memcontrol.c revision 9f50fad65b87a8776ae989ca059ad6c17925dfc3
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account		(0)
74#endif
75
76
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81	/*
82	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83	 */
84	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90	MEM_CGROUP_STAT_NSTATS,
91};
92
93enum mem_cgroup_events_index {
94	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
95	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
96	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
98	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
99	MEM_CGROUP_EVENTS_NSTATS,
100};
101/*
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
106 */
107enum mem_cgroup_events_target {
108	MEM_CGROUP_TARGET_THRESH,
109	MEM_CGROUP_TARGET_SOFTLIMIT,
110	MEM_CGROUP_TARGET_NUMAINFO,
111	MEM_CGROUP_NTARGETS,
112};
113#define THRESHOLDS_EVENTS_TARGET (128)
114#define SOFTLIMIT_EVENTS_TARGET (1024)
115#define NUMAINFO_EVENTS_TARGET	(1024)
116
117struct mem_cgroup_stat_cpu {
118	long count[MEM_CGROUP_STAT_NSTATS];
119	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
120	unsigned long targets[MEM_CGROUP_NTARGETS];
121};
122
123/*
124 * per-zone information in memory controller.
125 */
126struct mem_cgroup_per_zone {
127	/*
128	 * spin_lock to protect the per cgroup LRU
129	 */
130	struct list_head	lists[NR_LRU_LISTS];
131	unsigned long		count[NR_LRU_LISTS];
132
133	struct zone_reclaim_stat reclaim_stat;
134	struct rb_node		tree_node;	/* RB tree node */
135	unsigned long long	usage_in_excess;/* Set to the value by which */
136						/* the soft limit is exceeded*/
137	bool			on_tree;
138	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
139						/* use container_of	   */
140};
141/* Macro for accessing counter */
142#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
143
144struct mem_cgroup_per_node {
145	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146};
147
148struct mem_cgroup_lru_info {
149	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150};
151
152/*
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
155 */
156
157struct mem_cgroup_tree_per_zone {
158	struct rb_root rb_root;
159	spinlock_t lock;
160};
161
162struct mem_cgroup_tree_per_node {
163	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164};
165
166struct mem_cgroup_tree {
167	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168};
169
170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
172struct mem_cgroup_threshold {
173	struct eventfd_ctx *eventfd;
174	u64 threshold;
175};
176
177/* For threshold */
178struct mem_cgroup_threshold_ary {
179	/* An array index points to threshold just below usage. */
180	int current_threshold;
181	/* Size of entries[] */
182	unsigned int size;
183	/* Array of thresholds */
184	struct mem_cgroup_threshold entries[0];
185};
186
187struct mem_cgroup_thresholds {
188	/* Primary thresholds array */
189	struct mem_cgroup_threshold_ary *primary;
190	/*
191	 * Spare threshold array.
192	 * This is needed to make mem_cgroup_unregister_event() "never fail".
193	 * It must be able to store at least primary->size - 1 entries.
194	 */
195	struct mem_cgroup_threshold_ary *spare;
196};
197
198/* for OOM */
199struct mem_cgroup_eventfd_list {
200	struct list_head list;
201	struct eventfd_ctx *eventfd;
202};
203
204static void mem_cgroup_threshold(struct mem_cgroup *mem);
205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
206
207enum {
208	SCAN_BY_LIMIT,
209	SCAN_BY_SYSTEM,
210	NR_SCAN_CONTEXT,
211	SCAN_BY_SHRINK,	/* not recorded now */
212};
213
214enum {
215	SCAN,
216	SCAN_ANON,
217	SCAN_FILE,
218	ROTATE,
219	ROTATE_ANON,
220	ROTATE_FILE,
221	FREED,
222	FREED_ANON,
223	FREED_FILE,
224	ELAPSED,
225	NR_SCANSTATS,
226};
227
228struct scanstat {
229	spinlock_t	lock;
230	unsigned long	stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
231	unsigned long	rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232};
233
234const char *scanstat_string[NR_SCANSTATS] = {
235	"scanned_pages",
236	"scanned_anon_pages",
237	"scanned_file_pages",
238	"rotated_pages",
239	"rotated_anon_pages",
240	"rotated_file_pages",
241	"freed_pages",
242	"freed_anon_pages",
243	"freed_file_pages",
244	"elapsed_ns",
245};
246#define SCANSTAT_WORD_LIMIT	"_by_limit"
247#define SCANSTAT_WORD_SYSTEM	"_by_system"
248#define SCANSTAT_WORD_HIERARCHY	"_under_hierarchy"
249
250
251/*
252 * The memory controller data structure. The memory controller controls both
253 * page cache and RSS per cgroup. We would eventually like to provide
254 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
255 * to help the administrator determine what knobs to tune.
256 *
257 * TODO: Add a water mark for the memory controller. Reclaim will begin when
258 * we hit the water mark. May be even add a low water mark, such that
259 * no reclaim occurs from a cgroup at it's low water mark, this is
260 * a feature that will be implemented much later in the future.
261 */
262struct mem_cgroup {
263	struct cgroup_subsys_state css;
264	/*
265	 * the counter to account for memory usage
266	 */
267	struct res_counter res;
268	/*
269	 * the counter to account for mem+swap usage.
270	 */
271	struct res_counter memsw;
272	/*
273	 * Per cgroup active and inactive list, similar to the
274	 * per zone LRU lists.
275	 */
276	struct mem_cgroup_lru_info info;
277	/*
278	 * While reclaiming in a hierarchy, we cache the last child we
279	 * reclaimed from.
280	 */
281	int last_scanned_child;
282	int last_scanned_node;
283#if MAX_NUMNODES > 1
284	nodemask_t	scan_nodes;
285	atomic_t	numainfo_events;
286	atomic_t	numainfo_updating;
287#endif
288	/*
289	 * Should the accounting and control be hierarchical, per subtree?
290	 */
291	bool use_hierarchy;
292
293	bool		oom_lock;
294	atomic_t	under_oom;
295
296	atomic_t	refcnt;
297
298	int	swappiness;
299	/* OOM-Killer disable */
300	int		oom_kill_disable;
301
302	/* set when res.limit == memsw.limit */
303	bool		memsw_is_minimum;
304
305	/* protect arrays of thresholds */
306	struct mutex thresholds_lock;
307
308	/* thresholds for memory usage. RCU-protected */
309	struct mem_cgroup_thresholds thresholds;
310
311	/* thresholds for mem+swap usage. RCU-protected */
312	struct mem_cgroup_thresholds memsw_thresholds;
313
314	/* For oom notifier event fd */
315	struct list_head oom_notify;
316	/* For recording LRU-scan statistics */
317	struct scanstat scanstat;
318	/*
319	 * Should we move charges of a task when a task is moved into this
320	 * mem_cgroup ? And what type of charges should we move ?
321	 */
322	unsigned long 	move_charge_at_immigrate;
323	/*
324	 * percpu counter.
325	 */
326	struct mem_cgroup_stat_cpu *stat;
327	/*
328	 * used when a cpu is offlined or other synchronizations
329	 * See mem_cgroup_read_stat().
330	 */
331	struct mem_cgroup_stat_cpu nocpu_base;
332	spinlock_t pcp_counter_lock;
333};
334
335/* Stuffs for move charges at task migration. */
336/*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340enum move_type {
341	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
342	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
343	NR_MOVE_TYPE,
344};
345
346/* "mc" and its members are protected by cgroup_mutex */
347static struct move_charge_struct {
348	spinlock_t	  lock; /* for from, to */
349	struct mem_cgroup *from;
350	struct mem_cgroup *to;
351	unsigned long precharge;
352	unsigned long moved_charge;
353	unsigned long moved_swap;
354	struct task_struct *moving_task;	/* a task moving charges */
355	wait_queue_head_t waitq;		/* a waitq for other context */
356} mc = {
357	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359};
360
361static bool move_anon(void)
362{
363	return test_bit(MOVE_CHARGE_TYPE_ANON,
364					&mc.to->move_charge_at_immigrate);
365}
366
367static bool move_file(void)
368{
369	return test_bit(MOVE_CHARGE_TYPE_FILE,
370					&mc.to->move_charge_at_immigrate);
371}
372
373/*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
377#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
378#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
379
380enum charge_type {
381	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382	MEM_CGROUP_CHARGE_TYPE_MAPPED,
383	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
384	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
385	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
386	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
387	NR_CHARGE_TYPE,
388};
389
390/* for encoding cft->private value on file */
391#define _MEM			(0)
392#define _MEMSWAP		(1)
393#define _OOM_TYPE		(2)
394#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
395#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
396#define MEMFILE_ATTR(val)	((val) & 0xffff)
397/* Used for OOM nofiier */
398#define OOM_CONTROL		(0)
399
400/*
401 * Reclaim flags for mem_cgroup_hierarchical_reclaim
402 */
403#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
404#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
406#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
407#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
408#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
409
410static void mem_cgroup_get(struct mem_cgroup *mem);
411static void mem_cgroup_put(struct mem_cgroup *mem);
412static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
413static void drain_all_stock_async(struct mem_cgroup *mem);
414
415static struct mem_cgroup_per_zone *
416mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
417{
418	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
419}
420
421struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
422{
423	return &mem->css;
424}
425
426static struct mem_cgroup_per_zone *
427page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
428{
429	int nid = page_to_nid(page);
430	int zid = page_zonenum(page);
431
432	return mem_cgroup_zoneinfo(mem, nid, zid);
433}
434
435static struct mem_cgroup_tree_per_zone *
436soft_limit_tree_node_zone(int nid, int zid)
437{
438	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
439}
440
441static struct mem_cgroup_tree_per_zone *
442soft_limit_tree_from_page(struct page *page)
443{
444	int nid = page_to_nid(page);
445	int zid = page_zonenum(page);
446
447	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
448}
449
450static void
451__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
452				struct mem_cgroup_per_zone *mz,
453				struct mem_cgroup_tree_per_zone *mctz,
454				unsigned long long new_usage_in_excess)
455{
456	struct rb_node **p = &mctz->rb_root.rb_node;
457	struct rb_node *parent = NULL;
458	struct mem_cgroup_per_zone *mz_node;
459
460	if (mz->on_tree)
461		return;
462
463	mz->usage_in_excess = new_usage_in_excess;
464	if (!mz->usage_in_excess)
465		return;
466	while (*p) {
467		parent = *p;
468		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
469					tree_node);
470		if (mz->usage_in_excess < mz_node->usage_in_excess)
471			p = &(*p)->rb_left;
472		/*
473		 * We can't avoid mem cgroups that are over their soft
474		 * limit by the same amount
475		 */
476		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
477			p = &(*p)->rb_right;
478	}
479	rb_link_node(&mz->tree_node, parent, p);
480	rb_insert_color(&mz->tree_node, &mctz->rb_root);
481	mz->on_tree = true;
482}
483
484static void
485__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
486				struct mem_cgroup_per_zone *mz,
487				struct mem_cgroup_tree_per_zone *mctz)
488{
489	if (!mz->on_tree)
490		return;
491	rb_erase(&mz->tree_node, &mctz->rb_root);
492	mz->on_tree = false;
493}
494
495static void
496mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
497				struct mem_cgroup_per_zone *mz,
498				struct mem_cgroup_tree_per_zone *mctz)
499{
500	spin_lock(&mctz->lock);
501	__mem_cgroup_remove_exceeded(mem, mz, mctz);
502	spin_unlock(&mctz->lock);
503}
504
505
506static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
507{
508	unsigned long long excess;
509	struct mem_cgroup_per_zone *mz;
510	struct mem_cgroup_tree_per_zone *mctz;
511	int nid = page_to_nid(page);
512	int zid = page_zonenum(page);
513	mctz = soft_limit_tree_from_page(page);
514
515	/*
516	 * Necessary to update all ancestors when hierarchy is used.
517	 * because their event counter is not touched.
518	 */
519	for (; mem; mem = parent_mem_cgroup(mem)) {
520		mz = mem_cgroup_zoneinfo(mem, nid, zid);
521		excess = res_counter_soft_limit_excess(&mem->res);
522		/*
523		 * We have to update the tree if mz is on RB-tree or
524		 * mem is over its softlimit.
525		 */
526		if (excess || mz->on_tree) {
527			spin_lock(&mctz->lock);
528			/* if on-tree, remove it */
529			if (mz->on_tree)
530				__mem_cgroup_remove_exceeded(mem, mz, mctz);
531			/*
532			 * Insert again. mz->usage_in_excess will be updated.
533			 * If excess is 0, no tree ops.
534			 */
535			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
536			spin_unlock(&mctz->lock);
537		}
538	}
539}
540
541static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
542{
543	int node, zone;
544	struct mem_cgroup_per_zone *mz;
545	struct mem_cgroup_tree_per_zone *mctz;
546
547	for_each_node_state(node, N_POSSIBLE) {
548		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
549			mz = mem_cgroup_zoneinfo(mem, node, zone);
550			mctz = soft_limit_tree_node_zone(node, zone);
551			mem_cgroup_remove_exceeded(mem, mz, mctz);
552		}
553	}
554}
555
556static struct mem_cgroup_per_zone *
557__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
558{
559	struct rb_node *rightmost = NULL;
560	struct mem_cgroup_per_zone *mz;
561
562retry:
563	mz = NULL;
564	rightmost = rb_last(&mctz->rb_root);
565	if (!rightmost)
566		goto done;		/* Nothing to reclaim from */
567
568	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
569	/*
570	 * Remove the node now but someone else can add it back,
571	 * we will to add it back at the end of reclaim to its correct
572	 * position in the tree.
573	 */
574	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
575	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
576		!css_tryget(&mz->mem->css))
577		goto retry;
578done:
579	return mz;
580}
581
582static struct mem_cgroup_per_zone *
583mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
584{
585	struct mem_cgroup_per_zone *mz;
586
587	spin_lock(&mctz->lock);
588	mz = __mem_cgroup_largest_soft_limit_node(mctz);
589	spin_unlock(&mctz->lock);
590	return mz;
591}
592
593/*
594 * Implementation Note: reading percpu statistics for memcg.
595 *
596 * Both of vmstat[] and percpu_counter has threshold and do periodic
597 * synchronization to implement "quick" read. There are trade-off between
598 * reading cost and precision of value. Then, we may have a chance to implement
599 * a periodic synchronizion of counter in memcg's counter.
600 *
601 * But this _read() function is used for user interface now. The user accounts
602 * memory usage by memory cgroup and he _always_ requires exact value because
603 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
604 * have to visit all online cpus and make sum. So, for now, unnecessary
605 * synchronization is not implemented. (just implemented for cpu hotplug)
606 *
607 * If there are kernel internal actions which can make use of some not-exact
608 * value, and reading all cpu value can be performance bottleneck in some
609 * common workload, threashold and synchonization as vmstat[] should be
610 * implemented.
611 */
612static long mem_cgroup_read_stat(struct mem_cgroup *mem,
613				 enum mem_cgroup_stat_index idx)
614{
615	long val = 0;
616	int cpu;
617
618	get_online_cpus();
619	for_each_online_cpu(cpu)
620		val += per_cpu(mem->stat->count[idx], cpu);
621#ifdef CONFIG_HOTPLUG_CPU
622	spin_lock(&mem->pcp_counter_lock);
623	val += mem->nocpu_base.count[idx];
624	spin_unlock(&mem->pcp_counter_lock);
625#endif
626	put_online_cpus();
627	return val;
628}
629
630static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
631					 bool charge)
632{
633	int val = (charge) ? 1 : -1;
634	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
635}
636
637void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
638{
639	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
640}
641
642void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
643{
644	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
645}
646
647static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
648					    enum mem_cgroup_events_index idx)
649{
650	unsigned long val = 0;
651	int cpu;
652
653	for_each_online_cpu(cpu)
654		val += per_cpu(mem->stat->events[idx], cpu);
655#ifdef CONFIG_HOTPLUG_CPU
656	spin_lock(&mem->pcp_counter_lock);
657	val += mem->nocpu_base.events[idx];
658	spin_unlock(&mem->pcp_counter_lock);
659#endif
660	return val;
661}
662
663static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
664					 bool file, int nr_pages)
665{
666	preempt_disable();
667
668	if (file)
669		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
670	else
671		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
672
673	/* pagein of a big page is an event. So, ignore page size */
674	if (nr_pages > 0)
675		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
676	else {
677		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
678		nr_pages = -nr_pages; /* for event */
679	}
680
681	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
682
683	preempt_enable();
684}
685
686unsigned long
687mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
688			unsigned int lru_mask)
689{
690	struct mem_cgroup_per_zone *mz;
691	enum lru_list l;
692	unsigned long ret = 0;
693
694	mz = mem_cgroup_zoneinfo(mem, nid, zid);
695
696	for_each_lru(l) {
697		if (BIT(l) & lru_mask)
698			ret += MEM_CGROUP_ZSTAT(mz, l);
699	}
700	return ret;
701}
702
703static unsigned long
704mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
705			int nid, unsigned int lru_mask)
706{
707	u64 total = 0;
708	int zid;
709
710	for (zid = 0; zid < MAX_NR_ZONES; zid++)
711		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
712
713	return total;
714}
715
716static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
717			unsigned int lru_mask)
718{
719	int nid;
720	u64 total = 0;
721
722	for_each_node_state(nid, N_HIGH_MEMORY)
723		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
724	return total;
725}
726
727static bool __memcg_event_check(struct mem_cgroup *mem, int target)
728{
729	unsigned long val, next;
730
731	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
732	next = this_cpu_read(mem->stat->targets[target]);
733	/* from time_after() in jiffies.h */
734	return ((long)next - (long)val < 0);
735}
736
737static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
738{
739	unsigned long val, next;
740
741	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
742
743	switch (target) {
744	case MEM_CGROUP_TARGET_THRESH:
745		next = val + THRESHOLDS_EVENTS_TARGET;
746		break;
747	case MEM_CGROUP_TARGET_SOFTLIMIT:
748		next = val + SOFTLIMIT_EVENTS_TARGET;
749		break;
750	case MEM_CGROUP_TARGET_NUMAINFO:
751		next = val + NUMAINFO_EVENTS_TARGET;
752		break;
753	default:
754		return;
755	}
756
757	this_cpu_write(mem->stat->targets[target], next);
758}
759
760/*
761 * Check events in order.
762 *
763 */
764static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
765{
766	/* threshold event is triggered in finer grain than soft limit */
767	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
768		mem_cgroup_threshold(mem);
769		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
770		if (unlikely(__memcg_event_check(mem,
771			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
772			mem_cgroup_update_tree(mem, page);
773			__mem_cgroup_target_update(mem,
774						   MEM_CGROUP_TARGET_SOFTLIMIT);
775		}
776#if MAX_NUMNODES > 1
777		if (unlikely(__memcg_event_check(mem,
778			MEM_CGROUP_TARGET_NUMAINFO))) {
779			atomic_inc(&mem->numainfo_events);
780			__mem_cgroup_target_update(mem,
781				MEM_CGROUP_TARGET_NUMAINFO);
782		}
783#endif
784	}
785}
786
787static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
788{
789	return container_of(cgroup_subsys_state(cont,
790				mem_cgroup_subsys_id), struct mem_cgroup,
791				css);
792}
793
794struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
795{
796	/*
797	 * mm_update_next_owner() may clear mm->owner to NULL
798	 * if it races with swapoff, page migration, etc.
799	 * So this can be called with p == NULL.
800	 */
801	if (unlikely(!p))
802		return NULL;
803
804	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
805				struct mem_cgroup, css);
806}
807
808struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
809{
810	struct mem_cgroup *mem = NULL;
811
812	if (!mm)
813		return NULL;
814	/*
815	 * Because we have no locks, mm->owner's may be being moved to other
816	 * cgroup. We use css_tryget() here even if this looks
817	 * pessimistic (rather than adding locks here).
