memcontrol.c revision 7bcc1bb1232de6efc0b85e0c7fe38e90b2436318
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/mutex.h>
31#include <linux/slab.h>
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
35#include <linux/seq_file.h>
36#include <linux/vmalloc.h>
37#include <linux/mm_inline.h>
38#include <linux/page_cgroup.h>
39#include "internal.h"
40
41#include <asm/uaccess.h>
42
43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44#define MEM_CGROUP_RECLAIM_RETRIES	5
45
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account		(0)
52#endif
53
54static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
55
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60	/*
61	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62	 */
63	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
64	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
65	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
66	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
67
68	MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72	s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
76	struct mem_cgroup_stat_cpu cpustat[0];
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83		enum mem_cgroup_stat_index idx, int val)
84{
85	stat->count[idx] += val;
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89		enum mem_cgroup_stat_index idx)
90{
91	int cpu;
92	s64 ret = 0;
93	for_each_possible_cpu(cpu)
94		ret += stat->cpustat[cpu].count[idx];
95	return ret;
96}
97
98/*
99 * per-zone information in memory controller.
100 */
101struct mem_cgroup_per_zone {
102	/*
103	 * spin_lock to protect the per cgroup LRU
104	 */
105	struct list_head	lists[NR_LRU_LISTS];
106	unsigned long		count[NR_LRU_LISTS];
107
108	struct zone_reclaim_stat reclaim_stat;
109};
110/* Macro for accessing counter */
111#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
112
113struct mem_cgroup_per_node {
114	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115};
116
117struct mem_cgroup_lru_info {
118	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119};
120
121/*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
131 */
132struct mem_cgroup {
133	struct cgroup_subsys_state css;
134	/*
135	 * the counter to account for memory usage
136	 */
137	struct res_counter res;
138	/*
139	 * the counter to account for mem+swap usage.
140	 */
141	struct res_counter memsw;
142	/*
143	 * Per cgroup active and inactive list, similar to the
144	 * per zone LRU lists.
145	 */
146	struct mem_cgroup_lru_info info;
147
148	/*
149	  protect against reclaim related member.
150	*/
151	spinlock_t reclaim_param_lock;
152
153	int	prev_priority;	/* for recording reclaim priority */
154
155	/*
156	 * While reclaiming in a hiearchy, we cache the last child we
157	 * reclaimed from. Protected by hierarchy_mutex
158	 */
159	struct mem_cgroup *last_scanned_child;
160	/*
161	 * Should the accounting and control be hierarchical, per subtree?
162	 */
163	bool use_hierarchy;
164	unsigned long	last_oom_jiffies;
165	atomic_t	refcnt;
166
167	unsigned int	swappiness;
168
169	/*
170	 * statistics. This must be placed at the end of memcg.
171	 */
172	struct mem_cgroup_stat stat;
173};
174
175enum charge_type {
176	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177	MEM_CGROUP_CHARGE_TYPE_MAPPED,
178	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
179	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
180	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
181	NR_CHARGE_TYPE,
182};
183
184/* only for here (for easy reading.) */
185#define PCGF_CACHE	(1UL << PCG_CACHE)
186#define PCGF_USED	(1UL << PCG_USED)
187#define PCGF_LOCK	(1UL << PCG_LOCK)
188static const unsigned long
189pcg_default_flags[NR_CHARGE_TYPE] = {
190	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191	PCGF_USED | PCGF_LOCK, /* Anon */
192	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193	0, /* FORCE */
194};
195
196/* for encoding cft->private value on file */
197#define _MEM			(0)
198#define _MEMSWAP		(1)
199#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
200#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val)	((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
206
207static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
208					 struct page_cgroup *pc,
209					 bool charge)
210{
211	int val = (charge)? 1 : -1;
212	struct mem_cgroup_stat *stat = &mem->stat;
213	struct mem_cgroup_stat_cpu *cpustat;
214	int cpu = get_cpu();
215
216	cpustat = &stat->cpustat[cpu];
217	if (PageCgroupCache(pc))
218		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
219	else
220		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
221
222	if (charge)
223		__mem_cgroup_stat_add_safe(cpustat,
224				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
225	else
226		__mem_cgroup_stat_add_safe(cpustat,
227				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
228	put_cpu();
229}
230
231static struct mem_cgroup_per_zone *
232mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
233{
234	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
235}
236
237static struct mem_cgroup_per_zone *
238page_cgroup_zoneinfo(struct page_cgroup *pc)
239{
240	struct mem_cgroup *mem = pc->mem_cgroup;
241	int nid = page_cgroup_nid(pc);
242	int zid = page_cgroup_zid(pc);
243
244	if (!mem)
245		return NULL;
246
247	return mem_cgroup_zoneinfo(mem, nid, zid);
248}
249
250static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
251					enum lru_list idx)
252{
253	int nid, zid;
254	struct mem_cgroup_per_zone *mz;
255	u64 total = 0;
256
257	for_each_online_node(nid)
258		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
259			mz = mem_cgroup_zoneinfo(mem, nid, zid);
260			total += MEM_CGROUP_ZSTAT(mz, idx);
261		}
262	return total;
263}
264
265static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
266{
267	return container_of(cgroup_subsys_state(cont,
268				mem_cgroup_subsys_id), struct mem_cgroup,
269				css);
270}
271
272struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
273{
274	/*
275	 * mm_update_next_owner() may clear mm->owner to NULL
276	 * if it races with swapoff, page migration, etc.
277	 * So this can be called with p == NULL.
278	 */
279	if (unlikely(!p))
280		return NULL;
281
282	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
283				struct mem_cgroup, css);
284}
285
286static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
287{
288	struct mem_cgroup *mem = NULL;
289	/*
290	 * Because we have no locks, mm->owner's may be being moved to other
291	 * cgroup. We use css_tryget() here even if this looks
292	 * pessimistic (rather than adding locks here).
293	 */
294	rcu_read_lock();
295	do {
296		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
297		if (unlikely(!mem))
298			break;
299	} while (!css_tryget(&mem->css));
300	rcu_read_unlock();
301	return mem;
302}
303
304static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
305{
306	if (!mem)
307		return true;
308	return css_is_removed(&mem->css);
309}
310
311/*
312 * Following LRU functions are allowed to be used without PCG_LOCK.
313 * Operations are called by routine of global LRU independently from memcg.
314 * What we have to take care of here is validness of pc->mem_cgroup.
315 *
316 * Changes to pc->mem_cgroup happens when
317 * 1. charge
318 * 2. moving account
319 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
320 * It is added to LRU before charge.
321 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
322 * When moving account, the page is not on LRU. It's isolated.
323 */
324
325void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
326{
327	struct page_cgroup *pc;
328	struct mem_cgroup *mem;
329	struct mem_cgroup_per_zone *mz;
330
331	if (mem_cgroup_disabled())
332		return;
333	pc = lookup_page_cgroup(page);
334	/* can happen while we handle swapcache. */
335	if (list_empty(&pc->lru) || !pc->mem_cgroup)
336		return;
337	/*
338	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
339	 * removed from global LRU.
340	 */
341	mz = page_cgroup_zoneinfo(pc);
342	mem = pc->mem_cgroup;
343	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
344	list_del_init(&pc->lru);
345	return;
346}
347
348void mem_cgroup_del_lru(struct page *page)
349{
350	mem_cgroup_del_lru_list(page, page_lru(page));
351}
352
353void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
354{
355	struct mem_cgroup_per_zone *mz;
356	struct page_cgroup *pc;
357
358	if (mem_cgroup_disabled())
359		return;
360
361	pc = lookup_page_cgroup(page);
362	/*
363	 * Used bit is set without atomic ops but after smp_wmb().
364	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
365	 */
366	smp_rmb();
367	/* unused page is not rotated. */
368	if (!PageCgroupUsed(pc))
369		return;
370	mz = page_cgroup_zoneinfo(pc);
371	list_move(&pc->lru, &mz->lists[lru]);
372}
373
374void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
375{
376	struct page_cgroup *pc;
377	struct mem_cgroup_per_zone *mz;
378
379	if (mem_cgroup_disabled())
380		return;
381	pc = lookup_page_cgroup(page);
382	/*
383	 * Used bit is set without atomic ops but after smp_wmb().
