memcontrol.c revision 5407a56257b6ade44fd9bcac972c99845b7413cd
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include "internal.h"
51
52#include <asm/uaccess.h>
53
54struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55#define MEM_CGROUP_RECLAIM_RETRIES	5
56struct mem_cgroup *root_mem_cgroup __read_mostly;
57
58#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60int do_swap_account __read_mostly;
61static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62#else
63#define do_swap_account		(0)
64#endif
65
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. This counter
68 * is used for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
70 *
71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72 */
73#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75
76/*
77 * Statistics for memory cgroup.
78 */
79enum mem_cgroup_stat_index {
80	/*
81	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82	 */
83	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
84	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
85	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
87	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
88	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
90
91	MEM_CGROUP_STAT_NSTATS,
92};
93
94struct mem_cgroup_stat_cpu {
95	s64 count[MEM_CGROUP_STAT_NSTATS];
96};
97
98/*
99 * per-zone information in memory controller.
100 */
101struct mem_cgroup_per_zone {
102	/*
103	 * spin_lock to protect the per cgroup LRU
104	 */
105	struct list_head	lists[NR_LRU_LISTS];
106	unsigned long		count[NR_LRU_LISTS];
107
108	struct zone_reclaim_stat reclaim_stat;
109	struct rb_node		tree_node;	/* RB tree node */
110	unsigned long long	usage_in_excess;/* Set to the value by which */
111						/* the soft limit is exceeded*/
112	bool			on_tree;
113	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
114						/* use container_of	   */
115};
116/* Macro for accessing counter */
117#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
118
119struct mem_cgroup_per_node {
120	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121};
122
123struct mem_cgroup_lru_info {
124	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125};
126
127/*
128 * Cgroups above their limits are maintained in a RB-Tree, independent of
129 * their hierarchy representation
130 */
131
132struct mem_cgroup_tree_per_zone {
133	struct rb_root rb_root;
134	spinlock_t lock;
135};
136
137struct mem_cgroup_tree_per_node {
138	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139};
140
141struct mem_cgroup_tree {
142	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143};
144
145static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
147struct mem_cgroup_threshold {
148	struct eventfd_ctx *eventfd;
149	u64 threshold;
150};
151
152/* For threshold */
153struct mem_cgroup_threshold_ary {
154	/* An array index points to threshold just below usage. */
155	int current_threshold;
156	/* Size of entries[] */
157	unsigned int size;
158	/* Array of thresholds */
159	struct mem_cgroup_threshold entries[0];
160};
161/* for OOM */
162struct mem_cgroup_eventfd_list {
163	struct list_head list;
164	struct eventfd_ctx *eventfd;
165};
166
167static void mem_cgroup_threshold(struct mem_cgroup *mem);
168static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
169
170/*
171 * The memory controller data structure. The memory controller controls both
172 * page cache and RSS per cgroup. We would eventually like to provide
173 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
174 * to help the administrator determine what knobs to tune.
175 *
176 * TODO: Add a water mark for the memory controller. Reclaim will begin when
177 * we hit the water mark. May be even add a low water mark, such that
178 * no reclaim occurs from a cgroup at it's low water mark, this is
179 * a feature that will be implemented much later in the future.
180 */
181struct mem_cgroup {
182	struct cgroup_subsys_state css;
183	/*
184	 * the counter to account for memory usage
185	 */
186	struct res_counter res;
187	/*
188	 * the counter to account for mem+swap usage.
189	 */
190	struct res_counter memsw;
191	/*
192	 * Per cgroup active and inactive list, similar to the
193	 * per zone LRU lists.
194	 */
195	struct mem_cgroup_lru_info info;
196
197	/*
198	  protect against reclaim related member.
199	*/
200	spinlock_t reclaim_param_lock;
201
202	int	prev_priority;	/* for recording reclaim priority */
203
204	/*
205	 * While reclaiming in a hierarchy, we cache the last child we
206	 * reclaimed from.
207	 */
208	int last_scanned_child;
209	/*
210	 * Should the accounting and control be hierarchical, per subtree?
211	 */
212	bool use_hierarchy;
213	atomic_t	oom_lock;
214	atomic_t	refcnt;
215
216	unsigned int	swappiness;
217	/* OOM-Killer disable */
218	int		oom_kill_disable;
219
220	/* set when res.limit == memsw.limit */
221	bool		memsw_is_minimum;
222
223	/* protect arrays of thresholds */
224	struct mutex thresholds_lock;
225
226	/* thresholds for memory usage. RCU-protected */
227	struct mem_cgroup_threshold_ary *thresholds;
228
229	/* thresholds for mem+swap usage. RCU-protected */
230	struct mem_cgroup_threshold_ary *memsw_thresholds;
231
232	/* For oom notifier event fd */
233	struct list_head oom_notify;
234
235	/*
236	 * Should we move charges of a task when a task is moved into this
237	 * mem_cgroup ? And what type of charges should we move ?
238	 */
239	unsigned long 	move_charge_at_immigrate;
240	/*
241	 * percpu counter.
242	 */
243	struct mem_cgroup_stat_cpu *stat;
244};
245
246/* Stuffs for move charges at task migration. */
247/*
248 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
249 * left-shifted bitmap of these types.
250 */
251enum move_type {
252	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
253	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
254	NR_MOVE_TYPE,
255};
256
257/* "mc" and its members are protected by cgroup_mutex */
258static struct move_charge_struct {
259	struct mem_cgroup *from;
260	struct mem_cgroup *to;
261	unsigned long precharge;
262	unsigned long moved_charge;
263	unsigned long moved_swap;
264	struct task_struct *moving_task;	/* a task moving charges */
265	wait_queue_head_t waitq;		/* a waitq for other context */
266} mc = {
267	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
268};
269
270static bool move_anon(void)
271{
272	return test_bit(MOVE_CHARGE_TYPE_ANON,
273					&mc.to->move_charge_at_immigrate);
274}
275
276static bool move_file(void)
277{
278	return test_bit(MOVE_CHARGE_TYPE_FILE,
279					&mc.to->move_charge_at_immigrate);
280}
281
282/*
283 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
284 * limit reclaim to prevent infinite loops, if they ever occur.
285 */
286#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
287#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
288
289enum charge_type {
290	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
291	MEM_CGROUP_CHARGE_TYPE_MAPPED,
292	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
293	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
294	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
295	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
296	NR_CHARGE_TYPE,
297};
298
299/* only for here (for easy reading.) */
300#define PCGF_CACHE	(1UL << PCG_CACHE)
301#define PCGF_USED	(1UL << PCG_USED)
302#define PCGF_LOCK	(1UL << PCG_LOCK)
303/* Not used, but added here for completeness */
304#define PCGF_ACCT	(1UL << PCG_ACCT)
305
306/* for encoding cft->private value on file */
307#define _MEM			(0)
308#define _MEMSWAP		(1)
309#define _OOM_TYPE		(2)
310#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
311#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
312#define MEMFILE_ATTR(val)	((val) & 0xffff)
313/* Used for OOM nofiier */
314#define OOM_CONTROL		(0)
315
316/*
317 * Reclaim flags for mem_cgroup_hierarchical_reclaim
318 */
319#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
320#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
321#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
322#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
323#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
324#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
325
326static void mem_cgroup_get(struct mem_cgroup *mem);
327static void mem_cgroup_put(struct mem_cgroup *mem);
328static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
329static void drain_all_stock_async(void);
330
331static struct mem_cgroup_per_zone *
332mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
333{
334	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
335}
336
337struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
338{
339	return &mem->css;
340}
341
342static struct mem_cgroup_per_zone *
343page_cgroup_zoneinfo(struct page_cgroup *pc)
344{
345	struct mem_cgroup *mem = pc->mem_cgroup;
346	int nid = page_cgroup_nid(pc);
347	int zid = page_cgroup_zid(pc);
348
349	if (!mem)
350		return NULL;
351
352	return mem_cgroup_zoneinfo(mem, nid, zid);
353}
354
355static struct mem_cgroup_tree_per_zone *
356soft_limit_tree_node_zone(int nid, int zid)
357{
358	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
359}
360
361static struct mem_cgroup_tree_per_zone *
362soft_limit_tree_from_page(struct page *page)
363{
364	int nid = page_to_nid(page);
365	int zid = page_zonenum(page);
366
367	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
368}
369
370static void
371__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
372				struct mem_cgroup_per_zone *mz,
373				struct mem_cgroup_tree_per_zone *mctz,
374				unsigned long long new_usage_in_excess)
375{
376	struct rb_node **p = &mctz->rb_root.rb_node;
377	struct rb_node *parent = NULL;
378	struct mem_cgroup_per_zone *mz_node;
379
380	if (mz->on_tree)
381		return;
382
383	mz->usage_in_excess = new_usage_in_excess;
384	if (!mz->usage_in_excess)
385		return;
386	while (*p) {
387		parent = *p;
388		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
389					tree_node);
390		if (mz->usage_in_excess < mz_node->usage_in_excess)
391			p = &(*p)->rb_left;
392		/*
393		 * We can't avoid mem cgroups that are over their soft
394		 * limit by the same amount
395		 */
396		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
397			p = &(*p)->rb_right;
398	}
399	rb_link_node(&mz->tree_node, parent, p);
400	rb_insert_color(&mz->tree_node, &mctz->rb_root);
401	mz->on_tree = true;
402}
403
404static void
405__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
406				struct mem_cgroup_per_zone *mz,
407				struct mem_cgroup_tree_per_zone *mctz)
408{
409	if (!mz->on_tree)
410		return;
411	rb_erase(&mz->tree_node, &mctz->rb_root);
412	mz->on_tree = false;
413}
414
415static void
416mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
417				struct mem_cgroup_per_zone *mz,
418				struct mem_cgroup_tree_per_zone *mctz)
419{
420	spin_lock(&mctz->lock);
421	__mem_cgroup_remove_exceeded(mem, mz, mctz);
422	spin_unlock(&mctz->lock);
423}
424
425
426static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
427{
428	unsigned long long excess;
429	struct mem_cgroup_per_zone *mz;
430	struct mem_cgroup_tree_per_zone *mctz;
431	int nid = page_to_nid(page);
432	int zid = page_zonenum(page);
433	mctz = soft_limit_tree_from_page(page);
434
435	/*
436	 * Necessary to update all ancestors when hierarchy is used.
437	 * because their event counter is not touched.
438	 */
439	for (; mem; mem = parent_mem_cgroup(mem)) {
440		mz = mem_cgroup_zoneinfo(mem, nid, zid);
441		excess = res_counter_soft_limit_excess(&mem->res);
442		/*
443		 * We have to update the tree if mz is on RB-tree or
444		 * mem is over its softlimit.
445		 */
446		if (excess || mz->on_tree) {
447			spin_lock(&mctz->lock);
448			/* if on-tree, remove it */
449			if (mz->on_tree)
450				__mem_cgroup_remove_exceeded(mem, mz, mctz);
451			/*
452			 * Insert again. mz->usage_in_excess will be updated.
453			 * If excess is 0, no tree ops.
454			 */
455			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
456			spin_unlock(&mctz->lock);
457		}
458	}
459}
460
461static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
462{
463	int node, zone;
464	struct mem_cgroup_per_zone *mz;
465	struct mem_cgroup_tree_per_zone *mctz;
466
467	for_each_node_state(node, N_POSSIBLE) {
468		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
469			mz = mem_cgroup_zoneinfo(mem, node, zone);
470			mctz = soft_limit_tree_node_zone(node, zone);
471			mem_cgroup_remove_exceeded(mem, mz, mctz);
472		}
473	}
474}
475
476static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
477{
478	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
479}
480
481static struct mem_cgroup_per_zone *
482__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
483{
484	struct rb_node *rightmost = NULL;
485	struct mem_cgroup_per_zone *mz;
486
487retry:
488	mz = NULL;
489	rightmost = rb_last(&mctz->rb_root);
490	if (!rightmost)
491		goto done;		/* Nothing to reclaim from */
492
493	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
494	/*
495	 * Remove the node now but someone else can add it back,
496	 * we will to add it back at the end of reclaim to its correct
497	 * position in the tree.
498	 */
499	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
500	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
501		!css_tryget(&mz->mem->css))
502		goto retry;
503done:
504	return mz;
505}
506
507static struct mem_cgroup_per_zone *
508mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
509{
510	struct mem_cgroup_per_zone *mz;
511
512	spin_lock(&mctz->lock);
513	mz = __mem_cgroup_largest_soft_limit_node(mctz);
514	spin_unlock(&mctz->lock);
515	return mz;
516}
517
518static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
519		enum mem_cgroup_stat_index idx)
520{
521	int cpu;
522	s64 val = 0;
523
524	for_each_possible_cpu(cpu)
525		val += per_cpu(mem->stat->count[idx], cpu);
526	return val;
527}
528
529static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
530{
531	s64 ret;
532
533	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
534	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
535	return ret;
536}
537
538static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
539					 bool charge)
540{
541	int val = (charge) ? 1 : -1;
542	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
543}
544
545static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
546					 struct page_cgroup *pc,
547					 bool charge)
548{
549	int val = (charge) ? 1 : -1;
550
551	preempt_disable();
552
553	if (PageCgroupCache(pc))
554		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
555	else
556		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
557
558	if (charge)
559		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
560	else
561		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
562	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
563
564	preempt_enable();
565}
566
567static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
568					enum lru_list idx)
569{
570	int nid, zid;
571	struct mem_cgroup_per_zone *mz;
572	u64 total = 0;
573
574	for_each_online_node(nid)
575		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
576			mz = mem_cgroup_zoneinfo(mem, nid, zid);
577			total += MEM_CGROUP_ZSTAT(mz, idx);
578		}
579	return total;
580}
581
582static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
583{
584	s64 val;
585
586	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
587
588	return !(val & ((1 << event_mask_shift) - 1));
589}
590
591/*
592 * Check events in order.
593 *
594 */
595static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
596{
597	/* threshold event is triggered in finer grain than soft limit */
598	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
599		mem_cgroup_threshold(mem);
600		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
601			mem_cgroup_update_tree(mem, page);
602	}
603}
604
605static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
606{
607	return container_of(cgroup_subsys_state(cont,
608				mem_cgroup_subsys_id), struct mem_cgroup,
609				css);
610}
611
612struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
613{
614	/*
615	 * mm_update_next_owner() may clear mm->owner to NULL
616	 * if it races with swapoff, page migration, etc.
617	 * So this can be called with p == NULL.
618	 */
619	if (unlikely(!p))
620		return NULL;
621
622	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
623				struct mem_cgroup, css);
624}
625
626static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
627{
628	struct mem_cgroup *mem = NULL;
629
630	if (!mm)
631		return NULL;
632	/*
633	 * Because we have no locks, mm->owner's may be being moved to other
634	 * cgroup. We use css_tryget() here even if this looks
635	 * pessimistic (rather than adding locks here).
636	 */
637	rcu_read_lock();
638	do {
639		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
640		if (unlikely(!mem))
641			break;
642	} while (!css_tryget(&mem->css));
643	rcu_read_unlock();
644	return mem;
645}
646
647/*
648 * Call callback function against all cgroup under hierarchy tree.
649 */
650static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
651			  int (*func)(struct mem_cgroup *, void *))
652{
653	int found, ret, nextid;
654	struct cgroup_subsys_state *css;
655	struct mem_cgroup *mem;
656
657	if (!root->use_hierarchy)
658		return (*func)(root, data);
659
660	nextid = 1;
661	do {
662		ret = 0;
663		mem = NULL;
664
665		rcu_read_lock();
666		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
667				   &found);
668		if (css && css_tryget(css))
669			mem = container_of(css, struct mem_cgroup, css);
670		rcu_read_unlock();
671
672		if (mem) {
673			ret = (*func)(mem, data);
674			css_put(&mem->css);
675		}
676		nextid = found + 1;
677	} while (!ret && css);
678
679	return ret;
680}
681
682static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
683{
684	return (mem == root_mem_cgroup);
685}
686
687/*
688 * Following LRU functions are allowed to be used without PCG_LOCK.
689 * Operations are called by routine of global LRU independently from memcg.
690 * What we have to take care of here is validness of pc->mem_cgroup.
691 *
692 * Changes to pc->mem_cgroup happens when
693 * 1. charge
694 * 2. moving account
695 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
696 * It is added to LRU before charge.
