name);
3588		break;
3589	default:
3590		BUG();
3591		break;
3592	}
3593	return val;
3594}
3595/*
3596 * The user of this function is...
3597 * RES_LIMIT.
3598 */
3599static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3600			    const char *buffer)
3601{
3602	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3603	int type, name;
3604	unsigned long long val;
3605	int ret;
3606
3607	type = MEMFILE_TYPE(cft->private);
3608	name = MEMFILE_ATTR(cft->private);
3609	switch (name) {
3610	case RES_LIMIT:
3611		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3612			ret = -EINVAL;
3613			break;
3614		}
3615		/* This function does all necessary parse...reuse it */
3616		ret = res_counter_memparse_write_strategy(buffer, &val);
3617		if (ret)
3618			break;
3619		if (type == _MEM)
3620			ret = mem_cgroup_resize_limit(memcg, val);
3621		else
3622			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3623		break;
3624	case RES_SOFT_LIMIT:
3625		ret = res_counter_memparse_write_strategy(buffer, &val);
3626		if (ret)
3627			break;
3628		/*
3629		 * For memsw, soft limits are hard to implement in terms
3630		 * of semantics, for now, we support soft limits for
3631		 * control without swap
3632		 */
3633		if (type == _MEM)
3634			ret = res_counter_set_soft_limit(&memcg->res, val);
3635		else
3636			ret = -EINVAL;
3637		break;
3638	default:
3639		ret = -EINVAL; /* should be BUG() ? */
3640		break;
3641	}
3642	return ret;
3643}
3644
3645static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3646		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3647{
3648	struct cgroup *cgroup;
3649	unsigned long long min_limit, min_memsw_limit, tmp;
3650
3651	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3652	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3653	cgroup = memcg->css.cgroup;
3654	if (!memcg->use_hierarchy)
3655		goto out;
3656
3657	while (cgroup->parent) {
3658		cgroup = cgroup->parent;
3659		memcg = mem_cgroup_from_cont(cgroup);
3660		if (!memcg->use_hierarchy)
3661			break;
3662		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3663		min_limit = min(min_limit, tmp);
3664		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3665		min_memsw_limit = min(min_memsw_limit, tmp);
3666	}
3667out:
3668	*mem_limit = min_limit;
3669	*memsw_limit = min_memsw_limit;
3670	return;
3671}
3672
3673static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3674{
3675	struct mem_cgroup *mem;
3676	int type, name;
3677
3678	mem = mem_cgroup_from_cont(cont);
3679	type = MEMFILE_TYPE(event);
3680	name = MEMFILE_ATTR(event);
3681	switch (name) {
3682	case RES_MAX_USAGE:
3683		if (type == _MEM)
3684			res_counter_reset_max(&mem->res);
3685		else
3686			res_counter_reset_max(&mem->memsw);
3687		break;
3688	case RES_FAILCNT:
3689		if (type == _MEM)
3690			res_counter_reset_failcnt(&mem->res);
3691		else
3692			res_counter_reset_failcnt(&mem->memsw);
3693		break;
3694	}
3695
3696	return 0;
3697}
3698
3699static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3700					struct cftype *cft)
3701{
3702	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3703}
3704
3705#ifdef CONFIG_MMU
3706static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3707					struct cftype *cft, u64 val)
3708{
3709	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3710
3711	if (val >= (1 << NR_MOVE_TYPE))
3712		return -EINVAL;
3713	/*
3714	 * We check this value several times in both in can_attach() and
3715	 * attach(), so we need cgroup lock to prevent this value from being
3716	 * inconsistent.
3717	 */
3718	cgroup_lock();
3719	mem->move_charge_at_immigrate = val;
3720	cgroup_unlock();
3721
3722	return 0;
3723}
3724#else
3725static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3726					struct cftype *cft, u64 val)
3727{
3728	return -ENOSYS;
3729}
3730#endif
3731
3732
3733/* For read statistics */
3734enum {
3735	MCS_CACHE,
3736	MCS_RSS,
3737	MCS_FILE_MAPPED,
3738	MCS_PGPGIN,
3739	MCS_PGPGOUT,
3740	MCS_SWAP,
3741	MCS_INACTIVE_ANON,
3742	MCS_ACTIVE_ANON,
3743	MCS_INACTIVE_FILE,
3744	MCS_ACTIVE_FILE,
3745	MCS_UNEVICTABLE,
3746	NR_MCS_STAT,
3747};
3748
3749struct mcs_total_stat {
3750	s64 stat[NR_MCS_STAT];
3751};
3752
3753struct {
3754	char *local_name;
3755	char *total_name;
3756} memcg_stat_strings[NR_MCS_STAT] = {
3757	{"cache", "total_cache"},
3758	{"rss", "total_rss"},
3759	{"mapped_file", "total_mapped_file"},
3760	{"pgpgin", "total_pgpgin"},
3761	{"pgpgout", "total_pgpgout"},
3762	{"swap", "total_swap"},
3763	{"inactive_anon", "total_inactive_anon"},
3764	{"active_anon", "total_active_anon"},
3765	{"inactive_file", "total_inactive_file"},
3766	{"active_file", "total_active_file"},
3767	{"unevictable", "total_unevictable"}
3768};
3769
3770
3771static void
3772mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3773{
3774	s64 val;
3775
3776	/* per cpu stat */
3777	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3778	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3779	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3780	s->stat[MCS_RSS] += val * PAGE_SIZE;
3781	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3782	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3783	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
3784	s->stat[MCS_PGPGIN] += val;
3785	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
3786	s->stat[MCS_PGPGOUT] += val;
3787	if (do_swap_account) {
3788		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3789		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3790	}
3791
3792	/* per zone stat */
3793	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3794	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3795	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3796	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3797	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3798	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3799	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3800	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3801	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3802	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3803}
3804
3805static void
3806mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3807{
3808	struct mem_cgroup *iter;
3809
3810	for_each_mem_cgroup_tree(iter, mem)
3811		mem_cgroup_get_local_stat(iter, s);
3812}
3813
3814static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3815				 struct cgroup_map_cb *cb)
3816{
3817	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3818	struct mcs_total_stat mystat;
3819	int i;
3820
3821	memset(&mystat, 0, sizeof(mystat));
3822	mem_cgroup_get_local_stat(mem_cont, &mystat);
3823
3824	for (i = 0; i < NR_MCS_STAT; i++) {
3825		if (i == MCS_SWAP && !do_swap_account)
3826			continue;
3827		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3828	}
3829