384	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
385	 */
386	smp_rmb();
387	if (!PageCgroupUsed(pc))
388		return;
389
390	mz = page_cgroup_zoneinfo(pc);
391	MEM_CGROUP_ZSTAT(mz, lru) += 1;
392	list_add(&pc->lru, &mz->lists[lru]);
393}
394
395/*
396 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
397 * lru because the page may.be reused after it's fully uncharged (because of
398 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
399 * it again. This function is only used to charge SwapCache. It's done under
400 * lock_page and expected that zone->lru_lock is never held.
401 */
402static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
403{
404	unsigned long flags;
405	struct zone *zone = page_zone(page);
406	struct page_cgroup *pc = lookup_page_cgroup(page);
407
408	spin_lock_irqsave(&zone->lru_lock, flags);
409	/*
410	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
411	 * is guarded by lock_page() because the page is SwapCache.
412	 */
413	if (!PageCgroupUsed(pc))
414		mem_cgroup_del_lru_list(page, page_lru(page));
415	spin_unlock_irqrestore(&zone->lru_lock, flags);
416}
417
418static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
419{
420	unsigned long flags;
421	struct zone *zone = page_zone(page);
422	struct page_cgroup *pc = lookup_page_cgroup(page);
423
424	spin_lock_irqsave(&zone->lru_lock, flags);
425	/* link when the page is linked to LRU but page_cgroup isn't */
426	if (PageLRU(page) && list_empty(&pc->lru))
427		mem_cgroup_add_lru_list(page, page_lru(page));
428	spin_unlock_irqrestore(&zone->lru_lock, flags);
429}
430
431
432void mem_cgroup_move_lists(struct page *page,
433			   enum lru_list from, enum lru_list to)
434{
435	if (mem_cgroup_disabled())
436		return;
437	mem_cgroup_del_lru_list(page, from);
438	mem_cgroup_add_lru_list(page, to);
439}
440
441int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
442{
443	int ret;
444
445	task_lock(task);
446	ret = task->mm && mm_match_cgroup(task->mm, mem);
447	task_unlock(task);
448	return ret;
449}
450
451/*
452 * Calculate mapped_ratio under memory controller. This will be used in
453 * vmscan.c for deteremining we have to reclaim mapped pages.
454 */
455int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
456{
457	long total, rss;
458
459	/*
460	 * usage is recorded in bytes. But, here, we assume the number of
461	 * physical pages can be represented by "long" on any arch.
462	 */
463	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
464	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
465	return (int)((rss * 100L) / total);
466}
467
468/*
469 * prev_priority control...this will be used in memory reclaim path.
470 */
471int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
472{
473	int prev_priority;
474
475	spin_lock(&mem->reclaim_param_lock);
476	prev_priority = mem->prev_priority;
477	spin_unlock(&mem->reclaim_param_lock);
478
479	return prev_priority;
480}
481
482void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
483{
484	spin_lock(&mem->reclaim_param_lock);
485	if (priority < mem->prev_priority)
486		mem->prev_priority = priority;
487	spin_unlock(&mem->reclaim_param_lock);
488}
489
490void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
491{
492	spin_lock(&mem->reclaim_param_lock);
493	mem->prev_priority = priority;
494	spin_unlock(&mem->reclaim_param_lock);
495}
496
497static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
498{
499	unsigned long active;
500	unsigned long inactive;
501	unsigned long gb;
502	unsigned long inactive_ratio;
503
504	inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
505	active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
506
507	gb = (inactive + active) >> (30 - PAGE_SHIFT);
508	if (gb)
509		inactive_ratio = int_sqrt(10 * gb);
510	else
511		inactive_ratio = 1;
512
513	if (present_pages) {
514		present_pages[0] = inactive;
515		present_pages[1] = active;
516	}
517
518	return inactive_ratio;
519}
520
521int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
522{
523	unsigned long active;
524	unsigned long inactive;
525	unsigned long present_pages[2];
526	unsigned long inactive_ratio;
527
528	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
529
530	inactive = present_pages[0];
531	active = present_pages[1];
532
533	if (inactive * inactive_ratio < active)
534		return 1;
535
536	return 0;
537}
538
539unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
540				       struct zone *zone,
541				       enum lru_list lru)
542{
543	int nid = zone->zone_pgdat->node_id;
544	int zid = zone_idx(zone);
545	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
546
547	return MEM_CGROUP_ZSTAT(mz, lru);
548}
549
550struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
551						      struct zone *zone)
552{
553	int nid = zone->zone_pgdat->node_id;
554	int zid = zone_idx(zone);
555	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
556
557	return &mz->reclaim_stat;
558}
559
560struct zone_reclaim_stat *
561mem_cgroup_get_reclaim_stat_from_page(struct page *page)
562{
563	struct page_cgroup *pc;
564	struct mem_cgroup_per_zone *mz;
565
566	if (mem_cgroup_disabled())
567		return NULL;
568
569	pc = lookup_page_cgroup(page);
570	/*
571	 * Used bit is set without atomic ops but after smp_wmb().
572	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
573	 */
574	smp_rmb();
575	if (!PageCgroupUsed(pc))
576		return NULL;
577
578	mz = page_cgroup_zoneinfo(pc);
579	if (!mz)
580		return NULL;
581
582	return &mz->reclaim_stat;
583}
584
585unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
586					struct list_head *dst,
587					unsigned long *scanned, int order,
588					int mode, struct zone *z,
589					struct mem_cgroup *mem_cont,
590					int active, int file)
591{
592	unsigned long nr_taken = 0;
593	struct page *page;
594	unsigned long scan;
595	LIST_HEAD(pc_list);
596	struct list_head *src;
597	struct page_cgroup *pc, *tmp;
598	int nid = z->zone_pgdat->node_id;
599	int zid = zone_idx(z);
600	struct mem_cgroup_per_zone *mz;
601	int lru = LRU_FILE * !!file + !!active;
602
603	BUG_ON(!mem_cont);
604	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
605	src = &mz->lists[lru];
606
607	scan = 0;
608	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
609		if (scan >= nr_to_scan)
610			break;
611
612		page = pc->page;
613		if (unlikely(!PageCgroupUsed(pc)))
614			continue;
615		if (unlikely(!PageLRU(page)))
616			continue;
617
618		scan++;
619		if (__isolate_lru_page(page, mode, file) == 0) {
620			list_move(&page->lru, dst);
621			nr_taken++;
622		}
623	}
624
625	*scanned = scan;
626	return nr_taken;
627}
628
629#define mem_cgroup_from_res_counter(counter, member)	\
630	container_of(counter, struct mem_cgroup, member)
631
632/*
633 * This routine finds the DFS walk successor. This routine should be
634 * called with hierarchy_mutex held
635 */
636static struct mem_cgroup *
637__mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
638{
639	struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
640
641	curr_cgroup = curr->css.cgroup;
642	root_cgroup = root_mem->css.cgroup;
643
644	if (!list_empty(&curr_cgroup->children)) {
645		/*
646		 * Walk down to children
647		 */
648		cgroup = list_entry(curr_cgroup->children.next,
649						struct cgroup, sibling);
650		curr = mem_cgroup_from_cont(cgroup);
651		goto done;
652	}
653
654visit_parent:
655	if (curr_cgroup == root_cgroup) {
656		/* caller handles NULL case */
657		curr = NULL;
658		goto done;
659	}
660
661	/*
662	 * Goto next sibling
663	 */
664	if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
665		cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
666						sibling);
667		curr = mem_cgroup_from_cont(cgroup);
668		goto done;
669	}
670
671	/*
672	 * Go up to next parent and next parent's sibling if need be
673	 */
674	curr_cgroup = curr_cgroup->parent;
675	goto visit_parent;
676
677done:
678	return curr;
679}
680
681/*
682 * Visit the first child (need not be the first child as per the ordering
683 * of the cgroup list, since we track last_scanned_child) of @mem and use
684 * that to reclaim free pages from.