697 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
698 * When moving account, the page is not on LRU. It's isolated.
699 */
700
701void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
702{
703	struct page_cgroup *pc;
704	struct mem_cgroup_per_zone *mz;
705
706	if (mem_cgroup_disabled())
707		return;
708	pc = lookup_page_cgroup(page);
709	/* can happen while we handle swapcache. */
710	if (!TestClearPageCgroupAcctLRU(pc))
711		return;
712	VM_BUG_ON(!pc->mem_cgroup);
713	/*
714	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
715	 * removed from global LRU.
716	 */
717	mz = page_cgroup_zoneinfo(pc);
718	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
719	if (mem_cgroup_is_root(pc->mem_cgroup))
720		return;
721	VM_BUG_ON(list_empty(&pc->lru));
722	list_del_init(&pc->lru);
723	return;
724}
725
726void mem_cgroup_del_lru(struct page *page)
727{
728	mem_cgroup_del_lru_list(page, page_lru(page));
729}
730
731void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
732{
733	struct mem_cgroup_per_zone *mz;
734	struct page_cgroup *pc;
735
736	if (mem_cgroup_disabled())
737		return;
738
739	pc = lookup_page_cgroup(page);
740	/*
741	 * Used bit is set without atomic ops but after smp_wmb().
742	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
743	 */
744	smp_rmb();
745	/* unused or root page is not rotated. */
746	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
747		return;
748	mz = page_cgroup_zoneinfo(pc);
749	list_move(&pc->lru, &mz->lists[lru]);
750}
751
752void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
753{
754	struct page_cgroup *pc;
755	struct mem_cgroup_per_zone *mz;
756
757	if (mem_cgroup_disabled())
758		return;
759	pc = lookup_page_cgroup(page);
760	VM_BUG_ON(PageCgroupAcctLRU(pc));
761	/*
762	 * Used bit is set without atomic ops but after smp_wmb().
763	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
764	 */
765	smp_rmb();
766	if (!PageCgroupUsed(pc))
767		return;
768
769	mz = page_cgroup_zoneinfo(pc);
770	MEM_CGROUP_ZSTAT(mz, lru) += 1;
771	SetPageCgroupAcctLRU(pc);
772	if (mem_cgroup_is_root(pc->mem_cgroup))
773		return;
774	list_add(&pc->lru, &mz->lists[lru]);
775}
776
777/*
778 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
779 * lru because the page may.be reused after it's fully uncharged (because of
780 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
781 * it again. This function is only used to charge SwapCache. It's done under
782 * lock_page and expected that zone->lru_lock is never held.
783 */
784static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
785{
786	unsigned long flags;
787	struct zone *zone = page_zone(page);
788	struct page_cgroup *pc = lookup_page_cgroup(page);
789
790	spin_lock_irqsave(&zone->lru_lock, flags);
791	/*
792	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
793	 * is guarded by lock_page() because the page is SwapCache.
794	 */
795	if (!PageCgroupUsed(pc))
796		mem_cgroup_del_lru_list(page, page_lru(page));
797	spin_unlock_irqrestore(&zone->lru_lock, flags);
798}
799
800static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
801{
802	unsigned long flags;
803	struct zone *zone = page_zone(page);
804	struct page_cgroup *pc = lookup_page_cgroup(page);
805
806	spin_lock_irqsave(&zone->lru_lock, flags);
807	/* link when the page is linked to LRU but page_cgroup isn't */
808	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
809		mem_cgroup_add_lru_list(page, page_lru(page));
810	spin_unlock_irqrestore(&zone->lru_lock, flags);
811}
812
813
814void mem_cgroup_move_lists(struct page *page,
815			   enum lru_list from, enum lru_list to)
816{
817	if (mem_cgroup_disabled())
818		return;
819	mem_cgroup_del_lru_list(page, from);
820	mem_cgroup_add_lru_list(page, to);
821}
822
823int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
824{
825	int ret;
826	struct mem_cgroup *curr = NULL;
827
828	task_lock(task);
829	rcu_read_lock();
830	curr = try_get_mem_cgroup_from_mm(task->mm);
831	rcu_read_unlock();
832	task_unlock(task);
833	if (!curr)
834		return 0;
835	/*
836	 * We should check use_hierarchy of "mem" not "curr". Because checking
837	 * use_hierarchy of "curr" here make this function true if hierarchy is
838	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
839	 * hierarchy(even if use_hierarchy is disabled in "mem").
840	 */
841	if (mem->use_hierarchy)
842		ret = css_is_ancestor(&curr->css, &mem->css);
843	else
844		ret = (curr == mem);
845	css_put(&curr->css);
846	return ret;
847}
848
849/*
850 * prev_priority control...this will be used in memory reclaim path.
851 */
852int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
853{
854	int prev_priority;
855
856	spin_lock(&mem->reclaim_param_lock);
857	prev_priority = mem->prev_priority;
858	spin_unlock(&mem->reclaim_param_lock);
859
860	return prev_priority;
861}
862
863void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
864{
865	spin_lock(&mem->reclaim_param_lock);
866	if (priority < mem->prev_priority)
867		mem->prev_priority = priority;
868	spin_unlock(&mem->reclaim_param_lock);
869}
870
871void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
872{
873	spin_lock(&mem->reclaim_param_lock);
874	mem->prev_priority = priority;
875	spin_unlock(&mem->reclaim_param_lock);
876}
877
878static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
879{
880	unsigned long active;
881	unsigned long inactive;
882	unsigned long gb;
883	unsigned long inactive_ratio;
884
885	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
886	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
887
888	gb = (inactive + active) >> (30 - PAGE_SHIFT);
889	if (gb)
890		inactive_ratio = int_sqrt(10 * gb);
891	else
892		inactive_ratio = 1;
893
894	if (present_pages) {
895		present_pages[0] = inactive;
896		present_pages[1] = active;
897	}
898
899	return inactive_ratio;
900}
901
902int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
903{
904	unsigned long active;
905	unsigned long inactive;
906	unsigned long present_pages[2];
907	unsigned long inactive_ratio;
908
909	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
910
911	inactive = present_pages[0];
912	active = present_pages[1];
913
914	if (inactive * inactive_ratio < active)
915		return 1;
916
917	return 0;
918}
919
920int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
921{
922	unsigned long active;
923	unsigned long inactive;
924
925	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
926	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
927
928	return (active > inactive);
929}
930
931unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
932				       struct zone *zone,
933				       enum lru_list lru)
934{
935	int nid = zone->zone_pgdat->node_id;
936	int zid = zone_idx(zone);
937	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
938
939	return MEM_CGROUP_ZSTAT(mz, lru);
940}
941
942struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
943						      struct zone *zone)
944{
945	int nid = zone->zone_pgdat->node_id;
946	int zid = zone_idx(zone);
947	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
948
949	return &mz->reclaim_stat;
950}
951
952struct zone_reclaim_stat *
953mem_cgroup_get_reclaim_stat_from_page(struct page *page)
954{
955	struct page_cgroup *pc;
956	struct mem_cgroup_per_zone *mz;
957
958	if (mem_cgroup_disabled())
959		return NULL;
960
961	pc = lookup_page_cgroup(page);
962	/*
963	 * Used bit is set without atomic ops but after smp_wmb().
964	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
965	 */
966	smp_rmb();
967	if (!PageCgroupUsed(pc))
968		return NULL;
969
970	mz = page_cgroup_zoneinfo(pc);
971	if (!mz)
972		return NULL;
973
974	return &mz->reclaim_stat;
975}
976
977unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
978					struct list_head *dst,
979					unsigned long *scanned, int order,
980					int mode, struct zone *z,
981					struct mem_cgroup *mem_cont,
982					int active, int file)
983{
984	unsigned long nr_taken = 0;
985	struct page *page;
986	unsigned long scan;
987	LIST_HEAD(pc_list);
988	struct list_head *src;
989	struct page_cgroup *pc, *tmp;
990	int nid = z->zone_pgdat->node_id;
991	int zid = zone_idx(z);
992	struct mem_cgroup_per_zone *mz;
993	int lru = LRU_FILE * file + active;
994	int ret;
995
996	BUG_ON(!mem_cont);
997	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
998	src = &mz->lists[lru];
999
1000	scan = 0;
1001	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1002		if (scan >= nr_to_scan)
1003			break;
1004
1005		page = pc->page;
1006		if (unlikely(!PageCgroupUsed(pc)))
1007			continue;
1008		if (unlikely(!PageLRU(page)))
1009			continue;
1010
1011		scan++;
1012		ret = __isolate_lru_page(page, mode, file);
1013		switch (ret) {
1014		case 0:
1015			list_move(&page->lru, dst);
1016			mem_cgroup_del_lru(page);
1017			nr_taken++;
1018			break;
1019		case -EBUSY:
1020			/* we don't affect global LRU but rotate in our LRU */
1021			mem_cgroup_rotate_lru_list(page, page_lru(page));
1022			break;
1023		default:
1024			break;
1025		}
1026	}
1027
1028	*scanned = scan;
1029	return nr_taken;
1030}
1031
1032#define mem_cgroup_from_res_counter(counter, member)	\
1033	container_of(counter, struct mem_cgroup, member)
1034
1035static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1036{
1037	if (do_swap_account) {
1038		if (res_counter_check_under_limit(&mem->res) &&
1039			res_counter_check_under_limit(&mem->memsw))
1040			return true;
1041	} else
1042		if (res_counter_check_under_limit(&mem->res))
1043			return true;
1044	return false;
1045}
1046
1047static unsigned int get_swappiness(struct mem_cgroup *memcg)
1048{
1049	struct cgroup *cgrp = memcg->css.cgroup;
1050	unsigned int swappiness;
1051
1052	/* root ? */
1053	if (cgrp->parent == NULL)
1054		return vm_swappiness;
1055
1056	spin_lock(&memcg->reclaim_param_lock);
1057	swappiness = memcg->swappiness;
1058	spin_unlock(&memcg->reclaim_param_lock);
1059
1060	return swappiness;
1061}
1062
1063static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1064{
1065	int *val = data;
1066	(*val)++;
1067	return 0;
1068}
1069
1070/**
1071 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1072 * @memcg: The memory cgroup that went over limit
1073 * @p: Task that is going to be killed
1074 *
1075 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1076 * enabled
1077 */
1078void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1079{
1080	struct cgroup *task_cgrp;
1081	struct cgroup *mem_cgrp;
1082	/*
1083	 * Need a buffer in BSS, can't rely on allocations. The code relies
1084	 * on the assumption that OOM is serialized for memory controller.
1085	 * If this assumption is broken, revisit this code.
1086	 */
1087	static char memcg_name[PATH_MAX];
1088	int ret;
1089
1090	if (!memcg || !p)
1091		return;
1092
1093
1094	rcu_read_lock();
1095
1096	mem_cgrp = memcg->css.cgroup;
1097	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1098
1099	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1100	if (ret < 0) {
1101		/*
1102		 * Unfortunately, we are unable to convert to a useful name
1103		 * But we'll still print out the usage information
1104		 */
1105		rcu_read_unlock();
1106		goto done;
1107	}
1108	rcu_read_unlock();
1109
1110	printk(KERN_INFO "Task in %s killed", memcg_name);
1111
1112	rcu_read_lock();
1113	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1114	if (ret < 0) {
1115		rcu_read_unlock();
1116		goto done;
1117	}
1118	rcu_read_unlock();
1119
1120	/*
1121	 * Continues from above, so we don't need an KERN_ level
1122	 */
1123	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1124done:
1125
1126	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1127		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1128		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1129		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1130	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1131		"failcnt %llu\n",
1132		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1133		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1134		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1135}
1136
1137/*
1138 * This function returns the number of memcg under hierarchy tree. Returns
1139 * 1(self count) if no children.
1140 */
1141static int mem_cgroup_count_children(struct mem_cgroup *mem)
1142{
1143	int num = 0;
1144 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1145	return num;
1146}
1147
1148/*
1149 * Visit the first child (need not be the first child as per the ordering
1150 * of the cgroup list, since we track last_scanned_child) of @mem and use
1151 * that to reclaim free pages from.
1152 */
1153static struct mem_cgroup *
1154mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1155{
1156	struct mem_cgroup *ret = NULL;
1157	struct cgroup_subsys_state *css;
1158	int nextid, found;
1159
1160	if (!root_mem->use_hierarchy) {
1161		css_get(&root_mem->css);
1162		ret = root_mem;
1163	}
1164
1165	while (!ret) {
1166		rcu_read_lock();
1167		nextid = root_mem->last_scanned_child + 1;
1168		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1169				   &found);
1170		if (css && css_tryget(css))
1171			ret = container_of(css, struct mem_cgroup, css);
1172
1173		rcu_read_unlock();
1174		/* Updates scanning parameter */
1175		spin_lock(&root_mem->reclaim_param_lock);
1176		if (!css) {
1177			/* this means start scan from ID:1 */
1178			root_mem->last_scanned_child = 0;
1179		} else
1180			root_mem->last_scanned_child = found;
1181		spin_unlock(&root_mem->reclaim_param_lock);
1182	}
1183
1184	return ret;
1185}
1186
1187/*
1188 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1189 * we reclaimed from, so that we don't end up penalizing one child extensively
1190 * based on its position in the children list.
1191 *
1192 * root_mem is the original ancestor that we've been reclaim from.
1193 *
1194 * We give up and return to the caller when we visit root_mem twice.
1195 * (other groups can be removed while we're walking....)
1196 *
1197 * If shrink==true, for avoiding to free too much, this returns immedieately.
1198 */
1199static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1200						struct zone *zone,
1201						gfp_t gfp_mask,
1202						unsigned long reclaim_options)
1203{
1204	struct mem_cgroup *victim;
1205	int ret, total = 0;
1206	int loop = 0;
1207	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1208	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1209	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1210	unsigned long excess = mem_cgroup_get_excess(root_mem);
1211
1212	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1213	if (root_mem->memsw_is_minimum)
1214		noswap = true;
1215
1216	while (1) {
1217		victim = mem_cgroup_select_victim(root_mem);
1218		if (victim == root_mem) {
1219			loop++;
1220			if (loop >= 1)
1221				drain_all_stock_async();
1222			if (loop >= 2) {
1223				/*
1224				 * If we have not been able to reclaim
1225				 * anything, it might because there are
1226				 * no reclaimable pages under this hierarchy
1227				 */
1228				if (!check_soft || !total) {
1229					css_put(&victim->css);
1230					break;
1231				}
1232				/*
1233				 * We want to do more targetted reclaim.
1234				 * excess >> 2 is not to excessive so as to
1235				 * reclaim too much, nor too less that we keep
1236				 * coming back to reclaim from this cgroup
1237				 */
1238				if (total >= (excess >> 2) ||
1239					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1240					css_put(&victim->css);
1241					break;
1242				}
1243			}
1244		}
1245		if (!mem_cgroup_local_usage(victim)) {
1246			/* this cgroup's local usage == 0 */
1247			css_put(&victim->css);
1248			continue;
1249		}
1250		/* we use swappiness of local cgroup */
1251		if (check_soft)
1252			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1253				noswap, get_swappiness(victim), zone,
1254				zone->zone_pgdat->node_id);
1255		else
1256			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1257						noswap, get_swappiness(victim));
1258		css_put(&victim->css);
1259		/*
1260		 * At shrinking usage, we can't check we should stop here or
1261		 * reclaim more. It's depends on callers. last_scanned_child
1262		 * will work enough for keeping fairness under tree.
1263		 */
1264		if (shrink)
1265			return ret;
1266		total += ret;
1267		if (check_soft) {
1268			if (res_counter_check_under_soft_limit(&root_mem->res))
1269				return total;
1270		} else if (mem_cgroup_check_under_limit(root_mem))
1271			return 1 + total;
1272	}
1273	return total;
1274}
1275
1276static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1277{
1278	int *val = (int *)data;
1279	int x;
1280	/*
1281	 * Logically, we can stop scanning immediately when we find
1282	 * a memcg is already locked. But condidering unlock ops and
1283	 * creation/removal of memcg, scan-all is simple operation.
1284	 */
1285	x = atomic_inc_return(&mem->oom_lock);
1286	*val = max(x, *val);
1287	return 0;
1288}
1289/*
1290 * Check OOM-Killer is already running under our hierarchy.
1291 * If someone is running, return false.