3830	/* Hierarchical information */
3831	{
3832		unsigned long long limit, memsw_limit;
3833		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3834		cb->fill(cb, "hierarchical_memory_limit", limit);
3835		if (do_swap_account)
3836			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3837	}
3838
3839	memset(&mystat, 0, sizeof(mystat));
3840	mem_cgroup_get_total_stat(mem_cont, &mystat);
3841	for (i = 0; i < NR_MCS_STAT; i++) {
3842		if (i == MCS_SWAP && !do_swap_account)
3843			continue;
3844		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3845	}
3846
3847#ifdef CONFIG_DEBUG_VM
3848	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3849
3850	{
3851		int nid, zid;
3852		struct mem_cgroup_per_zone *mz;
3853		unsigned long recent_rotated[2] = {0, 0};
3854		unsigned long recent_scanned[2] = {0, 0};
3855
3856		for_each_online_node(nid)
3857			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3858				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3859
3860				recent_rotated[0] +=
3861					mz->reclaim_stat.recent_rotated[0];
3862				recent_rotated[1] +=
3863					mz->reclaim_stat.recent_rotated[1];
3864				recent_scanned[0] +=
3865					mz->reclaim_stat.recent_scanned[0];
3866				recent_scanned[1] +=
3867					mz->reclaim_stat.recent_scanned[1];
3868			}
3869		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3870		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3871		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3872		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3873	}
3874#endif
3875
3876	return 0;
3877}
3878
3879static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3880{
3881	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3882
3883	return get_swappiness(memcg);
3884}
3885
3886static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3887				       u64 val)
3888{
3889	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3890	struct mem_cgroup *parent;
3891
3892	if (val > 100)
3893		return -EINVAL;
3894
3895	if (cgrp->parent == NULL)
3896		return -EINVAL;
3897
3898	parent = mem_cgroup_from_cont(cgrp->parent);
3899
3900	cgroup_lock();
3901
3902	/* If under hierarchy, only empty-root can set this value */
3903	if ((parent->use_hierarchy) ||
3904	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3905		cgroup_unlock();
3906		return -EINVAL;
3907	}
3908
3909	memcg->swappiness = val;
3910
3911	cgroup_unlock();
3912
3913	return 0;
3914}
3915
3916static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3917{
3918	struct mem_cgroup_threshold_ary *t;
3919	u64 usage;
3920	int i;
3921
3922	rcu_read_lock();
3923	if (!swap)
3924		t = rcu_dereference(memcg->thresholds.primary);
3925	else
3926		t = rcu_dereference(memcg->memsw_thresholds.primary);
3927
3928	if (!t)
3929		goto unlock;
3930
3931	usage = mem_cgroup_usage(memcg, swap);
3932
3933	/*
3934	 * current_threshold points to threshold just below usage.
3935	 * If it's not true, a threshold was crossed after last
3936	 * call of __mem_cgroup_threshold().
3937	 */
3938	i = t->current_threshold;
3939
3940	/*
3941	 * Iterate backward over array of thresholds starting from
3942	 * current_threshold and check if a threshold is crossed.
3943	 * If none of thresholds below usage is crossed, we read
3944	 * only one element of the array here.
3945	 */
3946	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3947		eventfd_signal(t->entries[i].eventfd, 1);
3948
3949	/* i = current_threshold + 1 */
3950	i++;
3951
3952	/*
3953	 * Iterate forward over array of thresholds starting from
3954	 * current_threshold+1 and check if a threshold is crossed.
3955	 * If none of thresholds above usage is crossed, we read
3956	 * only one element of the array here.
3957	 */
3958	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3959		eventfd_signal(t->entries[i].eventfd, 1);
3960
3961	/* Update current_threshold */
3962	t->current_threshold = i - 1;
3963unlock:
3964	rcu_read_unlock();
3965}
3966
3967static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3968{
3969	while (memcg) {
3970		__mem_cgroup_threshold(memcg, false);
3971		if (do_swap_account)
3972			__mem_cgroup_threshold(memcg, true);
3973
3974		memcg = parent_mem_cgroup(memcg);
3975	}
3976}
3977
3978static int compare_thresholds(const void *a, const void *b)
3979{
3980	const struct mem_cgroup_threshold *_a = a;
3981	const struct mem_cgroup_threshold *_b = b;
3982
3983	return _a->threshold - _b->threshold;
3984}
3985
3986static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3987{
3988	struct mem_cgroup_eventfd_list *ev;
3989
3990	list_for_each_entry(ev, &mem->oom_notify, list)
3991		eventfd_signal(ev->eventfd, 1);
3992	return 0;
3993}
3994
3995static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3996{
3997	struct mem_cgroup *iter;
3998
3999	for_each_mem_cgroup_tree(iter, mem)
4000		mem_cgroup_oom_notify_cb(iter);
4001}
4002
4003static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4004	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4005{
4006	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4007	struct mem_cgroup_thresholds *thresholds;
4008	struct mem_cgroup_threshold_ary *new;
4009	int type = MEMFILE_TYPE(cft->private);
4010	u64 threshold, usage;
4011	int i, size, ret;
4012
4013	ret = res_counter_memparse_write_strategy(args, &threshold);
4014	if (ret)
4015		return ret;
4016
4017	mutex_lock(&memcg->thresholds_lock);
4018
4019	if (type == _MEM)
4020		thresholds = &memcg->thresholds;
4021	else if (type == _MEMSWAP)
4022		thresholds = &memcg->memsw_thresholds;
4023	else
4024		BUG();
4025
4026	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4027
4028	/* Check if a threshold crossed before adding a new one */
4029	if (thresholds->primary)
4030		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4031
4032	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4033
4034	/* Allocate memory for new array of thresholds */
4035	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4036			GFP_KERNEL);
4037	if (!new) {
4038		ret = -ENOMEM;
4039		goto unlock;
4040	}
4041	new->size = size;
4042
4043	/* Copy thresholds (if any) to new array */
4044	if (thresholds->primary) {
4045		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4046				sizeof(struct mem_cgroup_threshold));
4047	}
4048
4049	/* Add new threshold */
4050	new->entries[size - 1].eventfd = eventfd;
4051	new->entries[size - 1].threshold = threshold;
4052
4053	/* Sort thresholds. Registering of new threshold isn't time-critical */
4054	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4055			compare_thresholds, NULL);
4056
4057	/* Find current threshold */
4058	new->current_threshold = -1;
4059	for (i = 0; i < size; i++) {
4060		if (new->entries[i].threshold < usage) {
4061			/*
4062			 * new->current_threshold will not be used until
4063			 * rcu_assign_pointer(), so it's safe to increment
4064			 * it here.