685 */
686static struct mem_cgroup *
687mem_cgroup_get_next_node(struct mem_cgroup *root_mem)
688{
689	struct cgroup *cgroup;
690	struct mem_cgroup *orig, *next;
691	bool obsolete;
692
693	/*
694	 * Scan all children under the mem_cgroup mem
695	 */
696	mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
697
698	orig = root_mem->last_scanned_child;
699	obsolete = mem_cgroup_is_obsolete(orig);
700
701	if (list_empty(&root_mem->css.cgroup->children)) {
702		/*
703		 * root_mem might have children before and last_scanned_child
704		 * may point to one of them. We put it later.
705		 */
706		if (orig)
707			VM_BUG_ON(!obsolete);
708		next = NULL;
709		goto done;
710	}
711
712	if (!orig || obsolete) {
713		cgroup = list_first_entry(&root_mem->css.cgroup->children,
714				struct cgroup, sibling);
715		next = mem_cgroup_from_cont(cgroup);
716	} else
717		next = __mem_cgroup_get_next_node(orig, root_mem);
718
719done:
720	if (next)
721		mem_cgroup_get(next);
722	root_mem->last_scanned_child = next;
723	if (orig)
724		mem_cgroup_put(orig);
725	mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
726	return (next) ? next : root_mem;
727}
728
729static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
730{
731	if (do_swap_account) {
732		if (res_counter_check_under_limit(&mem->res) &&
733			res_counter_check_under_limit(&mem->memsw))
734			return true;
735	} else
736		if (res_counter_check_under_limit(&mem->res))
737			return true;
738	return false;
739}
740
741static unsigned int get_swappiness(struct mem_cgroup *memcg)
742{
743	struct cgroup *cgrp = memcg->css.cgroup;
744	unsigned int swappiness;
745
746	/* root ? */
747	if (cgrp->parent == NULL)
748		return vm_swappiness;
749
750	spin_lock(&memcg->reclaim_param_lock);
751	swappiness = memcg->swappiness;
752	spin_unlock(&memcg->reclaim_param_lock);
753
754	return swappiness;
755}
756
757/*
758 * Dance down the hierarchy if needed to reclaim memory. We remember the
759 * last child we reclaimed from, so that we don't end up penalizing
760 * one child extensively based on its position in the children list.
761 *
762 * root_mem is the original ancestor that we've been reclaim from.
763 */
764static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
765						gfp_t gfp_mask, bool noswap)
766{
767	struct mem_cgroup *next_mem;
768	int ret = 0;
769
770	/*
771	 * Reclaim unconditionally and don't check for return value.
772	 * We need to reclaim in the current group and down the tree.
773	 * One might think about checking for children before reclaiming,
774	 * but there might be left over accounting, even after children
775	 * have left.
776	 */
777	ret += try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
778					   get_swappiness(root_mem));
779	if (mem_cgroup_check_under_limit(root_mem))
780		return 1;	/* indicate reclaim has succeeded */
781	if (!root_mem->use_hierarchy)
782		return ret;
783
784	next_mem = mem_cgroup_get_next_node(root_mem);
785
786	while (next_mem != root_mem) {
787		if (mem_cgroup_is_obsolete(next_mem)) {
788			next_mem = mem_cgroup_get_next_node(root_mem);
789			continue;
790		}
791		ret += try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
792						   get_swappiness(next_mem));
793		if (mem_cgroup_check_under_limit(root_mem))
794			return 1;	/* indicate reclaim has succeeded */
795		next_mem = mem_cgroup_get_next_node(root_mem);
796	}
797	return ret;
798}
799
800bool mem_cgroup_oom_called(struct task_struct *task)
801{
802	bool ret = false;
803	struct mem_cgroup *mem;
804	struct mm_struct *mm;
805
806	rcu_read_lock();
807	mm = task->mm;
808	if (!mm)
809		mm = &init_mm;
810	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
811	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
812		ret = true;
813	rcu_read_unlock();
814	return ret;
815}
816/*
817 * Unlike exported interface, "oom" parameter is added. if oom==true,
818 * oom-killer can be invoked.
819 */
820static int __mem_cgroup_try_charge(struct mm_struct *mm,
821			gfp_t gfp_mask, struct mem_cgroup **memcg,
822			bool oom)
823{
824	struct mem_cgroup *mem, *mem_over_limit;
825	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
826	struct res_counter *fail_res;
827
828	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
829		/* Don't account this! */
830		*memcg = NULL;
831		return 0;
832	}
833
834	/*
835	 * We always charge the cgroup the mm_struct belongs to.
836	 * The mm_struct's mem_cgroup changes on task migration if the
837	 * thread group leader migrates. It's possible that mm is not
838	 * set, if so charge the init_mm (happens for pagecache usage).
839	 */
840	mem = *memcg;
841	if (likely(!mem)) {
842		mem = try_get_mem_cgroup_from_mm(mm);
843		*memcg = mem;
844	} else {
845		css_get(&mem->css);
846	}
847	if (unlikely(!mem))
848		return 0;
849
850	VM_BUG_ON(mem_cgroup_is_obsolete(mem));
851
852	while (1) {
853		int ret;
854		bool noswap = false;
855
856		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
857		if (likely(!ret)) {
858			if (!do_swap_account)
859				break;
860			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
861							&fail_res);
862			if (likely(!ret))
863				break;
864			/* mem+swap counter fails */
865			res_counter_uncharge(&mem->res, PAGE_SIZE);
866			noswap = true;
867			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
868									memsw);
869		} else
870			/* mem counter fails */
871			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
872									res);
873
874		if (!(gfp_mask & __GFP_WAIT))
875			goto nomem;
876
877		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
878							noswap);
879		if (ret)
880			continue;
881
882		/*
883		 * try_to_free_mem_cgroup_pages() might not give us a full
884		 * picture of reclaim. Some pages are reclaimed and might be
885		 * moved to swap cache or just unmapped from the cgroup.
886		 * Check the limit again to see if the reclaim reduced the
887		 * current usage of the cgroup before giving up
888		 *
889		 */
890		if (mem_cgroup_check_under_limit(mem_over_limit))
891			continue;
892
893		if (!nr_retries--) {
894			if (oom) {
895				mutex_lock(&memcg_tasklist);
896				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
897				mutex_unlock(&memcg_tasklist);
898				mem_over_limit->last_oom_jiffies = jiffies;
899			}
900			goto nomem;
901		}
902	}
903	return 0;
904nomem:
905	css_put(&mem->css);
906	return -ENOMEM;
907}
908
909static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
910{
911	struct mem_cgroup *mem;
912	swp_entry_t ent;
913
914	if (!PageSwapCache(page))
915		return NULL;
916
917	ent.val = page_private(page);
918	mem = lookup_swap_cgroup(ent);
919	if (!mem)
920		return NULL;
921	if (!css_tryget(&mem->css))
922		return NULL;
923	return mem;
924}
925
926/*
927 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
928 * USED state. If already USED, uncharge and return.
929 */
930
931static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
932				     struct page_cgroup *pc,
933				     enum charge_type ctype)
934{
935	/* try_charge() can return NULL to *memcg, taking care of it. */
936	if (!mem)
937		return;
938
939	lock_page_cgroup(pc);
940	if (unlikely(PageCgroupUsed(pc))) {
941		unlock_page_cgroup(pc);
942		res_counter_uncharge(&mem->res, PAGE_SIZE);
943		if (do_swap_account)
944			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
945		css_put(&mem->css);
946		return;
947	}
948	pc->mem_cgroup = mem;
949	smp_wmb();
950	pc->flags = pcg_default_flags[ctype];
951
952	mem_cgroup_charge_statistics(mem, pc, true);
953
954	unlock_page_cgroup(pc);
955}
956
957/**
958 * mem_cgroup_move_account - move account of the page
959 * @pc:	page_cgroup of the page.
