memcontrol.c revision 5564e88ba6fd2f6dcd83a592771810cd84b5ae80
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account		(0)
74#endif
75
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90	/*
91	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92	 */
93	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100	/* incremented at every  pagein/pageout */
101	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103
104	MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108	s64 count[MEM_CGROUP_STAT_NSTATS];
109};
110
111/*
112 * per-zone information in memory controller.
113 */
114struct mem_cgroup_per_zone {
115	/*
116	 * spin_lock to protect the per cgroup LRU
117	 */
118	struct list_head	lists[NR_LRU_LISTS];
119	unsigned long		count[NR_LRU_LISTS];
120
121	struct zone_reclaim_stat reclaim_stat;
122	struct rb_node		tree_node;	/* RB tree node */
123	unsigned long long	usage_in_excess;/* Set to the value by which */
124						/* the soft limit is exceeded*/
125	bool			on_tree;
126	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127						/* use container_of	   */
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146	struct rb_root rb_root;
147	spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160struct mem_cgroup_threshold {
161	struct eventfd_ctx *eventfd;
162	u64 threshold;
163};
164
165/* For threshold */
166struct mem_cgroup_threshold_ary {
167	/* An array index points to threshold just below usage. */
168	int current_threshold;
169	/* Size of entries[] */
170	unsigned int size;
171	/* Array of thresholds */
172	struct mem_cgroup_threshold entries[0];
173};
174
175struct mem_cgroup_thresholds {
176	/* Primary thresholds array */
177	struct mem_cgroup_threshold_ary *primary;
178	/*
179	 * Spare threshold array.
180	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181	 * It must be able to store at least primary->size - 1 entries.
182	 */
183	struct mem_cgroup_threshold_ary *spare;
184};
185
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188	struct list_head list;
189	struct eventfd_ctx *eventfd;
190};
191
192static void mem_cgroup_threshold(struct mem_cgroup *mem);
193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206struct mem_cgroup {
207	struct cgroup_subsys_state css;
208	/*
209	 * the counter to account for memory usage
210	 */
211	struct res_counter res;
212	/*
213	 * the counter to account for mem+swap usage.
214	 */
215	struct res_counter memsw;
216	/*
217	 * Per cgroup active and inactive list, similar to the
218	 * per zone LRU lists.
219	 */
220	struct mem_cgroup_lru_info info;
221
222	/*
223	  protect against reclaim related member.
224	*/
225	spinlock_t reclaim_param_lock;
226
227	/*
228	 * While reclaiming in a hierarchy, we cache the last child we
229	 * reclaimed from.
230	 */
231	int last_scanned_child;
232	/*
233	 * Should the accounting and control be hierarchical, per subtree?
234	 */
235	bool use_hierarchy;
236	atomic_t	oom_lock;
237	atomic_t	refcnt;
238
239	unsigned int	swappiness;
240	/* OOM-Killer disable */
241	int		oom_kill_disable;
242
243	/* set when res.limit == memsw.limit */
244	bool		memsw_is_minimum;
245
246	/* protect arrays of thresholds */
247	struct mutex thresholds_lock;
248
249	/* thresholds for memory usage. RCU-protected */
250	struct mem_cgroup_thresholds thresholds;
251
252	/* thresholds for mem+swap usage. RCU-protected */
253	struct mem_cgroup_thresholds memsw_thresholds;
254
255	/* For oom notifier event fd */
256	struct list_head oom_notify;
257
258	/*
259	 * Should we move charges of a task when a task is moved into this
260	 * mem_cgroup ? And what type of charges should we move ?
261	 */
262	unsigned long 	move_charge_at_immigrate;
263	/*
264	 * percpu counter.
265	 */
266	struct mem_cgroup_stat_cpu *stat;
267	/*
268	 * used when a cpu is offlined or other synchronizations
269	 * See mem_cgroup_read_stat().
270	 */
271	struct mem_cgroup_stat_cpu nocpu_base;
272	spinlock_t pcp_counter_lock;
273};
274
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
281	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283	NR_MOVE_TYPE,
284};
285
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
288	spinlock_t	  lock; /* for from, to */
289	struct mem_cgroup *from;
290	struct mem_cgroup *to;
291	unsigned long precharge;
292	unsigned long moved_charge;
293	unsigned long moved_swap;
294	struct task_struct *moving_task;	/* a task moving charges */
295	wait_queue_head_t waitq;		/* a waitq for other context */
296} mc = {
297	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
300
301static bool move_anon(void)
302{
303	return test_bit(MOVE_CHARGE_TYPE_ANON,
304					&mc.to->move_charge_at_immigrate);
305}
306
307static bool move_file(void)
308{
309	return test_bit(MOVE_CHARGE_TYPE_FILE,
310					&mc.to->move_charge_at_immigrate);
311}
312
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
318#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
319
320enum charge_type {
321	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
325	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
326	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327	NR_CHARGE_TYPE,
328};
329
330/* for encoding cft->private value on file */
331#define _MEM			(0)
332#define _MEMSWAP		(1)
333#define _OOM_TYPE		(2)
334#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
335#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
336#define MEMFILE_ATTR(val)	((val) & 0xffff)
337/* Used for OOM nofiier */
338#define OOM_CONTROL		(0)
339
340/*
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
342 */
343#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
344#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
346#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
348#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349
350static void mem_cgroup_get(struct mem_cgroup *mem);
351static void mem_cgroup_put(struct mem_cgroup *mem);
352static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353static void drain_all_stock_async(void);
354
355static struct mem_cgroup_per_zone *
356mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357{
358	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359}
360
361struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362{
363	return &mem->css;
364}
365
366static struct mem_cgroup_per_zone *
367page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
368{
369	int nid = page_to_nid(page);
370	int zid = page_zonenum(page);
371
372	return mem_cgroup_zoneinfo(mem, nid, zid);
373}
374
375static struct mem_cgroup_tree_per_zone *
376soft_limit_tree_node_zone(int nid, int zid)
377{
378	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
379}
380
381static struct mem_cgroup_tree_per_zone *
382soft_limit_tree_from_page(struct page *page)
383{
384	int nid = page_to_nid(page);
385	int zid = page_zonenum(page);
386
387	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
388}
389
390static void
391__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
392				struct mem_cgroup_per_zone *mz,
393				struct mem_cgroup_tree_per_zone *mctz,
394				unsigned long long new_usage_in_excess)
395{
396	struct rb_node **p = &mctz->rb_root.rb_node;
397	struct rb_node *parent = NULL;
398	struct mem_cgroup_per_zone *mz_node;
399
400	if (mz->on_tree)
401		return;
402
403	mz->usage_in_excess = new_usage_in_excess;
404	if (!mz->usage_in_excess)
405		return;
406	while (*p) {
407		parent = *p;
408		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
409					tree_node);
410		if (mz->usage_in_excess < mz_node->usage_in_excess)
411			p = &(*p)->rb_left;
412		/*
413		 * We can't avoid mem cgroups that are over their soft
414		 * limit by the same amount
415		 */
416		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
417			p = &(*p)->rb_right;
418	}
419	rb_link_node(&mz->tree_node, parent, p);
420	rb_insert_color(&mz->tree_node, &mctz->rb_root);
421	mz->on_tree = true;
422}
423
424static void
425__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
426				struct mem_cgroup_per_zone *mz,
427				struct mem_cgroup_tree_per_zone *mctz)
428{
429	if (!mz->on_tree)
430		return;
431	rb_erase(&mz->tree_node, &mctz->rb_root);
432	mz->on_tree = false;
433}
434
435static void
436mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437				struct mem_cgroup_per_zone *mz,
438				struct mem_cgroup_tree_per_zone *mctz)
439{
440	spin_lock(&mctz->lock);
441	__mem_cgroup_remove_exceeded(mem, mz, mctz);
442	spin_unlock(&mctz->lock);
443}
444
445
446static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
447{
448	unsigned long long excess;
449	struct mem_cgroup_per_zone *mz;
450	struct mem_cgroup_tree_per_zone *mctz;
451	int nid = page_to_nid(page);
452	int zid = page_zonenum(page);
453	mctz = soft_limit_tree_from_page(page);
454
455	/*
456	 * Necessary to update all ancestors when hierarchy is used.
457	 * because their event counter is not touched.
458	 */
459	for (; mem; mem = parent_mem_cgroup(mem)) {
460		mz = mem_cgroup_zoneinfo(mem, nid, zid);
461		excess = res_counter_soft_limit_excess(&mem->res);
462		/*
463		 * We have to update the tree if mz is on RB-tree or
464		 * mem is over its softlimit.
465		 */
466		if (excess || mz->on_tree) {
467			spin_lock(&mctz->lock);
468			/* if on-tree, remove it */
469			if (mz->on_tree)
470				__mem_cgroup_remove_exceeded(mem, mz, mctz);
471			/*
472			 * Insert again. mz->usage_in_excess will be updated.
473			 * If excess is 0, no tree ops.
474			 */
475			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
476			spin_unlock(&mctz->lock);
477		}
478	}
479}
480
481static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
482{
483	int node, zone;
484	struct mem_cgroup_per_zone *mz;
485	struct mem_cgroup_tree_per_zone *mctz;
486
487	for_each_node_state(node, N_POSSIBLE) {
488		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
489			mz = mem_cgroup_zoneinfo(mem, node, zone);
490			mctz = soft_limit_tree_node_zone(node, zone);
491			mem_cgroup_remove_exceeded(mem, mz, mctz);
492		}
493	}
494}
495
496static struct mem_cgroup_per_zone *
497__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
498{
499	struct rb_node *rightmost = NULL;
500	struct mem_cgroup_per_zone *mz;
501
502retry:
503	mz = NULL;
504	rightmost = rb_last(&mctz->rb_root);
505	if (!rightmost)
506		goto done;		/* Nothing to reclaim from */
507
508	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
509	/*
510	 * Remove the node now but someone else can add it back,
511	 * we will to add it back at the end of reclaim to its correct
512	 * position in the tree.
513	 */
514	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
515	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
516		!css_tryget(&mz->mem->css))
517		goto retry;
518done:
519	return mz;
520}
521
522static struct mem_cgroup_per_zone *
523mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525	struct mem_cgroup_per_zone *mz;
526
527	spin_lock(&mctz->lock);
528	mz = __mem_cgroup_largest_soft_limit_node(mctz);
529	spin_unlock(&mctz->lock);
530	return mz;
531}
532
533/*
534 * Implementation Note: reading percpu statistics for memcg.
535 *
536 * Both of vmstat[] and percpu_counter has threshold and do periodic
537 * synchronization to implement "quick" read. There are trade-off between
538 * reading cost and precision of value. Then, we may have a chance to implement
539 * a periodic synchronizion of counter in memcg's counter.
540 *
541 * But this _read() function is used for user interface now. The user accounts
542 * memory usage by memory cgroup and he _always_ requires exact value because
543 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
544 * have to visit all online cpus and make sum. So, for now, unnecessary
545 * synchronization is not implemented. (just implemented for cpu hotplug)
546 *
547 * If there are kernel internal actions which can make use of some not-exact
548 * value, and reading all cpu value can be performance bottleneck in some
549 * common workload, threashold and synchonization as vmstat[] should be
550 * implemented.
551 */
552static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
553		enum mem_cgroup_stat_index idx)
554{
555	int cpu;
556	s64 val = 0;
557
558	get_online_cpus();
559	for_each_online_cpu(cpu)
560		val += per_cpu(mem->stat->count[idx], cpu);
561#ifdef CONFIG_HOTPLUG_CPU
562	spin_lock(&mem->pcp_counter_lock);
563	val += mem->nocpu_base.count[idx];
564	spin_unlock(&mem->pcp_counter_lock);
565#endif
566	put_online_cpus();
567	return val;
568}
569
570static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
571{
572	s64 ret;
573
574	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
575	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
576	return ret;
577}
578
579static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
580					 bool charge)
581{
582	int val = (charge) ? 1 : -1;
583	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
584}
585
586static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
587					 bool file, int nr_pages)
588{
589	preempt_disable();
590
591	if (file)
592		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
593	else
594		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
595
596	/* pagein of a big page is an event. So, ignore page size */
597	if (nr_pages > 0)
598		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
599	else {
600		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
601		nr_pages = -nr_pages; /* for event */
602	}
603
604	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
605
606	preempt_enable();
607}
608
609static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
610					enum lru_list idx)
611{
612	int nid, zid;
613	struct mem_cgroup_per_zone *mz;
614	u64 total = 0;
615
616	for_each_online_node(nid)
617		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
618			mz = mem_cgroup_zoneinfo(mem, nid, zid);
619			total += MEM_CGROUP_ZSTAT(mz, idx);
620		}
621	return total;
622}
623
624static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
625{
626	s64 val;
627
628	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
629
630	return !(val & ((1 << event_mask_shift) - 1));
631}
632
633/*
634 * Check events in order.
635 *
636 */
637static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
638{
639	/* threshold event is triggered in finer grain than soft limit */
640	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
641		mem_cgroup_threshold(mem);
642		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
643			mem_cgroup_update_tree(mem, page);
644	}
645}
646
647static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
648{
649	return container_of(cgroup_subsys_state(cont,
650				mem_cgroup_subsys_id), struct mem_cgroup,
651				css);
652}
653
654struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
655{
656	/*
657	 * mm_update_next_owner() may clear mm->owner to NULL
658	 * if it races with swapoff, page migration, etc.
659	 * So this can be called with p == NULL.
660	 */
661	if (unlikely(!p))
662		return NULL;
663
664	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
665				struct mem_cgroup, css);
666}
667
668static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
669{
670	struct mem_cgroup *mem = NULL;
671
672	if (!mm)
673		return NULL;
674	/*
675	 * Because we have no locks, mm->owner's may be being moved to other
676	 * cgroup. We use css_tryget() here even if this looks
677	 * pessimistic (rather than adding locks here).
678	 */
679	rcu_read_lock();
680	do {
681		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
682		if (unlikely(!mem))
683			break;
684	} while (!css_tryget(&mem->css));
685	rcu_read_unlock();
686	return mem;
687}
688
689/* The caller has to guarantee "mem" exists before calling this */
690static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
691{
692	struct cgroup_subsys_state *css;
693	int found;
694
695	if (!mem) /* ROOT cgroup has the smallest ID */
696		return root_mem_cgroup; /*css_put/get against root is ignored*/
697	if (!mem->use_hierarchy) {
698		if (css_tryget(&mem->css))
699			return mem;
700		return NULL;
701	}
702	rcu_read_lock();
703	/*
704	 * searching a memory cgroup which has the smallest ID under given
705	 * ROOT cgroup. (ID >= 1)
706	 */
707	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
708	if (css && css_tryget(css))
709		mem = container_of(css, struct mem_cgroup, css);
710	else
711		mem = NULL;
712	rcu_read_unlock();
713	return mem;
714}
715
716static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
717					struct mem_cgroup *root,
718					bool cond)
719{
720	int nextid = css_id(&iter->css) + 1;
721	int found;
722	int hierarchy_used;
723	struct cgroup_subsys_state *css;
724
725	hierarchy_used = iter->use_hierarchy;
726
727	css_put(&iter->css);
728	/* If no ROOT, walk all, ignore hierarchy */
729	if (!cond || (root && !hierarchy_used))
730		return NULL;
731
732	if (!root)
733		root = root_mem_cgroup;
734
735	do {
736		iter = NULL;
737		rcu_read_lock();
738
739		css = css_get_next(&mem_cgroup_subsys, nextid,
740				&root->css, &found);
741		if (css && css_tryget(css))
742			iter = container_of(css, struct mem_cgroup, css);
743		rcu_read_unlock();
744		/* If css is NULL, no more cgroups will be found */
745		nextid = found + 1;
746	} while (css && !iter);
747
748	return iter;
749}
750/*
751 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
752 * be careful that "break" loop is not allowed. We have reference count.
753 * Instead of that modify "cond" to be false and "continue" to exit the loop.
754 */
755#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
756	for (iter = mem_cgroup_start_loop(root);\
757	     iter != NULL;\
758	     iter = mem_cgroup_get_next(iter, root, cond))
759
760#define for_each_mem_cgroup_tree(iter, root) \
761	for_each_mem_cgroup_tree_cond(iter, root, true)
762
763#define for_each_mem_cgroup_all(iter) \
764	for_each_mem_cgroup_tree_cond(iter, NULL, true)
765
766
767static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
768{
769	return (mem == root_mem_cgroup);
770}
771
772/*
773 * Following LRU functions are allowed to be used without PCG_LOCK.
774 * Operations are called by routine of global LRU independently from memcg.
775 * What we have to take care of here is validness of pc->mem_cgroup.
776 *
777 * Changes to pc->mem_cgroup happens when
778 * 1. charge
779 * 2. moving account
780 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
781 * It is added to LRU before charge.
782 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
783 * When moving account, the page is not on LRU. It's isolated.
784 */
785
786void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
787{
788	struct page_cgroup *pc;
789	struct mem_cgroup_per_zone *mz;
790
791	if (mem_cgroup_disabled())
792		return;
793	pc = lookup_page_cgroup(page);
794	/* can happen while we handle swapcache. */
795	if (!TestClearPageCgroupAcctLRU(pc))
796		return;
797	VM_BUG_ON(!pc->mem_cgroup);
798	/*
799	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
800	 * removed from global LRU.
801	 */
802	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
803	/* huge page split is done under lru_lock. so, we have no races. */
804	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
805	if (mem_cgroup_is_root(pc->mem_cgroup))
806		return;
807	VM_BUG_ON(list_empty(&pc->lru));
808	list_del_init(&pc->lru);
809}
810
811void mem_cgroup_del_lru(struct page *page)
812{
813	mem_cgroup_del_lru_list(page, page_lru(page));
814}
815
816/*
817 * Writeback is about to end against a page which has been marked for immediate
818 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
819 * inactive list.