4065			 */
4066			++new->current_threshold;
4067		}
4068	}
4069
4070	/* Free old spare buffer and save old primary buffer as spare */
4071	kfree(thresholds->spare);
4072	thresholds->spare = thresholds->primary;
4073
4074	rcu_assign_pointer(thresholds->primary, new);
4075
4076	/* To be sure that nobody uses thresholds */
4077	synchronize_rcu();
4078
4079unlock:
4080	mutex_unlock(&memcg->thresholds_lock);
4081
4082	return ret;
4083}
4084
4085static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4086	struct cftype *cft, struct eventfd_ctx *eventfd)
4087{
4088	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4089	struct mem_cgroup_thresholds *thresholds;
4090	struct mem_cgroup_threshold_ary *new;
4091	int type = MEMFILE_TYPE(cft->private);
4092	u64 usage;
4093	int i, j, size;
4094
4095	mutex_lock(&memcg->thresholds_lock);
4096	if (type == _MEM)
4097		thresholds = &memcg->thresholds;
4098	else if (type == _MEMSWAP)
4099		thresholds = &memcg->memsw_thresholds;
4100	else
4101		BUG();
4102
4103	/*
4104	 * Something went wrong if we trying to unregister a threshold
4105	 * if we don't have thresholds
4106	 */
4107	BUG_ON(!thresholds);
4108
4109	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4110
4111	/* Check if a threshold crossed before removing */
4112	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4113
4114	/* Calculate new number of threshold */
4115	size = 0;
4116	for (i = 0; i < thresholds->primary->size; i++) {
4117		if (thresholds->primary->entries[i].eventfd != eventfd)
4118			size++;
4119	}
4120
4121	new = thresholds->spare;
4122
4123	/* Set thresholds array to NULL if we don't have thresholds */
4124	if (!size) {
4125		kfree(new);
4126		new = NULL;
4127		goto swap_buffers;
4128	}
4129
4130	new->size = size;
4131
4132	/* Copy thresholds and find current threshold */
4133	new->current_threshold = -1;
4134	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4135		if (thresholds->primary->entries[i].eventfd == eventfd)
4136			continue;
4137
4138		new->entries[j] = thresholds->primary->entries[i];
4139		if (new->entries[j].threshold < usage) {
4140			/*
4141			 * new->current_threshold will not be used
4142			 * until rcu_assign_pointer(), so it's safe to increment
4143			 * it here.
4144			 */
4145			++new->current_threshold;
4146		}
4147		j++;
4148	}
4149
4150swap_buffers:
4151	/* Swap primary and spare array */
4152	thresholds->spare = thresholds->primary;
4153	rcu_assign_pointer(thresholds->primary, new);
4154
4155	/* To be sure that nobody uses thresholds */
4156	synchronize_rcu();
4157
4158	mutex_unlock(&memcg->thresholds_lock);
4159}
4160
4161static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4162	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4163{
4164	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4165	struct mem_cgroup_eventfd_list *event;
4166	int type = MEMFILE_TYPE(cft->private);
4167
4168	BUG_ON(type != _OOM_TYPE);
4169	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4170	if (!event)
4171		return -ENOMEM;
4172
4173	mutex_lock(&memcg_oom_mutex);
4174
4175	event->eventfd = eventfd;
4176	list_add(&event->list, &memcg->oom_notify);
4177
4178	/* already in OOM ? */
4179	if (atomic_read(&memcg->oom_lock))
4180		eventfd_signal(eventfd, 1);
4181	mutex_unlock(&memcg_oom_mutex);
4182
4183	return 0;
4184}
4185
4186static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4187	struct cftype *cft, struct eventfd_ctx *eventfd)
4188{
4189	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4190	struct mem_cgroup_eventfd_list *ev, *tmp;
4191	int type = MEMFILE_TYPE(cft->private);
4192
4193	BUG_ON(type != _OOM_TYPE);
4194
4195	mutex_lock(&memcg_oom_mutex);
4196
4197	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4198		if (ev->eventfd == eventfd) {
4199			list_del(&ev->list);
4200			kfree(ev);
4201		}
4202	}
4203
4204	mutex_unlock(&memcg_oom_mutex);
4205}
4206
4207static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4208	struct cftype *cft,  struct cgroup_map_cb *cb)
4209{
4210	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4211
4212	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4213
4214	if (atomic_read(&mem->oom_lock))
4215		cb->fill(cb, "under_oom", 1);
4216	else
4217		cb->fill(cb, "under_oom", 0);
4218	return 0;
4219}
4220
4221static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4222	struct cftype *cft, u64 val)
4223{
4224	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4225	struct mem_cgroup *parent;
4226
4227	/* cannot set to root cgroup and only 0 and 1 are allowed */
4228	if (!cgrp->parent || !((val == 0) || (val == 1)))
4229		return -EINVAL;
4230
4231	parent = mem_cgroup_from_cont(cgrp->parent);
4232
4233	cgroup_lock();
4234	/* oom-kill-disable is a flag for subhierarchy. */
4235	if ((parent->use_hierarchy) ||
4236	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4237		cgroup_unlock();
4238		return -EINVAL;
4239	}
4240	mem->oom_kill_disable = val;
4241	if (!val)
4242		memcg_oom_recover(mem);
4243	cgroup_unlock();