960 * @from: mem_cgroup which the page is moved from.
961 * @to:	mem_cgroup which the page is moved to. @from != @to.
962 *
963 * The caller must confirm following.
964 * - page is not on LRU (isolate_page() is useful.)
965 *
966 * returns 0 at success,
967 * returns -EBUSY when lock is busy or "pc" is unstable.
968 *
969 * This function does "uncharge" from old cgroup but doesn't do "charge" to
970 * new cgroup. It should be done by a caller.
971 */
972
973static int mem_cgroup_move_account(struct page_cgroup *pc,
974	struct mem_cgroup *from, struct mem_cgroup *to)
975{
976	struct mem_cgroup_per_zone *from_mz, *to_mz;
977	int nid, zid;
978	int ret = -EBUSY;
979
980	VM_BUG_ON(from == to);
981	VM_BUG_ON(PageLRU(pc->page));
982
983	nid = page_cgroup_nid(pc);
984	zid = page_cgroup_zid(pc);
985	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
986	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
987
988	if (!trylock_page_cgroup(pc))
989		return ret;
990
991	if (!PageCgroupUsed(pc))
992		goto out;
993
994	if (pc->mem_cgroup != from)
995		goto out;
996
997	res_counter_uncharge(&from->res, PAGE_SIZE);
998	mem_cgroup_charge_statistics(from, pc, false);
999	if (do_swap_account)
1000		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1001	css_put(&from->css);
1002
1003	css_get(&to->css);
1004	pc->mem_cgroup = to;
1005	mem_cgroup_charge_statistics(to, pc, true);
1006	ret = 0;
1007out:
1008	unlock_page_cgroup(pc);
1009	return ret;
1010}
1011
1012/*
1013 * move charges to its parent.
1014 */
1015
1016static int mem_cgroup_move_parent(struct page_cgroup *pc,
1017				  struct mem_cgroup *child,
1018				  gfp_t gfp_mask)
1019{
1020	struct page *page = pc->page;
1021	struct cgroup *cg = child->css.cgroup;
1022	struct cgroup *pcg = cg->parent;
1023	struct mem_cgroup *parent;
1024	int ret;
1025
1026	/* Is ROOT ? */
1027	if (!pcg)
1028		return -EINVAL;
1029
1030
1031	parent = mem_cgroup_from_cont(pcg);
1032
1033
1034	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1035	if (ret || !parent)
1036		return ret;
1037
1038	if (!get_page_unless_zero(page)) {
1039		ret = -EBUSY;
1040		goto uncharge;
1041	}
1042
1043	ret = isolate_lru_page(page);
1044
1045	if (ret)
1046		goto cancel;
1047
1048	ret = mem_cgroup_move_account(pc, child, parent);
1049
1050	putback_lru_page(page);
1051	if (!ret) {
1052		put_page(page);
1053		/* drop extra refcnt by try_charge() */
1054		css_put(&parent->css);
1055		return 0;
1056	}
1057
1058cancel:
1059	put_page(page);
1060uncharge:
1061	/* drop extra refcnt by try_charge() */
1062	css_put(&parent->css);
1063	/* uncharge if move fails */
1064	res_counter_uncharge(&parent->res, PAGE_SIZE);
1065	if (do_swap_account)
1066		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1067	return ret;
1068}
1069
1070/*
1071 * Charge the memory controller for page usage.
1072 * Return
1073 * 0 if the charge was successful
1074 * < 0 if the cgroup is over its limit
1075 */
1076static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1077				gfp_t gfp_mask, enum charge_type ctype,
1078				struct mem_cgroup *memcg)
1079{
1080	struct mem_cgroup *mem;
1081	struct page_cgroup *pc;
1082	int ret;
1083
1084	pc = lookup_page_cgroup(page);
1085	/* can happen at boot */
1086	if (unlikely(!pc))
1087		return 0;
1088	prefetchw(pc);
1089
1090	mem = memcg;
1091	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1092	if (ret || !mem)
1093		return ret;
1094
1095	__mem_cgroup_commit_charge(mem, pc, ctype);
1096	return 0;
1097}
1098
1099int mem_cgroup_newpage_charge(struct page *page,
1100			      struct mm_struct *mm, gfp_t gfp_mask)
1101{
1102	if (mem_cgroup_disabled())
1103		return 0;
1104	if (PageCompound(page))
1105		return 0;
1106	/*
1107	 * If already mapped, we don't have to account.
1108	 * If page cache, page->mapping has address_space.
1109	 * But page->mapping may have out-of-use anon_vma pointer,
1110	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1111	 * is NULL.
1112  	 */
1113	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1114		return 0;
1115	if (unlikely(!mm))
1116		mm = &init_mm;
1117	return mem_cgroup_charge_common(page, mm, gfp_mask,
1118				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1119}
1120
1121int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1122				gfp_t gfp_mask)
1123{
1124	struct mem_cgroup *mem = NULL;
1125	int ret;
1126
1127	if (mem_cgroup_disabled())
1128		return 0;
1129	if (PageCompound(page))
1130		return 0;
1131	/*
1132	 * Corner case handling. This is called from add_to_page_cache()
1133	 * in usual. But some FS (shmem) precharges this page before calling it
1134	 * and call add_to_page_cache() with GFP_NOWAIT.
1135	 *
1136	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1137	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1138	 * charge twice. (It works but has to pay a bit larger cost.)
1139	 * And when the page is SwapCache, it should take swap information
1140	 * into account. This is under lock_page() now.
1141	 */
1142	if (!(gfp_mask & __GFP_WAIT)) {
1143		struct page_cgroup *pc;
1144
1145
1146		pc = lookup_page_cgroup(page);
1147		if (!pc)
1148			return 0;
1149		lock_page_cgroup(pc);
1150		if (PageCgroupUsed(pc)) {
1151			unlock_page_cgroup(pc);
1152			return 0;
1153		}
1154		unlock_page_cgroup(pc);
1155	}
1156
1157	if (do_swap_account && PageSwapCache(page)) {
1158		mem = try_get_mem_cgroup_from_swapcache(page);
1159		if (mem)
1160			mm = NULL;
1161		  else
1162			mem = NULL;
1163		/* SwapCache may be still linked to LRU now. */
1164		mem_cgroup_lru_del_before_commit_swapcache(page);
1165	}
1166
1167	if (unlikely(!mm && !mem))
1168		mm = &init_mm;
1169
1170	if (page_is_file_cache(page))
1171		return mem_cgroup_charge_common(page, mm, gfp_mask,
1172				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1173
1174	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1175				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1176	if (mem)
1177		css_put(&mem->css);
1178	if (PageSwapCache(page))
1179		mem_cgroup_lru_add_after_commit_swapcache(page);
1180
1181	if (do_swap_account && !ret && PageSwapCache(page)) {
1182		swp_entry_t ent = {.val = page_private(page)};
1183		/* avoid double counting */
1184		mem = swap_cgroup_record(ent, NULL);
1185		if (mem) {
1186			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1187			mem_cgroup_put(mem);
1188		}
1189	}
1190	return ret;
1191}
1192
1193/*
1194 * While swap-in, try_charge -> commit or cancel, the page is locked.
