memcontrol.c revision 69029cd550284e32de13d6dd2f77b723c8a0e444
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
25#include <linux/page-flags.h>
26#include <linux/backing-dev.h>
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
29#include <linux/slab.h>
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
33#include <linux/seq_file.h>
34#include <linux/vmalloc.h>
35
36#include <asm/uaccess.h>
37
38struct cgroup_subsys mem_cgroup_subsys __read_mostly;
39static struct kmem_cache *page_cgroup_cache __read_mostly;
40#define MEM_CGROUP_RECLAIM_RETRIES	5
41
42/*
43 * Statistics for memory cgroup.
44 */
45enum mem_cgroup_stat_index {
46	/*
47	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
48	 */
49	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
50	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
51	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
52	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
53
54	MEM_CGROUP_STAT_NSTATS,
55};
56
57struct mem_cgroup_stat_cpu {
58	s64 count[MEM_CGROUP_STAT_NSTATS];
59} ____cacheline_aligned_in_smp;
60
61struct mem_cgroup_stat {
62	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
63};
64
65/*
66 * For accounting under irq disable, no need for increment preempt count.
67 */
68static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
69		enum mem_cgroup_stat_index idx, int val)
70{
71	int cpu = smp_processor_id();
72	stat->cpustat[cpu].count[idx] += val;
73}
74
75static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76		enum mem_cgroup_stat_index idx)
77{
78	int cpu;
79	s64 ret = 0;
80	for_each_possible_cpu(cpu)
81		ret += stat->cpustat[cpu].count[idx];
82	return ret;
83}
84
85/*
86 * per-zone information in memory controller.
87 */
88
89enum mem_cgroup_zstat_index {
90	MEM_CGROUP_ZSTAT_ACTIVE,
91	MEM_CGROUP_ZSTAT_INACTIVE,
92
93	NR_MEM_CGROUP_ZSTAT,
94};
95
96struct mem_cgroup_per_zone {
97	/*
98	 * spin_lock to protect the per cgroup LRU
99	 */
100	spinlock_t		lru_lock;
101	struct list_head	active_list;
102	struct list_head	inactive_list;
103	unsigned long count[NR_MEM_CGROUP_ZSTAT];
104};
105/* Macro for accessing counter */
106#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
107
108struct mem_cgroup_per_node {
109	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
110};
111
112struct mem_cgroup_lru_info {
113	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
114};
115
116/*
117 * The memory controller data structure. The memory controller controls both
118 * page cache and RSS per cgroup. We would eventually like to provide
119 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
120 * to help the administrator determine what knobs to tune.
121 *
122 * TODO: Add a water mark for the memory controller. Reclaim will begin when
123 * we hit the water mark. May be even add a low water mark, such that
124 * no reclaim occurs from a cgroup at it's low water mark, this is
125 * a feature that will be implemented much later in the future.
126 */
127struct mem_cgroup {
128	struct cgroup_subsys_state css;
129	/*
130	 * the counter to account for memory usage
131	 */
132	struct res_counter res;
133	/*
134	 * Per cgroup active and inactive list, similar to the
135	 * per zone LRU lists.
136	 */
137	struct mem_cgroup_lru_info info;
138
139	int	prev_priority;	/* for recording reclaim priority */
140	/*
141	 * statistics.
142	 */
143	struct mem_cgroup_stat stat;
144};
145static struct mem_cgroup init_mem_cgroup;
146
147/*
148 * We use the lower bit of the page->page_cgroup pointer as a bit spin
149 * lock.  We need to ensure that page->page_cgroup is at least two
150 * byte aligned (based on comments from Nick Piggin).  But since
151 * bit_spin_lock doesn't actually set that lock bit in a non-debug
152 * uniprocessor kernel, we should avoid setting it here too.