4244	return 0;
4245}
4246
4247static struct cftype mem_cgroup_files[] = {
4248	{
4249		.name = "usage_in_bytes",
4250		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4251		.read_u64 = mem_cgroup_read,
4252		.register_event = mem_cgroup_usage_register_event,
4253		.unregister_event = mem_cgroup_usage_unregister_event,
4254	},
4255	{
4256		.name = "max_usage_in_bytes",
4257		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4258		.trigger = mem_cgroup_reset,
4259		.read_u64 = mem_cgroup_read,
4260	},
4261	{
4262		.name = "limit_in_bytes",
4263		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4264		.write_string = mem_cgroup_write,
4265		.read_u64 = mem_cgroup_read,
4266	},
4267	{
4268		.name = "soft_limit_in_bytes",
4269		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4270		.write_string = mem_cgroup_write,
4271		.read_u64 = mem_cgroup_read,
4272	},
4273	{
4274		.name = "failcnt",
4275		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4276		.trigger = mem_cgroup_reset,
4277		.read_u64 = mem_cgroup_read,
4278	},
4279	{
4280		.name = "stat",
4281		.read_map = mem_control_stat_show,
4282	},
4283	{
4284		.name = "force_empty",
4285		.trigger = mem_cgroup_force_empty_write,
4286	},
4287	{
4288		.name = "use_hierarchy",
4289		.write_u64 = mem_cgroup_hierarchy_write,
4290		.read_u64 = mem_cgroup_hierarchy_read,
4291	},
4292	{
4293		.name = "swappiness",
4294		.read_u64 = mem_cgroup_swappiness_read,
4295		.write_u64 = mem_cgroup_swappiness_write,
4296	},
4297	{
4298		.name = "move_charge_at_immigrate",
4299		.read_u64 = mem_cgroup_move_charge_read,
4300		.write_u64 = mem_cgroup_move_charge_write,
4301	},
4302	{
4303		.name = "oom_control",
4304		.read_map = mem_cgroup_oom_control_read,
4305		.write_u64 = mem_cgroup_oom_control_write,
4306		.register_event = mem_cgroup_oom_register_event,
4307		.unregister_event = mem_cgroup_oom_unregister_event,
4308		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4309	},
4310};
4311
4312#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4313static struct cftype memsw_cgroup_files[] = {
4314	{
4315		.name = "memsw.usage_in_bytes",
4316		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4317		.read_u64 = mem_cgroup_read,
4318		.register_event = mem_cgroup_usage_register_event,
4319		.unregister_event = mem_cgroup_usage_unregister_event,
4320	},
4321	{
4322		.name = "memsw.max_usage_in_bytes",
4323		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4324		.trigger = mem_cgroup_reset,
4325		.read_u64 = mem_cgroup_read,
4326	},
4327	{
4328		.name = "memsw.limit_in_bytes",
4329		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4330		.write_string = mem_cgroup_write,
4331		.read_u64 = mem_cgroup_read,
4332	},
4333	{
4334		.name = "memsw.failcnt",
4335		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4336		.trigger = mem_cgroup_reset,
4337		.read_u64 = mem_cgroup_read,
4338	},
4339};
4340
4341static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4342{
4343	if (!do_swap_account)
4344		return 0;
4345	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4346				ARRAY_SIZE(memsw_cgroup_files));
4347};
4348#else
4349static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4350{
4351	return 0;
4352}
4353#endif
4354
4355static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4356{
4357	struct mem_cgroup_per_node *pn;
4358	struct mem_cgroup_per_zone *mz;
4359	enum lru_list l;
4360	int zone, tmp = node;
4361	/*
4362	 * This routine is called against possible nodes.
4363	 * But it's BUG to call kmalloc() against offline node.
4364	 *
4365	 * TODO: this routine can waste much memory for nodes which will
4366	 *       never be onlined. It's better to use memory hotplug callback
4367	 *       function.
4368	 */
4369	if (!node_state(node, N_NORMAL_MEMORY))
4370		tmp = -1;
4371	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4372	if (!pn)
4373		return 1;
4374
4375	mem->info.nodeinfo[node] = pn;
4376	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4377		mz = &pn->zoneinfo[zone];
4378		for_each_lru(l)
4379			INIT_LIST_HEAD(&mz->lists[l]);
4380		mz->usage_in_excess = 0;
4381		mz->on_tree = false;
4382		mz->mem = mem;
4383	}
4384	return 0;
4385}
4386
4387static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4388{
4389	kfree(mem->info.nodeinfo[node]);
4390}
4391
4392static struct mem_cgroup *mem_cgroup_alloc(void)
4393{
4394	struct mem_cgroup *mem;
4395	int size = sizeof(struct mem_cgroup);
4396
4397	/* Can be very big if MAX_NUMNODES is very big */
4398	if (size < PAGE_SIZE)
4399		mem = kzalloc(size, GFP_KERNEL);
4400	else
4401		mem = vzalloc(size);
4402
4403	if (!mem)
4404		return NULL;
4405
4406	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4407	if (!mem->stat)
4408		goto out_free;
4409	spin_lock_init(&mem->pcp_counter_lock);
4410	return mem;
4411
4412out_free:
4413	if (size < PAGE_SIZE)
4414		kfree(mem);
4415	else
4416		vfree(mem);
4417	return NULL;
4418}
4419
4420/*
4421 * At destroying mem_cgroup, references from swap_cgroup can remain.