1195 * And when try_charge() successfully returns, one refcnt to memcg without
1196 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1197 * "commit()" or removed by "cancel()"
1198 */
1199int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1200				 struct page *page,
1201				 gfp_t mask, struct mem_cgroup **ptr)
1202{
1203	struct mem_cgroup *mem;
1204	int ret;
1205
1206	if (mem_cgroup_disabled())
1207		return 0;
1208
1209	if (!do_swap_account)
1210		goto charge_cur_mm;
1211	/*
1212	 * A racing thread's fault, or swapoff, may have already updated
1213	 * the pte, and even removed page from swap cache: return success
1214	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1215	 */
1216	if (!PageSwapCache(page))
1217		return 0;
1218	mem = try_get_mem_cgroup_from_swapcache(page);
1219	if (!mem)
1220		goto charge_cur_mm;
1221	*ptr = mem;
1222	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1223	/* drop extra refcnt from tryget */
1224	css_put(&mem->css);
1225	return ret;
1226charge_cur_mm:
1227	if (unlikely(!mm))
1228		mm = &init_mm;
1229	return __mem_cgroup_try_charge(mm, mask, ptr, true);
1230}
1231
1232void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1233{
1234	struct page_cgroup *pc;
1235
1236	if (mem_cgroup_disabled())
1237		return;
1238	if (!ptr)
1239		return;
1240	pc = lookup_page_cgroup(page);
1241	mem_cgroup_lru_del_before_commit_swapcache(page);
1242	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1243	mem_cgroup_lru_add_after_commit_swapcache(page);
1244	/*
1245	 * Now swap is on-memory. This means this page may be
1246	 * counted both as mem and swap....double count.
1247	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1248	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1249	 * may call delete_from_swap_cache() before reach here.
1250	 */
1251	if (do_swap_account && PageSwapCache(page)) {
1252		swp_entry_t ent = {.val = page_private(page)};
1253		struct mem_cgroup *memcg;
1254		memcg = swap_cgroup_record(ent, NULL);
1255		if (memcg) {
1256			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1257			mem_cgroup_put(memcg);
1258		}
1259
1260	}
1261	/* add this page(page_cgroup) to the LRU we want. */
1262
1263}
1264
1265void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1266{
1267	if (mem_cgroup_disabled())
1268		return;
1269	if (!mem)
1270		return;
1271	res_counter_uncharge(&mem->res, PAGE_SIZE);
1272	if (do_swap_account)
1273		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1274	css_put(&mem->css);
1275}
1276
1277
1278/*
1279 * uncharge if !page_mapped(page)
1280 */
1281static struct mem_cgroup *
1282__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1283{
1284	struct page_cgroup *pc;
1285	struct mem_cgroup *mem = NULL;
1286	struct mem_cgroup_per_zone *mz;
1287
1288	if (mem_cgroup_disabled())
1289		return NULL;
1290
1291	if (PageSwapCache(page))
1292		return NULL;
1293
1294	/*
1295	 * Check if our page_cgroup is valid
1296	 */
1297	pc = lookup_page_cgroup(page);
1298	if (unlikely(!pc || !PageCgroupUsed(pc)))
1299		return NULL;
1300
1301	lock_page_cgroup(pc);
1302
1303	mem = pc->mem_cgroup;
1304
1305	if (!PageCgroupUsed(pc))
1306		goto unlock_out;
1307
1308	switch (ctype) {
1309	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1310		if (page_mapped(page))
1311			goto unlock_out;
1312		break;
1313	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1314		if (!PageAnon(page)) {	/* Shared memory */
1315			if (page->mapping && !page_is_file_cache(page))
1316				goto unlock_out;
1317		} else if (page_mapped(page)) /* Anon */
1318				goto unlock_out;
1319		break;
1320	default:
1321		break;
1322	}
1323
1324	res_counter_uncharge(&mem->res, PAGE_SIZE);
1325	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1326		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1327
1328	mem_cgroup_charge_statistics(mem, pc, false);
1329	ClearPageCgroupUsed(pc);
1330	/*
1331	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1332	 * freed from LRU. This is safe because uncharged page is expected not
1333	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1334	 * special functions.
1335	 */
1336
1337	mz = page_cgroup_zoneinfo(pc);
1338	unlock_page_cgroup(pc);
1339
1340	/* at swapout, this memcg will be accessed to record to swap */
1341	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1342		css_put(&mem->css);
1343
1344	return mem;
1345
1346unlock_out:
1347	unlock_page_cgroup(pc);
1348	return NULL;
1349}
1350
1351void mem_cgroup_uncharge_page(struct page *page)
1352{
1353	/* early check. */
1354	if (page_mapped(page))
1355		return;
1356	if (page->mapping && !PageAnon(page))
1357		return;
1358	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1359}
1360
1361void mem_cgroup_uncharge_cache_page(struct page *page)
1362{
1363	VM_BUG_ON(page_mapped(page));
1364	VM_BUG_ON(page->mapping);
1365	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1366}
1367
1368/*
1369 * called from __delete_from_swap_cache() and drop "page" account.
1370 * memcg information is recorded to swap_cgroup of "ent"
1371 */
1372void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1373{
1374	struct mem_cgroup *memcg;
1375
1376	memcg = __mem_cgroup_uncharge_common(page,
1377					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1378	/* record memcg information */
1379	if (do_swap_account && memcg) {
1380		swap_cgroup_record(ent, memcg);
1381		mem_cgroup_get(memcg);
1382	}
1383	if (memcg)
1384		css_put(&memcg->css);
1385}
1386
1387#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1388/*
1389 * called from swap_entry_free(). remove record in swap_cgroup and
1390 * uncharge "memsw" account.
1391 */
1392void mem_cgroup_uncharge_swap(swp_entry_t ent)
1393{
1394	struct mem_cgroup *memcg;
1395
1396	if (!do_swap_account)
1397		return;
1398
1399	memcg = swap_cgroup_record(ent, NULL);
1400	if (memcg) {
1401		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1402		mem_cgroup_put(memcg);
1403	}
1404}
1405#endif
1406
1407/*
1408 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1409 * page belongs to.
1410 */
1411int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1412{
1413	struct page_cgroup *pc;
1414	struct mem_cgroup *mem = NULL;
1415	int ret = 0;
1416
1417	if (mem_cgroup_disabled())
1418		return 0;
1419
1420	pc = lookup_page_cgroup(page);
1421	lock_page_cgroup(pc);
1422	if (PageCgroupUsed(pc)) {
1423		mem = pc->mem_cgroup;
1424		css_get(&mem->css);
1425	}
1426	unlock_page_cgroup(pc);
1427
1428	if (mem) {
1429		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1430		css_put(&mem->css);
1431	}
1432	*ptr = mem;
1433	return ret;
1434}
1435
1436/* remove redundant charge if migration failed*/
1437void mem_cgroup_end_migration(struct mem_cgroup *mem,
1438		struct page *oldpage, struct page *newpage)
1439{
1440	struct page *target, *unused;
1441	struct page_cgroup *pc;
1442	enum charge_type ctype;
1443
1444	if (!mem)
1445		return;
1446
1447	/* at migration success, oldpage->mapping is NULL. */
1448	if (oldpage->mapping) {
1449		target = oldpage;
1450		unused = NULL;
1451	} else {
1452		target = newpage;
1453		unused = oldpage;
1454	}
1455
1456	if (PageAnon(target))
1457		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1458	else if (page_is_file_cache(target))
1459		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1460	else
1461		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1462
1463	/* unused page is not on radix-tree now. */
1464	if (unused)
1465		__mem_cgroup_uncharge_common(unused, ctype);
1466
1467	pc = lookup_page_cgroup(target);
1468	/*
1469	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1470	 * So, double-counting is effectively avoided.
1471	 */
1472	__mem_cgroup_commit_charge(mem, pc, ctype);
1473
1474	/*
1475	 * Both of oldpage and newpage are still under lock_page().
1476	 * Then, we don't have to care about race in radix-tree.
1477	 * But we have to be careful that this page is unmapped or not.
1478	 *
1479	 * There is a case for !page_mapped(). At the start of
1480	 * migration, oldpage was mapped. But now, it's zapped.
1481	 * But we know *target* page is not freed/reused under us.
1482	 * mem_cgroup_uncharge_page() does all necessary checks.
1483	 */
1484	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1485		mem_cgroup_uncharge_page(target);
1486}
1487
1488/*
1489 * A call to try to shrink memory usage under specified resource controller.
1490 * This is typically used for page reclaiming for shmem for reducing side
1491 * effect of page allocation from shmem, which is used by some mem_cgroup.