1292 */
1293static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1294{
1295	int lock_count = 0;
1296
1297	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1298
1299	if (lock_count == 1)
1300		return true;
1301	return false;
1302}
1303
1304static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1305{
1306	/*
1307	 * When a new child is created while the hierarchy is under oom,
1308	 * mem_cgroup_oom_lock() may not be called. We have to use
1309	 * atomic_add_unless() here.
1310	 */
1311	atomic_add_unless(&mem->oom_lock, -1, 0);
1312	return 0;
1313}
1314
1315static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1316{
1317	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
1318}
1319
1320static DEFINE_MUTEX(memcg_oom_mutex);
1321static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1322
1323struct oom_wait_info {
1324	struct mem_cgroup *mem;
1325	wait_queue_t	wait;
1326};
1327
1328static int memcg_oom_wake_function(wait_queue_t *wait,
1329	unsigned mode, int sync, void *arg)
1330{
1331	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1332	struct oom_wait_info *oom_wait_info;
1333
1334	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1335
1336	if (oom_wait_info->mem == wake_mem)
1337		goto wakeup;
1338	/* if no hierarchy, no match */
1339	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1340		return 0;
1341	/*
1342	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1343	 * Then we can use css_is_ancestor without taking care of RCU.
1344	 */
1345	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1346	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1347		return 0;
1348
1349wakeup:
1350	return autoremove_wake_function(wait, mode, sync, arg);
1351}
1352
1353static void memcg_wakeup_oom(struct mem_cgroup *mem)
1354{
1355	/* for filtering, pass "mem" as argument. */
1356	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1357}
1358
1359static void memcg_oom_recover(struct mem_cgroup *mem)
1360{
1361	if (mem->oom_kill_disable && atomic_read(&mem->oom_lock))
1362		memcg_wakeup_oom(mem);
1363}
1364
1365/*
1366 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1367 */
1368bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1369{
1370	struct oom_wait_info owait;
1371	bool locked, need_to_kill;
1372
1373	owait.mem = mem;
1374	owait.wait.flags = 0;
1375	owait.wait.func = memcg_oom_wake_function;
1376	owait.wait.private = current;
1377	INIT_LIST_HEAD(&owait.wait.task_list);
1378	need_to_kill = true;
1379	/* At first, try to OOM lock hierarchy under mem.*/
1380	mutex_lock(&memcg_oom_mutex);
1381	locked = mem_cgroup_oom_lock(mem);
1382	/*
1383	 * Even if signal_pending(), we can't quit charge() loop without
1384	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1385	 * under OOM is always welcomed, use TASK_KILLABLE here.
1386	 */
1387	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1388	if (!locked || mem->oom_kill_disable)
1389		need_to_kill = false;
1390	if (locked)
1391		mem_cgroup_oom_notify(mem);
1392	mutex_unlock(&memcg_oom_mutex);
1393
1394	if (need_to_kill) {
1395		finish_wait(&memcg_oom_waitq, &owait.wait);
1396		mem_cgroup_out_of_memory(mem, mask);
1397	} else {
1398		schedule();
1399		finish_wait(&memcg_oom_waitq, &owait.wait);
1400	}
1401	mutex_lock(&memcg_oom_mutex);
1402	mem_cgroup_oom_unlock(mem);
1403	memcg_wakeup_oom(mem);
1404	mutex_unlock(&memcg_oom_mutex);
1405
1406	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1407		return false;
1408	/* Give chance to dying process */
1409	schedule_timeout(1);
1410	return true;
1411}
1412
1413/*
1414 * Currently used to update mapped file statistics, but the routine can be
1415 * generalized to update other statistics as well.
1416 */
1417void mem_cgroup_update_file_mapped(struct page *page, int val)
1418{
1419	struct mem_cgroup *mem;
1420	struct page_cgroup *pc;
1421
1422	pc = lookup_page_cgroup(page);
1423	if (unlikely(!pc))
1424		return;
1425
1426	lock_page_cgroup(pc);
1427	mem = pc->mem_cgroup;
1428	if (!mem || !PageCgroupUsed(pc))
1429		goto done;
1430
1431	/*
1432	 * Preemption is already disabled. We can use __this_cpu_xxx
1433	 */
1434	if (val > 0) {
1435		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1436		SetPageCgroupFileMapped(pc);
1437	} else {
1438		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1439		ClearPageCgroupFileMapped(pc);
1440	}
1441
1442done:
1443	unlock_page_cgroup(pc);
1444}
1445
1446/*
1447 * size of first charge trial. "32" comes from vmscan.c's magic value.
1448 * TODO: maybe necessary to use big numbers in big irons.
1449 */
1450#define CHARGE_SIZE	(32 * PAGE_SIZE)
1451struct memcg_stock_pcp {
1452	struct mem_cgroup *cached; /* this never be root cgroup */
1453	int charge;
1454	struct work_struct work;
1455};
1456static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1457static atomic_t memcg_drain_count;
1458
1459/*
1460 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1461 * from local stock and true is returned. If the stock is 0 or charges from a
1462 * cgroup which is not current target, returns false. This stock will be
1463 * refilled.
1464 */
1465static bool consume_stock(struct mem_cgroup *mem)
1466{
1467	struct memcg_stock_pcp *stock;
1468	bool ret = true;
1469
1470	stock = &get_cpu_var(memcg_stock);
1471	if (mem == stock->cached && stock->charge)
1472		stock->charge -= PAGE_SIZE;
1473	else /* need to call res_counter_charge */
1474		ret = false;
1475	put_cpu_var(memcg_stock);
1476	return ret;
1477}
1478
1479/*
1480 * Returns stocks cached in percpu to res_counter and reset cached information.
1481 */
1482static void drain_stock(struct memcg_stock_pcp *stock)
1483{
1484	struct mem_cgroup *old = stock->cached;
1485
1486	if (stock->charge) {
1487		res_counter_uncharge(&old->res, stock->charge);
1488		if (do_swap_account)
1489			res_counter_uncharge(&old->memsw, stock->charge);
1490	}
1491	stock->cached = NULL;
1492	stock->charge = 0;
1493}
1494
1495/*
1496 * This must be called under preempt disabled or must be called by
1497 * a thread which is pinned to local cpu.
1498 */
1499static void drain_local_stock(struct work_struct *dummy)
1500{
1501	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1502	drain_stock(stock);
1503}
1504
1505/*
1506 * Cache charges(val) which is from res_counter, to local per_cpu area.
1507 * This will be consumed by consume_stock() function, later.
1508 */
1509static void refill_stock(struct mem_cgroup *mem, int val)
1510{
1511	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1512
1513	if (stock->cached != mem) { /* reset if necessary */
1514		drain_stock(stock);
1515		stock->cached = mem;
1516	}
1517	stock->charge += val;
1518	put_cpu_var(memcg_stock);
1519}
1520
1521/*
1522 * Tries to drain stocked charges in other cpus. This function is asynchronous
1523 * and just put a work per cpu for draining localy on each cpu. Caller can
1524 * expects some charges will be back to res_counter later but cannot wait for
1525 * it.
1526 */
1527static void drain_all_stock_async(void)
1528{
1529	int cpu;
1530	/* This function is for scheduling "drain" in asynchronous way.
1531	 * The result of "drain" is not directly handled by callers. Then,
1532	 * if someone is calling drain, we don't have to call drain more.
1533	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1534	 * there is a race. We just do loose check here.
1535	 */
1536	if (atomic_read(&memcg_drain_count))
1537		return;
1538	/* Notify other cpus that system-wide "drain" is running */
1539	atomic_inc(&memcg_drain_count);
1540	get_online_cpus();
1541	for_each_online_cpu(cpu) {
1542		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1543		schedule_work_on(cpu, &stock->work);
1544	}
1545 	put_online_cpus();
1546	atomic_dec(&memcg_drain_count);
1547	/* We don't wait for flush_work */
1548}
1549
1550/* This is a synchronous drain interface. */
1551static void drain_all_stock_sync(void)
1552{
1553	/* called when force_empty is called */
1554	atomic_inc(&memcg_drain_count);
1555	schedule_on_each_cpu(drain_local_stock);
1556	atomic_dec(&memcg_drain_count);
1557}
1558
1559static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1560					unsigned long action,
1561					void *hcpu)
1562{
1563	int cpu = (unsigned long)hcpu;
1564	struct memcg_stock_pcp *stock;
1565
1566	if (action != CPU_DEAD)
1567		return NOTIFY_OK;
1568	stock = &per_cpu(memcg_stock, cpu);
1569	drain_stock(stock);
1570	return NOTIFY_OK;
1571}
1572
1573/*
1574 * Unlike exported interface, "oom" parameter is added. if oom==true,
1575 * oom-killer can be invoked.
1576 */
1577static int __mem_cgroup_try_charge(struct mm_struct *mm,
1578			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1579{
1580	struct mem_cgroup *mem, *mem_over_limit;
1581	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1582	struct res_counter *fail_res;
1583	int csize = CHARGE_SIZE;
1584
1585	/*
1586	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1587	 * in system level. So, allow to go ahead dying process in addition to
1588	 * MEMDIE process.
1589	 */
1590	if (unlikely(test_thread_flag(TIF_MEMDIE)
1591		     || fatal_signal_pending(current)))
1592		goto bypass;
1593
1594	/*
1595	 * We always charge the cgroup the mm_struct belongs to.
1596	 * The mm_struct's mem_cgroup changes on task migration if the
1597	 * thread group leader migrates. It's possible that mm is not
1598	 * set, if so charge the init_mm (happens for pagecache usage).
1599	 */
1600	mem = *memcg;
1601	if (likely(!mem)) {
1602		mem = try_get_mem_cgroup_from_mm(mm);
1603		*memcg = mem;
1604	} else {
1605		css_get(&mem->css);
1606	}
1607	if (unlikely(!mem))
1608		return 0;
1609
1610	VM_BUG_ON(css_is_removed(&mem->css));
1611	if (mem_cgroup_is_root(mem))
1612		goto done;
1613
1614	while (1) {
1615		int ret = 0;
1616		unsigned long flags = 0;
1617
1618		if (consume_stock(mem))
1619			goto done;
1620
1621		ret = res_counter_charge(&mem->res, csize, &fail_res);
1622		if (likely(!ret)) {
1623			if (!do_swap_account)
1624				break;
1625			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1626			if (likely(!ret))
1627				break;
1628			/* mem+swap counter fails */
1629			res_counter_uncharge(&mem->res, csize);
1630			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1631			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1632									memsw);
1633		} else
1634			/* mem counter fails */
1635			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1636									res);
1637
1638		/* reduce request size and retry */
1639		if (csize > PAGE_SIZE) {
1640			csize = PAGE_SIZE;
1641			continue;
1642		}
1643		if (!(gfp_mask & __GFP_WAIT))
1644			goto nomem;
1645
1646		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1647						gfp_mask, flags);
1648		if (ret)
1649			continue;
1650
1651		/*
1652		 * try_to_free_mem_cgroup_pages() might not give us a full
1653		 * picture of reclaim. Some pages are reclaimed and might be
1654		 * moved to swap cache or just unmapped from the cgroup.
1655		 * Check the limit again to see if the reclaim reduced the
1656		 * current usage of the cgroup before giving up
1657		 *
1658		 */
1659		if (mem_cgroup_check_under_limit(mem_over_limit))
1660			continue;
1661
1662		/* try to avoid oom while someone is moving charge */
1663		if (mc.moving_task && current != mc.moving_task) {
1664			struct mem_cgroup *from, *to;
1665			bool do_continue = false;
1666			/*
1667			 * There is a small race that "from" or "to" can be
1668			 * freed by rmdir, so we use css_tryget().
1669			 */
1670			from = mc.from;
1671			to = mc.to;
1672			if (from && css_tryget(&from->css)) {
1673				if (mem_over_limit->use_hierarchy)
1674					do_continue = css_is_ancestor(
1675							&from->css,
1676							&mem_over_limit->css);
1677				else
1678					do_continue = (from == mem_over_limit);
1679				css_put(&from->css);
1680			}
1681			if (!do_continue && to && css_tryget(&to->css)) {
1682				if (mem_over_limit->use_hierarchy)
1683					do_continue = css_is_ancestor(
1684							&to->css,
1685							&mem_over_limit->css);
1686				else
1687					do_continue = (to == mem_over_limit);
1688				css_put(&to->css);
1689			}
1690			if (do_continue) {
1691				DEFINE_WAIT(wait);
1692				prepare_to_wait(&mc.waitq, &wait,
1693							TASK_INTERRUPTIBLE);
1694				/* moving charge context might have finished. */
1695				if (mc.moving_task)
1696					schedule();
1697				finish_wait(&mc.waitq, &wait);
1698				continue;
1699			}
1700		}
1701
1702		if (!nr_retries--) {
1703			if (!oom)
1704				goto nomem;
1705			if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1706				nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1707				continue;
1708			}
1709			/* When we reach here, current task is dying .*/
1710			css_put(&mem->css);
1711			goto bypass;
1712		}
1713	}
1714	if (csize > PAGE_SIZE)
1715		refill_stock(mem, csize - PAGE_SIZE);
1716done:
1717	return 0;
1718nomem:
1719	css_put(&mem->css);
1720	return -ENOMEM;
1721bypass:
1722	*memcg = NULL;
1723	return 0;
1724}
1725
1726/*
1727 * Somemtimes we have to undo a charge we got by try_charge().
1728 * This function is for that and do uncharge, put css's refcnt.
1729 * gotten by try_charge().
1730 */
1731static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1732							unsigned long count)
1733{
1734	if (!mem_cgroup_is_root(mem)) {
1735		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1736		if (do_swap_account)
1737			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1738		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1739		WARN_ON_ONCE(count > INT_MAX);
1740		__css_put(&mem->css, (int)count);
1741	}
1742	/* we don't need css_put for root */
1743}
1744
1745static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1746{
1747	__mem_cgroup_cancel_charge(mem, 1);
1748}
1749
1750/*
1751 * A helper function to get mem_cgroup from ID. must be called under
1752 * rcu_read_lock(). The caller must check css_is_removed() or some if
1753 * it's concern. (dropping refcnt from swap can be called against removed
1754 * memcg.)
1755 */
1756static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1757{
1758	struct cgroup_subsys_state *css;
1759
1760	/* ID 0 is unused ID */
1761	if (!id)
1762		return NULL;
1763	css = css_lookup(&mem_cgroup_subsys, id);
1764	if (!css)
1765		return NULL;
1766	return container_of(css, struct mem_cgroup, css);
1767}
1768
1769struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1770{
1771	struct mem_cgroup *mem = NULL;
1772	struct page_cgroup *pc;
1773	unsigned short id;
1774	swp_entry_t ent;
1775
1776	VM_BUG_ON(!PageLocked(page));
1777
1778	pc = lookup_page_cgroup(page);
1779	lock_page_cgroup(pc);
1780	if (PageCgroupUsed(pc)) {
1781		mem = pc->mem_cgroup;
1782		if (mem && !css_tryget(&mem->css))
1783			mem = NULL;
1784	} else if (PageSwapCache(page)) {
1785		ent.val = page_private(page);
1786		id = lookup_swap_cgroup(ent);
1787		rcu_read_lock();
1788		mem = mem_cgroup_lookup(id);
1789		if (mem && !css_tryget(&mem->css))
1790			mem = NULL;
1791		rcu_read_unlock();
1792	}
1793	unlock_page_cgroup(pc);
1794	return mem;
1795}
1796
1797/*
1798 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1799 * USED state. If already USED, uncharge and return.
1800 */
1801
1802static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1803				     struct page_cgroup *pc,
1804				     enum charge_type ctype)
1805{
1806	/* try_charge() can return NULL to *memcg, taking care of it. */
1807	if (!mem)
1808		return;
1809
1810	lock_page_cgroup(pc);
1811	if (unlikely(PageCgroupUsed(pc))) {
1812		unlock_page_cgroup(pc);
1813		mem_cgroup_cancel_charge(mem);
1814		return;
1815	}
1816
1817	pc->mem_cgroup = mem;
1818	/*
1819	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1820	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1821	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1822	 * before USED bit, we need memory barrier here.
1823	 * See mem_cgroup_add_lru_list(), etc.