820 */
821void mem_cgroup_rotate_reclaimable_page(struct page *page)
822{
823	struct mem_cgroup_per_zone *mz;
824	struct page_cgroup *pc;
825	enum lru_list lru = page_lru(page);
826
827	if (mem_cgroup_disabled())
828		return;
829
830	pc = lookup_page_cgroup(page);
831	/* unused or root page is not rotated. */
832	if (!PageCgroupUsed(pc))
833		return;
834	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
835	smp_rmb();
836	if (mem_cgroup_is_root(pc->mem_cgroup))
837		return;
838	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
839	list_move_tail(&pc->lru, &mz->lists[lru]);
840}
841
842void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
843{
844	struct mem_cgroup_per_zone *mz;
845	struct page_cgroup *pc;
846
847	if (mem_cgroup_disabled())
848		return;
849
850	pc = lookup_page_cgroup(page);
851	/* unused or root page is not rotated. */
852	if (!PageCgroupUsed(pc))
853		return;
854	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
855	smp_rmb();
856	if (mem_cgroup_is_root(pc->mem_cgroup))
857		return;
858	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
859	list_move(&pc->lru, &mz->lists[lru]);
860}
861
862void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
863{
864	struct page_cgroup *pc;
865	struct mem_cgroup_per_zone *mz;
866
867	if (mem_cgroup_disabled())
868		return;
869	pc = lookup_page_cgroup(page);
870	VM_BUG_ON(PageCgroupAcctLRU(pc));
871	if (!PageCgroupUsed(pc))
872		return;
873	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
874	smp_rmb();
875	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
876	/* huge page split is done under lru_lock. so, we have no races. */
877	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
878	SetPageCgroupAcctLRU(pc);
879	if (mem_cgroup_is_root(pc->mem_cgroup))
880		return;
881	list_add(&pc->lru, &mz->lists[lru]);
882}
883
884/*
885 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
886 * lru because the page may.be reused after it's fully uncharged (because of
887 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
888 * it again. This function is only used to charge SwapCache. It's done under
889 * lock_page and expected that zone->lru_lock is never held.
890 */
891static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
892{
893	unsigned long flags;
894	struct zone *zone = page_zone(page);
895	struct page_cgroup *pc = lookup_page_cgroup(page);
896
897	spin_lock_irqsave(&zone->lru_lock, flags);
898	/*
899	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
900	 * is guarded by lock_page() because the page is SwapCache.
901	 */
902	if (!PageCgroupUsed(pc))
903		mem_cgroup_del_lru_list(page, page_lru(page));
904	spin_unlock_irqrestore(&zone->lru_lock, flags);
905}
906
907static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
908{
909	unsigned long flags;
910	struct zone *zone = page_zone(page);
911	struct page_cgroup *pc = lookup_page_cgroup(page);
912
913	spin_lock_irqsave(&zone->lru_lock, flags);
914	/* link when the page is linked to LRU but page_cgroup isn't */
915	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
916		mem_cgroup_add_lru_list(page, page_lru(page));
917	spin_unlock_irqrestore(&zone->lru_lock, flags);
918}
919
920
921void mem_cgroup_move_lists(struct page *page,
922			   enum lru_list from, enum lru_list to)
923{
924	if (mem_cgroup_disabled())
925		return;
926	mem_cgroup_del_lru_list(page, from);
927	mem_cgroup_add_lru_list(page, to);
928}
929
930int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
931{
932	int ret;
933	struct mem_cgroup *curr = NULL;
934	struct task_struct *p;
935
936	p = find_lock_task_mm(task);
937	if (!p)
938		return 0;
939	curr = try_get_mem_cgroup_from_mm(p->mm);
940	task_unlock(p);
941	if (!curr)
942		return 0;
943	/*
944	 * We should check use_hierarchy of "mem" not "curr". Because checking
945	 * use_hierarchy of "curr" here make this function true if hierarchy is
946	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
947	 * hierarchy(even if use_hierarchy is disabled in "mem").
948	 */
949	if (mem->use_hierarchy)
950		ret = css_is_ancestor(&curr->css, &mem->css);
951	else
952		ret = (curr == mem);
953	css_put(&curr->css);
954	return ret;
955}
956
957static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
958{
959	unsigned long active;
960	unsigned long inactive;
961	unsigned long gb;
962	unsigned long inactive_ratio;
963
964	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
965	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
966
967	gb = (inactive + active) >> (30 - PAGE_SHIFT);
968	if (gb)
969		inactive_ratio = int_sqrt(10 * gb);
970	else
971		inactive_ratio = 1;
972
973	if (present_pages) {
974		present_pages[0] = inactive;
975		present_pages[1] = active;
976	}
977
978	return inactive_ratio;
979}
980
981int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
982{
983	unsigned long active;
984	unsigned long inactive;
985	unsigned long present_pages[2];
986	unsigned long inactive_ratio;
987
988	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
989
990	inactive = present_pages[0];
991	active = present_pages[1];
992
993	if (inactive * inactive_ratio < active)
994		return 1;
995
996	return 0;
997}
998
999int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1000{
1001	unsigned long active;
1002	unsigned long inactive;
1003
1004	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1005	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1006
1007	return (active > inactive);
1008}
1009
1010unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1011				       struct zone *zone,
1012				       enum lru_list lru)
1013{
1014	int nid = zone_to_nid(zone);
1015	int zid = zone_idx(zone);
1016	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1017
1018	return MEM_CGROUP_ZSTAT(mz, lru);
1019}
1020
1021struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1022						      struct zone *zone)
1023{
1024	int nid = zone_to_nid(zone);
1025	int zid = zone_idx(zone);
1026	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1027
1028	return &mz->reclaim_stat;
1029}
1030
1031struct zone_reclaim_stat *
1032mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1033{
1034	struct page_cgroup *pc;
1035	struct mem_cgroup_per_zone *mz;
1036
1037	if (mem_cgroup_disabled())
1038		return NULL;
1039
1040	pc = lookup_page_cgroup(page);
1041	if (!PageCgroupUsed(pc))
1042		return NULL;
1043	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1044	smp_rmb();
1045	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1046	if (!mz)
1047		return NULL;
1048
1049	return &mz->reclaim_stat;
1050}
1051
1052unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1053					struct list_head *dst,
1054					unsigned long *scanned, int order,
1055					int mode, struct zone *z,
1056					struct mem_cgroup *mem_cont,
1057					int active, int file)
1058{
1059	unsigned long nr_taken = 0;
1060	struct page *page;
1061	unsigned long scan;
1062	LIST_HEAD(pc_list);
1063	struct list_head *src;
1064	struct page_cgroup *pc, *tmp;
1065	int nid = zone_to_nid(z);
1066	int zid = zone_idx(z);
1067	struct mem_cgroup_per_zone *mz;
1068	int lru = LRU_FILE * file + active;
1069	int ret;
1070
1071	BUG_ON(!mem_cont);
1072	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1073	src = &mz->lists[lru];
1074
1075	scan = 0;
1076	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1077		if (scan >= nr_to_scan)
1078			break;
1079
1080		if (unlikely(!PageCgroupUsed(pc)))
1081			continue;
1082
1083		page = pc->page;
1084
1085		if (unlikely(!PageLRU(page)))
1086			continue;
1087
1088		scan++;
1089		ret = __isolate_lru_page(page, mode, file);
1090		switch (ret) {
1091		case 0:
1092			list_move(&page->lru, dst);
1093			mem_cgroup_del_lru(page);
1094			nr_taken += hpage_nr_pages(page);
1095			break;
1096		case -EBUSY:
1097			/* we don't affect global LRU but rotate in our LRU */
1098			mem_cgroup_rotate_lru_list(page, page_lru(page));
1099			break;
1100		default:
1101			break;
1102		}
1103	}
1104
1105	*scanned = scan;
1106
1107	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1108				      0, 0, 0, mode);
1109
1110	return nr_taken;
1111}
1112
1113#define mem_cgroup_from_res_counter(counter, member)	\
1114	container_of(counter, struct mem_cgroup, member)
1115
1116/**
1117 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1118 * @mem: the memory cgroup
1119 *
1120 * Returns the maximum amount of memory @mem can be charged with, in
1121 * bytes.
1122 */
1123static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1124{
1125	unsigned long long margin;
1126
1127	margin = res_counter_margin(&mem->res);
1128	if (do_swap_account)
1129		margin = min(margin, res_counter_margin(&mem->memsw));
1130	return margin;
1131}
1132
1133static unsigned int get_swappiness(struct mem_cgroup *memcg)
1134{
1135	struct cgroup *cgrp = memcg->css.cgroup;
1136	unsigned int swappiness;
1137
1138	/* root ? */
1139	if (cgrp->parent == NULL)
1140		return vm_swappiness;
1141
1142	spin_lock(&memcg->reclaim_param_lock);
1143	swappiness = memcg->swappiness;
1144	spin_unlock(&memcg->reclaim_param_lock);
1145
1146	return swappiness;
1147}
1148
1149static void mem_cgroup_start_move(struct mem_cgroup *mem)
1150{
1151	int cpu;
1152
1153	get_online_cpus();
1154	spin_lock(&mem->pcp_counter_lock);
1155	for_each_online_cpu(cpu)
1156		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1157	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1158	spin_unlock(&mem->pcp_counter_lock);
1159	put_online_cpus();
1160
1161	synchronize_rcu();
1162}
1163
1164static void mem_cgroup_end_move(struct mem_cgroup *mem)
1165{
1166	int cpu;
1167
1168	if (!mem)
1169		return;
1170	get_online_cpus();
1171	spin_lock(&mem->pcp_counter_lock);
1172	for_each_online_cpu(cpu)
1173		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1174	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1175	spin_unlock(&mem->pcp_counter_lock);
1176	put_online_cpus();
1177}
1178/*
1179 * 2 routines for checking "mem" is under move_account() or not.
1180 *
1181 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1182 *			  for avoiding race in accounting. If true,
1183 *			  pc->mem_cgroup may be overwritten.
1184 *
1185 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1186 *			  under hierarchy of moving cgroups. This is for
1187 *			  waiting at hith-memory prressure caused by "move".
1188 */
1189
1190static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1191{
1192	VM_BUG_ON(!rcu_read_lock_held());
1193	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1194}
1195
1196static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1197{
1198	struct mem_cgroup *from;
1199	struct mem_cgroup *to;
1200	bool ret = false;
1201	/*
1202	 * Unlike task_move routines, we access mc.to, mc.from not under
1203	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1204	 */
1205	spin_lock(&mc.lock);
1206	from = mc.from;
1207	to = mc.to;
1208	if (!from)
1209		goto unlock;
1210	if (from == mem || to == mem
1211	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1212	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1213		ret = true;
1214unlock:
1215	spin_unlock(&mc.lock);
1216	return ret;
1217}
1218
1219static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1220{
1221	if (mc.moving_task && current != mc.moving_task) {
1222		if (mem_cgroup_under_move(mem)) {
1223			DEFINE_WAIT(wait);
1224			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1225			/* moving charge context might have finished. */
1226			if (mc.moving_task)
1227				schedule();
1228			finish_wait(&mc.waitq, &wait);
1229			return true;
1230		}
1231	}
1232	return false;
1233}
1234
1235/**
1236 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1237 * @memcg: The memory cgroup that went over limit
1238 * @p: Task that is going to be killed
1239 *
1240 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1241 * enabled
1242 */
1243void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1244{
1245	struct cgroup *task_cgrp;
1246	struct cgroup *mem_cgrp;
1247	/*
1248	 * Need a buffer in BSS, can't rely on allocations. The code relies
1249	 * on the assumption that OOM is serialized for memory controller.
1250	 * If this assumption is broken, revisit this code.
1251	 */
1252	static char memcg_name[PATH_MAX];
1253	int ret;
1254
1255	if (!memcg || !p)
1256		return;
1257
1258
1259	rcu_read_lock();
1260
1261	mem_cgrp = memcg->css.cgroup;
1262	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1263
1264	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1265	if (ret < 0) {
1266		/*
1267		 * Unfortunately, we are unable to convert to a useful name
1268		 * But we'll still print out the usage information
1269		 */
1270		rcu_read_unlock();
1271		goto done;
1272	}
1273	rcu_read_unlock();
1274
1275	printk(KERN_INFO "Task in %s killed", memcg_name);
1276
1277	rcu_read_lock();
1278	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1279	if (ret < 0) {
1280		rcu_read_unlock();
1281		goto done;
1282	}
1283	rcu_read_unlock();
1284
1285	/*
1286	 * Continues from above, so we don't need an KERN_ level
1287	 */
1288	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1289done:
1290
1291	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1292		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1293		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1294		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1295	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1296		"failcnt %llu\n",
1297		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1298		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1299		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1300}
1301
1302/*
1303 * This function returns the number of memcg under hierarchy tree. Returns
1304 * 1(self count) if no children.
1305 */
1306static int mem_cgroup_count_children(struct mem_cgroup *mem)
1307{
1308	int num = 0;
1309	struct mem_cgroup *iter;
1310
1311	for_each_mem_cgroup_tree(iter, mem)
1312		num++;
1313	return num;
1314}
1315
1316/*
1317 * Return the memory (and swap, if configured) limit for a memcg.
1318 */
1319u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1320{
1321	u64 limit;
1322	u64 memsw;
1323
1324	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1325	limit += total_swap_pages << PAGE_SHIFT;
1326
1327	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1328	/*
1329	 * If memsw is finite and limits the amount of swap space available
1330	 * to this memcg, return that limit.
1331	 */
1332	return min(limit, memsw);
1333}
1334
1335/*
1336 * Visit the first child (need not be the first child as per the ordering
1337 * of the cgroup list, since we track last_scanned_child) of @mem and use
1338 * that to reclaim free pages from.
1339 */
1340static struct mem_cgroup *
1341mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1342{
1343	struct mem_cgroup *ret = NULL;
1344	struct cgroup_subsys_state *css;
1345	int nextid, found;
1346
1347	if (!root_mem->use_hierarchy) {
1348		css_get(&root_mem->css);
1349		ret = root_mem;
1350	}
1351
1352	while (!ret) {
1353		rcu_read_lock();
1354		nextid = root_mem->last_scanned_child + 1;
1355		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1356				   &found);
1357		if (css && css_tryget(css))
1358			ret = container_of(css, struct mem_cgroup, css);
1359
1360		rcu_read_unlock();
1361		/* Updates scanning parameter */
1362		spin_lock(&root_mem->reclaim_param_lock);
1363		if (!css) {
1364			/* this means start scan from ID:1 */
1365			root_mem->last_scanned_child = 0;
1366		} else
1367			root_mem->last_scanned_child = found;
1368		spin_unlock(&root_mem->reclaim_param_lock);
1369	}
1370
1371	return ret;
1372}
1373
1374/*
1375 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1376 * we reclaimed from, so that we don't end up penalizing one child extensively
1377 * based on its position in the children list.
1378 *
1379 * root_mem is the original ancestor that we've been reclaim from.
1380 *
1381 * We give up and return to the caller when we visit root_mem twice.
1382 * (other groups can be removed while we're walking....)
1383 *
1384 * If shrink==true, for avoiding to free too much, this returns immedieately.
1385 */
1386static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1387						struct zone *zone,
1388						gfp_t gfp_mask,
1389						unsigned long reclaim_options)
1390{
1391	struct mem_cgroup *victim;
1392	int ret, total = 0;
1393	int loop = 0;
1394	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1395	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1396	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1397	unsigned long excess;
1398
1399	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1400
1401	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1402	if (root_mem->memsw_is_minimum)
1403		noswap = true;
1404
1405	while (1) {
1406		victim = mem_cgroup_select_victim(root_mem);
1407		if (victim == root_mem) {
1408			loop++;
1409			if (loop >= 1)
1410				drain_all_stock_async();
1411			if (loop >= 2) {
1412				/*
1413				 * If we have not been able to reclaim
1414				 * anything, it might because there are
1415				 * no reclaimable pages under this hierarchy
1416				 */
1417				if (!check_soft || !total) {
1418					css_put(&victim->css);
1419					break;
1420				}
1421				/*
1422				 * We want to do more targetted reclaim.
1423				 * excess >> 2 is not to excessive so as to
1424				 * reclaim too much, nor too less that we keep
1425				 * coming back to reclaim from this cgroup
1426				 */
1427				if (total >= (excess >> 2) ||
1428					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1429					css_put(&victim->css);
1430					break;
1431				}
1432			}
1433		}
1434		if (!mem_cgroup_local_usage(victim)) {
1435			/* this cgroup's local usage == 0 */
1436			css_put(&victim->css);
1437			continue;
1438		}
1439		/* we use swappiness of local cgroup */
1440		if (check_soft)
1441			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1442				noswap, get_swappiness(victim), zone);
1443		else
1444			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1445						noswap, get_swappiness(victim));
1446		css_put(&victim->css);
1447		/*
1448		 * At shrinking usage, we can't check we should stop here or
1449		 * reclaim more. It's depends on callers. last_scanned_child
1450		 * will work enough for keeping fairness under tree.
1451		 */
1452		if (shrink)
1453			return ret;
1454		total += ret;
1455		if (check_soft) {
1456			if (!res_counter_soft_limit_excess(&root_mem->res))
1457				return total;
1458		} else if (mem_cgroup_margin(root_mem))
1459			return 1 + total;
1460	}
1461	return total;
1462}
1463
1464/*
1465 * Check OOM-Killer is already running under our hierarchy.
1466 * If someone is running, return false.
1467 */
1468static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1469{
1470	int x, lock_count = 0;
1471	struct mem_cgroup *iter;
1472
1473	for_each_mem_cgroup_tree(iter, mem) {
1474		x = atomic_inc_return(&iter->oom_lock);
1475		lock_count = max(x, lock_count);
1476	}
1477
1478	if (lock_count == 1)
1479		return true;
1480	return false;
1481}
1482
1483static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1484{
1485	struct mem_cgroup *iter;
1486
1487	/*
1488	 * When a new child is created while the hierarchy is under oom,
1489	 * mem_cgroup_oom_lock() may not be called. We have to use
1490	 * atomic_add_unless() here.
