memcontrol.c revision 713735b4233fad3ae35b5cad656baa41413887ca
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account		(0)
74#endif
75
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90	/*
91	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92	 */
93	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100	/* incremented at every  pagein/pageout */
101	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103
104	MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108	s64 count[MEM_CGROUP_STAT_NSTATS];
109};
110
111/*
112 * per-zone information in memory controller.
113 */
114struct mem_cgroup_per_zone {
115	/*
116	 * spin_lock to protect the per cgroup LRU
117	 */
118	struct list_head	lists[NR_LRU_LISTS];
119	unsigned long		count[NR_LRU_LISTS];
120
121	struct zone_reclaim_stat reclaim_stat;
122	struct rb_node		tree_node;	/* RB tree node */
123	unsigned long long	usage_in_excess;/* Set to the value by which */
124						/* the soft limit is exceeded*/
125	bool			on_tree;
126	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127						/* use container_of	   */
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146	struct rb_root rb_root;
147	spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160struct mem_cgroup_threshold {
161	struct eventfd_ctx *eventfd;
162	u64 threshold;
163};
164
165/* For threshold */
166struct mem_cgroup_threshold_ary {
167	/* An array index points to threshold just below usage. */
168	int current_threshold;
169	/* Size of entries[] */
170	unsigned int size;
171	/* Array of thresholds */
172	struct mem_cgroup_threshold entries[0];
173};
174
175struct mem_cgroup_thresholds {
176	/* Primary thresholds array */
177	struct mem_cgroup_threshold_ary *primary;
178	/*
179	 * Spare threshold array.
180	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181	 * It must be able to store at least primary->size - 1 entries.
182	 */
183	struct mem_cgroup_threshold_ary *spare;
184};
185
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188	struct list_head list;
189	struct eventfd_ctx *eventfd;
190};
191
192static void mem_cgroup_threshold(struct mem_cgroup *mem);
193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206struct mem_cgroup {
207	struct cgroup_subsys_state css;
208	/*
209	 * the counter to account for memory usage
210	 */
211	struct res_counter res;
212	/*
213	 * the counter to account for mem+swap usage.
214	 */
215	struct res_counter memsw;
216	/*
217	 * Per cgroup active and inactive list, similar to the
218	 * per zone LRU lists.
219	 */
220	struct mem_cgroup_lru_info info;
221
222	/*
223	  protect against reclaim related member.
224	*/
225	spinlock_t reclaim_param_lock;
226
227	/*
228	 * While reclaiming in a hierarchy, we cache the last child we
229	 * reclaimed from.
230	 */
231	int last_scanned_child;
232	/*
233	 * Should the accounting and control be hierarchical, per subtree?
234	 */
235	bool use_hierarchy;
236	atomic_t	oom_lock;
237	atomic_t	refcnt;
238
239	unsigned int	swappiness;
240	/* OOM-Killer disable */
241	int		oom_kill_disable;
242
243	/* set when res.limit == memsw.limit */
244	bool		memsw_is_minimum;
245
246	/* protect arrays of thresholds */
247	struct mutex thresholds_lock;
248
249	/* thresholds for memory usage. RCU-protected */
250	struct mem_cgroup_thresholds thresholds;
251
252	/* thresholds for mem+swap usage. RCU-protected */
253	struct mem_cgroup_thresholds memsw_thresholds;
254
255	/* For oom notifier event fd */
256	struct list_head oom_notify;
257
258	/*
259	 * Should we move charges of a task when a task is moved into this
260	 * mem_cgroup ? And what type of charges should we move ?
261	 */
262	unsigned long 	move_charge_at_immigrate;
263	/*
264	 * percpu counter.
265	 */
266	struct mem_cgroup_stat_cpu *stat;
267	/*
268	 * used when a cpu is offlined or other synchronizations
269	 * See mem_cgroup_read_stat().
270	 */
271	struct mem_cgroup_stat_cpu nocpu_base;
272	spinlock_t pcp_counter_lock;
273};
274
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
281	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283	NR_MOVE_TYPE,
284};
285
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
288	spinlock_t	  lock; /* for from, to */
289	struct mem_cgroup *from;
290	struct mem_cgroup *to;
291	unsigned long precharge;
292	unsigned long moved_charge;
293	unsigned long moved_swap;
294	struct task_struct *moving_task;	/* a task moving charges */
295	wait_queue_head_t waitq;		/* a waitq for other context */
296} mc = {
297	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
300
301static bool move_anon(void)
302{
303	return test_bit(MOVE_CHARGE_TYPE_ANON,
304					&mc.to->move_charge_at_immigrate);
305}
306
307static bool move_file(void)
308{
309	return test_bit(MOVE_CHARGE_TYPE_FILE,
310					&mc.to->move_charge_at_immigrate);
311}
312
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
318#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
319
320enum charge_type {
321	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
325	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
326	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327	NR_CHARGE_TYPE,
328};
329
330/* only for here (for easy reading.) */
331#define PCGF_CACHE	(1UL << PCG_CACHE)
332#define PCGF_USED	(1UL << PCG_USED)
333#define PCGF_LOCK	(1UL << PCG_LOCK)
334/* Not used, but added here for completeness */
335#define PCGF_ACCT	(1UL << PCG_ACCT)
336
337/* for encoding cft->private value on file */
338#define _MEM			(0)
339#define _MEMSWAP		(1)
340#define _OOM_TYPE		(2)
341#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
342#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
343#define MEMFILE_ATTR(val)	((val) & 0xffff)
344/* Used for OOM nofiier */
345#define OOM_CONTROL		(0)
346
347/*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
351#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
353#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
355#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356
357static void mem_cgroup_get(struct mem_cgroup *mem);
358static void mem_cgroup_put(struct mem_cgroup *mem);
359static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360static void drain_all_stock_async(void);
361
362static struct mem_cgroup_per_zone *
363mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364{
365	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366}
367
368struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369{
370	return &mem->css;
371}
372
373static struct mem_cgroup_per_zone *
374page_cgroup_zoneinfo(struct page_cgroup *pc)
375{
376	struct mem_cgroup *mem = pc->mem_cgroup;
377	int nid = page_cgroup_nid(pc);
378	int zid = page_cgroup_zid(pc);
379
380	if (!mem)
381		return NULL;
382
383	return mem_cgroup_zoneinfo(mem, nid, zid);
384}
385
386static struct mem_cgroup_tree_per_zone *
387soft_limit_tree_node_zone(int nid, int zid)
388{
389	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static struct mem_cgroup_tree_per_zone *
393soft_limit_tree_from_page(struct page *page)
394{
395	int nid = page_to_nid(page);
396	int zid = page_zonenum(page);
397
398	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static void
402__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403				struct mem_cgroup_per_zone *mz,
404				struct mem_cgroup_tree_per_zone *mctz,
405				unsigned long long new_usage_in_excess)
406{
407	struct rb_node **p = &mctz->rb_root.rb_node;
408	struct rb_node *parent = NULL;
409	struct mem_cgroup_per_zone *mz_node;
410
411	if (mz->on_tree)
412		return;
413
414	mz->usage_in_excess = new_usage_in_excess;
415	if (!mz->usage_in_excess)
416		return;
417	while (*p) {
418		parent = *p;
419		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420					tree_node);
421		if (mz->usage_in_excess < mz_node->usage_in_excess)
422			p = &(*p)->rb_left;
423		/*
424		 * We can't avoid mem cgroups that are over their soft
425		 * limit by the same amount
426		 */
427		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428			p = &(*p)->rb_right;
429	}
430	rb_link_node(&mz->tree_node, parent, p);
431	rb_insert_color(&mz->tree_node, &mctz->rb_root);
432	mz->on_tree = true;
433}
434
435static void
436__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437				struct mem_cgroup_per_zone *mz,
438				struct mem_cgroup_tree_per_zone *mctz)
439{
440	if (!mz->on_tree)
441		return;
442	rb_erase(&mz->tree_node, &mctz->rb_root);
443	mz->on_tree = false;
444}
445
446static void
447mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448				struct mem_cgroup_per_zone *mz,
449				struct mem_cgroup_tree_per_zone *mctz)
450{
451	spin_lock(&mctz->lock);
452	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453	spin_unlock(&mctz->lock);
454}
455
456
457static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458{
459	unsigned long long excess;
460	struct mem_cgroup_per_zone *mz;
461	struct mem_cgroup_tree_per_zone *mctz;
462	int nid = page_to_nid(page);
463	int zid = page_zonenum(page);
464	mctz = soft_limit_tree_from_page(page);
465
466	/*
467	 * Necessary to update all ancestors when hierarchy is used.
468	 * because their event counter is not touched.
469	 */
470	for (; mem; mem = parent_mem_cgroup(mem)) {
471		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472		excess = res_counter_soft_limit_excess(&mem->res);
473		/*
474		 * We have to update the tree if mz is on RB-tree or
475		 * mem is over its softlimit.
476		 */
477		if (excess || mz->on_tree) {
478			spin_lock(&mctz->lock);
479			/* if on-tree, remove it */
480			if (mz->on_tree)
481				__mem_cgroup_remove_exceeded(mem, mz, mctz);
482			/*
483			 * Insert again. mz->usage_in_excess will be updated.
484			 * If excess is 0, no tree ops.
485			 */
486			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487			spin_unlock(&mctz->lock);
488		}
489	}
490}
491
492static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493{
494	int node, zone;
495	struct mem_cgroup_per_zone *mz;
496	struct mem_cgroup_tree_per_zone *mctz;
497
498	for_each_node_state(node, N_POSSIBLE) {
499		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500			mz = mem_cgroup_zoneinfo(mem, node, zone);
501			mctz = soft_limit_tree_node_zone(node, zone);
502			mem_cgroup_remove_exceeded(mem, mz, mctz);
503		}
504	}
505}
506
507static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508{
509	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510}
511
512static struct mem_cgroup_per_zone *
513__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514{
515	struct rb_node *rightmost = NULL;
516	struct mem_cgroup_per_zone *mz;
517
518retry:
519	mz = NULL;
520	rightmost = rb_last(&mctz->rb_root);
521	if (!rightmost)
522		goto done;		/* Nothing to reclaim from */
523
524	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525	/*
526	 * Remove the node now but someone else can add it back,
527	 * we will to add it back at the end of reclaim to its correct
528	 * position in the tree.
529	 */
530	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532		!css_tryget(&mz->mem->css))
533		goto retry;
534done:
535	return mz;
536}
537
538static struct mem_cgroup_per_zone *
539mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540{
541	struct mem_cgroup_per_zone *mz;
542
543	spin_lock(&mctz->lock);
544	mz = __mem_cgroup_largest_soft_limit_node(mctz);
545	spin_unlock(&mctz->lock);
546	return mz;
547}
548
549/*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
568static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569		enum mem_cgroup_stat_index idx)
570{
571	int cpu;
572	s64 val = 0;
573
574	get_online_cpus();
575	for_each_online_cpu(cpu)
576		val += per_cpu(mem->stat->count[idx], cpu);
577#ifdef CONFIG_HOTPLUG_CPU
578	spin_lock(&mem->pcp_counter_lock);
579	val += mem->nocpu_base.count[idx];
580	spin_unlock(&mem->pcp_counter_lock);
581#endif
582	put_online_cpus();
583	return val;
584}
585
586static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587{
588	s64 ret;
589
590	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592	return ret;
593}
594
595static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596					 bool charge)
597{
598	int val = (charge) ? 1 : -1;
599	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600}
601
602static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603					 bool file, int nr_pages)
604{
605	preempt_disable();
606
607	if (file)
608		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609	else
610		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611
612	/* pagein of a big page is an event. So, ignore page size */
613	if (nr_pages > 0)
614		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615	else
616		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617
618	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619
620	preempt_enable();
621}
622
623static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624					enum lru_list idx)
625{
626	int nid, zid;
627	struct mem_cgroup_per_zone *mz;
628	u64 total = 0;
629
630	for_each_online_node(nid)
631		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632			mz = mem_cgroup_zoneinfo(mem, nid, zid);
633			total += MEM_CGROUP_ZSTAT(mz, idx);
634		}
635	return total;
636}
637
638static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
639{
640	s64 val;
641
642	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
643
644	return !(val & ((1 << event_mask_shift) - 1));
645}
646
647/*
648 * Check events in order.
649 *
650 */
651static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
652{
653	/* threshold event is triggered in finer grain than soft limit */
654	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655		mem_cgroup_threshold(mem);
656		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657			mem_cgroup_update_tree(mem, page);
658	}
659}
660
661static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
662{
663	return container_of(cgroup_subsys_state(cont,
664				mem_cgroup_subsys_id), struct mem_cgroup,
665				css);
666}
667
668struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669{
670	/*
671	 * mm_update_next_owner() may clear mm->owner to NULL
672	 * if it races with swapoff, page migration, etc.
673	 * So this can be called with p == NULL.
674	 */
675	if (unlikely(!p))
676		return NULL;
677
678	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679				struct mem_cgroup, css);
680}
681
682static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
683{
684	struct mem_cgroup *mem = NULL;
685
686	if (!mm)
687		return NULL;
688	/*
689	 * Because we have no locks, mm->owner's may be being moved to other
690	 * cgroup. We use css_tryget() here even if this looks
691	 * pessimistic (rather than adding locks here).
692	 */
693	rcu_read_lock();
694	do {
695		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696		if (unlikely(!mem))
697			break;
698	} while (!css_tryget(&mem->css));
699	rcu_read_unlock();
700	return mem;
701}
702
703/* The caller has to guarantee "mem" exists before calling this */
704static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
705{
706	struct cgroup_subsys_state *css;
707	int found;
708
709	if (!mem) /* ROOT cgroup has the smallest ID */
710		return root_mem_cgroup; /*css_put/get against root is ignored*/
711	if (!mem->use_hierarchy) {
712		if (css_tryget(&mem->css))
713			return mem;
714		return NULL;
715	}
716	rcu_read_lock();
717	/*
718	 * searching a memory cgroup which has the smallest ID under given
719	 * ROOT cgroup. (ID >= 1)
720	 */
721	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722	if (css && css_tryget(css))
723		mem = container_of(css, struct mem_cgroup, css);
724	else
725		mem = NULL;
726	rcu_read_unlock();
727	return mem;
728}
729
730static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731					struct mem_cgroup *root,
732					bool cond)
733{
734	int nextid = css_id(&iter->css) + 1;
735	int found;
736	int hierarchy_used;
737	struct cgroup_subsys_state *css;
738
739	hierarchy_used = iter->use_hierarchy;
740
741	css_put(&iter->css);
742	/* If no ROOT, walk all, ignore hierarchy */
743	if (!cond || (root && !hierarchy_used))
744		return NULL;
745
746	if (!root)
747		root = root_mem_cgroup;
748
749	do {
750		iter = NULL;
751		rcu_read_lock();
752
753		css = css_get_next(&mem_cgroup_subsys, nextid,
754				&root->css, &found);
755		if (css && css_tryget(css))
756			iter = container_of(css, struct mem_cgroup, css);
757		rcu_read_unlock();
758		/* If css is NULL, no more cgroups will be found */
759		nextid = found + 1;
760	} while (css && !iter);
761
762	return iter;
763}
764/*
765 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766 * be careful that "break" loop is not allowed. We have reference count.
767 * Instead of that modify "cond" to be false and "continue" to exit the loop.
768 */
769#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
770	for (iter = mem_cgroup_start_loop(root);\
771	     iter != NULL;\
772	     iter = mem_cgroup_get_next(iter, root, cond))
773
774#define for_each_mem_cgroup_tree(iter, root) \
775	for_each_mem_cgroup_tree_cond(iter, root, true)
776
777#define for_each_mem_cgroup_all(iter) \
778	for_each_mem_cgroup_tree_cond(iter, NULL, true)
779
780
781static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
782{
783	return (mem == root_mem_cgroup);
784}
785
786/*
787 * Following LRU functions are allowed to be used without PCG_LOCK.
788 * Operations are called by routine of global LRU independently from memcg.
789 * What we have to take care of here is validness of pc->mem_cgroup.
790 *
791 * Changes to pc->mem_cgroup happens when
792 * 1. charge
793 * 2. moving account
794 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795 * It is added to LRU before charge.
796 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797 * When moving account, the page is not on LRU. It's isolated.
798 */
799
800void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
801{
802	struct page_cgroup *pc;
803	struct mem_cgroup_per_zone *mz;
804
805	if (mem_cgroup_disabled())
806		return;
807	pc = lookup_page_cgroup(page);
808	/* can happen while we handle swapcache. */
809	if (!TestClearPageCgroupAcctLRU(pc))
810		return;
811	VM_BUG_ON(!pc->mem_cgroup);
812	/*
813	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
814	 * removed from global LRU.
815	 */
816	mz = page_cgroup_zoneinfo(pc);
817	/* huge page split is done under lru_lock. so, we have no races. */
818	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819	if (mem_cgroup_is_root(pc->mem_cgroup))
820		return;
821	VM_BUG_ON(list_empty(&pc->lru));
822	list_del_init(&pc->lru);
823}
824
825void mem_cgroup_del_lru(struct page *page)
826{
827	mem_cgroup_del_lru_list(page, page_lru(page));
828}
829
830void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831{
832	struct mem_cgroup_per_zone *mz;
833	struct page_cgroup *pc;
834
835	if (mem_cgroup_disabled())
836		return;
837
838	pc = lookup_page_cgroup(page);
839	/* unused or root page is not rotated. */
840	if (!PageCgroupUsed(pc))
841		return;
842	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
843	smp_rmb();
844	if (mem_cgroup_is_root(pc->mem_cgroup))
845		return;
846	mz = page_cgroup_zoneinfo(pc);
847	list_move(&pc->lru, &mz->lists[lru]);
848}
849
850void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851{
852	struct page_cgroup *pc;
853	struct mem_cgroup_per_zone *mz;
854
855	if (mem_cgroup_disabled())
856		return;
857	pc = lookup_page_cgroup(page);
858	VM_BUG_ON(PageCgroupAcctLRU(pc));
859	if (!PageCgroupUsed(pc))
860		return;
861	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
862	smp_rmb();
863	mz = page_cgroup_zoneinfo(pc);
864	/* huge page split is done under lru_lock. so, we have no races. */
865	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
866	SetPageCgroupAcctLRU(pc);
867	if (mem_cgroup_is_root(pc->mem_cgroup))
868		return;
869	list_add(&pc->lru, &mz->lists[lru]);
870}
871
872/*
873 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
874 * lru because the page may.be reused after it's fully uncharged (because of
875 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
876 * it again. This function is only used to charge SwapCache. It's done under
877 * lock_page and expected that zone->lru_lock is never held.
