memcontrol.c revision 66e1707bc34609f626e2e7b4fe7e454c9748bad5
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/page-flags.h>
25#include <linux/backing-dev.h>
26#include <linux/bit_spinlock.h>
27#include <linux/rcupdate.h>
28#include <linux/swap.h>
29#include <linux/spinlock.h>
30#include <linux/fs.h>
31
32struct cgroup_subsys mem_cgroup_subsys;
33static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
34
35/*
36 * The memory controller data structure. The memory controller controls both
37 * page cache and RSS per cgroup. We would eventually like to provide
38 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
39 * to help the administrator determine what knobs to tune.
40 *
41 * TODO: Add a water mark for the memory controller. Reclaim will begin when
42 * we hit the water mark. May be even add a low water mark, such that
43 * no reclaim occurs from a cgroup at it's low water mark, this is
44 * a feature that will be implemented much later in the future.
45 */
46struct mem_cgroup {
47	struct cgroup_subsys_state css;
48	/*
49	 * the counter to account for memory usage
50	 */
51	struct res_counter res;
52	/*
53	 * Per cgroup active and inactive list, similar to the
54	 * per zone LRU lists.
55	 * TODO: Consider making these lists per zone
56	 */
57	struct list_head active_list;
58	struct list_head inactive_list;
59	/*
60	 * spin_lock to protect the per cgroup LRU
61	 */
62	spinlock_t lru_lock;
63};
64
65/*
66 * We use the lower bit of the page->page_cgroup pointer as a bit spin
67 * lock. We need to ensure that page->page_cgroup is atleast two
68 * byte aligned (based on comments from Nick Piggin)
69 */
70#define PAGE_CGROUP_LOCK_BIT 	0x0
71#define PAGE_CGROUP_LOCK 		(1 << PAGE_CGROUP_LOCK_BIT)
72
73/*
74 * A page_cgroup page is associated with every page descriptor. The
75 * page_cgroup helps us identify information about the cgroup
76 */
77struct page_cgroup {
78	struct list_head lru;		/* per cgroup LRU list */
79	struct page *page;
80	struct mem_cgroup *mem_cgroup;
81	atomic_t ref_cnt;		/* Helpful when pages move b/w  */
82					/* mapped and cached states     */
83};
84
85
86static inline
87struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
88{
89	return container_of(cgroup_subsys_state(cont,
90				mem_cgroup_subsys_id), struct mem_cgroup,
91				css);
92}
93
94static inline
95struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
96{
97	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
98				struct mem_cgroup, css);
99}
100
101void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
102{
103	struct mem_cgroup *mem;
104
105	mem = mem_cgroup_from_task(p);
106	css_get(&mem->css);
107	mm->mem_cgroup = mem;
108}
109
110void mm_free_cgroup(struct mm_struct *mm)
111{
112	css_put(&mm->mem_cgroup->css);
113}
114
115static inline int page_cgroup_locked(struct page *page)
116{
117	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
118					&page->page_cgroup);
119}
120
121void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
122{
123	int locked;
124
125	/*
126	 * While resetting the page_cgroup we might not hold the
127	 * page_cgroup lock. free_hot_cold_page() is an example
128	 * of such a scenario
129	 */
130	if (pc)
131		VM_BUG_ON(!page_cgroup_locked(page));
132	locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
133	page->page_cgroup = ((unsigned long)pc | locked);
134}
135
136struct page_cgroup *page_get_page_cgroup(struct page *page)
137{
138	return (struct page_cgroup *)
139		(page->page_cgroup & ~PAGE_CGROUP_LOCK);
140}
141
142void __always_inline lock_page_cgroup(struct page *page)
143{
144	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
145	VM_BUG_ON(!page_cgroup_locked(page));
146}
147
148void __always_inline unlock_page_cgroup(struct page *page)
149{
150	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
151}
152
153void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
154{
155	if (active)
156		list_move(&pc->lru, &pc->mem_cgroup->active_list);
157	else
158		list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
159}
160
161/*
162 * This routine assumes that the appropriate zone's lru lock is already held
163 */
164void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
165{
166	struct mem_cgroup *mem;
167	if (!pc)
168		return;
169
170	mem = pc->mem_cgroup;
171
172	spin_lock(&mem->lru_lock);
173	__mem_cgroup_move_lists(pc, active);
174	spin_unlock(&mem->lru_lock);
175}
176
177unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
178					struct list_head *dst,
179					unsigned long *scanned, int order,
180					int mode, struct zone *z,
181					struct mem_cgroup *mem_cont,
182					int active)
183{
184	unsigned long nr_taken = 0;
185	struct page *page;
186	unsigned long scan;
187	LIST_HEAD(pc_list);
188	struct list_head *src;
189	struct page_cgroup *pc;
190
191	if (active)
192		src = &mem_cont->active_list;
193	else
194		src = &mem_cont->inactive_list;
195
196	spin_lock(&mem_cont->lru_lock);
197	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
198		pc = list_entry(src->prev, struct page_cgroup, lru);
199		page = pc->page;
200		VM_BUG_ON(!pc);
201
202		if (PageActive(page) && !active) {
203			__mem_cgroup_move_lists(pc, true);
204			scan--;
205			continue;
206		}
207		if (!PageActive(page) && active) {
208			__mem_cgroup_move_lists(pc, false);
209			scan--;
210			continue;
211		}
212
213		/*
214		 * Reclaim, per zone
215		 * TODO: make the active/inactive lists per zone
216		 */
217		if (page_zone(page) != z)
218			continue;
219
220		/*
221		 * Check if the meta page went away from under us
222		 */
223		if (!list_empty(&pc->lru))
224			list_move(&pc->lru, &pc_list);
225		else
226			continue;
227
228		if (__isolate_lru_page(page, mode) == 0) {
229			list_move(&page->lru, dst);
230			nr_taken++;
231		}
232	}
233
234	list_splice(&pc_list, src);
235	spin_unlock(&mem_cont->lru_lock);
236
237	*scanned = scan;
238	return nr_taken;
239}
240
241/*
242 * Charge the memory controller for page usage.
