memcontrol.c revision 9fb4b7cc0724f178d4b24a2a566ea1e7cb120b82
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES	5
62struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account		(0)
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84	/*
85	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86	 */
87	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93	MEM_CGROUP_STAT_NSTATS,
94};
95
96enum mem_cgroup_events_index {
97	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
98	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102	MEM_CGROUP_EVENTS_NSTATS,
103};
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111	MEM_CGROUP_TARGET_THRESH,
112	MEM_CGROUP_TARGET_SOFTLIMIT,
113	MEM_CGROUP_TARGET_NUMAINFO,
114	MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
118#define NUMAINFO_EVENTS_TARGET	(1024)
119
120struct mem_cgroup_stat_cpu {
121	long count[MEM_CGROUP_STAT_NSTATS];
122	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123	unsigned long targets[MEM_CGROUP_NTARGETS];
124};
125
126struct mem_cgroup_reclaim_iter {
127	/* css_id of the last scanned hierarchy member */
128	int position;
129	/* scan generation, increased every round-trip */
130	unsigned int generation;
131};
132
133/*
134 * per-zone information in memory controller.
135 */
136struct mem_cgroup_per_zone {
137	struct lruvec		lruvec;
138	unsigned long		count[NR_LRU_LISTS];
139
140	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
142	struct zone_reclaim_stat reclaim_stat;
143	struct rb_node		tree_node;	/* RB tree node */
144	unsigned long long	usage_in_excess;/* Set to the value by which */
145						/* the soft limit is exceeded*/
146	bool			on_tree;
147	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
148						/* use container_of	   */
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167	struct rb_root rb_root;
168	spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
181struct mem_cgroup_threshold {
182	struct eventfd_ctx *eventfd;
183	u64 threshold;
184};
185
186/* For threshold */
187struct mem_cgroup_threshold_ary {
188	/* An array index points to threshold just below usage. */
189	int current_threshold;
190	/* Size of entries[] */
191	unsigned int size;
192	/* Array of thresholds */
193	struct mem_cgroup_threshold entries[0];
194};
195
196struct mem_cgroup_thresholds {
197	/* Primary thresholds array */
198	struct mem_cgroup_threshold_ary *primary;
199	/*
200	 * Spare threshold array.
201	 * This is needed to make mem_cgroup_unregister_event() "never fail".
202	 * It must be able to store at least primary->size - 1 entries.
203	 */
204	struct mem_cgroup_threshold_ary *spare;
205};
206
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209	struct list_head list;
210	struct eventfd_ctx *eventfd;
211};
212
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
226 */
227struct mem_cgroup {
228	struct cgroup_subsys_state css;
229	/*
230	 * the counter to account for memory usage
231	 */
232	struct res_counter res;
233	/*
234	 * the counter to account for mem+swap usage.
235	 */
236	struct res_counter memsw;
237	/*
238	 * Per cgroup active and inactive list, similar to the
239	 * per zone LRU lists.
240	 */
241	struct mem_cgroup_lru_info info;
242	int last_scanned_node;
243#if MAX_NUMNODES > 1
244	nodemask_t	scan_nodes;
245	atomic_t	numainfo_events;
246	atomic_t	numainfo_updating;
247#endif
248	/*
249	 * Should the accounting and control be hierarchical, per subtree?
250	 */
251	bool use_hierarchy;
252
253	bool		oom_lock;
254	atomic_t	under_oom;
255
256	atomic_t	refcnt;
257
258	int	swappiness;
259	/* OOM-Killer disable */
260	int		oom_kill_disable;
261
262	/* set when res.limit == memsw.limit */
263	bool		memsw_is_minimum;
264
265	/* protect arrays of thresholds */
266	struct mutex thresholds_lock;
267
268	/* thresholds for memory usage. RCU-protected */
269	struct mem_cgroup_thresholds thresholds;
270
271	/* thresholds for mem+swap usage. RCU-protected */
272	struct mem_cgroup_thresholds memsw_thresholds;
273
274	/* For oom notifier event fd */
275	struct list_head oom_notify;
276
277	/*
278	 * Should we move charges of a task when a task is moved into this
279	 * mem_cgroup ? And what type of charges should we move ?