153 */
154#define PAGE_CGROUP_LOCK_BIT 	0x0
155#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
156#define PAGE_CGROUP_LOCK 	(1 << PAGE_CGROUP_LOCK_BIT)
157#else
158#define PAGE_CGROUP_LOCK	0x0
159#endif
160
161/*
162 * A page_cgroup page is associated with every page descriptor. The
163 * page_cgroup helps us identify information about the cgroup
164 */
165struct page_cgroup {
166	struct list_head lru;		/* per cgroup LRU list */
167	struct page *page;
168	struct mem_cgroup *mem_cgroup;
169	int flags;
170};
171#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
172#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
173
174static int page_cgroup_nid(struct page_cgroup *pc)
175{
176	return page_to_nid(pc->page);
177}
178
179static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
180{
181	return page_zonenum(pc->page);
182}
183
184enum charge_type {
185	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
186	MEM_CGROUP_CHARGE_TYPE_MAPPED,
187	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
188};
189
190/*
191 * Always modified under lru lock. Then, not necessary to preempt_disable()
192 */
193static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
194					bool charge)
195{
196	int val = (charge)? 1 : -1;
197	struct mem_cgroup_stat *stat = &mem->stat;
198
199	VM_BUG_ON(!irqs_disabled());
200	if (flags & PAGE_CGROUP_FLAG_CACHE)
201		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
202	else
203		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
204
205	if (charge)
206		__mem_cgroup_stat_add_safe(stat,
207				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
208	else
209		__mem_cgroup_stat_add_safe(stat,
210				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
211}
212
213static struct mem_cgroup_per_zone *
214mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
215{
216	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
217}
218
219static struct mem_cgroup_per_zone *
220page_cgroup_zoneinfo(struct page_cgroup *pc)
221{
222	struct mem_cgroup *mem = pc->mem_cgroup;
223	int nid = page_cgroup_nid(pc);
224	int zid = page_cgroup_zid(pc);
225
226	return mem_cgroup_zoneinfo(mem, nid, zid);
227}
228
229static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
230					enum mem_cgroup_zstat_index idx)
231{
232	int nid, zid;
233	struct mem_cgroup_per_zone *mz;
234	u64 total = 0;
235
236	for_each_online_node(nid)
237		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
238			mz = mem_cgroup_zoneinfo(mem, nid, zid);
239			total += MEM_CGROUP_ZSTAT(mz, idx);
240		}
241	return total;
242}
243
244static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
245{
246	return container_of(cgroup_subsys_state(cont,
247				mem_cgroup_subsys_id), struct mem_cgroup,
248				css);
249}
250
251struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
252{
253	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
254				struct mem_cgroup, css);
255}
256
257static inline int page_cgroup_locked(struct page *page)
258{
259	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
260}
261
262static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
263{
264	VM_BUG_ON(!page_cgroup_locked(page));
265	page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
266}
267
268struct page_cgroup *page_get_page_cgroup(struct page *page)
269{
270	return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
271}
272
273static void lock_page_cgroup(struct page *page)
274{
275	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
276}
277
278static int try_lock_page_cgroup(struct page *page)
279{
280	return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
281}
282
283static void unlock_page_cgroup(struct page *page)
284{
285	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
286}
287
288static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
289			struct page_cgroup *pc)
290{
291	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
292
293	if (from)
294		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
295	else
296		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
297
298	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
299	list_del(&pc->lru);
300}
301
302static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
303				struct page_cgroup *pc)
304{
305	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
306
307	if (!to) {
308		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
309		list_add(&pc->lru, &mz->inactive_list);
310	} else {
311		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
312		list_add(&pc->lru, &mz->active_list);
313	}
314	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
315}
316
317static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
318{
319	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
320	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
321
322	if (from)
323		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
324	else
325		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
326
327	if (active) {
328		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
329		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
330		list_move(&pc->lru, &mz->active_list);
331	} else {
332		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
333		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
334		list_move(&pc->lru, &mz->inactive_list);
335	}
336}
337
338int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
339{
340	int ret;
341
342	task_lock(task);
343	ret = task->mm && mm_match_cgroup(task->mm, mem);
344	task_unlock(task);
345	return ret;
346}
347
348/*
349 * This routine assumes that the appropriate zone's lru lock is already held
350 */
351void mem_cgroup_move_lists(struct page *page, bool active)
352{
353	struct page_cgroup *pc;
354	struct mem_cgroup_per_zone *mz;
355	unsigned long flags;
356
357	/*
358	 * We cannot lock_page_cgroup while holding zone's lru_lock,
359	 * because other holders of lock_page_cgroup can be interrupted
360	 * with an attempt to rotate_reclaimable_page.  But we cannot
361	 * safely get to page_cgroup without it, so just try_lock it:
362	 * mem_cgroup_isolate_pages allows for page left on wrong list.