1491	 */
1492	for_each_mem_cgroup_tree(iter, mem)
1493		atomic_add_unless(&iter->oom_lock, -1, 0);
1494	return 0;
1495}
1496
1497
1498static DEFINE_MUTEX(memcg_oom_mutex);
1499static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1500
1501struct oom_wait_info {
1502	struct mem_cgroup *mem;
1503	wait_queue_t	wait;
1504};
1505
1506static int memcg_oom_wake_function(wait_queue_t *wait,
1507	unsigned mode, int sync, void *arg)
1508{
1509	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1510	struct oom_wait_info *oom_wait_info;
1511
1512	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1513
1514	if (oom_wait_info->mem == wake_mem)
1515		goto wakeup;
1516	/* if no hierarchy, no match */
1517	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1518		return 0;
1519	/*
1520	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1521	 * Then we can use css_is_ancestor without taking care of RCU.
1522	 */
1523	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1524	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1525		return 0;
1526
1527wakeup:
1528	return autoremove_wake_function(wait, mode, sync, arg);
1529}
1530
1531static void memcg_wakeup_oom(struct mem_cgroup *mem)
1532{
1533	/* for filtering, pass "mem" as argument. */
1534	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1535}
1536
1537static void memcg_oom_recover(struct mem_cgroup *mem)
1538{
1539	if (mem && atomic_read(&mem->oom_lock))
1540		memcg_wakeup_oom(mem);
1541}
1542
1543/*
1544 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1545 */
1546bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1547{
1548	struct oom_wait_info owait;
1549	bool locked, need_to_kill;
1550
1551	owait.mem = mem;
1552	owait.wait.flags = 0;
1553	owait.wait.func = memcg_oom_wake_function;
1554	owait.wait.private = current;
1555	INIT_LIST_HEAD(&owait.wait.task_list);
1556	need_to_kill = true;
1557	/* At first, try to OOM lock hierarchy under mem.*/
1558	mutex_lock(&memcg_oom_mutex);
1559	locked = mem_cgroup_oom_lock(mem);
1560	/*
1561	 * Even if signal_pending(), we can't quit charge() loop without
1562	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1563	 * under OOM is always welcomed, use TASK_KILLABLE here.
1564	 */
1565	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1566	if (!locked || mem->oom_kill_disable)
1567		need_to_kill = false;
1568	if (locked)
1569		mem_cgroup_oom_notify(mem);
1570	mutex_unlock(&memcg_oom_mutex);
1571
1572	if (need_to_kill) {
1573		finish_wait(&memcg_oom_waitq, &owait.wait);
1574		mem_cgroup_out_of_memory(mem, mask);
1575	} else {
1576		schedule();
1577		finish_wait(&memcg_oom_waitq, &owait.wait);
1578	}
1579	mutex_lock(&memcg_oom_mutex);
1580	mem_cgroup_oom_unlock(mem);
1581	memcg_wakeup_oom(mem);
1582	mutex_unlock(&memcg_oom_mutex);
1583
1584	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1585		return false;
1586	/* Give chance to dying process */
1587	schedule_timeout(1);
1588	return true;
1589}
1590
1591/*
1592 * Currently used to update mapped file statistics, but the routine can be
1593 * generalized to update other statistics as well.
1594 *
1595 * Notes: Race condition
1596 *
1597 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1598 * it tends to be costly. But considering some conditions, we doesn't need
1599 * to do so _always_.
1600 *
1601 * Considering "charge", lock_page_cgroup() is not required because all
1602 * file-stat operations happen after a page is attached to radix-tree. There
1603 * are no race with "charge".
1604 *
1605 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1606 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1607 * if there are race with "uncharge". Statistics itself is properly handled
1608 * by flags.
1609 *
1610 * Considering "move", this is an only case we see a race. To make the race
1611 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1612 * possibility of race condition. If there is, we take a lock.
1613 */
1614
1615void mem_cgroup_update_page_stat(struct page *page,
1616				 enum mem_cgroup_page_stat_item idx, int val)
1617{
1618	struct mem_cgroup *mem;
1619	struct page_cgroup *pc = lookup_page_cgroup(page);
1620	bool need_unlock = false;
1621	unsigned long uninitialized_var(flags);
1622
1623	if (unlikely(!pc))
1624		return;
1625
1626	rcu_read_lock();
1627	mem = pc->mem_cgroup;
1628	if (unlikely(!mem || !PageCgroupUsed(pc)))
1629		goto out;
1630	/* pc->mem_cgroup is unstable ? */
1631	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1632		/* take a lock against to access pc->mem_cgroup */
1633		move_lock_page_cgroup(pc, &flags);
1634		need_unlock = true;
1635		mem = pc->mem_cgroup;
1636		if (!mem || !PageCgroupUsed(pc))
1637			goto out;
1638	}
1639
1640	switch (idx) {
1641	case MEMCG_NR_FILE_MAPPED:
1642		if (val > 0)
1643			SetPageCgroupFileMapped(pc);
1644		else if (!page_mapped(page))
1645			ClearPageCgroupFileMapped(pc);
1646		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1647		break;
1648	default:
1649		BUG();
1650	}
1651
1652	this_cpu_add(mem->stat->count[idx], val);
1653
1654out:
1655	if (unlikely(need_unlock))
1656		move_unlock_page_cgroup(pc, &flags);
1657	rcu_read_unlock();
1658	return;
1659}
1660EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1661
1662/*
1663 * size of first charge trial. "32" comes from vmscan.c's magic value.
1664 * TODO: maybe necessary to use big numbers in big irons.
1665 */
1666#define CHARGE_SIZE	(32 * PAGE_SIZE)
1667struct memcg_stock_pcp {
1668	struct mem_cgroup *cached; /* this never be root cgroup */
1669	int charge;
1670	struct work_struct work;
1671};
1672static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1673static atomic_t memcg_drain_count;
1674
1675/*
1676 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1677 * from local stock and true is returned. If the stock is 0 or charges from a
1678 * cgroup which is not current target, returns false. This stock will be
1679 * refilled.
1680 */
1681static bool consume_stock(struct mem_cgroup *mem)
1682{
1683	struct memcg_stock_pcp *stock;
1684	bool ret = true;
1685
1686	stock = &get_cpu_var(memcg_stock);
1687	if (mem == stock->cached && stock->charge)
1688		stock->charge -= PAGE_SIZE;
1689	else /* need to call res_counter_charge */
1690		ret = false;
1691	put_cpu_var(memcg_stock);
1692	return ret;
1693}
1694
1695/*
1696 * Returns stocks cached in percpu to res_counter and reset cached information.
1697 */
1698static void drain_stock(struct memcg_stock_pcp *stock)
1699{
1700	struct mem_cgroup *old = stock->cached;
1701
1702	if (stock->charge) {
1703		res_counter_uncharge(&old->res, stock->charge);
1704		if (do_swap_account)
1705			res_counter_uncharge(&old->memsw, stock->charge);
1706	}
1707	stock->cached = NULL;
1708	stock->charge = 0;
1709}
1710
1711/*
1712 * This must be called under preempt disabled or must be called by
1713 * a thread which is pinned to local cpu.
1714 */
1715static void drain_local_stock(struct work_struct *dummy)
1716{
1717	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1718	drain_stock(stock);
1719}
1720
1721/*
1722 * Cache charges(val) which is from res_counter, to local per_cpu area.
1723 * This will be consumed by consume_stock() function, later.
1724 */
1725static void refill_stock(struct mem_cgroup *mem, int val)
1726{
1727	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1728
1729	if (stock->cached != mem) { /* reset if necessary */
1730		drain_stock(stock);
1731		stock->cached = mem;
1732	}
1733	stock->charge += val;
1734	put_cpu_var(memcg_stock);
1735}
1736
1737/*
1738 * Tries to drain stocked charges in other cpus. This function is asynchronous
1739 * and just put a work per cpu for draining localy on each cpu. Caller can
1740 * expects some charges will be back to res_counter later but cannot wait for
1741 * it.
1742 */
1743static void drain_all_stock_async(void)
1744{
1745	int cpu;
1746	/* This function is for scheduling "drain" in asynchronous way.
1747	 * The result of "drain" is not directly handled by callers. Then,
1748	 * if someone is calling drain, we don't have to call drain more.
1749	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1750	 * there is a race. We just do loose check here.
1751	 */
1752	if (atomic_read(&memcg_drain_count))
1753		return;
1754	/* Notify other cpus that system-wide "drain" is running */
1755	atomic_inc(&memcg_drain_count);
1756	get_online_cpus();
1757	for_each_online_cpu(cpu) {
1758		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1759		schedule_work_on(cpu, &stock->work);
1760	}
1761 	put_online_cpus();
1762	atomic_dec(&memcg_drain_count);
1763	/* We don't wait for flush_work */
1764}
1765
1766/* This is a synchronous drain interface. */
1767static void drain_all_stock_sync(void)
1768{
1769	/* called when force_empty is called */
1770	atomic_inc(&memcg_drain_count);
1771	schedule_on_each_cpu(drain_local_stock);
1772	atomic_dec(&memcg_drain_count);
1773}
1774
1775/*
1776 * This function drains percpu counter value from DEAD cpu and
1777 * move it to local cpu. Note that this function can be preempted.
1778 */
1779static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1780{
1781	int i;
1782
1783	spin_lock(&mem->pcp_counter_lock);
1784	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1785		s64 x = per_cpu(mem->stat->count[i], cpu);
1786
1787		per_cpu(mem->stat->count[i], cpu) = 0;
1788		mem->nocpu_base.count[i] += x;
1789	}
1790	/* need to clear ON_MOVE value, works as a kind of lock. */
1791	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1792	spin_unlock(&mem->pcp_counter_lock);
1793}
1794
1795static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1796{
1797	int idx = MEM_CGROUP_ON_MOVE;
1798
1799	spin_lock(&mem->pcp_counter_lock);
1800	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1801	spin_unlock(&mem->pcp_counter_lock);
1802}
1803
1804static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1805					unsigned long action,
1806					void *hcpu)
1807{
1808	int cpu = (unsigned long)hcpu;
1809	struct memcg_stock_pcp *stock;
1810	struct mem_cgroup *iter;
1811
1812	if ((action == CPU_ONLINE)) {
1813		for_each_mem_cgroup_all(iter)
1814			synchronize_mem_cgroup_on_move(iter, cpu);
1815		return NOTIFY_OK;
1816	}
1817
1818	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1819		return NOTIFY_OK;
1820
1821	for_each_mem_cgroup_all(iter)
1822		mem_cgroup_drain_pcp_counter(iter, cpu);
1823
1824	stock = &per_cpu(memcg_stock, cpu);
1825	drain_stock(stock);
1826	return NOTIFY_OK;
1827}
1828
1829
1830/* See __mem_cgroup_try_charge() for details */
1831enum {
1832	CHARGE_OK,		/* success */
1833	CHARGE_RETRY,		/* need to retry but retry is not bad */
1834	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1835	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1836	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1837};
1838
1839static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1840				int csize, bool oom_check)
1841{
1842	struct mem_cgroup *mem_over_limit;
1843	struct res_counter *fail_res;
1844	unsigned long flags = 0;
1845	int ret;
1846
1847	ret = res_counter_charge(&mem->res, csize, &fail_res);
1848
1849	if (likely(!ret)) {
1850		if (!do_swap_account)
1851			return CHARGE_OK;
1852		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1853		if (likely(!ret))
1854			return CHARGE_OK;
1855
1856		res_counter_uncharge(&mem->res, csize);
1857		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1858		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1859	} else
1860		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1861	/*
1862	 * csize can be either a huge page (HPAGE_SIZE), a batch of
1863	 * regular pages (CHARGE_SIZE), or a single regular page
1864	 * (PAGE_SIZE).
1865	 *
1866	 * Never reclaim on behalf of optional batching, retry with a
1867	 * single page instead.
1868	 */
1869	if (csize == CHARGE_SIZE)
1870		return CHARGE_RETRY;
1871
1872	if (!(gfp_mask & __GFP_WAIT))
1873		return CHARGE_WOULDBLOCK;
1874
1875	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1876					      gfp_mask, flags);
1877	if (mem_cgroup_margin(mem_over_limit) >= csize)
1878		return CHARGE_RETRY;
1879	/*
1880	 * Even though the limit is exceeded at this point, reclaim
1881	 * may have been able to free some pages.  Retry the charge
1882	 * before killing the task.
1883	 *
1884	 * Only for regular pages, though: huge pages are rather
1885	 * unlikely to succeed so close to the limit, and we fall back
1886	 * to regular pages anyway in case of failure.
1887	 */
1888	if (csize == PAGE_SIZE && ret)
1889		return CHARGE_RETRY;
1890
1891	/*
1892	 * At task move, charge accounts can be doubly counted. So, it's
1893	 * better to wait until the end of task_move if something is going on.
1894	 */
1895	if (mem_cgroup_wait_acct_move(mem_over_limit))
1896		return CHARGE_RETRY;
1897
1898	/* If we don't need to call oom-killer at el, return immediately */
1899	if (!oom_check)
1900		return CHARGE_NOMEM;
1901	/* check OOM */
1902	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1903		return CHARGE_OOM_DIE;
1904
1905	return CHARGE_RETRY;
1906}
1907
1908/*
1909 * Unlike exported interface, "oom" parameter is added. if oom==true,
1910 * oom-killer can be invoked.
1911 */
1912static int __mem_cgroup_try_charge(struct mm_struct *mm,
1913				   gfp_t gfp_mask,
1914				   struct mem_cgroup **memcg, bool oom,
1915				   int page_size)
1916{
1917	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1918	struct mem_cgroup *mem = NULL;
1919	int ret;
1920	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1921
1922	/*
1923	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1924	 * in system level. So, allow to go ahead dying process in addition to
1925	 * MEMDIE process.
1926	 */
1927	if (unlikely(test_thread_flag(TIF_MEMDIE)
1928		     || fatal_signal_pending(current)))
1929		goto bypass;
1930
1931	/*
1932	 * We always charge the cgroup the mm_struct belongs to.
1933	 * The mm_struct's mem_cgroup changes on task migration if the
1934	 * thread group leader migrates. It's possible that mm is not
1935	 * set, if so charge the init_mm (happens for pagecache usage).
1936	 */
1937	if (!*memcg && !mm)
1938		goto bypass;
1939again:
1940	if (*memcg) { /* css should be a valid one */
1941		mem = *memcg;
1942		VM_BUG_ON(css_is_removed(&mem->css));
1943		if (mem_cgroup_is_root(mem))
1944			goto done;
1945		if (page_size == PAGE_SIZE && consume_stock(mem))
1946			goto done;
1947		css_get(&mem->css);
1948	} else {
1949		struct task_struct *p;
1950
1951		rcu_read_lock();
1952		p = rcu_dereference(mm->owner);
1953		/*
1954		 * Because we don't have task_lock(), "p" can exit.
1955		 * In that case, "mem" can point to root or p can be NULL with
1956		 * race with swapoff. Then, we have small risk of mis-accouning.
1957		 * But such kind of mis-account by race always happens because
1958		 * we don't have cgroup_mutex(). It's overkill and we allo that
1959		 * small race, here.
1960		 * (*) swapoff at el will charge against mm-struct not against
1961		 * task-struct. So, mm->owner can be NULL.
1962		 */
1963		mem = mem_cgroup_from_task(p);
1964		if (!mem || mem_cgroup_is_root(mem)) {
1965			rcu_read_unlock();
1966			goto done;
1967		}
1968		if (page_size == PAGE_SIZE && consume_stock(mem)) {
1969			/*
1970			 * It seems dagerous to access memcg without css_get().
1971			 * But considering how consume_stok works, it's not
1972			 * necessary. If consume_stock success, some charges
1973			 * from this memcg are cached on this cpu. So, we
1974			 * don't need to call css_get()/css_tryget() before
1975			 * calling consume_stock().
1976			 */
1977			rcu_read_unlock();
1978			goto done;
1979		}
1980		/* after here, we may be blocked. we need to get refcnt */
1981		if (!css_tryget(&mem->css)) {
1982			rcu_read_unlock();
1983			goto again;
1984		}
1985		rcu_read_unlock();
1986	}
1987
1988	do {
1989		bool oom_check;
1990
1991		/* If killed, bypass charge */
1992		if (fatal_signal_pending(current)) {
1993			css_put(&mem->css);
1994			goto bypass;
1995		}
1996
1997		oom_check = false;
1998		if (oom && !nr_oom_retries) {
1999			oom_check = true;
2000			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2001		}
2002
2003		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2004
2005		switch (ret) {
2006		case CHARGE_OK:
2007			break;
2008		case CHARGE_RETRY: /* not in OOM situation but retry */
2009			csize = page_size;
2010			css_put(&mem->css);
2011			mem = NULL;
2012			goto again;
2013		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2014			css_put(&mem->css);
2015			goto nomem;
2016		case CHARGE_NOMEM: /* OOM routine works */
2017			if (!oom) {
2018				css_put(&mem->css);
2019				goto nomem;
2020			}
2021			/* If oom, we never return -ENOMEM */
2022			nr_oom_retries--;
2023			break;
2024		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2025			css_put(&mem->css);
2026			goto bypass;
2027		}
2028	} while (ret != CHARGE_OK);
2029
2030	if (csize > page_size)
2031		refill_stock(mem, csize - page_size);
2032	css_put(&mem->css);
2033done:
2034	*memcg = mem;
2035	return 0;
2036nomem:
2037	*memcg = NULL;
2038	return -ENOMEM;
2039bypass:
2040	*memcg = NULL;
2041	return 0;
2042}
2043
2044/*
2045 * Somemtimes we have to undo a charge we got by try_charge().
2046 * This function is for that and do uncharge, put css's refcnt.
2047 * gotten by try_charge().
2048 */
2049static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2050							unsigned long count)
2051{
2052	if (!mem_cgroup_is_root(mem)) {
2053		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2054		if (do_swap_account)
2055			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2056	}
2057}
2058
2059static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2060				     int page_size)
2061{
2062	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2063}
2064
2065/*
2066 * A helper function to get mem_cgroup from ID. must be called under
2067 * rcu_read_lock(). The caller must check css_is_removed() or some if
2068 * it's concern. (dropping refcnt from swap can be called against removed
2069 * memcg.)