1492 */
1493int mem_cgroup_shrink_usage(struct page *page,
1494			    struct mm_struct *mm,
1495			    gfp_t gfp_mask)
1496{
1497	struct mem_cgroup *mem = NULL;
1498	int progress = 0;
1499	int retry = MEM_CGROUP_RECLAIM_RETRIES;
1500
1501	if (mem_cgroup_disabled())
1502		return 0;
1503	if (page)
1504		mem = try_get_mem_cgroup_from_swapcache(page);
1505	if (!mem && mm)
1506		mem = try_get_mem_cgroup_from_mm(mm);
1507	if (unlikely(!mem))
1508		return 0;
1509
1510	do {
1511		progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1512		progress += mem_cgroup_check_under_limit(mem);
1513	} while (!progress && --retry);
1514
1515	css_put(&mem->css);
1516	if (!retry)
1517		return -ENOMEM;
1518	return 0;
1519}
1520
1521static DEFINE_MUTEX(set_limit_mutex);
1522
1523static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1524				unsigned long long val)
1525{
1526
1527	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1528	int progress;
1529	u64 memswlimit;
1530	int ret = 0;
1531
1532	while (retry_count) {
1533		if (signal_pending(current)) {
1534			ret = -EINTR;
1535			break;
1536		}
1537		/*
1538		 * Rather than hide all in some function, I do this in
1539		 * open coded manner. You see what this really does.
1540		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1541		 */
1542		mutex_lock(&set_limit_mutex);
1543		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1544		if (memswlimit < val) {
1545			ret = -EINVAL;
1546			mutex_unlock(&set_limit_mutex);
1547			break;
1548		}
1549		ret = res_counter_set_limit(&memcg->res, val);
1550		mutex_unlock(&set_limit_mutex);
1551
1552		if (!ret)
1553			break;
1554
1555		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1556							   false);
1557  		if (!progress)			retry_count--;
1558	}
1559
1560	return ret;
1561}
1562
1563int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1564				unsigned long long val)
1565{
1566	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1567	u64 memlimit, oldusage, curusage;
1568	int ret;
1569
1570	if (!do_swap_account)
1571		return -EINVAL;
1572
1573	while (retry_count) {
1574		if (signal_pending(current)) {
1575			ret = -EINTR;
1576			break;
1577		}
1578		/*
1579		 * Rather than hide all in some function, I do this in
1580		 * open coded manner. You see what this really does.
1581		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1582		 */
1583		mutex_lock(&set_limit_mutex);
1584		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1585		if (memlimit > val) {
1586			ret = -EINVAL;
1587			mutex_unlock(&set_limit_mutex);
1588			break;
1589		}
1590		ret = res_counter_set_limit(&memcg->memsw, val);
1591		mutex_unlock(&set_limit_mutex);
1592
1593		if (!ret)
1594			break;
1595
1596		oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1597		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1598		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1599		if (curusage >= oldusage)
1600			retry_count--;
1601	}
1602	return ret;
1603}
1604
1605/*
1606 * This routine traverse page_cgroup in given list and drop them all.
1607 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1608 */
1609static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1610				int node, int zid, enum lru_list lru)
1611{
1612	struct zone *zone;
1613	struct mem_cgroup_per_zone *mz;
1614	struct page_cgroup *pc, *busy;
1615	unsigned long flags, loop;
1616	struct list_head *list;
1617	int ret = 0;
1618
1619	zone = &NODE_DATA(node)->node_zones[zid];
1620	mz = mem_cgroup_zoneinfo(mem, node, zid);
1621	list = &mz->lists[lru];
1622
1623	loop = MEM_CGROUP_ZSTAT(mz, lru);
1624	/* give some margin against EBUSY etc...*/
1625	loop += 256;
1626	busy = NULL;
1627	while (loop--) {
1628		ret = 0;
1629		spin_lock_irqsave(&zone->lru_lock, flags);
1630		if (list_empty(list)) {
1631			spin_unlock_irqrestore(&zone->lru_lock, flags);
1632			break;
1633		}
1634		pc = list_entry(list->prev, struct page_cgroup, lru);
1635		if (busy == pc) {
1636			list_move(&pc->lru, list);
1637			busy = 0;
1638			spin_unlock_irqrestore(&zone->lru_lock, flags);
1639			continue;
1640		}
1641		spin_unlock_irqrestore(&zone->lru_lock, flags);
1642
1643		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1644		if (ret == -ENOMEM)
1645			break;
1646
1647		if (ret == -EBUSY || ret == -EINVAL) {
1648			/* found lock contention or "pc" is obsolete. */
1649			busy = pc;
1650			cond_resched();
1651		} else
1652			busy = NULL;
1653	}
1654
1655	if (!ret && !list_empty(list))
1656		return -EBUSY;
1657	return ret;
1658}
1659
1660/*
1661 * make mem_cgroup's charge to be 0 if there is no task.
1662 * This enables deleting this mem_cgroup.
1663 */
1664static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1665{
1666	int ret;
1667	int node, zid, shrink;
1668	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1669	struct cgroup *cgrp = mem->css.cgroup;
1670
1671	css_get(&mem->css);
1672
1673	shrink = 0;
1674	/* should free all ? */
1675	if (free_all)
1676		goto try_to_free;
1677move_account:
1678	while (mem->res.usage > 0) {
1679		ret = -EBUSY;
1680		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1681			goto out;
1682		ret = -EINTR;
1683		if (signal_pending(current))
1684			goto out;
1685		/* This is for making all *used* pages to be on LRU. */
1686		lru_add_drain_all();
1687		ret = 0;
1688		for_each_node_state(node, N_POSSIBLE) {
1689			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1690				enum lru_list l;
1691				for_each_lru(l) {
1692					ret = mem_cgroup_force_empty_list(mem,
1693							node, zid, l);
1694					if (ret)
1695						break;
1696				}
1697			}
1698			if (ret)
1699				break;
1700		}
1701		/* it seems parent cgroup doesn't have enough mem */
1702		if (ret == -ENOMEM)
1703			goto try_to_free;
1704		cond_resched();
1705	}
1706	ret = 0;
1707out:
1708	css_put(&mem->css);
1709	return ret;
1710
1711try_to_free:
1712	/* returns EBUSY if there is a task or if we come here twice. */
1713	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1714		ret = -EBUSY;
1715		goto out;
1716	}
1717	/* we call try-to-free pages for make this cgroup empty */
1718	lru_add_drain_all();
1719	/* try to free all pages in this cgroup */
1720	shrink = 1;
1721	while (nr_retries && mem->res.usage > 0) {
1722		int progress;
1723
1724		if (signal_pending(current)) {
1725			ret = -EINTR;
1726			goto out;
1727		}
1728		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1729						false, get_swappiness(mem));
1730		if (!progress) {
1731			nr_retries--;
1732			/* maybe some writeback is necessary */
1733			congestion_wait(WRITE, HZ/10);
1734		}
1735
1736	}
1737	lru_add_drain();
1738	/* try move_account...there may be some *locked* pages. */
1739	if (mem->res.usage)
1740		goto move_account;
1741	ret = 0;
1742	goto out;
1743}
1744
1745int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1746{
1747	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1748}
1749
1750
1751static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1752{
1753	return mem_cgroup_from_cont(cont)->use_hierarchy;
1754}
1755
1756static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1757					u64 val)
1758{
1759	int retval = 0;
1760	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1761	struct cgroup *parent = cont->parent;
1762	struct mem_cgroup *parent_mem = NULL;
1763
1764	if (parent)
1765		parent_mem = mem_cgroup_from_cont(parent);
1766
1767	cgroup_lock();
1768	/*
1769	 * If parent's use_hiearchy is set, we can't make any modifications
1770	 * in the child subtrees. If it is unset, then the change can
1771	 * occur, provided the current cgroup has no children.
1772	 *
1773	 * For the root cgroup, parent_mem is NULL, we allow value to be
1774	 * set if there are no children.