818	 */
819	rcu_read_lock();
820	do {
821		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
822		if (unlikely(!mem))
823			break;
824	} while (!css_tryget(&mem->css));
825	rcu_read_unlock();
826	return mem;
827}
828
829/* The caller has to guarantee "mem" exists before calling this */
830static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
831{
832	struct cgroup_subsys_state *css;
833	int found;
834
835	if (!mem) /* ROOT cgroup has the smallest ID */
836		return root_mem_cgroup; /*css_put/get against root is ignored*/
837	if (!mem->use_hierarchy) {
838		if (css_tryget(&mem->css))
839			return mem;
840		return NULL;
841	}
842	rcu_read_lock();
843	/*
844	 * searching a memory cgroup which has the smallest ID under given
845	 * ROOT cgroup. (ID >= 1)
846	 */
847	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
848	if (css && css_tryget(css))
849		mem = container_of(css, struct mem_cgroup, css);
850	else
851		mem = NULL;
852	rcu_read_unlock();
853	return mem;
854}
855
856static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
857					struct mem_cgroup *root,
858					bool cond)
859{
860	int nextid = css_id(&iter->css) + 1;
861	int found;
862	int hierarchy_used;
863	struct cgroup_subsys_state *css;
864
865	hierarchy_used = iter->use_hierarchy;
866
867	css_put(&iter->css);
868	/* If no ROOT, walk all, ignore hierarchy */
869	if (!cond || (root && !hierarchy_used))
870		return NULL;
871
872	if (!root)
873		root = root_mem_cgroup;
874
875	do {
876		iter = NULL;
877		rcu_read_lock();
878
879		css = css_get_next(&mem_cgroup_subsys, nextid,
880				&root->css, &found);
881		if (css && css_tryget(css))
882			iter = container_of(css, struct mem_cgroup, css);
883		rcu_read_unlock();
884		/* If css is NULL, no more cgroups will be found */
885		nextid = found + 1;
886	} while (css && !iter);
887
888	return iter;
889}
890/*
891 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
892 * be careful that "break" loop is not allowed. We have reference count.
893 * Instead of that modify "cond" to be false and "continue" to exit the loop.
894 */
895#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
896	for (iter = mem_cgroup_start_loop(root);\
897	     iter != NULL;\
898	     iter = mem_cgroup_get_next(iter, root, cond))
899
900#define for_each_mem_cgroup_tree(iter, root) \
901	for_each_mem_cgroup_tree_cond(iter, root, true)
902
903#define for_each_mem_cgroup_all(iter) \
904	for_each_mem_cgroup_tree_cond(iter, NULL, true)
905
906
907static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
908{
909	return (mem == root_mem_cgroup);
910}
911
912void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
913{
914	struct mem_cgroup *mem;
915
916	if (!mm)
917		return;
918
919	rcu_read_lock();
920	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
921	if (unlikely(!mem))
922		goto out;
923
924	switch (idx) {
925	case PGMAJFAULT:
926		mem_cgroup_pgmajfault(mem, 1);
927		break;
928	case PGFAULT:
929		mem_cgroup_pgfault(mem, 1);
930		break;
931	default:
932		BUG();
933	}
934out:
935	rcu_read_unlock();
936}
937EXPORT_SYMBOL(mem_cgroup_count_vm_event);
938
939/*
940 * Following LRU functions are allowed to be used without PCG_LOCK.
941 * Operations are called by routine of global LRU independently from memcg.
942 * What we have to take care of here is validness of pc->mem_cgroup.
943 *
944 * Changes to pc->mem_cgroup happens when
945 * 1. charge
946 * 2. moving account
947 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
948 * It is added to LRU before charge.
949 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
950 * When moving account, the page is not on LRU. It's isolated.
951 */
952
953void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
954{
955	struct page_cgroup *pc;
956	struct mem_cgroup_per_zone *mz;
957
958	if (mem_cgroup_disabled())
959		return;
960	pc = lookup_page_cgroup(page);
961	/* can happen while we handle swapcache. */
962	if (!TestClearPageCgroupAcctLRU(pc))
963		return;
964	VM_BUG_ON(!pc->mem_cgroup);
965	/*
966	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
967	 * removed from global LRU.
968	 */
969	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
970	/* huge page split is done under lru_lock. so, we have no races. */
971	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
972	if (mem_cgroup_is_root(pc->mem_cgroup))
973		return;
974	VM_BUG_ON(list_empty(&pc->lru));
975	list_del_init(&pc->lru);
976}
977
978void mem_cgroup_del_lru(struct page *page)
979{
980	mem_cgroup_del_lru_list(page, page_lru(page));
981}
982
983/*
984 * Writeback is about to end against a page which has been marked for immediate
985 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
986 * inactive list.
987 */
988void mem_cgroup_rotate_reclaimable_page(struct page *page)
989{
990	struct mem_cgroup_per_zone *mz;
991	struct page_cgroup *pc;
992	enum lru_list lru = page_lru(page);
993
994	if (mem_cgroup_disabled())
995		return;
996
997	pc = lookup_page_cgroup(page);
998	/* unused or root page is not rotated. */
999	if (!PageCgroupUsed(pc))
1000		return;
1001	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1002	smp_rmb();
1003	if (mem_cgroup_is_root(pc->mem_cgroup))
1004		return;
1005	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1006	list_move_tail(&pc->lru, &mz->lists[lru]);
1007}
1008
1009void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1010{
1011	struct mem_cgroup_per_zone *mz;
1012	struct page_cgroup *pc;
1013
1014	if (mem_cgroup_disabled())
1015		return;
1016
1017	pc = lookup_page_cgroup(page);
1018	/* unused or root page is not rotated. */
1019	if (!PageCgroupUsed(pc))
1020		return;
1021	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1022	smp_rmb();
1023	if (mem_cgroup_is_root(pc->mem_cgroup))
1024		return;
1025	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1026	list_move(&pc->lru, &mz->lists[lru]);
1027}
1028
1029void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1030{
1031	struct page_cgroup *pc;
1032	struct mem_cgroup_per_zone *mz;
1033
1034	if (mem_cgroup_disabled())
1035		return;
1036	pc = lookup_page_cgroup(page);
1037	VM_BUG_ON(PageCgroupAcctLRU(pc));
1038	if (!PageCgroupUsed(pc))
1039		return;
1040	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1041	smp_rmb();
1042	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1043	/* huge page split is done under lru_lock. so, we have no races. */
1044	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1045	SetPageCgroupAcctLRU(pc);
1046	if (mem_cgroup_is_root(pc->mem_cgroup))
1047		return;
1048	list_add(&pc->lru, &mz->lists[lru]);
1049}
1050
1051/*
1052 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1053 * while it's linked to lru because the page may be reused after it's fully
1054 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1055 * It's done under lock_page and expected that zone->lru_lock isnever held.
1056 */
1057static void mem_cgroup_lru_del_before_commit(struct page *page)
1058{
1059	unsigned long flags;
1060	struct zone *zone = page_zone(page);
1061	struct page_cgroup *pc = lookup_page_cgroup(page);
1062
1063	/*
1064	 * Doing this check without taking ->lru_lock seems wrong but this
1065	 * is safe. Because if page_cgroup's USED bit is unset, the page
1066	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1067	 * set, the commit after this will fail, anyway.
1068	 * This all charge/uncharge is done under some mutual execustion.
1069	 * So, we don't need to taking care of changes in USED bit.
1070	 */
1071	if (likely(!PageLRU(page)))
1072		return;
1073
1074	spin_lock_irqsave(&zone->lru_lock, flags);
1075	/*
1076	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1077	 * is guarded by lock_page() because the page is SwapCache.
1078	 */
1079	if (!PageCgroupUsed(pc))
1080		mem_cgroup_del_lru_list(page, page_lru(page));
1081	spin_unlock_irqrestore(&zone->lru_lock, flags);
1082}
1083
1084static void mem_cgroup_lru_add_after_commit(struct page *page)
1085{
1086	unsigned long flags;
1087	struct zone *zone = page_zone(page);
1088	struct page_cgroup *pc = lookup_page_cgroup(page);
1089
1090	/* taking care of that the page is added to LRU while we commit it */
1091	if (likely(!PageLRU(page)))
1092		return;
1093	spin_lock_irqsave(&zone->lru_lock, flags);
1094	/* link when the page is linked to LRU but page_cgroup isn't */
1095	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1096		mem_cgroup_add_lru_list(page, page_lru(page));
1097	spin_unlock_irqrestore(&zone->lru_lock, flags);
1098}
1099
1100
1101void mem_cgroup_move_lists(struct page *page,
1102			   enum lru_list from, enum lru_list to)
1103{
1104	if (mem_cgroup_disabled())
1105		return;
1106	mem_cgroup_del_lru_list(page, from);
1107	mem_cgroup_add_lru_list(page, to);
1108}
1109
1110/*
1111 * Checks whether given mem is same or in the root_mem's
1112 * hierarchy subtree
1113 */
1114static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1115		struct mem_cgroup *mem)
1116{
1117	if (root_mem != mem) {
1118		return (root_mem->use_hierarchy &&
1119			css_is_ancestor(&mem->css, &root_mem->css));
1120	}
1121
1122	return true;
1123}
1124
1125int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1126{
1127	int ret;
1128	struct mem_cgroup *curr = NULL;
1129	struct task_struct *p;
1130
1131	p = find_lock_task_mm(task);
1132	if (!p)
1133		return 0;
1134	curr = try_get_mem_cgroup_from_mm(p->mm);
1135	task_unlock(p);
1136	if (!curr)
1137		return 0;
1138	/*
1139	 * We should check use_hierarchy of "mem" not "curr". Because checking
1140	 * use_hierarchy of "curr" here make this function true if hierarchy is
1141	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1142	 * hierarchy(even if use_hierarchy is disabled in "mem").
1143	 */
1144	ret = mem_cgroup_same_or_subtree(mem, curr);
1145	css_put(&curr->css);
1146	return ret;
1147}
1148
1149static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1150{
1151	unsigned long active;
1152	unsigned long inactive;
1153	unsigned long gb;
1154	unsigned long inactive_ratio;
1155
1156	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1157	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1158
1159	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1160	if (gb)
1161		inactive_ratio = int_sqrt(10 * gb);
1162	else
1163		inactive_ratio = 1;
1164
1165	if (present_pages) {
1166		present_pages[0] = inactive;
1167		present_pages[1] = active;
1168	}
1169
1170	return inactive_ratio;
1171}
1172
1173int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1174{
1175	unsigned long active;
1176	unsigned long inactive;
1177	unsigned long present_pages[2];
1178	unsigned long inactive_ratio;
1179
1180	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1181
1182	inactive = present_pages[0];
1183	active = present_pages[1];
1184
1185	if (inactive * inactive_ratio < active)
1186		return 1;
1187
1188	return 0;
1189}
1190
1191int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1192{
1193	unsigned long active;
1194	unsigned long inactive;
1195
1196	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1197	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1198
1199	return (active > inactive);
1200}
1201
1202struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1203						      struct zone *zone)
1204{
1205	int nid = zone_to_nid(zone);
1206	int zid = zone_idx(zone);
1207	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1208
1209	return &mz->reclaim_stat;
1210}
1211
1212struct zone_reclaim_stat *
1213mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1214{
1215	struct page_cgroup *pc;
1216	struct mem_cgroup_per_zone *mz;
1217
1218	if (mem_cgroup_disabled())
1219		return NULL;
1220
1221	pc = lookup_page_cgroup(page);
1222	if (!PageCgroupUsed(pc))
1223		return NULL;
1224	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1225	smp_rmb();
1226	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1227	return &mz->reclaim_stat;
1228}
1229
1230unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1231					struct list_head *dst,
1232					unsigned long *scanned, int order,
1233					int mode, struct zone *z,
1234					struct mem_cgroup *mem_cont,
1235					int active, int file)
1236{
1237	unsigned long nr_taken = 0;
1238	struct page *page;
1239	unsigned long scan;
1240	LIST_HEAD(pc_list);
1241	struct list_head *src;
1242	struct page_cgroup *pc, *tmp;
1243	int nid = zone_to_nid(z);
1244	int zid = zone_idx(z);
1245	struct mem_cgroup_per_zone *mz;
1246	int lru = LRU_FILE * file + active;
1247	int ret;
1248
1249	BUG_ON(!mem_cont);
1250	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1251	src = &mz->lists[lru];
1252
1253	scan = 0;
1254	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1255		if (scan >= nr_to_scan)
1256			break;
1257
1258		if (unlikely(!PageCgroupUsed(pc)))
1259			continue;
1260
1261		page = lookup_cgroup_page(pc);
1262
1263		if (unlikely(!PageLRU(page)))
1264			continue;
1265
1266		scan++;
1267		ret = __isolate_lru_page(page, mode, file);
1268		switch (ret) {
1269		case 0:
1270			list_move(&page->lru, dst);
1271			mem_cgroup_del_lru(page);
1272			nr_taken += hpage_nr_pages(page);
1273			break;
1274		case -EBUSY:
1275			/* we don't affect global LRU but rotate in our LRU */
1276			mem_cgroup_rotate_lru_list(page, page_lru(page));
1277			break;
1278		default:
1279			break;
1280		}
1281	}
1282
1283	*scanned = scan;
1284
1285	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1286				      0, 0, 0, mode);
1287
1288	return nr_taken;
1289}
1290
1291#define mem_cgroup_from_res_counter(counter, member)	\
1292	container_of(counter, struct mem_cgroup, member)
1293
1294/**
1295 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1296 * @mem: the memory cgroup
1297 *
1298 * Returns the maximum amount of memory @mem can be charged with, in
1299 * pages.
1300 */
1301static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1302{
1303	unsigned long long margin;
1304
1305	margin = res_counter_margin(&mem->res);
1306	if (do_swap_account)
1307		margin = min(margin, res_counter_margin(&mem->memsw));
1308	return margin >> PAGE_SHIFT;
1309}
1310
1311int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1312{
1313	struct cgroup *cgrp = memcg->css.cgroup;
1314
1315	/* root ? */
1316	if (cgrp->parent == NULL)
1317		return vm_swappiness;
1318
1319	return memcg->swappiness;
1320}
1321
1322static void mem_cgroup_start_move(struct mem_cgroup *mem)
1323{
1324	int cpu;
1325
1326	get_online_cpus();
1327	spin_lock(&mem->pcp_counter_lock);
1328	for_each_online_cpu(cpu)
1329		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1330	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1331	spin_unlock(&mem->pcp_counter_lock);
1332	put_online_cpus();
1333
1334	synchronize_rcu();
1335}
1336
1337static void mem_cgroup_end_move(struct mem_cgroup *mem)
1338{
1339	int cpu;
1340
1341	if (!mem)
1342		return;
1343	get_online_cpus();
1344	spin_lock(&mem->pcp_counter_lock);
1345	for_each_online_cpu(cpu)
1346		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1347	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1348	spin_unlock(&mem->pcp_counter_lock);
1349	put_online_cpus();
1350}
1351/*
1352 * 2 routines for checking "mem" is under move_account() or not.
1353 *
1354 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1355 *			  for avoiding race in accounting. If true,
1356 *			  pc->mem_cgroup may be overwritten.
1357 *
1358 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1359 *			  under hierarchy of moving cgroups. This is for
1360 *			  waiting at hith-memory prressure caused by "move".
1361 */
1362
1363static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1364{
1365	VM_BUG_ON(!rcu_read_lock_held());
1366	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1367}
1368
1369static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1370{
1371	struct mem_cgroup *from;
1372	struct mem_cgroup *to;
1373	bool ret = false;
1374	/*
1375	 * Unlike task_move routines, we access mc.to, mc.from not under
1376	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1377	 */
1378	spin_lock(&mc.lock);
1379	from = mc.from;
1380	to = mc.to;
1381	if (!from)
1382		goto unlock;
1383
1384	ret = mem_cgroup_same_or_subtree(mem, from)
1385		|| mem_cgroup_same_or_subtree(mem, to);
1386unlock:
1387	spin_unlock(&mc.lock);
1388	return ret;
1389}
1390
1391static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1392{
1393	if (mc.moving_task && current != mc.moving_task) {
1394		if (mem_cgroup_under_move(mem)) {
1395			DEFINE_WAIT(wait);
1396			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1397			/* moving charge context might have finished. */
1398			if (mc.moving_task)
1399				schedule();
1400			finish_wait(&mc.waitq, &wait);
1401			return true;
1402		}
1403	}
1404	return false;
1405}
1406
1407/**
1408 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1409 * @memcg: The memory cgroup that went over limit
1410 * @p: Task that is going to be killed
1411 *
1412 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1413 * enabled
1414 */
1415void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1416{
1417	struct cgroup *task_cgrp;
1418	struct cgroup *mem_cgrp;
1419	/*
1420	 * Need a buffer in BSS, can't rely on allocations. The code relies
1421	 * on the assumption that OOM is serialized for memory controller.
1422	 * If this assumption is broken, revisit this code.
1423	 */
1424	static char memcg_name[PATH_MAX];
1425	int ret;
1426
1427	if (!memcg || !p)
1428		return;
1429
1430
1431	rcu_read_lock();
1432
1433	mem_cgrp = memcg->css.cgroup;
1434	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1435
1436	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1437	if (ret < 0) {
1438		/*
1439		 * Unfortunately, we are unable to convert to a useful name
1440		 * But we'll still print out the usage information
1441		 */
1442		rcu_read_unlock();
1443		goto done;
1444	}
1445	rcu_read_unlock();
1446
1447	printk(KERN_INFO "Task in %s killed", memcg_name);
1448
1449	rcu_read_lock();
1450	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1451	if (ret < 0) {
1452		rcu_read_unlock();
1453		goto done;
1454	}
1455	rcu_read_unlock();
1456
1457	/*
1458	 * Continues from above, so we don't need an KERN_ level
1459	 */
1460	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1461done:
1462
1463	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1464		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1465		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1466		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1467	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1468		"failcnt %llu\n",
1469		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1470		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1471		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1472}
1473
1474/*
1475 * This function returns the number of memcg under hierarchy tree. Returns
1476 * 1(self count) if no children.
1477 */
1478static int mem_cgroup_count_children(struct mem_cgroup *mem)
1479{
1480	int num = 0;
1481	struct mem_cgroup *iter;
1482
1483	for_each_mem_cgroup_tree(iter, mem)
1484		num++;
1485	return num;
1486}
1487
1488/*
1489 * Return the memory (and swap, if configured) limit for a memcg.
1490 */
1491u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1492{
1493	u64 limit;
1494	u64 memsw;
1495
1496	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1497	limit += total_swap_pages << PAGE_SHIFT;
1498
1499	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1500	/*
1501	 * If memsw is finite and limits the amount of swap space available
1502	 * to this memcg, return that limit.
1503	 */
1504	return min(limit, memsw);
1505}
1506
1507/*
1508 * Visit the first child (need not be the first child as per the ordering
1509 * of the cgroup list, since we track last_scanned_child) of @mem and use
1510 * that to reclaim free pages from.
1511 */
1512static struct mem_cgroup *
1513mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1514{
1515	struct mem_cgroup *ret = NULL;
1516	struct cgroup_subsys_state *css;
1517	int nextid, found;
1518
1519	if (!root_mem->use_hierarchy) {
1520		css_get(&root_mem->css);
1521		ret = root_mem;
1522	}
1523
1524	while (!ret) {
1525		rcu_read_lock();
1526		nextid = root_mem->last_scanned_child + 1;
1527		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1528				   &found);
1529		if (css && css_tryget(css))
1530			ret = container_of(css, struct mem_cgroup, css);
1531
1532		rcu_read_unlock();
1533		/* Updates scanning parameter */
1534		if (!css) {
1535			/* this means start scan from ID:1 */
1536			root_mem->last_scanned_child = 0;
1537		} else
1538			root_mem->last_scanned_child = found;
1539	}
1540
1541	return ret;
1542}
1543
1544/**
1545 * test_mem_cgroup_node_reclaimable
1546 * @mem: the target memcg
1547 * @nid: the node ID to be checked.
1548 * @noswap : specify true here if the user wants flle only information.
1549 *
1550 * This function returns whether the specified memcg contains any
1551 * reclaimable pages on a node. Returns true if there are any reclaimable
1552 * pages in the node.
1553 */
1554static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1555		int nid, bool noswap)
1556{
1557	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1558		return true;
1559	if (noswap || !total_swap_pages)
1560		return false;
1561	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1562		return true;
1563	return false;
1564
1565}
1566#if MAX_NUMNODES > 1
1567
1568/*
1569 * Always updating the nodemask is not very good - even if we have an empty
1570 * list or the wrong list here, we can start from some node and traverse all
1571 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1572 *
1573 */
1574static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1575{
1576	int nid;
1577	/*
1578	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1579	 * pagein/pageout changes since the last update.