878 */
879static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
880{
881	unsigned long flags;
882	struct zone *zone = page_zone(page);
883	struct page_cgroup *pc = lookup_page_cgroup(page);
884
885	spin_lock_irqsave(&zone->lru_lock, flags);
886	/*
887	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
888	 * is guarded by lock_page() because the page is SwapCache.
889	 */
890	if (!PageCgroupUsed(pc))
891		mem_cgroup_del_lru_list(page, page_lru(page));
892	spin_unlock_irqrestore(&zone->lru_lock, flags);
893}
894
895static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
896{
897	unsigned long flags;
898	struct zone *zone = page_zone(page);
899	struct page_cgroup *pc = lookup_page_cgroup(page);
900
901	spin_lock_irqsave(&zone->lru_lock, flags);
902	/* link when the page is linked to LRU but page_cgroup isn't */
903	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
904		mem_cgroup_add_lru_list(page, page_lru(page));
905	spin_unlock_irqrestore(&zone->lru_lock, flags);
906}
907
908
909void mem_cgroup_move_lists(struct page *page,
910			   enum lru_list from, enum lru_list to)
911{
912	if (mem_cgroup_disabled())
913		return;
914	mem_cgroup_del_lru_list(page, from);
915	mem_cgroup_add_lru_list(page, to);
916}
917
918int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
919{
920	int ret;
921	struct mem_cgroup *curr = NULL;
922	struct task_struct *p;
923
924	p = find_lock_task_mm(task);
925	if (!p)
926		return 0;
927	curr = try_get_mem_cgroup_from_mm(p->mm);
928	task_unlock(p);
929	if (!curr)
930		return 0;
931	/*
932	 * We should check use_hierarchy of "mem" not "curr". Because checking
933	 * use_hierarchy of "curr" here make this function true if hierarchy is
934	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
935	 * hierarchy(even if use_hierarchy is disabled in "mem").
936	 */
937	if (mem->use_hierarchy)
938		ret = css_is_ancestor(&curr->css, &mem->css);
939	else
940		ret = (curr == mem);
941	css_put(&curr->css);
942	return ret;
943}
944
945static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
946{
947	unsigned long active;
948	unsigned long inactive;
949	unsigned long gb;
950	unsigned long inactive_ratio;
951
952	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
953	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
954
955	gb = (inactive + active) >> (30 - PAGE_SHIFT);
956	if (gb)
957		inactive_ratio = int_sqrt(10 * gb);
958	else
959		inactive_ratio = 1;
960
961	if (present_pages) {
962		present_pages[0] = inactive;
963		present_pages[1] = active;
964	}
965
966	return inactive_ratio;
967}
968
969int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
970{
971	unsigned long active;
972	unsigned long inactive;
973	unsigned long present_pages[2];
974	unsigned long inactive_ratio;
975
976	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
977
978	inactive = present_pages[0];
979	active = present_pages[1];
980
981	if (inactive * inactive_ratio < active)
982		return 1;
983
984	return 0;
985}
986
987int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
988{
989	unsigned long active;
990	unsigned long inactive;
991
992	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
993	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
994
995	return (active > inactive);
996}
997
998unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
999				       struct zone *zone,
1000				       enum lru_list lru)
1001{
1002	int nid = zone_to_nid(zone);
1003	int zid = zone_idx(zone);
1004	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1005
1006	return MEM_CGROUP_ZSTAT(mz, lru);
1007}
1008
1009struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1010						      struct zone *zone)
1011{
1012	int nid = zone_to_nid(zone);
1013	int zid = zone_idx(zone);
1014	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1015
1016	return &mz->reclaim_stat;
1017}
1018
1019struct zone_reclaim_stat *
1020mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1021{
1022	struct page_cgroup *pc;
1023	struct mem_cgroup_per_zone *mz;
1024
1025	if (mem_cgroup_disabled())
1026		return NULL;
1027
1028	pc = lookup_page_cgroup(page);
1029	if (!PageCgroupUsed(pc))
1030		return NULL;
1031	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1032	smp_rmb();
1033	mz = page_cgroup_zoneinfo(pc);
1034	if (!mz)
1035		return NULL;
1036
1037	return &mz->reclaim_stat;
1038}
1039
1040unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1041					struct list_head *dst,
1042					unsigned long *scanned, int order,
1043					int mode, struct zone *z,
1044					struct mem_cgroup *mem_cont,
1045					int active, int file)
1046{
1047	unsigned long nr_taken = 0;
1048	struct page *page;
1049	unsigned long scan;
1050	LIST_HEAD(pc_list);
1051	struct list_head *src;
1052	struct page_cgroup *pc, *tmp;
1053	int nid = zone_to_nid(z);
1054	int zid = zone_idx(z);
1055	struct mem_cgroup_per_zone *mz;
1056	int lru = LRU_FILE * file + active;
1057	int ret;
1058
1059	BUG_ON(!mem_cont);
1060	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1061	src = &mz->lists[lru];
1062
1063	scan = 0;
1064	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1065		if (scan >= nr_to_scan)
1066			break;
1067
1068		page = pc->page;
1069		if (unlikely(!PageCgroupUsed(pc)))
1070			continue;
1071		if (unlikely(!PageLRU(page)))
1072			continue;
1073
1074		scan++;
1075		ret = __isolate_lru_page(page, mode, file);
1076		switch (ret) {
1077		case 0:
1078			list_move(&page->lru, dst);
1079			mem_cgroup_del_lru(page);
1080			nr_taken += hpage_nr_pages(page);
1081			break;
1082		case -EBUSY:
1083			/* we don't affect global LRU but rotate in our LRU */
1084			mem_cgroup_rotate_lru_list(page, page_lru(page));
1085			break;
1086		default:
1087			break;
1088		}
1089	}
1090
1091	*scanned = scan;
1092
1093	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1094				      0, 0, 0, mode);
1095
1096	return nr_taken;
1097}
1098
1099#define mem_cgroup_from_res_counter(counter, member)	\
1100	container_of(counter, struct mem_cgroup, member)
1101
1102static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1103{
1104	if (do_swap_account) {
1105		if (res_counter_check_under_limit(&mem->res) &&
1106			res_counter_check_under_limit(&mem->memsw))
1107			return true;
1108	} else
1109		if (res_counter_check_under_limit(&mem->res))
1110			return true;
1111	return false;
1112}
1113
1114static unsigned int get_swappiness(struct mem_cgroup *memcg)
1115{
1116	struct cgroup *cgrp = memcg->css.cgroup;
1117	unsigned int swappiness;
1118
1119	/* root ? */
1120	if (cgrp->parent == NULL)
1121		return vm_swappiness;
1122
1123	spin_lock(&memcg->reclaim_param_lock);
1124	swappiness = memcg->swappiness;
1125	spin_unlock(&memcg->reclaim_param_lock);
1126
1127	return swappiness;
1128}
1129
1130static void mem_cgroup_start_move(struct mem_cgroup *mem)
1131{
1132	int cpu;
1133
1134	get_online_cpus();
1135	spin_lock(&mem->pcp_counter_lock);
1136	for_each_online_cpu(cpu)
1137		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1138	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1139	spin_unlock(&mem->pcp_counter_lock);
1140	put_online_cpus();
1141
1142	synchronize_rcu();
1143}
1144
1145static void mem_cgroup_end_move(struct mem_cgroup *mem)
1146{
1147	int cpu;
1148
1149	if (!mem)
1150		return;
1151	get_online_cpus();
1152	spin_lock(&mem->pcp_counter_lock);
1153	for_each_online_cpu(cpu)
1154		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1155	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1156	spin_unlock(&mem->pcp_counter_lock);
1157	put_online_cpus();
1158}
1159/*
1160 * 2 routines for checking "mem" is under move_account() or not.
1161 *
1162 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1163 *			  for avoiding race in accounting. If true,
1164 *			  pc->mem_cgroup may be overwritten.
1165 *
1166 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1167 *			  under hierarchy of moving cgroups. This is for
1168 *			  waiting at hith-memory prressure caused by "move".
1169 */
1170
1171static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1172{
1173	VM_BUG_ON(!rcu_read_lock_held());
1174	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1175}
1176
1177static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1178{
1179	struct mem_cgroup *from;
1180	struct mem_cgroup *to;
1181	bool ret = false;
1182	/*
1183	 * Unlike task_move routines, we access mc.to, mc.from not under
1184	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1185	 */
1186	spin_lock(&mc.lock);
1187	from = mc.from;
1188	to = mc.to;
1189	if (!from)
1190		goto unlock;
1191	if (from == mem || to == mem
1192	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1193	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1194		ret = true;
1195unlock:
1196	spin_unlock(&mc.lock);
1197	return ret;
1198}
1199
1200static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1201{
1202	if (mc.moving_task && current != mc.moving_task) {
1203		if (mem_cgroup_under_move(mem)) {
1204			DEFINE_WAIT(wait);
1205			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1206			/* moving charge context might have finished. */
1207			if (mc.moving_task)
1208				schedule();
1209			finish_wait(&mc.waitq, &wait);
1210			return true;
1211		}
1212	}
1213	return false;
1214}
1215
1216/**
1217 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1218 * @memcg: The memory cgroup that went over limit
1219 * @p: Task that is going to be killed
1220 *
1221 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1222 * enabled
1223 */
1224void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1225{
1226	struct cgroup *task_cgrp;
1227	struct cgroup *mem_cgrp;
1228	/*
1229	 * Need a buffer in BSS, can't rely on allocations. The code relies
1230	 * on the assumption that OOM is serialized for memory controller.
1231	 * If this assumption is broken, revisit this code.
1232	 */
1233	static char memcg_name[PATH_MAX];
1234	int ret;
1235
1236	if (!memcg || !p)
1237		return;
1238
1239
1240	rcu_read_lock();
1241
1242	mem_cgrp = memcg->css.cgroup;
1243	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1244
1245	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1246	if (ret < 0) {
1247		/*
1248		 * Unfortunately, we are unable to convert to a useful name
1249		 * But we'll still print out the usage information
1250		 */
1251		rcu_read_unlock();
1252		goto done;
1253	}
1254	rcu_read_unlock();
1255
1256	printk(KERN_INFO "Task in %s killed", memcg_name);
1257
1258	rcu_read_lock();
1259	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1260	if (ret < 0) {
1261		rcu_read_unlock();
1262		goto done;
1263	}
1264	rcu_read_unlock();
1265
1266	/*
1267	 * Continues from above, so we don't need an KERN_ level
1268	 */
1269	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1270done:
1271
1272	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1273		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1274		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1275		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1276	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1277		"failcnt %llu\n",
1278		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1279		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1280		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1281}
1282
1283/*
1284 * This function returns the number of memcg under hierarchy tree. Returns
1285 * 1(self count) if no children.
1286 */
1287static int mem_cgroup_count_children(struct mem_cgroup *mem)
1288{
1289	int num = 0;
1290	struct mem_cgroup *iter;
1291
1292	for_each_mem_cgroup_tree(iter, mem)
1293		num++;
1294	return num;
1295}
1296
1297/*
1298 * Return the memory (and swap, if configured) limit for a memcg.
1299 */
1300u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1301{
1302	u64 limit;
1303	u64 memsw;
1304
1305	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1306	limit += total_swap_pages << PAGE_SHIFT;
1307
1308	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1309	/*
1310	 * If memsw is finite and limits the amount of swap space available
1311	 * to this memcg, return that limit.
1312	 */
1313	return min(limit, memsw);
1314}
1315
1316/*
1317 * Visit the first child (need not be the first child as per the ordering
1318 * of the cgroup list, since we track last_scanned_child) of @mem and use
1319 * that to reclaim free pages from.
1320 */
1321static struct mem_cgroup *
1322mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1323{
1324	struct mem_cgroup *ret = NULL;
1325	struct cgroup_subsys_state *css;
1326	int nextid, found;
1327
1328	if (!root_mem->use_hierarchy) {
1329		css_get(&root_mem->css);
1330		ret = root_mem;
1331	}
1332
1333	while (!ret) {
1334		rcu_read_lock();
1335		nextid = root_mem->last_scanned_child + 1;
1336		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1337				   &found);
1338		if (css && css_tryget(css))
1339			ret = container_of(css, struct mem_cgroup, css);
1340
1341		rcu_read_unlock();
1342		/* Updates scanning parameter */
1343		spin_lock(&root_mem->reclaim_param_lock);
1344		if (!css) {
1345			/* this means start scan from ID:1 */
1346			root_mem->last_scanned_child = 0;
1347		} else
1348			root_mem->last_scanned_child = found;
1349		spin_unlock(&root_mem->reclaim_param_lock);
1350	}
1351
1352	return ret;
1353}
1354
1355/*
1356 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1357 * we reclaimed from, so that we don't end up penalizing one child extensively
1358 * based on its position in the children list.
1359 *
1360 * root_mem is the original ancestor that we've been reclaim from.
1361 *
1362 * We give up and return to the caller when we visit root_mem twice.
1363 * (other groups can be removed while we're walking....)
1364 *
1365 * If shrink==true, for avoiding to free too much, this returns immedieately.
1366 */
1367static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1368						struct zone *zone,
1369						gfp_t gfp_mask,
1370						unsigned long reclaim_options)
1371{
1372	struct mem_cgroup *victim;
1373	int ret, total = 0;
1374	int loop = 0;
1375	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1376	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1377	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1378	unsigned long excess = mem_cgroup_get_excess(root_mem);
1379
1380	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1381	if (root_mem->memsw_is_minimum)
1382		noswap = true;
1383
1384	while (1) {
1385		victim = mem_cgroup_select_victim(root_mem);
1386		if (victim == root_mem) {
1387			loop++;
1388			if (loop >= 1)
1389				drain_all_stock_async();
1390			if (loop >= 2) {
1391				/*
1392				 * If we have not been able to reclaim
1393				 * anything, it might because there are
1394				 * no reclaimable pages under this hierarchy
1395				 */
1396				if (!check_soft || !total) {
1397					css_put(&victim->css);
1398					break;
1399				}
1400				/*
1401				 * We want to do more targetted reclaim.
1402				 * excess >> 2 is not to excessive so as to
1403				 * reclaim too much, nor too less that we keep
1404				 * coming back to reclaim from this cgroup
1405				 */
1406				if (total >= (excess >> 2) ||
1407					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1408					css_put(&victim->css);
1409					break;
1410				}
1411			}
1412		}
1413		if (!mem_cgroup_local_usage(victim)) {
1414			/* this cgroup's local usage == 0 */
1415			css_put(&victim->css);
1416			continue;
1417		}
1418		/* we use swappiness of local cgroup */
1419		if (check_soft)
1420			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1421				noswap, get_swappiness(victim), zone);
1422		else
1423			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1424						noswap, get_swappiness(victim));
1425		css_put(&victim->css);
1426		/*
1427		 * At shrinking usage, we can't check we should stop here or
1428		 * reclaim more. It's depends on callers. last_scanned_child
1429		 * will work enough for keeping fairness under tree.
1430		 */
1431		if (shrink)
1432			return ret;
1433		total += ret;
1434		if (check_soft) {
1435			if (res_counter_check_under_soft_limit(&root_mem->res))
1436				return total;
1437		} else if (mem_cgroup_check_under_limit(root_mem))
1438			return 1 + total;
1439	}
1440	return total;
1441}
1442
1443/*
1444 * Check OOM-Killer is already running under our hierarchy.
1445 * If someone is running, return false.
1446 */
1447static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1448{
1449	int x, lock_count = 0;
1450	struct mem_cgroup *iter;
1451
1452	for_each_mem_cgroup_tree(iter, mem) {
1453		x = atomic_inc_return(&iter->oom_lock);
1454		lock_count = max(x, lock_count);
1455	}
1456
1457	if (lock_count == 1)
1458		return true;
1459	return false;
1460}
1461
1462static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1463{
1464	struct mem_cgroup *iter;
1465
1466	/*
1467	 * When a new child is created while the hierarchy is under oom,
1468	 * mem_cgroup_oom_lock() may not be called. We have to use
1469	 * atomic_add_unless() here.
1470	 */
1471	for_each_mem_cgroup_tree(iter, mem)
1472		atomic_add_unless(&iter->oom_lock, -1, 0);
1473	return 0;
1474}
1475
1476
1477static DEFINE_MUTEX(memcg_oom_mutex);
1478static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
1480struct oom_wait_info {
1481	struct mem_cgroup *mem;
1482	wait_queue_t	wait;
1483};
1484
1485static int memcg_oom_wake_function(wait_queue_t *wait,
1486	unsigned mode, int sync, void *arg)
1487{
1488	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1489	struct oom_wait_info *oom_wait_info;
1490
1491	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1492
1493	if (oom_wait_info->mem == wake_mem)
1494		goto wakeup;
1495	/* if no hierarchy, no match */
1496	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1497		return 0;
1498	/*
1499	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1500	 * Then we can use css_is_ancestor without taking care of RCU.