1824 	 */
1825	smp_wmb();
1826	switch (ctype) {
1827	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1828	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1829		SetPageCgroupCache(pc);
1830		SetPageCgroupUsed(pc);
1831		break;
1832	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1833		ClearPageCgroupCache(pc);
1834		SetPageCgroupUsed(pc);
1835		break;
1836	default:
1837		break;
1838	}
1839
1840	mem_cgroup_charge_statistics(mem, pc, true);
1841
1842	unlock_page_cgroup(pc);
1843	/*
1844	 * "charge_statistics" updated event counter. Then, check it.
1845	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1846	 * if they exceeds softlimit.
1847	 */
1848	memcg_check_events(mem, pc->page);
1849}
1850
1851/**
1852 * __mem_cgroup_move_account - move account of the page
1853 * @pc:	page_cgroup of the page.
1854 * @from: mem_cgroup which the page is moved from.
1855 * @to:	mem_cgroup which the page is moved to. @from != @to.
1856 * @uncharge: whether we should call uncharge and css_put against @from.
1857 *
1858 * The caller must confirm following.
1859 * - page is not on LRU (isolate_page() is useful.)
1860 * - the pc is locked, used, and ->mem_cgroup points to @from.
1861 *
1862 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1863 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1864 * true, this function does "uncharge" from old cgroup, but it doesn't if
1865 * @uncharge is false, so a caller should do "uncharge".
1866 */
1867
1868static void __mem_cgroup_move_account(struct page_cgroup *pc,
1869	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1870{
1871	VM_BUG_ON(from == to);
1872	VM_BUG_ON(PageLRU(pc->page));
1873	VM_BUG_ON(!PageCgroupLocked(pc));
1874	VM_BUG_ON(!PageCgroupUsed(pc));
1875	VM_BUG_ON(pc->mem_cgroup != from);
1876
1877	if (PageCgroupFileMapped(pc)) {
1878		/* Update mapped_file data for mem_cgroup */
1879		preempt_disable();
1880		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1881		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1882		preempt_enable();
1883	}
1884	mem_cgroup_charge_statistics(from, pc, false);
1885	if (uncharge)
1886		/* This is not "cancel", but cancel_charge does all we need. */
1887		mem_cgroup_cancel_charge(from);
1888
1889	/* caller should have done css_get */
1890	pc->mem_cgroup = to;
1891	mem_cgroup_charge_statistics(to, pc, true);
1892	/*
1893	 * We charges against "to" which may not have any tasks. Then, "to"
1894	 * can be under rmdir(). But in current implementation, caller of
1895	 * this function is just force_empty() and move charge, so it's
1896	 * garanteed that "to" is never removed. So, we don't check rmdir
1897	 * status here.
1898	 */
1899}
1900
1901/*
1902 * check whether the @pc is valid for moving account and call
1903 * __mem_cgroup_move_account()
1904 */
1905static int mem_cgroup_move_account(struct page_cgroup *pc,
1906		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1907{
1908	int ret = -EINVAL;
1909	lock_page_cgroup(pc);
1910	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1911		__mem_cgroup_move_account(pc, from, to, uncharge);
1912		ret = 0;
1913	}
1914	unlock_page_cgroup(pc);
1915	/*
1916	 * check events
1917	 */
1918	memcg_check_events(to, pc->page);
1919	memcg_check_events(from, pc->page);
1920	return ret;
1921}
1922
1923/*
1924 * move charges to its parent.
1925 */
1926
1927static int mem_cgroup_move_parent(struct page_cgroup *pc,
1928				  struct mem_cgroup *child,
1929				  gfp_t gfp_mask)
1930{
1931	struct page *page = pc->page;
1932	struct cgroup *cg = child->css.cgroup;
1933	struct cgroup *pcg = cg->parent;
1934	struct mem_cgroup *parent;
1935	int ret;
1936
1937	/* Is ROOT ? */
1938	if (!pcg)
1939		return -EINVAL;
1940
1941	ret = -EBUSY;
1942	if (!get_page_unless_zero(page))
1943		goto out;
1944	if (isolate_lru_page(page))
1945		goto put;
1946
1947	parent = mem_cgroup_from_cont(pcg);
1948	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1949	if (ret || !parent)
1950		goto put_back;
1951
1952	ret = mem_cgroup_move_account(pc, child, parent, true);
1953	if (ret)
1954		mem_cgroup_cancel_charge(parent);
1955put_back:
1956	putback_lru_page(page);
1957put:
1958	put_page(page);
1959out:
1960	return ret;
1961}
1962
1963/*
1964 * Charge the memory controller for page usage.
1965 * Return
1966 * 0 if the charge was successful
1967 * < 0 if the cgroup is over its limit
1968 */
1969static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1970				gfp_t gfp_mask, enum charge_type ctype,
1971				struct mem_cgroup *memcg)
1972{
1973	struct mem_cgroup *mem;
1974	struct page_cgroup *pc;
1975	int ret;
1976
1977	pc = lookup_page_cgroup(page);
1978	/* can happen at boot */
1979	if (unlikely(!pc))
1980		return 0;
1981	prefetchw(pc);
1982
1983	mem = memcg;
1984	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1985	if (ret || !mem)
1986		return ret;
1987
1988	__mem_cgroup_commit_charge(mem, pc, ctype);
1989	return 0;
1990}
1991
1992int mem_cgroup_newpage_charge(struct page *page,
1993			      struct mm_struct *mm, gfp_t gfp_mask)
1994{
1995	if (mem_cgroup_disabled())
1996		return 0;
1997	if (PageCompound(page))
1998		return 0;
1999	/*
2000	 * If already mapped, we don't have to account.
2001	 * If page cache, page->mapping has address_space.
2002	 * But page->mapping may have out-of-use anon_vma pointer,
2003	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2004	 * is NULL.
2005  	 */
2006	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2007		return 0;
2008	if (unlikely(!mm))
2009		mm = &init_mm;
2010	return mem_cgroup_charge_common(page, mm, gfp_mask,
2011				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2012}
2013
2014static void
2015__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2016					enum charge_type ctype);
2017
2018int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2019				gfp_t gfp_mask)
2020{
2021	struct mem_cgroup *mem = NULL;
2022	int ret;
2023
2024	if (mem_cgroup_disabled())
2025		return 0;
2026	if (PageCompound(page))
2027		return 0;
2028	/*
2029	 * Corner case handling. This is called from add_to_page_cache()
2030	 * in usual. But some FS (shmem) precharges this page before calling it
2031	 * and call add_to_page_cache() with GFP_NOWAIT.
2032	 *
2033	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2034	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2035	 * charge twice. (It works but has to pay a bit larger cost.)
2036	 * And when the page is SwapCache, it should take swap information
2037	 * into account. This is under lock_page() now.
2038	 */
2039	if (!(gfp_mask & __GFP_WAIT)) {
2040		struct page_cgroup *pc;
2041
2042
2043		pc = lookup_page_cgroup(page);
2044		if (!pc)
2045			return 0;
2046		lock_page_cgroup(pc);
2047		if (PageCgroupUsed(pc)) {
2048			unlock_page_cgroup(pc);
2049			return 0;
2050		}
2051		unlock_page_cgroup(pc);
2052	}
2053
2054	if (unlikely(!mm && !mem))
2055		mm = &init_mm;
2056
2057	if (page_is_file_cache(page))
2058		return mem_cgroup_charge_common(page, mm, gfp_mask,
2059				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2060
2061	/* shmem */
2062	if (PageSwapCache(page)) {
2063		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2064		if (!ret)
2065			__mem_cgroup_commit_charge_swapin(page, mem,
2066					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2067	} else
2068		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2069					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2070
2071	return ret;
2072}
2073
2074/*
2075 * While swap-in, try_charge -> commit or cancel, the page is locked.
2076 * And when try_charge() successfully returns, one refcnt to memcg without
2077 * struct page_cgroup is acquired. This refcnt will be consumed by
2078 * "commit()" or removed by "cancel()"
2079 */
2080int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2081				 struct page *page,
2082				 gfp_t mask, struct mem_cgroup **ptr)
2083{
2084	struct mem_cgroup *mem;
2085	int ret;
2086
2087	if (mem_cgroup_disabled())
2088		return 0;
2089
2090	if (!do_swap_account)
2091		goto charge_cur_mm;
2092	/*
2093	 * A racing thread's fault, or swapoff, may have already updated
2094	 * the pte, and even removed page from swap cache: in those cases
2095	 * do_swap_page()'s pte_same() test will fail; but there's also a
2096	 * KSM case which does need to charge the page.
2097	 */
2098	if (!PageSwapCache(page))
2099		goto charge_cur_mm;
2100	mem = try_get_mem_cgroup_from_page(page);
2101	if (!mem)
2102		goto charge_cur_mm;
2103	*ptr = mem;
2104	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2105	/* drop extra refcnt from tryget */
2106	css_put(&mem->css);
2107	return ret;
2108charge_cur_mm:
2109	if (unlikely(!mm))
2110		mm = &init_mm;
2111	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2112}
2113
2114static void
2115__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2116					enum charge_type ctype)
2117{
2118	struct page_cgroup *pc;
2119
2120	if (mem_cgroup_disabled())
2121		return;
2122	if (!ptr)
2123		return;
2124	cgroup_exclude_rmdir(&ptr->css);
2125	pc = lookup_page_cgroup(page);
2126	mem_cgroup_lru_del_before_commit_swapcache(page);
2127	__mem_cgroup_commit_charge(ptr, pc, ctype);
2128	mem_cgroup_lru_add_after_commit_swapcache(page);
2129	/*
2130	 * Now swap is on-memory. This means this page may be
2131	 * counted both as mem and swap....double count.
2132	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2133	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2134	 * may call delete_from_swap_cache() before reach here.
2135	 */
2136	if (do_swap_account && PageSwapCache(page)) {
2137		swp_entry_t ent = {.val = page_private(page)};
2138		unsigned short id;
2139		struct mem_cgroup *memcg;
2140
2141		id = swap_cgroup_record(ent, 0);
2142		rcu_read_lock();
2143		memcg = mem_cgroup_lookup(id);
2144		if (memcg) {
2145			/*
2146			 * This recorded memcg can be obsolete one. So, avoid
2147			 * calling css_tryget
2148			 */
2149			if (!mem_cgroup_is_root(memcg))
2150				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2151			mem_cgroup_swap_statistics(memcg, false);
2152			mem_cgroup_put(memcg);
2153		}
2154		rcu_read_unlock();
2155	}
2156	/*
2157	 * At swapin, we may charge account against cgroup which has no tasks.
2158	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2159	 * In that case, we need to call pre_destroy() again. check it here.
2160	 */
2161	cgroup_release_and_wakeup_rmdir(&ptr->css);
2162}
2163
2164void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2165{
2166	__mem_cgroup_commit_charge_swapin(page, ptr,
2167					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2168}
2169
2170void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2171{
2172	if (mem_cgroup_disabled())
2173		return;
2174	if (!mem)
2175		return;
2176	mem_cgroup_cancel_charge(mem);
2177}
2178
2179static void
2180__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2181{
2182	struct memcg_batch_info *batch = NULL;
2183	bool uncharge_memsw = true;
2184	/* If swapout, usage of swap doesn't decrease */
2185	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2186		uncharge_memsw = false;
2187
2188	batch = &current->memcg_batch;
2189	/*
2190	 * In usual, we do css_get() when we remember memcg pointer.
2191	 * But in this case, we keep res->usage until end of a series of
2192	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2193	 */
2194	if (!batch->memcg)
2195		batch->memcg = mem;
2196	/*
2197	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2198	 * In those cases, all pages freed continously can be expected to be in
2199	 * the same cgroup and we have chance to coalesce uncharges.
2200	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2201	 * because we want to do uncharge as soon as possible.
2202	 */
2203
2204	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2205		goto direct_uncharge;
2206
2207	/*
2208	 * In typical case, batch->memcg == mem. This means we can
2209	 * merge a series of uncharges to an uncharge of res_counter.
2210	 * If not, we uncharge res_counter ony by one.
2211	 */
2212	if (batch->memcg != mem)
2213		goto direct_uncharge;
2214	/* remember freed charge and uncharge it later */
2215	batch->bytes += PAGE_SIZE;
2216	if (uncharge_memsw)
2217		batch->memsw_bytes += PAGE_SIZE;
2218	return;
2219direct_uncharge:
2220	res_counter_uncharge(&mem->res, PAGE_SIZE);
2221	if (uncharge_memsw)
2222		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2223	if (unlikely(batch->memcg != mem))
2224		memcg_oom_recover(mem);
2225	return;
2226}
2227
2228/*
2229 * uncharge if !page_mapped(page)
2230 */
2231static struct mem_cgroup *
2232__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2233{
2234	struct page_cgroup *pc;
2235	struct mem_cgroup *mem = NULL;
2236	struct mem_cgroup_per_zone *mz;
2237
2238	if (mem_cgroup_disabled())
2239		return NULL;
2240
2241	if (PageSwapCache(page))
2242		return NULL;
2243
2244	/*
2245	 * Check if our page_cgroup is valid
2246	 */
2247	pc = lookup_page_cgroup(page);
2248	if (unlikely(!pc || !PageCgroupUsed(pc)))
2249		return NULL;
2250
2251	lock_page_cgroup(pc);
2252
2253	mem = pc->mem_cgroup;
2254
2255	if (!PageCgroupUsed(pc))
2256		goto unlock_out;
2257
2258	switch (ctype) {
2259	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2260	case MEM_CGROUP_CHARGE_TYPE_DROP:
2261		if (page_mapped(page))
2262			goto unlock_out;
2263		break;
2264	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2265		if (!PageAnon(page)) {	/* Shared memory */
2266			if (page->mapping && !page_is_file_cache(page))
2267				goto unlock_out;
2268		} else if (page_mapped(page)) /* Anon */
2269				goto unlock_out;
2270		break;
2271	default:
2272		break;
2273	}
2274
2275	if (!mem_cgroup_is_root(mem))
2276		__do_uncharge(mem, ctype);
2277	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2278		mem_cgroup_swap_statistics(mem, true);
2279	mem_cgroup_charge_statistics(mem, pc, false);
2280
2281	ClearPageCgroupUsed(pc);
2282	/*
2283	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2284	 * freed from LRU. This is safe because uncharged page is expected not
2285	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2286	 * special functions.
2287	 */
2288
2289	mz = page_cgroup_zoneinfo(pc);
2290	unlock_page_cgroup(pc);
2291
2292	memcg_check_events(mem, page);
2293	/* at swapout, this memcg will be accessed to record to swap */
2294	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2295		css_put(&mem->css);
2296
2297	return mem;
2298
2299unlock_out:
2300	unlock_page_cgroup(pc);
2301	return NULL;
2302}
2303
2304void mem_cgroup_uncharge_page(struct page *page)
2305{
2306	/* early check. */
2307	if (page_mapped(page))
2308		return;
2309	if (page->mapping && !PageAnon(page))
2310		return;
2311	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2312}
2313
2314void mem_cgroup_uncharge_cache_page(struct page *page)
2315{
2316	VM_BUG_ON(page_mapped(page));
2317	VM_BUG_ON(page->mapping);
2318	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2319}
2320
2321/*
2322 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2323 * In that cases, pages are freed continuously and we can expect pages
2324 * are in the same memcg. All these calls itself limits the number of
2325 * pages freed at once, then uncharge_start/end() is called properly.
2326 * This may be called prural(2) times in a context,
2327 */
2328
2329void mem_cgroup_uncharge_start(void)
2330{
2331	current->memcg_batch.do_batch++;
2332	/* We can do nest. */
2333	if (current->memcg_batch.do_batch == 1) {
2334		current->memcg_batch.memcg = NULL;
2335		current->memcg_batch.bytes = 0;
2336		current->memcg_batch.memsw_bytes = 0;
2337	}
2338}
2339
2340void mem_cgroup_uncharge_end(void)
2341{
2342	struct memcg_batch_info *batch = &current->memcg_batch;
2343
2344	if (!batch->do_batch)
2345		return;
2346
2347	batch->do_batch--;
2348	if (batch->do_batch) /* If stacked, do nothing. */
2349		return;
2350
2351	if (!batch->memcg)
2352		return;
2353	/*
2354	 * This "batch->memcg" is valid without any css_get/put etc...
2355	 * bacause we hide charges behind us.