2070 */
2071static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2072{
2073	struct cgroup_subsys_state *css;
2074
2075	/* ID 0 is unused ID */
2076	if (!id)
2077		return NULL;
2078	css = css_lookup(&mem_cgroup_subsys, id);
2079	if (!css)
2080		return NULL;
2081	return container_of(css, struct mem_cgroup, css);
2082}
2083
2084struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2085{
2086	struct mem_cgroup *mem = NULL;
2087	struct page_cgroup *pc;
2088	unsigned short id;
2089	swp_entry_t ent;
2090
2091	VM_BUG_ON(!PageLocked(page));
2092
2093	pc = lookup_page_cgroup(page);
2094	lock_page_cgroup(pc);
2095	if (PageCgroupUsed(pc)) {
2096		mem = pc->mem_cgroup;
2097		if (mem && !css_tryget(&mem->css))
2098			mem = NULL;
2099	} else if (PageSwapCache(page)) {
2100		ent.val = page_private(page);
2101		id = lookup_swap_cgroup(ent);
2102		rcu_read_lock();
2103		mem = mem_cgroup_lookup(id);
2104		if (mem && !css_tryget(&mem->css))
2105			mem = NULL;
2106		rcu_read_unlock();
2107	}
2108	unlock_page_cgroup(pc);
2109	return mem;
2110}
2111
2112static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2113				       struct page *page,
2114				       struct page_cgroup *pc,
2115				       enum charge_type ctype,
2116				       int page_size)
2117{
2118	int nr_pages = page_size >> PAGE_SHIFT;
2119
2120	lock_page_cgroup(pc);
2121	if (unlikely(PageCgroupUsed(pc))) {
2122		unlock_page_cgroup(pc);
2123		mem_cgroup_cancel_charge(mem, page_size);
2124		return;
2125	}
2126	/*
2127	 * we don't need page_cgroup_lock about tail pages, becase they are not
2128	 * accessed by any other context at this point.
2129	 */
2130	pc->mem_cgroup = mem;
2131	/*
2132	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2133	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2134	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2135	 * before USED bit, we need memory barrier here.
2136	 * See mem_cgroup_add_lru_list(), etc.
2137 	 */
2138	smp_wmb();
2139	switch (ctype) {
2140	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2141	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2142		SetPageCgroupCache(pc);
2143		SetPageCgroupUsed(pc);
2144		break;
2145	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2146		ClearPageCgroupCache(pc);
2147		SetPageCgroupUsed(pc);
2148		break;
2149	default:
2150		break;
2151	}
2152
2153	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2154	unlock_page_cgroup(pc);
2155	/*
2156	 * "charge_statistics" updated event counter. Then, check it.
2157	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2158	 * if they exceeds softlimit.
2159	 */
2160	memcg_check_events(mem, page);
2161}
2162
2163#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2164
2165#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2166			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2167/*
2168 * Because tail pages are not marked as "used", set it. We're under
2169 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2170 */
2171void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2172{
2173	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2174	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2175	unsigned long flags;
2176
2177	if (mem_cgroup_disabled())
2178		return;
2179	/*
2180	 * We have no races with charge/uncharge but will have races with
2181	 * page state accounting.
2182	 */
2183	move_lock_page_cgroup(head_pc, &flags);
2184
2185	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2186	smp_wmb(); /* see __commit_charge() */
2187	if (PageCgroupAcctLRU(head_pc)) {
2188		enum lru_list lru;
2189		struct mem_cgroup_per_zone *mz;
2190
2191		/*
2192		 * LRU flags cannot be copied because we need to add tail
2193		 *.page to LRU by generic call and our hook will be called.
2194		 * We hold lru_lock, then, reduce counter directly.
2195		 */
2196		lru = page_lru(head);
2197		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2198		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2199	}
2200	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2201	move_unlock_page_cgroup(head_pc, &flags);
2202}
2203#endif
2204
2205/**
2206 * mem_cgroup_move_account - move account of the page
2207 * @page: the page
2208 * @pc:	page_cgroup of the page.
2209 * @from: mem_cgroup which the page is moved from.
2210 * @to:	mem_cgroup which the page is moved to. @from != @to.
2211 * @uncharge: whether we should call uncharge and css_put against @from.
2212 * @charge_size: number of bytes to charge (regular or huge page)
2213 *
2214 * The caller must confirm following.
2215 * - page is not on LRU (isolate_page() is useful.)
2216 * - compound_lock is held when charge_size > PAGE_SIZE
2217 *
2218 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2219 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2220 * true, this function does "uncharge" from old cgroup, but it doesn't if
2221 * @uncharge is false, so a caller should do "uncharge".
2222 */
2223static int mem_cgroup_move_account(struct page *page, struct page_cgroup *pc,
2224				   struct mem_cgroup *from, struct mem_cgroup *to,
2225				   bool uncharge, int charge_size)
2226{
2227	int nr_pages = charge_size >> PAGE_SHIFT;
2228	unsigned long flags;
2229	int ret;
2230
2231	VM_BUG_ON(from == to);
2232	VM_BUG_ON(PageLRU(page));
2233	/*
2234	 * The page is isolated from LRU. So, collapse function
2235	 * will not handle this page. But page splitting can happen.
2236	 * Do this check under compound_page_lock(). The caller should
2237	 * hold it.
2238	 */
2239	ret = -EBUSY;
2240	if (charge_size > PAGE_SIZE && !PageTransHuge(page))
2241		goto out;
2242
2243	lock_page_cgroup(pc);
2244
2245	ret = -EINVAL;
2246	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2247		goto unlock;
2248
2249	move_lock_page_cgroup(pc, &flags);
2250
2251	if (PageCgroupFileMapped(pc)) {
2252		/* Update mapped_file data for mem_cgroup */
2253		preempt_disable();
2254		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2255		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2256		preempt_enable();
2257	}
2258	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2259	if (uncharge)
2260		/* This is not "cancel", but cancel_charge does all we need. */
2261		mem_cgroup_cancel_charge(from, charge_size);
2262
2263	/* caller should have done css_get */
2264	pc->mem_cgroup = to;
2265	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2266	/*
2267	 * We charges against "to" which may not have any tasks. Then, "to"
2268	 * can be under rmdir(). But in current implementation, caller of
2269	 * this function is just force_empty() and move charge, so it's
2270	 * garanteed that "to" is never removed. So, we don't check rmdir
2271	 * status here.
2272	 */
2273	move_unlock_page_cgroup(pc, &flags);
2274	ret = 0;
2275unlock:
2276	unlock_page_cgroup(pc);
2277	/*
2278	 * check events
2279	 */
2280	memcg_check_events(to, page);
2281	memcg_check_events(from, page);
2282out:
2283	return ret;
2284}
2285
2286/*
2287 * move charges to its parent.
2288 */
2289
2290static int mem_cgroup_move_parent(struct page *page,
2291				  struct page_cgroup *pc,
2292				  struct mem_cgroup *child,
2293				  gfp_t gfp_mask)
2294{
2295	struct cgroup *cg = child->css.cgroup;
2296	struct cgroup *pcg = cg->parent;
2297	struct mem_cgroup *parent;
2298	int page_size = PAGE_SIZE;
2299	unsigned long flags;
2300	int ret;
2301
2302	/* Is ROOT ? */
2303	if (!pcg)
2304		return -EINVAL;
2305
2306	ret = -EBUSY;
2307	if (!get_page_unless_zero(page))
2308		goto out;
2309	if (isolate_lru_page(page))
2310		goto put;
2311
2312	if (PageTransHuge(page))
2313		page_size = HPAGE_SIZE;
2314
2315	parent = mem_cgroup_from_cont(pcg);
2316	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2317				&parent, false, page_size);
2318	if (ret || !parent)
2319		goto put_back;
2320
2321	if (page_size > PAGE_SIZE)
2322		flags = compound_lock_irqsave(page);
2323
2324	ret = mem_cgroup_move_account(page, pc, child, parent, true, page_size);
2325	if (ret)
2326		mem_cgroup_cancel_charge(parent, page_size);
2327
2328	if (page_size > PAGE_SIZE)
2329		compound_unlock_irqrestore(page, flags);
2330put_back:
2331	putback_lru_page(page);
2332put:
2333	put_page(page);
2334out:
2335	return ret;
2336}
2337
2338/*
2339 * Charge the memory controller for page usage.
2340 * Return
2341 * 0 if the charge was successful
2342 * < 0 if the cgroup is over its limit
2343 */
2344static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2345				gfp_t gfp_mask, enum charge_type ctype)
2346{
2347	struct mem_cgroup *mem = NULL;
2348	int page_size = PAGE_SIZE;
2349	struct page_cgroup *pc;
2350	bool oom = true;
2351	int ret;
2352
2353	if (PageTransHuge(page)) {
2354		page_size <<= compound_order(page);
2355		VM_BUG_ON(!PageTransHuge(page));
2356		/*
2357		 * Never OOM-kill a process for a huge page.  The
2358		 * fault handler will fall back to regular pages.
2359		 */
2360		oom = false;
2361	}
2362
2363	pc = lookup_page_cgroup(page);
2364	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2365
2366	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2367	if (ret || !mem)
2368		return ret;
2369
2370	__mem_cgroup_commit_charge(mem, page, pc, ctype, page_size);
2371	return 0;
2372}
2373
2374int mem_cgroup_newpage_charge(struct page *page,
2375			      struct mm_struct *mm, gfp_t gfp_mask)
2376{
2377	if (mem_cgroup_disabled())
2378		return 0;
2379	/*
2380	 * If already mapped, we don't have to account.
2381	 * If page cache, page->mapping has address_space.
2382	 * But page->mapping may have out-of-use anon_vma pointer,
2383	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2384	 * is NULL.
2385  	 */
2386	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2387		return 0;
2388	if (unlikely(!mm))
2389		mm = &init_mm;
2390	return mem_cgroup_charge_common(page, mm, gfp_mask,
2391				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2392}
2393
2394static void
2395__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2396					enum charge_type ctype);
2397
2398int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2399				gfp_t gfp_mask)
2400{
2401	int ret;
2402
2403	if (mem_cgroup_disabled())
2404		return 0;
2405	if (PageCompound(page))
2406		return 0;
2407	/*
2408	 * Corner case handling. This is called from add_to_page_cache()
2409	 * in usual. But some FS (shmem) precharges this page before calling it
2410	 * and call add_to_page_cache() with GFP_NOWAIT.
2411	 *
2412	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2413	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2414	 * charge twice. (It works but has to pay a bit larger cost.)
2415	 * And when the page is SwapCache, it should take swap information
2416	 * into account. This is under lock_page() now.
2417	 */
2418	if (!(gfp_mask & __GFP_WAIT)) {
2419		struct page_cgroup *pc;
2420
2421		pc = lookup_page_cgroup(page);
2422		if (!pc)
2423			return 0;
2424		lock_page_cgroup(pc);
2425		if (PageCgroupUsed(pc)) {
2426			unlock_page_cgroup(pc);
2427			return 0;
2428		}
2429		unlock_page_cgroup(pc);
2430	}
2431
2432	if (unlikely(!mm))
2433		mm = &init_mm;
2434
2435	if (page_is_file_cache(page))
2436		return mem_cgroup_charge_common(page, mm, gfp_mask,
2437				MEM_CGROUP_CHARGE_TYPE_CACHE);
2438
2439	/* shmem */
2440	if (PageSwapCache(page)) {
2441		struct mem_cgroup *mem;
2442
2443		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2444		if (!ret)
2445			__mem_cgroup_commit_charge_swapin(page, mem,
2446					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2447	} else
2448		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2449					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2450
2451	return ret;
2452}
2453
2454/*
2455 * While swap-in, try_charge -> commit or cancel, the page is locked.
2456 * And when try_charge() successfully returns, one refcnt to memcg without
2457 * struct page_cgroup is acquired. This refcnt will be consumed by
2458 * "commit()" or removed by "cancel()"
2459 */
2460int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2461				 struct page *page,
2462				 gfp_t mask, struct mem_cgroup **ptr)
2463{
2464	struct mem_cgroup *mem;
2465	int ret;
2466
2467	*ptr = NULL;
2468
2469	if (mem_cgroup_disabled())
2470		return 0;
2471
2472	if (!do_swap_account)
2473		goto charge_cur_mm;
2474	/*
2475	 * A racing thread's fault, or swapoff, may have already updated
2476	 * the pte, and even removed page from swap cache: in those cases
2477	 * do_swap_page()'s pte_same() test will fail; but there's also a
2478	 * KSM case which does need to charge the page.
2479	 */
2480	if (!PageSwapCache(page))
2481		goto charge_cur_mm;
2482	mem = try_get_mem_cgroup_from_page(page);
2483	if (!mem)
2484		goto charge_cur_mm;
2485	*ptr = mem;
2486	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2487	css_put(&mem->css);
2488	return ret;
2489charge_cur_mm:
2490	if (unlikely(!mm))
2491		mm = &init_mm;
2492	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2493}
2494
2495static void
2496__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2497					enum charge_type ctype)
2498{
2499	struct page_cgroup *pc;
2500
2501	if (mem_cgroup_disabled())
2502		return;
2503	if (!ptr)
2504		return;
2505	cgroup_exclude_rmdir(&ptr->css);
2506	pc = lookup_page_cgroup(page);
2507	mem_cgroup_lru_del_before_commit_swapcache(page);
2508	__mem_cgroup_commit_charge(ptr, page, pc, ctype, PAGE_SIZE);
2509	mem_cgroup_lru_add_after_commit_swapcache(page);
2510	/*
2511	 * Now swap is on-memory. This means this page may be
2512	 * counted both as mem and swap....double count.
2513	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2514	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2515	 * may call delete_from_swap_cache() before reach here.
2516	 */
2517	if (do_swap_account && PageSwapCache(page)) {
2518		swp_entry_t ent = {.val = page_private(page)};
2519		unsigned short id;
2520		struct mem_cgroup *memcg;
2521
2522		id = swap_cgroup_record(ent, 0);
2523		rcu_read_lock();
2524		memcg = mem_cgroup_lookup(id);
2525		if (memcg) {
2526			/*
2527			 * This recorded memcg can be obsolete one. So, avoid
2528			 * calling css_tryget
2529			 */
2530			if (!mem_cgroup_is_root(memcg))
2531				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2532			mem_cgroup_swap_statistics(memcg, false);
2533			mem_cgroup_put(memcg);
2534		}
2535		rcu_read_unlock();
2536	}
2537	/*
2538	 * At swapin, we may charge account against cgroup which has no tasks.
2539	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2540	 * In that case, we need to call pre_destroy() again. check it here.
2541	 */
2542	cgroup_release_and_wakeup_rmdir(&ptr->css);
2543}
2544
2545void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2546{
2547	__mem_cgroup_commit_charge_swapin(page, ptr,
2548					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2549}
2550
2551void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2552{
2553	if (mem_cgroup_disabled())
2554		return;
2555	if (!mem)
2556		return;
2557	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2558}
2559
2560static void
2561__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2562	      int page_size)
2563{
2564	struct memcg_batch_info *batch = NULL;
2565	bool uncharge_memsw = true;
2566	/* If swapout, usage of swap doesn't decrease */
2567	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2568		uncharge_memsw = false;
2569
2570	batch = &current->memcg_batch;
2571	/*
2572	 * In usual, we do css_get() when we remember memcg pointer.
2573	 * But in this case, we keep res->usage until end of a series of
2574	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2575	 */
2576	if (!batch->memcg)
2577		batch->memcg = mem;
2578	/*
2579	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2580	 * In those cases, all pages freed continously can be expected to be in
2581	 * the same cgroup and we have chance to coalesce uncharges.
2582	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2583	 * because we want to do uncharge as soon as possible.
2584	 */
2585
2586	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2587		goto direct_uncharge;
2588
2589	if (page_size != PAGE_SIZE)
2590		goto direct_uncharge;
2591
2592	/*
2593	 * In typical case, batch->memcg == mem. This means we can
2594	 * merge a series of uncharges to an uncharge of res_counter.
2595	 * If not, we uncharge res_counter ony by one.
2596	 */
2597	if (batch->memcg != mem)
2598		goto direct_uncharge;
2599	/* remember freed charge and uncharge it later */
2600	batch->bytes += PAGE_SIZE;
2601	if (uncharge_memsw)
2602		batch->memsw_bytes += PAGE_SIZE;
2603	return;
2604direct_uncharge:
2605	res_counter_uncharge(&mem->res, page_size);
2606	if (uncharge_memsw)
2607		res_counter_uncharge(&mem->memsw, page_size);
2608	if (unlikely(batch->memcg != mem))
2609		memcg_oom_recover(mem);
2610	return;
2611}
2612
2613/*
2614 * uncharge if !page_mapped(page)
2615 */
2616static struct mem_cgroup *
2617__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2618{
2619	int count;
2620	struct page_cgroup *pc;
2621	struct mem_cgroup *mem = NULL;
2622	int page_size = PAGE_SIZE;
2623
2624	if (mem_cgroup_disabled())
2625		return NULL;
2626
2627	if (PageSwapCache(page))
2628		return NULL;
2629
2630	if (PageTransHuge(page)) {
2631		page_size <<= compound_order(page);
2632		VM_BUG_ON(!PageTransHuge(page));
2633	}
2634
2635	count = page_size >> PAGE_SHIFT;
2636	/*
2637	 * Check if our page_cgroup is valid
2638	 */
2639	pc = lookup_page_cgroup(page);
2640	if (unlikely(!pc || !PageCgroupUsed(pc)))
2641		return NULL;
2642
2643	lock_page_cgroup(pc);
2644
2645	mem = pc->mem_cgroup;
2646
2647	if (!PageCgroupUsed(pc))
2648		goto unlock_out;
2649
2650	switch (ctype) {
2651	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2652	case MEM_CGROUP_CHARGE_TYPE_DROP:
2653		/* See mem_cgroup_prepare_migration() */
2654		if (page_mapped(page) || PageCgroupMigration(pc))
2655			goto unlock_out;
2656		break;
2657	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2658		if (!PageAnon(page)) {	/* Shared memory */
2659			if (page->mapping && !page_is_file_cache(page))
2660				goto unlock_out;
2661		} else if (page_mapped(page)) /* Anon */
2662				goto unlock_out;
2663		break;
2664	default:
2665		break;
2666	}
2667
2668	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2669
2670	ClearPageCgroupUsed(pc);
2671	/*
2672	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2673	 * freed from LRU. This is safe because uncharged page is expected not
2674	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2675	 * special functions.