1501	 */
1502	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1503	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1504		return 0;
1505
1506wakeup:
1507	return autoremove_wake_function(wait, mode, sync, arg);
1508}
1509
1510static void memcg_wakeup_oom(struct mem_cgroup *mem)
1511{
1512	/* for filtering, pass "mem" as argument. */
1513	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1514}
1515
1516static void memcg_oom_recover(struct mem_cgroup *mem)
1517{
1518	if (mem && atomic_read(&mem->oom_lock))
1519		memcg_wakeup_oom(mem);
1520}
1521
1522/*
1523 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1524 */
1525bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1526{
1527	struct oom_wait_info owait;
1528	bool locked, need_to_kill;
1529
1530	owait.mem = mem;
1531	owait.wait.flags = 0;
1532	owait.wait.func = memcg_oom_wake_function;
1533	owait.wait.private = current;
1534	INIT_LIST_HEAD(&owait.wait.task_list);
1535	need_to_kill = true;
1536	/* At first, try to OOM lock hierarchy under mem.*/
1537	mutex_lock(&memcg_oom_mutex);
1538	locked = mem_cgroup_oom_lock(mem);
1539	/*
1540	 * Even if signal_pending(), we can't quit charge() loop without
1541	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1542	 * under OOM is always welcomed, use TASK_KILLABLE here.
1543	 */
1544	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1545	if (!locked || mem->oom_kill_disable)
1546		need_to_kill = false;
1547	if (locked)
1548		mem_cgroup_oom_notify(mem);
1549	mutex_unlock(&memcg_oom_mutex);
1550
1551	if (need_to_kill) {
1552		finish_wait(&memcg_oom_waitq, &owait.wait);
1553		mem_cgroup_out_of_memory(mem, mask);
1554	} else {
1555		schedule();
1556		finish_wait(&memcg_oom_waitq, &owait.wait);
1557	}
1558	mutex_lock(&memcg_oom_mutex);
1559	mem_cgroup_oom_unlock(mem);
1560	memcg_wakeup_oom(mem);
1561	mutex_unlock(&memcg_oom_mutex);
1562
1563	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1564		return false;
1565	/* Give chance to dying process */
1566	schedule_timeout(1);
1567	return true;
1568}
1569
1570/*
1571 * Currently used to update mapped file statistics, but the routine can be
1572 * generalized to update other statistics as well.
1573 *
1574 * Notes: Race condition
1575 *
1576 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1577 * it tends to be costly. But considering some conditions, we doesn't need
1578 * to do so _always_.
1579 *
1580 * Considering "charge", lock_page_cgroup() is not required because all
1581 * file-stat operations happen after a page is attached to radix-tree. There
1582 * are no race with "charge".
1583 *
1584 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1585 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1586 * if there are race with "uncharge". Statistics itself is properly handled
1587 * by flags.
1588 *
1589 * Considering "move", this is an only case we see a race. To make the race
1590 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1591 * possibility of race condition. If there is, we take a lock.
1592 */
1593
1594void mem_cgroup_update_page_stat(struct page *page,
1595				 enum mem_cgroup_page_stat_item idx, int val)
1596{
1597	struct mem_cgroup *mem;
1598	struct page_cgroup *pc = lookup_page_cgroup(page);
1599	bool need_unlock = false;
1600	unsigned long uninitialized_var(flags);
1601
1602	if (unlikely(!pc))
1603		return;
1604
1605	rcu_read_lock();
1606	mem = pc->mem_cgroup;
1607	if (unlikely(!mem || !PageCgroupUsed(pc)))
1608		goto out;
1609	/* pc->mem_cgroup is unstable ? */
1610	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1611		/* take a lock against to access pc->mem_cgroup */
1612		move_lock_page_cgroup(pc, &flags);
1613		need_unlock = true;
1614		mem = pc->mem_cgroup;
1615		if (!mem || !PageCgroupUsed(pc))
1616			goto out;
1617	}
1618
1619	switch (idx) {
1620	case MEMCG_NR_FILE_MAPPED:
1621		if (val > 0)
1622			SetPageCgroupFileMapped(pc);
1623		else if (!page_mapped(page))
1624			ClearPageCgroupFileMapped(pc);
1625		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1626		break;
1627	default:
1628		BUG();
1629	}
1630
1631	this_cpu_add(mem->stat->count[idx], val);
1632
1633out:
1634	if (unlikely(need_unlock))
1635		move_unlock_page_cgroup(pc, &flags);
1636	rcu_read_unlock();
1637	return;
1638}
1639EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1640
1641/*
1642 * size of first charge trial. "32" comes from vmscan.c's magic value.
1643 * TODO: maybe necessary to use big numbers in big irons.
1644 */
1645#define CHARGE_SIZE	(32 * PAGE_SIZE)
1646struct memcg_stock_pcp {
1647	struct mem_cgroup *cached; /* this never be root cgroup */
1648	int charge;
1649	struct work_struct work;
1650};
1651static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1652static atomic_t memcg_drain_count;
1653
1654/*
1655 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1656 * from local stock and true is returned. If the stock is 0 or charges from a
1657 * cgroup which is not current target, returns false. This stock will be
1658 * refilled.
1659 */
1660static bool consume_stock(struct mem_cgroup *mem)
1661{
1662	struct memcg_stock_pcp *stock;
1663	bool ret = true;
1664
1665	stock = &get_cpu_var(memcg_stock);
1666	if (mem == stock->cached && stock->charge)
1667		stock->charge -= PAGE_SIZE;
1668	else /* need to call res_counter_charge */
1669		ret = false;
1670	put_cpu_var(memcg_stock);
1671	return ret;
1672}
1673
1674/*
1675 * Returns stocks cached in percpu to res_counter and reset cached information.
1676 */
1677static void drain_stock(struct memcg_stock_pcp *stock)
1678{
1679	struct mem_cgroup *old = stock->cached;
1680
1681	if (stock->charge) {
1682		res_counter_uncharge(&old->res, stock->charge);
1683		if (do_swap_account)
1684			res_counter_uncharge(&old->memsw, stock->charge);
1685	}
1686	stock->cached = NULL;
1687	stock->charge = 0;
1688}
1689
1690/*
1691 * This must be called under preempt disabled or must be called by
1692 * a thread which is pinned to local cpu.
1693 */
1694static void drain_local_stock(struct work_struct *dummy)
1695{
1696	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1697	drain_stock(stock);
1698}
1699
1700/*
1701 * Cache charges(val) which is from res_counter, to local per_cpu area.
1702 * This will be consumed by consume_stock() function, later.
1703 */
1704static void refill_stock(struct mem_cgroup *mem, int val)
1705{
1706	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1707
1708	if (stock->cached != mem) { /* reset if necessary */
1709		drain_stock(stock);
1710		stock->cached = mem;
1711	}
1712	stock->charge += val;
1713	put_cpu_var(memcg_stock);
1714}
1715
1716/*
1717 * Tries to drain stocked charges in other cpus. This function is asynchronous
1718 * and just put a work per cpu for draining localy on each cpu. Caller can
1719 * expects some charges will be back to res_counter later but cannot wait for
1720 * it.
1721 */
1722static void drain_all_stock_async(void)
1723{
1724	int cpu;
1725	/* This function is for scheduling "drain" in asynchronous way.
1726	 * The result of "drain" is not directly handled by callers. Then,
1727	 * if someone is calling drain, we don't have to call drain more.
1728	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1729	 * there is a race. We just do loose check here.
1730	 */
1731	if (atomic_read(&memcg_drain_count))
1732		return;
1733	/* Notify other cpus that system-wide "drain" is running */
1734	atomic_inc(&memcg_drain_count);
1735	get_online_cpus();
1736	for_each_online_cpu(cpu) {
1737		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1738		schedule_work_on(cpu, &stock->work);
1739	}
1740 	put_online_cpus();
1741	atomic_dec(&memcg_drain_count);
1742	/* We don't wait for flush_work */
1743}
1744
1745/* This is a synchronous drain interface. */
1746static void drain_all_stock_sync(void)
1747{
1748	/* called when force_empty is called */
1749	atomic_inc(&memcg_drain_count);
1750	schedule_on_each_cpu(drain_local_stock);
1751	atomic_dec(&memcg_drain_count);
1752}
1753
1754/*
1755 * This function drains percpu counter value from DEAD cpu and
1756 * move it to local cpu. Note that this function can be preempted.
1757 */
1758static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1759{
1760	int i;
1761
1762	spin_lock(&mem->pcp_counter_lock);
1763	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1764		s64 x = per_cpu(mem->stat->count[i], cpu);
1765
1766		per_cpu(mem->stat->count[i], cpu) = 0;
1767		mem->nocpu_base.count[i] += x;
1768	}
1769	/* need to clear ON_MOVE value, works as a kind of lock. */
1770	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1771	spin_unlock(&mem->pcp_counter_lock);
1772}
1773
1774static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1775{
1776	int idx = MEM_CGROUP_ON_MOVE;
1777
1778	spin_lock(&mem->pcp_counter_lock);
1779	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1780	spin_unlock(&mem->pcp_counter_lock);
1781}
1782
1783static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1784					unsigned long action,
1785					void *hcpu)
1786{
1787	int cpu = (unsigned long)hcpu;
1788	struct memcg_stock_pcp *stock;
1789	struct mem_cgroup *iter;
1790
1791	if ((action == CPU_ONLINE)) {
1792		for_each_mem_cgroup_all(iter)
1793			synchronize_mem_cgroup_on_move(iter, cpu);
1794		return NOTIFY_OK;
1795	}
1796
1797	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1798		return NOTIFY_OK;
1799
1800	for_each_mem_cgroup_all(iter)
1801		mem_cgroup_drain_pcp_counter(iter, cpu);
1802
1803	stock = &per_cpu(memcg_stock, cpu);
1804	drain_stock(stock);
1805	return NOTIFY_OK;
1806}
1807
1808
1809/* See __mem_cgroup_try_charge() for details */
1810enum {
1811	CHARGE_OK,		/* success */
1812	CHARGE_RETRY,		/* need to retry but retry is not bad */
1813	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1814	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1815	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1816};
1817
1818static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1819				int csize, bool oom_check)
1820{
1821	struct mem_cgroup *mem_over_limit;
1822	struct res_counter *fail_res;
1823	unsigned long flags = 0;
1824	int ret;
1825
1826	ret = res_counter_charge(&mem->res, csize, &fail_res);
1827
1828	if (likely(!ret)) {
1829		if (!do_swap_account)
1830			return CHARGE_OK;
1831		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1832		if (likely(!ret))
1833			return CHARGE_OK;
1834
1835		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1836		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1837	} else
1838		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1839
1840	if (csize > PAGE_SIZE) /* change csize and retry */
1841		return CHARGE_RETRY;
1842
1843	if (!(gfp_mask & __GFP_WAIT))
1844		return CHARGE_WOULDBLOCK;
1845
1846	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1847					gfp_mask, flags);
1848	/*
1849	 * try_to_free_mem_cgroup_pages() might not give us a full
1850	 * picture of reclaim. Some pages are reclaimed and might be
1851	 * moved to swap cache or just unmapped from the cgroup.
1852	 * Check the limit again to see if the reclaim reduced the
1853	 * current usage of the cgroup before giving up
1854	 */
1855	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1856		return CHARGE_RETRY;
1857
1858	/*
1859	 * At task move, charge accounts can be doubly counted. So, it's
1860	 * better to wait until the end of task_move if something is going on.
1861	 */
1862	if (mem_cgroup_wait_acct_move(mem_over_limit))
1863		return CHARGE_RETRY;
1864
1865	/* If we don't need to call oom-killer at el, return immediately */
1866	if (!oom_check)
1867		return CHARGE_NOMEM;
1868	/* check OOM */
1869	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1870		return CHARGE_OOM_DIE;
1871
1872	return CHARGE_RETRY;
1873}
1874
1875/*
1876 * Unlike exported interface, "oom" parameter is added. if oom==true,
1877 * oom-killer can be invoked.
1878 */
1879static int __mem_cgroup_try_charge(struct mm_struct *mm,
1880				   gfp_t gfp_mask,
1881				   struct mem_cgroup **memcg, bool oom,
1882				   int page_size)
1883{
1884	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1885	struct mem_cgroup *mem = NULL;
1886	int ret;
1887	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1888
1889	/*
1890	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1891	 * in system level. So, allow to go ahead dying process in addition to
1892	 * MEMDIE process.
1893	 */
1894	if (unlikely(test_thread_flag(TIF_MEMDIE)
1895		     || fatal_signal_pending(current)))
1896		goto bypass;
1897
1898	/*
1899	 * We always charge the cgroup the mm_struct belongs to.
1900	 * The mm_struct's mem_cgroup changes on task migration if the
1901	 * thread group leader migrates. It's possible that mm is not
1902	 * set, if so charge the init_mm (happens for pagecache usage).
1903	 */
1904	if (!*memcg && !mm)
1905		goto bypass;
1906again:
1907	if (*memcg) { /* css should be a valid one */
1908		mem = *memcg;
1909		VM_BUG_ON(css_is_removed(&mem->css));
1910		if (mem_cgroup_is_root(mem))
1911			goto done;
1912		if (page_size == PAGE_SIZE && consume_stock(mem))
1913			goto done;
1914		css_get(&mem->css);
1915	} else {
1916		struct task_struct *p;
1917
1918		rcu_read_lock();
1919		p = rcu_dereference(mm->owner);
1920		/*
1921		 * Because we don't have task_lock(), "p" can exit.
1922		 * In that case, "mem" can point to root or p can be NULL with
1923		 * race with swapoff. Then, we have small risk of mis-accouning.
1924		 * But such kind of mis-account by race always happens because
1925		 * we don't have cgroup_mutex(). It's overkill and we allo that
1926		 * small race, here.
1927		 * (*) swapoff at el will charge against mm-struct not against
1928		 * task-struct. So, mm->owner can be NULL.
1929		 */
1930		mem = mem_cgroup_from_task(p);
1931		if (!mem || mem_cgroup_is_root(mem)) {
1932			rcu_read_unlock();
1933			goto done;
1934		}
1935		if (page_size == PAGE_SIZE && consume_stock(mem)) {
1936			/*
1937			 * It seems dagerous to access memcg without css_get().
1938			 * But considering how consume_stok works, it's not
1939			 * necessary. If consume_stock success, some charges
1940			 * from this memcg are cached on this cpu. So, we
1941			 * don't need to call css_get()/css_tryget() before
1942			 * calling consume_stock().
1943			 */
1944			rcu_read_unlock();
1945			goto done;
1946		}
1947		/* after here, we may be blocked. we need to get refcnt */
1948		if (!css_tryget(&mem->css)) {
1949			rcu_read_unlock();
1950			goto again;
1951		}
1952		rcu_read_unlock();
1953	}
1954
1955	do {
1956		bool oom_check;
1957
1958		/* If killed, bypass charge */
1959		if (fatal_signal_pending(current)) {
1960			css_put(&mem->css);
1961			goto bypass;
1962		}
1963
1964		oom_check = false;
1965		if (oom && !nr_oom_retries) {
1966			oom_check = true;
1967			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1968		}
1969
1970		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1971
1972		switch (ret) {
1973		case CHARGE_OK:
1974			break;
1975		case CHARGE_RETRY: /* not in OOM situation but retry */
1976			csize = page_size;
1977			css_put(&mem->css);
1978			mem = NULL;
1979			goto again;
1980		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1981			css_put(&mem->css);
1982			goto nomem;
1983		case CHARGE_NOMEM: /* OOM routine works */
1984			if (!oom) {
1985				css_put(&mem->css);
1986				goto nomem;
1987			}
1988			/* If oom, we never return -ENOMEM */
1989			nr_oom_retries--;
1990			break;
1991		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1992			css_put(&mem->css);
1993			goto bypass;
1994		}
1995	} while (ret != CHARGE_OK);
1996
1997	if (csize > page_size)
1998		refill_stock(mem, csize - page_size);
1999	css_put(&mem->css);
2000done:
2001	*memcg = mem;
2002	return 0;
2003nomem:
2004	*memcg = NULL;
2005	return -ENOMEM;
2006bypass:
2007	*memcg = NULL;
2008	return 0;
2009}
2010
2011/*
2012 * Somemtimes we have to undo a charge we got by try_charge().
2013 * This function is for that and do uncharge, put css's refcnt.
2014 * gotten by try_charge().
2015 */
2016static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2017							unsigned long count)
2018{
2019	if (!mem_cgroup_is_root(mem)) {
2020		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2021		if (do_swap_account)
2022			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2023	}
2024}
2025
2026static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2027				     int page_size)
2028{
2029	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2030}
2031
2032/*
2033 * A helper function to get mem_cgroup from ID. must be called under
2034 * rcu_read_lock(). The caller must check css_is_removed() or some if
2035 * it's concern. (dropping refcnt from swap can be called against removed
2036 * memcg.)
