memcontrol.c revision 90b3feaec8ffb167abd8903bf111605c2f035aa8
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES	5
62struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account		(0)
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84	/*
85	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86	 */
87	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93	MEM_CGROUP_STAT_NSTATS,
94};
95
96enum mem_cgroup_events_index {
97	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
98	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102	MEM_CGROUP_EVENTS_NSTATS,
103};
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111	MEM_CGROUP_TARGET_THRESH,
112	MEM_CGROUP_TARGET_SOFTLIMIT,
113	MEM_CGROUP_TARGET_NUMAINFO,
114	MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
118#define NUMAINFO_EVENTS_TARGET	(1024)
119
120struct mem_cgroup_stat_cpu {
121	long count[MEM_CGROUP_STAT_NSTATS];
122	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123	unsigned long targets[MEM_CGROUP_NTARGETS];
124};
125
126struct mem_cgroup_reclaim_iter {
127	/* css_id of the last scanned hierarchy member */
128	int position;
129	/* scan generation, increased every round-trip */
130	unsigned int generation;
131};
132
133/*
134 * per-zone information in memory controller.
135 */
136struct mem_cgroup_per_zone {
137	struct lruvec		lruvec;
138	unsigned long		count[NR_LRU_LISTS];
139
140	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
142	struct zone_reclaim_stat reclaim_stat;
143	struct rb_node		tree_node;	/* RB tree node */
144	unsigned long long	usage_in_excess;/* Set to the value by which */
145						/* the soft limit is exceeded*/
146	bool			on_tree;
147	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
148						/* use container_of	   */
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167	struct rb_root rb_root;
168	spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
181struct mem_cgroup_threshold {
182	struct eventfd_ctx *eventfd;
183	u64 threshold;
184};
185
186/* For threshold */
187struct mem_cgroup_threshold_ary {
188	/* An array index points to threshold just below usage. */
189	int current_threshold;
190	/* Size of entries[] */
191	unsigned int size;
192	/* Array of thresholds */
193	struct mem_cgroup_threshold entries[0];
194};
195
196struct mem_cgroup_thresholds {
197	/* Primary thresholds array */
198	struct mem_cgroup_threshold_ary *primary;
199	/*
200	 * Spare threshold array.
201	 * This is needed to make mem_cgroup_unregister_event() "never fail".
202	 * It must be able to store at least primary->size - 1 entries.
203	 */
204	struct mem_cgroup_threshold_ary *spare;
205};
206
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209	struct list_head list;
210	struct eventfd_ctx *eventfd;
211};
212
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
226 */
227struct mem_cgroup {
228	struct cgroup_subsys_state css;
229	/*
230	 * the counter to account for memory usage
231	 */
232	struct res_counter res;
233	/*
234	 * the counter to account for mem+swap usage.
235	 */
236	struct res_counter memsw;
237	/*
238	 * Per cgroup active and inactive list, similar to the
239	 * per zone LRU lists.
240	 */
241	struct mem_cgroup_lru_info info;
242	int last_scanned_node;
243#if MAX_NUMNODES > 1
244	nodemask_t	scan_nodes;
245	atomic_t	numainfo_events;
246	atomic_t	numainfo_updating;
247#endif
248	/*
249	 * Should the accounting and control be hierarchical, per subtree?
250	 */
251	bool use_hierarchy;
252
253	bool		oom_lock;
254	atomic_t	under_oom;
255
256	atomic_t	refcnt;
257
258	int	swappiness;
259	/* OOM-Killer disable */
260	int		oom_kill_disable;
261
262	/* set when res.limit == memsw.limit */
263	bool		memsw_is_minimum;
264
265	/* protect arrays of thresholds */
266	struct mutex thresholds_lock;
267
268	/* thresholds for memory usage. RCU-protected */
269	struct mem_cgroup_thresholds thresholds;
270
271	/* thresholds for mem+swap usage. RCU-protected */
272	struct mem_cgroup_thresholds memsw_thresholds;
273
274	/* For oom notifier event fd */
275	struct list_head oom_notify;
276
277	/*
278	 * Should we move charges of a task when a task is moved into this
279	 * mem_cgroup ? And what type of charges should we move ?
280	 */
281	unsigned long 	move_charge_at_immigrate;
282	/*
283	 * percpu counter.
284	 */
285	struct mem_cgroup_stat_cpu *stat;
286	/*
287	 * used when a cpu is offlined or other synchronizations
288	 * See mem_cgroup_read_stat().
289	 */
290	struct mem_cgroup_stat_cpu nocpu_base;
291	spinlock_t pcp_counter_lock;
292
293#ifdef CONFIG_INET
294	struct tcp_memcontrol tcp_mem;
295#endif
296};
297
298/* Stuffs for move charges at task migration. */
299/*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303enum move_type {
304	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306	NR_MOVE_TYPE,
307};
308
309/* "mc" and its members are protected by cgroup_mutex */
310static struct move_charge_struct {
311	spinlock_t	  lock; /* for from, to */
312	struct mem_cgroup *from;
313	struct mem_cgroup *to;
314	unsigned long precharge;
315	unsigned long moved_charge;
316	unsigned long moved_swap;
317	struct task_struct *moving_task;	/* a task moving charges */
318	wait_queue_head_t waitq;		/* a waitq for other context */
319} mc = {
320	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322};
323
324static bool move_anon(void)
325{
326	return test_bit(MOVE_CHARGE_TYPE_ANON,
327					&mc.to->move_charge_at_immigrate);
328}
329
330static bool move_file(void)
331{
332	return test_bit(MOVE_CHARGE_TYPE_FILE,
333					&mc.to->move_charge_at_immigrate);
334}
335
336/*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
341#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
342
343enum charge_type {
344	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
348	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
349	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350	NR_CHARGE_TYPE,
351};
352
353/* for encoding cft->private value on file */
354#define _MEM			(0)
355#define _MEMSWAP		(1)
356#define _OOM_TYPE		(2)
357#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
358#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
359#define MEMFILE_ATTR(val)	((val) & 0xffff)
360/* Used for OOM nofiier */
361#define OOM_CONTROL		(0)
362
363/*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
367#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
369#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
371static void mem_cgroup_get(struct mem_cgroup *memcg);
372static void mem_cgroup_put(struct mem_cgroup *memcg);
373
374/* Writing them here to avoid exposing memcg's inner layout */
375#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376#ifdef CONFIG_INET
377#include <net/sock.h>
378#include <net/ip.h>
379
380static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381void sock_update_memcg(struct sock *sk)
382{
383	if (static_branch(&memcg_socket_limit_enabled)) {
384		struct mem_cgroup *memcg;
385
386		BUG_ON(!sk->sk_prot->proto_cgroup);
387
388		/* Socket cloning can throw us here with sk_cgrp already
389		 * filled. It won't however, necessarily happen from
390		 * process context. So the test for root memcg given
391		 * the current task's memcg won't help us in this case.
392		 *
393		 * Respecting the original socket's memcg is a better
394		 * decision in this case.
395		 */
396		if (sk->sk_cgrp) {
397			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398			mem_cgroup_get(sk->sk_cgrp->memcg);
399			return;
400		}
401
402		rcu_read_lock();
403		memcg = mem_cgroup_from_task(current);
404		if (!mem_cgroup_is_root(memcg)) {
405			mem_cgroup_get(memcg);
406			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407		}
408		rcu_read_unlock();
409	}
410}
411EXPORT_SYMBOL(sock_update_memcg);
412
413void sock_release_memcg(struct sock *sk)
414{
415	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416		struct mem_cgroup *memcg;
417		WARN_ON(!sk->sk_cgrp->memcg);
418		memcg = sk->sk_cgrp->memcg;
419		mem_cgroup_put(memcg);
420	}
421}
422
423struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424{
425	if (!memcg || mem_cgroup_is_root(memcg))
426		return NULL;
427
428	return &memcg->tcp_mem.cg_proto;
429}
430EXPORT_SYMBOL(tcp_proto_cgroup);
431#endif /* CONFIG_INET */
432#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
434static void drain_all_stock_async(struct mem_cgroup *memcg);
435
436static struct mem_cgroup_per_zone *
437mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438{
439	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440}
441
442struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443{
444	return &memcg->css;
445}
446
447static struct mem_cgroup_per_zone *
448page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449{
450	int nid = page_to_nid(page);
451	int zid = page_zonenum(page);
452
453	return mem_cgroup_zoneinfo(memcg, nid, zid);
454}
455
456static struct mem_cgroup_tree_per_zone *
457soft_limit_tree_node_zone(int nid, int zid)
458{
459	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460}
461
462static struct mem_cgroup_tree_per_zone *
463soft_limit_tree_from_page(struct page *page)
464{
465	int nid = page_to_nid(page);
466	int zid = page_zonenum(page);
467
468	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469}
470
471static void
472__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473				struct mem_cgroup_per_zone *mz,
474				struct mem_cgroup_tree_per_zone *mctz,
475				unsigned long long new_usage_in_excess)
476{
477	struct rb_node **p = &mctz->rb_root.rb_node;
478	struct rb_node *parent = NULL;
479	struct mem_cgroup_per_zone *mz_node;
480
481	if (mz->on_tree)
482		return;
483
484	mz->usage_in_excess = new_usage_in_excess;
485	if (!mz->usage_in_excess)
486		return;
487	while (*p) {
488		parent = *p;
489		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490					tree_node);
491		if (mz->usage_in_excess < mz_node->usage_in_excess)
492			p = &(*p)->rb_left;
493		/*
494		 * We can't avoid mem cgroups that are over their soft
495		 * limit by the same amount
496		 */
497		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498			p = &(*p)->rb_right;
499	}
500	rb_link_node(&mz->tree_node, parent, p);
501	rb_insert_color(&mz->tree_node, &mctz->rb_root);
502	mz->on_tree = true;
503}
504
505static void
506__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507				struct mem_cgroup_per_zone *mz,
508				struct mem_cgroup_tree_per_zone *mctz)
509{
510	if (!mz->on_tree)
511		return;
512	rb_erase(&mz->tree_node, &mctz->rb_root);
513	mz->on_tree = false;
514}
515
516static void
517mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518				struct mem_cgroup_per_zone *mz,
519				struct mem_cgroup_tree_per_zone *mctz)
520{
521	spin_lock(&mctz->lock);
522	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523	spin_unlock(&mctz->lock);
524}
525
526
527static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528{
529	unsigned long long excess;
530	struct mem_cgroup_per_zone *mz;
531	struct mem_cgroup_tree_per_zone *mctz;
532	int nid = page_to_nid(page);
533	int zid = page_zonenum(page);
534	mctz = soft_limit_tree_from_page(page);
535
536	/*
537	 * Necessary to update all ancestors when hierarchy is used.
538	 * because their event counter is not touched.
539	 */
540	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542		excess = res_counter_soft_limit_excess(&memcg->res);
543		/*
544		 * We have to update the tree if mz is on RB-tree or
545		 * mem is over its softlimit.
546		 */
547		if (excess || mz->on_tree) {
548			spin_lock(&mctz->lock);
549			/* if on-tree, remove it */
550			if (mz->on_tree)
551				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552			/*
553			 * Insert again. mz->usage_in_excess will be updated.
554			 * If excess is 0, no tree ops.
555			 */
556			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557			spin_unlock(&mctz->lock);
558		}
559	}
560}
561
562static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563{
564	int node, zone;
565	struct mem_cgroup_per_zone *mz;
566	struct mem_cgroup_tree_per_zone *mctz;
567
568	for_each_node(node) {
569		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571			mctz = soft_limit_tree_node_zone(node, zone);
572			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573		}
574	}
575}
576
577static struct mem_cgroup_per_zone *
578__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579{
580	struct rb_node *rightmost = NULL;
581	struct mem_cgroup_per_zone *mz;
582
583retry:
584	mz = NULL;
585	rightmost = rb_last(&mctz->rb_root);
586	if (!rightmost)
587		goto done;		/* Nothing to reclaim from */
588
589	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590	/*
591	 * Remove the node now but someone else can add it back,
592	 * we will to add it back at the end of reclaim to its correct
593	 * position in the tree.
594	 */
595	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597		!css_tryget(&mz->mem->css))
598		goto retry;
599done:
600	return mz;
601}
602
603static struct mem_cgroup_per_zone *
604mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605{
606	struct mem_cgroup_per_zone *mz;
607
608	spin_lock(&mctz->lock);
609	mz = __mem_cgroup_largest_soft_limit_node(mctz);
610	spin_unlock(&mctz->lock);
611	return mz;
612}
613
614/*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
633static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634				 enum mem_cgroup_stat_index idx)
635{
636	long val = 0;
637	int cpu;
638
639	get_online_cpus();
640	for_each_online_cpu(cpu)
641		val += per_cpu(memcg->stat->count[idx], cpu);
642#ifdef CONFIG_HOTPLUG_CPU
643	spin_lock(&memcg->pcp_counter_lock);
644	val += memcg->nocpu_base.count[idx];
645	spin_unlock(&memcg->pcp_counter_lock);
646#endif
647	put_online_cpus();
648	return val;
649}
650
651static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652					 bool charge)
653{
654	int val = (charge) ? 1 : -1;
655	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656}
657
658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659					    enum mem_cgroup_events_index idx)
660{
661	unsigned long val = 0;
662	int cpu;
663
664	for_each_online_cpu(cpu)
665		val += per_cpu(memcg->stat->events[idx], cpu);
666#ifdef CONFIG_HOTPLUG_CPU
667	spin_lock(&memcg->pcp_counter_lock);
668	val += memcg->nocpu_base.events[idx];
669	spin_unlock(&memcg->pcp_counter_lock);
670#endif
671	return val;
672}
673
674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675					 bool file, int nr_pages)
676{
677	preempt_disable();
678
679	if (file)
680		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681				nr_pages);
682	else
683		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684				nr_pages);
685
686	/* pagein of a big page is an event. So, ignore page size */
687	if (nr_pages > 0)
688		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689	else {
690		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691		nr_pages = -nr_pages; /* for event */
692	}
693
694	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695
696	preempt_enable();
697}
698
699unsigned long
700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701			unsigned int lru_mask)
702{
703	struct mem_cgroup_per_zone *mz;
704	enum lru_list l;
705	unsigned long ret = 0;
706
707	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708
709	for_each_lru(l) {
710		if (BIT(l) & lru_mask)
711			ret += MEM_CGROUP_ZSTAT(mz, l);
712	}
713	return ret;
714}
715
716static unsigned long
717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718			int nid, unsigned int lru_mask)
719{
720	u64 total = 0;
721	int zid;
722
723	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724		total += mem_cgroup_zone_nr_lru_pages(memcg,
725						nid, zid, lru_mask);
726
727	return total;
728}
729
730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731			unsigned int lru_mask)
732{
733	int nid;
734	u64 total = 0;
735
736	for_each_node_state(nid, N_HIGH_MEMORY)
737		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738	return total;
739}
740
741static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742				       enum mem_cgroup_events_target target)
743{
744	unsigned long val, next;
745
746	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747	next = __this_cpu_read(memcg->stat->targets[target]);
748	/* from time_after() in jiffies.h */
749	if ((long)next - (long)val < 0) {
750		switch (target) {
751		case MEM_CGROUP_TARGET_THRESH:
752			next = val + THRESHOLDS_EVENTS_TARGET;
753			break;
754		case MEM_CGROUP_TARGET_SOFTLIMIT:
755			next = val + SOFTLIMIT_EVENTS_TARGET;
756			break;
757		case MEM_CGROUP_TARGET_NUMAINFO:
758			next = val + NUMAINFO_EVENTS_TARGET;
759			break;
760		default:
761			break;
762		}
763		__this_cpu_write(memcg->stat->targets[target], next);
764		return true;
765	}
766	return false;
767}
768
769/*
770 * Check events in order.
771 *
772 */
773static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774{
775	preempt_disable();
776	/* threshold event is triggered in finer grain than soft limit */
777	if (unlikely(mem_cgroup_event_ratelimit(memcg,
778						MEM_CGROUP_TARGET_THRESH))) {
779		bool do_softlimit, do_numainfo;
780
781		do_softlimit = mem_cgroup_event_ratelimit(memcg,
782						MEM_CGROUP_TARGET_SOFTLIMIT);
783#if MAX_NUMNODES > 1
784		do_numainfo = mem_cgroup_event_ratelimit(memcg,
785						MEM_CGROUP_TARGET_NUMAINFO);
786#endif
787		preempt_enable();
788
789		mem_cgroup_threshold(memcg);
790		if (unlikely(do_softlimit))
791			mem_cgroup_update_tree(memcg, page);
792#if MAX_NUMNODES > 1
793		if (unlikely(do_numainfo))
794			atomic_inc(&memcg->numainfo_events);
795#endif
796	} else
797		preempt_enable();
798}
799
800struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
801{
802	return container_of(cgroup_subsys_state(cont,
803				mem_cgroup_subsys_id), struct mem_cgroup,
804				css);
805}
806
807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808{
809	/*
810	 * mm_update_next_owner() may clear mm->owner to NULL
811	 * if it races with swapoff, page migration, etc.
812	 * So this can be called with p == NULL.
813	 */
814	if (unlikely(!p))
815		return NULL;
816
817	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818				struct mem_cgroup, css);
819}
820
821struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822{
823	struct mem_cgroup *memcg = NULL;
824
825	if (!mm)
826		return NULL;
827	/*
828	 * Because we have no locks, mm->owner's may be being moved to other
829	 * cgroup. We use css_tryget() here even if this looks
830	 * pessimistic (rather than adding locks here).
831	 */
832	rcu_read_lock();
833	do {
834		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835		if (unlikely(!memcg))
836			break;
837	} while (!css_tryget(&memcg->css));
838	rcu_read_unlock();
839	return memcg;
840}
841
842/**
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 *
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
850 *
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
854 *
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
858 */
859struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860				   struct mem_cgroup *prev,
861				   struct mem_cgroup_reclaim_cookie *reclaim)
862{
863	struct mem_cgroup *memcg = NULL;
864	int id = 0;
865
866	if (mem_cgroup_disabled())
867		return NULL;
868
869	if (!root)
870		root = root_mem_cgroup;
871
872	if (prev && !reclaim)
873		id = css_id(&prev->css);
874
875	if (prev && prev != root)
876		css_put(&prev->css);
877
878	if (!root->use_hierarchy && root != root_mem_cgroup) {
879		if (prev)
880			return NULL;
881		return root;
882	}
883
884	while (!memcg) {
885		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886		struct cgroup_subsys_state *css;
887
888		if (reclaim) {
889			int nid = zone_to_nid(reclaim->zone);
890			int zid = zone_idx(reclaim->zone);
891			struct mem_cgroup_per_zone *mz;
892
893			mz = mem_cgroup_zoneinfo(root, nid, zid);
894			iter = &mz->reclaim_iter[reclaim->priority];
895			if (prev && reclaim->generation != iter->generation)
896				return NULL;
897			id = iter->position;
898		}
899
900		rcu_read_lock();
901		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902		if (css) {
903			if (css == &root->css || css_tryget(css))
904				memcg = container_of(css,
905						     struct mem_cgroup, css);
906		} else
907			id = 0;
908		rcu_read_unlock();
909
910		if (reclaim) {
911			iter->position = id;
912			if (!css)
913				iter->generation++;
914			else if (!prev && memcg)
915				reclaim->generation = iter->generation;
916		}
917
918		if (prev && !css)
919			return NULL;
920	}
921	return memcg;
922}
923
924/**
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928 */
929void mem_cgroup_iter_break(struct mem_cgroup *root,
930			   struct mem_cgroup *prev)
931{
932	if (!root)
933		root = root_mem_cgroup;
934	if (prev && prev != root)
935		css_put(&prev->css);
936}
937
938/*
939 * Iteration constructs for visiting all cgroups (under a tree).  If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943#define for_each_mem_cgroup_tree(iter, root)		\
944	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945	     iter != NULL;				\
946	     iter = mem_cgroup_iter(root, iter, NULL))
947
948#define for_each_mem_cgroup(iter)			\
949	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950	     iter != NULL;				\
951	     iter = mem_cgroup_iter(NULL, iter, NULL))
952
953static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954{
955	return (memcg == root_mem_cgroup);
956}
957
958void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959{
960	struct mem_cgroup *memcg;
961
962	if (!mm)
963		return;
964
965	rcu_read_lock();
966	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967	if (unlikely(!memcg))
968		goto out;
969
970	switch (idx) {
971	case PGFAULT:
972		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973		break;
974	case PGMAJFAULT:
975		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976		break;
977	default:
978		BUG();
979	}
980out:
981	rcu_read_unlock();
982}
983EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
985/**
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
989 *
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem.  This can be the global zone lruvec, if the memory controller
992 * is disabled.