1580	 */
1581	if (!atomic_read(&mem->numainfo_events))
1582		return;
1583	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1584		return;
1585
1586	/* make a nodemask where this memcg uses memory from */
1587	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1588
1589	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1590
1591		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1592			node_clear(nid, mem->scan_nodes);
1593	}
1594
1595	atomic_set(&mem->numainfo_events, 0);
1596	atomic_set(&mem->numainfo_updating, 0);
1597}
1598
1599/*
1600 * Selecting a node where we start reclaim from. Because what we need is just
1601 * reducing usage counter, start from anywhere is O,K. Considering
1602 * memory reclaim from current node, there are pros. and cons.
1603 *
1604 * Freeing memory from current node means freeing memory from a node which
1605 * we'll use or we've used. So, it may make LRU bad. And if several threads
1606 * hit limits, it will see a contention on a node. But freeing from remote
1607 * node means more costs for memory reclaim because of memory latency.
1608 *
1609 * Now, we use round-robin. Better algorithm is welcomed.
1610 */
1611int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1612{
1613	int node;
1614
1615	mem_cgroup_may_update_nodemask(mem);
1616	node = mem->last_scanned_node;
1617
1618	node = next_node(node, mem->scan_nodes);
1619	if (node == MAX_NUMNODES)
1620		node = first_node(mem->scan_nodes);
1621	/*
1622	 * We call this when we hit limit, not when pages are added to LRU.
1623	 * No LRU may hold pages because all pages are UNEVICTABLE or
1624	 * memcg is too small and all pages are not on LRU. In that case,
1625	 * we use curret node.
1626	 */
1627	if (unlikely(node == MAX_NUMNODES))
1628		node = numa_node_id();
1629
1630	mem->last_scanned_node = node;
1631	return node;
1632}
1633
1634/*
1635 * Check all nodes whether it contains reclaimable pages or not.
1636 * For quick scan, we make use of scan_nodes. This will allow us to skip
1637 * unused nodes. But scan_nodes is lazily updated and may not cotain
1638 * enough new information. We need to do double check.
1639 */
1640bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1641{
1642	int nid;
1643
1644	/*
1645	 * quick check...making use of scan_node.
1646	 * We can skip unused nodes.
1647	 */
1648	if (!nodes_empty(mem->scan_nodes)) {
1649		for (nid = first_node(mem->scan_nodes);
1650		     nid < MAX_NUMNODES;
1651		     nid = next_node(nid, mem->scan_nodes)) {
1652
1653			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1654				return true;
1655		}
1656	}
1657	/*
1658	 * Check rest of nodes.
1659	 */
1660	for_each_node_state(nid, N_HIGH_MEMORY) {
1661		if (node_isset(nid, mem->scan_nodes))
1662			continue;
1663		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1664			return true;
1665	}
1666	return false;
1667}
1668
1669#else
1670int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1671{
1672	return 0;
1673}
1674
1675bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1676{
1677	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1678}
1679#endif
1680
1681static void __mem_cgroup_record_scanstat(unsigned long *stats,
1682			   struct memcg_scanrecord *rec)
1683{
1684
1685	stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1686	stats[SCAN_ANON] += rec->nr_scanned[0];
1687	stats[SCAN_FILE] += rec->nr_scanned[1];
1688
1689	stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1690	stats[ROTATE_ANON] += rec->nr_rotated[0];
1691	stats[ROTATE_FILE] += rec->nr_rotated[1];
1692
1693	stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1694	stats[FREED_ANON] += rec->nr_freed[0];
1695	stats[FREED_FILE] += rec->nr_freed[1];
1696
1697	stats[ELAPSED] += rec->elapsed;
1698}
1699
1700static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1701{
1702	struct mem_cgroup *mem;
1703	int context = rec->context;
1704
1705	if (context >= NR_SCAN_CONTEXT)
1706		return;
1707
1708	mem = rec->mem;
1709	spin_lock(&mem->scanstat.lock);
1710	__mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1711	spin_unlock(&mem->scanstat.lock);
1712
1713	mem = rec->root;
1714	spin_lock(&mem->scanstat.lock);
1715	__mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1716	spin_unlock(&mem->scanstat.lock);
1717}
1718
1719/*
1720 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1721 * we reclaimed from, so that we don't end up penalizing one child extensively
1722 * based on its position in the children list.
1723 *
1724 * root_mem is the original ancestor that we've been reclaim from.
1725 *
1726 * We give up and return to the caller when we visit root_mem twice.
1727 * (other groups can be removed while we're walking....)
1728 *
1729 * If shrink==true, for avoiding to free too much, this returns immedieately.
1730 */
1731static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1732						struct zone *zone,
1733						gfp_t gfp_mask,
1734						unsigned long reclaim_options,
1735						unsigned long *total_scanned)
1736{
1737	struct mem_cgroup *victim;
1738	int ret, total = 0;
1739	int loop = 0;
1740	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1741	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1742	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1743	struct memcg_scanrecord rec;
1744	unsigned long excess;
1745	unsigned long scanned;
1746
1747	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1748
1749	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1750	if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1751		noswap = true;
1752
1753	if (shrink)
1754		rec.context = SCAN_BY_SHRINK;
1755	else if (check_soft)
1756		rec.context = SCAN_BY_SYSTEM;
1757	else
1758		rec.context = SCAN_BY_LIMIT;
1759
1760	rec.root = root_mem;
1761
1762	while (1) {
1763		victim = mem_cgroup_select_victim(root_mem);
1764		if (victim == root_mem) {
1765			loop++;
1766			/*
1767			 * We are not draining per cpu cached charges during
1768			 * soft limit reclaim  because global reclaim doesn't
1769			 * care about charges. It tries to free some memory and
1770			 * charges will not give any.
1771			 */
1772			if (!check_soft && loop >= 1)
1773				drain_all_stock_async(root_mem);
1774			if (loop >= 2) {
1775				/*
1776				 * If we have not been able to reclaim
1777				 * anything, it might because there are
1778				 * no reclaimable pages under this hierarchy
1779				 */
1780				if (!check_soft || !total) {
1781					css_put(&victim->css);
1782					break;
1783				}
1784				/*
1785				 * We want to do more targeted reclaim.
1786				 * excess >> 2 is not to excessive so as to
1787				 * reclaim too much, nor too less that we keep
1788				 * coming back to reclaim from this cgroup
1789				 */
1790				if (total >= (excess >> 2) ||
1791					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1792					css_put(&victim->css);
1793					break;
1794				}
1795			}
1796		}
1797		if (!mem_cgroup_reclaimable(victim, noswap)) {
1798			/* this cgroup's local usage == 0 */
1799			css_put(&victim->css);
1800			continue;
1801		}
1802		rec.mem = victim;
1803		rec.nr_scanned[0] = 0;
1804		rec.nr_scanned[1] = 0;
1805		rec.nr_rotated[0] = 0;
1806		rec.nr_rotated[1] = 0;
1807		rec.nr_freed[0] = 0;
1808		rec.nr_freed[1] = 0;
1809		rec.elapsed = 0;
1810		/* we use swappiness of local cgroup */
1811		if (check_soft) {
1812			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1813				noswap, zone, &rec, &scanned);
1814			*total_scanned += scanned;
1815		} else
1816			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1817						noswap, &rec);
1818		mem_cgroup_record_scanstat(&rec);
1819		css_put(&victim->css);
1820		/*
1821		 * At shrinking usage, we can't check we should stop here or
1822		 * reclaim more. It's depends on callers. last_scanned_child
1823		 * will work enough for keeping fairness under tree.
1824		 */
1825		if (shrink)
1826			return ret;
1827		total += ret;
1828		if (check_soft) {
1829			if (!res_counter_soft_limit_excess(&root_mem->res))
1830				return total;
1831		} else if (mem_cgroup_margin(root_mem))
1832			return total;
1833	}
1834	return total;
1835}
1836
1837/*
1838 * Check OOM-Killer is already running under our hierarchy.
1839 * If someone is running, return false.
1840 * Has to be called with memcg_oom_lock
1841 */
1842static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1843{
1844	int lock_count = -1;
1845	struct mem_cgroup *iter, *failed = NULL;
1846	bool cond = true;
1847
1848	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1849		bool locked = iter->oom_lock;
1850
1851		iter->oom_lock = true;
1852		if (lock_count == -1)
1853			lock_count = iter->oom_lock;
1854		else if (lock_count != locked) {
1855			/*
1856			 * this subtree of our hierarchy is already locked
1857			 * so we cannot give a lock.
1858			 */
1859			lock_count = 0;
1860			failed = iter;
1861			cond = false;
1862		}
1863	}
1864
1865	if (!failed)
1866		goto done;
1867
1868	/*
1869	 * OK, we failed to lock the whole subtree so we have to clean up
1870	 * what we set up to the failing subtree
1871	 */
1872	cond = true;
1873	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1874		if (iter == failed) {
1875			cond = false;
1876			continue;
1877		}
1878		iter->oom_lock = false;
1879	}
1880done:
1881	return lock_count;
1882}
1883
1884/*
1885 * Has to be called with memcg_oom_lock
1886 */
1887static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1888{
1889	struct mem_cgroup *iter;
1890
1891	for_each_mem_cgroup_tree(iter, mem)
1892		iter->oom_lock = false;
1893	return 0;
1894}
1895
1896static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1897{
1898	struct mem_cgroup *iter;
1899
1900	for_each_mem_cgroup_tree(iter, mem)
1901		atomic_inc(&iter->under_oom);
1902}
1903
1904static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1905{
1906	struct mem_cgroup *iter;
1907
1908	/*
1909	 * When a new child is created while the hierarchy is under oom,
1910	 * mem_cgroup_oom_lock() may not be called. We have to use
1911	 * atomic_add_unless() here.
1912	 */
1913	for_each_mem_cgroup_tree(iter, mem)
1914		atomic_add_unless(&iter->under_oom, -1, 0);
1915}
1916
1917static DEFINE_SPINLOCK(memcg_oom_lock);
1918static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1919
1920struct oom_wait_info {
1921	struct mem_cgroup *mem;
1922	wait_queue_t	wait;
1923};
1924
1925static int memcg_oom_wake_function(wait_queue_t *wait,
1926	unsigned mode, int sync, void *arg)
1927{
1928	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1929			  *oom_wait_mem;
1930	struct oom_wait_info *oom_wait_info;
1931
1932	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1933	oom_wait_mem = oom_wait_info->mem;
1934
1935	/*
1936	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1937	 * Then we can use css_is_ancestor without taking care of RCU.
1938	 */
1939	if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1940			&& !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1941		return 0;
1942	return autoremove_wake_function(wait, mode, sync, arg);
1943}
1944
1945static void memcg_wakeup_oom(struct mem_cgroup *mem)
1946{
1947	/* for filtering, pass "mem" as argument. */
1948	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1949}
1950
1951static void memcg_oom_recover(struct mem_cgroup *mem)
1952{
1953	if (mem && atomic_read(&mem->under_oom))
1954		memcg_wakeup_oom(mem);
1955}
1956
1957/*
1958 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1959 */
1960bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1961{
1962	struct oom_wait_info owait;
1963	bool locked, need_to_kill;
1964
1965	owait.mem = mem;
1966	owait.wait.flags = 0;
1967	owait.wait.func = memcg_oom_wake_function;
1968	owait.wait.private = current;
1969	INIT_LIST_HEAD(&owait.wait.task_list);
1970	need_to_kill = true;
1971	mem_cgroup_mark_under_oom(mem);
1972
1973	/* At first, try to OOM lock hierarchy under mem.*/
1974	spin_lock(&memcg_oom_lock);
1975	locked = mem_cgroup_oom_lock(mem);
1976	/*
1977	 * Even if signal_pending(), we can't quit charge() loop without
1978	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1979	 * under OOM is always welcomed, use TASK_KILLABLE here.
1980	 */
1981	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1982	if (!locked || mem->oom_kill_disable)
1983		need_to_kill = false;
1984	if (locked)
1985		mem_cgroup_oom_notify(mem);
1986	spin_unlock(&memcg_oom_lock);
1987
1988	if (need_to_kill) {
1989		finish_wait(&memcg_oom_waitq, &owait.wait);
1990		mem_cgroup_out_of_memory(mem, mask);
1991	} else {
1992		schedule();
1993		finish_wait(&memcg_oom_waitq, &owait.wait);
1994	}
1995	spin_lock(&memcg_oom_lock);
1996	if (locked)
1997		mem_cgroup_oom_unlock(mem);
1998	memcg_wakeup_oom(mem);
1999	spin_unlock(&memcg_oom_lock);
2000
2001	mem_cgroup_unmark_under_oom(mem);
2002
2003	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2004		return false;
2005	/* Give chance to dying process */
2006	schedule_timeout(1);
2007	return true;
2008}
2009
2010/*
2011 * Currently used to update mapped file statistics, but the routine can be
2012 * generalized to update other statistics as well.
2013 *
2014 * Notes: Race condition
2015 *
2016 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2017 * it tends to be costly. But considering some conditions, we doesn't need
2018 * to do so _always_.
2019 *
2020 * Considering "charge", lock_page_cgroup() is not required because all
2021 * file-stat operations happen after a page is attached to radix-tree. There
2022 * are no race with "charge".
2023 *
2024 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2025 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2026 * if there are race with "uncharge". Statistics itself is properly handled
2027 * by flags.
2028 *
2029 * Considering "move", this is an only case we see a race. To make the race
2030 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2031 * possibility of race condition. If there is, we take a lock.
2032 */
2033
2034void mem_cgroup_update_page_stat(struct page *page,
2035				 enum mem_cgroup_page_stat_item idx, int val)
2036{
2037	struct mem_cgroup *mem;
2038	struct page_cgroup *pc = lookup_page_cgroup(page);
2039	bool need_unlock = false;
2040	unsigned long uninitialized_var(flags);
2041
2042	if (unlikely(!pc))
2043		return;
2044
2045	rcu_read_lock();
2046	mem = pc->mem_cgroup;
2047	if (unlikely(!mem || !PageCgroupUsed(pc)))
2048		goto out;
2049	/* pc->mem_cgroup is unstable ? */
2050	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2051		/* take a lock against to access pc->mem_cgroup */
2052		move_lock_page_cgroup(pc, &flags);
2053		need_unlock = true;
2054		mem = pc->mem_cgroup;
2055		if (!mem || !PageCgroupUsed(pc))
2056			goto out;
2057	}
2058
2059	switch (idx) {
2060	case MEMCG_NR_FILE_MAPPED:
2061		if (val > 0)
2062			SetPageCgroupFileMapped(pc);
2063		else if (!page_mapped(page))
2064			ClearPageCgroupFileMapped(pc);
2065		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2066		break;
2067	default:
2068		BUG();
2069	}
2070
2071	this_cpu_add(mem->stat->count[idx], val);
2072
2073out:
2074	if (unlikely(need_unlock))
2075		move_unlock_page_cgroup(pc, &flags);
2076	rcu_read_unlock();
2077	return;
2078}
2079EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2080
2081/*
2082 * size of first charge trial. "32" comes from vmscan.c's magic value.
2083 * TODO: maybe necessary to use big numbers in big irons.
2084 */
2085#define CHARGE_BATCH	32U
2086struct memcg_stock_pcp {
2087	struct mem_cgroup *cached; /* this never be root cgroup */
2088	unsigned int nr_pages;
2089	struct work_struct work;
2090	unsigned long flags;
2091#define FLUSHING_CACHED_CHARGE	(0)
2092};
2093static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2094static DEFINE_MUTEX(percpu_charge_mutex);
2095
2096/*
2097 * Try to consume stocked charge on this cpu. If success, one page is consumed
2098 * from local stock and true is returned. If the stock is 0 or charges from a
2099 * cgroup which is not current target, returns false. This stock will be
2100 * refilled.
2101 */
2102static bool consume_stock(struct mem_cgroup *mem)
2103{
2104	struct memcg_stock_pcp *stock;
2105	bool ret = true;
2106
2107	stock = &get_cpu_var(memcg_stock);
2108	if (mem == stock->cached && stock->nr_pages)
2109		stock->nr_pages--;
2110	else /* need to call res_counter_charge */
2111		ret = false;
2112	put_cpu_var(memcg_stock);
2113	return ret;
2114}
2115
2116/*
2117 * Returns stocks cached in percpu to res_counter and reset cached information.
2118 */
2119static void drain_stock(struct memcg_stock_pcp *stock)
2120{
2121	struct mem_cgroup *old = stock->cached;
2122
2123	if (stock->nr_pages) {
2124		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2125
2126		res_counter_uncharge(&old->res, bytes);
2127		if (do_swap_account)
2128			res_counter_uncharge(&old->memsw, bytes);
2129		stock->nr_pages = 0;
2130	}
2131	stock->cached = NULL;
2132}
2133
2134/*
2135 * This must be called under preempt disabled or must be called by
2136 * a thread which is pinned to local cpu.
2137 */
2138static void drain_local_stock(struct work_struct *dummy)
2139{
2140	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2141	drain_stock(stock);
2142	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2143}
2144
2145/*
2146 * Cache charges(val) which is from res_counter, to local per_cpu area.
2147 * This will be consumed by consume_stock() function, later.
2148 */
2149static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2150{
2151	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2152
2153	if (stock->cached != mem) { /* reset if necessary */
2154		drain_stock(stock);
2155		stock->cached = mem;
2156	}
2157	stock->nr_pages += nr_pages;
2158	put_cpu_var(memcg_stock);
2159}
2160
2161/*
2162 * Drains all per-CPU charge caches for given root_mem resp. subtree
2163 * of the hierarchy under it. sync flag says whether we should block
2164 * until the work is done.
2165 */
2166static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2167{
2168	int cpu, curcpu;
2169
2170	/* Notify other cpus that system-wide "drain" is running */
2171	get_online_cpus();
2172	/*
2173	 * Get a hint for avoiding draining charges on the current cpu,
2174	 * which must be exhausted by our charging.  It is not required that
2175	 * this be a precise check, so we use raw_smp_processor_id() instead of
2176	 * getcpu()/putcpu().
2177	 */
2178	curcpu = raw_smp_processor_id();
2179	for_each_online_cpu(cpu) {
2180		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2181		struct mem_cgroup *mem;
2182
2183		mem = stock->cached;
2184		if (!mem || !stock->nr_pages)
2185			continue;
2186		if (!mem_cgroup_same_or_subtree(root_mem, mem))
2187			continue;
2188		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2189			if (cpu == curcpu)
2190				drain_local_stock(&stock->work);
2191			else
2192				schedule_work_on(cpu, &stock->work);
2193		}
2194	}
2195
2196	if (!sync)
2197		goto out;
2198
2199	for_each_online_cpu(cpu) {
2200		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2201		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2202			flush_work(&stock->work);
2203	}
2204out:
2205 	put_online_cpus();
2206}
2207
2208/*
2209 * Tries to drain stocked charges in other cpus. This function is asynchronous
2210 * and just put a work per cpu for draining localy on each cpu. Caller can
2211 * expects some charges will be back to res_counter later but cannot wait for
2212 * it.
2213 */
2214static void drain_all_stock_async(struct mem_cgroup *root_mem)
2215{
2216	/*
2217	 * If someone calls draining, avoid adding more kworker runs.
2218	 */
2219	if (!mutex_trylock(&percpu_charge_mutex))
2220		return;
2221	drain_all_stock(root_mem, false);
2222	mutex_unlock(&percpu_charge_mutex);
2223}
2224
2225/* This is a synchronous drain interface. */
2226static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2227{
2228	/* called when force_empty is called */
2229	mutex_lock(&percpu_charge_mutex);
2230	drain_all_stock(root_mem, true);
2231	mutex_unlock(&percpu_charge_mutex);
2232}
2233
2234/*
2235 * This function drains percpu counter value from DEAD cpu and
2236 * move it to local cpu. Note that this function can be preempted.