2356	 */
2357	if (batch->bytes)
2358		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2359	if (batch->memsw_bytes)
2360		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2361	memcg_oom_recover(batch->memcg);
2362	/* forget this pointer (for sanity check) */
2363	batch->memcg = NULL;
2364}
2365
2366#ifdef CONFIG_SWAP
2367/*
2368 * called after __delete_from_swap_cache() and drop "page" account.
2369 * memcg information is recorded to swap_cgroup of "ent"
2370 */
2371void
2372mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2373{
2374	struct mem_cgroup *memcg;
2375	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2376
2377	if (!swapout) /* this was a swap cache but the swap is unused ! */
2378		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2379
2380	memcg = __mem_cgroup_uncharge_common(page, ctype);
2381
2382	/* record memcg information */
2383	if (do_swap_account && swapout && memcg) {
2384		swap_cgroup_record(ent, css_id(&memcg->css));
2385		mem_cgroup_get(memcg);
2386	}
2387	if (swapout && memcg)
2388		css_put(&memcg->css);
2389}
2390#endif
2391
2392#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2393/*
2394 * called from swap_entry_free(). remove record in swap_cgroup and
2395 * uncharge "memsw" account.
2396 */
2397void mem_cgroup_uncharge_swap(swp_entry_t ent)
2398{
2399	struct mem_cgroup *memcg;
2400	unsigned short id;
2401
2402	if (!do_swap_account)
2403		return;
2404
2405	id = swap_cgroup_record(ent, 0);
2406	rcu_read_lock();
2407	memcg = mem_cgroup_lookup(id);
2408	if (memcg) {
2409		/*
2410		 * We uncharge this because swap is freed.
2411		 * This memcg can be obsolete one. We avoid calling css_tryget
2412		 */
2413		if (!mem_cgroup_is_root(memcg))
2414			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2415		mem_cgroup_swap_statistics(memcg, false);
2416		mem_cgroup_put(memcg);
2417	}
2418	rcu_read_unlock();
2419}
2420
2421/**
2422 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2423 * @entry: swap entry to be moved
2424 * @from:  mem_cgroup which the entry is moved from
2425 * @to:  mem_cgroup which the entry is moved to
2426 * @need_fixup: whether we should fixup res_counters and refcounts.
2427 *
2428 * It succeeds only when the swap_cgroup's record for this entry is the same
2429 * as the mem_cgroup's id of @from.
2430 *
2431 * Returns 0 on success, -EINVAL on failure.
2432 *
2433 * The caller must have charged to @to, IOW, called res_counter_charge() about
2434 * both res and memsw, and called css_get().
2435 */
2436static int mem_cgroup_move_swap_account(swp_entry_t entry,
2437		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2438{
2439	unsigned short old_id, new_id;
2440
2441	old_id = css_id(&from->css);
2442	new_id = css_id(&to->css);
2443
2444	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2445		mem_cgroup_swap_statistics(from, false);
2446		mem_cgroup_swap_statistics(to, true);
2447		/*
2448		 * This function is only called from task migration context now.
2449		 * It postpones res_counter and refcount handling till the end
2450		 * of task migration(mem_cgroup_clear_mc()) for performance
2451		 * improvement. But we cannot postpone mem_cgroup_get(to)
2452		 * because if the process that has been moved to @to does
2453		 * swap-in, the refcount of @to might be decreased to 0.
2454		 */
2455		mem_cgroup_get(to);
2456		if (need_fixup) {
2457			if (!mem_cgroup_is_root(from))
2458				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2459			mem_cgroup_put(from);
2460			/*
2461			 * we charged both to->res and to->memsw, so we should
2462			 * uncharge to->res.
2463			 */
2464			if (!mem_cgroup_is_root(to))
2465				res_counter_uncharge(&to->res, PAGE_SIZE);
2466			css_put(&to->css);
2467		}
2468		return 0;
2469	}
2470	return -EINVAL;
2471}
2472#else
2473static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2474		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2475{
2476	return -EINVAL;
2477}
2478#endif
2479
2480/*
2481 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2482 * page belongs to.
2483 */
2484int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2485{
2486	struct page_cgroup *pc;
2487	struct mem_cgroup *mem = NULL;
2488	int ret = 0;
2489
2490	if (mem_cgroup_disabled())
2491		return 0;
2492
2493	pc = lookup_page_cgroup(page);
2494	lock_page_cgroup(pc);
2495	if (PageCgroupUsed(pc)) {
2496		mem = pc->mem_cgroup;
2497		css_get(&mem->css);
2498	}
2499	unlock_page_cgroup(pc);
2500
2501	*ptr = mem;
2502	if (mem) {
2503		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2504		css_put(&mem->css);
2505	}
2506	return ret;
2507}
2508
2509/* remove redundant charge if migration failed*/
2510void mem_cgroup_end_migration(struct mem_cgroup *mem,
2511		struct page *oldpage, struct page *newpage)
2512{
2513	struct page *target, *unused;
2514	struct page_cgroup *pc;
2515	enum charge_type ctype;
2516
2517	if (!mem)
2518		return;
2519	cgroup_exclude_rmdir(&mem->css);
2520	/* at migration success, oldpage->mapping is NULL. */
2521	if (oldpage->mapping) {
2522		target = oldpage;
2523		unused = NULL;
2524	} else {
2525		target = newpage;
2526		unused = oldpage;
2527	}
2528
2529	if (PageAnon(target))
2530		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2531	else if (page_is_file_cache(target))
2532		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2533	else
2534		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2535
2536	/* unused page is not on radix-tree now. */
2537	if (unused)
2538		__mem_cgroup_uncharge_common(unused, ctype);
2539
2540	pc = lookup_page_cgroup(target);
2541	/*
2542	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2543	 * So, double-counting is effectively avoided.
2544	 */
2545	__mem_cgroup_commit_charge(mem, pc, ctype);
2546
2547	/*
2548	 * Both of oldpage and newpage are still under lock_page().
2549	 * Then, we don't have to care about race in radix-tree.
2550	 * But we have to be careful that this page is unmapped or not.
2551	 *
2552	 * There is a case for !page_mapped(). At the start of
2553	 * migration, oldpage was mapped. But now, it's zapped.
2554	 * But we know *target* page is not freed/reused under us.
2555	 * mem_cgroup_uncharge_page() does all necessary checks.
2556	 */
2557	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2558		mem_cgroup_uncharge_page(target);
2559	/*
2560	 * At migration, we may charge account against cgroup which has no tasks
2561	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2562	 * In that case, we need to call pre_destroy() again. check it here.
2563	 */
2564	cgroup_release_and_wakeup_rmdir(&mem->css);
2565}
2566
2567/*
2568 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2569 * Calling hierarchical_reclaim is not enough because we should update
2570 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2571 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2572 * not from the memcg which this page would be charged to.
2573 * try_charge_swapin does all of these works properly.
2574 */
2575int mem_cgroup_shmem_charge_fallback(struct page *page,
2576			    struct mm_struct *mm,
2577			    gfp_t gfp_mask)
2578{
2579	struct mem_cgroup *mem = NULL;
2580	int ret;
2581
2582	if (mem_cgroup_disabled())
2583		return 0;
2584
2585	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2586	if (!ret)
2587		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2588
2589	return ret;
2590}
2591
2592static DEFINE_MUTEX(set_limit_mutex);
2593
2594static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2595				unsigned long long val)
2596{
2597	int retry_count;
2598	u64 memswlimit, memlimit;
2599	int ret = 0;
2600	int children = mem_cgroup_count_children(memcg);
2601	u64 curusage, oldusage;
2602	int enlarge;
2603
2604	/*
2605	 * For keeping hierarchical_reclaim simple, how long we should retry
2606	 * is depends on callers. We set our retry-count to be function
2607	 * of # of children which we should visit in this loop.
2608	 */
2609	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2610
2611	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2612
2613	enlarge = 0;
2614	while (retry_count) {
2615		if (signal_pending(current)) {
2616			ret = -EINTR;
2617			break;
2618		}
2619		/*
2620		 * Rather than hide all in some function, I do this in
2621		 * open coded manner. You see what this really does.
2622		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2623		 */
2624		mutex_lock(&set_limit_mutex);
2625		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2626		if (memswlimit < val) {
2627			ret = -EINVAL;
2628			mutex_unlock(&set_limit_mutex);
2629			break;
2630		}
2631
2632		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2633		if (memlimit < val)
2634			enlarge = 1;
2635
2636		ret = res_counter_set_limit(&memcg->res, val);
2637		if (!ret) {
2638			if (memswlimit == val)
2639				memcg->memsw_is_minimum = true;
2640			else
2641				memcg->memsw_is_minimum = false;
2642		}
2643		mutex_unlock(&set_limit_mutex);
2644
2645		if (!ret)
2646			break;
2647
2648		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2649						MEM_CGROUP_RECLAIM_SHRINK);
2650		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2651		/* Usage is reduced ? */
2652  		if (curusage >= oldusage)
2653			retry_count--;
2654		else
2655			oldusage = curusage;
2656	}
2657	if (!ret && enlarge)
2658		memcg_oom_recover(memcg);
2659
2660	return ret;
2661}
2662
2663static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2664					unsigned long long val)
2665{
2666	int retry_count;
2667	u64 memlimit, memswlimit, oldusage, curusage;
2668	int children = mem_cgroup_count_children(memcg);
2669	int ret = -EBUSY;
2670	int enlarge = 0;
2671
2672	/* see mem_cgroup_resize_res_limit */
2673 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2674	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2675	while (retry_count) {
2676		if (signal_pending(current)) {
2677			ret = -EINTR;
2678			break;
2679		}
2680		/*
2681		 * Rather than hide all in some function, I do this in
2682		 * open coded manner. You see what this really does.
2683		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2684		 */
2685		mutex_lock(&set_limit_mutex);
2686		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2687		if (memlimit > val) {
2688			ret = -EINVAL;
2689			mutex_unlock(&set_limit_mutex);
2690			break;
2691		}
2692		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2693		if (memswlimit < val)
2694			enlarge = 1;
2695		ret = res_counter_set_limit(&memcg->memsw, val);
2696		if (!ret) {
2697			if (memlimit == val)
2698				memcg->memsw_is_minimum = true;
2699			else
2700				memcg->memsw_is_minimum = false;
2701		}
2702		mutex_unlock(&set_limit_mutex);
2703
2704		if (!ret)
2705			break;
2706
2707		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2708						MEM_CGROUP_RECLAIM_NOSWAP |
2709						MEM_CGROUP_RECLAIM_SHRINK);
2710		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2711		/* Usage is reduced ? */
2712		if (curusage >= oldusage)
2713			retry_count--;
2714		else
2715			oldusage = curusage;
2716	}
2717	if (!ret && enlarge)
2718		memcg_oom_recover(memcg);
2719	return ret;
2720}
2721
2722unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2723						gfp_t gfp_mask, int nid,
2724						int zid)
2725{
2726	unsigned long nr_reclaimed = 0;
2727	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2728	unsigned long reclaimed;
2729	int loop = 0;
2730	struct mem_cgroup_tree_per_zone *mctz;
2731	unsigned long long excess;
2732
2733	if (order > 0)
2734		return 0;
2735
2736	mctz = soft_limit_tree_node_zone(nid, zid);
2737	/*
2738	 * This loop can run a while, specially if mem_cgroup's continuously
2739	 * keep exceeding their soft limit and putting the system under
2740	 * pressure
2741	 */
2742	do {
2743		if (next_mz)
2744			mz = next_mz;
2745		else
2746			mz = mem_cgroup_largest_soft_limit_node(mctz);
2747		if (!mz)
2748			break;
2749
2750		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2751						gfp_mask,
2752						MEM_CGROUP_RECLAIM_SOFT);
2753		nr_reclaimed += reclaimed;
2754		spin_lock(&mctz->lock);
2755
2756		/*
2757		 * If we failed to reclaim anything from this memory cgroup
2758		 * it is time to move on to the next cgroup
2759		 */
2760		next_mz = NULL;
2761		if (!reclaimed) {
2762			do {
2763				/*
2764				 * Loop until we find yet another one.
2765				 *
2766				 * By the time we get the soft_limit lock
2767				 * again, someone might have aded the
2768				 * group back on the RB tree. Iterate to
2769				 * make sure we get a different mem.
2770				 * mem_cgroup_largest_soft_limit_node returns
2771				 * NULL if no other cgroup is present on
2772				 * the tree
2773				 */
2774				next_mz =
2775				__mem_cgroup_largest_soft_limit_node(mctz);
2776				if (next_mz == mz) {
2777					css_put(&next_mz->mem->css);
2778					next_mz = NULL;
2779				} else /* next_mz == NULL or other memcg */
2780					break;
2781			} while (1);
2782		}
2783		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2784		excess = res_counter_soft_limit_excess(&mz->mem->res);
2785		/*
2786		 * One school of thought says that we should not add
2787		 * back the node to the tree if reclaim returns 0.
2788		 * But our reclaim could return 0, simply because due
2789		 * to priority we are exposing a smaller subset of
2790		 * memory to reclaim from. Consider this as a longer
2791		 * term TODO.
2792		 */
2793		/* If excess == 0, no tree ops */
2794		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2795		spin_unlock(&mctz->lock);
2796		css_put(&mz->mem->css);
2797		loop++;
2798		/*
2799		 * Could not reclaim anything and there are no more
2800		 * mem cgroups to try or we seem to be looping without
2801		 * reclaiming anything.
2802		 */
2803		if (!nr_reclaimed &&
2804			(next_mz == NULL ||
2805			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2806			break;
2807	} while (!nr_reclaimed);
2808	if (next_mz)
2809		css_put(&next_mz->mem->css);
2810	return nr_reclaimed;
2811}
2812
2813/*
2814 * This routine traverse page_cgroup in given list and drop them all.
2815 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2816 */
2817static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2818				int node, int zid, enum lru_list lru)
2819{
2820	struct zone *zone;
2821	struct mem_cgroup_per_zone *mz;
2822	struct page_cgroup *pc, *busy;
2823	unsigned long flags, loop;
2824	struct list_head *list;
2825	int ret = 0;
2826
2827	zone = &NODE_DATA(node)->node_zones[zid];
2828	mz = mem_cgroup_zoneinfo(mem, node, zid);
2829	list = &mz->lists[lru];
2830
2831	loop = MEM_CGROUP_ZSTAT(mz, lru);
2832	/* give some margin against EBUSY etc...*/
2833	loop += 256;
2834	busy = NULL;
2835	while (loop--) {
2836		ret = 0;
2837		spin_lock_irqsave(&zone->lru_lock, flags);
2838		if (list_empty(list)) {
2839			spin_unlock_irqrestore(&zone->lru_lock, flags);
2840			break;
2841		}
2842		pc = list_entry(list->prev, struct page_cgroup, lru);
2843		if (busy == pc) {
2844			list_move(&pc->lru, list);
2845			busy = NULL;
2846			spin_unlock_irqrestore(&zone->lru_lock, flags);
2847			continue;
2848		}
2849		spin_unlock_irqrestore(&zone->lru_lock, flags);
2850
2851		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2852		if (ret == -ENOMEM)
2853			break;
2854
2855		if (ret == -EBUSY || ret == -EINVAL) {
2856			/* found lock contention or "pc" is obsolete. */
2857			busy = pc;
2858			cond_resched();
2859		} else
2860			busy = NULL;
2861	}
2862
2863	if (!ret && !list_empty(list))
2864		return -EBUSY;
2865	return ret;
2866}
2867
2868/*
2869 * make mem_cgroup's charge to be 0 if there is no task.
2870 * This enables deleting this mem_cgroup.