363	 */
364	if (!try_lock_page_cgroup(page))
365		return;
366
367	pc = page_get_page_cgroup(page);
368	if (pc) {
369		mz = page_cgroup_zoneinfo(pc);
370		spin_lock_irqsave(&mz->lru_lock, flags);
371		__mem_cgroup_move_lists(pc, active);
372		spin_unlock_irqrestore(&mz->lru_lock, flags);
373	}
374	unlock_page_cgroup(page);
375}
376
377/*
378 * Calculate mapped_ratio under memory controller. This will be used in
379 * vmscan.c for deteremining we have to reclaim mapped pages.
380 */
381int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
382{
383	long total, rss;
384
385	/*
386	 * usage is recorded in bytes. But, here, we assume the number of
387	 * physical pages can be represented by "long" on any arch.
388	 */
389	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
390	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
391	return (int)((rss * 100L) / total);
392}
393
394/*
395 * This function is called from vmscan.c. In page reclaiming loop. balance
396 * between active and inactive list is calculated. For memory controller
397 * page reclaiming, we should use using mem_cgroup's imbalance rather than
398 * zone's global lru imbalance.
399 */
400long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
401{
402	unsigned long active, inactive;
403	/* active and inactive are the number of pages. 'long' is ok.*/
404	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
405	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
406	return (long) (active / (inactive + 1));
407}
408
409/*
410 * prev_priority control...this will be used in memory reclaim path.
411 */
412int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
413{
414	return mem->prev_priority;
415}
416
417void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
418{
419	if (priority < mem->prev_priority)
420		mem->prev_priority = priority;
421}
422
423void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
424{
425	mem->prev_priority = priority;
426}
427
428/*
429 * Calculate # of pages to be scanned in this priority/zone.
430 * See also vmscan.c
431 *
432 * priority starts from "DEF_PRIORITY" and decremented in each loop.
433 * (see include/linux/mmzone.h)
434 */
435
436long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
437				   struct zone *zone, int priority)
438{
439	long nr_active;
440	int nid = zone->zone_pgdat->node_id;
441	int zid = zone_idx(zone);
442	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
443
444	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
445	return (nr_active >> priority);
446}
447
448long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
449					struct zone *zone, int priority)
450{
451	long nr_inactive;
452	int nid = zone->zone_pgdat->node_id;
453	int zid = zone_idx(zone);
454	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
455
456	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
457	return (nr_inactive >> priority);
458}
459
460unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
461					struct list_head *dst,
462					unsigned long *scanned, int order,
463					int mode, struct zone *z,
464					struct mem_cgroup *mem_cont,
465					int active)
466{
467	unsigned long nr_taken = 0;
468	struct page *page;
469	unsigned long scan;
470	LIST_HEAD(pc_list);
471	struct list_head *src;
472	struct page_cgroup *pc, *tmp;
473	int nid = z->zone_pgdat->node_id;
474	int zid = zone_idx(z);
475	struct mem_cgroup_per_zone *mz;
476
477	BUG_ON(!mem_cont);
478	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
479	if (active)
480		src = &mz->active_list;
481	else
482		src = &mz->inactive_list;
483
484
485	spin_lock(&mz->lru_lock);
486	scan = 0;
487	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
488		if (scan >= nr_to_scan)
489			break;
490		page = pc->page;
491
492		if (unlikely(!PageLRU(page)))
493			continue;
494
495		if (PageActive(page) && !active) {
496			__mem_cgroup_move_lists(pc, true);
497			continue;
498		}
499		if (!PageActive(page) && active) {
500			__mem_cgroup_move_lists(pc, false);
501			continue;
502		}
503
504		scan++;
505		list_move(&pc->lru, &pc_list);
506
507		if (__isolate_lru_page(page, mode) == 0) {
508			list_move(&page->lru, dst);
509			nr_taken++;
510		}
511	}
512
513	list_splice(&pc_list, src);
514	spin_unlock(&mz->lru_lock);
515
516	*scanned = scan;
517	return nr_taken;
518}
519
520/*
521 * Charge the memory controller for page usage.
522 * Return
523 * 0 if the charge was successful
524 * < 0 if the cgroup is over its limit
525 */
526static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
527				gfp_t gfp_mask, enum charge_type ctype,
528				struct mem_cgroup *memcg)
529{
530	struct mem_cgroup *mem;
531	struct page_cgroup *pc;
532	unsigned long flags;
533	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
534	struct mem_cgroup_per_zone *mz;
535
536	if (mem_cgroup_subsys.disabled)
537		return 0;
538
539	/*
540	 * Should page_cgroup's go to their own slab?