243 * Return
244 * 0 if the charge was successful
245 * < 0 if the cgroup is over its limit
246 */
247int mem_cgroup_charge(struct page *page, struct mm_struct *mm)
248{
249	struct mem_cgroup *mem;
250	struct page_cgroup *pc, *race_pc;
251	unsigned long flags;
252	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
253
254	/*
255	 * Should page_cgroup's go to their own slab?
256	 * One could optimize the performance of the charging routine
257	 * by saving a bit in the page_flags and using it as a lock
258	 * to see if the cgroup page already has a page_cgroup associated
259	 * with it
260	 */
261retry:
262	lock_page_cgroup(page);
263	pc = page_get_page_cgroup(page);
264	/*
265	 * The page_cgroup exists and the page has already been accounted
266	 */
267	if (pc) {
268		if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
269			/* this page is under being uncharged ? */
270			unlock_page_cgroup(page);
271			cpu_relax();
272			goto retry;
273		} else
274			goto done;
275	}
276
277	unlock_page_cgroup(page);
278
279	pc = kzalloc(sizeof(struct page_cgroup), GFP_KERNEL);
280	if (pc == NULL)
281		goto err;
282
283	rcu_read_lock();
284	/*
285	 * We always charge the cgroup the mm_struct belongs to
286	 * the mm_struct's mem_cgroup changes on task migration if the
287	 * thread group leader migrates. It's possible that mm is not
288	 * set, if so charge the init_mm (happens for pagecache usage).
289	 */
290	if (!mm)
291		mm = &init_mm;
292
293	mem = rcu_dereference(mm->mem_cgroup);
294	/*
295	 * For every charge from the cgroup, increment reference
296	 * count
297	 */
298	css_get(&mem->css);
299	rcu_read_unlock();
300
301	/*
302	 * If we created the page_cgroup, we should free it on exceeding
303	 * the cgroup limit.
304	 */
305	while (res_counter_charge(&mem->res, 1)) {
306		if (try_to_free_mem_cgroup_pages(mem))
307			continue;
308
309		/*
310 		 * try_to_free_mem_cgroup_pages() might not give us a full
311 		 * picture of reclaim. Some pages are reclaimed and might be
312 		 * moved to swap cache or just unmapped from the cgroup.
313 		 * Check the limit again to see if the reclaim reduced the
314 		 * current usage of the cgroup before giving up
315 		 */
316		if (res_counter_check_under_limit(&mem->res))
317			continue;
318			/*
319			 * Since we control both RSS and cache, we end up with a
320			 * very interesting scenario where we end up reclaiming
321			 * memory (essentially RSS), since the memory is pushed
322			 * to swap cache, we eventually end up adding those
323			 * pages back to our list. Hence we give ourselves a
324			 * few chances before we fail
325			 */
326		else if (nr_retries--) {
327			congestion_wait(WRITE, HZ/10);
328			continue;
329		}
330
331		css_put(&mem->css);
332		goto free_pc;
333	}
334
335	lock_page_cgroup(page);
336	/*
337	 * Check if somebody else beat us to allocating the page_cgroup
338	 */
339	race_pc = page_get_page_cgroup(page);
340	if (race_pc) {
341		kfree(pc);
342		pc = race_pc;
343		atomic_inc(&pc->ref_cnt);
344		res_counter_uncharge(&mem->res, 1);
345		css_put(&mem->css);
346		goto done;
347	}
348
349	atomic_set(&pc->ref_cnt, 1);
350	pc->mem_cgroup = mem;
351	pc->page = page;
352	page_assign_page_cgroup(page, pc);
353
354	spin_lock_irqsave(&mem->lru_lock, flags);
355	list_add(&pc->lru, &mem->active_list);
356	spin_unlock_irqrestore(&mem->lru_lock, flags);
357
358done:
359	unlock_page_cgroup(page);
360	return 0;
361free_pc:
362	kfree(pc);
363err:
364	return -ENOMEM;
365}
366
367/*
368 * Uncharging is always a welcome operation, we never complain, simply
369 * uncharge.