4422 * (scanning all at force_empty is too costly...)
4423 *
4424 * Instead of clearing all references at force_empty, we remember
4425 * the number of reference from swap_cgroup and free mem_cgroup when
4426 * it goes down to 0.
4427 *
4428 * Removal of cgroup itself succeeds regardless of refs from swap.
4429 */
4430
4431static void __mem_cgroup_free(struct mem_cgroup *mem)
4432{
4433	int node;
4434
4435	mem_cgroup_remove_from_trees(mem);
4436	free_css_id(&mem_cgroup_subsys, &mem->css);
4437
4438	for_each_node_state(node, N_POSSIBLE)
4439		free_mem_cgroup_per_zone_info(mem, node);
4440
4441	free_percpu(mem->stat);
4442	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4443		kfree(mem);
4444	else
4445		vfree(mem);
4446}
4447
4448static void mem_cgroup_get(struct mem_cgroup *mem)
4449{
4450	atomic_inc(&mem->refcnt);
4451}
4452
4453static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4454{
4455	if (atomic_sub_and_test(count, &mem->refcnt)) {
4456		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4457		__mem_cgroup_free(mem);
4458		if (parent)
4459			mem_cgroup_put(parent);
4460	}
4461}
4462
4463static void mem_cgroup_put(struct mem_cgroup *mem)
4464{
4465	__mem_cgroup_put(mem, 1);
4466}
4467
4468/*
4469 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4470 */
4471static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4472{
4473	if (!mem->res.parent)
4474		return NULL;
4475	return mem_cgroup_from_res_counter(mem->res.parent, res);
4476}
4477
4478#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4479static void __init enable_swap_cgroup(void)
4480{
4481	if (!mem_cgroup_disabled() && really_do_swap_account)
4482		do_swap_account = 1;
4483}
4484#else
4485static void __init enable_swap_cgroup(void)
4486{
4487}
4488#endif
4489
4490static int mem_cgroup_soft_limit_tree_init(void)
4491{
4492	struct mem_cgroup_tree_per_node *rtpn;
4493	struct mem_cgroup_tree_per_zone *rtpz;
4494	int tmp, node, zone;
4495
4496	for_each_node_state(node, N_POSSIBLE) {
4497		tmp = node;
4498		if (!node_state(node, N_NORMAL_MEMORY))
4499			tmp = -1;
4500		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4501		if (!rtpn)
4502			return 1;
4503
4504		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4505
4506		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4507			rtpz = &rtpn->rb_tree_per_zone[zone];
4508			rtpz->rb_root = RB_ROOT;
4509			spin_lock_init(&rtpz->lock);
4510		}
4511	}
4512	return 0;
4513}
4514
4515static struct cgroup_subsys_state * __ref
4516mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4517{
4518	struct mem_cgroup *mem, *parent;
4519	long error = -ENOMEM;
4520	int node;
4521
4522	mem = mem_cgroup_alloc();
4523	if (!mem)
4524		return ERR_PTR(error);
4525
4526	for_each_node_state(node, N_POSSIBLE)
4527		if (alloc_mem_cgroup_per_zone_info(mem, node))
4528			goto free_out;
4529
4530	/* root ? */
4531	if (cont->parent == NULL) {
4532		int cpu;
4533		enable_swap_cgroup();
4534		parent = NULL;
4535		root_mem_cgroup = mem;
4536		if (mem_cgroup_soft_limit_tree_init())
4537			goto free_out;
4538		for_each_possible_cpu(cpu) {
4539			struct memcg_stock_pcp *stock =
4540						&per_cpu(memcg_stock, cpu);
4541			INIT_WORK(&stock->work, drain_local_stock);
4542		}
4543		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4544	} else {
4545		parent = mem_cgroup_from_cont(cont->parent);
4546		mem->use_hierarchy = parent->use_hierarchy;
4547		mem->oom_kill_disable = parent->oom_kill_disable;
4548	}
4549
4550	if (parent && parent->use_hierarchy) {
4551		res_counter_init(&mem->res, &parent->res);
4552		res_counter_init(&mem->memsw, &parent->memsw);
4553		/*
4554		 * We increment refcnt of the parent to ensure that we can
4555		 * safely access it on res_counter_charge/uncharge.
4556		 * This refcnt will be decremented when freeing this
4557		 * mem_cgroup(see mem_cgroup_put).