2871 */
2872static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2873{
2874	int ret;
2875	int node, zid, shrink;
2876	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2877	struct cgroup *cgrp = mem->css.cgroup;
2878
2879	css_get(&mem->css);
2880
2881	shrink = 0;
2882	/* should free all ? */
2883	if (free_all)
2884		goto try_to_free;
2885move_account:
2886	do {
2887		ret = -EBUSY;
2888		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2889			goto out;
2890		ret = -EINTR;
2891		if (signal_pending(current))
2892			goto out;
2893		/* This is for making all *used* pages to be on LRU. */
2894		lru_add_drain_all();
2895		drain_all_stock_sync();
2896		ret = 0;
2897		for_each_node_state(node, N_HIGH_MEMORY) {
2898			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2899				enum lru_list l;
2900				for_each_lru(l) {
2901					ret = mem_cgroup_force_empty_list(mem,
2902							node, zid, l);
2903					if (ret)
2904						break;
2905				}
2906			}
2907			if (ret)
2908				break;
2909		}
2910		memcg_oom_recover(mem);
2911		/* it seems parent cgroup doesn't have enough mem */
2912		if (ret == -ENOMEM)
2913			goto try_to_free;
2914		cond_resched();
2915	/* "ret" should also be checked to ensure all lists are empty. */
2916	} while (mem->res.usage > 0 || ret);
2917out:
2918	css_put(&mem->css);
2919	return ret;
2920
2921try_to_free:
2922	/* returns EBUSY if there is a task or if we come here twice. */
2923	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2924		ret = -EBUSY;
2925		goto out;
2926	}
2927	/* we call try-to-free pages for make this cgroup empty */
2928	lru_add_drain_all();
2929	/* try to free all pages in this cgroup */
2930	shrink = 1;
2931	while (nr_retries && mem->res.usage > 0) {
2932		int progress;
2933
2934		if (signal_pending(current)) {
2935			ret = -EINTR;
2936			goto out;
2937		}
2938		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2939						false, get_swappiness(mem));
2940		if (!progress) {
2941			nr_retries--;
2942			/* maybe some writeback is necessary */
2943			congestion_wait(BLK_RW_ASYNC, HZ/10);
2944		}
2945
2946	}
2947	lru_add_drain();
2948	/* try move_account...there may be some *locked* pages. */
2949	goto move_account;
2950}
2951
2952int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2953{
2954	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2955}
2956
2957
2958static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2959{
2960	return mem_cgroup_from_cont(cont)->use_hierarchy;
2961}
2962
2963static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2964					u64 val)
2965{
2966	int retval = 0;
2967	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2968	struct cgroup *parent = cont->parent;
2969	struct mem_cgroup *parent_mem = NULL;
2970
2971	if (parent)
2972		parent_mem = mem_cgroup_from_cont(parent);
2973
2974	cgroup_lock();
2975	/*
2976	 * If parent's use_hierarchy is set, we can't make any modifications
2977	 * in the child subtrees. If it is unset, then the change can
2978	 * occur, provided the current cgroup has no children.
2979	 *
2980	 * For the root cgroup, parent_mem is NULL, we allow value to be
2981	 * set if there are no children.
2982	 */
2983	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2984				(val == 1 || val == 0)) {
2985		if (list_empty(&cont->children))
2986			mem->use_hierarchy = val;
2987		else
2988			retval = -EBUSY;
2989	} else
2990		retval = -EINVAL;
2991	cgroup_unlock();
2992
2993	return retval;
2994}
2995
2996struct mem_cgroup_idx_data {
2997	s64 val;
2998	enum mem_cgroup_stat_index idx;
2999};
3000
3001static int
3002mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3003{
3004	struct mem_cgroup_idx_data *d = data;
3005	d->val += mem_cgroup_read_stat(mem, d->idx);
3006	return 0;
3007}
3008
3009static void
3010mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3011				enum mem_cgroup_stat_index idx, s64 *val)
3012{
3013	struct mem_cgroup_idx_data d;
3014	d.idx = idx;
3015	d.val = 0;
3016	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3017	*val = d.val;
3018}
3019
3020static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3021{
3022	u64 idx_val, val;
3023
3024	if (!mem_cgroup_is_root(mem)) {
3025		if (!swap)
3026			return res_counter_read_u64(&mem->res, RES_USAGE);
3027		else
3028			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3029	}
3030
3031	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3032	val = idx_val;
3033	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3034	val += idx_val;
3035
3036	if (swap) {
3037		mem_cgroup_get_recursive_idx_stat(mem,
3038				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3039		val += idx_val;
3040	}
3041
3042	return val << PAGE_SHIFT;
3043}
3044
3045static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3046{
3047	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3048	u64 val;
3049	int type, name;
3050
3051	type = MEMFILE_TYPE(cft->private);
3052	name = MEMFILE_ATTR(cft->private);
3053	switch (type) {
3054	case _MEM:
3055		if (name == RES_USAGE)
3056			val = mem_cgroup_usage(mem, false);
3057		else
3058			val = res_counter_read_u64(&mem->res, name);
3059		break;
3060	case _MEMSWAP:
3061		if (name == RES_USAGE)
3062			val = mem_cgroup_usage(mem, true);
3063		else
3064			val = res_counter_read_u64(&mem->memsw, name);
3065		break;
3066	default:
3067		BUG();
3068		break;
3069	}
3070	return val;
3071}
3072/*
3073 * The user of this function is...
3074 * RES_LIMIT.
3075 */
3076static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3077			    const char *buffer)
3078{
3079	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3080	int type, name;
3081	unsigned long long val;
3082	int ret;
3083
3084	type = MEMFILE_TYPE(cft->private);
3085	name = MEMFILE_ATTR(cft->private);
3086	switch (name) {
3087	case RES_LIMIT:
3088		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3089			ret = -EINVAL;
3090			break;
3091		}
3092		/* This function does all necessary parse...reuse it */
3093		ret = res_counter_memparse_write_strategy(buffer, &val);
3094		if (ret)
3095			break;
3096		if (type == _MEM)
3097			ret = mem_cgroup_resize_limit(memcg, val);
3098		else
3099			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3100		break;
3101	case RES_SOFT_LIMIT:
3102		ret = res_counter_memparse_write_strategy(buffer, &val);
3103		if (ret)
3104			break;
3105		/*
3106		 * For memsw, soft limits are hard to implement in terms
3107		 * of semantics, for now, we support soft limits for
3108		 * control without swap
3109		 */
3110		if (type == _MEM)
3111			ret = res_counter_set_soft_limit(&memcg->res, val);
3112		else
3113			ret = -EINVAL;
3114		break;
3115	default:
3116		ret = -EINVAL; /* should be BUG() ? */
3117		break;
3118	}
3119	return ret;
3120}
3121
3122static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3123		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3124{
3125	struct cgroup *cgroup;
3126	unsigned long long min_limit, min_memsw_limit, tmp;
3127
3128	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3129	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3130	cgroup = memcg->css.cgroup;
3131	if (!memcg->use_hierarchy)
3132		goto out;
3133
3134	while (cgroup->parent) {
3135		cgroup = cgroup->parent;
3136		memcg = mem_cgroup_from_cont(cgroup);
3137		if (!memcg->use_hierarchy)
3138			break;
3139		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3140		min_limit = min(min_limit, tmp);
3141		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3142		min_memsw_limit = min(min_memsw_limit, tmp);
3143	}
3144out:
3145	*mem_limit = min_limit;
3146	*memsw_limit = min_memsw_limit;
3147	return;
3148}
3149
3150static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3151{
3152	struct mem_cgroup *mem;
3153	int type, name;
3154
3155	mem = mem_cgroup_from_cont(cont);
3156	type = MEMFILE_TYPE(event);
3157	name = MEMFILE_ATTR(event);
3158	switch (name) {
3159	case RES_MAX_USAGE:
3160		if (type == _MEM)
3161			res_counter_reset_max(&mem->res);
3162		else
3163			res_counter_reset_max(&mem->memsw);
3164		break;
3165	case RES_FAILCNT:
3166		if (type == _MEM)
3167			res_counter_reset_failcnt(&mem->res);
3168		else
3169			res_counter_reset_failcnt(&mem->memsw);
3170		break;
3171	}
3172
3173	return 0;
3174}
3175
3176static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3177					struct cftype *cft)
3178{
3179	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3180}
3181
3182#ifdef CONFIG_MMU
3183static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3184					struct cftype *cft, u64 val)
3185{
3186	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3187
3188	if (val >= (1 << NR_MOVE_TYPE))
3189		return -EINVAL;
3190	/*
3191	 * We check this value several times in both in can_attach() and
3192	 * attach(), so we need cgroup lock to prevent this value from being
3193	 * inconsistent.
3194	 */
3195	cgroup_lock();
3196	mem->move_charge_at_immigrate = val;
3197	cgroup_unlock();
3198
3199	return 0;
3200}
3201#else
3202static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3203					struct cftype *cft, u64 val)
3204{
3205	return -ENOSYS;
3206}
3207#endif
3208
3209
3210/* For read statistics */
3211enum {
3212	MCS_CACHE,
3213	MCS_RSS,
3214	MCS_FILE_MAPPED,
3215	MCS_PGPGIN,
3216	MCS_PGPGOUT,
3217	MCS_SWAP,
3218	MCS_INACTIVE_ANON,
3219	MCS_ACTIVE_ANON,
3220	MCS_INACTIVE_FILE,
3221	MCS_ACTIVE_FILE,
3222	MCS_UNEVICTABLE,
3223	NR_MCS_STAT,
3224};
3225
3226struct mcs_total_stat {
3227	s64 stat[NR_MCS_STAT];
3228};
3229
3230struct {
3231	char *local_name;
3232	char *total_name;
3233} memcg_stat_strings[NR_MCS_STAT] = {
3234	{"cache", "total_cache"},
3235	{"rss", "total_rss"},
3236	{"mapped_file", "total_mapped_file"},
3237	{"pgpgin", "total_pgpgin"},
3238	{"pgpgout", "total_pgpgout"},
3239	{"swap", "total_swap"},
3240	{"inactive_anon", "total_inactive_anon"},
3241	{"active_anon", "total_active_anon"},
3242	{"inactive_file", "total_inactive_file"},
3243	{"active_file", "total_active_file"},
3244	{"unevictable", "total_unevictable"}
3245};
3246
3247
3248static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3249{
3250	struct mcs_total_stat *s = data;
3251	s64 val;
3252
3253	/* per cpu stat */
3254	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3255	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3256	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3257	s->stat[MCS_RSS] += val * PAGE_SIZE;
3258	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3259	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3260	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3261	s->stat[MCS_PGPGIN] += val;
3262	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3263	s->stat[MCS_PGPGOUT] += val;
3264	if (do_swap_account) {
3265		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3266		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3267	}
3268
3269	/* per zone stat */
3270	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3271	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3272	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3273	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3274	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3275	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3276	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3277	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3278	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3279	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3280	return 0;
3281}
3282
3283static void
3284mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3285{
3286	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3287}
3288
3289static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3290				 struct cgroup_map_cb *cb)
3291{
3292	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3293	struct mcs_total_stat mystat;
3294	int i;
3295
3296	memset(&mystat, 0, sizeof(mystat));
3297	mem_cgroup_get_local_stat(mem_cont, &mystat);
3298
3299	for (i = 0; i < NR_MCS_STAT; i++) {
3300		if (i == MCS_SWAP && !do_swap_account)
3301			continue;
3302		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3303	}
3304
3305	/* Hierarchical information */
3306	{
3307		unsigned long long limit, memsw_limit;
3308		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3309		cb->fill(cb, "hierarchical_memory_limit", limit);
3310		if (do_swap_account)
3311			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3312	}
3313
3314	memset(&mystat, 0, sizeof(mystat));
3315	mem_cgroup_get_total_stat(mem_cont, &mystat);
3316	for (i = 0; i < NR_MCS_STAT; i++) {
3317		if (i == MCS_SWAP && !do_swap_account)
3318			continue;
3319		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3320	}
3321
3322#ifdef CONFIG_DEBUG_VM
3323	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3324
3325	{
3326		int nid, zid;
3327		struct mem_cgroup_per_zone *mz;
3328		unsigned long recent_rotated[2] = {0, 0};
3329		unsigned long recent_scanned[2] = {0, 0};
3330
3331		for_each_online_node(nid)
3332			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3333				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3334
3335				recent_rotated[0] +=
3336					mz->reclaim_stat.recent_rotated[0];
3337				recent_rotated[1] +=
3338					mz->reclaim_stat.recent_rotated[1];
3339				recent_scanned[0] +=
3340					mz->reclaim_stat.recent_scanned[0];
3341				recent_scanned[1] +=
3342					mz->reclaim_stat.recent_scanned[1];
3343			}
3344		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3345		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3346		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3347		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3348	}
3349#endif
3350
3351	return 0;
3352}
3353
3354static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3355{
3356	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3357
3358	return get_swappiness(memcg);
3359}
3360
3361static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3362				       u64 val)
3363{
3364	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3365	struct mem_cgroup *parent;
3366
3367	if (val > 100)
3368		return -EINVAL;
3369
3370	if (cgrp->parent == NULL)
3371		return -EINVAL;
3372
3373	parent = mem_cgroup_from_cont(cgrp->parent);
3374
3375	cgroup_lock();
3376
3377	/* If under hierarchy, only empty-root can set this value */
3378	if ((parent->use_hierarchy) ||
3379	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3380		cgroup_unlock();
3381		return -EINVAL;
3382	}
3383
3384	spin_lock(&memcg->reclaim_param_lock);
3385	memcg->swappiness = val;
3386	spin_unlock(&memcg->reclaim_param_lock);
3387
3388	cgroup_unlock();
3389
3390	return 0;
3391}
3392
3393static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3394{
3395	struct mem_cgroup_threshold_ary *t;
3396	u64 usage;
3397	int i;
3398
3399	rcu_read_lock();
3400	if (!swap)
3401		t = rcu_dereference(memcg->thresholds);
3402	else
3403		t = rcu_dereference(memcg->memsw_thresholds);
3404
3405	if (!t)
3406		goto unlock;
3407
3408	usage = mem_cgroup_usage(memcg, swap);
3409
3410	/*
3411	 * current_threshold points to threshold just below usage.
3412	 * If it's not true, a threshold was crossed after last
3413	 * call of __mem_cgroup_threshold().
3414	 */
3415	i = t->current_threshold;
3416
3417	/*
3418	 * Iterate backward over array of thresholds starting from
3419	 * current_threshold and check if a threshold is crossed.
3420	 * If none of thresholds below usage is crossed, we read
3421	 * only one element of the array here.
3422	 */
3423	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3424		eventfd_signal(t->entries[i].eventfd, 1);
3425
3426	/* i = current_threshold + 1 */
3427	i++;
3428
3429	/*
3430	 * Iterate forward over array of thresholds starting from
3431	 * current_threshold+1 and check if a threshold is crossed.
3432	 * If none of thresholds above usage is crossed, we read
3433	 * only one element of the array here.
3434	 */
3435	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3436		eventfd_signal(t->entries[i].eventfd, 1);
3437
3438	/* Update current_threshold */
3439	t->current_threshold = i - 1;
3440unlock:
3441	rcu_read_unlock();
3442}
3443
3444static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3445{
3446	__mem_cgroup_threshold(memcg, false);
3447	if (do_swap_account)
3448		__mem_cgroup_threshold(memcg, true);
3449}
3450
3451static int compare_thresholds(const void *a, const void *b)
3452{
3453	const struct mem_cgroup_threshold *_a = a;
3454	const struct mem_cgroup_threshold *_b = b;
3455
3456	return _a->threshold - _b->threshold;
3457}
3458
3459static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3460{
3461	struct mem_cgroup_eventfd_list *ev;
3462
3463	list_for_each_entry(ev, &mem->oom_notify, list)
3464		eventfd_signal(ev->eventfd, 1);
3465	return 0;
3466}
3467
3468static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3469{
3470	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3471}
3472
3473static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3474	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3475{
3476	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3477	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3478	int type = MEMFILE_TYPE(cft->private);
3479	u64 threshold, usage;
3480	int size;
3481	int i, ret;
3482
3483	ret = res_counter_memparse_write_strategy(args, &threshold);
3484	if (ret)
3485		return ret;
3486
3487	mutex_lock(&memcg->thresholds_lock);
3488	if (type == _MEM)
3489		thresholds = memcg->thresholds;
3490	else if (type == _MEMSWAP)
3491		thresholds = memcg->memsw_thresholds;
3492	else
3493		BUG();
3494
3495	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3496
3497	/* Check if a threshold crossed before adding a new one */
3498	if (thresholds)
3499		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3500
3501	if (thresholds)
3502		size = thresholds->size + 1;
3503	else
3504		size = 1;
3505
3506	/* Allocate memory for new array of thresholds */
3507	thresholds_new = kmalloc(sizeof(*thresholds_new) +
3508			size * sizeof(struct mem_cgroup_threshold),
3509			GFP_KERNEL);
3510	if (!thresholds_new) {
3511		ret = -ENOMEM;
3512		goto unlock;
3513	}
3514	thresholds_new->size = size;
3515
3516	/* Copy thresholds (if any) to new array */
3517	if (thresholds)
3518		memcpy(thresholds_new->entries, thresholds->entries,
3519				thresholds->size *
3520				sizeof(struct mem_cgroup_threshold));
3521	/* Add new threshold */
3522	thresholds_new->entries[size - 1].eventfd = eventfd;
3523	thresholds_new->entries[size - 1].threshold = threshold;
3524
3525	/* Sort thresholds. Registering of new threshold isn't time-critical */
3526	sort(thresholds_new->entries, size,
3527			sizeof(struct mem_cgroup_threshold),
3528			compare_thresholds, NULL);
3529
3530	/* Find current threshold */
3531	thresholds_new->current_threshold = -1;
3532	for (i = 0; i < size; i++) {
3533		if (thresholds_new->entries[i].threshold < usage) {
3534			/*
3535			 * thresholds_new->current_threshold will not be used
3536			 * until rcu_assign_pointer(), so it's safe to increment
3537			 * it here.