993 */
994struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995				      struct mem_cgroup *memcg)
996{
997	struct mem_cgroup_per_zone *mz;
998
999	if (mem_cgroup_disabled())
1000		return &zone->lruvec;
1001
1002	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003	return &mz->lruvec;
1004}
1005
1006/*
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1010 *
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1018 */
1019
1020/**
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1025 *
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1028 *
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1031 */
1032struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033				       enum lru_list lru)
1034{
1035	struct mem_cgroup_per_zone *mz;
1036	struct mem_cgroup *memcg;
1037	struct page_cgroup *pc;
1038
1039	if (mem_cgroup_disabled())
1040		return &zone->lruvec;
1041
1042	pc = lookup_page_cgroup(page);
1043	memcg = pc->mem_cgroup;
1044	mz = page_cgroup_zoneinfo(memcg, page);
1045	/* compound_order() is stabilized through lru_lock */
1046	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1047	return &mz->lruvec;
1048}
1049
1050/**
1051 * mem_cgroup_lru_del_list - account for removing an lru page
1052 * @page: the page
1053 * @lru: target lru
1054 *
1055 * This function accounts for @page being removed from @lru.
1056 *
1057 * The callsite is then responsible for physically unlinking
1058 * @page->lru.
1059 */
1060void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1061{
1062	struct mem_cgroup_per_zone *mz;
1063	struct mem_cgroup *memcg;
1064	struct page_cgroup *pc;
1065
1066	if (mem_cgroup_disabled())
1067		return;
1068
1069	pc = lookup_page_cgroup(page);
1070	memcg = pc->mem_cgroup;
1071	VM_BUG_ON(!memcg);
1072	mz = page_cgroup_zoneinfo(memcg, page);
1073	/* huge page split is done under lru_lock. so, we have no races. */
1074	VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1075	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1076}
1077
1078void mem_cgroup_lru_del(struct page *page)
1079{
1080	mem_cgroup_lru_del_list(page, page_lru(page));
1081}
1082
1083/**
1084 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1085 * @zone: zone of the page
1086 * @page: the page
1087 * @from: current lru
1088 * @to: target lru
1089 *
1090 * This function accounts for @page being moved between the lrus @from
1091 * and @to, and returns the lruvec for the given @zone and the memcg
1092 * @page is charged to.
1093 *
1094 * The callsite is then responsible for physically relinking
1095 * @page->lru to the returned lruvec->lists[@to].
1096 */
1097struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1098					 struct page *page,
1099					 enum lru_list from,
1100					 enum lru_list to)
1101{
1102	/* XXX: Optimize this, especially for @from == @to */
1103	mem_cgroup_lru_del_list(page, from);
1104	return mem_cgroup_lru_add_list(zone, page, to);
1105}
1106
1107/*
1108 * Checks whether given mem is same or in the root_mem_cgroup's
1109 * hierarchy subtree
1110 */
1111static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1112		struct mem_cgroup *memcg)
1113{
1114	if (root_memcg != memcg) {
1115		return (root_memcg->use_hierarchy &&
1116			css_is_ancestor(&memcg->css, &root_memcg->css));
1117	}
1118
1119	return true;
1120}
1121
1122int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1123{
1124	int ret;
1125	struct mem_cgroup *curr = NULL;
1126	struct task_struct *p;
1127
1128	p = find_lock_task_mm(task);
1129	if (p) {
1130		curr = try_get_mem_cgroup_from_mm(p->mm);
1131		task_unlock(p);
1132	} else {
1133		/*
1134		 * All threads may have already detached their mm's, but the oom
1135		 * killer still needs to detect if they have already been oom
1136		 * killed to prevent needlessly killing additional tasks.
1137		 */
1138		task_lock(task);
1139		curr = mem_cgroup_from_task(task);
1140		if (curr)
1141			css_get(&curr->css);
1142		task_unlock(task);
1143	}
1144	if (!curr)
1145		return 0;
1146	/*
1147	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1148	 * use_hierarchy of "curr" here make this function true if hierarchy is
1149	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1150	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1151	 */
1152	ret = mem_cgroup_same_or_subtree(memcg, curr);
1153	css_put(&curr->css);
1154	return ret;
1155}
1156
1157int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1158{
1159	unsigned long inactive_ratio;
1160	int nid = zone_to_nid(zone);
1161	int zid = zone_idx(zone);
1162	unsigned long inactive;
1163	unsigned long active;
1164	unsigned long gb;
1165
1166	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1167						BIT(LRU_INACTIVE_ANON));
1168	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1169					      BIT(LRU_ACTIVE_ANON));
1170
1171	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1172	if (gb)
1173		inactive_ratio = int_sqrt(10 * gb);
1174	else
1175		inactive_ratio = 1;
1176
1177	return inactive * inactive_ratio < active;
1178}
1179
1180int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1181{
1182	unsigned long active;
1183	unsigned long inactive;
1184	int zid = zone_idx(zone);
1185	int nid = zone_to_nid(zone);
1186
1187	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1188						BIT(LRU_INACTIVE_FILE));
1189	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1190					      BIT(LRU_ACTIVE_FILE));
1191
1192	return (active > inactive);
1193}
1194
1195struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1196						      struct zone *zone)
1197{
1198	int nid = zone_to_nid(zone);
1199	int zid = zone_idx(zone);
1200	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1201
1202	return &mz->reclaim_stat;
1203}
1204
1205struct zone_reclaim_stat *
1206mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1207{
1208	struct page_cgroup *pc;
1209	struct mem_cgroup_per_zone *mz;
1210
1211	if (mem_cgroup_disabled())
1212		return NULL;
1213
1214	pc = lookup_page_cgroup(page);
1215	if (!PageCgroupUsed(pc))
1216		return NULL;
1217	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1218	smp_rmb();
1219	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1220	return &mz->reclaim_stat;
1221}
1222
1223#define mem_cgroup_from_res_counter(counter, member)	\
1224	container_of(counter, struct mem_cgroup, member)
1225
1226/**
1227 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1228 * @mem: the memory cgroup
1229 *
1230 * Returns the maximum amount of memory @mem can be charged with, in
1231 * pages.
1232 */
1233static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1234{
1235	unsigned long long margin;
1236
1237	margin = res_counter_margin(&memcg->res);
1238	if (do_swap_account)
1239		margin = min(margin, res_counter_margin(&memcg->memsw));
1240	return margin >> PAGE_SHIFT;
1241}
1242
1243int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1244{
1245	struct cgroup *cgrp = memcg->css.cgroup;
1246
1247	/* root ? */
1248	if (cgrp->parent == NULL)
1249		return vm_swappiness;
1250
1251	return memcg->swappiness;
1252}
1253
1254static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1255{
1256	int cpu;
1257
1258	get_online_cpus();
1259	spin_lock(&memcg->pcp_counter_lock);
1260	for_each_online_cpu(cpu)
1261		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1262	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1263	spin_unlock(&memcg->pcp_counter_lock);
1264	put_online_cpus();
1265
1266	synchronize_rcu();
1267}
1268
1269static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1270{
1271	int cpu;
1272
1273	if (!memcg)
1274		return;
1275	get_online_cpus();
1276	spin_lock(&memcg->pcp_counter_lock);
1277	for_each_online_cpu(cpu)
1278		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1279	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1280	spin_unlock(&memcg->pcp_counter_lock);
1281	put_online_cpus();
1282}
1283/*
1284 * 2 routines for checking "mem" is under move_account() or not.
1285 *
1286 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1287 *			  for avoiding race in accounting. If true,
1288 *			  pc->mem_cgroup may be overwritten.
1289 *
1290 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1291 *			  under hierarchy of moving cgroups. This is for
1292 *			  waiting at hith-memory prressure caused by "move".
1293 */
1294
1295static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1296{
1297	VM_BUG_ON(!rcu_read_lock_held());
1298	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1299}
1300
1301static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1302{
1303	struct mem_cgroup *from;
1304	struct mem_cgroup *to;
1305	bool ret = false;
1306	/*
1307	 * Unlike task_move routines, we access mc.to, mc.from not under
1308	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1309	 */
1310	spin_lock(&mc.lock);
1311	from = mc.from;
1312	to = mc.to;
1313	if (!from)
1314		goto unlock;
1315
1316	ret = mem_cgroup_same_or_subtree(memcg, from)
1317		|| mem_cgroup_same_or_subtree(memcg, to);
1318unlock:
1319	spin_unlock(&mc.lock);
1320	return ret;
1321}
1322
1323static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1324{
1325	if (mc.moving_task && current != mc.moving_task) {
1326		if (mem_cgroup_under_move(memcg)) {
1327			DEFINE_WAIT(wait);
1328			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1329			/* moving charge context might have finished. */
1330			if (mc.moving_task)
1331				schedule();
1332			finish_wait(&mc.waitq, &wait);
1333			return true;
1334		}
1335	}
1336	return false;
1337}
1338
1339/**
1340 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1341 * @memcg: The memory cgroup that went over limit
1342 * @p: Task that is going to be killed
1343 *
1344 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1345 * enabled
1346 */
1347void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1348{
1349	struct cgroup *task_cgrp;
1350	struct cgroup *mem_cgrp;
1351	/*
1352	 * Need a buffer in BSS, can't rely on allocations. The code relies
1353	 * on the assumption that OOM is serialized for memory controller.
1354	 * If this assumption is broken, revisit this code.
1355	 */
1356	static char memcg_name[PATH_MAX];
1357	int ret;
1358
1359	if (!memcg || !p)
1360		return;
1361
1362
1363	rcu_read_lock();
1364
1365	mem_cgrp = memcg->css.cgroup;
1366	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1367
1368	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1369	if (ret < 0) {
1370		/*
1371		 * Unfortunately, we are unable to convert to a useful name
1372		 * But we'll still print out the usage information
1373		 */
1374		rcu_read_unlock();
1375		goto done;
1376	}
1377	rcu_read_unlock();
1378
1379	printk(KERN_INFO "Task in %s killed", memcg_name);
1380
1381	rcu_read_lock();
1382	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1383	if (ret < 0) {
1384		rcu_read_unlock();
1385		goto done;
1386	}
1387	rcu_read_unlock();
1388
1389	/*
1390	 * Continues from above, so we don't need an KERN_ level
1391	 */
1392	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1393done:
1394
1395	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1396		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1397		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1398		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1399	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1400		"failcnt %llu\n",
1401		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1402		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1403		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1404}
1405
1406/*
1407 * This function returns the number of memcg under hierarchy tree. Returns
1408 * 1(self count) if no children.
1409 */
1410static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1411{
1412	int num = 0;
1413	struct mem_cgroup *iter;
1414
1415	for_each_mem_cgroup_tree(iter, memcg)
1416		num++;
1417	return num;
1418}
1419
1420/*
1421 * Return the memory (and swap, if configured) limit for a memcg.
1422 */
1423u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1424{
1425	u64 limit;
1426	u64 memsw;
1427
1428	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1429	limit += total_swap_pages << PAGE_SHIFT;
1430
1431	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1432	/*
1433	 * If memsw is finite and limits the amount of swap space available
1434	 * to this memcg, return that limit.
1435	 */
1436	return min(limit, memsw);
1437}
1438
1439static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1440					gfp_t gfp_mask,
1441					unsigned long flags)
1442{
1443	unsigned long total = 0;
1444	bool noswap = false;
1445	int loop;
1446
1447	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1448		noswap = true;
1449	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1450		noswap = true;
1451
1452	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1453		if (loop)
1454			drain_all_stock_async(memcg);
1455		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1456		/*
1457		 * Allow limit shrinkers, which are triggered directly
1458		 * by userspace, to catch signals and stop reclaim
1459		 * after minimal progress, regardless of the margin.
1460		 */
1461		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1462			break;
1463		if (mem_cgroup_margin(memcg))
1464			break;
1465		/*
1466		 * If nothing was reclaimed after two attempts, there
1467		 * may be no reclaimable pages in this hierarchy.
1468		 */
1469		if (loop && !total)
1470			break;
1471	}
1472	return total;
1473}
1474
1475/**
1476 * test_mem_cgroup_node_reclaimable
1477 * @mem: the target memcg
1478 * @nid: the node ID to be checked.
1479 * @noswap : specify true here if the user wants flle only information.
1480 *
1481 * This function returns whether the specified memcg contains any
1482 * reclaimable pages on a node. Returns true if there are any reclaimable
1483 * pages in the node.
1484 */
1485static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1486		int nid, bool noswap)
1487{
1488	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1489		return true;
1490	if (noswap || !total_swap_pages)
1491		return false;
1492	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1493		return true;
1494	return false;
1495
1496}
1497#if MAX_NUMNODES > 1
1498
1499/*
1500 * Always updating the nodemask is not very good - even if we have an empty
1501 * list or the wrong list here, we can start from some node and traverse all
1502 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1503 *
1504 */
1505static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1506{
1507	int nid;
1508	/*
1509	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1510	 * pagein/pageout changes since the last update.
1511	 */
1512	if (!atomic_read(&memcg->numainfo_events))
1513		return;
1514	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1515		return;
1516
1517	/* make a nodemask where this memcg uses memory from */
1518	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1519
1520	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1521
1522		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1523			node_clear(nid, memcg->scan_nodes);
1524	}
1525
1526	atomic_set(&memcg->numainfo_events, 0);
1527	atomic_set(&memcg->numainfo_updating, 0);
1528}
1529
1530/*
1531 * Selecting a node where we start reclaim from. Because what we need is just
1532 * reducing usage counter, start from anywhere is O,K. Considering
1533 * memory reclaim from current node, there are pros. and cons.
1534 *
1535 * Freeing memory from current node means freeing memory from a node which
1536 * we'll use or we've used. So, it may make LRU bad. And if several threads
1537 * hit limits, it will see a contention on a node. But freeing from remote
1538 * node means more costs for memory reclaim because of memory latency.
1539 *
1540 * Now, we use round-robin. Better algorithm is welcomed.
1541 */
1542int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1543{
1544	int node;
1545
1546	mem_cgroup_may_update_nodemask(memcg);
1547	node = memcg->last_scanned_node;
1548
1549	node = next_node(node, memcg->scan_nodes);
1550	if (node == MAX_NUMNODES)
1551		node = first_node(memcg->scan_nodes);
1552	/*
1553	 * We call this when we hit limit, not when pages are added to LRU.
1554	 * No LRU may hold pages because all pages are UNEVICTABLE or
1555	 * memcg is too small and all pages are not on LRU. In that case,
1556	 * we use curret node.
1557	 */
1558	if (unlikely(node == MAX_NUMNODES))
1559		node = numa_node_id();
1560
1561	memcg->last_scanned_node = node;
1562	return node;
1563}
1564
1565/*
1566 * Check all nodes whether it contains reclaimable pages or not.
1567 * For quick scan, we make use of scan_nodes. This will allow us to skip
1568 * unused nodes. But scan_nodes is lazily updated and may not cotain
1569 * enough new information. We need to do double check.
1570 */
1571bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1572{
1573	int nid;
1574
1575	/*
1576	 * quick check...making use of scan_node.
1577	 * We can skip unused nodes.
1578	 */
1579	if (!nodes_empty(memcg->scan_nodes)) {
1580		for (nid = first_node(memcg->scan_nodes);
1581		     nid < MAX_NUMNODES;
1582		     nid = next_node(nid, memcg->scan_nodes)) {
1583
1584			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1585				return true;
1586		}
1587	}
1588	/*
1589	 * Check rest of nodes.
1590	 */
1591	for_each_node_state(nid, N_HIGH_MEMORY) {
1592		if (node_isset(nid, memcg->scan_nodes))
1593			continue;
1594		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1595			return true;
1596	}
1597	return false;
1598}
1599
1600#else
1601int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1602{
1603	return 0;
1604}
1605
1606bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1607{
1608	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1609}
1610#endif
1611
1612static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1613				   struct zone *zone,
1614				   gfp_t gfp_mask,
1615				   unsigned long *total_scanned)
1616{
1617	struct mem_cgroup *victim = NULL;
1618	int total = 0;
1619	int loop = 0;
1620	unsigned long excess;
1621	unsigned long nr_scanned;
1622	struct mem_cgroup_reclaim_cookie reclaim = {
1623		.zone = zone,
1624		.priority = 0,
1625	};
1626
1627	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1628
1629	while (1) {
1630		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1631		if (!victim) {
1632			loop++;
1633			if (loop >= 2) {
1634				/*
1635				 * If we have not been able to reclaim
1636				 * anything, it might because there are
1637				 * no reclaimable pages under this hierarchy
1638				 */
1639				if (!total)
1640					break;
1641				/*
1642				 * We want to do more targeted reclaim.
1643				 * excess >> 2 is not to excessive so as to
1644				 * reclaim too much, nor too less that we keep
1645				 * coming back to reclaim from this cgroup
1646				 */
1647				if (total >= (excess >> 2) ||
1648					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1649					break;
1650			}
1651			continue;
1652		}
1653		if (!mem_cgroup_reclaimable(victim, false))
1654			continue;
1655		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1656						     zone, &nr_scanned);
1657		*total_scanned += nr_scanned;
1658		if (!res_counter_soft_limit_excess(&root_memcg->res))
1659			break;
1660	}
1661	mem_cgroup_iter_break(root_memcg, victim);
1662	return total;
1663}
1664
1665/*
1666 * Check OOM-Killer is already running under our hierarchy.
1667 * If someone is running, return false.
1668 * Has to be called with memcg_oom_lock
1669 */
1670static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1671{
1672	struct mem_cgroup *iter, *failed = NULL;
1673
1674	for_each_mem_cgroup_tree(iter, memcg) {
1675		if (iter->oom_lock) {
1676			/*
1677			 * this subtree of our hierarchy is already locked
1678			 * so we cannot give a lock.