2037 */
2038static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2039{
2040	struct cgroup_subsys_state *css;
2041
2042	/* ID 0 is unused ID */
2043	if (!id)
2044		return NULL;
2045	css = css_lookup(&mem_cgroup_subsys, id);
2046	if (!css)
2047		return NULL;
2048	return container_of(css, struct mem_cgroup, css);
2049}
2050
2051struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2052{
2053	struct mem_cgroup *mem = NULL;
2054	struct page_cgroup *pc;
2055	unsigned short id;
2056	swp_entry_t ent;
2057
2058	VM_BUG_ON(!PageLocked(page));
2059
2060	pc = lookup_page_cgroup(page);
2061	lock_page_cgroup(pc);
2062	if (PageCgroupUsed(pc)) {
2063		mem = pc->mem_cgroup;
2064		if (mem && !css_tryget(&mem->css))
2065			mem = NULL;
2066	} else if (PageSwapCache(page)) {
2067		ent.val = page_private(page);
2068		id = lookup_swap_cgroup(ent);
2069		rcu_read_lock();
2070		mem = mem_cgroup_lookup(id);
2071		if (mem && !css_tryget(&mem->css))
2072			mem = NULL;
2073		rcu_read_unlock();
2074	}
2075	unlock_page_cgroup(pc);
2076	return mem;
2077}
2078
2079static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2080				       struct page_cgroup *pc,
2081				       enum charge_type ctype,
2082				       int page_size)
2083{
2084	int nr_pages = page_size >> PAGE_SHIFT;
2085
2086	/* try_charge() can return NULL to *memcg, taking care of it. */
2087	if (!mem)
2088		return;
2089
2090	lock_page_cgroup(pc);
2091	if (unlikely(PageCgroupUsed(pc))) {
2092		unlock_page_cgroup(pc);
2093		mem_cgroup_cancel_charge(mem, page_size);
2094		return;
2095	}
2096	/*
2097	 * we don't need page_cgroup_lock about tail pages, becase they are not
2098	 * accessed by any other context at this point.
2099	 */
2100	pc->mem_cgroup = mem;
2101	/*
2102	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2103	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2104	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2105	 * before USED bit, we need memory barrier here.
2106	 * See mem_cgroup_add_lru_list(), etc.
2107 	 */
2108	smp_wmb();
2109	switch (ctype) {
2110	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2111	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2112		SetPageCgroupCache(pc);
2113		SetPageCgroupUsed(pc);
2114		break;
2115	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2116		ClearPageCgroupCache(pc);
2117		SetPageCgroupUsed(pc);
2118		break;
2119	default:
2120		break;
2121	}
2122
2123	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2124	unlock_page_cgroup(pc);
2125	/*
2126	 * "charge_statistics" updated event counter. Then, check it.
2127	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2128	 * if they exceeds softlimit.
2129	 */
2130	memcg_check_events(mem, pc->page);
2131}
2132
2133#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2134
2135#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2136			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2137/*
2138 * Because tail pages are not marked as "used", set it. We're under
2139 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2140 */
2141void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2142{
2143	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2144	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2145	unsigned long flags;
2146
2147	/*
2148	 * We have no races with charge/uncharge but will have races with
2149	 * page state accounting.
2150	 */
2151	move_lock_page_cgroup(head_pc, &flags);
2152
2153	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2154	smp_wmb(); /* see __commit_charge() */
2155	if (PageCgroupAcctLRU(head_pc)) {
2156		enum lru_list lru;
2157		struct mem_cgroup_per_zone *mz;
2158
2159		/*
2160		 * LRU flags cannot be copied because we need to add tail
2161		 *.page to LRU by generic call and our hook will be called.
2162		 * We hold lru_lock, then, reduce counter directly.
2163		 */
2164		lru = page_lru(head);
2165		mz = page_cgroup_zoneinfo(head_pc);
2166		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2167	}
2168	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2169	move_unlock_page_cgroup(head_pc, &flags);
2170}
2171#endif
2172
2173/**
2174 * __mem_cgroup_move_account - move account of the page
2175 * @pc:	page_cgroup of the page.
2176 * @from: mem_cgroup which the page is moved from.
2177 * @to:	mem_cgroup which the page is moved to. @from != @to.
2178 * @uncharge: whether we should call uncharge and css_put against @from.
2179 *
2180 * The caller must confirm following.
2181 * - page is not on LRU (isolate_page() is useful.)
2182 * - the pc is locked, used, and ->mem_cgroup points to @from.
2183 *
2184 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2185 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2186 * true, this function does "uncharge" from old cgroup, but it doesn't if
2187 * @uncharge is false, so a caller should do "uncharge".
2188 */
2189
2190static void __mem_cgroup_move_account(struct page_cgroup *pc,
2191	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2192	int charge_size)
2193{
2194	int nr_pages = charge_size >> PAGE_SHIFT;
2195
2196	VM_BUG_ON(from == to);
2197	VM_BUG_ON(PageLRU(pc->page));
2198	VM_BUG_ON(!page_is_cgroup_locked(pc));
2199	VM_BUG_ON(!PageCgroupUsed(pc));
2200	VM_BUG_ON(pc->mem_cgroup != from);
2201
2202	if (PageCgroupFileMapped(pc)) {
2203		/* Update mapped_file data for mem_cgroup */
2204		preempt_disable();
2205		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2206		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2207		preempt_enable();
2208	}
2209	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2210	if (uncharge)
2211		/* This is not "cancel", but cancel_charge does all we need. */
2212		mem_cgroup_cancel_charge(from, charge_size);
2213
2214	/* caller should have done css_get */
2215	pc->mem_cgroup = to;
2216	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2217	/*
2218	 * We charges against "to" which may not have any tasks. Then, "to"
2219	 * can be under rmdir(). But in current implementation, caller of
2220	 * this function is just force_empty() and move charge, so it's
2221	 * garanteed that "to" is never removed. So, we don't check rmdir
2222	 * status here.
2223	 */
2224}
2225
2226/*
2227 * check whether the @pc is valid for moving account and call
2228 * __mem_cgroup_move_account()
2229 */
2230static int mem_cgroup_move_account(struct page_cgroup *pc,
2231		struct mem_cgroup *from, struct mem_cgroup *to,
2232		bool uncharge, int charge_size)
2233{
2234	int ret = -EINVAL;
2235	unsigned long flags;
2236
2237	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2238		return -EBUSY;
2239
2240	lock_page_cgroup(pc);
2241	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2242		move_lock_page_cgroup(pc, &flags);
2243		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2244		move_unlock_page_cgroup(pc, &flags);
2245		ret = 0;
2246	}
2247	unlock_page_cgroup(pc);
2248	/*
2249	 * check events
2250	 */
2251	memcg_check_events(to, pc->page);
2252	memcg_check_events(from, pc->page);
2253	return ret;
2254}
2255
2256/*
2257 * move charges to its parent.
2258 */
2259
2260static int mem_cgroup_move_parent(struct page_cgroup *pc,
2261				  struct mem_cgroup *child,
2262				  gfp_t gfp_mask)
2263{
2264	struct page *page = pc->page;
2265	struct cgroup *cg = child->css.cgroup;
2266	struct cgroup *pcg = cg->parent;
2267	struct mem_cgroup *parent;
2268	int charge = PAGE_SIZE;
2269	unsigned long flags;
2270	int ret;
2271
2272	/* Is ROOT ? */
2273	if (!pcg)
2274		return -EINVAL;
2275
2276	ret = -EBUSY;
2277	if (!get_page_unless_zero(page))
2278		goto out;
2279	if (isolate_lru_page(page))
2280		goto put;
2281	/* The page is isolated from LRU and we have no race with splitting */
2282	charge = PAGE_SIZE << compound_order(page);
2283
2284	parent = mem_cgroup_from_cont(pcg);
2285	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, charge);
2286	if (ret || !parent)
2287		goto put_back;
2288
2289	if (charge > PAGE_SIZE)
2290		flags = compound_lock_irqsave(page);
2291
2292	ret = mem_cgroup_move_account(pc, child, parent, true, charge);
2293	if (ret)
2294		mem_cgroup_cancel_charge(parent, charge);
2295put_back:
2296	if (charge > PAGE_SIZE)
2297		compound_unlock_irqrestore(page, flags);
2298	putback_lru_page(page);
2299put:
2300	put_page(page);
2301out:
2302	return ret;
2303}
2304
2305/*
2306 * Charge the memory controller for page usage.
2307 * Return
2308 * 0 if the charge was successful
2309 * < 0 if the cgroup is over its limit
2310 */
2311static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2312				gfp_t gfp_mask, enum charge_type ctype)
2313{
2314	struct mem_cgroup *mem = NULL;
2315	struct page_cgroup *pc;
2316	int ret;
2317	int page_size = PAGE_SIZE;
2318
2319	if (PageTransHuge(page)) {
2320		page_size <<= compound_order(page);
2321		VM_BUG_ON(!PageTransHuge(page));
2322	}
2323
2324	pc = lookup_page_cgroup(page);
2325	/* can happen at boot */
2326	if (unlikely(!pc))
2327		return 0;
2328	prefetchw(pc);
2329
2330	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2331	if (ret || !mem)
2332		return ret;
2333
2334	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2335	return 0;
2336}
2337
2338int mem_cgroup_newpage_charge(struct page *page,
2339			      struct mm_struct *mm, gfp_t gfp_mask)
2340{
2341	if (mem_cgroup_disabled())
2342		return 0;
2343	/*
2344	 * If already mapped, we don't have to account.
2345	 * If page cache, page->mapping has address_space.
2346	 * But page->mapping may have out-of-use anon_vma pointer,
2347	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2348	 * is NULL.
2349  	 */
2350	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2351		return 0;
2352	if (unlikely(!mm))
2353		mm = &init_mm;
2354	return mem_cgroup_charge_common(page, mm, gfp_mask,
2355				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2356}
2357
2358static void
2359__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2360					enum charge_type ctype);
2361
2362int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2363				gfp_t gfp_mask)
2364{
2365	int ret;
2366
2367	if (mem_cgroup_disabled())
2368		return 0;
2369	if (PageCompound(page))
2370		return 0;
2371	/*
2372	 * Corner case handling. This is called from add_to_page_cache()
2373	 * in usual. But some FS (shmem) precharges this page before calling it
2374	 * and call add_to_page_cache() with GFP_NOWAIT.
2375	 *
2376	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2377	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2378	 * charge twice. (It works but has to pay a bit larger cost.)
2379	 * And when the page is SwapCache, it should take swap information
2380	 * into account. This is under lock_page() now.
2381	 */
2382	if (!(gfp_mask & __GFP_WAIT)) {
2383		struct page_cgroup *pc;
2384
2385		pc = lookup_page_cgroup(page);
2386		if (!pc)
2387			return 0;
2388		lock_page_cgroup(pc);
2389		if (PageCgroupUsed(pc)) {
2390			unlock_page_cgroup(pc);
2391			return 0;
2392		}
2393		unlock_page_cgroup(pc);
2394	}
2395
2396	if (unlikely(!mm))
2397		mm = &init_mm;
2398
2399	if (page_is_file_cache(page))
2400		return mem_cgroup_charge_common(page, mm, gfp_mask,
2401				MEM_CGROUP_CHARGE_TYPE_CACHE);
2402
2403	/* shmem */
2404	if (PageSwapCache(page)) {
2405		struct mem_cgroup *mem = NULL;
2406
2407		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2408		if (!ret)
2409			__mem_cgroup_commit_charge_swapin(page, mem,
2410					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2411	} else
2412		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2413					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2414
2415	return ret;
2416}
2417
2418/*
2419 * While swap-in, try_charge -> commit or cancel, the page is locked.
2420 * And when try_charge() successfully returns, one refcnt to memcg without
2421 * struct page_cgroup is acquired. This refcnt will be consumed by
2422 * "commit()" or removed by "cancel()"
2423 */
2424int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2425				 struct page *page,
2426				 gfp_t mask, struct mem_cgroup **ptr)
2427{
2428	struct mem_cgroup *mem;
2429	int ret;
2430
2431	if (mem_cgroup_disabled())
2432		return 0;
2433
2434	if (!do_swap_account)
2435		goto charge_cur_mm;
2436	/*
2437	 * A racing thread's fault, or swapoff, may have already updated
2438	 * the pte, and even removed page from swap cache: in those cases
2439	 * do_swap_page()'s pte_same() test will fail; but there's also a
2440	 * KSM case which does need to charge the page.
2441	 */
2442	if (!PageSwapCache(page))
2443		goto charge_cur_mm;
2444	mem = try_get_mem_cgroup_from_page(page);
2445	if (!mem)
2446		goto charge_cur_mm;
2447	*ptr = mem;
2448	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2449	css_put(&mem->css);
2450	return ret;
2451charge_cur_mm:
2452	if (unlikely(!mm))
2453		mm = &init_mm;
2454	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2455}
2456
2457static void
2458__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2459					enum charge_type ctype)
2460{
2461	struct page_cgroup *pc;
2462
2463	if (mem_cgroup_disabled())
2464		return;
2465	if (!ptr)
2466		return;
2467	cgroup_exclude_rmdir(&ptr->css);
2468	pc = lookup_page_cgroup(page);
2469	mem_cgroup_lru_del_before_commit_swapcache(page);
2470	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2471	mem_cgroup_lru_add_after_commit_swapcache(page);
2472	/*
2473	 * Now swap is on-memory. This means this page may be
2474	 * counted both as mem and swap....double count.
2475	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2476	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2477	 * may call delete_from_swap_cache() before reach here.
2478	 */
2479	if (do_swap_account && PageSwapCache(page)) {
2480		swp_entry_t ent = {.val = page_private(page)};
2481		unsigned short id;
2482		struct mem_cgroup *memcg;
2483
2484		id = swap_cgroup_record(ent, 0);
2485		rcu_read_lock();
2486		memcg = mem_cgroup_lookup(id);
2487		if (memcg) {
2488			/*
2489			 * This recorded memcg can be obsolete one. So, avoid
2490			 * calling css_tryget
2491			 */
2492			if (!mem_cgroup_is_root(memcg))
2493				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2494			mem_cgroup_swap_statistics(memcg, false);
2495			mem_cgroup_put(memcg);
2496		}
2497		rcu_read_unlock();
2498	}
2499	/*
2500	 * At swapin, we may charge account against cgroup which has no tasks.
2501	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2502	 * In that case, we need to call pre_destroy() again. check it here.
2503	 */
2504	cgroup_release_and_wakeup_rmdir(&ptr->css);
2505}
2506
2507void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2508{
2509	__mem_cgroup_commit_charge_swapin(page, ptr,
2510					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2511}
2512
2513void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2514{
2515	if (mem_cgroup_disabled())
2516		return;
2517	if (!mem)
2518		return;
2519	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2520}
2521
2522static void
2523__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2524	      int page_size)
2525{
2526	struct memcg_batch_info *batch = NULL;
2527	bool uncharge_memsw = true;
2528	/* If swapout, usage of swap doesn't decrease */
2529	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2530		uncharge_memsw = false;
2531
2532	batch = &current->memcg_batch;
2533	/*
2534	 * In usual, we do css_get() when we remember memcg pointer.
2535	 * But in this case, we keep res->usage until end of a series of
2536	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2537	 */
2538	if (!batch->memcg)
2539		batch->memcg = mem;
2540	/*
2541	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2542	 * In those cases, all pages freed continously can be expected to be in
2543	 * the same cgroup and we have chance to coalesce uncharges.
2544	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2545	 * because we want to do uncharge as soon as possible.
2546	 */
2547
2548	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2549		goto direct_uncharge;
2550
2551	if (page_size != PAGE_SIZE)
2552		goto direct_uncharge;
2553
2554	/*
2555	 * In typical case, batch->memcg == mem. This means we can
2556	 * merge a series of uncharges to an uncharge of res_counter.
2557	 * If not, we uncharge res_counter ony by one.
2558	 */
2559	if (batch->memcg != mem)
2560		goto direct_uncharge;
2561	/* remember freed charge and uncharge it later */
2562	batch->bytes += PAGE_SIZE;
2563	if (uncharge_memsw)
2564		batch->memsw_bytes += PAGE_SIZE;
2565	return;
2566direct_uncharge:
2567	res_counter_uncharge(&mem->res, page_size);
2568	if (uncharge_memsw)
2569		res_counter_uncharge(&mem->memsw, page_size);
2570	if (unlikely(batch->memcg != mem))
2571		memcg_oom_recover(mem);
2572	return;
2573}
2574
2575/*
2576 * uncharge if !page_mapped(page)
2577 */
2578static struct mem_cgroup *
2579__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2580{
2581	int count;
2582	struct page_cgroup *pc;
2583	struct mem_cgroup *mem = NULL;
2584	int page_size = PAGE_SIZE;
2585
2586	if (mem_cgroup_disabled())
2587		return NULL;
2588
2589	if (PageSwapCache(page))
2590		return NULL;
2591
2592	if (PageTransHuge(page)) {
2593		page_size <<= compound_order(page);
2594		VM_BUG_ON(!PageTransHuge(page));
2595	}
2596
2597	count = page_size >> PAGE_SHIFT;
2598	/*
2599	 * Check if our page_cgroup is valid
2600	 */
2601	pc = lookup_page_cgroup(page);
2602	if (unlikely(!pc || !PageCgroupUsed(pc)))
2603		return NULL;
2604
2605	lock_page_cgroup(pc);
2606
2607	mem = pc->mem_cgroup;
2608
2609	if (!PageCgroupUsed(pc))
2610		goto unlock_out;
2611
2612	switch (ctype) {
2613	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2614	case MEM_CGROUP_CHARGE_TYPE_DROP:
2615		/* See mem_cgroup_prepare_migration() */
2616		if (page_mapped(page) || PageCgroupMigration(pc))
2617			goto unlock_out;
2618		break;
2619	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2620		if (!PageAnon(page)) {	/* Shared memory */
2621			if (page->mapping && !page_is_file_cache(page))
2622				goto unlock_out;
2623		} else if (page_mapped(page)) /* Anon */
2624				goto unlock_out;
2625		break;
2626	default:
2627		break;
2628	}
2629
2630	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2631
2632	ClearPageCgroupUsed(pc);
2633	/*
2634	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2635	 * freed from LRU. This is safe because uncharged page is expected not
2636	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2637	 * special functions.