541	 * One could optimize the performance of the charging routine
542	 * by saving a bit in the page_flags and using it as a lock
543	 * to see if the cgroup page already has a page_cgroup associated
544	 * with it
545	 */
546retry:
547	lock_page_cgroup(page);
548	pc = page_get_page_cgroup(page);
549	/*
550	 * The page_cgroup exists and
551	 * the page has already been accounted.
552	 */
553	if (pc) {
554		VM_BUG_ON(pc->page != page);
555		VM_BUG_ON(!pc->mem_cgroup);
556		unlock_page_cgroup(page);
557		goto done;
558	}
559	unlock_page_cgroup(page);
560
561	pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
562	if (pc == NULL)
563		goto err;
564
565	/*
566	 * We always charge the cgroup the mm_struct belongs to.
567	 * The mm_struct's mem_cgroup changes on task migration if the
568	 * thread group leader migrates. It's possible that mm is not
569	 * set, if so charge the init_mm (happens for pagecache usage).
570	 */
571	if (likely(!memcg)) {
572		rcu_read_lock();
573		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
574		/*
575		 * For every charge from the cgroup, increment reference count
576		 */
577		css_get(&mem->css);
578		rcu_read_unlock();
579	} else {
580		mem = memcg;
581		css_get(&memcg->css);
582	}
583
584	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
585		if (!(gfp_mask & __GFP_WAIT))
586			goto out;
587
588		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
589			continue;
590
591		/*
592		 * try_to_free_mem_cgroup_pages() might not give us a full
593		 * picture of reclaim. Some pages are reclaimed and might be
594		 * moved to swap cache or just unmapped from the cgroup.
595		 * Check the limit again to see if the reclaim reduced the
596		 * current usage of the cgroup before giving up
597		 */
598		if (res_counter_check_under_limit(&mem->res))
599			continue;
600
601		if (!nr_retries--) {
602			mem_cgroup_out_of_memory(mem, gfp_mask);
603			goto out;
604		}
605	}
606
607	pc->mem_cgroup = mem;
608	pc->page = page;
609	/*
610	 * If a page is accounted as a page cache, insert to inactive list.
611	 * If anon, insert to active list.
612	 */
613	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
614		pc->flags = PAGE_CGROUP_FLAG_CACHE;
615	else
616		pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
617
618	lock_page_cgroup(page);
619	if (page_get_page_cgroup(page)) {
620		unlock_page_cgroup(page);
621		/*
622		 * Another charge has been added to this page already.
623		 * We take lock_page_cgroup(page) again and read
624		 * page->cgroup, increment refcnt.... just retry is OK.
625		 */
626		res_counter_uncharge(&mem->res, PAGE_SIZE);
627		css_put(&mem->css);
628		kmem_cache_free(page_cgroup_cache, pc);
629		goto retry;
630	}
631	page_assign_page_cgroup(page, pc);
632
633	mz = page_cgroup_zoneinfo(pc);
634	spin_lock_irqsave(&mz->lru_lock, flags);
635	__mem_cgroup_add_list(mz, pc);
636	spin_unlock_irqrestore(&mz->lru_lock, flags);
637
638	unlock_page_cgroup(page);
639done:
640	return 0;
641out:
642	css_put(&mem->css);
643	kmem_cache_free(page_cgroup_cache, pc);
644err:
645	return -ENOMEM;
646}
647
648int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
649{
650	/*
651	 * If already mapped, we don't have to account.
652	 * If page cache, page->mapping has address_space.
653	 * But page->mapping may have out-of-use anon_vma pointer,
654	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
655	 * is NULL.