1679			 */
1680			failed = iter;
1681			mem_cgroup_iter_break(memcg, iter);
1682			break;
1683		} else
1684			iter->oom_lock = true;
1685	}
1686
1687	if (!failed)
1688		return true;
1689
1690	/*
1691	 * OK, we failed to lock the whole subtree so we have to clean up
1692	 * what we set up to the failing subtree
1693	 */
1694	for_each_mem_cgroup_tree(iter, memcg) {
1695		if (iter == failed) {
1696			mem_cgroup_iter_break(memcg, iter);
1697			break;
1698		}
1699		iter->oom_lock = false;
1700	}
1701	return false;
1702}
1703
1704/*
1705 * Has to be called with memcg_oom_lock
1706 */
1707static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1708{
1709	struct mem_cgroup *iter;
1710
1711	for_each_mem_cgroup_tree(iter, memcg)
1712		iter->oom_lock = false;
1713	return 0;
1714}
1715
1716static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1717{
1718	struct mem_cgroup *iter;
1719
1720	for_each_mem_cgroup_tree(iter, memcg)
1721		atomic_inc(&iter->under_oom);
1722}
1723
1724static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1725{
1726	struct mem_cgroup *iter;
1727
1728	/*
1729	 * When a new child is created while the hierarchy is under oom,
1730	 * mem_cgroup_oom_lock() may not be called. We have to use
1731	 * atomic_add_unless() here.
1732	 */
1733	for_each_mem_cgroup_tree(iter, memcg)
1734		atomic_add_unless(&iter->under_oom, -1, 0);
1735}
1736
1737static DEFINE_SPINLOCK(memcg_oom_lock);
1738static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1739
1740struct oom_wait_info {
1741	struct mem_cgroup *mem;
1742	wait_queue_t	wait;
1743};
1744
1745static int memcg_oom_wake_function(wait_queue_t *wait,
1746	unsigned mode, int sync, void *arg)
1747{
1748	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1749			  *oom_wait_memcg;
1750	struct oom_wait_info *oom_wait_info;
1751
1752	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1753	oom_wait_memcg = oom_wait_info->mem;
1754
1755	/*
1756	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1757	 * Then we can use css_is_ancestor without taking care of RCU.
1758	 */
1759	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1760		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1761		return 0;
1762	return autoremove_wake_function(wait, mode, sync, arg);
1763}
1764
1765static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1766{
1767	/* for filtering, pass "memcg" as argument. */
1768	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1769}
1770
1771static void memcg_oom_recover(struct mem_cgroup *memcg)
1772{
1773	if (memcg && atomic_read(&memcg->under_oom))
1774		memcg_wakeup_oom(memcg);
1775}
1776
1777/*
1778 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1779 */
1780bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1781{
1782	struct oom_wait_info owait;
1783	bool locked, need_to_kill;
1784
1785	owait.mem = memcg;
1786	owait.wait.flags = 0;
1787	owait.wait.func = memcg_oom_wake_function;
1788	owait.wait.private = current;
1789	INIT_LIST_HEAD(&owait.wait.task_list);
1790	need_to_kill = true;
1791	mem_cgroup_mark_under_oom(memcg);
1792
1793	/* At first, try to OOM lock hierarchy under memcg.*/
1794	spin_lock(&memcg_oom_lock);
1795	locked = mem_cgroup_oom_lock(memcg);
1796	/*
1797	 * Even if signal_pending(), we can't quit charge() loop without
1798	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1799	 * under OOM is always welcomed, use TASK_KILLABLE here.
1800	 */
1801	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1802	if (!locked || memcg->oom_kill_disable)
1803		need_to_kill = false;
1804	if (locked)
1805		mem_cgroup_oom_notify(memcg);
1806	spin_unlock(&memcg_oom_lock);
1807
1808	if (need_to_kill) {
1809		finish_wait(&memcg_oom_waitq, &owait.wait);
1810		mem_cgroup_out_of_memory(memcg, mask);
1811	} else {
1812		schedule();
1813		finish_wait(&memcg_oom_waitq, &owait.wait);
1814	}
1815	spin_lock(&memcg_oom_lock);
1816	if (locked)
1817		mem_cgroup_oom_unlock(memcg);
1818	memcg_wakeup_oom(memcg);
1819	spin_unlock(&memcg_oom_lock);
1820
1821	mem_cgroup_unmark_under_oom(memcg);
1822
1823	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1824		return false;
1825	/* Give chance to dying process */
1826	schedule_timeout_uninterruptible(1);
1827	return true;
1828}
1829
1830/*
1831 * Currently used to update mapped file statistics, but the routine can be
1832 * generalized to update other statistics as well.
1833 *
1834 * Notes: Race condition
1835 *
1836 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1837 * it tends to be costly. But considering some conditions, we doesn't need
1838 * to do so _always_.
1839 *
1840 * Considering "charge", lock_page_cgroup() is not required because all
1841 * file-stat operations happen after a page is attached to radix-tree. There
1842 * are no race with "charge".
1843 *
1844 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1845 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1846 * if there are race with "uncharge". Statistics itself is properly handled
1847 * by flags.
1848 *
1849 * Considering "move", this is an only case we see a race. To make the race
1850 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1851 * possibility of race condition. If there is, we take a lock.
1852 */
1853
1854void mem_cgroup_update_page_stat(struct page *page,
1855				 enum mem_cgroup_page_stat_item idx, int val)
1856{
1857	struct mem_cgroup *memcg;
1858	struct page_cgroup *pc = lookup_page_cgroup(page);
1859	bool need_unlock = false;
1860	unsigned long uninitialized_var(flags);
1861
1862	if (mem_cgroup_disabled())
1863		return;
1864
1865	rcu_read_lock();
1866	memcg = pc->mem_cgroup;
1867	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1868		goto out;
1869	/* pc->mem_cgroup is unstable ? */
1870	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1871		/* take a lock against to access pc->mem_cgroup */
1872		move_lock_page_cgroup(pc, &flags);
1873		need_unlock = true;
1874		memcg = pc->mem_cgroup;
1875		if (!memcg || !PageCgroupUsed(pc))
1876			goto out;
1877	}
1878
1879	switch (idx) {
1880	case MEMCG_NR_FILE_MAPPED:
1881		if (val > 0)
1882			SetPageCgroupFileMapped(pc);
1883		else if (!page_mapped(page))
1884			ClearPageCgroupFileMapped(pc);
1885		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1886		break;
1887	default:
1888		BUG();
1889	}
1890
1891	this_cpu_add(memcg->stat->count[idx], val);
1892
1893out:
1894	if (unlikely(need_unlock))
1895		move_unlock_page_cgroup(pc, &flags);
1896	rcu_read_unlock();
1897	return;
1898}
1899EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1900
1901/*
1902 * size of first charge trial. "32" comes from vmscan.c's magic value.
1903 * TODO: maybe necessary to use big numbers in big irons.
1904 */
1905#define CHARGE_BATCH	32U
1906struct memcg_stock_pcp {
1907	struct mem_cgroup *cached; /* this never be root cgroup */
1908	unsigned int nr_pages;
1909	struct work_struct work;
1910	unsigned long flags;
1911#define FLUSHING_CACHED_CHARGE	(0)
1912};
1913static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1914static DEFINE_MUTEX(percpu_charge_mutex);
1915
1916/*
1917 * Try to consume stocked charge on this cpu. If success, one page is consumed
1918 * from local stock and true is returned. If the stock is 0 or charges from a
1919 * cgroup which is not current target, returns false. This stock will be
1920 * refilled.
1921 */
1922static bool consume_stock(struct mem_cgroup *memcg)
1923{
1924	struct memcg_stock_pcp *stock;
1925	bool ret = true;
1926
1927	stock = &get_cpu_var(memcg_stock);
1928	if (memcg == stock->cached && stock->nr_pages)
1929		stock->nr_pages--;
1930	else /* need to call res_counter_charge */
1931		ret = false;
1932	put_cpu_var(memcg_stock);
1933	return ret;
1934}
1935
1936/*
1937 * Returns stocks cached in percpu to res_counter and reset cached information.
1938 */
1939static void drain_stock(struct memcg_stock_pcp *stock)
1940{
1941	struct mem_cgroup *old = stock->cached;
1942
1943	if (stock->nr_pages) {
1944		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1945
1946		res_counter_uncharge(&old->res, bytes);
1947		if (do_swap_account)
1948			res_counter_uncharge(&old->memsw, bytes);
1949		stock->nr_pages = 0;
1950	}
1951	stock->cached = NULL;
1952}
1953
1954/*
1955 * This must be called under preempt disabled or must be called by
1956 * a thread which is pinned to local cpu.
1957 */
1958static void drain_local_stock(struct work_struct *dummy)
1959{
1960	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1961	drain_stock(stock);
1962	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1963}
1964
1965/*
1966 * Cache charges(val) which is from res_counter, to local per_cpu area.
1967 * This will be consumed by consume_stock() function, later.
1968 */
1969static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1970{
1971	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1972
1973	if (stock->cached != memcg) { /* reset if necessary */
1974		drain_stock(stock);
1975		stock->cached = memcg;
1976	}
1977	stock->nr_pages += nr_pages;
1978	put_cpu_var(memcg_stock);
1979}
1980
1981/*
1982 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1983 * of the hierarchy under it. sync flag says whether we should block
1984 * until the work is done.
1985 */
1986static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
1987{
1988	int cpu, curcpu;
1989
1990	/* Notify other cpus that system-wide "drain" is running */
1991	get_online_cpus();
1992	curcpu = get_cpu();
1993	for_each_online_cpu(cpu) {
1994		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1995		struct mem_cgroup *memcg;
1996
1997		memcg = stock->cached;
1998		if (!memcg || !stock->nr_pages)
1999			continue;
2000		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2001			continue;
2002		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2003			if (cpu == curcpu)
2004				drain_local_stock(&stock->work);
2005			else
2006				schedule_work_on(cpu, &stock->work);
2007		}
2008	}
2009	put_cpu();
2010
2011	if (!sync)
2012		goto out;
2013
2014	for_each_online_cpu(cpu) {
2015		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2016		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2017			flush_work(&stock->work);
2018	}
2019out:
2020 	put_online_cpus();
2021}
2022
2023/*
2024 * Tries to drain stocked charges in other cpus. This function is asynchronous
2025 * and just put a work per cpu for draining localy on each cpu. Caller can
2026 * expects some charges will be back to res_counter later but cannot wait for
2027 * it.
2028 */
2029static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2030{
2031	/*
2032	 * If someone calls draining, avoid adding more kworker runs.
2033	 */
2034	if (!mutex_trylock(&percpu_charge_mutex))
2035		return;
2036	drain_all_stock(root_memcg, false);
2037	mutex_unlock(&percpu_charge_mutex);
2038}
2039
2040/* This is a synchronous drain interface. */
2041static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2042{
2043	/* called when force_empty is called */
2044	mutex_lock(&percpu_charge_mutex);
2045	drain_all_stock(root_memcg, true);
2046	mutex_unlock(&percpu_charge_mutex);
2047}
2048
2049/*
2050 * This function drains percpu counter value from DEAD cpu and
2051 * move it to local cpu. Note that this function can be preempted.
2052 */
2053static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2054{
2055	int i;
2056
2057	spin_lock(&memcg->pcp_counter_lock);
2058	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2059		long x = per_cpu(memcg->stat->count[i], cpu);
2060
2061		per_cpu(memcg->stat->count[i], cpu) = 0;
2062		memcg->nocpu_base.count[i] += x;
2063	}
2064	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2065		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2066
2067		per_cpu(memcg->stat->events[i], cpu) = 0;
2068		memcg->nocpu_base.events[i] += x;
2069	}
2070	/* need to clear ON_MOVE value, works as a kind of lock. */
2071	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2072	spin_unlock(&memcg->pcp_counter_lock);
2073}
2074
2075static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2076{
2077	int idx = MEM_CGROUP_ON_MOVE;
2078
2079	spin_lock(&memcg->pcp_counter_lock);
2080	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2081	spin_unlock(&memcg->pcp_counter_lock);
2082}
2083
2084static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2085					unsigned long action,
2086					void *hcpu)
2087{
2088	int cpu = (unsigned long)hcpu;
2089	struct memcg_stock_pcp *stock;
2090	struct mem_cgroup *iter;
2091
2092	if ((action == CPU_ONLINE)) {
2093		for_each_mem_cgroup(iter)
2094			synchronize_mem_cgroup_on_move(iter, cpu);
2095		return NOTIFY_OK;
2096	}
2097
2098	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2099		return NOTIFY_OK;
2100
2101	for_each_mem_cgroup(iter)
2102		mem_cgroup_drain_pcp_counter(iter, cpu);
2103
2104	stock = &per_cpu(memcg_stock, cpu);
2105	drain_stock(stock);
2106	return NOTIFY_OK;
2107}
2108
2109
2110/* See __mem_cgroup_try_charge() for details */
2111enum {
2112	CHARGE_OK,		/* success */
2113	CHARGE_RETRY,		/* need to retry but retry is not bad */
2114	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2115	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2116	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2117};
2118
2119static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2120				unsigned int nr_pages, bool oom_check)
2121{
2122	unsigned long csize = nr_pages * PAGE_SIZE;
2123	struct mem_cgroup *mem_over_limit;
2124	struct res_counter *fail_res;
2125	unsigned long flags = 0;
2126	int ret;
2127
2128	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2129
2130	if (likely(!ret)) {
2131		if (!do_swap_account)
2132			return CHARGE_OK;
2133		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2134		if (likely(!ret))
2135			return CHARGE_OK;
2136
2137		res_counter_uncharge(&memcg->res, csize);
2138		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2139		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2140	} else
2141		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2142	/*
2143	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2144	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2145	 *
2146	 * Never reclaim on behalf of optional batching, retry with a
2147	 * single page instead.
2148	 */
2149	if (nr_pages == CHARGE_BATCH)
2150		return CHARGE_RETRY;
2151
2152	if (!(gfp_mask & __GFP_WAIT))
2153		return CHARGE_WOULDBLOCK;
2154
2155	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2156	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2157		return CHARGE_RETRY;
2158	/*
2159	 * Even though the limit is exceeded at this point, reclaim
2160	 * may have been able to free some pages.  Retry the charge
2161	 * before killing the task.
2162	 *
2163	 * Only for regular pages, though: huge pages are rather
2164	 * unlikely to succeed so close to the limit, and we fall back
2165	 * to regular pages anyway in case of failure.
2166	 */
2167	if (nr_pages == 1 && ret)
2168		return CHARGE_RETRY;
2169
2170	/*
2171	 * At task move, charge accounts can be doubly counted. So, it's
2172	 * better to wait until the end of task_move if something is going on.
2173	 */
2174	if (mem_cgroup_wait_acct_move(mem_over_limit))
2175		return CHARGE_RETRY;
2176
2177	/* If we don't need to call oom-killer at el, return immediately */
2178	if (!oom_check)
2179		return CHARGE_NOMEM;
2180	/* check OOM */
2181	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2182		return CHARGE_OOM_DIE;
2183
2184	return CHARGE_RETRY;
2185}
2186
2187/*
2188 * __mem_cgroup_try_charge() does
2189 * 1. detect memcg to be charged against from passed *mm and *ptr,
2190 * 2. update res_counter
2191 * 3. call memory reclaim if necessary.
2192 *
2193 * In some special case, if the task is fatal, fatal_signal_pending() or
2194 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2195 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2196 * as possible without any hazards. 2: all pages should have a valid
2197 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2198 * pointer, that is treated as a charge to root_mem_cgroup.
2199 *
2200 * So __mem_cgroup_try_charge() will return
2201 *  0       ...  on success, filling *ptr with a valid memcg pointer.
2202 *  -ENOMEM ...  charge failure because of resource limits.
2203 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2204 *
2205 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2206 * the oom-killer can be invoked.
2207 */
2208static int __mem_cgroup_try_charge(struct mm_struct *mm,
2209				   gfp_t gfp_mask,
2210				   unsigned int nr_pages,
2211				   struct mem_cgroup **ptr,
2212				   bool oom)
2213{
2214	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2215	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2216	struct mem_cgroup *memcg = NULL;
2217	int ret;
2218
2219	/*
2220	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2221	 * in system level. So, allow to go ahead dying process in addition to
2222	 * MEMDIE process.
2223	 */
2224	if (unlikely(test_thread_flag(TIF_MEMDIE)
2225		     || fatal_signal_pending(current)))
2226		goto bypass;
2227
2228	/*
2229	 * We always charge the cgroup the mm_struct belongs to.
2230	 * The mm_struct's mem_cgroup changes on task migration if the
2231	 * thread group leader migrates. It's possible that mm is not
2232	 * set, if so charge the init_mm (happens for pagecache usage).
2233	 */
2234	if (!*ptr && !mm)
2235		*ptr = root_mem_cgroup;
2236again:
2237	if (*ptr) { /* css should be a valid one */
2238		memcg = *ptr;
2239		VM_BUG_ON(css_is_removed(&memcg->css));
2240		if (mem_cgroup_is_root(memcg))
2241			goto done;
2242		if (nr_pages == 1 && consume_stock(memcg))
2243			goto done;
2244		css_get(&memcg->css);
2245	} else {
2246		struct task_struct *p;
2247
2248		rcu_read_lock();
2249		p = rcu_dereference(mm->owner);
2250		/*
2251		 * Because we don't have task_lock(), "p" can exit.
2252		 * In that case, "memcg" can point to root or p can be NULL with
2253		 * race with swapoff. Then, we have small risk of mis-accouning.
2254		 * But such kind of mis-account by race always happens because
2255		 * we don't have cgroup_mutex(). It's overkill and we allo that
2256		 * small race, here.
2257		 * (*) swapoff at el will charge against mm-struct not against
2258		 * task-struct. So, mm->owner can be NULL.
2259		 */
2260		memcg = mem_cgroup_from_task(p);
2261		if (!memcg)
2262			memcg = root_mem_cgroup;
2263		if (mem_cgroup_is_root(memcg)) {
2264			rcu_read_unlock();
2265			goto done;
2266		}
2267		if (nr_pages == 1 && consume_stock(memcg)) {
2268			/*
2269			 * It seems dagerous to access memcg without css_get().
2270			 * But considering how consume_stok works, it's not
2271			 * necessary. If consume_stock success, some charges
2272			 * from this memcg are cached on this cpu. So, we
2273			 * don't need to call css_get()/css_tryget() before
2274			 * calling consume_stock().