4558		 */
4559		mem_cgroup_get(parent);
4560	} else {
4561		res_counter_init(&mem->res, NULL);
4562		res_counter_init(&mem->memsw, NULL);
4563	}
4564	mem->last_scanned_child = 0;
4565	INIT_LIST_HEAD(&mem->oom_notify);
4566
4567	if (parent)
4568		mem->swappiness = get_swappiness(parent);
4569	atomic_set(&mem->refcnt, 1);
4570	mem->move_charge_at_immigrate = 0;
4571	mutex_init(&mem->thresholds_lock);
4572	return &mem->css;
4573free_out:
4574	__mem_cgroup_free(mem);
4575	root_mem_cgroup = NULL;
4576	return ERR_PTR(error);
4577}
4578
4579static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4580					struct cgroup *cont)
4581{
4582	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4583
4584	return mem_cgroup_force_empty(mem, false);
4585}
4586
4587static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4588				struct cgroup *cont)
4589{
4590	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4591
4592	mem_cgroup_put(mem);
4593}
4594
4595static int mem_cgroup_populate(struct cgroup_subsys *ss,
4596				struct cgroup *cont)
4597{
4598	int ret;
4599
4600	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4601				ARRAY_SIZE(mem_cgroup_files));
4602
4603	if (!ret)
4604		ret = register_memsw_files(cont, ss);
4605	return ret;
4606}
4607
4608#ifdef CONFIG_MMU
4609/* Handlers for move charge at task migration. */
4610#define PRECHARGE_COUNT_AT_ONCE	256
4611static int mem_cgroup_do_precharge(unsigned long count)
4612{
4613	int ret = 0;
4614	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4615	struct mem_cgroup *mem = mc.to;
4616
4617	if (mem_cgroup_is_root(mem)) {
4618		mc.precharge += count;
4619		/* we don't need css_get for root */
4620		return ret;
4621	}
4622	/* try to charge at once */
4623	if (count > 1) {
4624		struct res_counter *dummy;
4625		/*
4626		 * "mem" cannot be under rmdir() because we've already checked
4627		 * by cgroup_lock_live_cgroup() that it is not removed and we
4628		 * are still under the same cgroup_mutex. So we can postpone
4629		 * css_get().
4630		 */
4631		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4632			goto one_by_one;
4633		if (do_swap_account && res_counter_charge(&mem->memsw,
4634						PAGE_SIZE * count, &dummy)) {
4635			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4636			goto one_by_one;
4637		}
4638		mc.precharge += count;
4639		return ret;
4640	}
4641one_by_one:
4642	/* fall back to one by one charge */
4643	while (count--) {
4644		if (signal_pending(current)) {
4645			ret = -EINTR;
4646			break;
4647		}
4648		if (!batch_count--) {
4649			batch_count = PRECHARGE_COUNT_AT_ONCE;
4650			cond_resched();
4651		}
4652		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4653		if (ret || !mem)
4654			/* mem_cgroup_clear_mc() will do uncharge later */
4655			return -ENOMEM;
4656		mc.precharge++;
4657	}
4658	return ret;
4659}
4660
4661/**
4662 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4663 * @vma: the vma the pte to be checked belongs
4664 * @addr: the address corresponding to the pte to be checked
4665 * @ptent: the pte to be checked
4666 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4667 *
4668 * Returns
4669 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4670 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4671 *     move charge. if @target is not NULL, the page is stored in target->page
4672 *     with extra refcnt got(Callers should handle it).
4673 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4674 *     target for charge migration. if @target is not NULL, the entry is stored
4675 *     in target->ent.
4676 *
4677 * Called with pte lock held.
4678 */
4679union mc_target {
4680	struct page	*page;
4681	swp_entry_t	ent;
4682};
4683
4684enum mc_target_type {
4685	MC_TARGET_NONE,	/* not used */
4686	MC_TARGET_PAGE,
4687	MC_TARGET_SWAP,
4688};
4689
4690static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4691						unsigned long addr, pte_t ptent)
4692{
4693	struct page *page = vm_normal_page(vma, addr, ptent);
4694
4695	if (!page || !page_mapped(page))
4696		return NULL;
4697	if (PageAnon(page)) {
4698		/* we don't move shared anon */
4699		if (!move_anon() || page_mapcount(page) > 2)
4700			return NULL;
4701	} else if (!move_file())
4702		/* we ignore mapcount for file pages */
4703		return NULL;
4704	if (!get_page_unless_zero(page))
4705		return NULL;
4706
4707	return page;
4708}
4709
4710static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4711			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4712{
4713	int usage_count;
4714	struct page *page = NULL;
4715	swp_entry_t ent = pte_to_swp_entry(ptent);
4716
4717	if (!move_anon() || non_swap_entry(ent))
4718		return NULL;
4719	usage_count = mem_cgroup_count_swap_user(ent, &page);
4720	if (usage_count > 1) { /* we don't move shared anon */
4721		if (page)
4722			put_page(page);
4723		return NULL;
4724	}
4725	if (do_swap_account)
4726		entry->val = ent.val;
4727
4728	return page;
4729}
4730
4731static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4732			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4733{
4734	struct page *page = NULL;
4735	struct inode *inode;
4736	struct address_space *mapping;
4737	pgoff_t pgoff;
4738
4739	if (!vma->vm_file) /* anonymous vma */
4740		return NULL;
4741	if (!move_file())
4742		return NULL;
4743
4744	inode = vma->vm_file->f_path.dentry->d_inode;
4745	mapping = vma->vm_file->f_mapping;
4746	if (pte_none(ptent))
4747		pgoff = linear_page_index(vma, addr);
4748	else /* pte_file(ptent) is true */
4749		pgoff = pte_to_pgoff(ptent);
4750
4751	/* page is moved even if it's not RSS of this task(page-faulted). */
4752	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4753		page = find_get_page(mapping, pgoff);
4754	} else { /* shmem/tmpfs file. we should take account of swap too. */
4755		swp_entry_t ent;
4756		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4757		if (do_swap_account)
4758			entry->val = ent.val;
4759	}
4760
4761	return page;
4762}
4763
4764static int is_target_pte_for_mc(struct vm_area_struct *vma,
4765		unsigned long addr, pte_t ptent, union mc_target *target)
4766{
4767	struct page *page = NULL;
4768	struct page_cgroup *pc;
4769	int ret = 0;
4770	swp_entry_t ent = { .val = 0 };
4771
4772	if (pte_present(ptent))
4773		page = mc_handle_present_pte(vma, addr, ptent);
4774	else if (is_swap_pte(ptent))
4775		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4776	else if (pte_none(ptent) || pte_file(ptent))
4777		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4778
4779	if (!page && !ent.val)
4780		return 0;
4781	if (page) {
4782		pc = lookup_page_cgroup(page);
4783		/*
4784		 * Do only loose check w/o page_cgroup lock.