2237 */
2238static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2239{
2240	int i;
2241
2242	spin_lock(&mem->pcp_counter_lock);
2243	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2244		long x = per_cpu(mem->stat->count[i], cpu);
2245
2246		per_cpu(mem->stat->count[i], cpu) = 0;
2247		mem->nocpu_base.count[i] += x;
2248	}
2249	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2250		unsigned long x = per_cpu(mem->stat->events[i], cpu);
2251
2252		per_cpu(mem->stat->events[i], cpu) = 0;
2253		mem->nocpu_base.events[i] += x;
2254	}
2255	/* need to clear ON_MOVE value, works as a kind of lock. */
2256	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2257	spin_unlock(&mem->pcp_counter_lock);
2258}
2259
2260static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2261{
2262	int idx = MEM_CGROUP_ON_MOVE;
2263
2264	spin_lock(&mem->pcp_counter_lock);
2265	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2266	spin_unlock(&mem->pcp_counter_lock);
2267}
2268
2269static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2270					unsigned long action,
2271					void *hcpu)
2272{
2273	int cpu = (unsigned long)hcpu;
2274	struct memcg_stock_pcp *stock;
2275	struct mem_cgroup *iter;
2276
2277	if ((action == CPU_ONLINE)) {
2278		for_each_mem_cgroup_all(iter)
2279			synchronize_mem_cgroup_on_move(iter, cpu);
2280		return NOTIFY_OK;
2281	}
2282
2283	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2284		return NOTIFY_OK;
2285
2286	for_each_mem_cgroup_all(iter)
2287		mem_cgroup_drain_pcp_counter(iter, cpu);
2288
2289	stock = &per_cpu(memcg_stock, cpu);
2290	drain_stock(stock);
2291	return NOTIFY_OK;
2292}
2293
2294
2295/* See __mem_cgroup_try_charge() for details */
2296enum {
2297	CHARGE_OK,		/* success */
2298	CHARGE_RETRY,		/* need to retry but retry is not bad */
2299	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2300	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2301	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2302};
2303
2304static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2305				unsigned int nr_pages, bool oom_check)
2306{
2307	unsigned long csize = nr_pages * PAGE_SIZE;
2308	struct mem_cgroup *mem_over_limit;
2309	struct res_counter *fail_res;
2310	unsigned long flags = 0;
2311	int ret;
2312
2313	ret = res_counter_charge(&mem->res, csize, &fail_res);
2314
2315	if (likely(!ret)) {
2316		if (!do_swap_account)
2317			return CHARGE_OK;
2318		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2319		if (likely(!ret))
2320			return CHARGE_OK;
2321
2322		res_counter_uncharge(&mem->res, csize);
2323		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2324		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2325	} else
2326		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2327	/*
2328	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2329	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2330	 *
2331	 * Never reclaim on behalf of optional batching, retry with a
2332	 * single page instead.
2333	 */
2334	if (nr_pages == CHARGE_BATCH)
2335		return CHARGE_RETRY;
2336
2337	if (!(gfp_mask & __GFP_WAIT))
2338		return CHARGE_WOULDBLOCK;
2339
2340	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2341					      gfp_mask, flags, NULL);
2342	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2343		return CHARGE_RETRY;
2344	/*
2345	 * Even though the limit is exceeded at this point, reclaim
2346	 * may have been able to free some pages.  Retry the charge
2347	 * before killing the task.
2348	 *
2349	 * Only for regular pages, though: huge pages are rather
2350	 * unlikely to succeed so close to the limit, and we fall back
2351	 * to regular pages anyway in case of failure.
2352	 */
2353	if (nr_pages == 1 && ret)
2354		return CHARGE_RETRY;
2355
2356	/*
2357	 * At task move, charge accounts can be doubly counted. So, it's
2358	 * better to wait until the end of task_move if something is going on.
2359	 */
2360	if (mem_cgroup_wait_acct_move(mem_over_limit))
2361		return CHARGE_RETRY;
2362
2363	/* If we don't need to call oom-killer at el, return immediately */
2364	if (!oom_check)
2365		return CHARGE_NOMEM;
2366	/* check OOM */
2367	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2368		return CHARGE_OOM_DIE;
2369
2370	return CHARGE_RETRY;
2371}
2372
2373/*
2374 * Unlike exported interface, "oom" parameter is added. if oom==true,
2375 * oom-killer can be invoked.
2376 */
2377static int __mem_cgroup_try_charge(struct mm_struct *mm,
2378				   gfp_t gfp_mask,
2379				   unsigned int nr_pages,
2380				   struct mem_cgroup **memcg,
2381				   bool oom)
2382{
2383	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2384	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2385	struct mem_cgroup *mem = NULL;
2386	int ret;
2387
2388	/*
2389	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2390	 * in system level. So, allow to go ahead dying process in addition to
2391	 * MEMDIE process.
2392	 */
2393	if (unlikely(test_thread_flag(TIF_MEMDIE)
2394		     || fatal_signal_pending(current)))
2395		goto bypass;
2396
2397	/*
2398	 * We always charge the cgroup the mm_struct belongs to.
2399	 * The mm_struct's mem_cgroup changes on task migration if the
2400	 * thread group leader migrates. It's possible that mm is not
2401	 * set, if so charge the init_mm (happens for pagecache usage).
2402	 */
2403	if (!*memcg && !mm)
2404		goto bypass;
2405again:
2406	if (*memcg) { /* css should be a valid one */
2407		mem = *memcg;
2408		VM_BUG_ON(css_is_removed(&mem->css));
2409		if (mem_cgroup_is_root(mem))
2410			goto done;
2411		if (nr_pages == 1 && consume_stock(mem))
2412			goto done;
2413		css_get(&mem->css);
2414	} else {
2415		struct task_struct *p;
2416
2417		rcu_read_lock();
2418		p = rcu_dereference(mm->owner);
2419		/*
2420		 * Because we don't have task_lock(), "p" can exit.
2421		 * In that case, "mem" can point to root or p can be NULL with
2422		 * race with swapoff. Then, we have small risk of mis-accouning.
2423		 * But such kind of mis-account by race always happens because
2424		 * we don't have cgroup_mutex(). It's overkill and we allo that
2425		 * small race, here.
2426		 * (*) swapoff at el will charge against mm-struct not against
2427		 * task-struct. So, mm->owner can be NULL.
2428		 */
2429		mem = mem_cgroup_from_task(p);
2430		if (!mem || mem_cgroup_is_root(mem)) {
2431			rcu_read_unlock();
2432			goto done;
2433		}
2434		if (nr_pages == 1 && consume_stock(mem)) {
2435			/*
2436			 * It seems dagerous to access memcg without css_get().
2437			 * But considering how consume_stok works, it's not
2438			 * necessary. If consume_stock success, some charges
2439			 * from this memcg are cached on this cpu. So, we
2440			 * don't need to call css_get()/css_tryget() before
2441			 * calling consume_stock().
2442			 */
2443			rcu_read_unlock();
2444			goto done;
2445		}
2446		/* after here, we may be blocked. we need to get refcnt */
2447		if (!css_tryget(&mem->css)) {
2448			rcu_read_unlock();
2449			goto again;
2450		}
2451		rcu_read_unlock();
2452	}
2453
2454	do {
2455		bool oom_check;
2456
2457		/* If killed, bypass charge */
2458		if (fatal_signal_pending(current)) {
2459			css_put(&mem->css);
2460			goto bypass;
2461		}
2462
2463		oom_check = false;
2464		if (oom && !nr_oom_retries) {
2465			oom_check = true;
2466			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2467		}
2468
2469		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2470		switch (ret) {
2471		case CHARGE_OK:
2472			break;
2473		case CHARGE_RETRY: /* not in OOM situation but retry */
2474			batch = nr_pages;
2475			css_put(&mem->css);
2476			mem = NULL;
2477			goto again;
2478		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2479			css_put(&mem->css);
2480			goto nomem;
2481		case CHARGE_NOMEM: /* OOM routine works */
2482			if (!oom) {
2483				css_put(&mem->css);
2484				goto nomem;
2485			}
2486			/* If oom, we never return -ENOMEM */
2487			nr_oom_retries--;
2488			break;
2489		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2490			css_put(&mem->css);
2491			goto bypass;
2492		}
2493	} while (ret != CHARGE_OK);
2494
2495	if (batch > nr_pages)
2496		refill_stock(mem, batch - nr_pages);
2497	css_put(&mem->css);
2498done:
2499	*memcg = mem;
2500	return 0;
2501nomem:
2502	*memcg = NULL;
2503	return -ENOMEM;
2504bypass:
2505	*memcg = NULL;
2506	return 0;
2507}
2508
2509/*
2510 * Somemtimes we have to undo a charge we got by try_charge().
2511 * This function is for that and do uncharge, put css's refcnt.
2512 * gotten by try_charge().
2513 */
2514static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2515				       unsigned int nr_pages)
2516{
2517	if (!mem_cgroup_is_root(mem)) {
2518		unsigned long bytes = nr_pages * PAGE_SIZE;
2519
2520		res_counter_uncharge(&mem->res, bytes);
2521		if (do_swap_account)
2522			res_counter_uncharge(&mem->memsw, bytes);
2523	}
2524}
2525
2526/*
2527 * A helper function to get mem_cgroup from ID. must be called under
2528 * rcu_read_lock(). The caller must check css_is_removed() or some if
2529 * it's concern. (dropping refcnt from swap can be called against removed
2530 * memcg.)
2531 */
2532static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2533{
2534	struct cgroup_subsys_state *css;
2535
2536	/* ID 0 is unused ID */
2537	if (!id)
2538		return NULL;
2539	css = css_lookup(&mem_cgroup_subsys, id);
2540	if (!css)
2541		return NULL;
2542	return container_of(css, struct mem_cgroup, css);
2543}
2544
2545struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2546{
2547	struct mem_cgroup *mem = NULL;
2548	struct page_cgroup *pc;
2549	unsigned short id;
2550	swp_entry_t ent;
2551
2552	VM_BUG_ON(!PageLocked(page));
2553
2554	pc = lookup_page_cgroup(page);
2555	lock_page_cgroup(pc);
2556	if (PageCgroupUsed(pc)) {
2557		mem = pc->mem_cgroup;
2558		if (mem && !css_tryget(&mem->css))
2559			mem = NULL;
2560	} else if (PageSwapCache(page)) {
2561		ent.val = page_private(page);
2562		id = lookup_swap_cgroup(ent);
2563		rcu_read_lock();
2564		mem = mem_cgroup_lookup(id);
2565		if (mem && !css_tryget(&mem->css))
2566			mem = NULL;
2567		rcu_read_unlock();
2568	}
2569	unlock_page_cgroup(pc);
2570	return mem;
2571}
2572
2573static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2574				       struct page *page,
2575				       unsigned int nr_pages,
2576				       struct page_cgroup *pc,
2577				       enum charge_type ctype)
2578{
2579	lock_page_cgroup(pc);
2580	if (unlikely(PageCgroupUsed(pc))) {
2581		unlock_page_cgroup(pc);
2582		__mem_cgroup_cancel_charge(mem, nr_pages);
2583		return;
2584	}
2585	/*
2586	 * we don't need page_cgroup_lock about tail pages, becase they are not
2587	 * accessed by any other context at this point.
2588	 */
2589	pc->mem_cgroup = mem;
2590	/*
2591	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2592	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2593	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2594	 * before USED bit, we need memory barrier here.
2595	 * See mem_cgroup_add_lru_list(), etc.
2596 	 */
2597	smp_wmb();
2598	switch (ctype) {
2599	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2600	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2601		SetPageCgroupCache(pc);
2602		SetPageCgroupUsed(pc);
2603		break;
2604	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2605		ClearPageCgroupCache(pc);
2606		SetPageCgroupUsed(pc);
2607		break;
2608	default:
2609		break;
2610	}
2611
2612	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2613	unlock_page_cgroup(pc);
2614	/*
2615	 * "charge_statistics" updated event counter. Then, check it.
2616	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2617	 * if they exceeds softlimit.
2618	 */
2619	memcg_check_events(mem, page);
2620}
2621
2622#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2623
2624#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2625			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2626/*
2627 * Because tail pages are not marked as "used", set it. We're under
2628 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2629 */
2630void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2631{
2632	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2633	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2634	unsigned long flags;
2635
2636	if (mem_cgroup_disabled())
2637		return;
2638	/*
2639	 * We have no races with charge/uncharge but will have races with
2640	 * page state accounting.
2641	 */
2642	move_lock_page_cgroup(head_pc, &flags);
2643
2644	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2645	smp_wmb(); /* see __commit_charge() */
2646	if (PageCgroupAcctLRU(head_pc)) {
2647		enum lru_list lru;
2648		struct mem_cgroup_per_zone *mz;
2649
2650		/*
2651		 * LRU flags cannot be copied because we need to add tail
2652		 *.page to LRU by generic call and our hook will be called.
2653		 * We hold lru_lock, then, reduce counter directly.
2654		 */
2655		lru = page_lru(head);
2656		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2657		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2658	}
2659	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2660	move_unlock_page_cgroup(head_pc, &flags);
2661}
2662#endif
2663
2664/**
2665 * mem_cgroup_move_account - move account of the page
2666 * @page: the page
2667 * @nr_pages: number of regular pages (>1 for huge pages)
2668 * @pc:	page_cgroup of the page.
2669 * @from: mem_cgroup which the page is moved from.
2670 * @to:	mem_cgroup which the page is moved to. @from != @to.
2671 * @uncharge: whether we should call uncharge and css_put against @from.
2672 *
2673 * The caller must confirm following.
2674 * - page is not on LRU (isolate_page() is useful.)
2675 * - compound_lock is held when nr_pages > 1
2676 *
2677 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2678 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2679 * true, this function does "uncharge" from old cgroup, but it doesn't if
2680 * @uncharge is false, so a caller should do "uncharge".
2681 */
2682static int mem_cgroup_move_account(struct page *page,
2683				   unsigned int nr_pages,
2684				   struct page_cgroup *pc,
2685				   struct mem_cgroup *from,
2686				   struct mem_cgroup *to,
2687				   bool uncharge)
2688{
2689	unsigned long flags;
2690	int ret;
2691
2692	VM_BUG_ON(from == to);
2693	VM_BUG_ON(PageLRU(page));
2694	/*
2695	 * The page is isolated from LRU. So, collapse function
2696	 * will not handle this page. But page splitting can happen.
2697	 * Do this check under compound_page_lock(). The caller should
2698	 * hold it.
2699	 */
2700	ret = -EBUSY;
2701	if (nr_pages > 1 && !PageTransHuge(page))
2702		goto out;
2703
2704	lock_page_cgroup(pc);
2705
2706	ret = -EINVAL;
2707	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2708		goto unlock;
2709
2710	move_lock_page_cgroup(pc, &flags);
2711
2712	if (PageCgroupFileMapped(pc)) {
2713		/* Update mapped_file data for mem_cgroup */
2714		preempt_disable();
2715		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2716		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2717		preempt_enable();
2718	}
2719	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2720	if (uncharge)
2721		/* This is not "cancel", but cancel_charge does all we need. */
2722		__mem_cgroup_cancel_charge(from, nr_pages);
2723
2724	/* caller should have done css_get */
2725	pc->mem_cgroup = to;
2726	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2727	/*
2728	 * We charges against "to" which may not have any tasks. Then, "to"
2729	 * can be under rmdir(). But in current implementation, caller of
2730	 * this function is just force_empty() and move charge, so it's
2731	 * guaranteed that "to" is never removed. So, we don't check rmdir
2732	 * status here.
2733	 */
2734	move_unlock_page_cgroup(pc, &flags);
2735	ret = 0;
2736unlock:
2737	unlock_page_cgroup(pc);
2738	/*
2739	 * check events
2740	 */
2741	memcg_check_events(to, page);
2742	memcg_check_events(from, page);
2743out:
2744	return ret;
2745}
2746
2747/*
2748 * move charges to its parent.
2749 */
2750
2751static int mem_cgroup_move_parent(struct page *page,
2752				  struct page_cgroup *pc,
2753				  struct mem_cgroup *child,
2754				  gfp_t gfp_mask)
2755{
2756	struct cgroup *cg = child->css.cgroup;
2757	struct cgroup *pcg = cg->parent;
2758	struct mem_cgroup *parent;
2759	unsigned int nr_pages;
2760	unsigned long uninitialized_var(flags);
2761	int ret;
2762
2763	/* Is ROOT ? */
2764	if (!pcg)
2765		return -EINVAL;
2766
2767	ret = -EBUSY;
2768	if (!get_page_unless_zero(page))
2769		goto out;
2770	if (isolate_lru_page(page))
2771		goto put;
2772
2773	nr_pages = hpage_nr_pages(page);
2774
2775	parent = mem_cgroup_from_cont(pcg);
2776	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2777	if (ret || !parent)
2778		goto put_back;
2779
2780	if (nr_pages > 1)
2781		flags = compound_lock_irqsave(page);
2782
2783	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2784	if (ret)
2785		__mem_cgroup_cancel_charge(parent, nr_pages);
2786
2787	if (nr_pages > 1)
2788		compound_unlock_irqrestore(page, flags);
2789put_back:
2790	putback_lru_page(page);
2791put:
2792	put_page(page);
2793out:
2794	return ret;
2795}
2796
2797/*
2798 * Charge the memory controller for page usage.
2799 * Return
2800 * 0 if the charge was successful
2801 * < 0 if the cgroup is over its limit
2802 */
2803static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2804				gfp_t gfp_mask, enum charge_type ctype)
2805{
2806	struct mem_cgroup *mem = NULL;
2807	unsigned int nr_pages = 1;
2808	struct page_cgroup *pc;
2809	bool oom = true;
2810	int ret;
2811
2812	if (PageTransHuge(page)) {
2813		nr_pages <<= compound_order(page);
2814		VM_BUG_ON(!PageTransHuge(page));
2815		/*
2816		 * Never OOM-kill a process for a huge page.  The
2817		 * fault handler will fall back to regular pages.
2818		 */
2819		oom = false;
2820	}
2821
2822	pc = lookup_page_cgroup(page);
2823	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2824
2825	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2826	if (ret || !mem)
2827		return ret;
2828
2829	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2830	return 0;
2831}
2832
2833int mem_cgroup_newpage_charge(struct page *page,
2834			      struct mm_struct *mm, gfp_t gfp_mask)
2835{
2836	if (mem_cgroup_disabled())
2837		return 0;
2838	/*
2839	 * If already mapped, we don't have to account.
2840	 * If page cache, page->mapping has address_space.
2841	 * But page->mapping may have out-of-use anon_vma pointer,
2842	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2843	 * is NULL.
2844  	 */
2845	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2846		return 0;
2847	if (unlikely(!mm))
2848		mm = &init_mm;
2849	return mem_cgroup_charge_common(page, mm, gfp_mask,
2850				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2851}
2852
2853static void
2854__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2855					enum charge_type ctype);
2856
2857static void
2858__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2859					enum charge_type ctype)
2860{
2861	struct page_cgroup *pc = lookup_page_cgroup(page);
2862	/*
2863	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2864	 * is already on LRU. It means the page may on some other page_cgroup's
2865	 * LRU. Take care of it.
2866	 */
2867	mem_cgroup_lru_del_before_commit(page);
2868	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2869	mem_cgroup_lru_add_after_commit(page);
2870	return;
2871}
2872
2873int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2874				gfp_t gfp_mask)
2875{
2876	struct mem_cgroup *mem = NULL;
2877	int ret;
2878
2879	if (mem_cgroup_disabled())
2880		return 0;
2881	if (PageCompound(page))
2882		return 0;
2883
2884	if (unlikely(!mm))
2885		mm = &init_mm;
2886
2887	if (page_is_file_cache(page)) {
2888		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2889		if (ret || !mem)
2890			return ret;
2891
2892		/*
2893		 * FUSE reuses pages without going through the final
2894		 * put that would remove them from the LRU list, make
2895		 * sure that they get relinked properly.
2896		 */
2897		__mem_cgroup_commit_charge_lrucare(page, mem,
2898					MEM_CGROUP_CHARGE_TYPE_CACHE);
2899		return ret;
2900	}
2901	/* shmem */
2902	if (PageSwapCache(page)) {
2903		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2904		if (!ret)
2905			__mem_cgroup_commit_charge_swapin(page, mem,
2906					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2907	} else
2908		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2909					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2910
2911	return ret;
2912}
2913
2914/*
2915 * While swap-in, try_charge -> commit or cancel, the page is locked.
2916 * And when try_charge() successfully returns, one refcnt to memcg without
2917 * struct page_cgroup is acquired. This refcnt will be consumed by
2918 * "commit()" or removed by "cancel()"
2919 */
2920int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2921				 struct page *page,
2922				 gfp_t mask, struct mem_cgroup **ptr)
2923{
2924	struct mem_cgroup *mem;
2925	int ret;
2926
2927	*ptr = NULL;
2928
2929	if (mem_cgroup_disabled())
2930		return 0;
2931
2932	if (!do_swap_account)
2933		goto charge_cur_mm;
2934	/*
2935	 * A racing thread's fault, or swapoff, may have already updated
2936	 * the pte, and even removed page from swap cache: in those cases
2937	 * do_swap_page()'s pte_same() test will fail; but there's also a
2938	 * KSM case which does need to charge the page.