2275			 */
2276			rcu_read_unlock();
2277			goto done;
2278		}
2279		/* after here, we may be blocked. we need to get refcnt */
2280		if (!css_tryget(&memcg->css)) {
2281			rcu_read_unlock();
2282			goto again;
2283		}
2284		rcu_read_unlock();
2285	}
2286
2287	do {
2288		bool oom_check;
2289
2290		/* If killed, bypass charge */
2291		if (fatal_signal_pending(current)) {
2292			css_put(&memcg->css);
2293			goto bypass;
2294		}
2295
2296		oom_check = false;
2297		if (oom && !nr_oom_retries) {
2298			oom_check = true;
2299			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2300		}
2301
2302		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2303		switch (ret) {
2304		case CHARGE_OK:
2305			break;
2306		case CHARGE_RETRY: /* not in OOM situation but retry */
2307			batch = nr_pages;
2308			css_put(&memcg->css);
2309			memcg = NULL;
2310			goto again;
2311		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2312			css_put(&memcg->css);
2313			goto nomem;
2314		case CHARGE_NOMEM: /* OOM routine works */
2315			if (!oom) {
2316				css_put(&memcg->css);
2317				goto nomem;
2318			}
2319			/* If oom, we never return -ENOMEM */
2320			nr_oom_retries--;
2321			break;
2322		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2323			css_put(&memcg->css);
2324			goto bypass;
2325		}
2326	} while (ret != CHARGE_OK);
2327
2328	if (batch > nr_pages)
2329		refill_stock(memcg, batch - nr_pages);
2330	css_put(&memcg->css);
2331done:
2332	*ptr = memcg;
2333	return 0;
2334nomem:
2335	*ptr = NULL;
2336	return -ENOMEM;
2337bypass:
2338	*ptr = root_mem_cgroup;
2339	return -EINTR;
2340}
2341
2342/*
2343 * Somemtimes we have to undo a charge we got by try_charge().
2344 * This function is for that and do uncharge, put css's refcnt.
2345 * gotten by try_charge().
2346 */
2347static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2348				       unsigned int nr_pages)
2349{
2350	if (!mem_cgroup_is_root(memcg)) {
2351		unsigned long bytes = nr_pages * PAGE_SIZE;
2352
2353		res_counter_uncharge(&memcg->res, bytes);
2354		if (do_swap_account)
2355			res_counter_uncharge(&memcg->memsw, bytes);
2356	}
2357}
2358
2359/*
2360 * A helper function to get mem_cgroup from ID. must be called under
2361 * rcu_read_lock(). The caller must check css_is_removed() or some if
2362 * it's concern. (dropping refcnt from swap can be called against removed
2363 * memcg.)
2364 */
2365static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2366{
2367	struct cgroup_subsys_state *css;
2368
2369	/* ID 0 is unused ID */
2370	if (!id)
2371		return NULL;
2372	css = css_lookup(&mem_cgroup_subsys, id);
2373	if (!css)
2374		return NULL;
2375	return container_of(css, struct mem_cgroup, css);
2376}
2377
2378struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2379{
2380	struct mem_cgroup *memcg = NULL;
2381	struct page_cgroup *pc;
2382	unsigned short id;
2383	swp_entry_t ent;
2384
2385	VM_BUG_ON(!PageLocked(page));
2386
2387	pc = lookup_page_cgroup(page);
2388	lock_page_cgroup(pc);
2389	if (PageCgroupUsed(pc)) {
2390		memcg = pc->mem_cgroup;
2391		if (memcg && !css_tryget(&memcg->css))
2392			memcg = NULL;
2393	} else if (PageSwapCache(page)) {
2394		ent.val = page_private(page);
2395		id = lookup_swap_cgroup_id(ent);
2396		rcu_read_lock();
2397		memcg = mem_cgroup_lookup(id);
2398		if (memcg && !css_tryget(&memcg->css))
2399			memcg = NULL;
2400		rcu_read_unlock();
2401	}
2402	unlock_page_cgroup(pc);
2403	return memcg;
2404}
2405
2406static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2407				       struct page *page,
2408				       unsigned int nr_pages,
2409				       struct page_cgroup *pc,
2410				       enum charge_type ctype)
2411{
2412	lock_page_cgroup(pc);
2413	if (unlikely(PageCgroupUsed(pc))) {
2414		unlock_page_cgroup(pc);
2415		__mem_cgroup_cancel_charge(memcg, nr_pages);
2416		return;
2417	}
2418	/*
2419	 * we don't need page_cgroup_lock about tail pages, becase they are not
2420	 * accessed by any other context at this point.
2421	 */
2422	pc->mem_cgroup = memcg;
2423	/*
2424	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2425	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2426	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2427	 * before USED bit, we need memory barrier here.
2428	 * See mem_cgroup_add_lru_list(), etc.
2429 	 */
2430	smp_wmb();
2431	switch (ctype) {
2432	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2433	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2434		SetPageCgroupCache(pc);
2435		SetPageCgroupUsed(pc);
2436		break;
2437	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2438		ClearPageCgroupCache(pc);
2439		SetPageCgroupUsed(pc);
2440		break;
2441	default:
2442		break;
2443	}
2444
2445	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2446	unlock_page_cgroup(pc);
2447	WARN_ON_ONCE(PageLRU(page));
2448	/*
2449	 * "charge_statistics" updated event counter. Then, check it.
2450	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2451	 * if they exceeds softlimit.
2452	 */
2453	memcg_check_events(memcg, page);
2454}
2455
2456#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2457
2458#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2459			(1 << PCG_MIGRATION))
2460/*
2461 * Because tail pages are not marked as "used", set it. We're under
2462 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2463 * charge/uncharge will be never happen and move_account() is done under
2464 * compound_lock(), so we don't have to take care of races.
2465 */
2466void mem_cgroup_split_huge_fixup(struct page *head)
2467{
2468	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2469	struct page_cgroup *pc;
2470	int i;
2471
2472	if (mem_cgroup_disabled())
2473		return;
2474	for (i = 1; i < HPAGE_PMD_NR; i++) {
2475		pc = head_pc + i;
2476		pc->mem_cgroup = head_pc->mem_cgroup;
2477		smp_wmb();/* see __commit_charge() */
2478		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2479	}
2480}
2481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2482
2483/**
2484 * mem_cgroup_move_account - move account of the page
2485 * @page: the page
2486 * @nr_pages: number of regular pages (>1 for huge pages)
2487 * @pc:	page_cgroup of the page.
2488 * @from: mem_cgroup which the page is moved from.
2489 * @to:	mem_cgroup which the page is moved to. @from != @to.
2490 * @uncharge: whether we should call uncharge and css_put against @from.
2491 *
2492 * The caller must confirm following.
2493 * - page is not on LRU (isolate_page() is useful.)
2494 * - compound_lock is held when nr_pages > 1
2495 *
2496 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2497 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2498 * true, this function does "uncharge" from old cgroup, but it doesn't if
2499 * @uncharge is false, so a caller should do "uncharge".
2500 */
2501static int mem_cgroup_move_account(struct page *page,
2502				   unsigned int nr_pages,
2503				   struct page_cgroup *pc,
2504				   struct mem_cgroup *from,
2505				   struct mem_cgroup *to,
2506				   bool uncharge)
2507{
2508	unsigned long flags;
2509	int ret;
2510
2511	VM_BUG_ON(from == to);
2512	VM_BUG_ON(PageLRU(page));
2513	/*
2514	 * The page is isolated from LRU. So, collapse function
2515	 * will not handle this page. But page splitting can happen.
2516	 * Do this check under compound_page_lock(). The caller should
2517	 * hold it.
2518	 */
2519	ret = -EBUSY;
2520	if (nr_pages > 1 && !PageTransHuge(page))
2521		goto out;
2522
2523	lock_page_cgroup(pc);
2524
2525	ret = -EINVAL;
2526	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2527		goto unlock;
2528
2529	move_lock_page_cgroup(pc, &flags);
2530
2531	if (PageCgroupFileMapped(pc)) {
2532		/* Update mapped_file data for mem_cgroup */
2533		preempt_disable();
2534		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2535		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2536		preempt_enable();
2537	}
2538	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2539	if (uncharge)
2540		/* This is not "cancel", but cancel_charge does all we need. */
2541		__mem_cgroup_cancel_charge(from, nr_pages);
2542
2543	/* caller should have done css_get */
2544	pc->mem_cgroup = to;
2545	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2546	/*
2547	 * We charges against "to" which may not have any tasks. Then, "to"
2548	 * can be under rmdir(). But in current implementation, caller of
2549	 * this function is just force_empty() and move charge, so it's
2550	 * guaranteed that "to" is never removed. So, we don't check rmdir
2551	 * status here.
2552	 */
2553	move_unlock_page_cgroup(pc, &flags);
2554	ret = 0;
2555unlock:
2556	unlock_page_cgroup(pc);
2557	/*
2558	 * check events
2559	 */
2560	memcg_check_events(to, page);
2561	memcg_check_events(from, page);
2562out:
2563	return ret;
2564}
2565
2566/*
2567 * move charges to its parent.
2568 */
2569
2570static int mem_cgroup_move_parent(struct page *page,
2571				  struct page_cgroup *pc,
2572				  struct mem_cgroup *child,
2573				  gfp_t gfp_mask)
2574{
2575	struct cgroup *cg = child->css.cgroup;
2576	struct cgroup *pcg = cg->parent;
2577	struct mem_cgroup *parent;
2578	unsigned int nr_pages;
2579	unsigned long uninitialized_var(flags);
2580	int ret;
2581
2582	/* Is ROOT ? */
2583	if (!pcg)
2584		return -EINVAL;
2585
2586	ret = -EBUSY;
2587	if (!get_page_unless_zero(page))
2588		goto out;
2589	if (isolate_lru_page(page))
2590		goto put;
2591
2592	nr_pages = hpage_nr_pages(page);
2593
2594	parent = mem_cgroup_from_cont(pcg);
2595	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2596	if (ret)
2597		goto put_back;
2598
2599	if (nr_pages > 1)
2600		flags = compound_lock_irqsave(page);
2601
2602	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2603	if (ret)
2604		__mem_cgroup_cancel_charge(parent, nr_pages);
2605
2606	if (nr_pages > 1)
2607		compound_unlock_irqrestore(page, flags);
2608put_back:
2609	putback_lru_page(page);
2610put:
2611	put_page(page);
2612out:
2613	return ret;
2614}
2615
2616/*
2617 * Charge the memory controller for page usage.
2618 * Return
2619 * 0 if the charge was successful
2620 * < 0 if the cgroup is over its limit
2621 */
2622static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2623				gfp_t gfp_mask, enum charge_type ctype)
2624{
2625	struct mem_cgroup *memcg = NULL;
2626	unsigned int nr_pages = 1;
2627	struct page_cgroup *pc;
2628	bool oom = true;
2629	int ret;
2630
2631	if (PageTransHuge(page)) {
2632		nr_pages <<= compound_order(page);
2633		VM_BUG_ON(!PageTransHuge(page));
2634		/*
2635		 * Never OOM-kill a process for a huge page.  The
2636		 * fault handler will fall back to regular pages.
2637		 */
2638		oom = false;
2639	}
2640
2641	pc = lookup_page_cgroup(page);
2642	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2643	if (ret == -ENOMEM)
2644		return ret;
2645	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2646	return 0;
2647}
2648
2649int mem_cgroup_newpage_charge(struct page *page,
2650			      struct mm_struct *mm, gfp_t gfp_mask)
2651{
2652	if (mem_cgroup_disabled())
2653		return 0;
2654	VM_BUG_ON(page_mapped(page));
2655	VM_BUG_ON(page->mapping && !PageAnon(page));
2656	VM_BUG_ON(!mm);
2657	return mem_cgroup_charge_common(page, mm, gfp_mask,
2658					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2659}
2660
2661static void
2662__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2663					enum charge_type ctype);
2664
2665static void
2666__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2667					enum charge_type ctype)
2668{
2669	struct page_cgroup *pc = lookup_page_cgroup(page);
2670	struct zone *zone = page_zone(page);
2671	unsigned long flags;
2672	bool removed = false;
2673
2674	/*
2675	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2676	 * is already on LRU. It means the page may on some other page_cgroup's
2677	 * LRU. Take care of it.
2678	 */
2679	spin_lock_irqsave(&zone->lru_lock, flags);
2680	if (PageLRU(page)) {
2681		del_page_from_lru_list(zone, page, page_lru(page));
2682		ClearPageLRU(page);
2683		removed = true;
2684	}
2685	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2686	if (removed) {
2687		add_page_to_lru_list(zone, page, page_lru(page));
2688		SetPageLRU(page);
2689	}
2690	spin_unlock_irqrestore(&zone->lru_lock, flags);
2691	return;
2692}
2693
2694int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2695				gfp_t gfp_mask)
2696{
2697	struct mem_cgroup *memcg = NULL;
2698	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2699	int ret;
2700
2701	if (mem_cgroup_disabled())
2702		return 0;
2703	if (PageCompound(page))
2704		return 0;
2705
2706	if (unlikely(!mm))
2707		mm = &init_mm;
2708	if (!page_is_file_cache(page))
2709		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2710
2711	if (!PageSwapCache(page))
2712		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2713	else { /* page is swapcache/shmem */
2714		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2715		if (!ret)
2716			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2717	}
2718	return ret;
2719}
2720
2721/*
2722 * While swap-in, try_charge -> commit or cancel, the page is locked.
2723 * And when try_charge() successfully returns, one refcnt to memcg without
2724 * struct page_cgroup is acquired. This refcnt will be consumed by
2725 * "commit()" or removed by "cancel()"
2726 */
2727int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2728				 struct page *page,
2729				 gfp_t mask, struct mem_cgroup **memcgp)
2730{
2731	struct mem_cgroup *memcg;
2732	int ret;
2733
2734	*memcgp = NULL;
2735
2736	if (mem_cgroup_disabled())
2737		return 0;
2738
2739	if (!do_swap_account)
2740		goto charge_cur_mm;
2741	/*
2742	 * A racing thread's fault, or swapoff, may have already updated
2743	 * the pte, and even removed page from swap cache: in those cases
2744	 * do_swap_page()'s pte_same() test will fail; but there's also a
2745	 * KSM case which does need to charge the page.
2746	 */
2747	if (!PageSwapCache(page))
2748		goto charge_cur_mm;
2749	memcg = try_get_mem_cgroup_from_page(page);
2750	if (!memcg)
2751		goto charge_cur_mm;
2752	*memcgp = memcg;
2753	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2754	css_put(&memcg->css);
2755	if (ret == -EINTR)
2756		ret = 0;
2757	return ret;
2758charge_cur_mm:
2759	if (unlikely(!mm))
2760		mm = &init_mm;
2761	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2762	if (ret == -EINTR)
2763		ret = 0;
2764	return ret;
2765}
2766
2767static void
2768__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2769					enum charge_type ctype)
2770{
2771	if (mem_cgroup_disabled())
2772		return;
2773	if (!memcg)
2774		return;
2775	cgroup_exclude_rmdir(&memcg->css);
2776
2777	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2778	/*
2779	 * Now swap is on-memory. This means this page may be
2780	 * counted both as mem and swap....double count.
2781	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2782	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2783	 * may call delete_from_swap_cache() before reach here.
2784	 */
2785	if (do_swap_account && PageSwapCache(page)) {
2786		swp_entry_t ent = {.val = page_private(page)};
2787		struct mem_cgroup *swap_memcg;
2788		unsigned short id;
2789
2790		id = swap_cgroup_record(ent, 0);
2791		rcu_read_lock();
2792		swap_memcg = mem_cgroup_lookup(id);
2793		if (swap_memcg) {
2794			/*
2795			 * This recorded memcg can be obsolete one. So, avoid
2796			 * calling css_tryget
2797			 */
2798			if (!mem_cgroup_is_root(swap_memcg))
2799				res_counter_uncharge(&swap_memcg->memsw,
2800						     PAGE_SIZE);
2801			mem_cgroup_swap_statistics(swap_memcg, false);
2802			mem_cgroup_put(swap_memcg);
2803		}
2804		rcu_read_unlock();
2805	}
2806	/*
2807	 * At swapin, we may charge account against cgroup which has no tasks.
2808	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2809	 * In that case, we need to call pre_destroy() again. check it here.
2810	 */
2811	cgroup_release_and_wakeup_rmdir(&memcg->css);
2812}
2813
2814void mem_cgroup_commit_charge_swapin(struct page *page,
2815				     struct mem_cgroup *memcg)
2816{
2817	__mem_cgroup_commit_charge_swapin(page, memcg,
2818					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2819}
2820
2821void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2822{
2823	if (mem_cgroup_disabled())
2824		return;
2825	if (!memcg)
2826		return;
2827	__mem_cgroup_cancel_charge(memcg, 1);
2828}
2829
2830static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2831				   unsigned int nr_pages,
2832				   const enum charge_type ctype)
2833{
2834	struct memcg_batch_info *batch = NULL;
2835	bool uncharge_memsw = true;
2836
2837	/* If swapout, usage of swap doesn't decrease */
2838	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2839		uncharge_memsw = false;
2840
2841	batch = &current->memcg_batch;
2842	/*
2843	 * In usual, we do css_get() when we remember memcg pointer.
2844	 * But in this case, we keep res->usage until end of a series of
2845	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2846	 */
2847	if (!batch->memcg)
2848		batch->memcg = memcg;
2849	/*
2850	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2851	 * In those cases, all pages freed continuously can be expected to be in
2852	 * the same cgroup and we have chance to coalesce uncharges.
2853	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2854	 * because we want to do uncharge as soon as possible.
2855	 */
2856
2857	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2858		goto direct_uncharge;
2859
2860	if (nr_pages > 1)
2861		goto direct_uncharge;
2862
2863	/*
2864	 * In typical case, batch->memcg == mem. This means we can
2865	 * merge a series of uncharges to an uncharge of res_counter.
2866	 * If not, we uncharge res_counter ony by one.
2867	 */
2868	if (batch->memcg != memcg)
2869		goto direct_uncharge;
2870	/* remember freed charge and uncharge it later */
2871	batch->nr_pages++;
2872	if (uncharge_memsw)
2873		batch->memsw_nr_pages++;
2874	return;
2875direct_uncharge:
2876	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2877	if (uncharge_memsw)
2878		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2879	if (unlikely(batch->memcg != memcg))
2880		memcg_oom_recover(memcg);
2881	return;
2882}
2883
2884/*
2885 * uncharge if !page_mapped(page)
2886 */
2887static struct mem_cgroup *
2888__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2889{
2890	struct mem_cgroup *memcg = NULL;
2891	unsigned int nr_pages = 1;
2892	struct page_cgroup *pc;
2893
2894	if (mem_cgroup_disabled())
2895		return NULL;
2896
2897	if (PageSwapCache(page))
2898		return NULL;
2899
2900	if (PageTransHuge(page)) {
2901		nr_pages <<= compound_order(page);
2902		VM_BUG_ON(!PageTransHuge(page));
2903	}
2904	/*
2905	 * Check if our page_cgroup is valid
2906	 */
2907	pc = lookup_page_cgroup(page);
2908	if (unlikely(!PageCgroupUsed(pc)))
2909		return NULL;
2910
2911	lock_page_cgroup(pc);
2912
2913	memcg = pc->mem_cgroup;
2914
2915	if (!PageCgroupUsed(pc))
2916		goto unlock_out;
2917
2918	switch (ctype) {
2919	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2920	case MEM_CGROUP_CHARGE_TYPE_DROP:
2921		/* See mem_cgroup_prepare_migration() */
2922		if (page_mapped(page) || PageCgroupMigration(pc))
2923			goto unlock_out;
2924		break;
2925	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2926		if (!PageAnon(page)) {	/* Shared memory */
2927			if (page->mapping && !page_is_file_cache(page))
2928				goto unlock_out;
2929		} else if (page_mapped(page)) /* Anon */
2930				goto unlock_out;
2931		break;
2932	default:
2933		break;
2934	}
2935
2936	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
2937
2938	ClearPageCgroupUsed(pc);
2939	/*
2940	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2941	 * freed from LRU. This is safe because uncharged page is expected not
2942	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2943	 * special functions.