2638	 */
2639
2640	unlock_page_cgroup(pc);
2641	/*
2642	 * even after unlock, we have mem->res.usage here and this memcg
2643	 * will never be freed.
2644	 */
2645	memcg_check_events(mem, page);
2646	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2647		mem_cgroup_swap_statistics(mem, true);
2648		mem_cgroup_get(mem);
2649	}
2650	if (!mem_cgroup_is_root(mem))
2651		__do_uncharge(mem, ctype, page_size);
2652
2653	return mem;
2654
2655unlock_out:
2656	unlock_page_cgroup(pc);
2657	return NULL;
2658}
2659
2660void mem_cgroup_uncharge_page(struct page *page)
2661{
2662	/* early check. */
2663	if (page_mapped(page))
2664		return;
2665	if (page->mapping && !PageAnon(page))
2666		return;
2667	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2668}
2669
2670void mem_cgroup_uncharge_cache_page(struct page *page)
2671{
2672	VM_BUG_ON(page_mapped(page));
2673	VM_BUG_ON(page->mapping);
2674	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2675}
2676
2677/*
2678 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2679 * In that cases, pages are freed continuously and we can expect pages
2680 * are in the same memcg. All these calls itself limits the number of
2681 * pages freed at once, then uncharge_start/end() is called properly.
2682 * This may be called prural(2) times in a context,
2683 */
2684
2685void mem_cgroup_uncharge_start(void)
2686{
2687	current->memcg_batch.do_batch++;
2688	/* We can do nest. */
2689	if (current->memcg_batch.do_batch == 1) {
2690		current->memcg_batch.memcg = NULL;
2691		current->memcg_batch.bytes = 0;
2692		current->memcg_batch.memsw_bytes = 0;
2693	}
2694}
2695
2696void mem_cgroup_uncharge_end(void)
2697{
2698	struct memcg_batch_info *batch = &current->memcg_batch;
2699
2700	if (!batch->do_batch)
2701		return;
2702
2703	batch->do_batch--;
2704	if (batch->do_batch) /* If stacked, do nothing. */
2705		return;
2706
2707	if (!batch->memcg)
2708		return;
2709	/*
2710	 * This "batch->memcg" is valid without any css_get/put etc...
2711	 * bacause we hide charges behind us.
2712	 */
2713	if (batch->bytes)
2714		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2715	if (batch->memsw_bytes)
2716		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2717	memcg_oom_recover(batch->memcg);
2718	/* forget this pointer (for sanity check) */
2719	batch->memcg = NULL;
2720}
2721
2722#ifdef CONFIG_SWAP
2723/*
2724 * called after __delete_from_swap_cache() and drop "page" account.
2725 * memcg information is recorded to swap_cgroup of "ent"
2726 */
2727void
2728mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2729{
2730	struct mem_cgroup *memcg;
2731	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2732
2733	if (!swapout) /* this was a swap cache but the swap is unused ! */
2734		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2735
2736	memcg = __mem_cgroup_uncharge_common(page, ctype);
2737
2738	/*
2739	 * record memcg information,  if swapout && memcg != NULL,
2740	 * mem_cgroup_get() was called in uncharge().
2741	 */
2742	if (do_swap_account && swapout && memcg)
2743		swap_cgroup_record(ent, css_id(&memcg->css));
2744}
2745#endif
2746
2747#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2748/*
2749 * called from swap_entry_free(). remove record in swap_cgroup and
2750 * uncharge "memsw" account.
2751 */
2752void mem_cgroup_uncharge_swap(swp_entry_t ent)
2753{
2754	struct mem_cgroup *memcg;
2755	unsigned short id;
2756
2757	if (!do_swap_account)
2758		return;
2759
2760	id = swap_cgroup_record(ent, 0);
2761	rcu_read_lock();
2762	memcg = mem_cgroup_lookup(id);
2763	if (memcg) {
2764		/*
2765		 * We uncharge this because swap is freed.
2766		 * This memcg can be obsolete one. We avoid calling css_tryget
2767		 */
2768		if (!mem_cgroup_is_root(memcg))
2769			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2770		mem_cgroup_swap_statistics(memcg, false);
2771		mem_cgroup_put(memcg);
2772	}
2773	rcu_read_unlock();
2774}
2775
2776/**
2777 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2778 * @entry: swap entry to be moved
2779 * @from:  mem_cgroup which the entry is moved from
2780 * @to:  mem_cgroup which the entry is moved to
2781 * @need_fixup: whether we should fixup res_counters and refcounts.
2782 *
2783 * It succeeds only when the swap_cgroup's record for this entry is the same
2784 * as the mem_cgroup's id of @from.
2785 *
2786 * Returns 0 on success, -EINVAL on failure.
2787 *
2788 * The caller must have charged to @to, IOW, called res_counter_charge() about
2789 * both res and memsw, and called css_get().
2790 */
2791static int mem_cgroup_move_swap_account(swp_entry_t entry,
2792		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2793{
2794	unsigned short old_id, new_id;
2795
2796	old_id = css_id(&from->css);
2797	new_id = css_id(&to->css);
2798
2799	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2800		mem_cgroup_swap_statistics(from, false);
2801		mem_cgroup_swap_statistics(to, true);
2802		/*
2803		 * This function is only called from task migration context now.
2804		 * It postpones res_counter and refcount handling till the end
2805		 * of task migration(mem_cgroup_clear_mc()) for performance
2806		 * improvement. But we cannot postpone mem_cgroup_get(to)
2807		 * because if the process that has been moved to @to does
2808		 * swap-in, the refcount of @to might be decreased to 0.
2809		 */
2810		mem_cgroup_get(to);
2811		if (need_fixup) {
2812			if (!mem_cgroup_is_root(from))
2813				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2814			mem_cgroup_put(from);
2815			/*
2816			 * we charged both to->res and to->memsw, so we should
2817			 * uncharge to->res.
2818			 */
2819			if (!mem_cgroup_is_root(to))
2820				res_counter_uncharge(&to->res, PAGE_SIZE);
2821		}
2822		return 0;
2823	}
2824	return -EINVAL;
2825}
2826#else
2827static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2828		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2829{
2830	return -EINVAL;
2831}
2832#endif
2833
2834/*
2835 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2836 * page belongs to.
2837 */
2838int mem_cgroup_prepare_migration(struct page *page,
2839	struct page *newpage, struct mem_cgroup **ptr)
2840{
2841	struct page_cgroup *pc;
2842	struct mem_cgroup *mem = NULL;
2843	enum charge_type ctype;
2844	int ret = 0;
2845
2846	VM_BUG_ON(PageTransHuge(page));
2847	if (mem_cgroup_disabled())
2848		return 0;
2849
2850	pc = lookup_page_cgroup(page);
2851	lock_page_cgroup(pc);
2852	if (PageCgroupUsed(pc)) {
2853		mem = pc->mem_cgroup;
2854		css_get(&mem->css);
2855		/*
2856		 * At migrating an anonymous page, its mapcount goes down
2857		 * to 0 and uncharge() will be called. But, even if it's fully
2858		 * unmapped, migration may fail and this page has to be
2859		 * charged again. We set MIGRATION flag here and delay uncharge
2860		 * until end_migration() is called
2861		 *
2862		 * Corner Case Thinking
2863		 * A)
2864		 * When the old page was mapped as Anon and it's unmap-and-freed
2865		 * while migration was ongoing.
2866		 * If unmap finds the old page, uncharge() of it will be delayed
2867		 * until end_migration(). If unmap finds a new page, it's
2868		 * uncharged when it make mapcount to be 1->0. If unmap code
2869		 * finds swap_migration_entry, the new page will not be mapped
2870		 * and end_migration() will find it(mapcount==0).
2871		 *
2872		 * B)
2873		 * When the old page was mapped but migraion fails, the kernel
2874		 * remaps it. A charge for it is kept by MIGRATION flag even
2875		 * if mapcount goes down to 0. We can do remap successfully
2876		 * without charging it again.
2877		 *
2878		 * C)
2879		 * The "old" page is under lock_page() until the end of
2880		 * migration, so, the old page itself will not be swapped-out.
2881		 * If the new page is swapped out before end_migraton, our
2882		 * hook to usual swap-out path will catch the event.
2883		 */
2884		if (PageAnon(page))
2885			SetPageCgroupMigration(pc);
2886	}
2887	unlock_page_cgroup(pc);
2888	/*
2889	 * If the page is not charged at this point,
2890	 * we return here.
2891	 */
2892	if (!mem)
2893		return 0;
2894
2895	*ptr = mem;
2896	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2897	css_put(&mem->css);/* drop extra refcnt */
2898	if (ret || *ptr == NULL) {
2899		if (PageAnon(page)) {
2900			lock_page_cgroup(pc);
2901			ClearPageCgroupMigration(pc);
2902			unlock_page_cgroup(pc);
2903			/*
2904			 * The old page may be fully unmapped while we kept it.
2905			 */
2906			mem_cgroup_uncharge_page(page);
2907		}
2908		return -ENOMEM;
2909	}
2910	/*
2911	 * We charge new page before it's used/mapped. So, even if unlock_page()
2912	 * is called before end_migration, we can catch all events on this new
2913	 * page. In the case new page is migrated but not remapped, new page's
2914	 * mapcount will be finally 0 and we call uncharge in end_migration().
2915	 */
2916	pc = lookup_page_cgroup(newpage);
2917	if (PageAnon(page))
2918		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2919	else if (page_is_file_cache(page))
2920		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2921	else
2922		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2923	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2924	return ret;
2925}
2926
2927/* remove redundant charge if migration failed*/
2928void mem_cgroup_end_migration(struct mem_cgroup *mem,
2929	struct page *oldpage, struct page *newpage, bool migration_ok)
2930{
2931	struct page *used, *unused;
2932	struct page_cgroup *pc;
2933
2934	if (!mem)
2935		return;
2936	/* blocks rmdir() */
2937	cgroup_exclude_rmdir(&mem->css);
2938	if (!migration_ok) {
2939		used = oldpage;
2940		unused = newpage;
2941	} else {
2942		used = newpage;
2943		unused = oldpage;
2944	}
2945	/*
2946	 * We disallowed uncharge of pages under migration because mapcount
2947	 * of the page goes down to zero, temporarly.
2948	 * Clear the flag and check the page should be charged.
2949	 */
2950	pc = lookup_page_cgroup(oldpage);
2951	lock_page_cgroup(pc);
2952	ClearPageCgroupMigration(pc);
2953	unlock_page_cgroup(pc);
2954
2955	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2956
2957	/*
2958	 * If a page is a file cache, radix-tree replacement is very atomic
2959	 * and we can skip this check. When it was an Anon page, its mapcount
2960	 * goes down to 0. But because we added MIGRATION flage, it's not
2961	 * uncharged yet. There are several case but page->mapcount check
2962	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2963	 * check. (see prepare_charge() also)
2964	 */
2965	if (PageAnon(used))
2966		mem_cgroup_uncharge_page(used);
2967	/*
2968	 * At migration, we may charge account against cgroup which has no
2969	 * tasks.
2970	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2971	 * In that case, we need to call pre_destroy() again. check it here.
2972	 */
2973	cgroup_release_and_wakeup_rmdir(&mem->css);
2974}
2975
2976/*
2977 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2978 * Calling hierarchical_reclaim is not enough because we should update
2979 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2980 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2981 * not from the memcg which this page would be charged to.
2982 * try_charge_swapin does all of these works properly.
2983 */
2984int mem_cgroup_shmem_charge_fallback(struct page *page,
2985			    struct mm_struct *mm,
2986			    gfp_t gfp_mask)
2987{
2988	struct mem_cgroup *mem = NULL;
2989	int ret;
2990
2991	if (mem_cgroup_disabled())
2992		return 0;
2993
2994	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2995	if (!ret)
2996		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2997
2998	return ret;
2999}
3000
3001static DEFINE_MUTEX(set_limit_mutex);
3002
3003static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3004				unsigned long long val)
3005{
3006	int retry_count;
3007	u64 memswlimit, memlimit;
3008	int ret = 0;
3009	int children = mem_cgroup_count_children(memcg);
3010	u64 curusage, oldusage;
3011	int enlarge;
3012
3013	/*
3014	 * For keeping hierarchical_reclaim simple, how long we should retry
3015	 * is depends on callers. We set our retry-count to be function
3016	 * of # of children which we should visit in this loop.
3017	 */
3018	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3019
3020	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3021
3022	enlarge = 0;
3023	while (retry_count) {
3024		if (signal_pending(current)) {
3025			ret = -EINTR;
3026			break;
3027		}
3028		/*
3029		 * Rather than hide all in some function, I do this in
3030		 * open coded manner. You see what this really does.
3031		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3032		 */
3033		mutex_lock(&set_limit_mutex);
3034		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3035		if (memswlimit < val) {
3036			ret = -EINVAL;
3037			mutex_unlock(&set_limit_mutex);
3038			break;
3039		}
3040
3041		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3042		if (memlimit < val)
3043			enlarge = 1;
3044
3045		ret = res_counter_set_limit(&memcg->res, val);
3046		if (!ret) {
3047			if (memswlimit == val)
3048				memcg->memsw_is_minimum = true;
3049			else
3050				memcg->memsw_is_minimum = false;
3051		}
3052		mutex_unlock(&set_limit_mutex);
3053
3054		if (!ret)
3055			break;
3056
3057		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3058						MEM_CGROUP_RECLAIM_SHRINK);
3059		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3060		/* Usage is reduced ? */
3061  		if (curusage >= oldusage)
3062			retry_count--;
3063		else
3064			oldusage = curusage;
3065	}
3066	if (!ret && enlarge)
3067		memcg_oom_recover(memcg);
3068
3069	return ret;
3070}
3071
3072static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3073					unsigned long long val)
3074{
3075	int retry_count;
3076	u64 memlimit, memswlimit, oldusage, curusage;
3077	int children = mem_cgroup_count_children(memcg);
3078	int ret = -EBUSY;
3079	int enlarge = 0;
3080
3081	/* see mem_cgroup_resize_res_limit */
3082 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3083	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3084	while (retry_count) {
3085		if (signal_pending(current)) {
3086			ret = -EINTR;
3087			break;
3088		}
3089		/*
3090		 * Rather than hide all in some function, I do this in
3091		 * open coded manner. You see what this really does.
3092		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3093		 */
3094		mutex_lock(&set_limit_mutex);
3095		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3096		if (memlimit > val) {
3097			ret = -EINVAL;
3098			mutex_unlock(&set_limit_mutex);
3099			break;
3100		}
3101		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3102		if (memswlimit < val)
3103			enlarge = 1;
3104		ret = res_counter_set_limit(&memcg->memsw, val);
3105		if (!ret) {
3106			if (memlimit == val)
3107				memcg->memsw_is_minimum = true;
3108			else
3109				memcg->memsw_is_minimum = false;
3110		}
3111		mutex_unlock(&set_limit_mutex);
3112
3113		if (!ret)
3114			break;
3115
3116		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3117						MEM_CGROUP_RECLAIM_NOSWAP |
3118						MEM_CGROUP_RECLAIM_SHRINK);
3119		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3120		/* Usage is reduced ? */
3121		if (curusage >= oldusage)
3122			retry_count--;
3123		else
3124			oldusage = curusage;
3125	}
3126	if (!ret && enlarge)
3127		memcg_oom_recover(memcg);
3128	return ret;
3129}
3130
3131unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3132					    gfp_t gfp_mask)
3133{
3134	unsigned long nr_reclaimed = 0;
3135	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3136	unsigned long reclaimed;
3137	int loop = 0;
3138	struct mem_cgroup_tree_per_zone *mctz;
3139	unsigned long long excess;
3140
3141	if (order > 0)
3142		return 0;
3143
3144	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3145	/*
3146	 * This loop can run a while, specially if mem_cgroup's continuously
3147	 * keep exceeding their soft limit and putting the system under
3148	 * pressure
3149	 */
3150	do {
3151		if (next_mz)
3152			mz = next_mz;
3153		else
3154			mz = mem_cgroup_largest_soft_limit_node(mctz);
3155		if (!mz)
3156			break;
3157
3158		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3159						gfp_mask,
3160						MEM_CGROUP_RECLAIM_SOFT);
3161		nr_reclaimed += reclaimed;
3162		spin_lock(&mctz->lock);
3163
3164		/*
3165		 * If we failed to reclaim anything from this memory cgroup
3166		 * it is time to move on to the next cgroup
3167		 */
3168		next_mz = NULL;
3169		if (!reclaimed) {
3170			do {
3171				/*
3172				 * Loop until we find yet another one.
3173				 *
3174				 * By the time we get the soft_limit lock
3175				 * again, someone might have aded the
3176				 * group back on the RB tree. Iterate to
3177				 * make sure we get a different mem.
3178				 * mem_cgroup_largest_soft_limit_node returns
3179				 * NULL if no other cgroup is present on
3180				 * the tree
3181				 */
3182				next_mz =
3183				__mem_cgroup_largest_soft_limit_node(mctz);
3184				if (next_mz == mz) {
3185					css_put(&next_mz->mem->css);
3186					next_mz = NULL;
3187				} else /* next_mz == NULL or other memcg */
3188					break;
3189			} while (1);
3190		}
3191		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3192		excess = res_counter_soft_limit_excess(&mz->mem->res);
3193		/*
3194		 * One school of thought says that we should not add
3195		 * back the node to the tree if reclaim returns 0.
3196		 * But our reclaim could return 0, simply because due
3197		 * to priority we are exposing a smaller subset of
3198		 * memory to reclaim from. Consider this as a longer
3199		 * term TODO.
3200		 */
3201		/* If excess == 0, no tree ops */
3202		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3203		spin_unlock(&mctz->lock);
3204		css_put(&mz->mem->css);
3205		loop++;
3206		/*
3207		 * Could not reclaim anything and there are no more
3208		 * mem cgroups to try or we seem to be looping without
3209		 * reclaiming anything.