656  	 */
657	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
658		return 0;
659	if (unlikely(!mm))
660		mm = &init_mm;
661	return mem_cgroup_charge_common(page, mm, gfp_mask,
662				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
663}
664
665int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
666				gfp_t gfp_mask)
667{
668	if (unlikely(!mm))
669		mm = &init_mm;
670	return mem_cgroup_charge_common(page, mm, gfp_mask,
671				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
672}
673
674/*
675 * uncharge if !page_mapped(page)
676 */
677static void
678__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
679{
680	struct page_cgroup *pc;
681	struct mem_cgroup *mem;
682	struct mem_cgroup_per_zone *mz;
683	unsigned long flags;
684
685	if (mem_cgroup_subsys.disabled)
686		return;
687
688	/*
689	 * Check if our page_cgroup is valid
690	 */
691	lock_page_cgroup(page);
692	pc = page_get_page_cgroup(page);
693	if (!pc)
694		goto unlock;
695
696	VM_BUG_ON(pc->page != page);
697
698	if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
699	    && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
700		|| page_mapped(page)))
701		goto unlock;
702
703	mz = page_cgroup_zoneinfo(pc);
704	spin_lock_irqsave(&mz->lru_lock, flags);
705	__mem_cgroup_remove_list(mz, pc);
706	spin_unlock_irqrestore(&mz->lru_lock, flags);
707
708	page_assign_page_cgroup(page, NULL);
709	unlock_page_cgroup(page);
710
711	mem = pc->mem_cgroup;
712	res_counter_uncharge(&mem->res, PAGE_SIZE);
713	css_put(&mem->css);
714
715	kmem_cache_free(page_cgroup_cache, pc);
716	return;
717unlock:
718	unlock_page_cgroup(page);
719}
720
721void mem_cgroup_uncharge_page(struct page *page)
722{
723	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
724}
725
726void mem_cgroup_uncharge_cache_page(struct page *page)
727{
728	VM_BUG_ON(page_mapped(page));
729	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
730}
731
732/*
733 * Before starting migration, account against new page.
734 */
735int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
736{
737	struct page_cgroup *pc;
738	struct mem_cgroup *mem = NULL;
739	enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
740	int ret = 0;
741
742	if (mem_cgroup_subsys.disabled)
743		return 0;
744
745	lock_page_cgroup(page);
746	pc = page_get_page_cgroup(page);
747	if (pc) {
748		mem = pc->mem_cgroup;
749		css_get(&mem->css);
750		if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
751			ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
752	}
753	unlock_page_cgroup(page);
754	if (mem) {
755		ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
756			ctype, mem);
757		css_put(&mem->css);
758	}
759	return ret;
760}
761
762/* remove redundant charge if migration failed*/
763void mem_cgroup_end_migration(struct page *newpage)
764{
765	/*
766	 * At success, page->mapping is not NULL.
767	 * special rollback care is necessary when
768	 * 1. at migration failure. (newpage->mapping is cleared in this case)
769	 * 2. the newpage was moved but not remapped again because the task
770	 *    exits and the newpage is obsolete. In this case, the new page
771	 *    may be a swapcache. So, we just call mem_cgroup_uncharge_page()
772	 *    always for avoiding mess. The  page_cgroup will be removed if
773	 *    unnecessary. File cache pages is still on radix-tree. Don't
774	 *    care it.
775	 */
776	if (!newpage->mapping)
777		__mem_cgroup_uncharge_common(newpage,
778					 MEM_CGROUP_CHARGE_TYPE_FORCE);
779	else if (PageAnon(newpage))
780		mem_cgroup_uncharge_page(newpage);
781}
782
783/*
784 * This routine traverse page_cgroup in given list and drop them all.
785 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
786 */
787#define FORCE_UNCHARGE_BATCH	(128)
788static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
789			    struct mem_cgroup_per_zone *mz,
790			    int active)
791{
792	struct page_cgroup *pc;
793	struct page *page;
794	int count = FORCE_UNCHARGE_BATCH;
795	unsigned long flags;
796	struct list_head *list;
797
798	if (active)
799		list = &mz->active_list;
800	else
801		list = &mz->inactive_list;
802
803	spin_lock_irqsave(&mz->lru_lock, flags);
804	while (!list_empty(list)) {
805		pc = list_entry(list->prev, struct page_cgroup, lru);
806		page = pc->page;
807		get_page(page);
808		spin_unlock_irqrestore(&mz->lru_lock, flags);
809		/*
810		 * Check if this page is on LRU. !LRU page can be found
811		 * if it's under page migration.
812		 */
813		if (PageLRU(page)) {
814			__mem_cgroup_uncharge_common(page,
815					MEM_CGROUP_CHARGE_TYPE_FORCE);
816			put_page(page);
817			if (--count <= 0) {
818				count = FORCE_UNCHARGE_BATCH;
819				cond_resched();
820			}
821		} else
822			cond_resched();
823		spin_lock_irqsave(&mz->lru_lock, flags);
824	}
825	spin_unlock_irqrestore(&mz->lru_lock, flags);
826}
827
828/*
829 * make mem_cgroup's charge to be 0 if there is no task.