4785		 * mem_cgroup_move_account() checks the pc is valid or not under
4786		 * the lock.
4787		 */
4788		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4789			ret = MC_TARGET_PAGE;
4790			if (target)
4791				target->page = page;
4792		}
4793		if (!ret || !target)
4794			put_page(page);
4795	}
4796	/* There is a swap entry and a page doesn't exist or isn't charged */
4797	if (ent.val && !ret &&
4798			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4799		ret = MC_TARGET_SWAP;
4800		if (target)
4801			target->ent = ent;
4802	}
4803	return ret;
4804}
4805
4806static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4807					unsigned long addr, unsigned long end,
4808					struct mm_walk *walk)
4809{
4810	struct vm_area_struct *vma = walk->private;
4811	pte_t *pte;
4812	spinlock_t *ptl;
4813
4814	split_huge_page_pmd(walk->mm, pmd);
4815
4816	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4817	for (; addr != end; pte++, addr += PAGE_SIZE)
4818		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4819			mc.precharge++;	/* increment precharge temporarily */
4820	pte_unmap_unlock(pte - 1, ptl);
4821	cond_resched();
4822
4823	return 0;
4824}
4825
4826static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4827{
4828	unsigned long precharge;
4829	struct vm_area_struct *vma;
4830
4831	down_read(&mm->mmap_sem);
4832	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4833		struct mm_walk mem_cgroup_count_precharge_walk = {
4834			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4835			.mm = mm,
4836			.private = vma,
4837		};
4838		if (is_vm_hugetlb_page(vma))
4839			continue;
4840		walk_page_range(vma->vm_start, vma->vm_end,
4841					&mem_cgroup_count_precharge_walk);
4842	}
4843	up_read(&mm->mmap_sem);
4844
4845	precharge = mc.precharge;
4846	mc.precharge = 0;
4847
4848	return precharge;
4849}
4850
4851static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4852{
4853	unsigned long precharge = mem_cgroup_count_precharge(mm);
4854
4855	VM_BUG_ON(mc.moving_task);
4856	mc.moving_task = current;
4857	return mem_cgroup_do_precharge(precharge);
4858}
4859
4860/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4861static void __mem_cgroup_clear_mc(void)
4862{
4863	struct mem_cgroup *from = mc.from;
4864	struct mem_cgroup *to = mc.to;
4865
4866	/* we must uncharge all the leftover precharges from mc.to */
4867	if (mc.precharge) {
4868		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4869		mc.precharge = 0;
4870	}
4871	/*
4872	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4873	 * we must uncharge here.
4874	 */
4875	if (mc.moved_charge) {
4876		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4877		mc.moved_charge = 0;
4878	}
4879	/* we must fixup refcnts and charges */
4880	if (mc.moved_swap) {
4881		/* uncharge swap account from the old cgroup */
4882		if (!mem_cgroup_is_root(mc.from))
4883			res_counter_uncharge(&mc.from->memsw,
4884						PAGE_SIZE * mc.moved_swap);
4885		__mem_cgroup_put(mc.from, mc.moved_swap);
4886
4887		if (!mem_cgroup_is_root(mc.to)) {
4888			/*
4889			 * we charged both to->res and to->memsw, so we should
4890			 * uncharge to->res.
4891			 */
4892			res_counter_uncharge(&mc.to->res,
4893						PAGE_SIZE * mc.moved_swap);
4894		}
4895		/* we've already done mem_cgroup_get(mc.to) */
4896		mc.moved_swap = 0;
4897	}
4898	memcg_oom_recover(from);
4899	memcg_oom_recover(to);
4900	wake_up_all(&mc.waitq);
4901}
4902
4903static void mem_cgroup_clear_mc(void)
4904{
4905	struct mem_cgroup *from = mc.from;
4906
4907	/*
4908	 * we must clear moving_task before waking up waiters at the end of
4909	 * task migration.
4910	 */
4911	mc.moving_task = NULL;
4912	__mem_cgroup_clear_mc();
4913	spin_lock(&mc.lock);
4914	mc.from = NULL;
4915	mc.to = NULL;
4916	spin_unlock(&mc.lock);
4917	mem_cgroup_end_move(from);
4918}
4919
4920static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4921				struct cgroup *cgroup,
4922				struct task_struct *p,
4923				bool threadgroup)
4924{
4925	int ret = 0;
4926	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4927
4928	if (mem->move_charge_at_immigrate) {
4929		struct mm_struct *mm;
4930		struct mem_cgroup *from = mem_cgroup_from_task(p);
4931
4932		VM_BUG_ON(from == mem);
4933
4934		mm = get_task_mm(p);
4935		if (!mm)
4936			return 0;
4937		/* We move charges only when we move a owner of the mm */
4938		if (mm->owner == p) {
4939			VM_BUG_ON(mc.from);
4940			VM_BUG_ON(mc.to);
4941			VM_BUG_ON(mc.precharge);
4942			VM_BUG_ON(mc.moved_charge);
4943			VM_BUG_ON(mc.moved_swap);
4944			mem_cgroup_start_move(from);
4945			spin_lock(&mc.lock);
4946			mc.from = from;
4947			mc.to = mem;
4948			spin_unlock(&mc.lock);
4949			/* We set mc.moving_task later */
4950
4951			ret = mem_cgroup_precharge_mc(mm);
4952			if (ret)
4953				mem_cgroup_clear_mc();
4954		}
4955		mmput(mm);
4956	}
4957	return ret;
4958}
4959
4960static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4961				struct cgroup *cgroup,
4962				struct task_struct *p,
4963				bool threadgroup)
4964{
4965	mem_cgroup_clear_mc();
4966}
4967
4968static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4969				unsigned long addr, unsigned long end,