2939	 */
2940	if (!PageSwapCache(page))
2941		goto charge_cur_mm;
2942	mem = try_get_mem_cgroup_from_page(page);
2943	if (!mem)
2944		goto charge_cur_mm;
2945	*ptr = mem;
2946	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2947	css_put(&mem->css);
2948	return ret;
2949charge_cur_mm:
2950	if (unlikely(!mm))
2951		mm = &init_mm;
2952	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2953}
2954
2955static void
2956__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2957					enum charge_type ctype)
2958{
2959	if (mem_cgroup_disabled())
2960		return;
2961	if (!ptr)
2962		return;
2963	cgroup_exclude_rmdir(&ptr->css);
2964
2965	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2966	/*
2967	 * Now swap is on-memory. This means this page may be
2968	 * counted both as mem and swap....double count.
2969	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2970	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2971	 * may call delete_from_swap_cache() before reach here.
2972	 */
2973	if (do_swap_account && PageSwapCache(page)) {
2974		swp_entry_t ent = {.val = page_private(page)};
2975		unsigned short id;
2976		struct mem_cgroup *memcg;
2977
2978		id = swap_cgroup_record(ent, 0);
2979		rcu_read_lock();
2980		memcg = mem_cgroup_lookup(id);
2981		if (memcg) {
2982			/*
2983			 * This recorded memcg can be obsolete one. So, avoid
2984			 * calling css_tryget
2985			 */
2986			if (!mem_cgroup_is_root(memcg))
2987				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2988			mem_cgroup_swap_statistics(memcg, false);
2989			mem_cgroup_put(memcg);
2990		}
2991		rcu_read_unlock();
2992	}
2993	/*
2994	 * At swapin, we may charge account against cgroup which has no tasks.
2995	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2996	 * In that case, we need to call pre_destroy() again. check it here.
2997	 */
2998	cgroup_release_and_wakeup_rmdir(&ptr->css);
2999}
3000
3001void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
3002{
3003	__mem_cgroup_commit_charge_swapin(page, ptr,
3004					MEM_CGROUP_CHARGE_TYPE_MAPPED);
3005}
3006
3007void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
3008{
3009	if (mem_cgroup_disabled())
3010		return;
3011	if (!mem)
3012		return;
3013	__mem_cgroup_cancel_charge(mem, 1);
3014}
3015
3016static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3017				   unsigned int nr_pages,
3018				   const enum charge_type ctype)
3019{
3020	struct memcg_batch_info *batch = NULL;
3021	bool uncharge_memsw = true;
3022
3023	/* If swapout, usage of swap doesn't decrease */
3024	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3025		uncharge_memsw = false;
3026
3027	batch = &current->memcg_batch;
3028	/*
3029	 * In usual, we do css_get() when we remember memcg pointer.
3030	 * But in this case, we keep res->usage until end of a series of
3031	 * uncharges. Then, it's ok to ignore memcg's refcnt.
3032	 */
3033	if (!batch->memcg)
3034		batch->memcg = mem;
3035	/*
3036	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3037	 * In those cases, all pages freed continuously can be expected to be in
3038	 * the same cgroup and we have chance to coalesce uncharges.
3039	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3040	 * because we want to do uncharge as soon as possible.
3041	 */
3042
3043	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3044		goto direct_uncharge;
3045
3046	if (nr_pages > 1)
3047		goto direct_uncharge;
3048
3049	/*
3050	 * In typical case, batch->memcg == mem. This means we can
3051	 * merge a series of uncharges to an uncharge of res_counter.
3052	 * If not, we uncharge res_counter ony by one.
3053	 */
3054	if (batch->memcg != mem)
3055		goto direct_uncharge;
3056	/* remember freed charge and uncharge it later */
3057	batch->nr_pages++;
3058	if (uncharge_memsw)
3059		batch->memsw_nr_pages++;
3060	return;
3061direct_uncharge:
3062	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3063	if (uncharge_memsw)
3064		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3065	if (unlikely(batch->memcg != mem))
3066		memcg_oom_recover(mem);
3067	return;
3068}
3069
3070/*
3071 * uncharge if !page_mapped(page)
3072 */
3073static struct mem_cgroup *
3074__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3075{
3076	struct mem_cgroup *mem = NULL;
3077	unsigned int nr_pages = 1;
3078	struct page_cgroup *pc;
3079
3080	if (mem_cgroup_disabled())
3081		return NULL;
3082
3083	if (PageSwapCache(page))
3084		return NULL;
3085
3086	if (PageTransHuge(page)) {
3087		nr_pages <<= compound_order(page);
3088		VM_BUG_ON(!PageTransHuge(page));
3089	}
3090	/*
3091	 * Check if our page_cgroup is valid
3092	 */
3093	pc = lookup_page_cgroup(page);
3094	if (unlikely(!pc || !PageCgroupUsed(pc)))
3095		return NULL;
3096
3097	lock_page_cgroup(pc);
3098
3099	mem = pc->mem_cgroup;
3100
3101	if (!PageCgroupUsed(pc))
3102		goto unlock_out;
3103
3104	switch (ctype) {
3105	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3106	case MEM_CGROUP_CHARGE_TYPE_DROP:
3107		/* See mem_cgroup_prepare_migration() */
3108		if (page_mapped(page) || PageCgroupMigration(pc))
3109			goto unlock_out;
3110		break;
3111	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3112		if (!PageAnon(page)) {	/* Shared memory */
3113			if (page->mapping && !page_is_file_cache(page))
3114				goto unlock_out;
3115		} else if (page_mapped(page)) /* Anon */
3116				goto unlock_out;
3117		break;
3118	default:
3119		break;
3120	}
3121
3122	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3123
3124	ClearPageCgroupUsed(pc);
3125	/*
3126	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3127	 * freed from LRU. This is safe because uncharged page is expected not
3128	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3129	 * special functions.
3130	 */
3131
3132	unlock_page_cgroup(pc);
3133	/*
3134	 * even after unlock, we have mem->res.usage here and this memcg
3135	 * will never be freed.
3136	 */
3137	memcg_check_events(mem, page);
3138	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3139		mem_cgroup_swap_statistics(mem, true);
3140		mem_cgroup_get(mem);
3141	}
3142	if (!mem_cgroup_is_root(mem))
3143		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3144
3145	return mem;
3146
3147unlock_out:
3148	unlock_page_cgroup(pc);
3149	return NULL;
3150}
3151
3152void mem_cgroup_uncharge_page(struct page *page)
3153{
3154	/* early check. */
3155	if (page_mapped(page))
3156		return;
3157	if (page->mapping && !PageAnon(page))
3158		return;
3159	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3160}
3161
3162void mem_cgroup_uncharge_cache_page(struct page *page)
3163{
3164	VM_BUG_ON(page_mapped(page));
3165	VM_BUG_ON(page->mapping);
3166	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3167}
3168
3169/*
3170 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3171 * In that cases, pages are freed continuously and we can expect pages
3172 * are in the same memcg. All these calls itself limits the number of
3173 * pages freed at once, then uncharge_start/end() is called properly.
3174 * This may be called prural(2) times in a context,
3175 */
3176
3177void mem_cgroup_uncharge_start(void)
3178{
3179	current->memcg_batch.do_batch++;
3180	/* We can do nest. */
3181	if (current->memcg_batch.do_batch == 1) {
3182		current->memcg_batch.memcg = NULL;
3183		current->memcg_batch.nr_pages = 0;
3184		current->memcg_batch.memsw_nr_pages = 0;
3185	}
3186}
3187
3188void mem_cgroup_uncharge_end(void)
3189{
3190	struct memcg_batch_info *batch = &current->memcg_batch;
3191
3192	if (!batch->do_batch)
3193		return;
3194
3195	batch->do_batch--;
3196	if (batch->do_batch) /* If stacked, do nothing. */
3197		return;
3198
3199	if (!batch->memcg)
3200		return;
3201	/*
3202	 * This "batch->memcg" is valid without any css_get/put etc...
3203	 * bacause we hide charges behind us.
3204	 */
3205	if (batch->nr_pages)
3206		res_counter_uncharge(&batch->memcg->res,
3207				     batch->nr_pages * PAGE_SIZE);
3208	if (batch->memsw_nr_pages)
3209		res_counter_uncharge(&batch->memcg->memsw,
3210				     batch->memsw_nr_pages * PAGE_SIZE);
3211	memcg_oom_recover(batch->memcg);
3212	/* forget this pointer (for sanity check) */
3213	batch->memcg = NULL;
3214}
3215
3216#ifdef CONFIG_SWAP
3217/*
3218 * called after __delete_from_swap_cache() and drop "page" account.
3219 * memcg information is recorded to swap_cgroup of "ent"
3220 */
3221void
3222mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3223{
3224	struct mem_cgroup *memcg;
3225	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3226
3227	if (!swapout) /* this was a swap cache but the swap is unused ! */
3228		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3229
3230	memcg = __mem_cgroup_uncharge_common(page, ctype);
3231
3232	/*
3233	 * record memcg information,  if swapout && memcg != NULL,
3234	 * mem_cgroup_get() was called in uncharge().
3235	 */
3236	if (do_swap_account && swapout && memcg)
3237		swap_cgroup_record(ent, css_id(&memcg->css));
3238}
3239#endif
3240
3241#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3242/*
3243 * called from swap_entry_free(). remove record in swap_cgroup and
3244 * uncharge "memsw" account.
3245 */
3246void mem_cgroup_uncharge_swap(swp_entry_t ent)
3247{
3248	struct mem_cgroup *memcg;
3249	unsigned short id;
3250
3251	if (!do_swap_account)
3252		return;
3253
3254	id = swap_cgroup_record(ent, 0);
3255	rcu_read_lock();
3256	memcg = mem_cgroup_lookup(id);
3257	if (memcg) {
3258		/*
3259		 * We uncharge this because swap is freed.
3260		 * This memcg can be obsolete one. We avoid calling css_tryget
3261		 */
3262		if (!mem_cgroup_is_root(memcg))
3263			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3264		mem_cgroup_swap_statistics(memcg, false);
3265		mem_cgroup_put(memcg);
3266	}
3267	rcu_read_unlock();
3268}
3269
3270/**
3271 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3272 * @entry: swap entry to be moved
3273 * @from:  mem_cgroup which the entry is moved from
3274 * @to:  mem_cgroup which the entry is moved to
3275 * @need_fixup: whether we should fixup res_counters and refcounts.
3276 *
3277 * It succeeds only when the swap_cgroup's record for this entry is the same
3278 * as the mem_cgroup's id of @from.
3279 *
3280 * Returns 0 on success, -EINVAL on failure.
3281 *
3282 * The caller must have charged to @to, IOW, called res_counter_charge() about
3283 * both res and memsw, and called css_get().
3284 */
3285static int mem_cgroup_move_swap_account(swp_entry_t entry,
3286		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3287{
3288	unsigned short old_id, new_id;
3289
3290	old_id = css_id(&from->css);
3291	new_id = css_id(&to->css);
3292
3293	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3294		mem_cgroup_swap_statistics(from, false);
3295		mem_cgroup_swap_statistics(to, true);
3296		/*
3297		 * This function is only called from task migration context now.
3298		 * It postpones res_counter and refcount handling till the end
3299		 * of task migration(mem_cgroup_clear_mc()) for performance
3300		 * improvement. But we cannot postpone mem_cgroup_get(to)
3301		 * because if the process that has been moved to @to does
3302		 * swap-in, the refcount of @to might be decreased to 0.
3303		 */
3304		mem_cgroup_get(to);
3305		if (need_fixup) {
3306			if (!mem_cgroup_is_root(from))
3307				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3308			mem_cgroup_put(from);
3309			/*
3310			 * we charged both to->res and to->memsw, so we should
3311			 * uncharge to->res.
3312			 */
3313			if (!mem_cgroup_is_root(to))
3314				res_counter_uncharge(&to->res, PAGE_SIZE);
3315		}
3316		return 0;
3317	}
3318	return -EINVAL;
3319}
3320#else
3321static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3322		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3323{
3324	return -EINVAL;
3325}
3326#endif
3327
3328/*
3329 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3330 * page belongs to.
3331 */
3332int mem_cgroup_prepare_migration(struct page *page,
3333	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3334{
3335	struct mem_cgroup *mem = NULL;
3336	struct page_cgroup *pc;
3337	enum charge_type ctype;
3338	int ret = 0;
3339
3340	*ptr = NULL;
3341
3342	VM_BUG_ON(PageTransHuge(page));
3343	if (mem_cgroup_disabled())
3344		return 0;
3345
3346	pc = lookup_page_cgroup(page);
3347	lock_page_cgroup(pc);
3348	if (PageCgroupUsed(pc)) {
3349		mem = pc->mem_cgroup;
3350		css_get(&mem->css);
3351		/*
3352		 * At migrating an anonymous page, its mapcount goes down
3353		 * to 0 and uncharge() will be called. But, even if it's fully
3354		 * unmapped, migration may fail and this page has to be
3355		 * charged again. We set MIGRATION flag here and delay uncharge
3356		 * until end_migration() is called
3357		 *
3358		 * Corner Case Thinking
3359		 * A)
3360		 * When the old page was mapped as Anon and it's unmap-and-freed
3361		 * while migration was ongoing.
3362		 * If unmap finds the old page, uncharge() of it will be delayed
3363		 * until end_migration(). If unmap finds a new page, it's
3364		 * uncharged when it make mapcount to be 1->0. If unmap code
3365		 * finds swap_migration_entry, the new page will not be mapped
3366		 * and end_migration() will find it(mapcount==0).
3367		 *
3368		 * B)
3369		 * When the old page was mapped but migraion fails, the kernel
3370		 * remaps it. A charge for it is kept by MIGRATION flag even
3371		 * if mapcount goes down to 0. We can do remap successfully
3372		 * without charging it again.
3373		 *
3374		 * C)
3375		 * The "old" page is under lock_page() until the end of
3376		 * migration, so, the old page itself will not be swapped-out.
3377		 * If the new page is swapped out before end_migraton, our
3378		 * hook to usual swap-out path will catch the event.
3379		 */
3380		if (PageAnon(page))
3381			SetPageCgroupMigration(pc);
3382	}
3383	unlock_page_cgroup(pc);
3384	/*
3385	 * If the page is not charged at this point,
3386	 * we return here.
3387	 */
3388	if (!mem)
3389		return 0;
3390
3391	*ptr = mem;
3392	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3393	css_put(&mem->css);/* drop extra refcnt */
3394	if (ret || *ptr == NULL) {
3395		if (PageAnon(page)) {
3396			lock_page_cgroup(pc);
3397			ClearPageCgroupMigration(pc);
3398			unlock_page_cgroup(pc);
3399			/*
3400			 * The old page may be fully unmapped while we kept it.
3401			 */
3402			mem_cgroup_uncharge_page(page);
3403		}
3404		return -ENOMEM;
3405	}
3406	/*
3407	 * We charge new page before it's used/mapped. So, even if unlock_page()
3408	 * is called before end_migration, we can catch all events on this new
3409	 * page. In the case new page is migrated but not remapped, new page's
3410	 * mapcount will be finally 0 and we call uncharge in end_migration().
3411	 */
3412	pc = lookup_page_cgroup(newpage);
3413	if (PageAnon(page))
3414		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3415	else if (page_is_file_cache(page))
3416		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3417	else
3418		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3419	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3420	return ret;
3421}
3422
3423/* remove redundant charge if migration failed*/
3424void mem_cgroup_end_migration(struct mem_cgroup *mem,
3425	struct page *oldpage, struct page *newpage, bool migration_ok)
3426{
3427	struct page *used, *unused;
3428	struct page_cgroup *pc;
3429
3430	if (!mem)
3431		return;
3432	/* blocks rmdir() */
3433	cgroup_exclude_rmdir(&mem->css);
3434	if (!migration_ok) {
3435		used = oldpage;
3436		unused = newpage;
3437	} else {
3438		used = newpage;
3439		unused = oldpage;
3440	}
3441	/*
3442	 * We disallowed uncharge of pages under migration because mapcount
3443	 * of the page goes down to zero, temporarly.
3444	 * Clear the flag and check the page should be charged.
3445	 */
3446	pc = lookup_page_cgroup(oldpage);
3447	lock_page_cgroup(pc);
3448	ClearPageCgroupMigration(pc);
3449	unlock_page_cgroup(pc);
3450
3451	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3452
3453	/*
3454	 * If a page is a file cache, radix-tree replacement is very atomic
3455	 * and we can skip this check. When it was an Anon page, its mapcount
3456	 * goes down to 0. But because we added MIGRATION flage, it's not
3457	 * uncharged yet. There are several case but page->mapcount check
3458	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3459	 * check. (see prepare_charge() also)
3460	 */
3461	if (PageAnon(used))
3462		mem_cgroup_uncharge_page(used);
3463	/*
3464	 * At migration, we may charge account against cgroup which has no
3465	 * tasks.
3466	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3467	 * In that case, we need to call pre_destroy() again. check it here.
3468	 */
3469	cgroup_release_and_wakeup_rmdir(&mem->css);
3470}
3471
3472#ifdef CONFIG_DEBUG_VM
3473static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3474{
3475	struct page_cgroup *pc;
3476
3477	pc = lookup_page_cgroup(page);
3478	if (likely(pc) && PageCgroupUsed(pc))
3479		return pc;
3480	return NULL;
3481}
3482
3483bool mem_cgroup_bad_page_check(struct page *page)
3484{
3485	if (mem_cgroup_disabled())
3486		return false;
3487
3488	return lookup_page_cgroup_used(page) != NULL;
3489}
3490
3491void mem_cgroup_print_bad_page(struct page *page)
3492{
3493	struct page_cgroup *pc;
3494
3495	pc = lookup_page_cgroup_used(page);
3496	if (pc) {
3497		int ret = -1;
3498		char *path;
3499
3500		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3501		       pc, pc->flags, pc->mem_cgroup);
3502
3503		path = kmalloc(PATH_MAX, GFP_KERNEL);
3504		if (path) {
3505			rcu_read_lock();
3506			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3507							path, PATH_MAX);
3508			rcu_read_unlock();
3509		}
3510
3511		printk(KERN_CONT "(%s)\n",
3512				(ret < 0) ? "cannot get the path" : path);
3513		kfree(path);
3514	}
3515}
3516#endif
3517
3518static DEFINE_MUTEX(set_limit_mutex);
3519
3520static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3521				unsigned long long val)
3522{
3523	int retry_count;
3524	u64 memswlimit, memlimit;
3525	int ret = 0;
3526	int children = mem_cgroup_count_children(memcg);
3527	u64 curusage, oldusage;
3528	int enlarge;
3529
3530	/*
3531	 * For keeping hierarchical_reclaim simple, how long we should retry
3532	 * is depends on callers. We set our retry-count to be function
3533	 * of # of children which we should visit in this loop.
3534	 */
3535	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3536
3537	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3538
3539	enlarge = 0;
3540	while (retry_count) {
3541		if (signal_pending(current)) {
3542			ret = -EINTR;
3543			break;
3544		}
3545		/*
3546		 * Rather than hide all in some function, I do this in
3547		 * open coded manner. You see what this really does.
3548		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3549		 */
3550		mutex_lock(&set_limit_mutex);
3551		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3552		if (memswlimit < val) {
3553			ret = -EINVAL;
3554			mutex_unlock(&set_limit_mutex);
3555			break;
3556		}
3557
3558		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3559		if (memlimit < val)
3560			enlarge = 1;
3561
3562		ret = res_counter_set_limit(&memcg->res, val);
3563		if (!ret) {
3564			if (memswlimit == val)
3565				memcg->memsw_is_minimum = true;
3566			else
3567				memcg->memsw_is_minimum = false;
3568		}
3569		mutex_unlock(&set_limit_mutex);
3570
3571		if (!ret)
3572			break;
3573
3574		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3575						MEM_CGROUP_RECLAIM_SHRINK,
3576						NULL);
3577		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3578		/* Usage is reduced ? */
3579  		if (curusage >= oldusage)
3580			retry_count--;
3581		else
3582			oldusage = curusage;
3583	}
3584	if (!ret && enlarge)
3585		memcg_oom_recover(memcg);
3586
3587	return ret;
3588}
3589
3590static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3591					unsigned long long val)
3592{
3593	int retry_count;
3594	u64 memlimit, memswlimit, oldusage, curusage;
3595	int children = mem_cgroup_count_children(memcg);
3596	int ret = -EBUSY;
3597	int enlarge = 0;
3598
3599	/* see mem_cgroup_resize_res_limit */
3600 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3601	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3602	while (retry_count) {
3603		if (signal_pending(current)) {
3604			ret = -EINTR;
3605			break;
3606		}
3607		/*
3608		 * Rather than hide all in some function, I do this in
3609		 * open coded manner. You see what this really does.