3210		 */
3211		if (!nr_reclaimed &&
3212			(next_mz == NULL ||
3213			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3214			break;
3215	} while (!nr_reclaimed);
3216	if (next_mz)
3217		css_put(&next_mz->mem->css);
3218	return nr_reclaimed;
3219}
3220
3221/*
3222 * This routine traverse page_cgroup in given list and drop them all.
3223 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3224 */
3225static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3226				int node, int zid, enum lru_list lru)
3227{
3228	struct zone *zone;
3229	struct mem_cgroup_per_zone *mz;
3230	struct page_cgroup *pc, *busy;
3231	unsigned long flags, loop;
3232	struct list_head *list;
3233	int ret = 0;
3234
3235	zone = &NODE_DATA(node)->node_zones[zid];
3236	mz = mem_cgroup_zoneinfo(mem, node, zid);
3237	list = &mz->lists[lru];
3238
3239	loop = MEM_CGROUP_ZSTAT(mz, lru);
3240	/* give some margin against EBUSY etc...*/
3241	loop += 256;
3242	busy = NULL;
3243	while (loop--) {
3244		ret = 0;
3245		spin_lock_irqsave(&zone->lru_lock, flags);
3246		if (list_empty(list)) {
3247			spin_unlock_irqrestore(&zone->lru_lock, flags);
3248			break;
3249		}
3250		pc = list_entry(list->prev, struct page_cgroup, lru);
3251		if (busy == pc) {
3252			list_move(&pc->lru, list);
3253			busy = NULL;
3254			spin_unlock_irqrestore(&zone->lru_lock, flags);
3255			continue;
3256		}
3257		spin_unlock_irqrestore(&zone->lru_lock, flags);
3258
3259		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3260		if (ret == -ENOMEM)
3261			break;
3262
3263		if (ret == -EBUSY || ret == -EINVAL) {
3264			/* found lock contention or "pc" is obsolete. */
3265			busy = pc;
3266			cond_resched();
3267		} else
3268			busy = NULL;
3269	}
3270
3271	if (!ret && !list_empty(list))
3272		return -EBUSY;
3273	return ret;
3274}
3275
3276/*
3277 * make mem_cgroup's charge to be 0 if there is no task.
3278 * This enables deleting this mem_cgroup.
3279 */
3280static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3281{
3282	int ret;
3283	int node, zid, shrink;
3284	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3285	struct cgroup *cgrp = mem->css.cgroup;
3286
3287	css_get(&mem->css);
3288
3289	shrink = 0;
3290	/* should free all ? */
3291	if (free_all)
3292		goto try_to_free;
3293move_account:
3294	do {
3295		ret = -EBUSY;
3296		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3297			goto out;
3298		ret = -EINTR;
3299		if (signal_pending(current))
3300			goto out;
3301		/* This is for making all *used* pages to be on LRU. */
3302		lru_add_drain_all();
3303		drain_all_stock_sync();
3304		ret = 0;
3305		mem_cgroup_start_move(mem);
3306		for_each_node_state(node, N_HIGH_MEMORY) {
3307			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3308				enum lru_list l;
3309				for_each_lru(l) {
3310					ret = mem_cgroup_force_empty_list(mem,
3311							node, zid, l);
3312					if (ret)
3313						break;
3314				}
3315			}
3316			if (ret)
3317				break;
3318		}
3319		mem_cgroup_end_move(mem);
3320		memcg_oom_recover(mem);
3321		/* it seems parent cgroup doesn't have enough mem */
3322		if (ret == -ENOMEM)
3323			goto try_to_free;
3324		cond_resched();
3325	/* "ret" should also be checked to ensure all lists are empty. */
3326	} while (mem->res.usage > 0 || ret);
3327out:
3328	css_put(&mem->css);
3329	return ret;
3330
3331try_to_free:
3332	/* returns EBUSY if there is a task or if we come here twice. */
3333	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3334		ret = -EBUSY;
3335		goto out;
3336	}
3337	/* we call try-to-free pages for make this cgroup empty */
3338	lru_add_drain_all();
3339	/* try to free all pages in this cgroup */
3340	shrink = 1;
3341	while (nr_retries && mem->res.usage > 0) {
3342		int progress;
3343
3344		if (signal_pending(current)) {
3345			ret = -EINTR;
3346			goto out;
3347		}
3348		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3349						false, get_swappiness(mem));
3350		if (!progress) {
3351			nr_retries--;
3352			/* maybe some writeback is necessary */
3353			congestion_wait(BLK_RW_ASYNC, HZ/10);
3354		}
3355
3356	}
3357	lru_add_drain();
3358	/* try move_account...there may be some *locked* pages. */
3359	goto move_account;
3360}
3361
3362int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3363{
3364	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3365}
3366
3367
3368static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3369{
3370	return mem_cgroup_from_cont(cont)->use_hierarchy;
3371}
3372
3373static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3374					u64 val)
3375{
3376	int retval = 0;
3377	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3378	struct cgroup *parent = cont->parent;
3379	struct mem_cgroup *parent_mem = NULL;
3380
3381	if (parent)
3382		parent_mem = mem_cgroup_from_cont(parent);
3383
3384	cgroup_lock();
3385	/*
3386	 * If parent's use_hierarchy is set, we can't make any modifications
3387	 * in the child subtrees. If it is unset, then the change can
3388	 * occur, provided the current cgroup has no children.
3389	 *
3390	 * For the root cgroup, parent_mem is NULL, we allow value to be
3391	 * set if there are no children.
3392	 */
3393	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3394				(val == 1 || val == 0)) {
3395		if (list_empty(&cont->children))
3396			mem->use_hierarchy = val;
3397		else
3398			retval = -EBUSY;
3399	} else
3400		retval = -EINVAL;
3401	cgroup_unlock();
3402
3403	return retval;
3404}
3405
3406
3407static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3408				enum mem_cgroup_stat_index idx)
3409{
3410	struct mem_cgroup *iter;
3411	s64 val = 0;
3412
3413	/* each per cpu's value can be minus.Then, use s64 */
3414	for_each_mem_cgroup_tree(iter, mem)
3415		val += mem_cgroup_read_stat(iter, idx);
3416
3417	if (val < 0) /* race ? */
3418		val = 0;
3419	return val;
3420}
3421
3422static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3423{
3424	u64 val;
3425
3426	if (!mem_cgroup_is_root(mem)) {
3427		if (!swap)
3428			return res_counter_read_u64(&mem->res, RES_USAGE);
3429		else
3430			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3431	}
3432
3433	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3434	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3435
3436	if (swap)
3437		val += mem_cgroup_get_recursive_idx_stat(mem,
3438				MEM_CGROUP_STAT_SWAPOUT);
3439
3440	return val << PAGE_SHIFT;
3441}
3442
3443static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3444{
3445	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3446	u64 val;
3447	int type, name;
3448
3449	type = MEMFILE_TYPE(cft->private);
3450	name = MEMFILE_ATTR(cft->private);
3451	switch (type) {
3452	case _MEM:
3453		if (name == RES_USAGE)
3454			val = mem_cgroup_usage(mem, false);
3455		else
3456			val = res_counter_read_u64(&mem->res, name);
3457		break;
3458	case _MEMSWAP:
3459		if (name == RES_USAGE)
3460			val = mem_cgroup_usage(mem, true);
3461		else
3462			val = res_counter_read_u64(&mem->memsw, name);
3463		break;
3464	default:
3465		BUG();
3466		break;
3467	}
3468	return val;
3469}
3470/*
3471 * The user of this function is...
3472 * RES_LIMIT.
3473 */
3474static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3475			    const char *buffer)
3476{
3477	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3478	int type, name;
3479	unsigned long long val;
3480	int ret;
3481
3482	type = MEMFILE_TYPE(cft->private);
3483	name = MEMFILE_ATTR(cft->private);
3484	switch (name) {
3485	case RES_LIMIT:
3486		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3487			ret = -EINVAL;
3488			break;
3489		}
3490		/* This function does all necessary parse...reuse it */
3491		ret = res_counter_memparse_write_strategy(buffer, &val);
3492		if (ret)
3493			break;
3494		if (type == _MEM)
3495			ret = mem_cgroup_resize_limit(memcg, val);
3496		else
3497			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3498		break;
3499	case RES_SOFT_LIMIT:
3500		ret = res_counter_memparse_write_strategy(buffer, &val);
3501		if (ret)
3502			break;
3503		/*
3504		 * For memsw, soft limits are hard to implement in terms
3505		 * of semantics, for now, we support soft limits for
3506		 * control without swap
3507		 */
3508		if (type == _MEM)
3509			ret = res_counter_set_soft_limit(&memcg->res, val);
3510		else
3511			ret = -EINVAL;
3512		break;
3513	default:
3514		ret = -EINVAL; /* should be BUG() ? */
3515		break;
3516	}
3517	return ret;
3518}
3519
3520static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3521		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3522{
3523	struct cgroup *cgroup;
3524	unsigned long long min_limit, min_memsw_limit, tmp;
3525
3526	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3527	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3528	cgroup = memcg->css.cgroup;
3529	if (!memcg->use_hierarchy)
3530		goto out;
3531
3532	while (cgroup->parent) {
3533		cgroup = cgroup->parent;
3534		memcg = mem_cgroup_from_cont(cgroup);
3535		if (!memcg->use_hierarchy)
3536			break;
3537		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3538		min_limit = min(min_limit, tmp);
3539		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3540		min_memsw_limit = min(min_memsw_limit, tmp);
3541	}
3542out:
3543	*mem_limit = min_limit;
3544	*memsw_limit = min_memsw_limit;
3545	return;
3546}
3547
3548static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3549{
3550	struct mem_cgroup *mem;
3551	int type, name;
3552
3553	mem = mem_cgroup_from_cont(cont);
3554	type = MEMFILE_TYPE(event);
3555	name = MEMFILE_ATTR(event);
3556	switch (name) {
3557	case RES_MAX_USAGE:
3558		if (type == _MEM)
3559			res_counter_reset_max(&mem->res);
3560		else
3561			res_counter_reset_max(&mem->memsw);
3562		break;
3563	case RES_FAILCNT:
3564		if (type == _MEM)
3565			res_counter_reset_failcnt(&mem->res);
3566		else
3567			res_counter_reset_failcnt(&mem->memsw);
3568		break;
3569	}
3570
3571	return 0;
3572}
3573
3574static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3575					struct cftype *cft)
3576{
3577	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3578}
3579
3580#ifdef CONFIG_MMU
3581static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3582					struct cftype *cft, u64 val)
3583{
3584	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3585
3586	if (val >= (1 << NR_MOVE_TYPE))
3587		return -EINVAL;
3588	/*
3589	 * We check this value several times in both in can_attach() and
3590	 * attach(), so we need cgroup lock to prevent this value from being
3591	 * inconsistent.
3592	 */
3593	cgroup_lock();
3594	mem->move_charge_at_immigrate = val;
3595	cgroup_unlock();
3596
3597	return 0;
3598}
3599#else
3600static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3601					struct cftype *cft, u64 val)
3602{
3603	return -ENOSYS;
3604}
3605#endif
3606
3607
3608/* For read statistics */
3609enum {
3610	MCS_CACHE,
3611	MCS_RSS,
3612	MCS_FILE_MAPPED,
3613	MCS_PGPGIN,
3614	MCS_PGPGOUT,
3615	MCS_SWAP,
3616	MCS_INACTIVE_ANON,
3617	MCS_ACTIVE_ANON,
3618	MCS_INACTIVE_FILE,
3619	MCS_ACTIVE_FILE,
3620	MCS_UNEVICTABLE,
3621	NR_MCS_STAT,
3622};
3623
3624struct mcs_total_stat {
3625	s64 stat[NR_MCS_STAT];
3626};
3627
3628struct {
3629	char *local_name;
3630	char *total_name;
3631} memcg_stat_strings[NR_MCS_STAT] = {
3632	{"cache", "total_cache"},
3633	{"rss", "total_rss"},
3634	{"mapped_file", "total_mapped_file"},
3635	{"pgpgin", "total_pgpgin"},
3636	{"pgpgout", "total_pgpgout"},
3637	{"swap", "total_swap"},
3638	{"inactive_anon", "total_inactive_anon"},
3639	{"active_anon", "total_active_anon"},
3640	{"inactive_file", "total_inactive_file"},
3641	{"active_file", "total_active_file"},
3642	{"unevictable", "total_unevictable"}
3643};
3644
3645
3646static void
3647mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3648{
3649	s64 val;
3650
3651	/* per cpu stat */
3652	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3653	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3654	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3655	s->stat[MCS_RSS] += val * PAGE_SIZE;
3656	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3657	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3658	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3659	s->stat[MCS_PGPGIN] += val;
3660	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3661	s->stat[MCS_PGPGOUT] += val;
3662	if (do_swap_account) {
3663		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3664		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3665	}
3666
3667	/* per zone stat */
3668	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3669	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3670	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3671	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3672	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3673	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3674	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3675	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3676	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3677	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3678}
3679
3680static void
3681mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3682{
3683	struct mem_cgroup *iter;
3684
3685	for_each_mem_cgroup_tree(iter, mem)
3686		mem_cgroup_get_local_stat(iter, s);
3687}
3688
3689static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3690				 struct cgroup_map_cb *cb)
3691{
3692	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3693	struct mcs_total_stat mystat;
3694	int i;
3695
3696	memset(&mystat, 0, sizeof(mystat));
3697	mem_cgroup_get_local_stat(mem_cont, &mystat);
3698
3699	for (i = 0; i < NR_MCS_STAT; i++) {
3700		if (i == MCS_SWAP && !do_swap_account)
3701			continue;
3702		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3703	}
3704
3705	/* Hierarchical information */
3706	{
3707		unsigned long long limit, memsw_limit;
3708		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3709		cb->fill(cb, "hierarchical_memory_limit", limit);
3710		if (do_swap_account)
3711			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3712	}
3713
3714	memset(&mystat, 0, sizeof(mystat));
3715	mem_cgroup_get_total_stat(mem_cont, &mystat);
3716	for (i = 0; i < NR_MCS_STAT; i++) {
3717		if (i == MCS_SWAP && !do_swap_account)
3718			continue;
3719		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3720	}
3721
3722#ifdef CONFIG_DEBUG_VM
3723	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3724
3725	{
3726		int nid, zid;
3727		struct mem_cgroup_per_zone *mz;
3728		unsigned long recent_rotated[2] = {0, 0};
3729		unsigned long recent_scanned[2] = {0, 0};
3730
3731		for_each_online_node(nid)
3732			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3733				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3734
3735				recent_rotated[0] +=
3736					mz->reclaim_stat.recent_rotated[0];
3737				recent_rotated[1] +=
3738					mz->reclaim_stat.recent_rotated[1];
3739				recent_scanned[0] +=
3740					mz->reclaim_stat.recent_scanned[0];
3741				recent_scanned[1] +=
3742					mz->reclaim_stat.recent_scanned[1];
3743			}
3744		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3745		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3746		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3747		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3748	}
3749#endif
3750
3751	return 0;
3752}
3753
3754static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3755{
3756	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3757
3758	return get_swappiness(memcg);
3759}
3760
3761static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3762				       u64 val)
3763{
3764	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3765	struct mem_cgroup *parent;
3766
3767	if (val > 100)
3768		return -EINVAL;
3769
3770	if (cgrp->parent == NULL)
3771		return -EINVAL;
3772
3773	parent = mem_cgroup_from_cont(cgrp->parent);
3774
3775	cgroup_lock();
3776
3777	/* If under hierarchy, only empty-root can set this value */
3778	if ((parent->use_hierarchy) ||
3779	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3780		cgroup_unlock();
3781		return -EINVAL;
3782	}
3783
3784	spin_lock(&memcg->reclaim_param_lock);
3785	memcg->swappiness = val;
3786	spin_unlock(&memcg->reclaim_param_lock);
3787
3788	cgroup_unlock();
3789
3790	return 0;
3791}
3792
3793static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3794{
3795	struct mem_cgroup_threshold_ary *t;
3796	u64 usage;
3797	int i;
3798
3799	rcu_read_lock();
3800	if (!swap)
3801		t = rcu_dereference(memcg->thresholds.primary);
3802	else
3803		t = rcu_dereference(memcg->memsw_thresholds.primary);
3804
3805	if (!t)
3806		goto unlock;
3807
3808	usage = mem_cgroup_usage(memcg, swap);
3809
3810	/*
3811	 * current_threshold points to threshold just below usage.
3812	 * If it's not true, a threshold was crossed after last
3813	 * call of __mem_cgroup_threshold().
3814	 */
3815	i = t->current_threshold;
3816
3817	/*
3818	 * Iterate backward over array of thresholds starting from
3819	 * current_threshold and check if a threshold is crossed.
3820	 * If none of thresholds below usage is crossed, we read
3821	 * only one element of the array here.
3822	 */
3823	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3824		eventfd_signal(t->entries[i].eventfd, 1);
3825
3826	/* i = current_threshold + 1 */
3827	i++;
3828
3829	/*
3830	 * Iterate forward over array of thresholds starting from
3831	 * current_threshold+1 and check if a threshold is crossed.
3832	 * If none of thresholds above usage is crossed, we read
3833	 * only one element of the array here.