2676	 */
2677
2678	unlock_page_cgroup(pc);
2679	/*
2680	 * even after unlock, we have mem->res.usage here and this memcg
2681	 * will never be freed.
2682	 */
2683	memcg_check_events(mem, page);
2684	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2685		mem_cgroup_swap_statistics(mem, true);
2686		mem_cgroup_get(mem);
2687	}
2688	if (!mem_cgroup_is_root(mem))
2689		__do_uncharge(mem, ctype, page_size);
2690
2691	return mem;
2692
2693unlock_out:
2694	unlock_page_cgroup(pc);
2695	return NULL;
2696}
2697
2698void mem_cgroup_uncharge_page(struct page *page)
2699{
2700	/* early check. */
2701	if (page_mapped(page))
2702		return;
2703	if (page->mapping && !PageAnon(page))
2704		return;
2705	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2706}
2707
2708void mem_cgroup_uncharge_cache_page(struct page *page)
2709{
2710	VM_BUG_ON(page_mapped(page));
2711	VM_BUG_ON(page->mapping);
2712	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2713}
2714
2715/*
2716 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2717 * In that cases, pages are freed continuously and we can expect pages
2718 * are in the same memcg. All these calls itself limits the number of
2719 * pages freed at once, then uncharge_start/end() is called properly.
2720 * This may be called prural(2) times in a context,
2721 */
2722
2723void mem_cgroup_uncharge_start(void)
2724{
2725	current->memcg_batch.do_batch++;
2726	/* We can do nest. */
2727	if (current->memcg_batch.do_batch == 1) {
2728		current->memcg_batch.memcg = NULL;
2729		current->memcg_batch.bytes = 0;
2730		current->memcg_batch.memsw_bytes = 0;
2731	}
2732}
2733
2734void mem_cgroup_uncharge_end(void)
2735{
2736	struct memcg_batch_info *batch = &current->memcg_batch;
2737
2738	if (!batch->do_batch)
2739		return;
2740
2741	batch->do_batch--;
2742	if (batch->do_batch) /* If stacked, do nothing. */
2743		return;
2744
2745	if (!batch->memcg)
2746		return;
2747	/*
2748	 * This "batch->memcg" is valid without any css_get/put etc...
2749	 * bacause we hide charges behind us.
2750	 */
2751	if (batch->bytes)
2752		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2753	if (batch->memsw_bytes)
2754		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2755	memcg_oom_recover(batch->memcg);
2756	/* forget this pointer (for sanity check) */
2757	batch->memcg = NULL;
2758}
2759
2760#ifdef CONFIG_SWAP
2761/*
2762 * called after __delete_from_swap_cache() and drop "page" account.
2763 * memcg information is recorded to swap_cgroup of "ent"
2764 */
2765void
2766mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2767{
2768	struct mem_cgroup *memcg;
2769	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2770
2771	if (!swapout) /* this was a swap cache but the swap is unused ! */
2772		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2773
2774	memcg = __mem_cgroup_uncharge_common(page, ctype);
2775
2776	/*
2777	 * record memcg information,  if swapout && memcg != NULL,
2778	 * mem_cgroup_get() was called in uncharge().
2779	 */
2780	if (do_swap_account && swapout && memcg)
2781		swap_cgroup_record(ent, css_id(&memcg->css));
2782}
2783#endif
2784
2785#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2786/*
2787 * called from swap_entry_free(). remove record in swap_cgroup and
2788 * uncharge "memsw" account.
2789 */
2790void mem_cgroup_uncharge_swap(swp_entry_t ent)
2791{
2792	struct mem_cgroup *memcg;
2793	unsigned short id;
2794
2795	if (!do_swap_account)
2796		return;
2797
2798	id = swap_cgroup_record(ent, 0);
2799	rcu_read_lock();
2800	memcg = mem_cgroup_lookup(id);
2801	if (memcg) {
2802		/*
2803		 * We uncharge this because swap is freed.
2804		 * This memcg can be obsolete one. We avoid calling css_tryget
2805		 */
2806		if (!mem_cgroup_is_root(memcg))
2807			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2808		mem_cgroup_swap_statistics(memcg, false);
2809		mem_cgroup_put(memcg);
2810	}
2811	rcu_read_unlock();
2812}
2813
2814/**
2815 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2816 * @entry: swap entry to be moved
2817 * @from:  mem_cgroup which the entry is moved from
2818 * @to:  mem_cgroup which the entry is moved to
2819 * @need_fixup: whether we should fixup res_counters and refcounts.
2820 *
2821 * It succeeds only when the swap_cgroup's record for this entry is the same
2822 * as the mem_cgroup's id of @from.
2823 *
2824 * Returns 0 on success, -EINVAL on failure.
2825 *
2826 * The caller must have charged to @to, IOW, called res_counter_charge() about
2827 * both res and memsw, and called css_get().
2828 */
2829static int mem_cgroup_move_swap_account(swp_entry_t entry,
2830		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2831{
2832	unsigned short old_id, new_id;
2833
2834	old_id = css_id(&from->css);
2835	new_id = css_id(&to->css);
2836
2837	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2838		mem_cgroup_swap_statistics(from, false);
2839		mem_cgroup_swap_statistics(to, true);
2840		/*
2841		 * This function is only called from task migration context now.
2842		 * It postpones res_counter and refcount handling till the end
2843		 * of task migration(mem_cgroup_clear_mc()) for performance
2844		 * improvement. But we cannot postpone mem_cgroup_get(to)
2845		 * because if the process that has been moved to @to does
2846		 * swap-in, the refcount of @to might be decreased to 0.
2847		 */
2848		mem_cgroup_get(to);
2849		if (need_fixup) {
2850			if (!mem_cgroup_is_root(from))
2851				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2852			mem_cgroup_put(from);
2853			/*
2854			 * we charged both to->res and to->memsw, so we should
2855			 * uncharge to->res.
2856			 */
2857			if (!mem_cgroup_is_root(to))
2858				res_counter_uncharge(&to->res, PAGE_SIZE);
2859		}
2860		return 0;
2861	}
2862	return -EINVAL;
2863}
2864#else
2865static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2866		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2867{
2868	return -EINVAL;
2869}
2870#endif
2871
2872/*
2873 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2874 * page belongs to.
2875 */
2876int mem_cgroup_prepare_migration(struct page *page,
2877	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2878{
2879	struct page_cgroup *pc;
2880	struct mem_cgroup *mem = NULL;
2881	enum charge_type ctype;
2882	int ret = 0;
2883
2884	*ptr = NULL;
2885
2886	VM_BUG_ON(PageTransHuge(page));
2887	if (mem_cgroup_disabled())
2888		return 0;
2889
2890	pc = lookup_page_cgroup(page);
2891	lock_page_cgroup(pc);
2892	if (PageCgroupUsed(pc)) {
2893		mem = pc->mem_cgroup;
2894		css_get(&mem->css);
2895		/*
2896		 * At migrating an anonymous page, its mapcount goes down
2897		 * to 0 and uncharge() will be called. But, even if it's fully
2898		 * unmapped, migration may fail and this page has to be
2899		 * charged again. We set MIGRATION flag here and delay uncharge
2900		 * until end_migration() is called
2901		 *
2902		 * Corner Case Thinking
2903		 * A)
2904		 * When the old page was mapped as Anon and it's unmap-and-freed
2905		 * while migration was ongoing.
2906		 * If unmap finds the old page, uncharge() of it will be delayed
2907		 * until end_migration(). If unmap finds a new page, it's
2908		 * uncharged when it make mapcount to be 1->0. If unmap code
2909		 * finds swap_migration_entry, the new page will not be mapped
2910		 * and end_migration() will find it(mapcount==0).
2911		 *
2912		 * B)
2913		 * When the old page was mapped but migraion fails, the kernel
2914		 * remaps it. A charge for it is kept by MIGRATION flag even
2915		 * if mapcount goes down to 0. We can do remap successfully
2916		 * without charging it again.
2917		 *
2918		 * C)
2919		 * The "old" page is under lock_page() until the end of
2920		 * migration, so, the old page itself will not be swapped-out.
2921		 * If the new page is swapped out before end_migraton, our
2922		 * hook to usual swap-out path will catch the event.
2923		 */
2924		if (PageAnon(page))
2925			SetPageCgroupMigration(pc);
2926	}
2927	unlock_page_cgroup(pc);
2928	/*
2929	 * If the page is not charged at this point,
2930	 * we return here.
2931	 */
2932	if (!mem)
2933		return 0;
2934
2935	*ptr = mem;
2936	ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2937	css_put(&mem->css);/* drop extra refcnt */
2938	if (ret || *ptr == NULL) {
2939		if (PageAnon(page)) {
2940			lock_page_cgroup(pc);
2941			ClearPageCgroupMigration(pc);
2942			unlock_page_cgroup(pc);
2943			/*
2944			 * The old page may be fully unmapped while we kept it.
2945			 */
2946			mem_cgroup_uncharge_page(page);
2947		}
2948		return -ENOMEM;
2949	}
2950	/*
2951	 * We charge new page before it's used/mapped. So, even if unlock_page()
2952	 * is called before end_migration, we can catch all events on this new
2953	 * page. In the case new page is migrated but not remapped, new page's
2954	 * mapcount will be finally 0 and we call uncharge in end_migration().
2955	 */
2956	pc = lookup_page_cgroup(newpage);
2957	if (PageAnon(page))
2958		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2959	else if (page_is_file_cache(page))
2960		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2961	else
2962		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2963	__mem_cgroup_commit_charge(mem, page, pc, ctype, PAGE_SIZE);
2964	return ret;
2965}
2966
2967/* remove redundant charge if migration failed*/
2968void mem_cgroup_end_migration(struct mem_cgroup *mem,
2969	struct page *oldpage, struct page *newpage, bool migration_ok)
2970{
2971	struct page *used, *unused;
2972	struct page_cgroup *pc;
2973
2974	if (!mem)
2975		return;
2976	/* blocks rmdir() */
2977	cgroup_exclude_rmdir(&mem->css);
2978	if (!migration_ok) {
2979		used = oldpage;
2980		unused = newpage;
2981	} else {
2982		used = newpage;
2983		unused = oldpage;
2984	}
2985	/*
2986	 * We disallowed uncharge of pages under migration because mapcount
2987	 * of the page goes down to zero, temporarly.
2988	 * Clear the flag and check the page should be charged.
2989	 */
2990	pc = lookup_page_cgroup(oldpage);
2991	lock_page_cgroup(pc);
2992	ClearPageCgroupMigration(pc);
2993	unlock_page_cgroup(pc);
2994
2995	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2996
2997	/*
2998	 * If a page is a file cache, radix-tree replacement is very atomic
2999	 * and we can skip this check. When it was an Anon page, its mapcount
3000	 * goes down to 0. But because we added MIGRATION flage, it's not
3001	 * uncharged yet. There are several case but page->mapcount check
3002	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3003	 * check. (see prepare_charge() also)
3004	 */
3005	if (PageAnon(used))
3006		mem_cgroup_uncharge_page(used);
3007	/*
3008	 * At migration, we may charge account against cgroup which has no
3009	 * tasks.
3010	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3011	 * In that case, we need to call pre_destroy() again. check it here.
3012	 */
3013	cgroup_release_and_wakeup_rmdir(&mem->css);
3014}
3015
3016/*
3017 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3018 * Calling hierarchical_reclaim is not enough because we should update
3019 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3020 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3021 * not from the memcg which this page would be charged to.
3022 * try_charge_swapin does all of these works properly.
3023 */
3024int mem_cgroup_shmem_charge_fallback(struct page *page,
3025			    struct mm_struct *mm,
3026			    gfp_t gfp_mask)
3027{
3028	struct mem_cgroup *mem;
3029	int ret;
3030
3031	if (mem_cgroup_disabled())
3032		return 0;
3033
3034	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3035	if (!ret)
3036		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3037
3038	return ret;
3039}
3040
3041#ifdef CONFIG_DEBUG_VM
3042static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3043{
3044	struct page_cgroup *pc;
3045
3046	pc = lookup_page_cgroup(page);
3047	if (likely(pc) && PageCgroupUsed(pc))
3048		return pc;
3049	return NULL;
3050}
3051
3052bool mem_cgroup_bad_page_check(struct page *page)
3053{
3054	if (mem_cgroup_disabled())
3055		return false;
3056
3057	return lookup_page_cgroup_used(page) != NULL;
3058}
3059
3060void mem_cgroup_print_bad_page(struct page *page)
3061{
3062	struct page_cgroup *pc;
3063
3064	pc = lookup_page_cgroup_used(page);
3065	if (pc) {
3066		int ret = -1;
3067		char *path;
3068
3069		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3070		       pc, pc->flags, pc->mem_cgroup);
3071
3072		path = kmalloc(PATH_MAX, GFP_KERNEL);
3073		if (path) {
3074			rcu_read_lock();
3075			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3076							path, PATH_MAX);
3077			rcu_read_unlock();
3078		}
3079
3080		printk(KERN_CONT "(%s)\n",
3081				(ret < 0) ? "cannot get the path" : path);
3082		kfree(path);
3083	}
3084}
3085#endif
3086
3087static DEFINE_MUTEX(set_limit_mutex);
3088
3089static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3090				unsigned long long val)
3091{
3092	int retry_count;
3093	u64 memswlimit, memlimit;
3094	int ret = 0;
3095	int children = mem_cgroup_count_children(memcg);
3096	u64 curusage, oldusage;
3097	int enlarge;
3098
3099	/*
3100	 * For keeping hierarchical_reclaim simple, how long we should retry
3101	 * is depends on callers. We set our retry-count to be function
3102	 * of # of children which we should visit in this loop.
3103	 */
3104	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3105
3106	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3107
3108	enlarge = 0;
3109	while (retry_count) {
3110		if (signal_pending(current)) {
3111			ret = -EINTR;
3112			break;
3113		}
3114		/*
3115		 * Rather than hide all in some function, I do this in
3116		 * open coded manner. You see what this really does.
3117		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3118		 */
3119		mutex_lock(&set_limit_mutex);
3120		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3121		if (memswlimit < val) {
3122			ret = -EINVAL;
3123			mutex_unlock(&set_limit_mutex);
3124			break;
3125		}
3126
3127		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3128		if (memlimit < val)
3129			enlarge = 1;
3130
3131		ret = res_counter_set_limit(&memcg->res, val);
3132		if (!ret) {
3133			if (memswlimit == val)
3134				memcg->memsw_is_minimum = true;
3135			else
3136				memcg->memsw_is_minimum = false;
3137		}
3138		mutex_unlock(&set_limit_mutex);
3139
3140		if (!ret)
3141			break;
3142
3143		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3144						MEM_CGROUP_RECLAIM_SHRINK);
3145		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3146		/* Usage is reduced ? */
3147  		if (curusage >= oldusage)
3148			retry_count--;
3149		else
3150			oldusage = curusage;
3151	}
3152	if (!ret && enlarge)
3153		memcg_oom_recover(memcg);
3154
3155	return ret;
3156}
3157
3158static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3159					unsigned long long val)
3160{
3161	int retry_count;
3162	u64 memlimit, memswlimit, oldusage, curusage;
3163	int children = mem_cgroup_count_children(memcg);
3164	int ret = -EBUSY;
3165	int enlarge = 0;
3166
3167	/* see mem_cgroup_resize_res_limit */
3168 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3169	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3170	while (retry_count) {
3171		if (signal_pending(current)) {
3172			ret = -EINTR;
3173			break;
3174		}
3175		/*
3176		 * Rather than hide all in some function, I do this in
3177		 * open coded manner. You see what this really does.
3178		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3179		 */
3180		mutex_lock(&set_limit_mutex);
3181		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3182		if (memlimit > val) {
3183			ret = -EINVAL;
3184			mutex_unlock(&set_limit_mutex);
3185			break;
3186		}
3187		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3188		if (memswlimit < val)
3189			enlarge = 1;
3190		ret = res_counter_set_limit(&memcg->memsw, val);
3191		if (!ret) {
3192			if (memlimit == val)
3193				memcg->memsw_is_minimum = true;
3194			else
3195				memcg->memsw_is_minimum = false;
3196		}
3197		mutex_unlock(&set_limit_mutex);
3198
3199		if (!ret)
3200			break;
3201
3202		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3203						MEM_CGROUP_RECLAIM_NOSWAP |
3204						MEM_CGROUP_RECLAIM_SHRINK);
3205		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3206		/* Usage is reduced ? */
3207		if (curusage >= oldusage)
3208			retry_count--;
3209		else
3210			oldusage = curusage;
3211	}
3212	if (!ret && enlarge)
3213		memcg_oom_recover(memcg);
3214	return ret;
3215}
3216
3217unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3218					    gfp_t gfp_mask)
3219{
3220	unsigned long nr_reclaimed = 0;
3221	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3222	unsigned long reclaimed;
3223	int loop = 0;
3224	struct mem_cgroup_tree_per_zone *mctz;
3225	unsigned long long excess;
3226
3227	if (order > 0)
3228		return 0;
3229
3230	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3231	/*
3232	 * This loop can run a while, specially if mem_cgroup's continuously
3233	 * keep exceeding their soft limit and putting the system under
3234	 * pressure
3235	 */
3236	do {
3237		if (next_mz)
3238			mz = next_mz;
3239		else
3240			mz = mem_cgroup_largest_soft_limit_node(mctz);
3241		if (!mz)
3242			break;
3243
3244		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3245						gfp_mask,
3246						MEM_CGROUP_RECLAIM_SOFT);
3247		nr_reclaimed += reclaimed;
3248		spin_lock(&mctz->lock);
3249
3250		/*
3251		 * If we failed to reclaim anything from this memory cgroup
3252		 * it is time to move on to the next cgroup
3253		 */
3254		next_mz = NULL;
3255		if (!reclaimed) {
3256			do {
3257				/*
3258				 * Loop until we find yet another one.