3610		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3611		 */
3612		mutex_lock(&set_limit_mutex);
3613		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3614		if (memlimit > val) {
3615			ret = -EINVAL;
3616			mutex_unlock(&set_limit_mutex);
3617			break;
3618		}
3619		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3620		if (memswlimit < val)
3621			enlarge = 1;
3622		ret = res_counter_set_limit(&memcg->memsw, val);
3623		if (!ret) {
3624			if (memlimit == val)
3625				memcg->memsw_is_minimum = true;
3626			else
3627				memcg->memsw_is_minimum = false;
3628		}
3629		mutex_unlock(&set_limit_mutex);
3630
3631		if (!ret)
3632			break;
3633
3634		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3635						MEM_CGROUP_RECLAIM_NOSWAP |
3636						MEM_CGROUP_RECLAIM_SHRINK,
3637						NULL);
3638		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3639		/* Usage is reduced ? */
3640		if (curusage >= oldusage)
3641			retry_count--;
3642		else
3643			oldusage = curusage;
3644	}
3645	if (!ret && enlarge)
3646		memcg_oom_recover(memcg);
3647	return ret;
3648}
3649
3650unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3651					    gfp_t gfp_mask,
3652					    unsigned long *total_scanned)
3653{
3654	unsigned long nr_reclaimed = 0;
3655	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3656	unsigned long reclaimed;
3657	int loop = 0;
3658	struct mem_cgroup_tree_per_zone *mctz;
3659	unsigned long long excess;
3660	unsigned long nr_scanned;
3661
3662	if (order > 0)
3663		return 0;
3664
3665	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3666	/*
3667	 * This loop can run a while, specially if mem_cgroup's continuously
3668	 * keep exceeding their soft limit and putting the system under
3669	 * pressure
3670	 */
3671	do {
3672		if (next_mz)
3673			mz = next_mz;
3674		else
3675			mz = mem_cgroup_largest_soft_limit_node(mctz);
3676		if (!mz)
3677			break;
3678
3679		nr_scanned = 0;
3680		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3681						gfp_mask,
3682						MEM_CGROUP_RECLAIM_SOFT,
3683						&nr_scanned);
3684		nr_reclaimed += reclaimed;
3685		*total_scanned += nr_scanned;
3686		spin_lock(&mctz->lock);
3687
3688		/*
3689		 * If we failed to reclaim anything from this memory cgroup
3690		 * it is time to move on to the next cgroup
3691		 */
3692		next_mz = NULL;
3693		if (!reclaimed) {
3694			do {
3695				/*
3696				 * Loop until we find yet another one.
3697				 *
3698				 * By the time we get the soft_limit lock
3699				 * again, someone might have aded the
3700				 * group back on the RB tree. Iterate to
3701				 * make sure we get a different mem.
3702				 * mem_cgroup_largest_soft_limit_node returns
3703				 * NULL if no other cgroup is present on
3704				 * the tree
3705				 */
3706				next_mz =
3707				__mem_cgroup_largest_soft_limit_node(mctz);
3708				if (next_mz == mz)
3709					css_put(&next_mz->mem->css);
3710				else /* next_mz == NULL or other memcg */
3711					break;
3712			} while (1);
3713		}
3714		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3715		excess = res_counter_soft_limit_excess(&mz->mem->res);
3716		/*
3717		 * One school of thought says that we should not add
3718		 * back the node to the tree if reclaim returns 0.
3719		 * But our reclaim could return 0, simply because due
3720		 * to priority we are exposing a smaller subset of
3721		 * memory to reclaim from. Consider this as a longer
3722		 * term TODO.
3723		 */
3724		/* If excess == 0, no tree ops */
3725		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3726		spin_unlock(&mctz->lock);
3727		css_put(&mz->mem->css);
3728		loop++;
3729		/*
3730		 * Could not reclaim anything and there are no more
3731		 * mem cgroups to try or we seem to be looping without
3732		 * reclaiming anything.
3733		 */
3734		if (!nr_reclaimed &&
3735			(next_mz == NULL ||
3736			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3737			break;
3738	} while (!nr_reclaimed);
3739	if (next_mz)
3740		css_put(&next_mz->mem->css);
3741	return nr_reclaimed;
3742}
3743
3744/*
3745 * This routine traverse page_cgroup in given list and drop them all.
3746 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3747 */
3748static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3749				int node, int zid, enum lru_list lru)
3750{
3751	struct zone *zone;
3752	struct mem_cgroup_per_zone *mz;
3753	struct page_cgroup *pc, *busy;
3754	unsigned long flags, loop;
3755	struct list_head *list;
3756	int ret = 0;
3757
3758	zone = &NODE_DATA(node)->node_zones[zid];
3759	mz = mem_cgroup_zoneinfo(mem, node, zid);
3760	list = &mz->lists[lru];
3761
3762	loop = MEM_CGROUP_ZSTAT(mz, lru);
3763	/* give some margin against EBUSY etc...*/
3764	loop += 256;
3765	busy = NULL;
3766	while (loop--) {
3767		struct page *page;
3768
3769		ret = 0;
3770		spin_lock_irqsave(&zone->lru_lock, flags);
3771		if (list_empty(list)) {
3772			spin_unlock_irqrestore(&zone->lru_lock, flags);
3773			break;
3774		}
3775		pc = list_entry(list->prev, struct page_cgroup, lru);
3776		if (busy == pc) {
3777			list_move(&pc->lru, list);
3778			busy = NULL;
3779			spin_unlock_irqrestore(&zone->lru_lock, flags);
3780			continue;
3781		}
3782		spin_unlock_irqrestore(&zone->lru_lock, flags);
3783
3784		page = lookup_cgroup_page(pc);
3785
3786		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3787		if (ret == -ENOMEM)
3788			break;
3789
3790		if (ret == -EBUSY || ret == -EINVAL) {
3791			/* found lock contention or "pc" is obsolete. */
3792			busy = pc;
3793			cond_resched();
3794		} else
3795			busy = NULL;
3796	}
3797
3798	if (!ret && !list_empty(list))
3799		return -EBUSY;
3800	return ret;
3801}
3802
3803/*
3804 * make mem_cgroup's charge to be 0 if there is no task.
3805 * This enables deleting this mem_cgroup.
3806 */
3807static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3808{
3809	int ret;
3810	int node, zid, shrink;
3811	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3812	struct cgroup *cgrp = mem->css.cgroup;
3813
3814	css_get(&mem->css);
3815
3816	shrink = 0;
3817	/* should free all ? */
3818	if (free_all)
3819		goto try_to_free;
3820move_account:
3821	do {
3822		ret = -EBUSY;
3823		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3824			goto out;
3825		ret = -EINTR;
3826		if (signal_pending(current))
3827			goto out;
3828		/* This is for making all *used* pages to be on LRU. */
3829		lru_add_drain_all();
3830		drain_all_stock_sync(mem);
3831		ret = 0;
3832		mem_cgroup_start_move(mem);
3833		for_each_node_state(node, N_HIGH_MEMORY) {
3834			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3835				enum lru_list l;
3836				for_each_lru(l) {
3837					ret = mem_cgroup_force_empty_list(mem,
3838							node, zid, l);
3839					if (ret)
3840						break;
3841				}
3842			}
3843			if (ret)
3844				break;
3845		}
3846		mem_cgroup_end_move(mem);
3847		memcg_oom_recover(mem);
3848		/* it seems parent cgroup doesn't have enough mem */
3849		if (ret == -ENOMEM)
3850			goto try_to_free;
3851		cond_resched();
3852	/* "ret" should also be checked to ensure all lists are empty. */
3853	} while (mem->res.usage > 0 || ret);
3854out:
3855	css_put(&mem->css);
3856	return ret;
3857
3858try_to_free:
3859	/* returns EBUSY if there is a task or if we come here twice. */
3860	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3861		ret = -EBUSY;
3862		goto out;
3863	}
3864	/* we call try-to-free pages for make this cgroup empty */
3865	lru_add_drain_all();
3866	/* try to free all pages in this cgroup */
3867	shrink = 1;
3868	while (nr_retries && mem->res.usage > 0) {
3869		struct memcg_scanrecord rec;
3870		int progress;
3871
3872		if (signal_pending(current)) {
3873			ret = -EINTR;
3874			goto out;
3875		}
3876		rec.context = SCAN_BY_SHRINK;
3877		rec.mem = mem;
3878		rec.root = mem;
3879		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3880						false, &rec);
3881		if (!progress) {
3882			nr_retries--;
3883			/* maybe some writeback is necessary */
3884			congestion_wait(BLK_RW_ASYNC, HZ/10);
3885		}
3886
3887	}
3888	lru_add_drain();
3889	/* try move_account...there may be some *locked* pages. */
3890	goto move_account;
3891}
3892
3893int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3894{
3895	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3896}
3897
3898
3899static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3900{
3901	return mem_cgroup_from_cont(cont)->use_hierarchy;
3902}
3903
3904static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3905					u64 val)
3906{
3907	int retval = 0;
3908	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3909	struct cgroup *parent = cont->parent;
3910	struct mem_cgroup *parent_mem = NULL;
3911
3912	if (parent)
3913		parent_mem = mem_cgroup_from_cont(parent);
3914
3915	cgroup_lock();
3916	/*
3917	 * If parent's use_hierarchy is set, we can't make any modifications
3918	 * in the child subtrees. If it is unset, then the change can
3919	 * occur, provided the current cgroup has no children.
3920	 *
3921	 * For the root cgroup, parent_mem is NULL, we allow value to be
3922	 * set if there are no children.
3923	 */
3924	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3925				(val == 1 || val == 0)) {
3926		if (list_empty(&cont->children))
3927			mem->use_hierarchy = val;
3928		else
3929			retval = -EBUSY;
3930	} else
3931		retval = -EINVAL;
3932	cgroup_unlock();
3933
3934	return retval;
3935}
3936
3937
3938static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3939					       enum mem_cgroup_stat_index idx)
3940{
3941	struct mem_cgroup *iter;
3942	long val = 0;
3943
3944	/* Per-cpu values can be negative, use a signed accumulator */
3945	for_each_mem_cgroup_tree(iter, mem)
3946		val += mem_cgroup_read_stat(iter, idx);
3947
3948	if (val < 0) /* race ? */
3949		val = 0;
3950	return val;
3951}
3952
3953static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3954{
3955	u64 val;
3956
3957	if (!mem_cgroup_is_root(mem)) {
3958		if (!swap)
3959			return res_counter_read_u64(&mem->res, RES_USAGE);
3960		else
3961			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3962	}
3963
3964	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3965	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3966
3967	if (swap)
3968		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3969
3970	return val << PAGE_SHIFT;
3971}
3972
3973static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3974{
3975	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3976	u64 val;
3977	int type, name;
3978
3979	type = MEMFILE_TYPE(cft->private);
3980	name = MEMFILE_ATTR(cft->private);
3981	switch (type) {
3982	case _MEM:
3983		if (name == RES_USAGE)
3984			val = mem_cgroup_usage(mem, false);
3985		else
3986			val = res_counter_read_u64(&mem->res, name);
3987		break;
3988	case _MEMSWAP:
3989		if (name == RES_USAGE)
3990			val = mem_cgroup_usage(mem, true);
3991		else
3992			val = res_counter_read_u64(&mem->memsw, name);
3993		break;
3994	default:
3995		BUG();
3996		break;
3997	}
3998	return val;
3999}
4000/*
4001 * The user of this function is...
4002 * RES_LIMIT.
4003 */
4004static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4005			    const char *buffer)
4006{
4007	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4008	int type, name;
4009	unsigned long long val;
4010	int ret;
4011
4012	type = MEMFILE_TYPE(cft->private);
4013	name = MEMFILE_ATTR(cft->private);
4014	switch (name) {
4015	case RES_LIMIT:
4016		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4017			ret = -EINVAL;
4018			break;
4019		}
4020		/* This function does all necessary parse...reuse it */
4021		ret = res_counter_memparse_write_strategy(buffer, &val);
4022		if (ret)
4023			break;
4024		if (type == _MEM)
4025			ret = mem_cgroup_resize_limit(memcg, val);
4026		else
4027			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4028		break;
4029	case RES_SOFT_LIMIT:
4030		ret = res_counter_memparse_write_strategy(buffer, &val);
4031		if (ret)
4032			break;
4033		/*
4034		 * For memsw, soft limits are hard to implement in terms
4035		 * of semantics, for now, we support soft limits for
4036		 * control without swap
4037		 */
4038		if (type == _MEM)
4039			ret = res_counter_set_soft_limit(&memcg->res, val);
4040		else
4041			ret = -EINVAL;
4042		break;
4043	default:
4044		ret = -EINVAL; /* should be BUG() ? */
4045		break;
4046	}
4047	return ret;
4048}
4049
4050static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4051		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4052{
4053	struct cgroup *cgroup;
4054	unsigned long long min_limit, min_memsw_limit, tmp;
4055
4056	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4057	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4058	cgroup = memcg->css.cgroup;
4059	if (!memcg->use_hierarchy)
4060		goto out;
4061
4062	while (cgroup->parent) {
4063		cgroup = cgroup->parent;
4064		memcg = mem_cgroup_from_cont(cgroup);
4065		if (!memcg->use_hierarchy)
4066			break;
4067		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4068		min_limit = min(min_limit, tmp);
4069		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4070		min_memsw_limit = min(min_memsw_limit, tmp);
4071	}
4072out:
4073	*mem_limit = min_limit;
4074	*memsw_limit = min_memsw_limit;
4075	return;
4076}
4077
4078static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4079{
4080	struct mem_cgroup *mem;
4081	int type, name;
4082
4083	mem = mem_cgroup_from_cont(cont);
4084	type = MEMFILE_TYPE(event);
4085	name = MEMFILE_ATTR(event);
4086	switch (name) {
4087	case RES_MAX_USAGE:
4088		if (type == _MEM)
4089			res_counter_reset_max(&mem->res);
4090		else
4091			res_counter_reset_max(&mem->memsw);
4092		break;
4093	case RES_FAILCNT:
4094		if (type == _MEM)
4095			res_counter_reset_failcnt(&mem->res);
4096		else
4097			res_counter_reset_failcnt(&mem->memsw);
4098		break;
4099	}
4100
4101	return 0;
4102}
4103
4104static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4105					struct cftype *cft)
4106{
4107	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4108}
4109
4110#ifdef CONFIG_MMU
4111static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4112					struct cftype *cft, u64 val)
4113{
4114	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4115
4116	if (val >= (1 << NR_MOVE_TYPE))
4117		return -EINVAL;
4118	/*
4119	 * We check this value several times in both in can_attach() and
4120	 * attach(), so we need cgroup lock to prevent this value from being
4121	 * inconsistent.
4122	 */
4123	cgroup_lock();
4124	mem->move_charge_at_immigrate = val;
4125	cgroup_unlock();
4126
4127	return 0;
4128}
4129#else
4130static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4131					struct cftype *cft, u64 val)
4132{
4133	return -ENOSYS;
4134}
4135#endif
4136
4137
4138/* For read statistics */
4139enum {
4140	MCS_CACHE,
4141	MCS_RSS,
4142	MCS_FILE_MAPPED,
4143	MCS_PGPGIN,
4144	MCS_PGPGOUT,
4145	MCS_SWAP,
4146	MCS_PGFAULT,
4147	MCS_PGMAJFAULT,
4148	MCS_INACTIVE_ANON,
4149	MCS_ACTIVE_ANON,
4150	MCS_INACTIVE_FILE,
4151	MCS_ACTIVE_FILE,
4152	MCS_UNEVICTABLE,
4153	NR_MCS_STAT,
4154};
4155
4156struct mcs_total_stat {
4157	s64 stat[NR_MCS_STAT];
4158};
4159
4160struct {
4161	char *local_name;
4162	char *total_name;
4163} memcg_stat_strings[NR_MCS_STAT] = {
4164	{"cache", "total_cache"},
4165	{"rss", "total_rss"},
4166	{"mapped_file", "total_mapped_file"},
4167	{"pgpgin", "total_pgpgin"},
4168	{"pgpgout", "total_pgpgout"},
4169	{"swap", "total_swap"},
4170	{"pgfault", "total_pgfault"},
4171	{"pgmajfault", "total_pgmajfault"},
4172	{"inactive_anon", "total_inactive_anon"},
4173	{"active_anon", "total_active_anon"},
4174	{"inactive_file", "total_inactive_file"},
4175	{"active_file", "total_active_file"},
4176	{"unevictable", "total_unevictable"}
4177};
4178
4179
4180static void
4181mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4182{
4183	s64 val;
4184
4185	/* per cpu stat */
4186	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4187	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4188	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4189	s->stat[MCS_RSS] += val * PAGE_SIZE;
4190	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4191	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4192	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4193	s->stat[MCS_PGPGIN] += val;
4194	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4195	s->stat[MCS_PGPGOUT] += val;
4196	if (do_swap_account) {
4197		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4198		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4199	}
4200	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4201	s->stat[MCS_PGFAULT] += val;
4202	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4203	s->stat[MCS_PGMAJFAULT] += val;
4204
4205	/* per zone stat */
4206	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4207	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4208	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4209	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4210	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4211	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4212	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4213	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4214	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4215	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4216}
4217
4218static void
4219mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4220{
4221	struct mem_cgroup *iter;
4222
4223	for_each_mem_cgroup_tree(iter, mem)
4224		mem_cgroup_get_local_stat(iter, s);
4225}
4226
4227#ifdef CONFIG_NUMA
4228static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4229{
4230	int nid;
4231	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4232	unsigned long node_nr;
4233	struct cgroup *cont = m->private;
4234	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4235
4236	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4237	seq_printf(m, "total=%lu", total_nr);
4238	for_each_node_state(nid, N_HIGH_MEMORY) {
4239		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4240		seq_printf(m, " N%d=%lu", nid, node_nr);
4241	}
4242	seq_putc(m, '\n');
4243
4244	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4245	seq_printf(m, "file=%lu", file_nr);
4246	for_each_node_state(nid, N_HIGH_MEMORY) {
4247		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4248				LRU_ALL_FILE);
4249		seq_printf(m, " N%d=%lu", nid, node_nr);
4250	}
4251	seq_putc(m, '\n');
4252
4253	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4254	seq_printf(m, "anon=%lu", anon_nr);
4255	for_each_node_state(nid, N_HIGH_MEMORY) {
4256		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4257				LRU_ALL_ANON);
4258		seq_printf(m, " N%d=%lu", nid, node_nr);
4259	}
4260	seq_putc(m, '\n');
4261
4262	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4263	seq_printf(m, "unevictable=%lu", unevictable_nr);
4264	for_each_node_state(nid, N_HIGH_MEMORY) {
4265		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4266				BIT(LRU_UNEVICTABLE));
4267		seq_printf(m, " N%d=%lu", nid, node_nr);
4268	}
4269	seq_putc(m, '\n');
4270	return 0;
4271}
4272#endif /* CONFIG_NUMA */
4273
4274static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4275				 struct cgroup_map_cb *cb)
4276{
4277	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4278	struct mcs_total_stat mystat;
4279	int i;
4280
4281	memset(&mystat, 0, sizeof(mystat));
4282	mem_cgroup_get_local_stat(mem_cont, &mystat);
4283
4284
4285	for (i = 0; i < NR_MCS_STAT; i++) {
4286		if (i == MCS_SWAP && !do_swap_account)
4287			continue;
4288		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4289	}
4290
4291	/* Hierarchical information */
4292	{
4293		unsigned long long limit, memsw_limit;
4294		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4295		cb->fill(cb, "hierarchical_memory_limit", limit);
4296		if (do_swap_account)
4297			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4298	}
4299
4300	memset(&mystat, 0, sizeof(mystat));
4301	mem_cgroup_get_total_stat(mem_cont, &mystat);
4302	for (i = 0; i < NR_MCS_STAT; i++) {
4303		if (i == MCS_SWAP && !do_swap_account)
4304			continue;
4305		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4306	}
4307
4308#ifdef CONFIG_DEBUG_VM
4309	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4310
4311	{
4312		int nid, zid;
4313		struct mem_cgroup_per_zone *mz;
4314		unsigned long recent_rotated[2] = {0, 0};
4315		unsigned long recent_scanned[2] = {0, 0};
4316
4317		for_each_online_node(nid)
4318			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4319				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4320
4321				recent_rotated[0] +=
4322					mz->reclaim_stat.recent_rotated[0];
4323				recent_rotated[1] +=
4324					mz->reclaim_stat.recent_rotated[1];
4325				recent_scanned[0] +=
4326					mz->reclaim_stat.recent_scanned[0];
4327				recent_scanned[1] +=
4328					mz->reclaim_stat.recent_scanned[1];
4329			}
4330		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4331		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4332		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4333		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4334	}
4335#endif
4336
4337	return 0;
4338}
4339
4340static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4341{
4342	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4343
4344	return mem_cgroup_swappiness(memcg);
4345}
4346
4347static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4348				       u64 val)
4349{
4350	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4351	struct mem_cgroup *parent;
4352
4353	if (val > 100)
4354		return -EINVAL;
4355
4356	if (cgrp->parent == NULL)
4357		return -EINVAL;
4358
4359	parent = mem_cgroup_from_cont(cgrp->parent);
4360
4361	cgroup_lock();
4362
4363	/* If under hierarchy, only empty-root can set this value */
4364	if ((parent->use_hierarchy) ||
4365	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4366		cgroup_unlock();
4367		return -EINVAL;
4368	}
4369
4370	memcg->swappiness = val;
4371
4372	cgroup_unlock();
4373
4374	return 0;
4375}
4376
4377static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4378{
4379	struct mem_cgroup_threshold_ary *t;
4380	u64 usage;
4381	int i;
4382
4383	rcu_read_lock();
4384	if (!swap)
4385		t = rcu_dereference(memcg->thresholds.primary);
4386	else
4387		t = rcu_dereference(memcg->memsw_thresholds.primary);
4388
4389	if (!t)
4390		goto unlock;
4391
4392	usage = mem_cgroup_usage(memcg, swap);
4393
4394	/*
4395	 * current_threshold points to threshold just below usage.