3834	 */
3835	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3836		eventfd_signal(t->entries[i].eventfd, 1);
3837
3838	/* Update current_threshold */
3839	t->current_threshold = i - 1;
3840unlock:
3841	rcu_read_unlock();
3842}
3843
3844static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3845{
3846	while (memcg) {
3847		__mem_cgroup_threshold(memcg, false);
3848		if (do_swap_account)
3849			__mem_cgroup_threshold(memcg, true);
3850
3851		memcg = parent_mem_cgroup(memcg);
3852	}
3853}
3854
3855static int compare_thresholds(const void *a, const void *b)
3856{
3857	const struct mem_cgroup_threshold *_a = a;
3858	const struct mem_cgroup_threshold *_b = b;
3859
3860	return _a->threshold - _b->threshold;
3861}
3862
3863static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3864{
3865	struct mem_cgroup_eventfd_list *ev;
3866
3867	list_for_each_entry(ev, &mem->oom_notify, list)
3868		eventfd_signal(ev->eventfd, 1);
3869	return 0;
3870}
3871
3872static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3873{
3874	struct mem_cgroup *iter;
3875
3876	for_each_mem_cgroup_tree(iter, mem)
3877		mem_cgroup_oom_notify_cb(iter);
3878}
3879
3880static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3881	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3882{
3883	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3884	struct mem_cgroup_thresholds *thresholds;
3885	struct mem_cgroup_threshold_ary *new;
3886	int type = MEMFILE_TYPE(cft->private);
3887	u64 threshold, usage;
3888	int i, size, ret;
3889
3890	ret = res_counter_memparse_write_strategy(args, &threshold);
3891	if (ret)
3892		return ret;
3893
3894	mutex_lock(&memcg->thresholds_lock);
3895
3896	if (type == _MEM)
3897		thresholds = &memcg->thresholds;
3898	else if (type == _MEMSWAP)
3899		thresholds = &memcg->memsw_thresholds;
3900	else
3901		BUG();
3902
3903	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3904
3905	/* Check if a threshold crossed before adding a new one */
3906	if (thresholds->primary)
3907		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3908
3909	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3910
3911	/* Allocate memory for new array of thresholds */
3912	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3913			GFP_KERNEL);
3914	if (!new) {
3915		ret = -ENOMEM;
3916		goto unlock;
3917	}
3918	new->size = size;
3919
3920	/* Copy thresholds (if any) to new array */
3921	if (thresholds->primary) {
3922		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3923				sizeof(struct mem_cgroup_threshold));
3924	}
3925
3926	/* Add new threshold */
3927	new->entries[size - 1].eventfd = eventfd;
3928	new->entries[size - 1].threshold = threshold;
3929
3930	/* Sort thresholds. Registering of new threshold isn't time-critical */
3931	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3932			compare_thresholds, NULL);
3933
3934	/* Find current threshold */
3935	new->current_threshold = -1;
3936	for (i = 0; i < size; i++) {
3937		if (new->entries[i].threshold < usage) {
3938			/*
3939			 * new->current_threshold will not be used until
3940			 * rcu_assign_pointer(), so it's safe to increment
3941			 * it here.
3942			 */
3943			++new->current_threshold;
3944		}
3945	}
3946
3947	/* Free old spare buffer and save old primary buffer as spare */
3948	kfree(thresholds->spare);
3949	thresholds->spare = thresholds->primary;
3950
3951	rcu_assign_pointer(thresholds->primary, new);
3952
3953	/* To be sure that nobody uses thresholds */
3954	synchronize_rcu();
3955
3956unlock:
3957	mutex_unlock(&memcg->thresholds_lock);
3958
3959	return ret;
3960}
3961
3962static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3963	struct cftype *cft, struct eventfd_ctx *eventfd)
3964{
3965	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3966	struct mem_cgroup_thresholds *thresholds;
3967	struct mem_cgroup_threshold_ary *new;
3968	int type = MEMFILE_TYPE(cft->private);
3969	u64 usage;
3970	int i, j, size;
3971
3972	mutex_lock(&memcg->thresholds_lock);
3973	if (type == _MEM)
3974		thresholds = &memcg->thresholds;
3975	else if (type == _MEMSWAP)
3976		thresholds = &memcg->memsw_thresholds;
3977	else
3978		BUG();
3979
3980	/*
3981	 * Something went wrong if we trying to unregister a threshold
3982	 * if we don't have thresholds
3983	 */
3984	BUG_ON(!thresholds);
3985
3986	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3987
3988	/* Check if a threshold crossed before removing */
3989	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3990
3991	/* Calculate new number of threshold */
3992	size = 0;
3993	for (i = 0; i < thresholds->primary->size; i++) {
3994		if (thresholds->primary->entries[i].eventfd != eventfd)
3995			size++;
3996	}
3997
3998	new = thresholds->spare;
3999
4000	/* Set thresholds array to NULL if we don't have thresholds */
4001	if (!size) {
4002		kfree(new);
4003		new = NULL;
4004		goto swap_buffers;
4005	}
4006
4007	new->size = size;
4008
4009	/* Copy thresholds and find current threshold */
4010	new->current_threshold = -1;
4011	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4012		if (thresholds->primary->entries[i].eventfd == eventfd)
4013			continue;
4014
4015		new->entries[j] = thresholds->primary->entries[i];
4016		if (new->entries[j].threshold < usage) {
4017			/*
4018			 * new->current_threshold will not be used
4019			 * until rcu_assign_pointer(), so it's safe to increment
4020			 * it here.
4021			 */
4022			++new->current_threshold;
4023		}
4024		j++;
4025	}
4026
4027swap_buffers:
4028	/* Swap primary and spare array */
4029	thresholds->spare = thresholds->primary;
4030	rcu_assign_pointer(thresholds->primary, new);
4031
4032	/* To be sure that nobody uses thresholds */
4033	synchronize_rcu();
4034
4035	mutex_unlock(&memcg->thresholds_lock);
4036}
4037
4038static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4039	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4040{
4041	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4042	struct mem_cgroup_eventfd_list *event;
4043	int type = MEMFILE_TYPE(cft->private);
4044
4045	BUG_ON(type != _OOM_TYPE);
4046	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4047	if (!event)
4048		return -ENOMEM;
4049
4050	mutex_lock(&memcg_oom_mutex);
4051
4052	event->eventfd = eventfd;
4053	list_add(&event->list, &memcg->oom_notify);
4054
4055	/* already in OOM ? */
4056	if (atomic_read(&memcg->oom_lock))
4057		eventfd_signal(eventfd, 1);
4058	mutex_unlock(&memcg_oom_mutex);
4059
4060	return 0;
4061}
4062
4063static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4064	struct cftype *cft, struct eventfd_ctx *eventfd)
4065{
4066	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4067	struct mem_cgroup_eventfd_list *ev, *tmp;
4068	int type = MEMFILE_TYPE(cft->private);
4069
4070	BUG_ON(type != _OOM_TYPE);
4071
4072	mutex_lock(&memcg_oom_mutex);
4073
4074	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4075		if (ev->eventfd == eventfd) {
4076			list_del(&ev->list);
4077			kfree(ev);
4078		}
4079	}
4080
4081	mutex_unlock(&memcg_oom_mutex);
4082}
4083
4084static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4085	struct cftype *cft,  struct cgroup_map_cb *cb)
4086{
4087	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4088
4089	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4090
4091	if (atomic_read(&mem->oom_lock))
4092		cb->fill(cb, "under_oom", 1);
4093	else
4094		cb->fill(cb, "under_oom", 0);
4095	return 0;
4096}
4097
4098static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4099	struct cftype *cft, u64 val)
4100{
4101	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4102	struct mem_cgroup *parent;
4103
4104	/* cannot set to root cgroup and only 0 and 1 are allowed */
4105	if (!cgrp->parent || !((val == 0) || (val == 1)))
4106		return -EINVAL;
4107
4108	parent = mem_cgroup_from_cont(cgrp->parent);
4109
4110	cgroup_lock();
4111	/* oom-kill-disable is a flag for subhierarchy. */
4112	if ((parent->use_hierarchy) ||
4113	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4114		cgroup_unlock();
4115		return -EINVAL;
4116	}
4117	mem->oom_kill_disable = val;
4118	if (!val)
4119		memcg_oom_recover(mem);
4120	cgroup_unlock();
4121	return 0;
4122}
4123
4124static struct cftype mem_cgroup_files[] = {
4125	{
4126		.name = "usage_in_bytes",
4127		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4128		.read_u64 = mem_cgroup_read,
4129		.register_event = mem_cgroup_usage_register_event,
4130		.unregister_event = mem_cgroup_usage_unregister_event,
4131	},
4132	{
4133		.name = "max_usage_in_bytes",
4134		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4135		.trigger = mem_cgroup_reset,
4136		.read_u64 = mem_cgroup_read,
4137	},
4138	{
4139		.name = "limit_in_bytes",
4140		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4141		.write_string = mem_cgroup_write,
4142		.read_u64 = mem_cgroup_read,
4143	},
4144	{
4145		.name = "soft_limit_in_bytes",
4146		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4147		.write_string = mem_cgroup_write,
4148		.read_u64 = mem_cgroup_read,
4149	},
4150	{
4151		.name = "failcnt",
4152		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4153		.trigger = mem_cgroup_reset,
4154		.read_u64 = mem_cgroup_read,
4155	},
4156	{
4157		.name = "stat",
4158		.read_map = mem_control_stat_show,
4159	},
4160	{
4161		.name = "force_empty",
4162		.trigger = mem_cgroup_force_empty_write,
4163	},
4164	{
4165		.name = "use_hierarchy",
4166		.write_u64 = mem_cgroup_hierarchy_write,
4167		.read_u64 = mem_cgroup_hierarchy_read,
4168	},
4169	{
4170		.name = "swappiness",
4171		.read_u64 = mem_cgroup_swappiness_read,
4172		.write_u64 = mem_cgroup_swappiness_write,
4173	},
4174	{
4175		.name = "move_charge_at_immigrate",
4176		.read_u64 = mem_cgroup_move_charge_read,
4177		.write_u64 = mem_cgroup_move_charge_write,
4178	},
4179	{
4180		.name = "oom_control",
4181		.read_map = mem_cgroup_oom_control_read,
4182		.write_u64 = mem_cgroup_oom_control_write,
4183		.register_event = mem_cgroup_oom_register_event,
4184		.unregister_event = mem_cgroup_oom_unregister_event,
4185		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4186	},
4187};
4188
4189#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4190static struct cftype memsw_cgroup_files[] = {
4191	{
4192		.name = "memsw.usage_in_bytes",
4193		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4194		.read_u64 = mem_cgroup_read,
4195		.register_event = mem_cgroup_usage_register_event,
4196		.unregister_event = mem_cgroup_usage_unregister_event,
4197	},
4198	{
4199		.name = "memsw.max_usage_in_bytes",
4200		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4201		.trigger = mem_cgroup_reset,
4202		.read_u64 = mem_cgroup_read,
4203	},
4204	{
4205		.name = "memsw.limit_in_bytes",
4206		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4207		.write_string = mem_cgroup_write,
4208		.read_u64 = mem_cgroup_read,
4209	},
4210	{
4211		.name = "memsw.failcnt",
4212		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4213		.trigger = mem_cgroup_reset,
4214		.read_u64 = mem_cgroup_read,
4215	},
4216};
4217
4218static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4219{
4220	if (!do_swap_account)
4221		return 0;
4222	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4223				ARRAY_SIZE(memsw_cgroup_files));
4224};
4225#else
4226static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4227{
4228	return 0;
4229}
4230#endif
4231
4232static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4233{
4234	struct mem_cgroup_per_node *pn;
4235	struct mem_cgroup_per_zone *mz;
4236	enum lru_list l;
4237	int zone, tmp = node;
4238	/*
4239	 * This routine is called against possible nodes.
4240	 * But it's BUG to call kmalloc() against offline node.
4241	 *
4242	 * TODO: this routine can waste much memory for nodes which will
4243	 *       never be onlined. It's better to use memory hotplug callback
4244	 *       function.
4245	 */
4246	if (!node_state(node, N_NORMAL_MEMORY))
4247		tmp = -1;
4248	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4249	if (!pn)
4250		return 1;
4251
4252	mem->info.nodeinfo[node] = pn;
4253	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4254		mz = &pn->zoneinfo[zone];
4255		for_each_lru(l)
4256			INIT_LIST_HEAD(&mz->lists[l]);
4257		mz->usage_in_excess = 0;
4258		mz->on_tree = false;
4259		mz->mem = mem;
4260	}
4261	return 0;
4262}
4263
4264static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4265{
4266	kfree(mem->info.nodeinfo[node]);
4267}
4268
4269static struct mem_cgroup *mem_cgroup_alloc(void)
4270{
4271	struct mem_cgroup *mem;
4272	int size = sizeof(struct mem_cgroup);
4273
4274	/* Can be very big if MAX_NUMNODES is very big */
4275	if (size < PAGE_SIZE)
4276		mem = kzalloc(size, GFP_KERNEL);
4277	else
4278		mem = vzalloc(size);
4279
4280	if (!mem)
4281		return NULL;
4282
4283	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4284	if (!mem->stat)
4285		goto out_free;
4286	spin_lock_init(&mem->pcp_counter_lock);
4287	return mem;
4288
4289out_free:
4290	if (size < PAGE_SIZE)
4291		kfree(mem);
4292	else
4293		vfree(mem);
4294	return NULL;
4295}
4296
4297/*
4298 * At destroying mem_cgroup, references from swap_cgroup can remain.
4299 * (scanning all at force_empty is too costly...)
4300 *
4301 * Instead of clearing all references at force_empty, we remember
4302 * the number of reference from swap_cgroup and free mem_cgroup when
4303 * it goes down to 0.
4304 *
4305 * Removal of cgroup itself succeeds regardless of refs from swap.
4306 */
4307
4308static void __mem_cgroup_free(struct mem_cgroup *mem)
4309{
4310	int node;
4311
4312	mem_cgroup_remove_from_trees(mem);
4313	free_css_id(&mem_cgroup_subsys, &mem->css);
4314
4315	for_each_node_state(node, N_POSSIBLE)
4316		free_mem_cgroup_per_zone_info(mem, node);
4317
4318	free_percpu(mem->stat);
4319	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4320		kfree(mem);
4321	else
4322		vfree(mem);
4323}
4324
4325static void mem_cgroup_get(struct mem_cgroup *mem)
4326{
4327	atomic_inc(&mem->refcnt);
4328}
4329
4330static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4331{
4332	if (atomic_sub_and_test(count, &mem->refcnt)) {
4333		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4334		__mem_cgroup_free(mem);
4335		if (parent)
4336			mem_cgroup_put(parent);
4337	}
4338}
4339
4340static void mem_cgroup_put(struct mem_cgroup *mem)
4341{
4342	__mem_cgroup_put(mem, 1);
4343}
4344
4345/*
4346 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4347 */
4348static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4349{
4350	if (!mem->res.parent)
4351		return NULL;
4352	return mem_cgroup_from_res_counter(mem->res.parent, res);
4353}
4354
4355#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4356static void __init enable_swap_cgroup(void)
4357{
4358	if (!mem_cgroup_disabled() && really_do_swap_account)
4359		do_swap_account = 1;
4360}
4361#else
4362static void __init enable_swap_cgroup(void)
4363{
4364}
4365#endif
4366
4367static int mem_cgroup_soft_limit_tree_init(void)
4368{
4369	struct mem_cgroup_tree_per_node *rtpn;
4370	struct mem_cgroup_tree_per_zone *rtpz;
4371	int tmp, node, zone;
4372
4373	for_each_node_state(node, N_POSSIBLE) {
4374		tmp = node;
4375		if (!node_state(node, N_NORMAL_MEMORY))
4376			tmp = -1;
4377		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4378		if (!rtpn)
4379			return 1;
4380
4381		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4382
4383		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4384			rtpz = &rtpn->rb_tree_per_zone[zone];
4385			rtpz->rb_root = RB_ROOT;
4386			spin_lock_init(&rtpz->lock);
4387		}
4388	}
4389	return 0;
4390}
4391
4392static struct cgroup_subsys_state * __ref
4393mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4394{
4395	struct mem_cgroup *mem, *parent;
4396	long error = -ENOMEM;
4397	int node;
4398
4399	mem = mem_cgroup_alloc();
4400	if (!mem)
4401		return ERR_PTR(error);
4402
4403	for_each_node_state(node, N_POSSIBLE)
4404		if (alloc_mem_cgroup_per_zone_info(mem, node))
4405			goto free_out;
4406
4407	/* root ? */
4408	if (cont->parent == NULL) {
4409		int cpu;
4410		enable_swap_cgroup();
4411		parent = NULL;
4412		root_mem_cgroup = mem;
4413		if (mem_cgroup_soft_limit_tree_init())
4414			goto free_out;
4415		for_each_possible_cpu(cpu) {
4416			struct memcg_stock_pcp *stock =
4417						&per_cpu(memcg_stock, cpu);
4418			INIT_WORK(&stock->work, drain_local_stock);
4419		}
4420		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4421	} else {
4422		parent = mem_cgroup_from_cont(cont->parent);
4423		mem->use_hierarchy = parent->use_hierarchy;
4424		mem->oom_kill_disable = parent->oom_kill_disable;
4425	}
4426
4427	if (parent && parent->use_hierarchy) {
4428		res_counter_init(&mem->res, &parent->res);
4429		res_counter_init(&mem->memsw, &parent->memsw);
4430		/*
4431		 * We increment refcnt of the parent to ensure that we can
4432		 * safely access it on res_counter_charge/uncharge.
4433		 * This refcnt will be decremented when freeing this
4434		 * mem_cgroup(see mem_cgroup_put).