4970				struct mm_walk *walk)
4971{
4972	int ret = 0;
4973	struct vm_area_struct *vma = walk->private;
4974	pte_t *pte;
4975	spinlock_t *ptl;
4976
4977	split_huge_page_pmd(walk->mm, pmd);
4978retry:
4979	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4980	for (; addr != end; addr += PAGE_SIZE) {
4981		pte_t ptent = *(pte++);
4982		union mc_target target;
4983		int type;
4984		struct page *page;
4985		struct page_cgroup *pc;
4986		swp_entry_t ent;
4987
4988		if (!mc.precharge)
4989			break;
4990
4991		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4992		switch (type) {
4993		case MC_TARGET_PAGE:
4994			page = target.page;
4995			if (isolate_lru_page(page))
4996				goto put;
4997			pc = lookup_page_cgroup(page);
4998			if (!mem_cgroup_move_account(page, 1, pc,
4999						     mc.from, mc.to, false)) {
5000				mc.precharge--;
5001				/* we uncharge from mc.from later. */
5002				mc.moved_charge++;
5003			}
5004			putback_lru_page(page);
5005put:			/* is_target_pte_for_mc() gets the page */
5006			put_page(page);
5007			break;
5008		case MC_TARGET_SWAP:
5009			ent = target.ent;
5010			if (!mem_cgroup_move_swap_account(ent,
5011						mc.from, mc.to, false)) {
5012				mc.precharge--;
5013				/* we fixup refcnts and charges later. */
5014				mc.moved_swap++;
5015			}
5016			break;
5017		default:
5018			break;
5019		}
5020	}
5021	pte_unmap_unlock(pte - 1, ptl);
5022	cond_resched();
5023
5024	if (addr != end) {
5025		/*
5026		 * We have consumed all precharges we got in can_attach().
5027		 * We try charge one by one, but don't do any additional
5028		 * charges to mc.to if we have failed in charge once in attach()
5029		 * phase.
5030		 */
5031		ret = mem_cgroup_do_precharge(1);
5032		if (!ret)
5033			goto retry;
5034	}
5035
5036	return ret;
5037}
5038
5039static void mem_cgroup_move_charge(struct mm_struct *mm)
5040{
5041	struct vm_area_struct *vma;
5042
5043	lru_add_drain_all();
5044retry:
5045	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5046		/*
5047		 * Someone who are holding the mmap_sem might be waiting in
5048		 * waitq. So we cancel all extra charges, wake up all waiters,
5049		 * and retry. Because we cancel precharges, we might not be able
5050		 * to move enough charges, but moving charge is a best-effort
5051		 * feature anyway, so it wouldn't be a big problem.
5052		 */
5053		__mem_cgroup_clear_mc();
5054		cond_resched();
5055		goto retry;
5056	}
5057	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5058		int ret;
5059		struct mm_walk mem_cgroup_move_charge_walk = {
5060			.pmd_entry = mem_cgroup_move_charge_pte_range,
5061			.mm = mm,
5062			.private = vma,
5063		};
5064		if (is_vm_hugetlb_page(vma))
5065			continue;
5066		ret = walk_page_range(vma->vm_start, vma->vm_end,
5067						&mem_cgroup_move_charge_walk);
5068		if (ret)
5069			/*
5070			 * means we have consumed all precharges and failed in
5071			 * doing additional charge. Just abandon here.
5072			 */
5073			break;
5074	}
5075	up_read(&mm->mmap_sem);
5076}
5077
5078static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5079				struct cgroup *cont,
5080				struct cgroup *old_cont,
5081				struct task_struct *p,
5082				bool threadgroup)
5083{
5084	struct mm_struct *mm;
5085
5086	if (!mc.to)
5087		/* no need to move charge */
5088		return;
5089
5090	mm = get_task_mm(p);
5091	if (mm) {
5092		mem_cgroup_move_charge(mm);
5093		mmput(mm);
5094	}
5095	mem_cgroup_clear_mc();
5096}
5097#else	/* !CONFIG_MMU */
5098static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5099				struct cgroup *cgroup,
5100				struct task_struct *p,
5101				bool threadgroup)
5102{
5103	return 0;
5104}
5105static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5106				struct cgroup *cgroup,
5107				struct task_struct *p,
5108				bool threadgroup)
5109{
5110}
5111static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5112				struct cgroup *cont,
5113				struct cgroup *old_cont,
5114				struct task_struct *p,
5115				bool threadgroup)
5116{
5117}
5118#endif
5119
5120struct cgroup_subsys mem_cgroup_subsys = {
5121	.name = "memory",
5122	.subsys_id = mem_cgroup_subsys_id,
5123	.create = mem_cgroup_create,
5124	.pre_destroy = mem_cgroup_pre_destroy,
5125	.destroy = mem_cgroup_destroy,
5126	.populate = mem_cgroup_populate,
5127	.can_attach = mem_cgroup_can_attach,
5128	.cancel_attach = mem_cgroup_cancel_attach,
5129	.attach = mem_cgroup_move_task,
5130	.early_init = 0,
5131	.use_id = 1,
5132};
5133
5134#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5135static int __init enable_swap_account(char *s)
5136{
5137	/* consider enabled if no parameter or 1 is given */
5138	if (!(*s) || !strcmp(s, "=1"))
5139		really_do_swap_account = 1;
5140	else if (!strcmp(s, "=0"))
5141		really_do_swap_account = 0;
5142	return 1;
5143}
5144__setup("swapaccount", enable_swap_account);
5145
5146static int __init disable_swap_account(char *s)
5147{
5148	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5149	enable_swap_account("=0");
5150	return 1;
5151}
5152__setup("noswapaccount", disable_swap_account);
5153#endif
5154