370 */
371void mem_cgroup_uncharge(struct page_cgroup *pc)
372{
373	struct mem_cgroup *mem;
374	struct page *page;
375	unsigned long flags;
376
377	if (!pc)
378		return;
379
380	if (atomic_dec_and_test(&pc->ref_cnt)) {
381		page = pc->page;
382		lock_page_cgroup(page);
383		mem = pc->mem_cgroup;
384		css_put(&mem->css);
385		page_assign_page_cgroup(page, NULL);
386		unlock_page_cgroup(page);
387		res_counter_uncharge(&mem->res, 1);
388
389 		spin_lock_irqsave(&mem->lru_lock, flags);
390 		list_del_init(&pc->lru);
391 		spin_unlock_irqrestore(&mem->lru_lock, flags);
392		kfree(pc);
393	}
394}
395
396static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
397			struct file *file, char __user *userbuf, size_t nbytes,
398			loff_t *ppos)
399{
400	return res_counter_read(&mem_cgroup_from_cont(cont)->res,
401				cft->private, userbuf, nbytes, ppos);
402}
403
404static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
405				struct file *file, const char __user *userbuf,
406				size_t nbytes, loff_t *ppos)
407{
408	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
409				cft->private, userbuf, nbytes, ppos);
410}
411
412static struct cftype mem_cgroup_files[] = {
413	{
414		.name = "usage",
415		.private = RES_USAGE,
416		.read = mem_cgroup_read,
417	},
418	{
419		.name = "limit",
420		.private = RES_LIMIT,
421		.write = mem_cgroup_write,
422		.read = mem_cgroup_read,
423	},
424	{
425		.name = "failcnt",
426		.private = RES_FAILCNT,
427		.read = mem_cgroup_read,
428	},
429};
430
431static struct mem_cgroup init_mem_cgroup;
432
433static struct cgroup_subsys_state *
434mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
435{
436	struct mem_cgroup *mem;
437
438	if (unlikely((cont->parent) == NULL)) {
439		mem = &init_mem_cgroup;
440		init_mm.mem_cgroup = mem;
441	} else
442		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
443
444	if (mem == NULL)
445		return NULL;
446
447	res_counter_init(&mem->res);
448	INIT_LIST_HEAD(&mem->active_list);
449	INIT_LIST_HEAD(&mem->inactive_list);
450	spin_lock_init(&mem->lru_lock);
451	return &mem->css;
452}
453
454static void mem_cgroup_destroy(struct cgroup_subsys *ss,
455				struct cgroup *cont)
456{
457	kfree(mem_cgroup_from_cont(cont));
458}
459
460static int mem_cgroup_populate(struct cgroup_subsys *ss,
461				struct cgroup *cont)
462{
463	return cgroup_add_files(cont, ss, mem_cgroup_files,
464					ARRAY_SIZE(mem_cgroup_files));
465}
466
467static void mem_cgroup_move_task(struct cgroup_subsys *ss,
468				struct cgroup *cont,
469				struct cgroup *old_cont,
470				struct task_struct *p)
471{
472	struct mm_struct *mm;
473	struct mem_cgroup *mem, *old_mem;
474
475	mm = get_task_mm(p);
476	if (mm == NULL)
477		return;
478
479	mem = mem_cgroup_from_cont(cont);
480	old_mem = mem_cgroup_from_cont(old_cont);
481
482	if (mem == old_mem)
483		goto out;
484
485	/*
486	 * Only thread group leaders are allowed to migrate, the mm_struct is
487	 * in effect owned by the leader
488	 */
489	if (p->tgid != p->pid)
490		goto out;
491
492	css_get(&mem->css);
493	rcu_assign_pointer(mm->mem_cgroup, mem);
494	css_put(&old_mem->css);
495
496out:
497	mmput(mm);
498	return;
499}
500
501struct cgroup_subsys mem_cgroup_subsys = {
502	.name = "memory",
503	.subsys_id = mem_cgroup_subsys_id,
504	.create = mem_cgroup_create,
505	.destroy = mem_cgroup_destroy,
506	.populate = mem_cgroup_populate,
507	.attach = mem_cgroup_move_task,
508	.early_init = 1,
509};
510