3538			 */
3539			++thresholds_new->current_threshold;
3540		}
3541	}
3542
3543	if (type == _MEM)
3544		rcu_assign_pointer(memcg->thresholds, thresholds_new);
3545	else
3546		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3547
3548	/* To be sure that nobody uses thresholds before freeing it */
3549	synchronize_rcu();
3550
3551	kfree(thresholds);
3552unlock:
3553	mutex_unlock(&memcg->thresholds_lock);
3554
3555	return ret;
3556}
3557
3558static int mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3559	struct cftype *cft, struct eventfd_ctx *eventfd)
3560{
3561	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3562	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3563	int type = MEMFILE_TYPE(cft->private);
3564	u64 usage;
3565	int size = 0;
3566	int i, j, ret;
3567
3568	mutex_lock(&memcg->thresholds_lock);
3569	if (type == _MEM)
3570		thresholds = memcg->thresholds;
3571	else if (type == _MEMSWAP)
3572		thresholds = memcg->memsw_thresholds;
3573	else
3574		BUG();
3575
3576	/*
3577	 * Something went wrong if we trying to unregister a threshold
3578	 * if we don't have thresholds
3579	 */
3580	BUG_ON(!thresholds);
3581
3582	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3583
3584	/* Check if a threshold crossed before removing */
3585	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3586
3587	/* Calculate new number of threshold */
3588	for (i = 0; i < thresholds->size; i++) {
3589		if (thresholds->entries[i].eventfd != eventfd)
3590			size++;
3591	}
3592
3593	/* Set thresholds array to NULL if we don't have thresholds */
3594	if (!size) {
3595		thresholds_new = NULL;
3596		goto assign;
3597	}
3598
3599	/* Allocate memory for new array of thresholds */
3600	thresholds_new = kmalloc(sizeof(*thresholds_new) +
3601			size * sizeof(struct mem_cgroup_threshold),
3602			GFP_KERNEL);
3603	if (!thresholds_new) {
3604		ret = -ENOMEM;
3605		goto unlock;
3606	}
3607	thresholds_new->size = size;
3608
3609	/* Copy thresholds and find current threshold */
3610	thresholds_new->current_threshold = -1;
3611	for (i = 0, j = 0; i < thresholds->size; i++) {
3612		if (thresholds->entries[i].eventfd == eventfd)
3613			continue;
3614
3615		thresholds_new->entries[j] = thresholds->entries[i];
3616		if (thresholds_new->entries[j].threshold < usage) {
3617			/*
3618			 * thresholds_new->current_threshold will not be used
3619			 * until rcu_assign_pointer(), so it's safe to increment
3620			 * it here.
3621			 */
3622			++thresholds_new->current_threshold;
3623		}
3624		j++;
3625	}
3626
3627assign:
3628	if (type == _MEM)
3629		rcu_assign_pointer(memcg->thresholds, thresholds_new);
3630	else
3631		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3632
3633	/* To be sure that nobody uses thresholds before freeing it */
3634	synchronize_rcu();
3635
3636	kfree(thresholds);
3637unlock:
3638	mutex_unlock(&memcg->thresholds_lock);
3639
3640	return ret;
3641}
3642
3643static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3644	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3645{
3646	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3647	struct mem_cgroup_eventfd_list *event;
3648	int type = MEMFILE_TYPE(cft->private);
3649
3650	BUG_ON(type != _OOM_TYPE);
3651	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3652	if (!event)
3653		return -ENOMEM;
3654
3655	mutex_lock(&memcg_oom_mutex);
3656
3657	event->eventfd = eventfd;
3658	list_add(&event->list, &memcg->oom_notify);
3659
3660	/* already in OOM ? */
3661	if (atomic_read(&memcg->oom_lock))
3662		eventfd_signal(eventfd, 1);
3663	mutex_unlock(&memcg_oom_mutex);
3664
3665	return 0;
3666}
3667
3668static int mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3669	struct cftype *cft, struct eventfd_ctx *eventfd)
3670{
3671	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3672	struct mem_cgroup_eventfd_list *ev, *tmp;
3673	int type = MEMFILE_TYPE(cft->private);
3674
3675	BUG_ON(type != _OOM_TYPE);
3676
3677	mutex_lock(&memcg_oom_mutex);
3678
3679	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3680		if (ev->eventfd == eventfd) {
3681			list_del(&ev->list);
3682			kfree(ev);
3683		}
3684	}
3685
3686	mutex_unlock(&memcg_oom_mutex);
3687
3688	return 0;
3689}
3690
3691static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3692	struct cftype *cft,  struct cgroup_map_cb *cb)
3693{
3694	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3695
3696	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3697
3698	if (atomic_read(&mem->oom_lock))
3699		cb->fill(cb, "under_oom", 1);
3700	else
3701		cb->fill(cb, "under_oom", 0);
3702	return 0;
3703}
3704
3705/*
3706 */
3707static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3708	struct cftype *cft, u64 val)
3709{
3710	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3711	struct mem_cgroup *parent;
3712
3713	/* cannot set to root cgroup and only 0 and 1 are allowed */
3714	if (!cgrp->parent || !((val == 0) || (val == 1)))
3715		return -EINVAL;
3716
3717	parent = mem_cgroup_from_cont(cgrp->parent);
3718
3719	cgroup_lock();
3720	/* oom-kill-disable is a flag for subhierarchy. */
3721	if ((parent->use_hierarchy) ||
3722	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3723		cgroup_unlock();
3724		return -EINVAL;
3725	}
3726	mem->oom_kill_disable = val;
3727	cgroup_unlock();
3728	return 0;
3729}
3730
3731static struct cftype mem_cgroup_files[] = {
3732	{
3733		.name = "usage_in_bytes",
3734		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3735		.read_u64 = mem_cgroup_read,
3736		.register_event = mem_cgroup_usage_register_event,
3737		.unregister_event = mem_cgroup_usage_unregister_event,
3738	},
3739	{
3740		.name = "max_usage_in_bytes",
3741		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3742		.trigger = mem_cgroup_reset,
3743		.read_u64 = mem_cgroup_read,
3744	},
3745	{
3746		.name = "limit_in_bytes",
3747		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3748		.write_string = mem_cgroup_write,
3749		.read_u64 = mem_cgroup_read,
3750	},
3751	{
3752		.name = "soft_limit_in_bytes",
3753		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3754		.write_string = mem_cgroup_write,
3755		.read_u64 = mem_cgroup_read,
3756	},
3757	{
3758		.name = "failcnt",
3759		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3760		.trigger = mem_cgroup_reset,
3761		.read_u64 = mem_cgroup_read,
3762	},
3763	{
3764		.name = "stat",
3765		.read_map = mem_control_stat_show,
3766	},
3767	{
3768		.name = "force_empty",
3769		.trigger = mem_cgroup_force_empty_write,
3770	},
3771	{
3772		.name = "use_hierarchy",
3773		.write_u64 = mem_cgroup_hierarchy_write,
3774		.read_u64 = mem_cgroup_hierarchy_read,
3775	},
3776	{
3777		.name = "swappiness",
3778		.read_u64 = mem_cgroup_swappiness_read,
3779		.write_u64 = mem_cgroup_swappiness_write,
3780	},
3781	{
3782		.name = "move_charge_at_immigrate",
3783		.read_u64 = mem_cgroup_move_charge_read,
3784		.write_u64 = mem_cgroup_move_charge_write,
3785	},
3786	{
3787		.name = "oom_control",
3788		.read_map = mem_cgroup_oom_control_read,
3789		.write_u64 = mem_cgroup_oom_control_write,
3790		.register_event = mem_cgroup_oom_register_event,
3791		.unregister_event = mem_cgroup_oom_unregister_event,
3792		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3793	},
3794};
3795
3796#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3797static struct cftype memsw_cgroup_files[] = {
3798	{
3799		.name = "memsw.usage_in_bytes",
3800		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3801		.read_u64 = mem_cgroup_read,
3802		.register_event = mem_cgroup_usage_register_event,
3803		.unregister_event = mem_cgroup_usage_unregister_event,
3804	},
3805	{
3806		.name = "memsw.max_usage_in_bytes",
3807		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3808		.trigger = mem_cgroup_reset,
3809		.read_u64 = mem_cgroup_read,
3810	},
3811	{
3812		.name = "memsw.limit_in_bytes",
3813		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3814		.write_string = mem_cgroup_write,
3815		.read_u64 = mem_cgroup_read,
3816	},
3817	{
3818		.name = "memsw.failcnt",
3819		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3820		.trigger = mem_cgroup_reset,
3821		.read_u64 = mem_cgroup_read,
3822	},
3823};
3824
3825static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3826{
3827	if (!do_swap_account)
3828		return 0;
3829	return cgroup_add_files(cont, ss, memsw_cgroup_files,
3830				ARRAY_SIZE(memsw_cgroup_files));
3831};
3832#else
3833static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3834{
3835	return 0;
3836}
3837#endif
3838
3839static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3840{
3841	struct mem_cgroup_per_node *pn;
3842	struct mem_cgroup_per_zone *mz;
3843	enum lru_list l;
3844	int zone, tmp = node;
3845	/*
3846	 * This routine is called against possible nodes.
3847	 * But it's BUG to call kmalloc() against offline node.
3848	 *
3849	 * TODO: this routine can waste much memory for nodes which will
3850	 *       never be onlined. It's better to use memory hotplug callback
3851	 *       function.
3852	 */
3853	if (!node_state(node, N_NORMAL_MEMORY))
3854		tmp = -1;
3855	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3856	if (!pn)
3857		return 1;
3858
3859	mem->info.nodeinfo[node] = pn;
3860	memset(pn, 0, sizeof(*pn));
3861
3862	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3863		mz = &pn->zoneinfo[zone];
3864		for_each_lru(l)
3865			INIT_LIST_HEAD(&mz->lists[l]);
3866		mz->usage_in_excess = 0;
3867		mz->on_tree = false;
3868		mz->mem = mem;
3869	}
3870	return 0;
3871}
3872
3873static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3874{
3875	kfree(mem->info.nodeinfo[node]);
3876}
3877
3878static struct mem_cgroup *mem_cgroup_alloc(void)
3879{
3880	struct mem_cgroup *mem;
3881	int size = sizeof(struct mem_cgroup);
3882
3883	/* Can be very big if MAX_NUMNODES is very big */
3884	if (size < PAGE_SIZE)
3885		mem = kmalloc(size, GFP_KERNEL);
3886	else
3887		mem = vmalloc(size);
3888
3889	if (!mem)
3890		return NULL;
3891
3892	memset(mem, 0, size);
3893	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3894	if (!mem->stat) {
3895		if (size < PAGE_SIZE)
3896			kfree(mem);
3897		else
3898			vfree(mem);
3899		mem = NULL;
3900	}
3901	return mem;
3902}
3903
3904/*
3905 * At destroying mem_cgroup, references from swap_cgroup can remain.
3906 * (scanning all at force_empty is too costly...)
3907 *
3908 * Instead of clearing all references at force_empty, we remember
3909 * the number of reference from swap_cgroup and free mem_cgroup when
3910 * it goes down to 0.
3911 *
3912 * Removal of cgroup itself succeeds regardless of refs from swap.
3913 */
3914
3915static void __mem_cgroup_free(struct mem_cgroup *mem)
3916{
3917	int node;
3918
3919	mem_cgroup_remove_from_trees(mem);
3920	free_css_id(&mem_cgroup_subsys, &mem->css);
3921
3922	for_each_node_state(node, N_POSSIBLE)
3923		free_mem_cgroup_per_zone_info(mem, node);
3924
3925	free_percpu(mem->stat);
3926	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3927		kfree(mem);
3928	else
3929		vfree(mem);
3930}
3931
3932static void mem_cgroup_get(struct mem_cgroup *mem)
3933{
3934	atomic_inc(&mem->refcnt);
3935}
3936
3937static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3938{
3939	if (atomic_sub_and_test(count, &mem->refcnt)) {
3940		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3941		__mem_cgroup_free(mem);
3942		if (parent)
3943			mem_cgroup_put(parent);
3944	}
3945}
3946
3947static void mem_cgroup_put(struct mem_cgroup *mem)
3948{
3949	__mem_cgroup_put(mem, 1);
3950}
3951
3952/*
3953 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3954 */
3955static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3956{
3957	if (!mem->res.parent)
3958		return NULL;
3959	return mem_cgroup_from_res_counter(mem->res.parent, res);
3960}
3961
3962#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3963static void __init enable_swap_cgroup(void)
3964{
3965	if (!mem_cgroup_disabled() && really_do_swap_account)
3966		do_swap_account = 1;
3967}
3968#else
3969static void __init enable_swap_cgroup(void)
3970{
3971}
3972#endif
3973
3974static int mem_cgroup_soft_limit_tree_init(void)
3975{
3976	struct mem_cgroup_tree_per_node *rtpn;
3977	struct mem_cgroup_tree_per_zone *rtpz;
3978	int tmp, node, zone;
3979
3980	for_each_node_state(node, N_POSSIBLE) {
3981		tmp = node;
3982		if (!node_state(node, N_NORMAL_MEMORY))
3983			tmp = -1;
3984		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3985		if (!rtpn)
3986			return 1;
3987
3988		soft_limit_tree.rb_tree_per_node[node] = rtpn;
3989
3990		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3991			rtpz = &rtpn->rb_tree_per_zone[zone];
3992			rtpz->rb_root = RB_ROOT;
3993			spin_lock_init(&rtpz->lock);
3994		}
3995	}
3996	return 0;
3997}
3998
3999static struct cgroup_subsys_state * __ref
4000mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4001{
4002	struct mem_cgroup *mem, *parent;
4003	long error = -ENOMEM;
4004	int node;
4005
4006	mem = mem_cgroup_alloc();
4007	if (!mem)
4008		return ERR_PTR(error);
4009
4010	for_each_node_state(node, N_POSSIBLE)
4011		if (alloc_mem_cgroup_per_zone_info(mem, node))
4012			goto free_out;
4013
4014	/* root ? */
4015	if (cont->parent == NULL) {
4016		int cpu;
4017		enable_swap_cgroup();
4018		parent = NULL;
4019		root_mem_cgroup = mem;
4020		if (mem_cgroup_soft_limit_tree_init())
4021			goto free_out;
4022		for_each_possible_cpu(cpu) {
4023			struct memcg_stock_pcp *stock =
4024						&per_cpu(memcg_stock, cpu);
4025			INIT_WORK(&stock->work, drain_local_stock);
4026		}
4027		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4028	} else {
4029		parent = mem_cgroup_from_cont(cont->parent);
4030		mem->use_hierarchy = parent->use_hierarchy;
4031		mem->oom_kill_disable = parent->oom_kill_disable;
4032	}
4033
4034	if (parent && parent->use_hierarchy) {
4035		res_counter_init(&mem->res, &parent->res);
4036		res_counter_init(&mem->memsw, &parent->memsw);
4037		/*
4038		 * We increment refcnt of the parent to ensure that we can
4039		 * safely access it on res_counter_charge/uncharge.
4040		 * This refcnt will be decremented when freeing this
4041		 * mem_cgroup(see mem_cgroup_put).