2944	 */
2945
2946	unlock_page_cgroup(pc);
2947	/*
2948	 * even after unlock, we have memcg->res.usage here and this memcg
2949	 * will never be freed.
2950	 */
2951	memcg_check_events(memcg, page);
2952	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2953		mem_cgroup_swap_statistics(memcg, true);
2954		mem_cgroup_get(memcg);
2955	}
2956	if (!mem_cgroup_is_root(memcg))
2957		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2958
2959	return memcg;
2960
2961unlock_out:
2962	unlock_page_cgroup(pc);
2963	return NULL;
2964}
2965
2966void mem_cgroup_uncharge_page(struct page *page)
2967{
2968	/* early check. */
2969	if (page_mapped(page))
2970		return;
2971	VM_BUG_ON(page->mapping && !PageAnon(page));
2972	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2973}
2974
2975void mem_cgroup_uncharge_cache_page(struct page *page)
2976{
2977	VM_BUG_ON(page_mapped(page));
2978	VM_BUG_ON(page->mapping);
2979	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2980}
2981
2982/*
2983 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2984 * In that cases, pages are freed continuously and we can expect pages
2985 * are in the same memcg. All these calls itself limits the number of
2986 * pages freed at once, then uncharge_start/end() is called properly.
2987 * This may be called prural(2) times in a context,
2988 */
2989
2990void mem_cgroup_uncharge_start(void)
2991{
2992	current->memcg_batch.do_batch++;
2993	/* We can do nest. */
2994	if (current->memcg_batch.do_batch == 1) {
2995		current->memcg_batch.memcg = NULL;
2996		current->memcg_batch.nr_pages = 0;
2997		current->memcg_batch.memsw_nr_pages = 0;
2998	}
2999}
3000
3001void mem_cgroup_uncharge_end(void)
3002{
3003	struct memcg_batch_info *batch = &current->memcg_batch;
3004
3005	if (!batch->do_batch)
3006		return;
3007
3008	batch->do_batch--;
3009	if (batch->do_batch) /* If stacked, do nothing. */
3010		return;
3011
3012	if (!batch->memcg)
3013		return;
3014	/*
3015	 * This "batch->memcg" is valid without any css_get/put etc...
3016	 * bacause we hide charges behind us.
3017	 */
3018	if (batch->nr_pages)
3019		res_counter_uncharge(&batch->memcg->res,
3020				     batch->nr_pages * PAGE_SIZE);
3021	if (batch->memsw_nr_pages)
3022		res_counter_uncharge(&batch->memcg->memsw,
3023				     batch->memsw_nr_pages * PAGE_SIZE);
3024	memcg_oom_recover(batch->memcg);
3025	/* forget this pointer (for sanity check) */
3026	batch->memcg = NULL;
3027}
3028
3029/*
3030 * A function for resetting pc->mem_cgroup for newly allocated pages.
3031 * This function should be called if the newpage will be added to LRU
3032 * before start accounting.
3033 */
3034void mem_cgroup_reset_owner(struct page *newpage)
3035{
3036	struct page_cgroup *pc;
3037
3038	if (mem_cgroup_disabled())
3039		return;
3040
3041	pc = lookup_page_cgroup(newpage);
3042	VM_BUG_ON(PageCgroupUsed(pc));
3043	pc->mem_cgroup = root_mem_cgroup;
3044}
3045
3046#ifdef CONFIG_SWAP
3047/*
3048 * called after __delete_from_swap_cache() and drop "page" account.
3049 * memcg information is recorded to swap_cgroup of "ent"
3050 */
3051void
3052mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3053{
3054	struct mem_cgroup *memcg;
3055	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3056
3057	if (!swapout) /* this was a swap cache but the swap is unused ! */
3058		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3059
3060	memcg = __mem_cgroup_uncharge_common(page, ctype);
3061
3062	/*
3063	 * record memcg information,  if swapout && memcg != NULL,
3064	 * mem_cgroup_get() was called in uncharge().
3065	 */
3066	if (do_swap_account && swapout && memcg)
3067		swap_cgroup_record(ent, css_id(&memcg->css));
3068}
3069#endif
3070
3071#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3072/*
3073 * called from swap_entry_free(). remove record in swap_cgroup and
3074 * uncharge "memsw" account.
3075 */
3076void mem_cgroup_uncharge_swap(swp_entry_t ent)
3077{
3078	struct mem_cgroup *memcg;
3079	unsigned short id;
3080
3081	if (!do_swap_account)
3082		return;
3083
3084	id = swap_cgroup_record(ent, 0);
3085	rcu_read_lock();
3086	memcg = mem_cgroup_lookup(id);
3087	if (memcg) {
3088		/*
3089		 * We uncharge this because swap is freed.
3090		 * This memcg can be obsolete one. We avoid calling css_tryget
3091		 */
3092		if (!mem_cgroup_is_root(memcg))
3093			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3094		mem_cgroup_swap_statistics(memcg, false);
3095		mem_cgroup_put(memcg);
3096	}
3097	rcu_read_unlock();
3098}
3099
3100/**
3101 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3102 * @entry: swap entry to be moved
3103 * @from:  mem_cgroup which the entry is moved from
3104 * @to:  mem_cgroup which the entry is moved to
3105 * @need_fixup: whether we should fixup res_counters and refcounts.
3106 *
3107 * It succeeds only when the swap_cgroup's record for this entry is the same
3108 * as the mem_cgroup's id of @from.
3109 *
3110 * Returns 0 on success, -EINVAL on failure.
3111 *
3112 * The caller must have charged to @to, IOW, called res_counter_charge() about
3113 * both res and memsw, and called css_get().
3114 */
3115static int mem_cgroup_move_swap_account(swp_entry_t entry,
3116		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3117{
3118	unsigned short old_id, new_id;
3119
3120	old_id = css_id(&from->css);
3121	new_id = css_id(&to->css);
3122
3123	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3124		mem_cgroup_swap_statistics(from, false);
3125		mem_cgroup_swap_statistics(to, true);
3126		/*
3127		 * This function is only called from task migration context now.
3128		 * It postpones res_counter and refcount handling till the end
3129		 * of task migration(mem_cgroup_clear_mc()) for performance
3130		 * improvement. But we cannot postpone mem_cgroup_get(to)
3131		 * because if the process that has been moved to @to does
3132		 * swap-in, the refcount of @to might be decreased to 0.
3133		 */
3134		mem_cgroup_get(to);
3135		if (need_fixup) {
3136			if (!mem_cgroup_is_root(from))
3137				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3138			mem_cgroup_put(from);
3139			/*
3140			 * we charged both to->res and to->memsw, so we should
3141			 * uncharge to->res.
3142			 */
3143			if (!mem_cgroup_is_root(to))
3144				res_counter_uncharge(&to->res, PAGE_SIZE);
3145		}
3146		return 0;
3147	}
3148	return -EINVAL;
3149}
3150#else
3151static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3152		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3153{
3154	return -EINVAL;
3155}
3156#endif
3157
3158/*
3159 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3160 * page belongs to.
3161 */
3162int mem_cgroup_prepare_migration(struct page *page,
3163	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3164{
3165	struct mem_cgroup *memcg = NULL;
3166	struct page_cgroup *pc;
3167	enum charge_type ctype;
3168	int ret = 0;
3169
3170	*memcgp = NULL;
3171
3172	VM_BUG_ON(PageTransHuge(page));
3173	if (mem_cgroup_disabled())
3174		return 0;
3175
3176	pc = lookup_page_cgroup(page);
3177	lock_page_cgroup(pc);
3178	if (PageCgroupUsed(pc)) {
3179		memcg = pc->mem_cgroup;
3180		css_get(&memcg->css);
3181		/*
3182		 * At migrating an anonymous page, its mapcount goes down
3183		 * to 0 and uncharge() will be called. But, even if it's fully
3184		 * unmapped, migration may fail and this page has to be
3185		 * charged again. We set MIGRATION flag here and delay uncharge
3186		 * until end_migration() is called
3187		 *
3188		 * Corner Case Thinking
3189		 * A)
3190		 * When the old page was mapped as Anon and it's unmap-and-freed
3191		 * while migration was ongoing.
3192		 * If unmap finds the old page, uncharge() of it will be delayed
3193		 * until end_migration(). If unmap finds a new page, it's
3194		 * uncharged when it make mapcount to be 1->0. If unmap code
3195		 * finds swap_migration_entry, the new page will not be mapped
3196		 * and end_migration() will find it(mapcount==0).
3197		 *
3198		 * B)
3199		 * When the old page was mapped but migraion fails, the kernel
3200		 * remaps it. A charge for it is kept by MIGRATION flag even
3201		 * if mapcount goes down to 0. We can do remap successfully
3202		 * without charging it again.
3203		 *
3204		 * C)
3205		 * The "old" page is under lock_page() until the end of
3206		 * migration, so, the old page itself will not be swapped-out.
3207		 * If the new page is swapped out before end_migraton, our
3208		 * hook to usual swap-out path will catch the event.
3209		 */
3210		if (PageAnon(page))
3211			SetPageCgroupMigration(pc);
3212	}
3213	unlock_page_cgroup(pc);
3214	/*
3215	 * If the page is not charged at this point,
3216	 * we return here.
3217	 */
3218	if (!memcg)
3219		return 0;
3220
3221	*memcgp = memcg;
3222	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3223	css_put(&memcg->css);/* drop extra refcnt */
3224	if (ret) {
3225		if (PageAnon(page)) {
3226			lock_page_cgroup(pc);
3227			ClearPageCgroupMigration(pc);
3228			unlock_page_cgroup(pc);
3229			/*
3230			 * The old page may be fully unmapped while we kept it.
3231			 */
3232			mem_cgroup_uncharge_page(page);
3233		}
3234		/* we'll need to revisit this error code (we have -EINTR) */
3235		return -ENOMEM;
3236	}
3237	/*
3238	 * We charge new page before it's used/mapped. So, even if unlock_page()
3239	 * is called before end_migration, we can catch all events on this new
3240	 * page. In the case new page is migrated but not remapped, new page's
3241	 * mapcount will be finally 0 and we call uncharge in end_migration().
3242	 */
3243	pc = lookup_page_cgroup(newpage);
3244	if (PageAnon(page))
3245		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3246	else if (page_is_file_cache(page))
3247		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3248	else
3249		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3250	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3251	return ret;
3252}
3253
3254/* remove redundant charge if migration failed*/
3255void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3256	struct page *oldpage, struct page *newpage, bool migration_ok)
3257{
3258	struct page *used, *unused;
3259	struct page_cgroup *pc;
3260
3261	if (!memcg)
3262		return;
3263	/* blocks rmdir() */
3264	cgroup_exclude_rmdir(&memcg->css);
3265	if (!migration_ok) {
3266		used = oldpage;
3267		unused = newpage;
3268	} else {
3269		used = newpage;
3270		unused = oldpage;
3271	}
3272	/*
3273	 * We disallowed uncharge of pages under migration because mapcount
3274	 * of the page goes down to zero, temporarly.
3275	 * Clear the flag and check the page should be charged.
3276	 */
3277	pc = lookup_page_cgroup(oldpage);
3278	lock_page_cgroup(pc);
3279	ClearPageCgroupMigration(pc);
3280	unlock_page_cgroup(pc);
3281
3282	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3283
3284	/*
3285	 * If a page is a file cache, radix-tree replacement is very atomic
3286	 * and we can skip this check. When it was an Anon page, its mapcount
3287	 * goes down to 0. But because we added MIGRATION flage, it's not
3288	 * uncharged yet. There are several case but page->mapcount check
3289	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3290	 * check. (see prepare_charge() also)
3291	 */
3292	if (PageAnon(used))
3293		mem_cgroup_uncharge_page(used);
3294	/*
3295	 * At migration, we may charge account against cgroup which has no
3296	 * tasks.
3297	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3298	 * In that case, we need to call pre_destroy() again. check it here.
3299	 */
3300	cgroup_release_and_wakeup_rmdir(&memcg->css);
3301}
3302
3303/*
3304 * At replace page cache, newpage is not under any memcg but it's on
3305 * LRU. So, this function doesn't touch res_counter but handles LRU
3306 * in correct way. Both pages are locked so we cannot race with uncharge.
3307 */
3308void mem_cgroup_replace_page_cache(struct page *oldpage,
3309				  struct page *newpage)
3310{
3311	struct mem_cgroup *memcg;
3312	struct page_cgroup *pc;
3313	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3314
3315	if (mem_cgroup_disabled())
3316		return;
3317
3318	pc = lookup_page_cgroup(oldpage);
3319	/* fix accounting on old pages */
3320	lock_page_cgroup(pc);
3321	memcg = pc->mem_cgroup;
3322	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3323	ClearPageCgroupUsed(pc);
3324	unlock_page_cgroup(pc);
3325
3326	if (PageSwapBacked(oldpage))
3327		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3328
3329	/*
3330	 * Even if newpage->mapping was NULL before starting replacement,
3331	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3332	 * LRU while we overwrite pc->mem_cgroup.
3333	 */
3334	__mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3335}
3336
3337#ifdef CONFIG_DEBUG_VM
3338static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3339{
3340	struct page_cgroup *pc;
3341
3342	pc = lookup_page_cgroup(page);
3343	/*
3344	 * Can be NULL while feeding pages into the page allocator for
3345	 * the first time, i.e. during boot or memory hotplug;
3346	 * or when mem_cgroup_disabled().
3347	 */
3348	if (likely(pc) && PageCgroupUsed(pc))
3349		return pc;
3350	return NULL;
3351}
3352
3353bool mem_cgroup_bad_page_check(struct page *page)
3354{
3355	if (mem_cgroup_disabled())
3356		return false;
3357
3358	return lookup_page_cgroup_used(page) != NULL;
3359}
3360
3361void mem_cgroup_print_bad_page(struct page *page)
3362{
3363	struct page_cgroup *pc;
3364
3365	pc = lookup_page_cgroup_used(page);
3366	if (pc) {
3367		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3368		       pc, pc->flags, pc->mem_cgroup);
3369	}
3370}
3371#endif
3372
3373static DEFINE_MUTEX(set_limit_mutex);
3374
3375static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3376				unsigned long long val)
3377{
3378	int retry_count;
3379	u64 memswlimit, memlimit;
3380	int ret = 0;
3381	int children = mem_cgroup_count_children(memcg);
3382	u64 curusage, oldusage;
3383	int enlarge;
3384
3385	/*
3386	 * For keeping hierarchical_reclaim simple, how long we should retry
3387	 * is depends on callers. We set our retry-count to be function
3388	 * of # of children which we should visit in this loop.
3389	 */
3390	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3391
3392	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3393
3394	enlarge = 0;
3395	while (retry_count) {
3396		if (signal_pending(current)) {
3397			ret = -EINTR;
3398			break;
3399		}
3400		/*
3401		 * Rather than hide all in some function, I do this in
3402		 * open coded manner. You see what this really does.
3403		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3404		 */
3405		mutex_lock(&set_limit_mutex);
3406		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3407		if (memswlimit < val) {
3408			ret = -EINVAL;
3409			mutex_unlock(&set_limit_mutex);
3410			break;
3411		}
3412
3413		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3414		if (memlimit < val)
3415			enlarge = 1;
3416
3417		ret = res_counter_set_limit(&memcg->res, val);
3418		if (!ret) {
3419			if (memswlimit == val)
3420				memcg->memsw_is_minimum = true;
3421			else
3422				memcg->memsw_is_minimum = false;
3423		}
3424		mutex_unlock(&set_limit_mutex);
3425
3426		if (!ret)
3427			break;
3428
3429		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3430				   MEM_CGROUP_RECLAIM_SHRINK);
3431		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3432		/* Usage is reduced ? */
3433  		if (curusage >= oldusage)
3434			retry_count--;
3435		else
3436			oldusage = curusage;
3437	}
3438	if (!ret && enlarge)
3439		memcg_oom_recover(memcg);
3440
3441	return ret;
3442}
3443
3444static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3445					unsigned long long val)
3446{
3447	int retry_count;
3448	u64 memlimit, memswlimit, oldusage, curusage;
3449	int children = mem_cgroup_count_children(memcg);
3450	int ret = -EBUSY;
3451	int enlarge = 0;
3452
3453	/* see mem_cgroup_resize_res_limit */
3454 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3455	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3456	while (retry_count) {
3457		if (signal_pending(current)) {
3458			ret = -EINTR;
3459			break;
3460		}
3461		/*
3462		 * Rather than hide all in some function, I do this in
3463		 * open coded manner. You see what this really does.
3464		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3465		 */
3466		mutex_lock(&set_limit_mutex);
3467		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3468		if (memlimit > val) {
3469			ret = -EINVAL;
3470			mutex_unlock(&set_limit_mutex);
3471			break;
3472		}
3473		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3474		if (memswlimit < val)
3475			enlarge = 1;
3476		ret = res_counter_set_limit(&memcg->memsw, val);
3477		if (!ret) {
3478			if (memlimit == val)
3479				memcg->memsw_is_minimum = true;
3480			else
3481				memcg->memsw_is_minimum = false;
3482		}
3483		mutex_unlock(&set_limit_mutex);
3484
3485		if (!ret)
3486			break;
3487
3488		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3489				   MEM_CGROUP_RECLAIM_NOSWAP |
3490				   MEM_CGROUP_RECLAIM_SHRINK);
3491		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3492		/* Usage is reduced ? */
3493		if (curusage >= oldusage)
3494			retry_count--;
3495		else
3496			oldusage = curusage;
3497	}
3498	if (!ret && enlarge)
3499		memcg_oom_recover(memcg);
3500	return ret;
3501}
3502
3503unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3504					    gfp_t gfp_mask,
3505					    unsigned long *total_scanned)
3506{
3507	unsigned long nr_reclaimed = 0;
3508	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3509	unsigned long reclaimed;
3510	int loop = 0;
3511	struct mem_cgroup_tree_per_zone *mctz;
3512	unsigned long long excess;
3513	unsigned long nr_scanned;
3514
3515	if (order > 0)
3516		return 0;
3517
3518	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3519	/*
3520	 * This loop can run a while, specially if mem_cgroup's continuously
3521	 * keep exceeding their soft limit and putting the system under
3522	 * pressure
3523	 */
3524	do {
3525		if (next_mz)
3526			mz = next_mz;
3527		else
3528			mz = mem_cgroup_largest_soft_limit_node(mctz);
3529		if (!mz)
3530			break;
3531
3532		nr_scanned = 0;
3533		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3534						    gfp_mask, &nr_scanned);
3535		nr_reclaimed += reclaimed;
3536		*total_scanned += nr_scanned;
3537		spin_lock(&mctz->lock);
3538
3539		/*
3540		 * If we failed to reclaim anything from this memory cgroup
3541		 * it is time to move on to the next cgroup
3542		 */
3543		next_mz = NULL;
3544		if (!reclaimed) {
3545			do {
3546				/*
3547				 * Loop until we find yet another one.