830 * This enables deleting this mem_cgroup.
831 */
832static int mem_cgroup_force_empty(struct mem_cgroup *mem)
833{
834	int ret = -EBUSY;
835	int node, zid;
836
837	if (mem_cgroup_subsys.disabled)
838		return 0;
839
840	css_get(&mem->css);
841	/*
842	 * page reclaim code (kswapd etc..) will move pages between
843	 * active_list <-> inactive_list while we don't take a lock.
844	 * So, we have to do loop here until all lists are empty.
845	 */
846	while (mem->res.usage > 0) {
847		if (atomic_read(&mem->css.cgroup->count) > 0)
848			goto out;
849		for_each_node_state(node, N_POSSIBLE)
850			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
851				struct mem_cgroup_per_zone *mz;
852				mz = mem_cgroup_zoneinfo(mem, node, zid);
853				/* drop all page_cgroup in active_list */
854				mem_cgroup_force_empty_list(mem, mz, 1);
855				/* drop all page_cgroup in inactive_list */
856				mem_cgroup_force_empty_list(mem, mz, 0);
857			}
858	}
859	ret = 0;
860out:
861	css_put(&mem->css);
862	return ret;
863}
864
865static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
866{
867	return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
868				    cft->private);
869}
870
871static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
872			    const char *buffer)
873{
874	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
875				 cft->private, buffer,
876				 res_counter_memparse_write_strategy);
877}
878
879static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
880{
881	struct mem_cgroup *mem;
882
883	mem = mem_cgroup_from_cont(cont);
884	switch (event) {
885	case RES_MAX_USAGE:
886		res_counter_reset_max(&mem->res);
887		break;
888	case RES_FAILCNT:
889		res_counter_reset_failcnt(&mem->res);
890		break;
891	}
892	return 0;
893}
894
895static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
896{
897	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
898}
899
900static const struct mem_cgroup_stat_desc {
901	const char *msg;
902	u64 unit;
903} mem_cgroup_stat_desc[] = {
904	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
905	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
906	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
907	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
908};
909
910static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
911				 struct cgroup_map_cb *cb)
912{
913	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
914	struct mem_cgroup_stat *stat = &mem_cont->stat;
915	int i;
916
917	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
918		s64 val;
919
920		val = mem_cgroup_read_stat(stat, i);
921		val *= mem_cgroup_stat_desc[i].unit;
922		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
923	}
924	/* showing # of active pages */
925	{
926		unsigned long active, inactive;
927
928		inactive = mem_cgroup_get_all_zonestat(mem_cont,
929						MEM_CGROUP_ZSTAT_INACTIVE);
930		active = mem_cgroup_get_all_zonestat(mem_cont,
931						MEM_CGROUP_ZSTAT_ACTIVE);
932		cb->fill(cb, "active", (active) * PAGE_SIZE);
933		cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
934	}
935	return 0;
936}
937
938static struct cftype mem_cgroup_files[] = {
939	{
940		.name = "usage_in_bytes",
941		.private = RES_USAGE,
942		.read_u64 = mem_cgroup_read,
943	},
944	{
945		.name = "max_usage_in_bytes",
946		.private = RES_MAX_USAGE,
947		.trigger = mem_cgroup_reset,
948		.read_u64 = mem_cgroup_read,
949	},
950	{
951		.name = "limit_in_bytes",
952		.private = RES_LIMIT,
953		.write_string = mem_cgroup_write,
954		.read_u64 = mem_cgroup_read,
955	},
956	{
957		.name = "failcnt",
958		.private = RES_FAILCNT,
959		.trigger = mem_cgroup_reset,
960		.read_u64 = mem_cgroup_read,
961	},
962	{
963		.name = "force_empty",
964		.trigger = mem_force_empty_write,
965	},
966	{
967		.name = "stat",
968		.read_map = mem_control_stat_show,
969	},
970};
971
972static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
973{
974	struct mem_cgroup_per_node *pn;
975	struct mem_cgroup_per_zone *mz;
976	int zone, tmp = node;
977	/*
978	 * This routine is called against possible nodes.
979	 * But it's BUG to call kmalloc() against offline node.
980	 *
981	 * TODO: this routine can waste much memory for nodes which will
982	 *       never be onlined. It's better to use memory hotplug callback
983	 *       function.