4042		 */
4043		mem_cgroup_get(parent);
4044	} else {
4045		res_counter_init(&mem->res, NULL);
4046		res_counter_init(&mem->memsw, NULL);
4047	}
4048	mem->last_scanned_child = 0;
4049	spin_lock_init(&mem->reclaim_param_lock);
4050	INIT_LIST_HEAD(&mem->oom_notify);
4051
4052	if (parent)
4053		mem->swappiness = get_swappiness(parent);
4054	atomic_set(&mem->refcnt, 1);
4055	mem->move_charge_at_immigrate = 0;
4056	mutex_init(&mem->thresholds_lock);
4057	return &mem->css;
4058free_out:
4059	__mem_cgroup_free(mem);
4060	root_mem_cgroup = NULL;
4061	return ERR_PTR(error);
4062}
4063
4064static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4065					struct cgroup *cont)
4066{
4067	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4068
4069	return mem_cgroup_force_empty(mem, false);
4070}
4071
4072static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4073				struct cgroup *cont)
4074{
4075	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4076
4077	mem_cgroup_put(mem);
4078}
4079
4080static int mem_cgroup_populate(struct cgroup_subsys *ss,
4081				struct cgroup *cont)
4082{
4083	int ret;
4084
4085	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4086				ARRAY_SIZE(mem_cgroup_files));
4087
4088	if (!ret)
4089		ret = register_memsw_files(cont, ss);
4090	return ret;
4091}
4092
4093#ifdef CONFIG_MMU
4094/* Handlers for move charge at task migration. */
4095#define PRECHARGE_COUNT_AT_ONCE	256
4096static int mem_cgroup_do_precharge(unsigned long count)
4097{
4098	int ret = 0;
4099	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4100	struct mem_cgroup *mem = mc.to;
4101
4102	if (mem_cgroup_is_root(mem)) {
4103		mc.precharge += count;
4104		/* we don't need css_get for root */
4105		return ret;
4106	}
4107	/* try to charge at once */
4108	if (count > 1) {
4109		struct res_counter *dummy;
4110		/*
4111		 * "mem" cannot be under rmdir() because we've already checked
4112		 * by cgroup_lock_live_cgroup() that it is not removed and we
4113		 * are still under the same cgroup_mutex. So we can postpone
4114		 * css_get().
4115		 */
4116		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4117			goto one_by_one;
4118		if (do_swap_account && res_counter_charge(&mem->memsw,
4119						PAGE_SIZE * count, &dummy)) {
4120			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4121			goto one_by_one;
4122		}
4123		mc.precharge += count;
4124		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4125		WARN_ON_ONCE(count > INT_MAX);
4126		__css_get(&mem->css, (int)count);
4127		return ret;
4128	}
4129one_by_one:
4130	/* fall back to one by one charge */
4131	while (count--) {
4132		if (signal_pending(current)) {
4133			ret = -EINTR;
4134			break;
4135		}
4136		if (!batch_count--) {
4137			batch_count = PRECHARGE_COUNT_AT_ONCE;
4138			cond_resched();
4139		}
4140		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4141		if (ret || !mem)
4142			/* mem_cgroup_clear_mc() will do uncharge later */
4143			return -ENOMEM;
4144		mc.precharge++;
4145	}
4146	return ret;
4147}
4148
4149/**
4150 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4151 * @vma: the vma the pte to be checked belongs
4152 * @addr: the address corresponding to the pte to be checked
4153 * @ptent: the pte to be checked
4154 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4155 *
4156 * Returns
4157 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4158 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4159 *     move charge. if @target is not NULL, the page is stored in target->page
4160 *     with extra refcnt got(Callers should handle it).
4161 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4162 *     target for charge migration. if @target is not NULL, the entry is stored
4163 *     in target->ent.
4164 *
4165 * Called with pte lock held.
4166 */
4167union mc_target {
4168	struct page	*page;
4169	swp_entry_t	ent;
4170};
4171
4172enum mc_target_type {
4173	MC_TARGET_NONE,	/* not used */
4174	MC_TARGET_PAGE,
4175	MC_TARGET_SWAP,
4176};
4177
4178static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4179						unsigned long addr, pte_t ptent)
4180{
4181	struct page *page = vm_normal_page(vma, addr, ptent);
4182
4183	if (!page || !page_mapped(page))
4184		return NULL;
4185	if (PageAnon(page)) {
4186		/* we don't move shared anon */
4187		if (!move_anon() || page_mapcount(page) > 2)
4188			return NULL;
4189	} else if (!move_file())
4190		/* we ignore mapcount for file pages */
4191		return NULL;
4192	if (!get_page_unless_zero(page))
4193		return NULL;
4194
4195	return page;
4196}
4197
4198static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4199			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4200{
4201	int usage_count;
4202	struct page *page = NULL;
4203	swp_entry_t ent = pte_to_swp_entry(ptent);
4204
4205	if (!move_anon() || non_swap_entry(ent))
4206		return NULL;
4207	usage_count = mem_cgroup_count_swap_user(ent, &page);
4208	if (usage_count > 1) { /* we don't move shared anon */
4209		if (page)
4210			put_page(page);
4211		return NULL;
4212	}
4213	if (do_swap_account)
4214		entry->val = ent.val;
4215
4216	return page;
4217}
4218
4219static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4220			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4221{
4222	struct page *page = NULL;
4223	struct inode *inode;
4224	struct address_space *mapping;
4225	pgoff_t pgoff;
4226
4227	if (!vma->vm_file) /* anonymous vma */
4228		return NULL;
4229	if (!move_file())
4230		return NULL;
4231
4232	inode = vma->vm_file->f_path.dentry->d_inode;
4233	mapping = vma->vm_file->f_mapping;
4234	if (pte_none(ptent))
4235		pgoff = linear_page_index(vma, addr);
4236	else /* pte_file(ptent) is true */
4237		pgoff = pte_to_pgoff(ptent);
4238
4239	/* page is moved even if it's not RSS of this task(page-faulted). */
4240	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4241		page = find_get_page(mapping, pgoff);
4242	} else { /* shmem/tmpfs file. we should take account of swap too. */
4243		swp_entry_t ent;
4244		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4245		if (do_swap_account)
4246			entry->val = ent.val;
4247	}
4248
4249	return page;
4250}
4251
4252static int is_target_pte_for_mc(struct vm_area_struct *vma,
4253		unsigned long addr, pte_t ptent, union mc_target *target)
4254{
4255	struct page *page = NULL;
4256	struct page_cgroup *pc;
4257	int ret = 0;
4258	swp_entry_t ent = { .val = 0 };
4259
4260	if (pte_present(ptent))
4261		page = mc_handle_present_pte(vma, addr, ptent);
4262	else if (is_swap_pte(ptent))
4263		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4264	else if (pte_none(ptent) || pte_file(ptent))
4265		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4266
4267	if (!page && !ent.val)
4268		return 0;
4269	if (page) {
4270		pc = lookup_page_cgroup(page);
4271		/*
4272		 * Do only loose check w/o page_cgroup lock.
4273		 * mem_cgroup_move_account() checks the pc is valid or not under
4274		 * the lock.
4275		 */
4276		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4277			ret = MC_TARGET_PAGE;
4278			if (target)
4279				target->page = page;
4280		}
4281		if (!ret || !target)
4282			put_page(page);
4283	}
4284	/* There is a swap entry and a page doesn't exist or isn't charged */
4285	if (ent.val && !ret &&
4286			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4287		ret = MC_TARGET_SWAP;
4288		if (target)
4289			target->ent = ent;
4290	}
4291	return ret;
4292}
4293
4294static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4295					unsigned long addr, unsigned long end,
4296					struct mm_walk *walk)
4297{
4298	struct vm_area_struct *vma = walk->private;
4299	pte_t *pte;
4300	spinlock_t *ptl;
4301
4302	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4303	for (; addr != end; pte++, addr += PAGE_SIZE)
4304		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4305			mc.precharge++;	/* increment precharge temporarily */
4306	pte_unmap_unlock(pte - 1, ptl);
4307	cond_resched();
4308
4309	return 0;
4310}
4311
4312static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4313{
4314	unsigned long precharge;
4315	struct vm_area_struct *vma;
4316
4317	down_read(&mm->mmap_sem);
4318	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4319		struct mm_walk mem_cgroup_count_precharge_walk = {
4320			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4321			.mm = mm,
4322			.private = vma,
4323		};
4324		if (is_vm_hugetlb_page(vma))
4325			continue;
4326		walk_page_range(vma->vm_start, vma->vm_end,
4327					&mem_cgroup_count_precharge_walk);
4328	}
4329	up_read(&mm->mmap_sem);
4330
4331	precharge = mc.precharge;
4332	mc.precharge = 0;
4333
4334	return precharge;
4335}
4336
4337static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4338{
4339	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4340}
4341
4342static void mem_cgroup_clear_mc(void)
4343{
4344	/* we must uncharge all the leftover precharges from mc.to */
4345	if (mc.precharge) {
4346		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4347		mc.precharge = 0;
4348		memcg_oom_recover(mc.to);
4349	}
4350	/*
4351	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4352	 * we must uncharge here.
4353	 */
4354	if (mc.moved_charge) {
4355		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4356		mc.moved_charge = 0;
4357		memcg_oom_recover(mc.from);
4358	}
4359	/* we must fixup refcnts and charges */
4360	if (mc.moved_swap) {
4361		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4362		/* uncharge swap account from the old cgroup */
4363		if (!mem_cgroup_is_root(mc.from))
4364			res_counter_uncharge(&mc.from->memsw,
4365						PAGE_SIZE * mc.moved_swap);
4366		__mem_cgroup_put(mc.from, mc.moved_swap);
4367
4368		if (!mem_cgroup_is_root(mc.to)) {
4369			/*
4370			 * we charged both to->res and to->memsw, so we should
4371			 * uncharge to->res.
4372			 */
4373			res_counter_uncharge(&mc.to->res,
4374						PAGE_SIZE * mc.moved_swap);
4375			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4376			__css_put(&mc.to->css, mc.moved_swap);
4377		}
4378		/* we've already done mem_cgroup_get(mc.to) */
4379
4380		mc.moved_swap = 0;
4381	}
4382	mc.from = NULL;
4383	mc.to = NULL;
4384	mc.moving_task = NULL;
4385	wake_up_all(&mc.waitq);
4386}
4387
4388static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4389				struct cgroup *cgroup,
4390				struct task_struct *p,
4391				bool threadgroup)
4392{
4393	int ret = 0;
4394	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4395
4396	if (mem->move_charge_at_immigrate) {
4397		struct mm_struct *mm;
4398		struct mem_cgroup *from = mem_cgroup_from_task(p);
4399
4400		VM_BUG_ON(from == mem);
4401
4402		mm = get_task_mm(p);
4403		if (!mm)
4404			return 0;
4405		/* We move charges only when we move a owner of the mm */
4406		if (mm->owner == p) {
4407			VM_BUG_ON(mc.from);
4408			VM_BUG_ON(mc.to);
4409			VM_BUG_ON(mc.precharge);
4410			VM_BUG_ON(mc.moved_charge);
4411			VM_BUG_ON(mc.moved_swap);
4412			VM_BUG_ON(mc.moving_task);
4413			mc.from = from;
4414			mc.to = mem;
4415			mc.precharge = 0;
4416			mc.moved_charge = 0;
4417			mc.moved_swap = 0;
4418			mc.moving_task = current;
4419
4420			ret = mem_cgroup_precharge_mc(mm);
4421			if (ret)
4422				mem_cgroup_clear_mc();
4423		}
4424		mmput(mm);
4425	}
4426	return ret;
4427}
4428
4429static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4430				struct cgroup *cgroup,
4431				struct task_struct *p,
4432				bool threadgroup)
4433{
4434	mem_cgroup_clear_mc();
4435}
4436
4437static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4438				unsigned long addr, unsigned long end,
4439				struct mm_walk *walk)
4440{
4441	int ret = 0;
4442	struct vm_area_struct *vma = walk->private;
4443	pte_t *pte;
4444	spinlock_t *ptl;
4445
4446retry:
4447	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4448	for (; addr != end; addr += PAGE_SIZE) {
4449		pte_t ptent = *(pte++);
4450		union mc_target target;
4451		int type;
4452		struct page *page;
4453		struct page_cgroup *pc;
4454		swp_entry_t ent;
4455
4456		if (!mc.precharge)
4457			break;
4458
4459		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4460		switch (type) {
4461		case MC_TARGET_PAGE:
4462			page = target.page;
4463			if (isolate_lru_page(page))
4464				goto put;
4465			pc = lookup_page_cgroup(page);
4466			if (!mem_cgroup_move_account(pc,
4467						mc.from, mc.to, false)) {
4468				mc.precharge--;
4469				/* we uncharge from mc.from later. */
4470				mc.moved_charge++;
4471			}
4472			putback_lru_page(page);
4473put:			/* is_target_pte_for_mc() gets the page */
4474			put_page(page);
4475			break;
4476		case MC_TARGET_SWAP:
4477			ent = target.ent;
4478			if (!mem_cgroup_move_swap_account(ent,
4479						mc.from, mc.to, false)) {
4480				mc.precharge--;
4481				/* we fixup refcnts and charges later. */
4482				mc.moved_swap++;
4483			}
4484			break;
4485		default:
4486			break;
4487		}
4488	}
4489	pte_unmap_unlock(pte - 1, ptl);
4490	cond_resched();
4491
4492	if (addr != end) {
4493		/*
4494		 * We have consumed all precharges we got in can_attach().
4495		 * We try charge one by one, but don't do any additional
4496		 * charges to mc.to if we have failed in charge once in attach()
4497		 * phase.
4498		 */
4499		ret = mem_cgroup_do_precharge(1);
4500		if (!ret)
4501			goto retry;
4502	}
4503
4504	return ret;
4505}
4506
4507static void mem_cgroup_move_charge(struct mm_struct *mm)
4508{
4509	struct vm_area_struct *vma;
4510
4511	lru_add_drain_all();
4512	down_read(&mm->mmap_sem);
4513	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4514		int ret;
4515		struct mm_walk mem_cgroup_move_charge_walk = {
4516			.pmd_entry = mem_cgroup_move_charge_pte_range,
4517			.mm = mm,
4518			.private = vma,
4519		};
4520		if (is_vm_hugetlb_page(vma))
4521			continue;
4522		ret = walk_page_range(vma->vm_start, vma->vm_end,
4523						&mem_cgroup_move_charge_walk);
4524		if (ret)
4525			/*
4526			 * means we have consumed all precharges and failed in
4527			 * doing additional charge. Just abandon here.
4528			 */
4529			break;
4530	}
4531	up_read(&mm->mmap_sem);
4532}
4533
4534static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4535				struct cgroup *cont,
4536				struct cgroup *old_cont,
4537				struct task_struct *p,
4538				bool threadgroup)
4539{
4540	struct mm_struct *mm;
4541
4542	if (!mc.to)
4543		/* no need to move charge */
4544		return;
4545
4546	mm = get_task_mm(p);
4547	if (mm) {
4548		mem_cgroup_move_charge(mm);
4549		mmput(mm);
4550	}
4551	mem_cgroup_clear_mc();
4552}
4553#else	/* !CONFIG_MMU */
4554static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4555				struct cgroup *cgroup,
4556				struct task_struct *p,
4557				bool threadgroup)
4558{
4559	return 0;
4560}
4561static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4562				struct cgroup *cgroup,
4563				struct task_struct *p,
4564				bool threadgroup)
4565{
4566}
4567static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4568				struct cgroup *cont,
4569				struct cgroup *old_cont,
4570				struct task_struct *p,
4571				bool threadgroup)
4572{
4573}
4574#endif
4575
4576struct cgroup_subsys mem_cgroup_subsys = {
4577	.name = "memory",
4578	.subsys_id = mem_cgroup_subsys_id,
4579	.create = mem_cgroup_create,
4580	.pre_destroy = mem_cgroup_pre_destroy,
4581	.destroy = mem_cgroup_destroy,
4582	.populate = mem_cgroup_populate,
4583	.can_attach = mem_cgroup_can_attach,
4584	.cancel_attach = mem_cgroup_cancel_attach,
4585	.attach = mem_cgroup_move_task,
4586	.early_init = 0,
4587	.use_id = 1,
4588};
4589
4590#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4591
4592static int __init disable_swap_account(char *s)
4593{
4594	really_do_swap_account = 0;
4595	return 1;
4596}
4597__setup("noswapaccount", disable_swap_account);
4598#endif
4599