3548				 *
3549				 * By the time we get the soft_limit lock
3550				 * again, someone might have aded the
3551				 * group back on the RB tree. Iterate to
3552				 * make sure we get a different mem.
3553				 * mem_cgroup_largest_soft_limit_node returns
3554				 * NULL if no other cgroup is present on
3555				 * the tree
3556				 */
3557				next_mz =
3558				__mem_cgroup_largest_soft_limit_node(mctz);
3559				if (next_mz == mz)
3560					css_put(&next_mz->mem->css);
3561				else /* next_mz == NULL or other memcg */
3562					break;
3563			} while (1);
3564		}
3565		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3566		excess = res_counter_soft_limit_excess(&mz->mem->res);
3567		/*
3568		 * One school of thought says that we should not add
3569		 * back the node to the tree if reclaim returns 0.
3570		 * But our reclaim could return 0, simply because due
3571		 * to priority we are exposing a smaller subset of
3572		 * memory to reclaim from. Consider this as a longer
3573		 * term TODO.
3574		 */
3575		/* If excess == 0, no tree ops */
3576		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3577		spin_unlock(&mctz->lock);
3578		css_put(&mz->mem->css);
3579		loop++;
3580		/*
3581		 * Could not reclaim anything and there are no more
3582		 * mem cgroups to try or we seem to be looping without
3583		 * reclaiming anything.
3584		 */
3585		if (!nr_reclaimed &&
3586			(next_mz == NULL ||
3587			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3588			break;
3589	} while (!nr_reclaimed);
3590	if (next_mz)
3591		css_put(&next_mz->mem->css);
3592	return nr_reclaimed;
3593}
3594
3595/*
3596 * This routine traverse page_cgroup in given list and drop them all.
3597 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3598 */
3599static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3600				int node, int zid, enum lru_list lru)
3601{
3602	struct mem_cgroup_per_zone *mz;
3603	unsigned long flags, loop;
3604	struct list_head *list;
3605	struct page *busy;
3606	struct zone *zone;
3607	int ret = 0;
3608
3609	zone = &NODE_DATA(node)->node_zones[zid];
3610	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3611	list = &mz->lruvec.lists[lru];
3612
3613	loop = MEM_CGROUP_ZSTAT(mz, lru);
3614	/* give some margin against EBUSY etc...*/
3615	loop += 256;
3616	busy = NULL;
3617	while (loop--) {
3618		struct page_cgroup *pc;
3619		struct page *page;
3620
3621		ret = 0;
3622		spin_lock_irqsave(&zone->lru_lock, flags);
3623		if (list_empty(list)) {
3624			spin_unlock_irqrestore(&zone->lru_lock, flags);
3625			break;
3626		}
3627		page = list_entry(list->prev, struct page, lru);
3628		if (busy == page) {
3629			list_move(&page->lru, list);
3630			busy = NULL;
3631			spin_unlock_irqrestore(&zone->lru_lock, flags);
3632			continue;
3633		}
3634		spin_unlock_irqrestore(&zone->lru_lock, flags);
3635
3636		pc = lookup_page_cgroup(page);
3637
3638		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3639		if (ret == -ENOMEM || ret == -EINTR)
3640			break;
3641
3642		if (ret == -EBUSY || ret == -EINVAL) {
3643			/* found lock contention or "pc" is obsolete. */
3644			busy = page;
3645			cond_resched();
3646		} else
3647			busy = NULL;
3648	}
3649
3650	if (!ret && !list_empty(list))
3651		return -EBUSY;
3652	return ret;
3653}
3654
3655/*
3656 * make mem_cgroup's charge to be 0 if there is no task.
3657 * This enables deleting this mem_cgroup.
3658 */
3659static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3660{
3661	int ret;
3662	int node, zid, shrink;
3663	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3664	struct cgroup *cgrp = memcg->css.cgroup;
3665
3666	css_get(&memcg->css);
3667
3668	shrink = 0;
3669	/* should free all ? */
3670	if (free_all)
3671		goto try_to_free;
3672move_account:
3673	do {
3674		ret = -EBUSY;
3675		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3676			goto out;
3677		ret = -EINTR;
3678		if (signal_pending(current))
3679			goto out;
3680		/* This is for making all *used* pages to be on LRU. */
3681		lru_add_drain_all();
3682		drain_all_stock_sync(memcg);
3683		ret = 0;
3684		mem_cgroup_start_move(memcg);
3685		for_each_node_state(node, N_HIGH_MEMORY) {
3686			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3687				enum lru_list l;
3688				for_each_lru(l) {
3689					ret = mem_cgroup_force_empty_list(memcg,
3690							node, zid, l);
3691					if (ret)
3692						break;
3693				}
3694			}
3695			if (ret)
3696				break;
3697		}
3698		mem_cgroup_end_move(memcg);
3699		memcg_oom_recover(memcg);
3700		/* it seems parent cgroup doesn't have enough mem */
3701		if (ret == -ENOMEM)
3702			goto try_to_free;
3703		cond_resched();
3704	/* "ret" should also be checked to ensure all lists are empty. */
3705	} while (memcg->res.usage > 0 || ret);
3706out:
3707	css_put(&memcg->css);
3708	return ret;
3709
3710try_to_free:
3711	/* returns EBUSY if there is a task or if we come here twice. */
3712	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3713		ret = -EBUSY;
3714		goto out;
3715	}
3716	/* we call try-to-free pages for make this cgroup empty */
3717	lru_add_drain_all();
3718	/* try to free all pages in this cgroup */
3719	shrink = 1;
3720	while (nr_retries && memcg->res.usage > 0) {
3721		int progress;
3722
3723		if (signal_pending(current)) {
3724			ret = -EINTR;
3725			goto out;
3726		}
3727		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3728						false);
3729		if (!progress) {
3730			nr_retries--;
3731			/* maybe some writeback is necessary */
3732			congestion_wait(BLK_RW_ASYNC, HZ/10);
3733		}
3734
3735	}
3736	lru_add_drain();
3737	/* try move_account...there may be some *locked* pages. */
3738	goto move_account;
3739}
3740
3741int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3742{
3743	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3744}
3745
3746
3747static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3748{
3749	return mem_cgroup_from_cont(cont)->use_hierarchy;
3750}
3751
3752static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3753					u64 val)
3754{
3755	int retval = 0;
3756	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3757	struct cgroup *parent = cont->parent;
3758	struct mem_cgroup *parent_memcg = NULL;
3759
3760	if (parent)
3761		parent_memcg = mem_cgroup_from_cont(parent);
3762
3763	cgroup_lock();
3764	/*
3765	 * If parent's use_hierarchy is set, we can't make any modifications
3766	 * in the child subtrees. If it is unset, then the change can
3767	 * occur, provided the current cgroup has no children.
3768	 *
3769	 * For the root cgroup, parent_mem is NULL, we allow value to be
3770	 * set if there are no children.
3771	 */
3772	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3773				(val == 1 || val == 0)) {
3774		if (list_empty(&cont->children))
3775			memcg->use_hierarchy = val;
3776		else
3777			retval = -EBUSY;
3778	} else
3779		retval = -EINVAL;
3780	cgroup_unlock();
3781
3782	return retval;
3783}
3784
3785
3786static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3787					       enum mem_cgroup_stat_index idx)
3788{
3789	struct mem_cgroup *iter;
3790	long val = 0;
3791
3792	/* Per-cpu values can be negative, use a signed accumulator */
3793	for_each_mem_cgroup_tree(iter, memcg)
3794		val += mem_cgroup_read_stat(iter, idx);
3795
3796	if (val < 0) /* race ? */
3797		val = 0;
3798	return val;
3799}
3800
3801static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3802{
3803	u64 val;
3804
3805	if (!mem_cgroup_is_root(memcg)) {
3806		if (!swap)
3807			return res_counter_read_u64(&memcg->res, RES_USAGE);
3808		else
3809			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3810	}
3811
3812	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3813	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3814
3815	if (swap)
3816		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3817
3818	return val << PAGE_SHIFT;
3819}
3820
3821static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3822{
3823	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3824	u64 val;
3825	int type, name;
3826
3827	type = MEMFILE_TYPE(cft->private);
3828	name = MEMFILE_ATTR(cft->private);
3829	switch (type) {
3830	case _MEM:
3831		if (name == RES_USAGE)
3832			val = mem_cgroup_usage(memcg, false);
3833		else
3834			val = res_counter_read_u64(&memcg->res, name);
3835		break;
3836	case _MEMSWAP:
3837		if (name == RES_USAGE)
3838			val = mem_cgroup_usage(memcg, true);
3839		else
3840			val = res_counter_read_u64(&memcg->memsw, name);
3841		break;
3842	default:
3843		BUG();
3844		break;
3845	}
3846	return val;
3847}
3848/*
3849 * The user of this function is...
3850 * RES_LIMIT.
3851 */
3852static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3853			    const char *buffer)
3854{
3855	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3856	int type, name;
3857	unsigned long long val;
3858	int ret;
3859
3860	type = MEMFILE_TYPE(cft->private);
3861	name = MEMFILE_ATTR(cft->private);
3862	switch (name) {
3863	case RES_LIMIT:
3864		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3865			ret = -EINVAL;
3866			break;
3867		}
3868		/* This function does all necessary parse...reuse it */
3869		ret = res_counter_memparse_write_strategy(buffer, &val);
3870		if (ret)
3871			break;
3872		if (type == _MEM)
3873			ret = mem_cgroup_resize_limit(memcg, val);
3874		else
3875			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3876		break;
3877	case RES_SOFT_LIMIT:
3878		ret = res_counter_memparse_write_strategy(buffer, &val);
3879		if (ret)
3880			break;
3881		/*
3882		 * For memsw, soft limits are hard to implement in terms
3883		 * of semantics, for now, we support soft limits for
3884		 * control without swap
3885		 */
3886		if (type == _MEM)
3887			ret = res_counter_set_soft_limit(&memcg->res, val);
3888		else
3889			ret = -EINVAL;
3890		break;
3891	default:
3892		ret = -EINVAL; /* should be BUG() ? */
3893		break;
3894	}
3895	return ret;
3896}
3897
3898static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3899		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3900{
3901	struct cgroup *cgroup;
3902	unsigned long long min_limit, min_memsw_limit, tmp;
3903
3904	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3905	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3906	cgroup = memcg->css.cgroup;
3907	if (!memcg->use_hierarchy)
3908		goto out;
3909
3910	while (cgroup->parent) {
3911		cgroup = cgroup->parent;
3912		memcg = mem_cgroup_from_cont(cgroup);
3913		if (!memcg->use_hierarchy)
3914			break;
3915		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3916		min_limit = min(min_limit, tmp);
3917		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3918		min_memsw_limit = min(min_memsw_limit, tmp);
3919	}
3920out:
3921	*mem_limit = min_limit;
3922	*memsw_limit = min_memsw_limit;
3923	return;
3924}
3925
3926static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3927{
3928	struct mem_cgroup *memcg;
3929	int type, name;
3930
3931	memcg = mem_cgroup_from_cont(cont);
3932	type = MEMFILE_TYPE(event);
3933	name = MEMFILE_ATTR(event);
3934	switch (name) {
3935	case RES_MAX_USAGE:
3936		if (type == _MEM)
3937			res_counter_reset_max(&memcg->res);
3938		else
3939			res_counter_reset_max(&memcg->memsw);
3940		break;
3941	case RES_FAILCNT:
3942		if (type == _MEM)
3943			res_counter_reset_failcnt(&memcg->res);
3944		else
3945			res_counter_reset_failcnt(&memcg->memsw);
3946		break;
3947	}
3948
3949	return 0;
3950}
3951
3952static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3953					struct cftype *cft)
3954{
3955	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3956}
3957
3958#ifdef CONFIG_MMU
3959static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3960					struct cftype *cft, u64 val)
3961{
3962	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3963
3964	if (val >= (1 << NR_MOVE_TYPE))
3965		return -EINVAL;
3966	/*
3967	 * We check this value several times in both in can_attach() and
3968	 * attach(), so we need cgroup lock to prevent this value from being
3969	 * inconsistent.
3970	 */
3971	cgroup_lock();
3972	memcg->move_charge_at_immigrate = val;
3973	cgroup_unlock();
3974
3975	return 0;
3976}
3977#else
3978static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3979					struct cftype *cft, u64 val)
3980{
3981	return -ENOSYS;
3982}
3983#endif
3984
3985
3986/* For read statistics */
3987enum {
3988	MCS_CACHE,
3989	MCS_RSS,
3990	MCS_FILE_MAPPED,
3991	MCS_PGPGIN,
3992	MCS_PGPGOUT,
3993	MCS_SWAP,
3994	MCS_PGFAULT,
3995	MCS_PGMAJFAULT,
3996	MCS_INACTIVE_ANON,
3997	MCS_ACTIVE_ANON,
3998	MCS_INACTIVE_FILE,
3999	MCS_ACTIVE_FILE,
4000	MCS_UNEVICTABLE,
4001	NR_MCS_STAT,
4002};
4003
4004struct mcs_total_stat {
4005	s64 stat[NR_MCS_STAT];
4006};
4007
4008struct {
4009	char *local_name;
4010	char *total_name;
4011} memcg_stat_strings[NR_MCS_STAT] = {
4012	{"cache", "total_cache"},
4013	{"rss", "total_rss"},
4014	{"mapped_file", "total_mapped_file"},
4015	{"pgpgin", "total_pgpgin"},
4016	{"pgpgout", "total_pgpgout"},
4017	{"swap", "total_swap"},
4018	{"pgfault", "total_pgfault"},
4019	{"pgmajfault", "total_pgmajfault"},
4020	{"inactive_anon", "total_inactive_anon"},
4021	{"active_anon", "total_active_anon"},
4022	{"inactive_file", "total_inactive_file"},
4023	{"active_file", "total_active_file"},
4024	{"unevictable", "total_unevictable"}
4025};
4026
4027
4028static void
4029mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4030{
4031	s64 val;
4032
4033	/* per cpu stat */
4034	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4035	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4036	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4037	s->stat[MCS_RSS] += val * PAGE_SIZE;
4038	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4039	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4040	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4041	s->stat[MCS_PGPGIN] += val;
4042	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4043	s->stat[MCS_PGPGOUT] += val;
4044	if (do_swap_account) {
4045		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4046		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4047	}
4048	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4049	s->stat[MCS_PGFAULT] += val;
4050	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4051	s->stat[MCS_PGMAJFAULT] += val;
4052
4053	/* per zone stat */
4054	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4055	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4056	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4057	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4058	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4059	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4060	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4061	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4062	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4063	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4064}
4065
4066static void
4067mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4068{
4069	struct mem_cgroup *iter;
4070
4071	for_each_mem_cgroup_tree(iter, memcg)
4072		mem_cgroup_get_local_stat(iter, s);
4073}
4074
4075#ifdef CONFIG_NUMA
4076static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4077{
4078	int nid;
4079	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4080	unsigned long node_nr;
4081	struct cgroup *cont = m->private;
4082	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4083
4084	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4085	seq_printf(m, "total=%lu", total_nr);
4086	for_each_node_state(nid, N_HIGH_MEMORY) {
4087		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4088		seq_printf(m, " N%d=%lu", nid, node_nr);
4089	}
4090	seq_putc(m, '\n');
4091
4092	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4093	seq_printf(m, "file=%lu", file_nr);
4094	for_each_node_state(nid, N_HIGH_MEMORY) {
4095		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4096				LRU_ALL_FILE);
4097		seq_printf(m, " N%d=%lu", nid, node_nr);
4098	}
4099	seq_putc(m, '\n');
4100
4101	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4102	seq_printf(m, "anon=%lu", anon_nr);
4103	for_each_node_state(nid, N_HIGH_MEMORY) {
4104		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4105				LRU_ALL_ANON);
4106		seq_printf(m, " N%d=%lu", nid, node_nr);
4107	}
4108	seq_putc(m, '\n');
4109
4110	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4111	seq_printf(m, "unevictable=%lu", unevictable_nr);
4112	for_each_node_state(nid, N_HIGH_MEMORY) {
4113		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4114				BIT(LRU_UNEVICTABLE));
4115		seq_printf(m, " N%d=%lu", nid, node_nr);
4116	}
4117	seq_putc(m, '\n');
4118	return 0;
4119}
4120#endif /* CONFIG_NUMA */
4121
4122static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4123				 struct cgroup_map_cb *cb)
4124{
4125	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4126	struct mcs_total_stat mystat;
4127	int i;
4128
4129	memset(&mystat, 0, sizeof(mystat));
4130	mem_cgroup_get_local_stat(mem_cont, &mystat);
4131
4132
4133	for (i = 0; i < NR_MCS_STAT; i++) {
4134		if (i == MCS_SWAP && !do_swap_account)
4135			continue;
4136		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4137	}
4138
4139	/* Hierarchical information */
4140	{
4141		unsigned long long limit, memsw_limit;
4142		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4143		cb->fill(cb, "hierarchical_memory_limit", limit);
4144		if (do_swap_account)
4145			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4146	}
4147
4148	memset(&mystat, 0, sizeof(mystat));
4149	mem_cgroup_get_total_stat(mem_cont, &mystat);
4150	for (i = 0; i < NR_MCS_STAT; i++) {
4151		if (i == MCS_SWAP && !do_swap_account)
4152			continue;
4153		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4154	}
4155
4156#ifdef CONFIG_DEBUG_VM
4157	{
4158		int nid, zid;
4159		struct mem_cgroup_per_zone *mz;
4160		unsigned long recent_rotated[2] = {0, 0};
4161		unsigned long recent_scanned[2] = {0, 0};
4162
4163		for_each_online_node(nid)
4164			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4165				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4166
4167				recent_rotated[0] +=
4168					mz->reclaim_stat.recent_rotated[0];
4169				recent_rotated[1] +=
4170					mz->reclaim_stat.recent_rotated[1];
4171				recent_scanned[0] +=
4172					mz->reclaim_stat.recent_scanned[0];
4173				recent_scanned[1] +=
4174					mz->reclaim_stat.recent_scanned[1];
4175			}
4176		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4177		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4178		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4179		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4180	}
4181#endif
4182
4183	return 0;
4184}
4185
4186static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4187{
4188	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4189
4190	return mem_cgroup_swappiness(memcg);
4191}
4192
4193static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4194				       u64 val)
4195{
4196	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4197	struct mem_cgroup *parent;
4198
4199	if (val > 100)
4200		return -EINVAL;
4201
4202	if (cgrp->parent == NULL)
4203		return -EINVAL;
4204
4205	parent = mem_cgroup_from_cont(cgrp->parent);
4206
4207	cgroup_lock();
4208
4209	/* If under hierarchy, only empty-root can set this value */
4210	if ((parent->use_hierarchy) ||
4211	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4212		cgroup_unlock();
4213		return -EINVAL;
4214	}
4215
4216	memcg->swappiness = val;
4217
4218	cgroup_unlock();
4219
4220	return 0;
4221}
4222
4223static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4224{
4225	struct mem_cgroup_threshold_ary *t;
4226	u64 usage;
4227	int i;
4228
4229	rcu_read_lock();
4230	if (!swap)
4231		t = rcu_dereference(memcg->thresholds.primary);
4232	else
4233		t = rcu_dereference(memcg->memsw_thresholds.primary);
4234
4235	if (!t)
4236		goto unlock;
4237
4238	usage = mem_cgroup_usage(memcg, swap);
4239
4240	/*
4241	 * current_threshold points to threshold just below usage.