3259				 *
3260				 * By the time we get the soft_limit lock
3261				 * again, someone might have aded the
3262				 * group back on the RB tree. Iterate to
3263				 * make sure we get a different mem.
3264				 * mem_cgroup_largest_soft_limit_node returns
3265				 * NULL if no other cgroup is present on
3266				 * the tree
3267				 */
3268				next_mz =
3269				__mem_cgroup_largest_soft_limit_node(mctz);
3270				if (next_mz == mz) {
3271					css_put(&next_mz->mem->css);
3272					next_mz = NULL;
3273				} else /* next_mz == NULL or other memcg */
3274					break;
3275			} while (1);
3276		}
3277		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3278		excess = res_counter_soft_limit_excess(&mz->mem->res);
3279		/*
3280		 * One school of thought says that we should not add
3281		 * back the node to the tree if reclaim returns 0.
3282		 * But our reclaim could return 0, simply because due
3283		 * to priority we are exposing a smaller subset of
3284		 * memory to reclaim from. Consider this as a longer
3285		 * term TODO.
3286		 */
3287		/* If excess == 0, no tree ops */
3288		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3289		spin_unlock(&mctz->lock);
3290		css_put(&mz->mem->css);
3291		loop++;
3292		/*
3293		 * Could not reclaim anything and there are no more
3294		 * mem cgroups to try or we seem to be looping without
3295		 * reclaiming anything.
3296		 */
3297		if (!nr_reclaimed &&
3298			(next_mz == NULL ||
3299			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3300			break;
3301	} while (!nr_reclaimed);
3302	if (next_mz)
3303		css_put(&next_mz->mem->css);
3304	return nr_reclaimed;
3305}
3306
3307/*
3308 * This routine traverse page_cgroup in given list and drop them all.
3309 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3310 */
3311static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3312				int node, int zid, enum lru_list lru)
3313{
3314	struct zone *zone;
3315	struct mem_cgroup_per_zone *mz;
3316	struct page_cgroup *pc, *busy;
3317	unsigned long flags, loop;
3318	struct list_head *list;
3319	int ret = 0;
3320
3321	zone = &NODE_DATA(node)->node_zones[zid];
3322	mz = mem_cgroup_zoneinfo(mem, node, zid);
3323	list = &mz->lists[lru];
3324
3325	loop = MEM_CGROUP_ZSTAT(mz, lru);
3326	/* give some margin against EBUSY etc...*/
3327	loop += 256;
3328	busy = NULL;
3329	while (loop--) {
3330		struct page *page;
3331
3332		ret = 0;
3333		spin_lock_irqsave(&zone->lru_lock, flags);
3334		if (list_empty(list)) {
3335			spin_unlock_irqrestore(&zone->lru_lock, flags);
3336			break;
3337		}
3338		pc = list_entry(list->prev, struct page_cgroup, lru);
3339		if (busy == pc) {
3340			list_move(&pc->lru, list);
3341			busy = NULL;
3342			spin_unlock_irqrestore(&zone->lru_lock, flags);
3343			continue;
3344		}
3345		spin_unlock_irqrestore(&zone->lru_lock, flags);
3346
3347		page = pc->page;
3348
3349		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3350		if (ret == -ENOMEM)
3351			break;
3352
3353		if (ret == -EBUSY || ret == -EINVAL) {
3354			/* found lock contention or "pc" is obsolete. */
3355			busy = pc;
3356			cond_resched();
3357		} else
3358			busy = NULL;
3359	}
3360
3361	if (!ret && !list_empty(list))
3362		return -EBUSY;
3363	return ret;
3364}
3365
3366/*
3367 * make mem_cgroup's charge to be 0 if there is no task.
3368 * This enables deleting this mem_cgroup.
3369 */
3370static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3371{
3372	int ret;
3373	int node, zid, shrink;
3374	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3375	struct cgroup *cgrp = mem->css.cgroup;
3376
3377	css_get(&mem->css);
3378
3379	shrink = 0;
3380	/* should free all ? */
3381	if (free_all)
3382		goto try_to_free;
3383move_account:
3384	do {
3385		ret = -EBUSY;
3386		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3387			goto out;
3388		ret = -EINTR;
3389		if (signal_pending(current))
3390			goto out;
3391		/* This is for making all *used* pages to be on LRU. */
3392		lru_add_drain_all();
3393		drain_all_stock_sync();
3394		ret = 0;
3395		mem_cgroup_start_move(mem);
3396		for_each_node_state(node, N_HIGH_MEMORY) {
3397			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3398				enum lru_list l;
3399				for_each_lru(l) {
3400					ret = mem_cgroup_force_empty_list(mem,
3401							node, zid, l);
3402					if (ret)
3403						break;
3404				}
3405			}
3406			if (ret)
3407				break;
3408		}
3409		mem_cgroup_end_move(mem);
3410		memcg_oom_recover(mem);
3411		/* it seems parent cgroup doesn't have enough mem */
3412		if (ret == -ENOMEM)
3413			goto try_to_free;
3414		cond_resched();
3415	/* "ret" should also be checked to ensure all lists are empty. */
3416	} while (mem->res.usage > 0 || ret);
3417out:
3418	css_put(&mem->css);
3419	return ret;
3420
3421try_to_free:
3422	/* returns EBUSY if there is a task or if we come here twice. */
3423	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3424		ret = -EBUSY;
3425		goto out;
3426	}
3427	/* we call try-to-free pages for make this cgroup empty */
3428	lru_add_drain_all();
3429	/* try to free all pages in this cgroup */
3430	shrink = 1;
3431	while (nr_retries && mem->res.usage > 0) {
3432		int progress;
3433
3434		if (signal_pending(current)) {
3435			ret = -EINTR;
3436			goto out;
3437		}
3438		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3439						false, get_swappiness(mem));
3440		if (!progress) {
3441			nr_retries--;
3442			/* maybe some writeback is necessary */
3443			congestion_wait(BLK_RW_ASYNC, HZ/10);
3444		}
3445
3446	}
3447	lru_add_drain();
3448	/* try move_account...there may be some *locked* pages. */
3449	goto move_account;
3450}
3451
3452int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3453{
3454	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3455}
3456
3457
3458static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3459{
3460	return mem_cgroup_from_cont(cont)->use_hierarchy;
3461}
3462
3463static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3464					u64 val)
3465{
3466	int retval = 0;
3467	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3468	struct cgroup *parent = cont->parent;
3469	struct mem_cgroup *parent_mem = NULL;
3470
3471	if (parent)
3472		parent_mem = mem_cgroup_from_cont(parent);
3473
3474	cgroup_lock();
3475	/*
3476	 * If parent's use_hierarchy is set, we can't make any modifications
3477	 * in the child subtrees. If it is unset, then the change can
3478	 * occur, provided the current cgroup has no children.
3479	 *
3480	 * For the root cgroup, parent_mem is NULL, we allow value to be
3481	 * set if there are no children.
3482	 */
3483	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3484				(val == 1 || val == 0)) {
3485		if (list_empty(&cont->children))
3486			mem->use_hierarchy = val;
3487		else
3488			retval = -EBUSY;
3489	} else
3490		retval = -EINVAL;
3491	cgroup_unlock();
3492
3493	return retval;
3494}
3495
3496
3497static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3498				enum mem_cgroup_stat_index idx)
3499{
3500	struct mem_cgroup *iter;
3501	s64 val = 0;
3502
3503	/* each per cpu's value can be minus.Then, use s64 */
3504	for_each_mem_cgroup_tree(iter, mem)
3505		val += mem_cgroup_read_stat(iter, idx);
3506
3507	if (val < 0) /* race ? */
3508		val = 0;
3509	return val;
3510}
3511
3512static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3513{
3514	u64 val;
3515
3516	if (!mem_cgroup_is_root(mem)) {
3517		if (!swap)
3518			return res_counter_read_u64(&mem->res, RES_USAGE);
3519		else
3520			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3521	}
3522
3523	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3524	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3525
3526	if (swap)
3527		val += mem_cgroup_get_recursive_idx_stat(mem,
3528				MEM_CGROUP_STAT_SWAPOUT);
3529
3530	return val << PAGE_SHIFT;
3531}
3532
3533static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3534{
3535	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3536	u64 val;
3537	int type, name;
3538
3539	type = MEMFILE_TYPE(cft->private);
3540	name = MEMFILE_ATTR(cft->private);
3541	switch (type) {
3542	case _MEM:
3543		if (name == RES_USAGE)
3544			val = mem_cgroup_usage(mem, false);
3545		else
3546			val = res_counter_read_u64(&mem->res, name);
3547		break;
3548	case _MEMSWAP:
3549		if (name == RES_USAGE)
3550			val = mem_cgroup_usage(mem, true);
3551		else
3552			val = res_counter_read_u64(&mem->memsw, name);
3553		break;
3554	default:
3555		BUG();
3556		break;
3557	}
3558	return val;
3559}
3560/*
3561 * The user of this function is...
3562 * RES_LIMIT.
3563 */
3564static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3565			    const char *buffer)
3566{
3567	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3568	int type, name;
3569	unsigned long long val;
3570	int ret;
3571
3572	type = MEMFILE_TYPE(cft->private);
3573	name = MEMFILE_ATTR(cft->private);
3574	switch (name) {
3575	case RES_LIMIT:
3576		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3577			ret = -EINVAL;
3578			break;
3579		}
3580		/* This function does all necessary parse...reuse it */
3581		ret = res_counter_memparse_write_strategy(buffer, &val);
3582		if (ret)
3583			break;
3584		if (type == _MEM)
3585			ret = mem_cgroup_resize_limit(memcg, val);
3586		else
3587			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3588		break;
3589	case RES_SOFT_LIMIT:
3590		ret = res_counter_memparse_write_strategy(buffer, &val);
3591		if (ret)
3592			break;
3593		/*
3594		 * For memsw, soft limits are hard to implement in terms
3595		 * of semantics, for now, we support soft limits for
3596		 * control without swap
3597		 */
3598		if (type == _MEM)
3599			ret = res_counter_set_soft_limit(&memcg->res, val);
3600		else
3601			ret = -EINVAL;
3602		break;
3603	default:
3604		ret = -EINVAL; /* should be BUG() ? */
3605		break;
3606	}
3607	return ret;
3608}
3609
3610static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3611		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3612{
3613	struct cgroup *cgroup;
3614	unsigned long long min_limit, min_memsw_limit, tmp;
3615
3616	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3617	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3618	cgroup = memcg->css.cgroup;
3619	if (!memcg->use_hierarchy)
3620		goto out;
3621
3622	while (cgroup->parent) {
3623		cgroup = cgroup->parent;
3624		memcg = mem_cgroup_from_cont(cgroup);
3625		if (!memcg->use_hierarchy)
3626			break;
3627		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3628		min_limit = min(min_limit, tmp);
3629		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3630		min_memsw_limit = min(min_memsw_limit, tmp);
3631	}
3632out:
3633	*mem_limit = min_limit;
3634	*memsw_limit = min_memsw_limit;
3635	return;
3636}
3637
3638static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3639{
3640	struct mem_cgroup *mem;
3641	int type, name;
3642
3643	mem = mem_cgroup_from_cont(cont);
3644	type = MEMFILE_TYPE(event);
3645	name = MEMFILE_ATTR(event);
3646	switch (name) {
3647	case RES_MAX_USAGE:
3648		if (type == _MEM)
3649			res_counter_reset_max(&mem->res);
3650		else
3651			res_counter_reset_max(&mem->memsw);
3652		break;
3653	case RES_FAILCNT:
3654		if (type == _MEM)
3655			res_counter_reset_failcnt(&mem->res);
3656		else
3657			res_counter_reset_failcnt(&mem->memsw);
3658		break;
3659	}
3660
3661	return 0;
3662}
3663
3664static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3665					struct cftype *cft)
3666{
3667	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3668}
3669
3670#ifdef CONFIG_MMU
3671static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3672					struct cftype *cft, u64 val)
3673{
3674	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3675
3676	if (val >= (1 << NR_MOVE_TYPE))
3677		return -EINVAL;
3678	/*
3679	 * We check this value several times in both in can_attach() and
3680	 * attach(), so we need cgroup lock to prevent this value from being
3681	 * inconsistent.
3682	 */
3683	cgroup_lock();
3684	mem->move_charge_at_immigrate = val;
3685	cgroup_unlock();
3686
3687	return 0;
3688}
3689#else
3690static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3691					struct cftype *cft, u64 val)
3692{
3693	return -ENOSYS;
3694}
3695#endif
3696
3697
3698/* For read statistics */
3699enum {
3700	MCS_CACHE,
3701	MCS_RSS,
3702	MCS_FILE_MAPPED,
3703	MCS_PGPGIN,
3704	MCS_PGPGOUT,
3705	MCS_SWAP,
3706	MCS_INACTIVE_ANON,
3707	MCS_ACTIVE_ANON,
3708	MCS_INACTIVE_FILE,
3709	MCS_ACTIVE_FILE,
3710	MCS_UNEVICTABLE,
3711	NR_MCS_STAT,
3712};
3713
3714struct mcs_total_stat {
3715	s64 stat[NR_MCS_STAT];
3716};
3717
3718struct {
3719	char *local_name;
3720	char *total_name;
3721} memcg_stat_strings[NR_MCS_STAT] = {
3722	{"cache", "total_cache"},
3723	{"rss", "total_rss"},
3724	{"mapped_file", "total_mapped_file"},
3725	{"pgpgin", "total_pgpgin"},
3726	{"pgpgout", "total_pgpgout"},
3727	{"swap", "total_swap"},
3728	{"inactive_anon", "total_inactive_anon"},
3729	{"active_anon", "total_active_anon"},
3730	{"inactive_file", "total_inactive_file"},
3731	{"active_file", "total_active_file"},
3732	{"unevictable", "total_unevictable"}
3733};
3734
3735
3736static void
3737mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3738{
3739	s64 val;
3740
3741	/* per cpu stat */
3742	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3743	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3744	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3745	s->stat[MCS_RSS] += val * PAGE_SIZE;
3746	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3747	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3748	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3749	s->stat[MCS_PGPGIN] += val;
3750	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3751	s->stat[MCS_PGPGOUT] += val;
3752	if (do_swap_account) {
3753		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3754		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3755	}
3756
3757	/* per zone stat */
3758	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3759	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3760	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3761	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3762	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3763	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3764	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3765	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3766	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3767	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3768}
3769
3770static void
3771mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3772{
3773	struct mem_cgroup *iter;
3774
3775	for_each_mem_cgroup_tree(iter, mem)
3776		mem_cgroup_get_local_stat(iter, s);
3777}
3778
3779static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3780				 struct cgroup_map_cb *cb)
3781{
3782	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3783	struct mcs_total_stat mystat;
3784	int i;
3785
3786	memset(&mystat, 0, sizeof(mystat));
3787	mem_cgroup_get_local_stat(mem_cont, &mystat);
3788
3789	for (i = 0; i < NR_MCS_STAT; i++) {
3790		if (i == MCS_SWAP && !do_swap_account)
3791			continue;
3792		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3793	}
3794
3795	/* Hierarchical information */
3796	{
3797		unsigned long long limit, memsw_limit;
3798		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3799		cb->fill(cb, "hierarchical_memory_limit", limit);
3800		if (do_swap_account)
3801			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3802	}
3803
3804	memset(&mystat, 0, sizeof(mystat));
3805	mem_cgroup_get_total_stat(mem_cont, &mystat);
3806	for (i = 0; i < NR_MCS_STAT; i++) {
3807		if (i == MCS_SWAP && !do_swap_account)
3808			continue;
3809		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3810	}
3811
3812#ifdef CONFIG_DEBUG_VM
3813	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3814
3815	{
3816		int nid, zid;
3817		struct mem_cgroup_per_zone *mz;
3818		unsigned long recent_rotated[2] = {0, 0};
3819		unsigned long recent_scanned[2] = {0, 0};
3820
3821		for_each_online_node(nid)
3822			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3823				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3824
3825				recent_rotated[0] +=
3826					mz->reclaim_stat.recent_rotated[0];
3827				recent_rotated[1] +=
3828					mz->reclaim_stat.recent_rotated[1];
3829				recent_scanned[0] +=
3830					mz->reclaim_stat.recent_scanned[0];
3831				recent_scanned[1] +=
3832					mz->reclaim_stat.recent_scanned[1];
3833			}
3834		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3835		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3836		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3837		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3838	}
3839#endif
3840
3841	return 0;
3842}
3843
3844static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3845{
3846	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3847
3848	return get_swappiness(memcg);
3849}
3850
3851static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3852				       u64 val)
3853{
3854	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3855	struct mem_cgroup *parent;
3856
3857	if (val > 100)
3858		return -EINVAL;
3859
3860	if (cgrp->parent == NULL)
3861		return -EINVAL;
3862
3863	parent = mem_cgroup_from_cont(cgrp->parent);
3864
3865	cgroup_lock();
3866
3867	/* If under hierarchy, only empty-root can set this value */
3868	if ((parent->use_hierarchy) ||
3869	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3870		cgroup_unlock();
3871		return -EINVAL;
3872	}
3873
3874	spin_lock(&memcg->reclaim_param_lock);
3875	memcg->swappiness = val;
3876	spin_unlock(&memcg->reclaim_param_lock);
3877
3878	cgroup_unlock();
3879
3880	return 0;
3881}
3882
3883static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3884{
3885	struct mem_cgroup_threshold_ary *t;
3886	u64 usage;
3887	int i;
3888
3889	rcu_read_lock();
3890	if (!swap)
3891		t = rcu_dereference(memcg->thresholds.primary);
3892	else
3893		t = rcu_dereference(memcg->memsw_thresholds.primary);
3894
3895	if (!t)
3896		goto unlock;
3897
3898	usage = mem_cgroup_usage(memcg, swap);
3899
3900	/*
3901	 * current_threshold points to threshold just below usage.
3902	 * If it's not true, a threshold was crossed after last
3903	 * call of __mem_cgroup_threshold().
3904	 */
3905	i = t->current_threshold;
3906
3907	/*
3908	 * Iterate backward over array of thresholds starting from
3909	 * current_threshold and check if a threshold is crossed.