4396	 * If it's not true, a threshold was crossed after last
4397	 * call of __mem_cgroup_threshold().
4398	 */
4399	i = t->current_threshold;
4400
4401	/*
4402	 * Iterate backward over array of thresholds starting from
4403	 * current_threshold and check if a threshold is crossed.
4404	 * If none of thresholds below usage is crossed, we read
4405	 * only one element of the array here.
4406	 */
4407	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4408		eventfd_signal(t->entries[i].eventfd, 1);
4409
4410	/* i = current_threshold + 1 */
4411	i++;
4412
4413	/*
4414	 * Iterate forward over array of thresholds starting from
4415	 * current_threshold+1 and check if a threshold is crossed.
4416	 * If none of thresholds above usage is crossed, we read
4417	 * only one element of the array here.
4418	 */
4419	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4420		eventfd_signal(t->entries[i].eventfd, 1);
4421
4422	/* Update current_threshold */
4423	t->current_threshold = i - 1;
4424unlock:
4425	rcu_read_unlock();
4426}
4427
4428static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4429{
4430	while (memcg) {
4431		__mem_cgroup_threshold(memcg, false);
4432		if (do_swap_account)
4433			__mem_cgroup_threshold(memcg, true);
4434
4435		memcg = parent_mem_cgroup(memcg);
4436	}
4437}
4438
4439static int compare_thresholds(const void *a, const void *b)
4440{
4441	const struct mem_cgroup_threshold *_a = a;
4442	const struct mem_cgroup_threshold *_b = b;
4443
4444	return _a->threshold - _b->threshold;
4445}
4446
4447static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4448{
4449	struct mem_cgroup_eventfd_list *ev;
4450
4451	list_for_each_entry(ev, &mem->oom_notify, list)
4452		eventfd_signal(ev->eventfd, 1);
4453	return 0;
4454}
4455
4456static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4457{
4458	struct mem_cgroup *iter;
4459
4460	for_each_mem_cgroup_tree(iter, mem)
4461		mem_cgroup_oom_notify_cb(iter);
4462}
4463
4464static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4465	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4466{
4467	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4468	struct mem_cgroup_thresholds *thresholds;
4469	struct mem_cgroup_threshold_ary *new;
4470	int type = MEMFILE_TYPE(cft->private);
4471	u64 threshold, usage;
4472	int i, size, ret;
4473
4474	ret = res_counter_memparse_write_strategy(args, &threshold);
4475	if (ret)
4476		return ret;
4477
4478	mutex_lock(&memcg->thresholds_lock);
4479
4480	if (type == _MEM)
4481		thresholds = &memcg->thresholds;
4482	else if (type == _MEMSWAP)
4483		thresholds = &memcg->memsw_thresholds;
4484	else
4485		BUG();
4486
4487	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4488
4489	/* Check if a threshold crossed before adding a new one */
4490	if (thresholds->primary)
4491		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4492
4493	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4494
4495	/* Allocate memory for new array of thresholds */
4496	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4497			GFP_KERNEL);
4498	if (!new) {
4499		ret = -ENOMEM;
4500		goto unlock;
4501	}
4502	new->size = size;
4503
4504	/* Copy thresholds (if any) to new array */
4505	if (thresholds->primary) {
4506		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4507				sizeof(struct mem_cgroup_threshold));
4508	}
4509
4510	/* Add new threshold */
4511	new->entries[size - 1].eventfd = eventfd;
4512	new->entries[size - 1].threshold = threshold;
4513
4514	/* Sort thresholds. Registering of new threshold isn't time-critical */
4515	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4516			compare_thresholds, NULL);
4517
4518	/* Find current threshold */
4519	new->current_threshold = -1;
4520	for (i = 0; i < size; i++) {
4521		if (new->entries[i].threshold < usage) {
4522			/*
4523			 * new->current_threshold will not be used until
4524			 * rcu_assign_pointer(), so it's safe to increment
4525			 * it here.
4526			 */
4527			++new->current_threshold;
4528		}
4529	}
4530
4531	/* Free old spare buffer and save old primary buffer as spare */
4532	kfree(thresholds->spare);
4533	thresholds->spare = thresholds->primary;
4534
4535	rcu_assign_pointer(thresholds->primary, new);
4536
4537	/* To be sure that nobody uses thresholds */
4538	synchronize_rcu();
4539
4540unlock:
4541	mutex_unlock(&memcg->thresholds_lock);
4542
4543	return ret;
4544}
4545
4546static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4547	struct cftype *cft, struct eventfd_ctx *eventfd)
4548{
4549	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4550	struct mem_cgroup_thresholds *thresholds;
4551	struct mem_cgroup_threshold_ary *new;
4552	int type = MEMFILE_TYPE(cft->private);
4553	u64 usage;
4554	int i, j, size;
4555
4556	mutex_lock(&memcg->thresholds_lock);
4557	if (type == _MEM)
4558		thresholds = &memcg->thresholds;
4559	else if (type == _MEMSWAP)
4560		thresholds = &memcg->memsw_thresholds;
4561	else
4562		BUG();
4563
4564	/*
4565	 * Something went wrong if we trying to unregister a threshold
4566	 * if we don't have thresholds
4567	 */
4568	BUG_ON(!thresholds);
4569
4570	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4571
4572	/* Check if a threshold crossed before removing */
4573	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4574
4575	/* Calculate new number of threshold */
4576	size = 0;
4577	for (i = 0; i < thresholds->primary->size; i++) {
4578		if (thresholds->primary->entries[i].eventfd != eventfd)
4579			size++;
4580	}
4581
4582	new = thresholds->spare;
4583
4584	/* Set thresholds array to NULL if we don't have thresholds */
4585	if (!size) {
4586		kfree(new);
4587		new = NULL;
4588		goto swap_buffers;
4589	}
4590
4591	new->size = size;
4592
4593	/* Copy thresholds and find current threshold */
4594	new->current_threshold = -1;
4595	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4596		if (thresholds->primary->entries[i].eventfd == eventfd)
4597			continue;
4598
4599		new->entries[j] = thresholds->primary->entries[i];
4600		if (new->entries[j].threshold < usage) {
4601			/*
4602			 * new->current_threshold will not be used
4603			 * until rcu_assign_pointer(), so it's safe to increment
4604			 * it here.
4605			 */
4606			++new->current_threshold;
4607		}
4608		j++;
4609	}
4610
4611swap_buffers:
4612	/* Swap primary and spare array */
4613	thresholds->spare = thresholds->primary;
4614	rcu_assign_pointer(thresholds->primary, new);
4615
4616	/* To be sure that nobody uses thresholds */
4617	synchronize_rcu();
4618
4619	mutex_unlock(&memcg->thresholds_lock);
4620}
4621
4622static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4623	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4624{
4625	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4626	struct mem_cgroup_eventfd_list *event;
4627	int type = MEMFILE_TYPE(cft->private);
4628
4629	BUG_ON(type != _OOM_TYPE);
4630	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4631	if (!event)
4632		return -ENOMEM;
4633
4634	spin_lock(&memcg_oom_lock);
4635
4636	event->eventfd = eventfd;
4637	list_add(&event->list, &memcg->oom_notify);
4638
4639	/* already in OOM ? */
4640	if (atomic_read(&memcg->under_oom))
4641		eventfd_signal(eventfd, 1);
4642	spin_unlock(&memcg_oom_lock);
4643
4644	return 0;
4645}
4646
4647static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4648	struct cftype *cft, struct eventfd_ctx *eventfd)
4649{
4650	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4651	struct mem_cgroup_eventfd_list *ev, *tmp;
4652	int type = MEMFILE_TYPE(cft->private);
4653
4654	BUG_ON(type != _OOM_TYPE);
4655
4656	spin_lock(&memcg_oom_lock);
4657
4658	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4659		if (ev->eventfd == eventfd) {
4660			list_del(&ev->list);
4661			kfree(ev);
4662		}
4663	}
4664
4665	spin_unlock(&memcg_oom_lock);
4666}
4667
4668static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4669	struct cftype *cft,  struct cgroup_map_cb *cb)
4670{
4671	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4672
4673	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4674
4675	if (atomic_read(&mem->under_oom))
4676		cb->fill(cb, "under_oom", 1);
4677	else
4678		cb->fill(cb, "under_oom", 0);
4679	return 0;
4680}
4681
4682static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4683	struct cftype *cft, u64 val)
4684{
4685	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4686	struct mem_cgroup *parent;
4687
4688	/* cannot set to root cgroup and only 0 and 1 are allowed */
4689	if (!cgrp->parent || !((val == 0) || (val == 1)))
4690		return -EINVAL;
4691
4692	parent = mem_cgroup_from_cont(cgrp->parent);
4693
4694	cgroup_lock();
4695	/* oom-kill-disable is a flag for subhierarchy. */
4696	if ((parent->use_hierarchy) ||
4697	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4698		cgroup_unlock();
4699		return -EINVAL;
4700	}
4701	mem->oom_kill_disable = val;
4702	if (!val)
4703		memcg_oom_recover(mem);
4704	cgroup_unlock();
4705	return 0;
4706}
4707
4708#ifdef CONFIG_NUMA
4709static const struct file_operations mem_control_numa_stat_file_operations = {
4710	.read = seq_read,
4711	.llseek = seq_lseek,
4712	.release = single_release,
4713};
4714
4715static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4716{
4717	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4718
4719	file->f_op = &mem_control_numa_stat_file_operations;
4720	return single_open(file, mem_control_numa_stat_show, cont);
4721}
4722#endif /* CONFIG_NUMA */
4723
4724static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4725				struct cftype *cft,
4726				struct cgroup_map_cb *cb)
4727{
4728	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4729	char string[64];
4730	int i;
4731
4732	for (i = 0; i < NR_SCANSTATS; i++) {
4733		strcpy(string, scanstat_string[i]);
4734		strcat(string, SCANSTAT_WORD_LIMIT);
4735		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4736	}
4737
4738	for (i = 0; i < NR_SCANSTATS; i++) {
4739		strcpy(string, scanstat_string[i]);
4740		strcat(string, SCANSTAT_WORD_SYSTEM);
4741		cb->fill(cb, string,  mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4742	}
4743
4744	for (i = 0; i < NR_SCANSTATS; i++) {
4745		strcpy(string, scanstat_string[i]);
4746		strcat(string, SCANSTAT_WORD_LIMIT);
4747		strcat(string, SCANSTAT_WORD_HIERARCHY);
4748		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4749	}
4750	for (i = 0; i < NR_SCANSTATS; i++) {
4751		strcpy(string, scanstat_string[i]);
4752		strcat(string, SCANSTAT_WORD_SYSTEM);
4753		strcat(string, SCANSTAT_WORD_HIERARCHY);
4754		cb->fill(cb, string,  mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4755	}
4756	return 0;
4757}
4758
4759static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4760				unsigned int event)
4761{
4762	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4763
4764	spin_lock(&mem->scanstat.lock);
4765	memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4766	memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4767	spin_unlock(&mem->scanstat.lock);
4768	return 0;
4769}
4770
4771
4772static struct cftype mem_cgroup_files[] = {
4773	{
4774		.name = "usage_in_bytes",
4775		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4776		.read_u64 = mem_cgroup_read,
4777		.register_event = mem_cgroup_usage_register_event,
4778		.unregister_event = mem_cgroup_usage_unregister_event,
4779	},
4780	{
4781		.name = "max_usage_in_bytes",
4782		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4783		.trigger = mem_cgroup_reset,
4784		.read_u64 = mem_cgroup_read,
4785	},
4786	{
4787		.name = "limit_in_bytes",
4788		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4789		.write_string = mem_cgroup_write,
4790		.read_u64 = mem_cgroup_read,
4791	},
4792	{
4793		.name = "soft_limit_in_bytes",
4794		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4795		.write_string = mem_cgroup_write,
4796		.read_u64 = mem_cgroup_read,
4797	},
4798	{
4799		.name = "failcnt",
4800		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4801		.trigger = mem_cgroup_reset,
4802		.read_u64 = mem_cgroup_read,
4803	},
4804	{
4805		.name = "stat",
4806		.read_map = mem_control_stat_show,
4807	},
4808	{
4809		.name = "force_empty",
4810		.trigger = mem_cgroup_force_empty_write,
4811	},
4812	{
4813		.name = "use_hierarchy",
4814		.write_u64 = mem_cgroup_hierarchy_write,
4815		.read_u64 = mem_cgroup_hierarchy_read,
4816	},
4817	{
4818		.name = "swappiness",
4819		.read_u64 = mem_cgroup_swappiness_read,
4820		.write_u64 = mem_cgroup_swappiness_write,
4821	},
4822	{
4823		.name = "move_charge_at_immigrate",
4824		.read_u64 = mem_cgroup_move_charge_read,
4825		.write_u64 = mem_cgroup_move_charge_write,
4826	},
4827	{
4828		.name = "oom_control",
4829		.read_map = mem_cgroup_oom_control_read,
4830		.write_u64 = mem_cgroup_oom_control_write,
4831		.register_event = mem_cgroup_oom_register_event,
4832		.unregister_event = mem_cgroup_oom_unregister_event,
4833		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4834	},
4835#ifdef CONFIG_NUMA
4836	{
4837		.name = "numa_stat",
4838		.open = mem_control_numa_stat_open,
4839		.mode = S_IRUGO,
4840	},
4841#endif
4842	{
4843		.name = "vmscan_stat",
4844		.read_map = mem_cgroup_vmscan_stat_read,
4845		.trigger = mem_cgroup_reset_vmscan_stat,
4846	},
4847};
4848
4849#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4850static struct cftype memsw_cgroup_files[] = {
4851	{
4852		.name = "memsw.usage_in_bytes",
4853		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4854		.read_u64 = mem_cgroup_read,
4855		.register_event = mem_cgroup_usage_register_event,
4856		.unregister_event = mem_cgroup_usage_unregister_event,
4857	},
4858	{
4859		.name = "memsw.max_usage_in_bytes",
4860		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4861		.trigger = mem_cgroup_reset,
4862		.read_u64 = mem_cgroup_read,
4863	},
4864	{
4865		.name = "memsw.limit_in_bytes",
4866		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4867		.write_string = mem_cgroup_write,
4868		.read_u64 = mem_cgroup_read,
4869	},
4870	{
4871		.name = "memsw.failcnt",
4872		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4873		.trigger = mem_cgroup_reset,
4874		.read_u64 = mem_cgroup_read,
4875	},
4876};
4877
4878static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4879{
4880	if (!do_swap_account)
4881		return 0;
4882	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4883				ARRAY_SIZE(memsw_cgroup_files));
4884};
4885#else
4886static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4887{
4888	return 0;
4889}
4890#endif
4891
4892static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4893{
4894	struct mem_cgroup_per_node *pn;
4895	struct mem_cgroup_per_zone *mz;
4896	enum lru_list l;
4897	int zone, tmp = node;
4898	/*
4899	 * This routine is called against possible nodes.
4900	 * But it's BUG to call kmalloc() against offline node.
4901	 *
4902	 * TODO: this routine can waste much memory for nodes which will
4903	 *       never be onlined. It's better to use memory hotplug callback
4904	 *       function.
4905	 */
4906	if (!node_state(node, N_NORMAL_MEMORY))
4907		tmp = -1;
4908	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4909	if (!pn)
4910		return 1;
4911
4912	mem->info.nodeinfo[node] = pn;
4913	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4914		mz = &pn->zoneinfo[zone];
4915		for_each_lru(l)
4916			INIT_LIST_HEAD(&mz->lists[l]);
4917		mz->usage_in_excess = 0;
4918		mz->on_tree = false;
4919		mz->mem = mem;
4920	}
4921	return 0;
4922}
4923
4924static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4925{
4926	kfree(mem->info.nodeinfo[node]);
4927}
4928
4929static struct mem_cgroup *mem_cgroup_alloc(void)
4930{
4931	struct mem_cgroup *mem;
4932	int size = sizeof(struct mem_cgroup);
4933
4934	/* Can be very big if MAX_NUMNODES is very big */
4935	if (size < PAGE_SIZE)
4936		mem = kzalloc(size, GFP_KERNEL);
4937	else
4938		mem = vzalloc(size);
4939
4940	if (!mem)
4941		return NULL;
4942
4943	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4944	if (!mem->stat)
4945		goto out_free;
4946	spin_lock_init(&mem->pcp_counter_lock);
4947	return mem;
4948
4949out_free:
4950	if (size < PAGE_SIZE)
4951		kfree(mem);
4952	else
4953		vfree(mem);
4954	return NULL;
4955}
4956
4957/*
4958 * At destroying mem_cgroup, references from swap_cgroup can remain.
4959 * (scanning all at force_empty is too costly...)
4960 *
4961 * Instead of clearing all references at force_empty, we remember
4962 * the number of reference from swap_cgroup and free mem_cgroup when
4963 * it goes down to 0.
4964 *
4965 * Removal of cgroup itself succeeds regardless of refs from swap.