1775	 */
1776	if ((!parent_mem || !parent_mem->use_hierarchy) &&
1777				(val == 1 || val == 0)) {
1778		if (list_empty(&cont->children))
1779			mem->use_hierarchy = val;
1780		else
1781			retval = -EBUSY;
1782	} else
1783		retval = -EINVAL;
1784	cgroup_unlock();
1785
1786	return retval;
1787}
1788
1789static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1790{
1791	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1792	u64 val = 0;
1793	int type, name;
1794
1795	type = MEMFILE_TYPE(cft->private);
1796	name = MEMFILE_ATTR(cft->private);
1797	switch (type) {
1798	case _MEM:
1799		val = res_counter_read_u64(&mem->res, name);
1800		break;
1801	case _MEMSWAP:
1802		if (do_swap_account)
1803			val = res_counter_read_u64(&mem->memsw, name);
1804		break;
1805	default:
1806		BUG();
1807		break;
1808	}
1809	return val;
1810}
1811/*
1812 * The user of this function is...
1813 * RES_LIMIT.
1814 */
1815static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1816			    const char *buffer)
1817{
1818	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1819	int type, name;
1820	unsigned long long val;
1821	int ret;
1822
1823	type = MEMFILE_TYPE(cft->private);
1824	name = MEMFILE_ATTR(cft->private);
1825	switch (name) {
1826	case RES_LIMIT:
1827		/* This function does all necessary parse...reuse it */
1828		ret = res_counter_memparse_write_strategy(buffer, &val);
1829		if (ret)
1830			break;
1831		if (type == _MEM)
1832			ret = mem_cgroup_resize_limit(memcg, val);
1833		else
1834			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1835		break;
1836	default:
1837		ret = -EINVAL; /* should be BUG() ? */
1838		break;
1839	}
1840	return ret;
1841}
1842
1843static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1844		unsigned long long *mem_limit, unsigned long long *memsw_limit)
1845{
1846	struct cgroup *cgroup;
1847	unsigned long long min_limit, min_memsw_limit, tmp;
1848
1849	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1850	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1851	cgroup = memcg->css.cgroup;
1852	if (!memcg->use_hierarchy)
1853		goto out;
1854
1855	while (cgroup->parent) {
1856		cgroup = cgroup->parent;
1857		memcg = mem_cgroup_from_cont(cgroup);
1858		if (!memcg->use_hierarchy)
1859			break;
1860		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1861		min_limit = min(min_limit, tmp);
1862		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1863		min_memsw_limit = min(min_memsw_limit, tmp);
1864	}
1865out:
1866	*mem_limit = min_limit;
1867	*memsw_limit = min_memsw_limit;
1868	return;
1869}
1870
1871static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1872{
1873	struct mem_cgroup *mem;
1874	int type, name;
1875
1876	mem = mem_cgroup_from_cont(cont);
1877	type = MEMFILE_TYPE(event);
1878	name = MEMFILE_ATTR(event);
1879	switch (name) {
1880	case RES_MAX_USAGE:
1881		if (type == _MEM)
1882			res_counter_reset_max(&mem->res);
1883		else
1884			res_counter_reset_max(&mem->memsw);
1885		break;
1886	case RES_FAILCNT:
1887		if (type == _MEM)
1888			res_counter_reset_failcnt(&mem->res);
1889		else
1890			res_counter_reset_failcnt(&mem->memsw);
1891		break;
1892	}
1893	return 0;
1894}
1895
1896static const struct mem_cgroup_stat_desc {
1897	const char *msg;
1898	u64 unit;
1899} mem_cgroup_stat_desc[] = {
1900	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1901	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1902	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1903	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1904};
1905
1906static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1907				 struct cgroup_map_cb *cb)
1908{
1909	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1910	struct mem_cgroup_stat *stat = &mem_cont->stat;
1911	int i;
1912
1913	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1914		s64 val;
1915
1916		val = mem_cgroup_read_stat(stat, i);
1917		val *= mem_cgroup_stat_desc[i].unit;
1918		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1919	}
1920	/* showing # of active pages */
1921	{
1922		unsigned long active_anon, inactive_anon;
1923		unsigned long active_file, inactive_file;
1924		unsigned long unevictable;
1925
1926		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1927						LRU_INACTIVE_ANON);
1928		active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1929						LRU_ACTIVE_ANON);
1930		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1931						LRU_INACTIVE_FILE);
1932		active_file = mem_cgroup_get_all_zonestat(mem_cont,
1933						LRU_ACTIVE_FILE);
1934		unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1935							LRU_UNEVICTABLE);
1936
1937		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1938		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1939		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1940		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1941		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1942
1943	}
1944	{
1945		unsigned long long limit, memsw_limit;
1946		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1947		cb->fill(cb, "hierarchical_memory_limit", limit);
1948		if (do_swap_account)
1949			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1950	}
1951
1952#ifdef CONFIG_DEBUG_VM
1953	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1954
1955	{
1956		int nid, zid;
1957		struct mem_cgroup_per_zone *mz;
1958		unsigned long recent_rotated[2] = {0, 0};
1959		unsigned long recent_scanned[2] = {0, 0};
1960
1961		for_each_online_node(nid)
1962			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1963				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1964
1965				recent_rotated[0] +=
1966					mz->reclaim_stat.recent_rotated[0];
1967				recent_rotated[1] +=
1968					mz->reclaim_stat.recent_rotated[1];
1969				recent_scanned[0] +=
1970					mz->reclaim_stat.recent_scanned[0];
1971				recent_scanned[1] +=
1972					mz->reclaim_stat.recent_scanned[1];
1973			}
1974		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1975		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1976		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1977		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1978	}
1979#endif
1980
1981	return 0;
1982}
1983
1984static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1985{
1986	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1987
1988	return get_swappiness(memcg);
1989}
1990
1991static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1992				       u64 val)
1993{
1994	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1995	struct mem_cgroup *parent;
1996
1997	if (val > 100)
1998		return -EINVAL;
1999
2000	if (cgrp->parent == NULL)
2001		return -EINVAL;
2002
2003	parent = mem_cgroup_from_cont(cgrp->parent);
2004
2005	cgroup_lock();
2006
2007	/* If under hierarchy, only empty-root can set this value */
2008	if ((parent->use_hierarchy) ||
2009	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2010		cgroup_unlock();
2011		return -EINVAL;
2012	}
2013
2014	spin_lock(&memcg->reclaim_param_lock);
2015	memcg->swappiness = val;
2016	spin_unlock(&memcg->reclaim_param_lock);
2017
2018	cgroup_unlock();
2019
2020	return 0;
2021}
2022
2023
2024static struct cftype mem_cgroup_files[] = {
2025	{
2026		.name = "usage_in_bytes",
2027		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2028		.read_u64 = mem_cgroup_read,
2029	},
2030	{
2031		.name = "max_usage_in_bytes",
2032		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2033		.trigger = mem_cgroup_reset,
2034		.read_u64 = mem_cgroup_read,
2035	},
2036	{
2037		.name = "limit_in_bytes",
2038		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2039		.write_string = mem_cgroup_write,
2040		.read_u64 = mem_cgroup_read,
2041	},
2042	{
2043		.name = "failcnt",
2044		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2045		.trigger = mem_cgroup_reset,
2046		.read_u64 = mem_cgroup_read,
2047	},
2048	{
2049		.name = "stat",
2050		.read_map = mem_control_stat_show,
2051	},
2052	{
2053		.name = "force_empty",
2054		.trigger = mem_cgroup_force_empty_write,
2055	},
2056	{
2057		.name = "use_hierarchy",
2058		.write_u64 = mem_cgroup_hierarchy_write,
2059		.read_u64 = mem_cgroup_hierarchy_read,
2060	},
2061	{
2062		.name = "swappiness",
2063		.read_u64 = mem_cgroup_swappiness_read,
2064		.write_u64 = mem_cgroup_swappiness_write,
2065	},
2066};
2067
2068#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2069static struct cftype memsw_cgroup_files[] = {
2070	{
2071		.name = "memsw.usage_in_bytes",
2072		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2073		.read_u64 = mem_cgroup_read,
2074	},
2075	{
2076		.name = "memsw.max_usage_in_bytes",
2077		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2078		.trigger = mem_cgroup_reset,
2079		.read_u64 = mem_cgroup_read,
2080	},
2081	{
2082		.name = "memsw.limit_in_bytes",
2083		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2084		.write_string = mem_cgroup_write,
2085		.read_u64 = mem_cgroup_read,
2086	},
2087	{
2088		.name = "memsw.failcnt",
2089		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2090		.trigger = mem_cgroup_reset,
2091		.read_u64 = mem_cgroup_read,
2092	},
2093};
2094
2095static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2096{
2097	if (!do_swap_account)
2098		return 0;
2099	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2100				ARRAY_SIZE(memsw_cgroup_files));
2101};
2102#else
2103static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2104{
2105	return 0;
2106}
2107#endif
2108
2109static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2110{
2111	struct mem_cgroup_per_node *pn;
2112	struct mem_cgroup_per_zone *mz;
2113	enum lru_list l;
2114	int zone, tmp = node;
2115	/*
2116	 * This routine is called against possible nodes.