984	 */
985	if (!node_state(node, N_NORMAL_MEMORY))
986		tmp = -1;
987	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
988	if (!pn)
989		return 1;
990
991	mem->info.nodeinfo[node] = pn;
992	memset(pn, 0, sizeof(*pn));
993
994	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
995		mz = &pn->zoneinfo[zone];
996		INIT_LIST_HEAD(&mz->active_list);
997		INIT_LIST_HEAD(&mz->inactive_list);
998		spin_lock_init(&mz->lru_lock);
999	}
1000	return 0;
1001}
1002
1003static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1004{
1005	kfree(mem->info.nodeinfo[node]);
1006}
1007
1008static struct mem_cgroup *mem_cgroup_alloc(void)
1009{
1010	struct mem_cgroup *mem;
1011
1012	if (sizeof(*mem) < PAGE_SIZE)
1013		mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1014	else
1015		mem = vmalloc(sizeof(*mem));
1016
1017	if (mem)
1018		memset(mem, 0, sizeof(*mem));
1019	return mem;
1020}
1021
1022static void mem_cgroup_free(struct mem_cgroup *mem)
1023{
1024	if (sizeof(*mem) < PAGE_SIZE)
1025		kfree(mem);
1026	else
1027		vfree(mem);
1028}
1029
1030
1031static struct cgroup_subsys_state *
1032mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1033{
1034	struct mem_cgroup *mem;
1035	int node;
1036
1037	if (unlikely((cont->parent) == NULL)) {
1038		mem = &init_mem_cgroup;
1039		page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1040	} else {
1041		mem = mem_cgroup_alloc();
1042		if (!mem)
1043			return ERR_PTR(-ENOMEM);
1044	}
1045
1046	res_counter_init(&mem->res);
1047
1048	for_each_node_state(node, N_POSSIBLE)
1049		if (alloc_mem_cgroup_per_zone_info(mem, node))
1050			goto free_out;
1051
1052	return &mem->css;
1053free_out:
1054	for_each_node_state(node, N_POSSIBLE)
1055		free_mem_cgroup_per_zone_info(mem, node);
1056	if (cont->parent != NULL)
1057		mem_cgroup_free(mem);
1058	return ERR_PTR(-ENOMEM);
1059}
1060
1061static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1062					struct cgroup *cont)
1063{
1064	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1065	mem_cgroup_force_empty(mem);
1066}
1067
1068static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1069				struct cgroup *cont)
1070{
1071	int node;
1072	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1073
1074	for_each_node_state(node, N_POSSIBLE)
1075		free_mem_cgroup_per_zone_info(mem, node);
1076
1077	mem_cgroup_free(mem_cgroup_from_cont(cont));
1078}
1079
1080static int mem_cgroup_populate(struct cgroup_subsys *ss,
1081				struct cgroup *cont)
1082{
1083	if (mem_cgroup_subsys.disabled)
1084		return 0;
1085	return cgroup_add_files(cont, ss, mem_cgroup_files,
1086					ARRAY_SIZE(mem_cgroup_files));
1087}
1088
1089static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1090				struct cgroup *cont,
1091				struct cgroup *old_cont,
1092				struct task_struct *p)
1093{
1094	struct mm_struct *mm;
1095	struct mem_cgroup *mem, *old_mem;
1096
1097	if (mem_cgroup_subsys.disabled)
1098		return;
1099
1100	mm = get_task_mm(p);
1101	if (mm == NULL)
1102		return;
1103
1104	mem = mem_cgroup_from_cont(cont);
1105	old_mem = mem_cgroup_from_cont(old_cont);
1106
1107	if (mem == old_mem)
1108		goto out;
1109
1110	/*
1111	 * Only thread group leaders are allowed to migrate, the mm_struct is
1112	 * in effect owned by the leader
1113	 */
1114	if (!thread_group_leader(p))
1115		goto out;
1116
1117out:
1118	mmput(mm);
1119}
1120
1121struct cgroup_subsys mem_cgroup_subsys = {
1122	.name = "memory",
1123	.subsys_id = mem_cgroup_subsys_id,
1124	.create = mem_cgroup_create,
1125	.pre_destroy = mem_cgroup_pre_destroy,
1126	.destroy = mem_cgroup_destroy,
1127	.populate = mem_cgroup_populate,
1128	.attach = mem_cgroup_move_task,
1129	.early_init = 0,
1130};
1131