3910	 * If none of thresholds below usage is crossed, we read
3911	 * only one element of the array here.
3912	 */
3913	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3914		eventfd_signal(t->entries[i].eventfd, 1);
3915
3916	/* i = current_threshold + 1 */
3917	i++;
3918
3919	/*
3920	 * Iterate forward over array of thresholds starting from
3921	 * current_threshold+1 and check if a threshold is crossed.
3922	 * If none of thresholds above usage is crossed, we read
3923	 * only one element of the array here.
3924	 */
3925	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3926		eventfd_signal(t->entries[i].eventfd, 1);
3927
3928	/* Update current_threshold */
3929	t->current_threshold = i - 1;
3930unlock:
3931	rcu_read_unlock();
3932}
3933
3934static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3935{
3936	while (memcg) {
3937		__mem_cgroup_threshold(memcg, false);
3938		if (do_swap_account)
3939			__mem_cgroup_threshold(memcg, true);
3940
3941		memcg = parent_mem_cgroup(memcg);
3942	}
3943}
3944
3945static int compare_thresholds(const void *a, const void *b)
3946{
3947	const struct mem_cgroup_threshold *_a = a;
3948	const struct mem_cgroup_threshold *_b = b;
3949
3950	return _a->threshold - _b->threshold;
3951}
3952
3953static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3954{
3955	struct mem_cgroup_eventfd_list *ev;
3956
3957	list_for_each_entry(ev, &mem->oom_notify, list)
3958		eventfd_signal(ev->eventfd, 1);
3959	return 0;
3960}
3961
3962static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3963{
3964	struct mem_cgroup *iter;
3965
3966	for_each_mem_cgroup_tree(iter, mem)
3967		mem_cgroup_oom_notify_cb(iter);
3968}
3969
3970static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3971	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3972{
3973	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3974	struct mem_cgroup_thresholds *thresholds;
3975	struct mem_cgroup_threshold_ary *new;
3976	int type = MEMFILE_TYPE(cft->private);
3977	u64 threshold, usage;
3978	int i, size, ret;
3979
3980	ret = res_counter_memparse_write_strategy(args, &threshold);
3981	if (ret)
3982		return ret;
3983
3984	mutex_lock(&memcg->thresholds_lock);
3985
3986	if (type == _MEM)
3987		thresholds = &memcg->thresholds;
3988	else if (type == _MEMSWAP)
3989		thresholds = &memcg->memsw_thresholds;
3990	else
3991		BUG();
3992
3993	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3994
3995	/* Check if a threshold crossed before adding a new one */
3996	if (thresholds->primary)
3997		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3998
3999	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4000
4001	/* Allocate memory for new array of thresholds */
4002	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4003			GFP_KERNEL);
4004	if (!new) {
4005		ret = -ENOMEM;
4006		goto unlock;
4007	}
4008	new->size = size;
4009
4010	/* Copy thresholds (if any) to new array */
4011	if (thresholds->primary) {
4012		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4013				sizeof(struct mem_cgroup_threshold));
4014	}
4015
4016	/* Add new threshold */
4017	new->entries[size - 1].eventfd = eventfd;
4018	new->entries[size - 1].threshold = threshold;
4019
4020	/* Sort thresholds. Registering of new threshold isn't time-critical */
4021	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4022			compare_thresholds, NULL);
4023
4024	/* Find current threshold */
4025	new->current_threshold = -1;
4026	for (i = 0; i < size; i++) {
4027		if (new->entries[i].threshold < usage) {
4028			/*
4029			 * new->current_threshold will not be used until
4030			 * rcu_assign_pointer(), so it's safe to increment
4031			 * it here.
4032			 */
4033			++new->current_threshold;
4034		}
4035	}
4036
4037	/* Free old spare buffer and save old primary buffer as spare */
4038	kfree(thresholds->spare);
4039	thresholds->spare = thresholds->primary;
4040
4041	rcu_assign_pointer(thresholds->primary, new);
4042
4043	/* To be sure that nobody uses thresholds */
4044	synchronize_rcu();
4045
4046unlock:
4047	mutex_unlock(&memcg->thresholds_lock);
4048
4049	return ret;
4050}
4051
4052static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4053	struct cftype *cft, struct eventfd_ctx *eventfd)
4054{
4055	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4056	struct mem_cgroup_thresholds *thresholds;
4057	struct mem_cgroup_threshold_ary *new;
4058	int type = MEMFILE_TYPE(cft->private);
4059	u64 usage;
4060	int i, j, size;
4061
4062	mutex_lock(&memcg->thresholds_lock);
4063	if (type == _MEM)
4064		thresholds = &memcg->thresholds;
4065	else if (type == _MEMSWAP)
4066		thresholds = &memcg->memsw_thresholds;
4067	else
4068		BUG();
4069
4070	/*
4071	 * Something went wrong if we trying to unregister a threshold
4072	 * if we don't have thresholds
4073	 */
4074	BUG_ON(!thresholds);
4075
4076	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4077
4078	/* Check if a threshold crossed before removing */
4079	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4080
4081	/* Calculate new number of threshold */
4082	size = 0;
4083	for (i = 0; i < thresholds->primary->size; i++) {
4084		if (thresholds->primary->entries[i].eventfd != eventfd)
4085			size++;
4086	}
4087
4088	new = thresholds->spare;
4089
4090	/* Set thresholds array to NULL if we don't have thresholds */
4091	if (!size) {
4092		kfree(new);
4093		new = NULL;
4094		goto swap_buffers;
4095	}
4096
4097	new->size = size;
4098
4099	/* Copy thresholds and find current threshold */
4100	new->current_threshold = -1;
4101	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4102		if (thresholds->primary->entries[i].eventfd == eventfd)
4103			continue;
4104
4105		new->entries[j] = thresholds->primary->entries[i];
4106		if (new->entries[j].threshold < usage) {
4107			/*
4108			 * new->current_threshold will not be used
4109			 * until rcu_assign_pointer(), so it's safe to increment
4110			 * it here.
4111			 */
4112			++new->current_threshold;
4113		}
4114		j++;
4115	}
4116
4117swap_buffers:
4118	/* Swap primary and spare array */
4119	thresholds->spare = thresholds->primary;
4120	rcu_assign_pointer(thresholds->primary, new);
4121
4122	/* To be sure that nobody uses thresholds */
4123	synchronize_rcu();
4124
4125	mutex_unlock(&memcg->thresholds_lock);
4126}
4127
4128static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4129	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4130{
4131	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4132	struct mem_cgroup_eventfd_list *event;
4133	int type = MEMFILE_TYPE(cft->private);
4134
4135	BUG_ON(type != _OOM_TYPE);
4136	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4137	if (!event)
4138		return -ENOMEM;
4139
4140	mutex_lock(&memcg_oom_mutex);
4141
4142	event->eventfd = eventfd;
4143	list_add(&event->list, &memcg->oom_notify);
4144
4145	/* already in OOM ? */
4146	if (atomic_read(&memcg->oom_lock))
4147		eventfd_signal(eventfd, 1);
4148	mutex_unlock(&memcg_oom_mutex);
4149
4150	return 0;
4151}
4152
4153static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4154	struct cftype *cft, struct eventfd_ctx *eventfd)
4155{
4156	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4157	struct mem_cgroup_eventfd_list *ev, *tmp;
4158	int type = MEMFILE_TYPE(cft->private);
4159
4160	BUG_ON(type != _OOM_TYPE);
4161
4162	mutex_lock(&memcg_oom_mutex);
4163
4164	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4165		if (ev->eventfd == eventfd) {
4166			list_del(&ev->list);
4167			kfree(ev);
4168		}
4169	}
4170
4171	mutex_unlock(&memcg_oom_mutex);
4172}
4173
4174static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4175	struct cftype *cft,  struct cgroup_map_cb *cb)
4176{
4177	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4178
4179	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4180
4181	if (atomic_read(&mem->oom_lock))
4182		cb->fill(cb, "under_oom", 1);
4183	else
4184		cb->fill(cb, "under_oom", 0);
4185	return 0;
4186}
4187
4188static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4189	struct cftype *cft, u64 val)
4190{
4191	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4192	struct mem_cgroup *parent;
4193
4194	/* cannot set to root cgroup and only 0 and 1 are allowed */
4195	if (!cgrp->parent || !((val == 0) || (val == 1)))
4196		return -EINVAL;
4197
4198	parent = mem_cgroup_from_cont(cgrp->parent);
4199
4200	cgroup_lock();
4201	/* oom-kill-disable is a flag for subhierarchy. */
4202	if ((parent->use_hierarchy) ||
4203	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4204		cgroup_unlock();
4205		return -EINVAL;
4206	}
4207	mem->oom_kill_disable = val;
4208	if (!val)
4209		memcg_oom_recover(mem);
4210	cgroup_unlock();
4211	return 0;
4212}
4213
4214static struct cftype mem_cgroup_files[] = {
4215	{
4216		.name = "usage_in_bytes",
4217		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4218		.read_u64 = mem_cgroup_read,
4219		.register_event = mem_cgroup_usage_register_event,
4220		.unregister_event = mem_cgroup_usage_unregister_event,
4221	},
4222	{
4223		.name = "max_usage_in_bytes",
4224		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4225		.trigger = mem_cgroup_reset,
4226		.read_u64 = mem_cgroup_read,
4227	},
4228	{
4229		.name = "limit_in_bytes",
4230		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4231		.write_string = mem_cgroup_write,
4232		.read_u64 = mem_cgroup_read,
4233	},
4234	{
4235		.name = "soft_limit_in_bytes",
4236		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4237		.write_string = mem_cgroup_write,
4238		.read_u64 = mem_cgroup_read,
4239	},
4240	{
4241		.name = "failcnt",
4242		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4243		.trigger = mem_cgroup_reset,
4244		.read_u64 = mem_cgroup_read,
4245	},
4246	{
4247		.name = "stat",
4248		.read_map = mem_control_stat_show,
4249	},
4250	{
4251		.name = "force_empty",
4252		.trigger = mem_cgroup_force_empty_write,
4253	},
4254	{
4255		.name = "use_hierarchy",
4256		.write_u64 = mem_cgroup_hierarchy_write,
4257		.read_u64 = mem_cgroup_hierarchy_read,
4258	},
4259	{
4260		.name = "swappiness",
4261		.read_u64 = mem_cgroup_swappiness_read,
4262		.write_u64 = mem_cgroup_swappiness_write,
4263	},
4264	{
4265		.name = "move_charge_at_immigrate",
4266		.read_u64 = mem_cgroup_move_charge_read,
4267		.write_u64 = mem_cgroup_move_charge_write,
4268	},
4269	{
4270		.name = "oom_control",
4271		.read_map = mem_cgroup_oom_control_read,
4272		.write_u64 = mem_cgroup_oom_control_write,
4273		.register_event = mem_cgroup_oom_register_event,
4274		.unregister_event = mem_cgroup_oom_unregister_event,
4275		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4276	},
4277};
4278
4279#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4280static struct cftype memsw_cgroup_files[] = {
4281	{
4282		.name = "memsw.usage_in_bytes",
4283		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4284		.read_u64 = mem_cgroup_read,
4285		.register_event = mem_cgroup_usage_register_event,
4286		.unregister_event = mem_cgroup_usage_unregister_event,
4287	},
4288	{
4289		.name = "memsw.max_usage_in_bytes",
4290		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4291		.trigger = mem_cgroup_reset,
4292		.read_u64 = mem_cgroup_read,
4293	},
4294	{
4295		.name = "memsw.limit_in_bytes",
4296		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4297		.write_string = mem_cgroup_write,
4298		.read_u64 = mem_cgroup_read,
4299	},
4300	{
4301		.name = "memsw.failcnt",
4302		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4303		.trigger = mem_cgroup_reset,
4304		.read_u64 = mem_cgroup_read,
4305	},
4306};
4307
4308static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4309{
4310	if (!do_swap_account)
4311		return 0;
4312	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4313				ARRAY_SIZE(memsw_cgroup_files));
4314};
4315#else
4316static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4317{
4318	return 0;
4319}
4320#endif
4321
4322static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4323{
4324	struct mem_cgroup_per_node *pn;
4325	struct mem_cgroup_per_zone *mz;
4326	enum lru_list l;
4327	int zone, tmp = node;
4328	/*
4329	 * This routine is called against possible nodes.
4330	 * But it's BUG to call kmalloc() against offline node.
4331	 *
4332	 * TODO: this routine can waste much memory for nodes which will
4333	 *       never be onlined. It's better to use memory hotplug callback
4334	 *       function.
4335	 */
4336	if (!node_state(node, N_NORMAL_MEMORY))
4337		tmp = -1;
4338	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4339	if (!pn)
4340		return 1;
4341
4342	mem->info.nodeinfo[node] = pn;
4343	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4344		mz = &pn->zoneinfo[zone];
4345		for_each_lru(l)
4346			INIT_LIST_HEAD(&mz->lists[l]);
4347		mz->usage_in_excess = 0;
4348		mz->on_tree = false;
4349		mz->mem = mem;
4350	}
4351	return 0;
4352}
4353
4354static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4355{
4356	kfree(mem->info.nodeinfo[node]);
4357}
4358
4359static struct mem_cgroup *mem_cgroup_alloc(void)
4360{
4361	struct mem_cgroup *mem;
4362	int size = sizeof(struct mem_cgroup);
4363
4364	/* Can be very big if MAX_NUMNODES is very big */
4365	if (size < PAGE_SIZE)
4366		mem = kzalloc(size, GFP_KERNEL);
4367	else
4368		mem = vzalloc(size);
4369
4370	if (!mem)
4371		return NULL;
4372
4373	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4374	if (!mem->stat)
4375		goto out_free;
4376	spin_lock_init(&mem->pcp_counter_lock);
4377	return mem;
4378
4379out_free:
4380	if (size < PAGE_SIZE)
4381		kfree(mem);
4382	else
4383		vfree(mem);
4384	return NULL;
4385}
4386
4387/*
4388 * At destroying mem_cgroup, references from swap_cgroup can remain.
4389 * (scanning all at force_empty is too costly...)
4390 *
4391 * Instead of clearing all references at force_empty, we remember
4392 * the number of reference from swap_cgroup and free mem_cgroup when
4393 * it goes down to 0.
4394 *
4395 * Removal of cgroup itself succeeds regardless of refs from swap.
4396 */
4397
4398static void __mem_cgroup_free(struct mem_cgroup *mem)
4399{
4400	int node;
4401
4402	mem_cgroup_remove_from_trees(mem);
4403	free_css_id(&mem_cgroup_subsys, &mem->css);
4404
4405	for_each_node_state(node, N_POSSIBLE)
4406		free_mem_cgroup_per_zone_info(mem, node);
4407
4408	free_percpu(mem->stat);
4409	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4410		kfree(mem);
4411	else
4412		vfree(mem);
4413}
4414
4415static void mem_cgroup_get(struct mem_cgroup *mem)
4416{
4417	atomic_inc(&mem->refcnt);
4418}
4419
4420static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4421{
4422	if (atomic_sub_and_test(count, &mem->refcnt)) {
4423		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4424		__mem_cgroup_free(mem);
4425		if (parent)
4426			mem_cgroup_put(parent);
4427	}
4428}
4429
4430static void mem_cgroup_put(struct mem_cgroup *mem)
4431{
4432	__mem_cgroup_put(mem, 1);
4433}
4434
4435/*
4436 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4437 */
4438static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4439{
4440	if (!mem->res.parent)
4441		return NULL;
4442	return mem_cgroup_from_res_counter(mem->res.parent, res);
4443}
4444
4445#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4446static void __init enable_swap_cgroup(void)
4447{
4448	if (!mem_cgroup_disabled() && really_do_swap_account)
4449		do_swap_account = 1;
4450}
4451#else
4452static void __init enable_swap_cgroup(void)
4453{
4454}
4455#endif
4456
4457static int mem_cgroup_soft_limit_tree_init(void)
4458{
4459	struct mem_cgroup_tree_per_node *rtpn;
4460	struct mem_cgroup_tree_per_zone *rtpz;
4461	int tmp, node, zone;
4462
4463	for_each_node_state(node, N_POSSIBLE) {
4464		tmp = node;
4465		if (!node_state(node, N_NORMAL_MEMORY))
4466			tmp = -1;
4467		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4468		if (!rtpn)
4469			return 1;
4470
4471		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4472
4473		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4474			rtpz = &rtpn->rb_tree_per_zone[zone];
4475			rtpz->rb_root = RB_ROOT;
4476			spin_lock_init(&rtpz->lock);
4477		}
4478	}
4479	return 0;
4480}
4481
4482static struct cgroup_subsys_state * __ref
4483mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4484{
4485	struct mem_cgroup *mem, *parent;
4486	long error = -ENOMEM;
4487	int node;
4488
4489	mem = mem_cgroup_alloc();
4490	if (!mem)
4491		return ERR_PTR(error);
4492
4493	for_each_node_state(node, N_POSSIBLE)
4494		if (alloc_mem_cgroup_per_zone_info(mem, node))
4495			goto free_out;
4496
4497	/* root ? */
4498	if (cont->parent == NULL) {
4499		int cpu;
4500		enable_swap_cgroup();
4501		parent = NULL;
4502		root_mem_cgroup = mem;
4503		if (mem_cgroup_soft_limit_tree_init())
4504			goto free_out;
4505		for_each_possible_cpu(cpu) {
4506			struct memcg_stock_pcp *stock =
4507						&per_cpu(memcg_stock, cpu);
4508			INIT_WORK(&stock->work, drain_local_stock);
4509		}
4510		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4511	} else {
4512		parent = mem_cgroup_from_cont(cont->parent);
4513		mem->use_hierarchy = parent->use_hierarchy;
4514		mem->oom_kill_disable = parent->oom_kill_disable;
4515	}
4516
4517	if (parent && parent->use_hierarchy) {
4518		res_counter_init(&mem->res, &parent->res);
4519		res_counter_init(&mem->memsw, &parent->memsw);
4520		/*
4521		 * We increment refcnt of the parent to ensure that we can
4522		 * safely access it on res_counter_charge/uncharge.