2117	 * But it's BUG to call kmalloc() against offline node.
2118	 *
2119	 * TODO: this routine can waste much memory for nodes which will
2120	 *       never be onlined. It's better to use memory hotplug callback
2121	 *       function.
2122	 */
2123	if (!node_state(node, N_NORMAL_MEMORY))
2124		tmp = -1;
2125	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2126	if (!pn)
2127		return 1;
2128
2129	mem->info.nodeinfo[node] = pn;
2130	memset(pn, 0, sizeof(*pn));
2131
2132	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2133		mz = &pn->zoneinfo[zone];
2134		for_each_lru(l)
2135			INIT_LIST_HEAD(&mz->lists[l]);
2136	}
2137	return 0;
2138}
2139
2140static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2141{
2142	kfree(mem->info.nodeinfo[node]);
2143}
2144
2145static int mem_cgroup_size(void)
2146{
2147	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2148	return sizeof(struct mem_cgroup) + cpustat_size;
2149}
2150
2151static struct mem_cgroup *mem_cgroup_alloc(void)
2152{
2153	struct mem_cgroup *mem;
2154	int size = mem_cgroup_size();
2155
2156	if (size < PAGE_SIZE)
2157		mem = kmalloc(size, GFP_KERNEL);
2158	else
2159		mem = vmalloc(size);
2160
2161	if (mem)
2162		memset(mem, 0, size);
2163	return mem;
2164}
2165
2166/*
2167 * At destroying mem_cgroup, references from swap_cgroup can remain.
2168 * (scanning all at force_empty is too costly...)
2169 *
2170 * Instead of clearing all references at force_empty, we remember
2171 * the number of reference from swap_cgroup and free mem_cgroup when
2172 * it goes down to 0.
2173 *
2174 * Removal of cgroup itself succeeds regardless of refs from swap.
2175 */
2176
2177static void __mem_cgroup_free(struct mem_cgroup *mem)
2178{
2179	int node;
2180
2181	for_each_node_state(node, N_POSSIBLE)
2182		free_mem_cgroup_per_zone_info(mem, node);
2183
2184	if (mem_cgroup_size() < PAGE_SIZE)
2185		kfree(mem);
2186	else
2187		vfree(mem);
2188}
2189
2190static void mem_cgroup_get(struct mem_cgroup *mem)
2191{
2192	atomic_inc(&mem->refcnt);
2193}
2194
2195static void mem_cgroup_put(struct mem_cgroup *mem)
2196{
2197	if (atomic_dec_and_test(&mem->refcnt)) {
2198		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2199		__mem_cgroup_free(mem);
2200		if (parent)
2201			mem_cgroup_put(parent);
2202	}
2203}
2204
2205/*
2206 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2207 */
2208static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2209{
2210	if (!mem->res.parent)
2211		return NULL;
2212	return mem_cgroup_from_res_counter(mem->res.parent, res);
2213}
2214
2215#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2216static void __init enable_swap_cgroup(void)
2217{
2218	if (!mem_cgroup_disabled() && really_do_swap_account)
2219		do_swap_account = 1;
2220}
2221#else
2222static void __init enable_swap_cgroup(void)
2223{
2224}
2225#endif
2226
2227static struct cgroup_subsys_state * __ref
2228mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2229{
2230	struct mem_cgroup *mem, *parent;
2231	int node;
2232
2233	mem = mem_cgroup_alloc();
2234	if (!mem)
2235		return ERR_PTR(-ENOMEM);
2236
2237	for_each_node_state(node, N_POSSIBLE)
2238		if (alloc_mem_cgroup_per_zone_info(mem, node))
2239			goto free_out;
2240	/* root ? */
2241	if (cont->parent == NULL) {
2242		enable_swap_cgroup();
2243		parent = NULL;
2244	} else {
2245		parent = mem_cgroup_from_cont(cont->parent);
2246		mem->use_hierarchy = parent->use_hierarchy;
2247	}
2248
2249	if (parent && parent->use_hierarchy) {
2250		res_counter_init(&mem->res, &parent->res);
2251		res_counter_init(&mem->memsw, &parent->memsw);
2252		/*
2253		 * We increment refcnt of the parent to ensure that we can
2254		 * safely access it on res_counter_charge/uncharge.
2255		 * This refcnt will be decremented when freeing this
2256		 * mem_cgroup(see mem_cgroup_put).
2257		 */
2258		mem_cgroup_get(parent);
2259	} else {
2260		res_counter_init(&mem->res, NULL);
2261		res_counter_init(&mem->memsw, NULL);
2262	}
2263	mem->last_scanned_child = NULL;
2264	spin_lock_init(&mem->reclaim_param_lock);
2265
2266	if (parent)
2267		mem->swappiness = get_swappiness(parent);
2268	atomic_set(&mem->refcnt, 1);
2269	return &mem->css;
2270free_out:
2271	__mem_cgroup_free(mem);
2272	return ERR_PTR(-ENOMEM);
2273}
2274
2275static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2276					struct cgroup *cont)
2277{
2278	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2279	mem_cgroup_force_empty(mem, false);
2280}
2281
2282static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2283				struct cgroup *cont)
2284{
2285	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2286	struct mem_cgroup *last_scanned_child = mem->last_scanned_child;
2287
2288	if (last_scanned_child) {
2289		VM_BUG_ON(!mem_cgroup_is_obsolete(last_scanned_child));
2290		mem_cgroup_put(last_scanned_child);
2291	}
2292	mem_cgroup_put(mem);
2293}
2294
2295static int mem_cgroup_populate(struct cgroup_subsys *ss,
2296				struct cgroup *cont)
2297{
2298	int ret;
2299
2300	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2301				ARRAY_SIZE(mem_cgroup_files));
2302
2303	if (!ret)
2304		ret = register_memsw_files(cont, ss);
2305	return ret;
2306}
2307
2308static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2309				struct cgroup *cont,
2310				struct cgroup *old_cont,
2311				struct task_struct *p)
2312{
2313	mutex_lock(&memcg_tasklist);
2314	/*
2315	 * FIXME: It's better to move charges of this process from old
2316	 * memcg to new memcg. But it's just on TODO-List now.
2317	 */
2318	mutex_unlock(&memcg_tasklist);
2319}
2320
2321struct cgroup_subsys mem_cgroup_subsys = {
2322	.name = "memory",
2323	.subsys_id = mem_cgroup_subsys_id,
2324	.create = mem_cgroup_create,
2325	.pre_destroy = mem_cgroup_pre_destroy,
2326	.destroy = mem_cgroup_destroy,
2327	.populate = mem_cgroup_populate,
2328	.attach = mem_cgroup_move_task,
2329	.early_init = 0,
2330};
2331
2332#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2333
2334static int __init disable_swap_account(char *s)
2335{
2336	really_do_swap_account = 0;
2337	return 1;
2338}
2339__setup("noswapaccount", disable_swap_account);
2340#endif
2341