4242	 * If it's not true, a threshold was crossed after last
4243	 * call of __mem_cgroup_threshold().
4244	 */
4245	i = t->current_threshold;
4246
4247	/*
4248	 * Iterate backward over array of thresholds starting from
4249	 * current_threshold and check if a threshold is crossed.
4250	 * If none of thresholds below usage is crossed, we read
4251	 * only one element of the array here.
4252	 */
4253	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4254		eventfd_signal(t->entries[i].eventfd, 1);
4255
4256	/* i = current_threshold + 1 */
4257	i++;
4258
4259	/*
4260	 * Iterate forward over array of thresholds starting from
4261	 * current_threshold+1 and check if a threshold is crossed.
4262	 * If none of thresholds above usage is crossed, we read
4263	 * only one element of the array here.
4264	 */
4265	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4266		eventfd_signal(t->entries[i].eventfd, 1);
4267
4268	/* Update current_threshold */
4269	t->current_threshold = i - 1;
4270unlock:
4271	rcu_read_unlock();
4272}
4273
4274static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4275{
4276	while (memcg) {
4277		__mem_cgroup_threshold(memcg, false);
4278		if (do_swap_account)
4279			__mem_cgroup_threshold(memcg, true);
4280
4281		memcg = parent_mem_cgroup(memcg);
4282	}
4283}
4284
4285static int compare_thresholds(const void *a, const void *b)
4286{
4287	const struct mem_cgroup_threshold *_a = a;
4288	const struct mem_cgroup_threshold *_b = b;
4289
4290	return _a->threshold - _b->threshold;
4291}
4292
4293static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4294{
4295	struct mem_cgroup_eventfd_list *ev;
4296
4297	list_for_each_entry(ev, &memcg->oom_notify, list)
4298		eventfd_signal(ev->eventfd, 1);
4299	return 0;
4300}
4301
4302static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4303{
4304	struct mem_cgroup *iter;
4305
4306	for_each_mem_cgroup_tree(iter, memcg)
4307		mem_cgroup_oom_notify_cb(iter);
4308}
4309
4310static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4311	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4312{
4313	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4314	struct mem_cgroup_thresholds *thresholds;
4315	struct mem_cgroup_threshold_ary *new;
4316	int type = MEMFILE_TYPE(cft->private);
4317	u64 threshold, usage;
4318	int i, size, ret;
4319
4320	ret = res_counter_memparse_write_strategy(args, &threshold);
4321	if (ret)
4322		return ret;
4323
4324	mutex_lock(&memcg->thresholds_lock);
4325
4326	if (type == _MEM)
4327		thresholds = &memcg->thresholds;
4328	else if (type == _MEMSWAP)
4329		thresholds = &memcg->memsw_thresholds;
4330	else
4331		BUG();
4332
4333	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4334
4335	/* Check if a threshold crossed before adding a new one */
4336	if (thresholds->primary)
4337		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4338
4339	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4340
4341	/* Allocate memory for new array of thresholds */
4342	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4343			GFP_KERNEL);
4344	if (!new) {
4345		ret = -ENOMEM;
4346		goto unlock;
4347	}
4348	new->size = size;
4349
4350	/* Copy thresholds (if any) to new array */
4351	if (thresholds->primary) {
4352		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4353				sizeof(struct mem_cgroup_threshold));
4354	}
4355
4356	/* Add new threshold */
4357	new->entries[size - 1].eventfd = eventfd;
4358	new->entries[size - 1].threshold = threshold;
4359
4360	/* Sort thresholds. Registering of new threshold isn't time-critical */
4361	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4362			compare_thresholds, NULL);
4363
4364	/* Find current threshold */
4365	new->current_threshold = -1;
4366	for (i = 0; i < size; i++) {
4367		if (new->entries[i].threshold < usage) {
4368			/*
4369			 * new->current_threshold will not be used until
4370			 * rcu_assign_pointer(), so it's safe to increment
4371			 * it here.
4372			 */
4373			++new->current_threshold;
4374		}
4375	}
4376
4377	/* Free old spare buffer and save old primary buffer as spare */
4378	kfree(thresholds->spare);
4379	thresholds->spare = thresholds->primary;
4380
4381	rcu_assign_pointer(thresholds->primary, new);
4382
4383	/* To be sure that nobody uses thresholds */
4384	synchronize_rcu();
4385
4386unlock:
4387	mutex_unlock(&memcg->thresholds_lock);
4388
4389	return ret;
4390}
4391
4392static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4393	struct cftype *cft, struct eventfd_ctx *eventfd)
4394{
4395	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4396	struct mem_cgroup_thresholds *thresholds;
4397	struct mem_cgroup_threshold_ary *new;
4398	int type = MEMFILE_TYPE(cft->private);
4399	u64 usage;
4400	int i, j, size;
4401
4402	mutex_lock(&memcg->thresholds_lock);
4403	if (type == _MEM)
4404		thresholds = &memcg->thresholds;
4405	else if (type == _MEMSWAP)
4406		thresholds = &memcg->memsw_thresholds;
4407	else
4408		BUG();
4409
4410	/*
4411	 * Something went wrong if we trying to unregister a threshold
4412	 * if we don't have thresholds
4413	 */
4414	BUG_ON(!thresholds);
4415
4416	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4417
4418	/* Check if a threshold crossed before removing */
4419	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4420
4421	/* Calculate new number of threshold */
4422	size = 0;
4423	for (i = 0; i < thresholds->primary->size; i++) {
4424		if (thresholds->primary->entries[i].eventfd != eventfd)
4425			size++;
4426	}
4427
4428	new = thresholds->spare;
4429
4430	/* Set thresholds array to NULL if we don't have thresholds */
4431	if (!size) {
4432		kfree(new);
4433		new = NULL;
4434		goto swap_buffers;
4435	}
4436
4437	new->size = size;
4438
4439	/* Copy thresholds and find current threshold */
4440	new->current_threshold = -1;
4441	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4442		if (thresholds->primary->entries[i].eventfd == eventfd)
4443			continue;
4444
4445		new->entries[j] = thresholds->primary->entries[i];
4446		if (new->entries[j].threshold < usage) {
4447			/*
4448			 * new->current_threshold will not be used
4449			 * until rcu_assign_pointer(), so it's safe to increment
4450			 * it here.
4451			 */
4452			++new->current_threshold;
4453		}
4454		j++;
4455	}
4456
4457swap_buffers:
4458	/* Swap primary and spare array */
4459	thresholds->spare = thresholds->primary;
4460	rcu_assign_pointer(thresholds->primary, new);
4461
4462	/* To be sure that nobody uses thresholds */
4463	synchronize_rcu();
4464
4465	mutex_unlock(&memcg->thresholds_lock);
4466}
4467
4468static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4469	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4470{
4471	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4472	struct mem_cgroup_eventfd_list *event;
4473	int type = MEMFILE_TYPE(cft->private);
4474
4475	BUG_ON(type != _OOM_TYPE);
4476	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4477	if (!event)
4478		return -ENOMEM;
4479
4480	spin_lock(&memcg_oom_lock);
4481
4482	event->eventfd = eventfd;
4483	list_add(&event->list, &memcg->oom_notify);
4484
4485	/* already in OOM ? */
4486	if (atomic_read(&memcg->under_oom))
4487		eventfd_signal(eventfd, 1);
4488	spin_unlock(&memcg_oom_lock);
4489
4490	return 0;
4491}
4492
4493static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4494	struct cftype *cft, struct eventfd_ctx *eventfd)
4495{
4496	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4497	struct mem_cgroup_eventfd_list *ev, *tmp;
4498	int type = MEMFILE_TYPE(cft->private);
4499
4500	BUG_ON(type != _OOM_TYPE);
4501
4502	spin_lock(&memcg_oom_lock);
4503
4504	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4505		if (ev->eventfd == eventfd) {
4506			list_del(&ev->list);
4507			kfree(ev);
4508		}
4509	}
4510
4511	spin_unlock(&memcg_oom_lock);
4512}
4513
4514static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4515	struct cftype *cft,  struct cgroup_map_cb *cb)
4516{
4517	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4518
4519	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4520
4521	if (atomic_read(&memcg->under_oom))
4522		cb->fill(cb, "under_oom", 1);
4523	else
4524		cb->fill(cb, "under_oom", 0);
4525	return 0;
4526}
4527
4528static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4529	struct cftype *cft, u64 val)
4530{
4531	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4532	struct mem_cgroup *parent;
4533
4534	/* cannot set to root cgroup and only 0 and 1 are allowed */
4535	if (!cgrp->parent || !((val == 0) || (val == 1)))
4536		return -EINVAL;
4537
4538	parent = mem_cgroup_from_cont(cgrp->parent);
4539
4540	cgroup_lock();
4541	/* oom-kill-disable is a flag for subhierarchy. */
4542	if ((parent->use_hierarchy) ||
4543	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4544		cgroup_unlock();
4545		return -EINVAL;
4546	}
4547	memcg->oom_kill_disable = val;
4548	if (!val)
4549		memcg_oom_recover(memcg);
4550	cgroup_unlock();
4551	return 0;
4552}
4553
4554#ifdef CONFIG_NUMA
4555static const struct file_operations mem_control_numa_stat_file_operations = {
4556	.read = seq_read,
4557	.llseek = seq_lseek,
4558	.release = single_release,
4559};
4560
4561static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4562{
4563	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4564
4565	file->f_op = &mem_control_numa_stat_file_operations;
4566	return single_open(file, mem_control_numa_stat_show, cont);
4567}
4568#endif /* CONFIG_NUMA */
4569
4570#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4571static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4572{
4573	/*
4574	 * Part of this would be better living in a separate allocation
4575	 * function, leaving us with just the cgroup tree population work.
4576	 * We, however, depend on state such as network's proto_list that
4577	 * is only initialized after cgroup creation. I found the less
4578	 * cumbersome way to deal with it to defer it all to populate time
4579	 */
4580	return mem_cgroup_sockets_init(cont, ss);
4581};
4582
4583static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4584				struct cgroup *cont)
4585{
4586	mem_cgroup_sockets_destroy(cont, ss);
4587}
4588#else
4589static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4590{
4591	return 0;
4592}
4593
4594static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4595				struct cgroup *cont)
4596{
4597}
4598#endif
4599
4600static struct cftype mem_cgroup_files[] = {
4601	{
4602		.name = "usage_in_bytes",
4603		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4604		.read_u64 = mem_cgroup_read,
4605		.register_event = mem_cgroup_usage_register_event,
4606		.unregister_event = mem_cgroup_usage_unregister_event,
4607	},
4608	{
4609		.name = "max_usage_in_bytes",
4610		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4611		.trigger = mem_cgroup_reset,
4612		.read_u64 = mem_cgroup_read,
4613	},
4614	{
4615		.name = "limit_in_bytes",
4616		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4617		.write_string = mem_cgroup_write,
4618		.read_u64 = mem_cgroup_read,
4619	},
4620	{
4621		.name = "soft_limit_in_bytes",
4622		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4623		.write_string = mem_cgroup_write,
4624		.read_u64 = mem_cgroup_read,
4625	},
4626	{
4627		.name = "failcnt",
4628		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4629		.trigger = mem_cgroup_reset,
4630		.read_u64 = mem_cgroup_read,
4631	},
4632	{
4633		.name = "stat",
4634		.read_map = mem_control_stat_show,
4635	},
4636	{
4637		.name = "force_empty",
4638		.trigger = mem_cgroup_force_empty_write,
4639	},
4640	{
4641		.name = "use_hierarchy",
4642		.write_u64 = mem_cgroup_hierarchy_write,
4643		.read_u64 = mem_cgroup_hierarchy_read,
4644	},
4645	{
4646		.name = "swappiness",
4647		.read_u64 = mem_cgroup_swappiness_read,
4648		.write_u64 = mem_cgroup_swappiness_write,
4649	},
4650	{
4651		.name = "move_charge_at_immigrate",
4652		.read_u64 = mem_cgroup_move_charge_read,
4653		.write_u64 = mem_cgroup_move_charge_write,
4654	},
4655	{
4656		.name = "oom_control",
4657		.read_map = mem_cgroup_oom_control_read,
4658		.write_u64 = mem_cgroup_oom_control_write,
4659		.register_event = mem_cgroup_oom_register_event,
4660		.unregister_event = mem_cgroup_oom_unregister_event,
4661		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4662	},
4663#ifdef CONFIG_NUMA
4664	{
4665		.name = "numa_stat",
4666		.open = mem_control_numa_stat_open,
4667		.mode = S_IRUGO,
4668	},
4669#endif
4670};
4671
4672#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4673static struct cftype memsw_cgroup_files[] = {
4674	{
4675		.name = "memsw.usage_in_bytes",
4676		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4677		.read_u64 = mem_cgroup_read,
4678		.register_event = mem_cgroup_usage_register_event,
4679		.unregister_event = mem_cgroup_usage_unregister_event,
4680	},
4681	{
4682		.name = "memsw.max_usage_in_bytes",
4683		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4684		.trigger = mem_cgroup_reset,
4685		.read_u64 = mem_cgroup_read,
4686	},
4687	{
4688		.name = "memsw.limit_in_bytes",
4689		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4690		.write_string = mem_cgroup_write,
4691		.read_u64 = mem_cgroup_read,
4692	},
4693	{
4694		.name = "memsw.failcnt",
4695		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4696		.trigger = mem_cgroup_reset,
4697		.read_u64 = mem_cgroup_read,
4698	},
4699};
4700
4701static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4702{
4703	if (!do_swap_account)
4704		return 0;
4705	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4706				ARRAY_SIZE(memsw_cgroup_files));
4707};
4708#else
4709static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4710{
4711	return 0;
4712}
4713#endif
4714
4715static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4716{
4717	struct mem_cgroup_per_node *pn;
4718	struct mem_cgroup_per_zone *mz;
4719	enum lru_list l;
4720	int zone, tmp = node;
4721	/*
4722	 * This routine is called against possible nodes.
4723	 * But it's BUG to call kmalloc() against offline node.
4724	 *
4725	 * TODO: this routine can waste much memory for nodes which will
4726	 *       never be onlined. It's better to use memory hotplug callback
4727	 *       function.
4728	 */
4729	if (!node_state(node, N_NORMAL_MEMORY))
4730		tmp = -1;
4731	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4732	if (!pn)
4733		return 1;
4734
4735	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4736		mz = &pn->zoneinfo[zone];
4737		for_each_lru(l)
4738			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4739		mz->usage_in_excess = 0;
4740		mz->on_tree = false;
4741		mz->mem = memcg;
4742	}
4743	memcg->info.nodeinfo[node] = pn;
4744	return 0;
4745}
4746
4747static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4748{
4749	kfree(memcg->info.nodeinfo[node]);
4750}
4751
4752static struct mem_cgroup *mem_cgroup_alloc(void)
4753{
4754	struct mem_cgroup *mem;
4755	int size = sizeof(struct mem_cgroup);
4756
4757	/* Can be very big if MAX_NUMNODES is very big */
4758	if (size < PAGE_SIZE)
4759		mem = kzalloc(size, GFP_KERNEL);
4760	else
4761		mem = vzalloc(size);
4762
4763	if (!mem)
4764		return NULL;
4765
4766	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4767	if (!mem->stat)
4768		goto out_free;
4769	spin_lock_init(&mem->pcp_counter_lock);
4770	return mem;
4771
4772out_free:
4773	if (size < PAGE_SIZE)
4774		kfree(mem);
4775	else
4776		vfree(mem);
4777	return NULL;
4778}
4779
4780/*
4781 * At destroying mem_cgroup, references from swap_cgroup can remain.
4782 * (scanning all at force_empty is too costly...)
4783 *
4784 * Instead of clearing all references at force_empty, we remember
4785 * the number of reference from swap_cgroup and free mem_cgroup when
4786 * it goes down to 0.
4787 *
4788 * Removal of cgroup itself succeeds regardless of refs from swap.
4789 */
4790
4791static void __mem_cgroup_free(struct mem_cgroup *memcg)
4792{
4793	int node;
4794
4795	mem_cgroup_remove_from_trees(memcg);
4796	free_css_id(&mem_cgroup_subsys, &memcg->css);
4797
4798	for_each_node(node)
4799		free_mem_cgroup_per_zone_info(memcg, node);
4800
4801	free_percpu(memcg->stat);
4802	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4803		kfree(memcg);
4804	else
4805		vfree(memcg);
4806}
4807
4808static void mem_cgroup_get(struct mem_cgroup *memcg)
4809{
4810	atomic_inc(&memcg->refcnt);
4811}
4812
4813static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4814{
4815	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4816		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4817		__mem_cgroup_free(memcg);
4818		if (parent)
4819			mem_cgroup_put(parent);
4820	}
4821}
4822
4823static void mem_cgroup_put(struct mem_cgroup *memcg)
4824{
4825	__mem_cgroup_put(memcg, 1);
4826}
4827
4828/*
4829 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4830 */
4831struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4832{
4833	if (!memcg->res.parent)
4834		return NULL;
4835	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4836}
4837EXPORT_SYMBOL(parent_mem_cgroup);
4838
4839#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4840static void __init enable_swap_cgroup(void)
4841{
4842	if (!mem_cgroup_disabled() && really_do_swap_account)
4843		do_swap_account = 1;
4844}
4845#else
4846static void __init enable_swap_cgroup(void)
4847{
4848}
4849#endif
4850
4851static int mem_cgroup_soft_limit_tree_init(void)
4852{
4853	struct mem_cgroup_tree_per_node *rtpn;
4854	struct mem_cgroup_tree_per_zone *rtpz;
4855	int tmp, node, zone;
4856
4857	for_each_node(node) {
4858		tmp = node;
4859		if (!node_state(node, N_NORMAL_MEMORY))
4860			tmp = -1;
4861		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4862		if (!rtpn)
4863			goto err_cleanup;
4864
4865		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4866
4867		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4868			rtpz = &rtpn->rb_tree_per_zone[zone];
4869			rtpz->rb_root = RB_ROOT;
4870			spin_lock_init(&rtpz->lock);
4871		}
4872	}
4873	return 0;
4874
4875err_cleanup:
4876	for_each_node(node) {
4877		if (!soft_limit_tree.rb_tree_per_node[node])
4878			break;
4879		kfree(soft_limit_tree.rb_tree_per_node[node]);
4880		soft_limit_tree.rb_tree_per_node[node] = NULL;
4881	}
4882	return 1;
4883
4884}
4885
4886static struct cgroup_subsys_state * __ref
4887mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4888{
4889	struct mem_cgroup *memcg, *parent;
4890	long error = -ENOMEM;
4891	int node;
4892
4893	memcg = mem_cgroup_alloc();
4894	if (!memcg)
4895		return ERR_PTR(error);
4896
4897	for_each_node(node)
4898		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4899			goto free_out;
4900
4901	/* root ? */
4902	if (cont->parent == NULL) {
4903		int cpu;
4904		enable_swap_cgroup();
4905		parent = NULL;
4906		if (mem_cgroup_soft_limit_tree_init())
4907			goto free_out;
4908		root_mem_cgroup = memcg;
4909		for_each_possible_cpu(cpu) {
4910			struct memcg_stock_pcp *stock =
4911						&per_cpu(memcg_stock, cpu);
4912			INIT_WORK(&stock->work, drain_local_stock);
4913		}
4914		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4915	} else {
4916		parent = mem_cgroup_from_cont(cont->parent);
4917		memcg->use_hierarchy = parent->use_hierarchy;
4918		memcg->oom_kill_disable = parent->oom_kill_disable;
4919	}
4920
4921	if (parent && parent->use_hierarchy) {
4922		res_counter_init(&memcg->res, &parent->res);
4923		res_counter_init(&memcg->memsw, &parent->memsw);
4924		/*
4925		 * We increment refcnt of the parent to ensure that we can
4926		 * safely access it on res_counter_charge/uncharge.