4435		 */
4436		mem_cgroup_get(parent);
4437	} else {
4438		res_counter_init(&mem->res, NULL);
4439		res_counter_init(&mem->memsw, NULL);
4440	}
4441	mem->last_scanned_child = 0;
4442	spin_lock_init(&mem->reclaim_param_lock);
4443	INIT_LIST_HEAD(&mem->oom_notify);
4444
4445	if (parent)
4446		mem->swappiness = get_swappiness(parent);
4447	atomic_set(&mem->refcnt, 1);
4448	mem->move_charge_at_immigrate = 0;
4449	mutex_init(&mem->thresholds_lock);
4450	return &mem->css;
4451free_out:
4452	__mem_cgroup_free(mem);
4453	root_mem_cgroup = NULL;
4454	return ERR_PTR(error);
4455}
4456
4457static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4458					struct cgroup *cont)
4459{
4460	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4461
4462	return mem_cgroup_force_empty(mem, false);
4463}
4464
4465static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4466				struct cgroup *cont)
4467{
4468	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4469
4470	mem_cgroup_put(mem);
4471}
4472
4473static int mem_cgroup_populate(struct cgroup_subsys *ss,
4474				struct cgroup *cont)
4475{
4476	int ret;
4477
4478	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4479				ARRAY_SIZE(mem_cgroup_files));
4480
4481	if (!ret)
4482		ret = register_memsw_files(cont, ss);
4483	return ret;
4484}
4485
4486#ifdef CONFIG_MMU
4487/* Handlers for move charge at task migration. */
4488#define PRECHARGE_COUNT_AT_ONCE	256
4489static int mem_cgroup_do_precharge(unsigned long count)
4490{
4491	int ret = 0;
4492	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4493	struct mem_cgroup *mem = mc.to;
4494
4495	if (mem_cgroup_is_root(mem)) {
4496		mc.precharge += count;
4497		/* we don't need css_get for root */
4498		return ret;
4499	}
4500	/* try to charge at once */
4501	if (count > 1) {
4502		struct res_counter *dummy;
4503		/*
4504		 * "mem" cannot be under rmdir() because we've already checked
4505		 * by cgroup_lock_live_cgroup() that it is not removed and we
4506		 * are still under the same cgroup_mutex. So we can postpone
4507		 * css_get().
4508		 */
4509		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4510			goto one_by_one;
4511		if (do_swap_account && res_counter_charge(&mem->memsw,
4512						PAGE_SIZE * count, &dummy)) {
4513			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4514			goto one_by_one;
4515		}
4516		mc.precharge += count;
4517		return ret;
4518	}
4519one_by_one:
4520	/* fall back to one by one charge */
4521	while (count--) {
4522		if (signal_pending(current)) {
4523			ret = -EINTR;
4524			break;
4525		}
4526		if (!batch_count--) {
4527			batch_count = PRECHARGE_COUNT_AT_ONCE;
4528			cond_resched();
4529		}
4530		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4531					      PAGE_SIZE);
4532		if (ret || !mem)
4533			/* mem_cgroup_clear_mc() will do uncharge later */
4534			return -ENOMEM;
4535		mc.precharge++;
4536	}
4537	return ret;
4538}
4539
4540/**
4541 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4542 * @vma: the vma the pte to be checked belongs
4543 * @addr: the address corresponding to the pte to be checked
4544 * @ptent: the pte to be checked
4545 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4546 *
4547 * Returns
4548 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4549 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4550 *     move charge. if @target is not NULL, the page is stored in target->page
4551 *     with extra refcnt got(Callers should handle it).
4552 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4553 *     target for charge migration. if @target is not NULL, the entry is stored
4554 *     in target->ent.
4555 *
4556 * Called with pte lock held.
4557 */
4558union mc_target {
4559	struct page	*page;
4560	swp_entry_t	ent;
4561};
4562
4563enum mc_target_type {
4564	MC_TARGET_NONE,	/* not used */
4565	MC_TARGET_PAGE,
4566	MC_TARGET_SWAP,
4567};
4568
4569static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4570						unsigned long addr, pte_t ptent)
4571{
4572	struct page *page = vm_normal_page(vma, addr, ptent);
4573
4574	if (!page || !page_mapped(page))
4575		return NULL;
4576	if (PageAnon(page)) {
4577		/* we don't move shared anon */
4578		if (!move_anon() || page_mapcount(page) > 2)
4579			return NULL;
4580	} else if (!move_file())
4581		/* we ignore mapcount for file pages */
4582		return NULL;
4583	if (!get_page_unless_zero(page))
4584		return NULL;
4585
4586	return page;
4587}
4588
4589static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4590			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4591{
4592	int usage_count;
4593	struct page *page = NULL;
4594	swp_entry_t ent = pte_to_swp_entry(ptent);
4595
4596	if (!move_anon() || non_swap_entry(ent))
4597		return NULL;
4598	usage_count = mem_cgroup_count_swap_user(ent, &page);
4599	if (usage_count > 1) { /* we don't move shared anon */
4600		if (page)
4601			put_page(page);
4602		return NULL;
4603	}
4604	if (do_swap_account)
4605		entry->val = ent.val;
4606
4607	return page;
4608}
4609
4610static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4611			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4612{
4613	struct page *page = NULL;
4614	struct inode *inode;
4615	struct address_space *mapping;
4616	pgoff_t pgoff;
4617
4618	if (!vma->vm_file) /* anonymous vma */
4619		return NULL;
4620	if (!move_file())
4621		return NULL;
4622
4623	inode = vma->vm_file->f_path.dentry->d_inode;
4624	mapping = vma->vm_file->f_mapping;
4625	if (pte_none(ptent))
4626		pgoff = linear_page_index(vma, addr);
4627	else /* pte_file(ptent) is true */
4628		pgoff = pte_to_pgoff(ptent);
4629
4630	/* page is moved even if it's not RSS of this task(page-faulted). */
4631	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4632		page = find_get_page(mapping, pgoff);
4633	} else { /* shmem/tmpfs file. we should take account of swap too. */
4634		swp_entry_t ent;
4635		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4636		if (do_swap_account)
4637			entry->val = ent.val;
4638	}
4639
4640	return page;
4641}
4642
4643static int is_target_pte_for_mc(struct vm_area_struct *vma,
4644		unsigned long addr, pte_t ptent, union mc_target *target)
4645{
4646	struct page *page = NULL;
4647	struct page_cgroup *pc;
4648	int ret = 0;
4649	swp_entry_t ent = { .val = 0 };
4650
4651	if (pte_present(ptent))
4652		page = mc_handle_present_pte(vma, addr, ptent);
4653	else if (is_swap_pte(ptent))
4654		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4655	else if (pte_none(ptent) || pte_file(ptent))
4656		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4657
4658	if (!page && !ent.val)
4659		return 0;
4660	if (page) {
4661		pc = lookup_page_cgroup(page);
4662		/*
4663		 * Do only loose check w/o page_cgroup lock.
4664		 * mem_cgroup_move_account() checks the pc is valid or not under
4665		 * the lock.
4666		 */
4667		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4668			ret = MC_TARGET_PAGE;
4669			if (target)
4670				target->page = page;
4671		}
4672		if (!ret || !target)
4673			put_page(page);
4674	}
4675	/* There is a swap entry and a page doesn't exist or isn't charged */
4676	if (ent.val && !ret &&
4677			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4678		ret = MC_TARGET_SWAP;
4679		if (target)
4680			target->ent = ent;
4681	}
4682	return ret;
4683}
4684
4685static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4686					unsigned long addr, unsigned long end,
4687					struct mm_walk *walk)
4688{
4689	struct vm_area_struct *vma = walk->private;
4690	pte_t *pte;
4691	spinlock_t *ptl;
4692
4693	VM_BUG_ON(pmd_trans_huge(*pmd));
4694	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4695	for (; addr != end; pte++, addr += PAGE_SIZE)
4696		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4697			mc.precharge++;	/* increment precharge temporarily */
4698	pte_unmap_unlock(pte - 1, ptl);
4699	cond_resched();
4700
4701	return 0;
4702}
4703
4704static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4705{
4706	unsigned long precharge;
4707	struct vm_area_struct *vma;
4708
4709	down_read(&mm->mmap_sem);
4710	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4711		struct mm_walk mem_cgroup_count_precharge_walk = {
4712			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4713			.mm = mm,
4714			.private = vma,
4715		};
4716		if (is_vm_hugetlb_page(vma))
4717			continue;
4718		walk_page_range(vma->vm_start, vma->vm_end,
4719					&mem_cgroup_count_precharge_walk);
4720	}
4721	up_read(&mm->mmap_sem);
4722
4723	precharge = mc.precharge;
4724	mc.precharge = 0;
4725
4726	return precharge;
4727}
4728
4729static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4730{
4731	unsigned long precharge = mem_cgroup_count_precharge(mm);
4732
4733	VM_BUG_ON(mc.moving_task);
4734	mc.moving_task = current;
4735	return mem_cgroup_do_precharge(precharge);
4736}
4737
4738/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4739static void __mem_cgroup_clear_mc(void)
4740{
4741	struct mem_cgroup *from = mc.from;
4742	struct mem_cgroup *to = mc.to;
4743
4744	/* we must uncharge all the leftover precharges from mc.to */
4745	if (mc.precharge) {
4746		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4747		mc.precharge = 0;
4748	}
4749	/*
4750	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4751	 * we must uncharge here.
4752	 */
4753	if (mc.moved_charge) {
4754		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4755		mc.moved_charge = 0;
4756	}
4757	/* we must fixup refcnts and charges */
4758	if (mc.moved_swap) {
4759		/* uncharge swap account from the old cgroup */
4760		if (!mem_cgroup_is_root(mc.from))
4761			res_counter_uncharge(&mc.from->memsw,
4762						PAGE_SIZE * mc.moved_swap);
4763		__mem_cgroup_put(mc.from, mc.moved_swap);
4764
4765		if (!mem_cgroup_is_root(mc.to)) {
4766			/*
4767			 * we charged both to->res and to->memsw, so we should
4768			 * uncharge to->res.
4769			 */
4770			res_counter_uncharge(&mc.to->res,
4771						PAGE_SIZE * mc.moved_swap);
4772		}
4773		/* we've already done mem_cgroup_get(mc.to) */
4774		mc.moved_swap = 0;
4775	}
4776	memcg_oom_recover(from);
4777	memcg_oom_recover(to);
4778	wake_up_all(&mc.waitq);
4779}
4780
4781static void mem_cgroup_clear_mc(void)
4782{
4783	struct mem_cgroup *from = mc.from;
4784
4785	/*
4786	 * we must clear moving_task before waking up waiters at the end of
4787	 * task migration.
4788	 */
4789	mc.moving_task = NULL;
4790	__mem_cgroup_clear_mc();
4791	spin_lock(&mc.lock);
4792	mc.from = NULL;
4793	mc.to = NULL;
4794	spin_unlock(&mc.lock);
4795	mem_cgroup_end_move(from);
4796}
4797
4798static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4799				struct cgroup *cgroup,
4800				struct task_struct *p,
4801				bool threadgroup)
4802{
4803	int ret = 0;
4804	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4805
4806	if (mem->move_charge_at_immigrate) {
4807		struct mm_struct *mm;
4808		struct mem_cgroup *from = mem_cgroup_from_task(p);
4809
4810		VM_BUG_ON(from == mem);
4811
4812		mm = get_task_mm(p);
4813		if (!mm)
4814			return 0;
4815		/* We move charges only when we move a owner of the mm */
4816		if (mm->owner == p) {
4817			VM_BUG_ON(mc.from);
4818			VM_BUG_ON(mc.to);
4819			VM_BUG_ON(mc.precharge);
4820			VM_BUG_ON(mc.moved_charge);
4821			VM_BUG_ON(mc.moved_swap);
4822			mem_cgroup_start_move(from);
4823			spin_lock(&mc.lock);
4824			mc.from = from;
4825			mc.to = mem;
4826			spin_unlock(&mc.lock);
4827			/* We set mc.moving_task later */
4828
4829			ret = mem_cgroup_precharge_mc(mm);
4830			if (ret)
4831				mem_cgroup_clear_mc();
4832		}
4833		mmput(mm);
4834	}
4835	return ret;
4836}
4837
4838static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4839				struct cgroup *cgroup,
4840				struct task_struct *p,
4841				bool threadgroup)
4842{
4843	mem_cgroup_clear_mc();
4844}
4845
4846static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4847				unsigned long addr, unsigned long end,
4848				struct mm_walk *walk)
4849{
4850	int ret = 0;
4851	struct vm_area_struct *vma = walk->private;
4852	pte_t *pte;
4853	spinlock_t *ptl;
4854
4855retry:
4856	VM_BUG_ON(pmd_trans_huge(*pmd));
4857	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4858	for (; addr != end; addr += PAGE_SIZE) {
4859		pte_t ptent = *(pte++);
4860		union mc_target target;
4861		int type;
4862		struct page *page;
4863		struct page_cgroup *pc;
4864		swp_entry_t ent;
4865
4866		if (!mc.precharge)
4867			break;
4868
4869		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4870		switch (type) {
4871		case MC_TARGET_PAGE:
4872			page = target.page;
4873			if (isolate_lru_page(page))
4874				goto put;
4875			pc = lookup_page_cgroup(page);
4876			if (!mem_cgroup_move_account(pc,
4877					mc.from, mc.to, false, PAGE_SIZE)) {
4878				mc.precharge--;
4879				/* we uncharge from mc.from later. */
4880				mc.moved_charge++;
4881			}
4882			putback_lru_page(page);
4883put:			/* is_target_pte_for_mc() gets the page */
4884			put_page(page);
4885			break;
4886		case MC_TARGET_SWAP:
4887			ent = target.ent;
4888			if (!mem_cgroup_move_swap_account(ent,
4889						mc.from, mc.to, false)) {
4890				mc.precharge--;
4891				/* we fixup refcnts and charges later. */
4892				mc.moved_swap++;
4893			}
4894			break;
4895		default:
4896			break;
4897		}
4898	}
4899	pte_unmap_unlock(pte - 1, ptl);
4900	cond_resched();
4901
4902	if (addr != end) {
4903		/*
4904		 * We have consumed all precharges we got in can_attach().
4905		 * We try charge one by one, but don't do any additional
4906		 * charges to mc.to if we have failed in charge once in attach()
4907		 * phase.
4908		 */
4909		ret = mem_cgroup_do_precharge(1);
4910		if (!ret)
4911			goto retry;
4912	}
4913
4914	return ret;
4915}
4916
4917static void mem_cgroup_move_charge(struct mm_struct *mm)
4918{
4919	struct vm_area_struct *vma;
4920
4921	lru_add_drain_all();
4922retry:
4923	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4924		/*
4925		 * Someone who are holding the mmap_sem might be waiting in
4926		 * waitq. So we cancel all extra charges, wake up all waiters,
4927		 * and retry. Because we cancel precharges, we might not be able
4928		 * to move enough charges, but moving charge is a best-effort
4929		 * feature anyway, so it wouldn't be a big problem.
4930		 */
4931		__mem_cgroup_clear_mc();
4932		cond_resched();
4933		goto retry;
4934	}
4935	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4936		int ret;
4937		struct mm_walk mem_cgroup_move_charge_walk = {
4938			.pmd_entry = mem_cgroup_move_charge_pte_range,
4939			.mm = mm,
4940			.private = vma,
4941		};
4942		if (is_vm_hugetlb_page(vma))
4943			continue;
4944		ret = walk_page_range(vma->vm_start, vma->vm_end,
4945						&mem_cgroup_move_charge_walk);
4946		if (ret)
4947			/*
4948			 * means we have consumed all precharges and failed in
4949			 * doing additional charge. Just abandon here.
4950			 */
4951			break;
4952	}
4953	up_read(&mm->mmap_sem);
4954}
4955
4956static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4957				struct cgroup *cont,
4958				struct cgroup *old_cont,
4959				struct task_struct *p,
4960				bool threadgroup)
4961{
4962	struct mm_struct *mm;
4963
4964	if (!mc.to)
4965		/* no need to move charge */
4966		return;
4967
4968	mm = get_task_mm(p);
4969	if (mm) {
4970		mem_cgroup_move_charge(mm);
4971		mmput(mm);
4972	}
4973	mem_cgroup_clear_mc();
4974}
4975#else	/* !CONFIG_MMU */
4976static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4977				struct cgroup *cgroup,
4978				struct task_struct *p,
4979				bool threadgroup)
4980{
4981	return 0;
4982}
4983static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4984				struct cgroup *cgroup,
4985				struct task_struct *p,
4986				bool threadgroup)
4987{
4988}
4989static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4990				struct cgroup *cont,
4991				struct cgroup *old_cont,
4992				struct task_struct *p,
4993				bool threadgroup)
4994{
4995}
4996#endif
4997
4998struct cgroup_subsys mem_cgroup_subsys = {
4999	.name = "memory",
5000	.subsys_id = mem_cgroup_subsys_id,
5001	.create = mem_cgroup_create,
5002	.pre_destroy = mem_cgroup_pre_destroy,
5003	.destroy = mem_cgroup_destroy,
5004	.populate = mem_cgroup_populate,
5005	.can_attach = mem_cgroup_can_attach,
5006	.cancel_attach = mem_cgroup_cancel_attach,
5007	.attach = mem_cgroup_move_task,
5008	.early_init = 0,
5009	.use_id = 1,
5010};
5011
5012#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5013static int __init enable_swap_account(char *s)
5014{
5015	/* consider enabled if no parameter or 1 is given */
5016	if (!s || !strcmp(s, "1"))
5017		really_do_swap_account = 1;
5018	else if (!strcmp(s, "0"))
5019		really_do_swap_account = 0;
5020	return 1;
5021}
5022__setup("swapaccount", enable_swap_account);
5023
5024static int __init disable_swap_account(char *s)
5025{
5026	enable_swap_account("0");
5027	return 1;
5028}
5029__setup("noswapaccount", disable_swap_account);
5030#endif
5031