4523		 * This refcnt will be decremented when freeing this
4524		 * mem_cgroup(see mem_cgroup_put).
4525		 */
4526		mem_cgroup_get(parent);
4527	} else {
4528		res_counter_init(&mem->res, NULL);
4529		res_counter_init(&mem->memsw, NULL);
4530	}
4531	mem->last_scanned_child = 0;
4532	spin_lock_init(&mem->reclaim_param_lock);
4533	INIT_LIST_HEAD(&mem->oom_notify);
4534
4535	if (parent)
4536		mem->swappiness = get_swappiness(parent);
4537	atomic_set(&mem->refcnt, 1);
4538	mem->move_charge_at_immigrate = 0;
4539	mutex_init(&mem->thresholds_lock);
4540	return &mem->css;
4541free_out:
4542	__mem_cgroup_free(mem);
4543	root_mem_cgroup = NULL;
4544	return ERR_PTR(error);
4545}
4546
4547static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4548					struct cgroup *cont)
4549{
4550	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4551
4552	return mem_cgroup_force_empty(mem, false);
4553}
4554
4555static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4556				struct cgroup *cont)
4557{
4558	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4559
4560	mem_cgroup_put(mem);
4561}
4562
4563static int mem_cgroup_populate(struct cgroup_subsys *ss,
4564				struct cgroup *cont)
4565{
4566	int ret;
4567
4568	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4569				ARRAY_SIZE(mem_cgroup_files));
4570
4571	if (!ret)
4572		ret = register_memsw_files(cont, ss);
4573	return ret;
4574}
4575
4576#ifdef CONFIG_MMU
4577/* Handlers for move charge at task migration. */
4578#define PRECHARGE_COUNT_AT_ONCE	256
4579static int mem_cgroup_do_precharge(unsigned long count)
4580{
4581	int ret = 0;
4582	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4583	struct mem_cgroup *mem = mc.to;
4584
4585	if (mem_cgroup_is_root(mem)) {
4586		mc.precharge += count;
4587		/* we don't need css_get for root */
4588		return ret;
4589	}
4590	/* try to charge at once */
4591	if (count > 1) {
4592		struct res_counter *dummy;
4593		/*
4594		 * "mem" cannot be under rmdir() because we've already checked
4595		 * by cgroup_lock_live_cgroup() that it is not removed and we
4596		 * are still under the same cgroup_mutex. So we can postpone
4597		 * css_get().
4598		 */
4599		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4600			goto one_by_one;
4601		if (do_swap_account && res_counter_charge(&mem->memsw,
4602						PAGE_SIZE * count, &dummy)) {
4603			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4604			goto one_by_one;
4605		}
4606		mc.precharge += count;
4607		return ret;
4608	}
4609one_by_one:
4610	/* fall back to one by one charge */
4611	while (count--) {
4612		if (signal_pending(current)) {
4613			ret = -EINTR;
4614			break;
4615		}
4616		if (!batch_count--) {
4617			batch_count = PRECHARGE_COUNT_AT_ONCE;
4618			cond_resched();
4619		}
4620		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4621					      PAGE_SIZE);
4622		if (ret || !mem)
4623			/* mem_cgroup_clear_mc() will do uncharge later */
4624			return -ENOMEM;
4625		mc.precharge++;
4626	}
4627	return ret;
4628}
4629
4630/**
4631 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4632 * @vma: the vma the pte to be checked belongs
4633 * @addr: the address corresponding to the pte to be checked
4634 * @ptent: the pte to be checked
4635 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4636 *
4637 * Returns
4638 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4639 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4640 *     move charge. if @target is not NULL, the page is stored in target->page
4641 *     with extra refcnt got(Callers should handle it).
4642 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4643 *     target for charge migration. if @target is not NULL, the entry is stored
4644 *     in target->ent.
4645 *
4646 * Called with pte lock held.
4647 */
4648union mc_target {
4649	struct page	*page;
4650	swp_entry_t	ent;
4651};
4652
4653enum mc_target_type {
4654	MC_TARGET_NONE,	/* not used */
4655	MC_TARGET_PAGE,
4656	MC_TARGET_SWAP,
4657};
4658
4659static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4660						unsigned long addr, pte_t ptent)
4661{
4662	struct page *page = vm_normal_page(vma, addr, ptent);
4663
4664	if (!page || !page_mapped(page))
4665		return NULL;
4666	if (PageAnon(page)) {
4667		/* we don't move shared anon */
4668		if (!move_anon() || page_mapcount(page) > 2)
4669			return NULL;
4670	} else if (!move_file())
4671		/* we ignore mapcount for file pages */
4672		return NULL;
4673	if (!get_page_unless_zero(page))
4674		return NULL;
4675
4676	return page;
4677}
4678
4679static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4680			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4681{
4682	int usage_count;
4683	struct page *page = NULL;
4684	swp_entry_t ent = pte_to_swp_entry(ptent);
4685
4686	if (!move_anon() || non_swap_entry(ent))
4687		return NULL;
4688	usage_count = mem_cgroup_count_swap_user(ent, &page);
4689	if (usage_count > 1) { /* we don't move shared anon */
4690		if (page)
4691			put_page(page);
4692		return NULL;
4693	}
4694	if (do_swap_account)
4695		entry->val = ent.val;
4696
4697	return page;
4698}
4699
4700static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4701			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4702{
4703	struct page *page = NULL;
4704	struct inode *inode;
4705	struct address_space *mapping;
4706	pgoff_t pgoff;
4707
4708	if (!vma->vm_file) /* anonymous vma */
4709		return NULL;
4710	if (!move_file())
4711		return NULL;
4712
4713	inode = vma->vm_file->f_path.dentry->d_inode;
4714	mapping = vma->vm_file->f_mapping;
4715	if (pte_none(ptent))
4716		pgoff = linear_page_index(vma, addr);
4717	else /* pte_file(ptent) is true */
4718		pgoff = pte_to_pgoff(ptent);
4719
4720	/* page is moved even if it's not RSS of this task(page-faulted). */
4721	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4722		page = find_get_page(mapping, pgoff);
4723	} else { /* shmem/tmpfs file. we should take account of swap too. */
4724		swp_entry_t ent;
4725		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4726		if (do_swap_account)
4727			entry->val = ent.val;
4728	}
4729
4730	return page;
4731}
4732
4733static int is_target_pte_for_mc(struct vm_area_struct *vma,
4734		unsigned long addr, pte_t ptent, union mc_target *target)
4735{
4736	struct page *page = NULL;
4737	struct page_cgroup *pc;
4738	int ret = 0;
4739	swp_entry_t ent = { .val = 0 };
4740
4741	if (pte_present(ptent))
4742		page = mc_handle_present_pte(vma, addr, ptent);
4743	else if (is_swap_pte(ptent))
4744		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4745	else if (pte_none(ptent) || pte_file(ptent))
4746		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4747
4748	if (!page && !ent.val)
4749		return 0;
4750	if (page) {
4751		pc = lookup_page_cgroup(page);
4752		/*
4753		 * Do only loose check w/o page_cgroup lock.
4754		 * mem_cgroup_move_account() checks the pc is valid or not under
4755		 * the lock.
4756		 */
4757		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4758			ret = MC_TARGET_PAGE;
4759			if (target)
4760				target->page = page;
4761		}
4762		if (!ret || !target)
4763			put_page(page);
4764	}
4765	/* There is a swap entry and a page doesn't exist or isn't charged */
4766	if (ent.val && !ret &&
4767			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4768		ret = MC_TARGET_SWAP;
4769		if (target)
4770			target->ent = ent;
4771	}
4772	return ret;
4773}
4774
4775static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4776					unsigned long addr, unsigned long end,
4777					struct mm_walk *walk)
4778{
4779	struct vm_area_struct *vma = walk->private;
4780	pte_t *pte;
4781	spinlock_t *ptl;
4782
4783	split_huge_page_pmd(walk->mm, pmd);
4784
4785	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4786	for (; addr != end; pte++, addr += PAGE_SIZE)
4787		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4788			mc.precharge++;	/* increment precharge temporarily */
4789	pte_unmap_unlock(pte - 1, ptl);
4790	cond_resched();
4791
4792	return 0;
4793}
4794
4795static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4796{
4797	unsigned long precharge;
4798	struct vm_area_struct *vma;
4799
4800	down_read(&mm->mmap_sem);
4801	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4802		struct mm_walk mem_cgroup_count_precharge_walk = {
4803			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4804			.mm = mm,
4805			.private = vma,
4806		};
4807		if (is_vm_hugetlb_page(vma))
4808			continue;
4809		walk_page_range(vma->vm_start, vma->vm_end,
4810					&mem_cgroup_count_precharge_walk);
4811	}
4812	up_read(&mm->mmap_sem);
4813
4814	precharge = mc.precharge;
4815	mc.precharge = 0;
4816
4817	return precharge;
4818}
4819
4820static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4821{
4822	unsigned long precharge = mem_cgroup_count_precharge(mm);
4823
4824	VM_BUG_ON(mc.moving_task);
4825	mc.moving_task = current;
4826	return mem_cgroup_do_precharge(precharge);
4827}
4828
4829/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4830static void __mem_cgroup_clear_mc(void)
4831{
4832	struct mem_cgroup *from = mc.from;
4833	struct mem_cgroup *to = mc.to;
4834
4835	/* we must uncharge all the leftover precharges from mc.to */
4836	if (mc.precharge) {
4837		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4838		mc.precharge = 0;
4839	}
4840	/*
4841	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4842	 * we must uncharge here.
4843	 */
4844	if (mc.moved_charge) {
4845		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4846		mc.moved_charge = 0;
4847	}
4848	/* we must fixup refcnts and charges */
4849	if (mc.moved_swap) {
4850		/* uncharge swap account from the old cgroup */
4851		if (!mem_cgroup_is_root(mc.from))
4852			res_counter_uncharge(&mc.from->memsw,
4853						PAGE_SIZE * mc.moved_swap);
4854		__mem_cgroup_put(mc.from, mc.moved_swap);
4855
4856		if (!mem_cgroup_is_root(mc.to)) {
4857			/*
4858			 * we charged both to->res and to->memsw, so we should
4859			 * uncharge to->res.
4860			 */
4861			res_counter_uncharge(&mc.to->res,
4862						PAGE_SIZE * mc.moved_swap);
4863		}
4864		/* we've already done mem_cgroup_get(mc.to) */
4865		mc.moved_swap = 0;
4866	}
4867	memcg_oom_recover(from);
4868	memcg_oom_recover(to);
4869	wake_up_all(&mc.waitq);
4870}
4871
4872static void mem_cgroup_clear_mc(void)
4873{
4874	struct mem_cgroup *from = mc.from;
4875
4876	/*
4877	 * we must clear moving_task before waking up waiters at the end of
4878	 * task migration.
4879	 */
4880	mc.moving_task = NULL;
4881	__mem_cgroup_clear_mc();
4882	spin_lock(&mc.lock);
4883	mc.from = NULL;
4884	mc.to = NULL;
4885	spin_unlock(&mc.lock);
4886	mem_cgroup_end_move(from);
4887}
4888
4889static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4890				struct cgroup *cgroup,
4891				struct task_struct *p,
4892				bool threadgroup)
4893{
4894	int ret = 0;
4895	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4896
4897	if (mem->move_charge_at_immigrate) {
4898		struct mm_struct *mm;
4899		struct mem_cgroup *from = mem_cgroup_from_task(p);
4900
4901		VM_BUG_ON(from == mem);
4902
4903		mm = get_task_mm(p);
4904		if (!mm)
4905			return 0;
4906		/* We move charges only when we move a owner of the mm */
4907		if (mm->owner == p) {
4908			VM_BUG_ON(mc.from);
4909			VM_BUG_ON(mc.to);
4910			VM_BUG_ON(mc.precharge);
4911			VM_BUG_ON(mc.moved_charge);
4912			VM_BUG_ON(mc.moved_swap);
4913			mem_cgroup_start_move(from);
4914			spin_lock(&mc.lock);
4915			mc.from = from;
4916			mc.to = mem;
4917			spin_unlock(&mc.lock);
4918			/* We set mc.moving_task later */
4919
4920			ret = mem_cgroup_precharge_mc(mm);
4921			if (ret)
4922				mem_cgroup_clear_mc();
4923		}
4924		mmput(mm);
4925	}
4926	return ret;
4927}
4928
4929static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4930				struct cgroup *cgroup,
4931				struct task_struct *p,
4932				bool threadgroup)
4933{
4934	mem_cgroup_clear_mc();
4935}
4936
4937static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4938				unsigned long addr, unsigned long end,
4939				struct mm_walk *walk)
4940{
4941	int ret = 0;
4942	struct vm_area_struct *vma = walk->private;
4943	pte_t *pte;
4944	spinlock_t *ptl;
4945
4946	split_huge_page_pmd(walk->mm, pmd);
4947retry:
4948	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4949	for (; addr != end; addr += PAGE_SIZE) {
4950		pte_t ptent = *(pte++);
4951		union mc_target target;
4952		int type;
4953		struct page *page;
4954		struct page_cgroup *pc;
4955		swp_entry_t ent;
4956
4957		if (!mc.precharge)
4958			break;
4959
4960		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4961		switch (type) {
4962		case MC_TARGET_PAGE:
4963			page = target.page;
4964			if (isolate_lru_page(page))
4965				goto put;
4966			pc = lookup_page_cgroup(page);
4967			if (!mem_cgroup_move_account(page, pc,
4968					mc.from, mc.to, false, PAGE_SIZE)) {
4969				mc.precharge--;
4970				/* we uncharge from mc.from later. */
4971				mc.moved_charge++;
4972			}
4973			putback_lru_page(page);
4974put:			/* is_target_pte_for_mc() gets the page */
4975			put_page(page);
4976			break;
4977		case MC_TARGET_SWAP:
4978			ent = target.ent;
4979			if (!mem_cgroup_move_swap_account(ent,
4980						mc.from, mc.to, false)) {
4981				mc.precharge--;
4982				/* we fixup refcnts and charges later. */
4983				mc.moved_swap++;
4984			}
4985			break;
4986		default:
4987			break;
4988		}
4989	}
4990	pte_unmap_unlock(pte - 1, ptl);
4991	cond_resched();
4992
4993	if (addr != end) {
4994		/*
4995		 * We have consumed all precharges we got in can_attach().
4996		 * We try charge one by one, but don't do any additional
4997		 * charges to mc.to if we have failed in charge once in attach()
4998		 * phase.
4999		 */
5000		ret = mem_cgroup_do_precharge(1);
5001		if (!ret)
5002			goto retry;
5003	}
5004
5005	return ret;
5006}
5007
5008static void mem_cgroup_move_charge(struct mm_struct *mm)
5009{
5010	struct vm_area_struct *vma;
5011
5012	lru_add_drain_all();
5013retry:
5014	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5015		/*
5016		 * Someone who are holding the mmap_sem might be waiting in
5017		 * waitq. So we cancel all extra charges, wake up all waiters,
5018		 * and retry. Because we cancel precharges, we might not be able
5019		 * to move enough charges, but moving charge is a best-effort
5020		 * feature anyway, so it wouldn't be a big problem.
5021		 */
5022		__mem_cgroup_clear_mc();
5023		cond_resched();
5024		goto retry;
5025	}
5026	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5027		int ret;
5028		struct mm_walk mem_cgroup_move_charge_walk = {
5029			.pmd_entry = mem_cgroup_move_charge_pte_range,
5030			.mm = mm,
5031			.private = vma,
5032		};
5033		if (is_vm_hugetlb_page(vma))
5034			continue;
5035		ret = walk_page_range(vma->vm_start, vma->vm_end,
5036						&mem_cgroup_move_charge_walk);
5037		if (ret)
5038			/*
5039			 * means we have consumed all precharges and failed in
5040			 * doing additional charge. Just abandon here.
5041			 */
5042			break;
5043	}
5044	up_read(&mm->mmap_sem);
5045}
5046
5047static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5048				struct cgroup *cont,
5049				struct cgroup *old_cont,
5050				struct task_struct *p,
5051				bool threadgroup)
5052{
5053	struct mm_struct *mm;
5054
5055	if (!mc.to)
5056		/* no need to move charge */
5057		return;
5058
5059	mm = get_task_mm(p);
5060	if (mm) {
5061		mem_cgroup_move_charge(mm);
5062		mmput(mm);
5063	}
5064	mem_cgroup_clear_mc();
5065}
5066#else	/* !CONFIG_MMU */
5067static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5068				struct cgroup *cgroup,
5069				struct task_struct *p,
5070				bool threadgroup)
5071{
5072	return 0;
5073}
5074static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5075				struct cgroup *cgroup,
5076				struct task_struct *p,
5077				bool threadgroup)
5078{
5079}
5080static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5081				struct cgroup *cont,
5082				struct cgroup *old_cont,
5083				struct task_struct *p,
5084				bool threadgroup)
5085{
5086}
5087#endif
5088
5089struct cgroup_subsys mem_cgroup_subsys = {
5090	.name = "memory",
5091	.subsys_id = mem_cgroup_subsys_id,
5092	.create = mem_cgroup_create,
5093	.pre_destroy = mem_cgroup_pre_destroy,
5094	.destroy = mem_cgroup_destroy,
5095	.populate = mem_cgroup_populate,
5096	.can_attach = mem_cgroup_can_attach,
5097	.cancel_attach = mem_cgroup_cancel_attach,
5098	.attach = mem_cgroup_move_task,
5099	.early_init = 0,
5100	.use_id = 1,
5101};
5102
5103#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5104static int __init enable_swap_account(char *s)
5105{
5106	/* consider enabled if no parameter or 1 is given */
5107	if (!(*s) || !strcmp(s, "=1"))
5108		really_do_swap_account = 1;
5109	else if (!strcmp(s, "=0"))
5110		really_do_swap_account = 0;
5111	return 1;
5112}
5113__setup("swapaccount", enable_swap_account);
5114
5115static int __init disable_swap_account(char *s)
5116{
5117	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5118	enable_swap_account("=0");
5119	return 1;
5120}
5121__setup("noswapaccount", disable_swap_account);
5122#endif
5123