4927		 * This refcnt will be decremented when freeing this
4928		 * mem_cgroup(see mem_cgroup_put).
4929		 */
4930		mem_cgroup_get(parent);
4931	} else {
4932		res_counter_init(&memcg->res, NULL);
4933		res_counter_init(&memcg->memsw, NULL);
4934	}
4935	memcg->last_scanned_node = MAX_NUMNODES;
4936	INIT_LIST_HEAD(&memcg->oom_notify);
4937
4938	if (parent)
4939		memcg->swappiness = mem_cgroup_swappiness(parent);
4940	atomic_set(&memcg->refcnt, 1);
4941	memcg->move_charge_at_immigrate = 0;
4942	mutex_init(&memcg->thresholds_lock);
4943	return &memcg->css;
4944free_out:
4945	__mem_cgroup_free(memcg);
4946	return ERR_PTR(error);
4947}
4948
4949static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4950					struct cgroup *cont)
4951{
4952	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4953
4954	return mem_cgroup_force_empty(memcg, false);
4955}
4956
4957static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4958				struct cgroup *cont)
4959{
4960	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4961
4962	kmem_cgroup_destroy(ss, cont);
4963
4964	mem_cgroup_put(memcg);
4965}
4966
4967static int mem_cgroup_populate(struct cgroup_subsys *ss,
4968				struct cgroup *cont)
4969{
4970	int ret;
4971
4972	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4973				ARRAY_SIZE(mem_cgroup_files));
4974
4975	if (!ret)
4976		ret = register_memsw_files(cont, ss);
4977
4978	if (!ret)
4979		ret = register_kmem_files(cont, ss);
4980
4981	return ret;
4982}
4983
4984#ifdef CONFIG_MMU
4985/* Handlers for move charge at task migration. */
4986#define PRECHARGE_COUNT_AT_ONCE	256
4987static int mem_cgroup_do_precharge(unsigned long count)
4988{
4989	int ret = 0;
4990	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4991	struct mem_cgroup *memcg = mc.to;
4992
4993	if (mem_cgroup_is_root(memcg)) {
4994		mc.precharge += count;
4995		/* we don't need css_get for root */
4996		return ret;
4997	}
4998	/* try to charge at once */
4999	if (count > 1) {
5000		struct res_counter *dummy;
5001		/*
5002		 * "memcg" cannot be under rmdir() because we've already checked
5003		 * by cgroup_lock_live_cgroup() that it is not removed and we
5004		 * are still under the same cgroup_mutex. So we can postpone
5005		 * css_get().
5006		 */
5007		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5008			goto one_by_one;
5009		if (do_swap_account && res_counter_charge(&memcg->memsw,
5010						PAGE_SIZE * count, &dummy)) {
5011			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5012			goto one_by_one;
5013		}
5014		mc.precharge += count;
5015		return ret;
5016	}
5017one_by_one:
5018	/* fall back to one by one charge */
5019	while (count--) {
5020		if (signal_pending(current)) {
5021			ret = -EINTR;
5022			break;
5023		}
5024		if (!batch_count--) {
5025			batch_count = PRECHARGE_COUNT_AT_ONCE;
5026			cond_resched();
5027		}
5028		ret = __mem_cgroup_try_charge(NULL,
5029					GFP_KERNEL, 1, &memcg, false);
5030		if (ret)
5031			/* mem_cgroup_clear_mc() will do uncharge later */
5032			return ret;
5033		mc.precharge++;
5034	}
5035	return ret;
5036}
5037
5038/**
5039 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5040 * @vma: the vma the pte to be checked belongs
5041 * @addr: the address corresponding to the pte to be checked
5042 * @ptent: the pte to be checked
5043 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5044 *
5045 * Returns
5046 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5047 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5048 *     move charge. if @target is not NULL, the page is stored in target->page
5049 *     with extra refcnt got(Callers should handle it).
5050 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5051 *     target for charge migration. if @target is not NULL, the entry is stored
5052 *     in target->ent.
5053 *
5054 * Called with pte lock held.
5055 */
5056union mc_target {
5057	struct page	*page;
5058	swp_entry_t	ent;
5059};
5060
5061enum mc_target_type {
5062	MC_TARGET_NONE,	/* not used */
5063	MC_TARGET_PAGE,
5064	MC_TARGET_SWAP,
5065};
5066
5067static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5068						unsigned long addr, pte_t ptent)
5069{
5070	struct page *page = vm_normal_page(vma, addr, ptent);
5071
5072	if (!page || !page_mapped(page))
5073		return NULL;
5074	if (PageAnon(page)) {
5075		/* we don't move shared anon */
5076		if (!move_anon() || page_mapcount(page) > 2)
5077			return NULL;
5078	} else if (!move_file())
5079		/* we ignore mapcount for file pages */
5080		return NULL;
5081	if (!get_page_unless_zero(page))
5082		return NULL;
5083
5084	return page;
5085}
5086
5087static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5088			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5089{
5090	int usage_count;
5091	struct page *page = NULL;
5092	swp_entry_t ent = pte_to_swp_entry(ptent);
5093
5094	if (!move_anon() || non_swap_entry(ent))
5095		return NULL;
5096	usage_count = mem_cgroup_count_swap_user(ent, &page);
5097	if (usage_count > 1) { /* we don't move shared anon */
5098		if (page)
5099			put_page(page);
5100		return NULL;
5101	}
5102	if (do_swap_account)
5103		entry->val = ent.val;
5104
5105	return page;
5106}
5107
5108static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5109			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5110{
5111	struct page *page = NULL;
5112	struct inode *inode;
5113	struct address_space *mapping;
5114	pgoff_t pgoff;
5115
5116	if (!vma->vm_file) /* anonymous vma */
5117		return NULL;
5118	if (!move_file())
5119		return NULL;
5120
5121	inode = vma->vm_file->f_path.dentry->d_inode;
5122	mapping = vma->vm_file->f_mapping;
5123	if (pte_none(ptent))
5124		pgoff = linear_page_index(vma, addr);
5125	else /* pte_file(ptent) is true */
5126		pgoff = pte_to_pgoff(ptent);
5127
5128	/* page is moved even if it's not RSS of this task(page-faulted). */
5129	page = find_get_page(mapping, pgoff);
5130
5131#ifdef CONFIG_SWAP
5132	/* shmem/tmpfs may report page out on swap: account for that too. */
5133	if (radix_tree_exceptional_entry(page)) {
5134		swp_entry_t swap = radix_to_swp_entry(page);
5135		if (do_swap_account)
5136			*entry = swap;
5137		page = find_get_page(&swapper_space, swap.val);
5138	}
5139#endif
5140	return page;
5141}
5142
5143static int is_target_pte_for_mc(struct vm_area_struct *vma,
5144		unsigned long addr, pte_t ptent, union mc_target *target)
5145{
5146	struct page *page = NULL;
5147	struct page_cgroup *pc;
5148	int ret = 0;
5149	swp_entry_t ent = { .val = 0 };
5150
5151	if (pte_present(ptent))
5152		page = mc_handle_present_pte(vma, addr, ptent);
5153	else if (is_swap_pte(ptent))
5154		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5155	else if (pte_none(ptent) || pte_file(ptent))
5156		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5157
5158	if (!page && !ent.val)
5159		return 0;
5160	if (page) {
5161		pc = lookup_page_cgroup(page);
5162		/*
5163		 * Do only loose check w/o page_cgroup lock.
5164		 * mem_cgroup_move_account() checks the pc is valid or not under
5165		 * the lock.
5166		 */
5167		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5168			ret = MC_TARGET_PAGE;
5169			if (target)
5170				target->page = page;
5171		}
5172		if (!ret || !target)
5173			put_page(page);
5174	}
5175	/* There is a swap entry and a page doesn't exist or isn't charged */
5176	if (ent.val && !ret &&
5177			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5178		ret = MC_TARGET_SWAP;
5179		if (target)
5180			target->ent = ent;
5181	}
5182	return ret;
5183}
5184
5185static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5186					unsigned long addr, unsigned long end,
5187					struct mm_walk *walk)
5188{
5189	struct vm_area_struct *vma = walk->private;
5190	pte_t *pte;
5191	spinlock_t *ptl;
5192
5193	split_huge_page_pmd(walk->mm, pmd);
5194
5195	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5196	for (; addr != end; pte++, addr += PAGE_SIZE)
5197		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5198			mc.precharge++;	/* increment precharge temporarily */
5199	pte_unmap_unlock(pte - 1, ptl);
5200	cond_resched();
5201
5202	return 0;
5203}
5204
5205static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5206{
5207	unsigned long precharge;
5208	struct vm_area_struct *vma;
5209
5210	down_read(&mm->mmap_sem);
5211	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5212		struct mm_walk mem_cgroup_count_precharge_walk = {
5213			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5214			.mm = mm,
5215			.private = vma,
5216		};
5217		if (is_vm_hugetlb_page(vma))
5218			continue;
5219		walk_page_range(vma->vm_start, vma->vm_end,
5220					&mem_cgroup_count_precharge_walk);
5221	}
5222	up_read(&mm->mmap_sem);
5223
5224	precharge = mc.precharge;
5225	mc.precharge = 0;
5226
5227	return precharge;
5228}
5229
5230static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5231{
5232	unsigned long precharge = mem_cgroup_count_precharge(mm);
5233
5234	VM_BUG_ON(mc.moving_task);
5235	mc.moving_task = current;
5236	return mem_cgroup_do_precharge(precharge);
5237}
5238
5239/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5240static void __mem_cgroup_clear_mc(void)
5241{
5242	struct mem_cgroup *from = mc.from;
5243	struct mem_cgroup *to = mc.to;
5244
5245	/* we must uncharge all the leftover precharges from mc.to */
5246	if (mc.precharge) {
5247		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5248		mc.precharge = 0;
5249	}
5250	/*
5251	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5252	 * we must uncharge here.
5253	 */
5254	if (mc.moved_charge) {
5255		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5256		mc.moved_charge = 0;
5257	}
5258	/* we must fixup refcnts and charges */
5259	if (mc.moved_swap) {
5260		/* uncharge swap account from the old cgroup */
5261		if (!mem_cgroup_is_root(mc.from))
5262			res_counter_uncharge(&mc.from->memsw,
5263						PAGE_SIZE * mc.moved_swap);
5264		__mem_cgroup_put(mc.from, mc.moved_swap);
5265
5266		if (!mem_cgroup_is_root(mc.to)) {
5267			/*
5268			 * we charged both to->res and to->memsw, so we should
5269			 * uncharge to->res.
5270			 */
5271			res_counter_uncharge(&mc.to->res,
5272						PAGE_SIZE * mc.moved_swap);
5273		}
5274		/* we've already done mem_cgroup_get(mc.to) */
5275		mc.moved_swap = 0;
5276	}
5277	memcg_oom_recover(from);
5278	memcg_oom_recover(to);
5279	wake_up_all(&mc.waitq);
5280}
5281
5282static void mem_cgroup_clear_mc(void)
5283{
5284	struct mem_cgroup *from = mc.from;
5285
5286	/*
5287	 * we must clear moving_task before waking up waiters at the end of
5288	 * task migration.
5289	 */
5290	mc.moving_task = NULL;
5291	__mem_cgroup_clear_mc();
5292	spin_lock(&mc.lock);
5293	mc.from = NULL;
5294	mc.to = NULL;
5295	spin_unlock(&mc.lock);
5296	mem_cgroup_end_move(from);
5297}
5298
5299static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5300				struct cgroup *cgroup,
5301				struct cgroup_taskset *tset)
5302{
5303	struct task_struct *p = cgroup_taskset_first(tset);
5304	int ret = 0;
5305	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5306
5307	if (memcg->move_charge_at_immigrate) {
5308		struct mm_struct *mm;
5309		struct mem_cgroup *from = mem_cgroup_from_task(p);
5310
5311		VM_BUG_ON(from == memcg);
5312
5313		mm = get_task_mm(p);
5314		if (!mm)
5315			return 0;
5316		/* We move charges only when we move a owner of the mm */
5317		if (mm->owner == p) {
5318			VM_BUG_ON(mc.from);
5319			VM_BUG_ON(mc.to);
5320			VM_BUG_ON(mc.precharge);
5321			VM_BUG_ON(mc.moved_charge);
5322			VM_BUG_ON(mc.moved_swap);
5323			mem_cgroup_start_move(from);
5324			spin_lock(&mc.lock);
5325			mc.from = from;
5326			mc.to = memcg;
5327			spin_unlock(&mc.lock);
5328			/* We set mc.moving_task later */
5329
5330			ret = mem_cgroup_precharge_mc(mm);
5331			if (ret)
5332				mem_cgroup_clear_mc();
5333		}
5334		mmput(mm);
5335	}
5336	return ret;
5337}
5338
5339static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5340				struct cgroup *cgroup,
5341				struct cgroup_taskset *tset)
5342{
5343	mem_cgroup_clear_mc();
5344}
5345
5346static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5347				unsigned long addr, unsigned long end,
5348				struct mm_walk *walk)
5349{
5350	int ret = 0;
5351	struct vm_area_struct *vma = walk->private;
5352	pte_t *pte;
5353	spinlock_t *ptl;
5354
5355	split_huge_page_pmd(walk->mm, pmd);
5356retry:
5357	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5358	for (; addr != end; addr += PAGE_SIZE) {
5359		pte_t ptent = *(pte++);
5360		union mc_target target;
5361		int type;
5362		struct page *page;
5363		struct page_cgroup *pc;
5364		swp_entry_t ent;
5365
5366		if (!mc.precharge)
5367			break;
5368
5369		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5370		switch (type) {
5371		case MC_TARGET_PAGE:
5372			page = target.page;
5373			if (isolate_lru_page(page))
5374				goto put;
5375			pc = lookup_page_cgroup(page);
5376			if (!mem_cgroup_move_account(page, 1, pc,
5377						     mc.from, mc.to, false)) {
5378				mc.precharge--;
5379				/* we uncharge from mc.from later. */
5380				mc.moved_charge++;
5381			}
5382			putback_lru_page(page);
5383put:			/* is_target_pte_for_mc() gets the page */
5384			put_page(page);
5385			break;
5386		case MC_TARGET_SWAP:
5387			ent = target.ent;
5388			if (!mem_cgroup_move_swap_account(ent,
5389						mc.from, mc.to, false)) {
5390				mc.precharge--;
5391				/* we fixup refcnts and charges later. */
5392				mc.moved_swap++;
5393			}
5394			break;
5395		default:
5396			break;
5397		}
5398	}
5399	pte_unmap_unlock(pte - 1, ptl);
5400	cond_resched();
5401
5402	if (addr != end) {
5403		/*
5404		 * We have consumed all precharges we got in can_attach().
5405		 * We try charge one by one, but don't do any additional
5406		 * charges to mc.to if we have failed in charge once in attach()
5407		 * phase.
5408		 */
5409		ret = mem_cgroup_do_precharge(1);
5410		if (!ret)
5411			goto retry;
5412	}
5413
5414	return ret;
5415}
5416
5417static void mem_cgroup_move_charge(struct mm_struct *mm)
5418{
5419	struct vm_area_struct *vma;
5420
5421	lru_add_drain_all();
5422retry:
5423	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5424		/*
5425		 * Someone who are holding the mmap_sem might be waiting in
5426		 * waitq. So we cancel all extra charges, wake up all waiters,
5427		 * and retry. Because we cancel precharges, we might not be able
5428		 * to move enough charges, but moving charge is a best-effort
5429		 * feature anyway, so it wouldn't be a big problem.
5430		 */
5431		__mem_cgroup_clear_mc();
5432		cond_resched();
5433		goto retry;
5434	}
5435	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5436		int ret;
5437		struct mm_walk mem_cgroup_move_charge_walk = {
5438			.pmd_entry = mem_cgroup_move_charge_pte_range,
5439			.mm = mm,
5440			.private = vma,
5441		};
5442		if (is_vm_hugetlb_page(vma))
5443			continue;
5444		ret = walk_page_range(vma->vm_start, vma->vm_end,
5445						&mem_cgroup_move_charge_walk);
5446		if (ret)
5447			/*
5448			 * means we have consumed all precharges and failed in
5449			 * doing additional charge. Just abandon here.
5450			 */
5451			break;
5452	}
5453	up_read(&mm->mmap_sem);
5454}
5455
5456static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5457				struct cgroup *cont,
5458				struct cgroup_taskset *tset)
5459{
5460	struct task_struct *p = cgroup_taskset_first(tset);
5461	struct mm_struct *mm = get_task_mm(p);
5462
5463	if (mm) {
5464		if (mc.to)
5465			mem_cgroup_move_charge(mm);
5466		put_swap_token(mm);
5467		mmput(mm);
5468	}
5469	if (mc.to)
5470		mem_cgroup_clear_mc();
5471}
5472#else	/* !CONFIG_MMU */
5473static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5474				struct cgroup *cgroup,
5475				struct cgroup_taskset *tset)
5476{
5477	return 0;
5478}
5479static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5480				struct cgroup *cgroup,
5481				struct cgroup_taskset *tset)
5482{
5483}
5484static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5485				struct cgroup *cont,
5486				struct cgroup_taskset *tset)
5487{
5488}
5489#endif
5490
5491struct cgroup_subsys mem_cgroup_subsys = {
5492	.name = "memory",
5493	.subsys_id = mem_cgroup_subsys_id,
5494	.create = mem_cgroup_create,
5495	.pre_destroy = mem_cgroup_pre_destroy,
5496	.destroy = mem_cgroup_destroy,
5497	.populate = mem_cgroup_populate,
5498	.can_attach = mem_cgroup_can_attach,
5499	.cancel_attach = mem_cgroup_cancel_attach,
5500	.attach = mem_cgroup_move_task,
5501	.early_init = 0,
5502	.use_id = 1,
5503};
5504
5505#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5506static int __init enable_swap_account(char *s)
5507{
5508	/* consider enabled if no parameter or 1 is given */
5509	if (!strcmp(s, "1"))
5510		really_do_swap_account = 1;
5511	else if (!strcmp(s, "0"))
5512		really_do_swap_account = 0;
5513	return 1;
5514}
5515__setup("swapaccount=", enable_swap_account);
5516
5517#endif
5518