4966 */
4967
4968static void __mem_cgroup_free(struct mem_cgroup *mem)
4969{
4970	int node;
4971
4972	mem_cgroup_remove_from_trees(mem);
4973	free_css_id(&mem_cgroup_subsys, &mem->css);
4974
4975	for_each_node_state(node, N_POSSIBLE)
4976		free_mem_cgroup_per_zone_info(mem, node);
4977
4978	free_percpu(mem->stat);
4979	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4980		kfree(mem);
4981	else
4982		vfree(mem);
4983}
4984
4985static void mem_cgroup_get(struct mem_cgroup *mem)
4986{
4987	atomic_inc(&mem->refcnt);
4988}
4989
4990static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4991{
4992	if (atomic_sub_and_test(count, &mem->refcnt)) {
4993		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4994		__mem_cgroup_free(mem);
4995		if (parent)
4996			mem_cgroup_put(parent);
4997	}
4998}
4999
5000static void mem_cgroup_put(struct mem_cgroup *mem)
5001{
5002	__mem_cgroup_put(mem, 1);
5003}
5004
5005/*
5006 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5007 */
5008static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
5009{
5010	if (!mem->res.parent)
5011		return NULL;
5012	return mem_cgroup_from_res_counter(mem->res.parent, res);
5013}
5014
5015#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5016static void __init enable_swap_cgroup(void)
5017{
5018	if (!mem_cgroup_disabled() && really_do_swap_account)
5019		do_swap_account = 1;
5020}
5021#else
5022static void __init enable_swap_cgroup(void)
5023{
5024}
5025#endif
5026
5027static int mem_cgroup_soft_limit_tree_init(void)
5028{
5029	struct mem_cgroup_tree_per_node *rtpn;
5030	struct mem_cgroup_tree_per_zone *rtpz;
5031	int tmp, node, zone;
5032
5033	for_each_node_state(node, N_POSSIBLE) {
5034		tmp = node;
5035		if (!node_state(node, N_NORMAL_MEMORY))
5036			tmp = -1;
5037		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5038		if (!rtpn)
5039			return 1;
5040
5041		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5042
5043		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5044			rtpz = &rtpn->rb_tree_per_zone[zone];
5045			rtpz->rb_root = RB_ROOT;
5046			spin_lock_init(&rtpz->lock);
5047		}
5048	}
5049	return 0;
5050}
5051
5052static struct cgroup_subsys_state * __ref
5053mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5054{
5055	struct mem_cgroup *mem, *parent;
5056	long error = -ENOMEM;
5057	int node;
5058
5059	mem = mem_cgroup_alloc();
5060	if (!mem)
5061		return ERR_PTR(error);
5062
5063	for_each_node_state(node, N_POSSIBLE)
5064		if (alloc_mem_cgroup_per_zone_info(mem, node))
5065			goto free_out;
5066
5067	/* root ? */
5068	if (cont->parent == NULL) {
5069		int cpu;
5070		enable_swap_cgroup();
5071		parent = NULL;
5072		root_mem_cgroup = mem;
5073		if (mem_cgroup_soft_limit_tree_init())
5074			goto free_out;
5075		for_each_possible_cpu(cpu) {
5076			struct memcg_stock_pcp *stock =
5077						&per_cpu(memcg_stock, cpu);
5078			INIT_WORK(&stock->work, drain_local_stock);
5079		}
5080		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5081	} else {
5082		parent = mem_cgroup_from_cont(cont->parent);
5083		mem->use_hierarchy = parent->use_hierarchy;
5084		mem->oom_kill_disable = parent->oom_kill_disable;
5085	}
5086
5087	if (parent && parent->use_hierarchy) {
5088		res_counter_init(&mem->res, &parent->res);
5089		res_counter_init(&mem->memsw, &parent->memsw);
5090		/*
5091		 * We increment refcnt of the parent to ensure that we can
5092		 * safely access it on res_counter_charge/uncharge.
5093		 * This refcnt will be decremented when freeing this
5094		 * mem_cgroup(see mem_cgroup_put).
5095		 */
5096		mem_cgroup_get(parent);
5097	} else {
5098		res_counter_init(&mem->res, NULL);
5099		res_counter_init(&mem->memsw, NULL);
5100	}
5101	mem->last_scanned_child = 0;
5102	mem->last_scanned_node = MAX_NUMNODES;
5103	INIT_LIST_HEAD(&mem->oom_notify);
5104
5105	if (parent)
5106		mem->swappiness = mem_cgroup_swappiness(parent);
5107	atomic_set(&mem->refcnt, 1);
5108	mem->move_charge_at_immigrate = 0;
5109	mutex_init(&mem->thresholds_lock);
5110	spin_lock_init(&mem->scanstat.lock);
5111	return &mem->css;
5112free_out:
5113	__mem_cgroup_free(mem);
5114	root_mem_cgroup = NULL;
5115	return ERR_PTR(error);
5116}
5117
5118static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5119					struct cgroup *cont)
5120{
5121	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5122
5123	return mem_cgroup_force_empty(mem, false);
5124}
5125
5126static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5127				struct cgroup *cont)
5128{
5129	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5130
5131	mem_cgroup_put(mem);
5132}
5133
5134static int mem_cgroup_populate(struct cgroup_subsys *ss,
5135				struct cgroup *cont)
5136{
5137	int ret;
5138
5139	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5140				ARRAY_SIZE(mem_cgroup_files));
5141
5142	if (!ret)
5143		ret = register_memsw_files(cont, ss);
5144	return ret;
5145}
5146
5147#ifdef CONFIG_MMU
5148/* Handlers for move charge at task migration. */
5149#define PRECHARGE_COUNT_AT_ONCE	256
5150static int mem_cgroup_do_precharge(unsigned long count)
5151{
5152	int ret = 0;
5153	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5154	struct mem_cgroup *mem = mc.to;
5155
5156	if (mem_cgroup_is_root(mem)) {
5157		mc.precharge += count;
5158		/* we don't need css_get for root */
5159		return ret;
5160	}
5161	/* try to charge at once */
5162	if (count > 1) {
5163		struct res_counter *dummy;
5164		/*
5165		 * "mem" cannot be under rmdir() because we've already checked
5166		 * by cgroup_lock_live_cgroup() that it is not removed and we
5167		 * are still under the same cgroup_mutex. So we can postpone
5168		 * css_get().
5169		 */
5170		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5171			goto one_by_one;
5172		if (do_swap_account && res_counter_charge(&mem->memsw,
5173						PAGE_SIZE * count, &dummy)) {
5174			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5175			goto one_by_one;
5176		}
5177		mc.precharge += count;
5178		return ret;
5179	}
5180one_by_one:
5181	/* fall back to one by one charge */
5182	while (count--) {
5183		if (signal_pending(current)) {
5184			ret = -EINTR;
5185			break;
5186		}
5187		if (!batch_count--) {
5188			batch_count = PRECHARGE_COUNT_AT_ONCE;
5189			cond_resched();
5190		}
5191		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5192		if (ret || !mem)
5193			/* mem_cgroup_clear_mc() will do uncharge later */
5194			return -ENOMEM;
5195		mc.precharge++;
5196	}
5197	return ret;
5198}
5199
5200/**
5201 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5202 * @vma: the vma the pte to be checked belongs
5203 * @addr: the address corresponding to the pte to be checked
5204 * @ptent: the pte to be checked
5205 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5206 *
5207 * Returns
5208 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5209 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5210 *     move charge. if @target is not NULL, the page is stored in target->page
5211 *     with extra refcnt got(Callers should handle it).
5212 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5213 *     target for charge migration. if @target is not NULL, the entry is stored
5214 *     in target->ent.
5215 *
5216 * Called with pte lock held.
5217 */
5218union mc_target {
5219	struct page	*page;
5220	swp_entry_t	ent;
5221};
5222
5223enum mc_target_type {
5224	MC_TARGET_NONE,	/* not used */
5225	MC_TARGET_PAGE,
5226	MC_TARGET_SWAP,
5227};
5228
5229static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5230						unsigned long addr, pte_t ptent)
5231{
5232	struct page *page = vm_normal_page(vma, addr, ptent);
5233
5234	if (!page || !page_mapped(page))
5235		return NULL;
5236	if (PageAnon(page)) {
5237		/* we don't move shared anon */
5238		if (!move_anon() || page_mapcount(page) > 2)
5239			return NULL;
5240	} else if (!move_file())
5241		/* we ignore mapcount for file pages */
5242		return NULL;
5243	if (!get_page_unless_zero(page))
5244		return NULL;
5245
5246	return page;
5247}
5248
5249static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5250			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5251{
5252	int usage_count;
5253	struct page *page = NULL;
5254	swp_entry_t ent = pte_to_swp_entry(ptent);
5255
5256	if (!move_anon() || non_swap_entry(ent))
5257		return NULL;
5258	usage_count = mem_cgroup_count_swap_user(ent, &page);
5259	if (usage_count > 1) { /* we don't move shared anon */
5260		if (page)
5261			put_page(page);
5262		return NULL;
5263	}
5264	if (do_swap_account)
5265		entry->val = ent.val;
5266
5267	return page;
5268}
5269
5270static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5271			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5272{
5273	struct page *page = NULL;
5274	struct inode *inode;
5275	struct address_space *mapping;
5276	pgoff_t pgoff;
5277
5278	if (!vma->vm_file) /* anonymous vma */
5279		return NULL;
5280	if (!move_file())
5281		return NULL;
5282
5283	inode = vma->vm_file->f_path.dentry->d_inode;
5284	mapping = vma->vm_file->f_mapping;
5285	if (pte_none(ptent))
5286		pgoff = linear_page_index(vma, addr);
5287	else /* pte_file(ptent) is true */
5288		pgoff = pte_to_pgoff(ptent);
5289
5290	/* page is moved even if it's not RSS of this task(page-faulted). */
5291	page = find_get_page(mapping, pgoff);
5292
5293#ifdef CONFIG_SWAP
5294	/* shmem/tmpfs may report page out on swap: account for that too. */
5295	if (radix_tree_exceptional_entry(page)) {
5296		swp_entry_t swap = radix_to_swp_entry(page);
5297		if (do_swap_account)
5298			*entry = swap;
5299		page = find_get_page(&swapper_space, swap.val);
5300	}
5301#endif
5302	return page;
5303}
5304
5305static int is_target_pte_for_mc(struct vm_area_struct *vma,
5306		unsigned long addr, pte_t ptent, union mc_target *target)
5307{
5308	struct page *page = NULL;
5309	struct page_cgroup *pc;
5310	int ret = 0;
5311	swp_entry_t ent = { .val = 0 };
5312
5313	if (pte_present(ptent))
5314		page = mc_handle_present_pte(vma, addr, ptent);
5315	else if (is_swap_pte(ptent))
5316		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5317	else if (pte_none(ptent) || pte_file(ptent))
5318		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5319
5320	if (!page && !ent.val)
5321		return 0;
5322	if (page) {
5323		pc = lookup_page_cgroup(page);
5324		/*
5325		 * Do only loose check w/o page_cgroup lock.
5326		 * mem_cgroup_move_account() checks the pc is valid or not under
5327		 * the lock.
5328		 */
5329		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5330			ret = MC_TARGET_PAGE;
5331			if (target)
5332				target->page = page;
5333		}
5334		if (!ret || !target)
5335			put_page(page);
5336	}
5337	/* There is a swap entry and a page doesn't exist or isn't charged */
5338	if (ent.val && !ret &&
5339			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5340		ret = MC_TARGET_SWAP;
5341		if (target)
5342			target->ent = ent;
5343	}
5344	return ret;
5345}
5346
5347static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5348					unsigned long addr, unsigned long end,
5349					struct mm_walk *walk)
5350{
5351	struct vm_area_struct *vma = walk->private;
5352	pte_t *pte;
5353	spinlock_t *ptl;
5354
5355	split_huge_page_pmd(walk->mm, pmd);
5356
5357	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5358	for (; addr != end; pte++, addr += PAGE_SIZE)
5359		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5360			mc.precharge++;	/* increment precharge temporarily */
5361	pte_unmap_unlock(pte - 1, ptl);
5362	cond_resched();
5363
5364	return 0;
5365}
5366
5367static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5368{
5369	unsigned long precharge;
5370	struct vm_area_struct *vma;
5371
5372	down_read(&mm->mmap_sem);
5373	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5374		struct mm_walk mem_cgroup_count_precharge_walk = {
5375			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5376			.mm = mm,
5377			.private = vma,
5378		};
5379		if (is_vm_hugetlb_page(vma))
5380			continue;
5381		walk_page_range(vma->vm_start, vma->vm_end,
5382					&mem_cgroup_count_precharge_walk);
5383	}
5384	up_read(&mm->mmap_sem);
5385
5386	precharge = mc.precharge;
5387	mc.precharge = 0;
5388
5389	return precharge;
5390}
5391
5392static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5393{
5394	unsigned long precharge = mem_cgroup_count_precharge(mm);
5395
5396	VM_BUG_ON(mc.moving_task);
5397	mc.moving_task = current;
5398	return mem_cgroup_do_precharge(precharge);
5399}
5400
5401/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5402static void __mem_cgroup_clear_mc(void)
5403{
5404	struct mem_cgroup *from = mc.from;
5405	struct mem_cgroup *to = mc.to;
5406
5407	/* we must uncharge all the leftover precharges from mc.to */
5408	if (mc.precharge) {
5409		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5410		mc.precharge = 0;
5411	}
5412	/*
5413	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5414	 * we must uncharge here.
5415	 */
5416	if (mc.moved_charge) {
5417		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5418		mc.moved_charge = 0;
5419	}
5420	/* we must fixup refcnts and charges */
5421	if (mc.moved_swap) {
5422		/* uncharge swap account from the old cgroup */
5423		if (!mem_cgroup_is_root(mc.from))
5424			res_counter_uncharge(&mc.from->memsw,
5425						PAGE_SIZE * mc.moved_swap);
5426		__mem_cgroup_put(mc.from, mc.moved_swap);
5427
5428		if (!mem_cgroup_is_root(mc.to)) {
5429			/*
5430			 * we charged both to->res and to->memsw, so we should
5431			 * uncharge to->res.
5432			 */
5433			res_counter_uncharge(&mc.to->res,
5434						PAGE_SIZE * mc.moved_swap);
5435		}
5436		/* we've already done mem_cgroup_get(mc.to) */
5437		mc.moved_swap = 0;
5438	}
5439	memcg_oom_recover(from);
5440	memcg_oom_recover(to);
5441	wake_up_all(&mc.waitq);
5442}
5443
5444static void mem_cgroup_clear_mc(void)
5445{
5446	struct mem_cgroup *from = mc.from;
5447
5448	/*
5449	 * we must clear moving_task before waking up waiters at the end of
5450	 * task migration.
5451	 */
5452	mc.moving_task = NULL;
5453	__mem_cgroup_clear_mc();
5454	spin_lock(&mc.lock);
5455	mc.from = NULL;
5456	mc.to = NULL;
5457	spin_unlock(&mc.lock);
5458	mem_cgroup_end_move(from);
5459}
5460
5461static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5462				struct cgroup *cgroup,
5463				struct task_struct *p)
5464{
5465	int ret = 0;
5466	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5467
5468	if (mem->move_charge_at_immigrate) {
5469		struct mm_struct *mm;
5470		struct mem_cgroup *from = mem_cgroup_from_task(p);
5471
5472		VM_BUG_ON(from == mem);
5473
5474		mm = get_task_mm(p);
5475		if (!mm)
5476			return 0;
5477		/* We move charges only when we move a owner of the mm */
5478		if (mm->owner == p) {
5479			VM_BUG_ON(mc.from);
5480			VM_BUG_ON(mc.to);
5481			VM_BUG_ON(mc.precharge);
5482			VM_BUG_ON(mc.moved_charge);
5483			VM_BUG_ON(mc.moved_swap);
5484			mem_cgroup_start_move(from);
5485			spin_lock(&mc.lock);
5486			mc.from = from;
5487			mc.to = mem;
5488			spin_unlock(&mc.lock);
5489			/* We set mc.moving_task later */
5490
5491			ret = mem_cgroup_precharge_mc(mm);
5492			if (ret)
5493				mem_cgroup_clear_mc();
5494		}
5495		mmput(mm);
5496	}
5497	return ret;
5498}
5499
5500static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5501				struct cgroup *cgroup,
5502				struct task_struct *p)
5503{
5504	mem_cgroup_clear_mc();
5505}
5506
5507static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5508				unsigned long addr, unsigned long end,
5509				struct mm_walk *walk)
5510{
5511	int ret = 0;
5512	struct vm_area_struct *vma = walk->private;
5513	pte_t *pte;
5514	spinlock_t *ptl;
5515
5516	split_huge_page_pmd(walk->mm, pmd);
5517retry:
5518	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5519	for (; addr != end; addr += PAGE_SIZE) {
5520		pte_t ptent = *(pte++);
5521		union mc_target target;
5522		int type;
5523		struct page *page;
5524		struct page_cgroup *pc;
5525		swp_entry_t ent;
5526
5527		if (!mc.precharge)
5528			break;
5529
5530		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5531		switch (type) {
5532		case MC_TARGET_PAGE:
5533			page = target.page;
5534			if (isolate_lru_page(page))
5535				goto put;
5536			pc = lookup_page_cgroup(page);
5537			if (!mem_cgroup_move_account(page, 1, pc,
5538						     mc.from, mc.to, false)) {
5539				mc.precharge--;
5540				/* we uncharge from mc.from later. */
5541				mc.moved_charge++;
5542			}
5543			putback_lru_page(page);
5544put:			/* is_target_pte_for_mc() gets the page */
5545			put_page(page);
5546			break;
5547		case MC_TARGET_SWAP:
5548			ent = target.ent;
5549			if (!mem_cgroup_move_swap_account(ent,
5550						mc.from, mc.to, false)) {
5551				mc.precharge--;
5552				/* we fixup refcnts and charges later. */
5553				mc.moved_swap++;
5554			}
5555			break;
5556		default:
5557			break;
5558		}
5559	}
5560	pte_unmap_unlock(pte - 1, ptl);
5561	cond_resched();
5562
5563	if (addr != end) {
5564		/*
5565		 * We have consumed all precharges we got in can_attach().
5566		 * We try charge one by one, but don't do any additional
5567		 * charges to mc.to if we have failed in charge once in attach()
5568		 * phase.
5569		 */
5570		ret = mem_cgroup_do_precharge(1);
5571		if (!ret)
5572			goto retry;
5573	}
5574
5575	return ret;
5576}
5577
5578static void mem_cgroup_move_charge(struct mm_struct *mm)
5579{
5580	struct vm_area_struct *vma;
5581
5582	lru_add_drain_all();
5583retry:
5584	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5585		/*
5586		 * Someone who are holding the mmap_sem might be waiting in
5587		 * waitq. So we cancel all extra charges, wake up all waiters,
5588		 * and retry. Because we cancel precharges, we might not be able
5589		 * to move enough charges, but moving charge is a best-effort
5590		 * feature anyway, so it wouldn't be a big problem.
5591		 */
5592		__mem_cgroup_clear_mc();
5593		cond_resched();
5594		goto retry;
5595	}
5596	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5597		int ret;
5598		struct mm_walk mem_cgroup_move_charge_walk = {
5599			.pmd_entry = mem_cgroup_move_charge_pte_range,
5600			.mm = mm,
5601			.private = vma,
5602		};
5603		if (is_vm_hugetlb_page(vma))
5604			continue;
5605		ret = walk_page_range(vma->vm_start, vma->vm_end,
5606						&mem_cgroup_move_charge_walk);
5607		if (ret)
5608			/*
5609			 * means we have consumed all precharges and failed in
5610			 * doing additional charge. Just abandon here.
5611			 */
5612			break;
5613	}
5614	up_read(&mm->mmap_sem);
5615}
5616
5617static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5618				struct cgroup *cont,
5619				struct cgroup *old_cont,
5620				struct task_struct *p)
5621{
5622	struct mm_struct *mm = get_task_mm(p);
5623
5624	if (mm) {
5625		if (mc.to)
5626			mem_cgroup_move_charge(mm);
5627		put_swap_token(mm);
5628		mmput(mm);
5629	}
5630	if (mc.to)
5631		mem_cgroup_clear_mc();
5632}
5633#else	/* !CONFIG_MMU */
5634static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5635				struct cgroup *cgroup,
5636				struct task_struct *p)
5637{
5638	return 0;
5639}
5640static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5641				struct cgroup *cgroup,
5642				struct task_struct *p)
5643{
5644}
5645static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5646				struct cgroup *cont,
5647				struct cgroup *old_cont,
5648				struct task_struct *p)
5649{
5650}
5651#endif
5652
5653struct cgroup_subsys mem_cgroup_subsys = {
5654	.name = "memory",
5655	.subsys_id = mem_cgroup_subsys_id,
5656	.create = mem_cgroup_create,
5657	.pre_destroy = mem_cgroup_pre_destroy,
5658	.destroy = mem_cgroup_destroy,
5659	.populate = mem_cgroup_populate,
5660	.can_attach = mem_cgroup_can_attach,
5661	.cancel_attach = mem_cgroup_cancel_attach,
5662	.attach = mem_cgroup_move_task,
5663	.early_init = 0,
5664	.use_id = 1,
5665};
5666
5667#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5668static int __init enable_swap_account(char *s)
5669{
5670	/* consider enabled if no parameter or 1 is given */
5671	if (!strcmp(s, "1"))
5672		really_do_swap_account = 1;
5673	else if (!strcmp(s, "0"))
5674		really_do_swap_account = 0;
5675	return 1;
5676}
5677__setup("swapaccount=", enable_swap_account);
5678
5679#endif
5680