280	 */
281	unsigned long 	move_charge_at_immigrate;
282	/*
283	 * percpu counter.
284	 */
285	struct mem_cgroup_stat_cpu *stat;
286	/*
287	 * used when a cpu is offlined or other synchronizations
288	 * See mem_cgroup_read_stat().
289	 */
290	struct mem_cgroup_stat_cpu nocpu_base;
291	spinlock_t pcp_counter_lock;
292
293#ifdef CONFIG_INET
294	struct tcp_memcontrol tcp_mem;
295#endif
296};
297
298/* Stuffs for move charges at task migration. */
299/*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303enum move_type {
304	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306	NR_MOVE_TYPE,
307};
308
309/* "mc" and its members are protected by cgroup_mutex */
310static struct move_charge_struct {
311	spinlock_t	  lock; /* for from, to */
312	struct mem_cgroup *from;
313	struct mem_cgroup *to;
314	unsigned long precharge;
315	unsigned long moved_charge;
316	unsigned long moved_swap;
317	struct task_struct *moving_task;	/* a task moving charges */
318	wait_queue_head_t waitq;		/* a waitq for other context */
319} mc = {
320	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322};
323
324static bool move_anon(void)
325{
326	return test_bit(MOVE_CHARGE_TYPE_ANON,
327					&mc.to->move_charge_at_immigrate);
328}
329
330static bool move_file(void)
331{
332	return test_bit(MOVE_CHARGE_TYPE_FILE,
333					&mc.to->move_charge_at_immigrate);
334}
335
336/*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
341#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
342
343enum charge_type {
344	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
348	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
349	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350	NR_CHARGE_TYPE,
351};
352
353/* for encoding cft->private value on file */
354#define _MEM			(0)
355#define _MEMSWAP		(1)
356#define _OOM_TYPE		(2)
357#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
358#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
359#define MEMFILE_ATTR(val)	((val) & 0xffff)
360/* Used for OOM nofiier */
361#define OOM_CONTROL		(0)
362
363/*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
367#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
369#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
371static void mem_cgroup_get(struct mem_cgroup *memcg);
372static void mem_cgroup_put(struct mem_cgroup *memcg);
373
374/* Writing them here to avoid exposing memcg's inner layout */
375#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376#ifdef CONFIG_INET
377#include <net/sock.h>
378#include <net/ip.h>
379
380static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381void sock_update_memcg(struct sock *sk)
382{
383	if (static_branch(&memcg_socket_limit_enabled)) {
384		struct mem_cgroup *memcg;
385
386		BUG_ON(!sk->sk_prot->proto_cgroup);
387
388		/* Socket cloning can throw us here with sk_cgrp already
389		 * filled. It won't however, necessarily happen from
390		 * process context. So the test for root memcg given
391		 * the current task's memcg won't help us in this case.
392		 *
393		 * Respecting the original socket's memcg is a better
394		 * decision in this case.
395		 */
396		if (sk->sk_cgrp) {
397			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398			mem_cgroup_get(sk->sk_cgrp->memcg);
399			return;
400		}
401
402		rcu_read_lock();
403		memcg = mem_cgroup_from_task(current);
404		if (!mem_cgroup_is_root(memcg)) {
405			mem_cgroup_get(memcg);
406			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407		}
408		rcu_read_unlock();
409	}
410}
411EXPORT_SYMBOL(sock_update_memcg);
412
413void sock_release_memcg(struct sock *sk)
414{
415	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416		struct mem_cgroup *memcg;
417		WARN_ON(!sk->sk_cgrp->memcg);
418		memcg = sk->sk_cgrp->memcg;
419		mem_cgroup_put(memcg);
420	}
421}
422
423struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424{
425	if (!memcg || mem_cgroup_is_root(memcg))
426		return NULL;
427
428	return &memcg->tcp_mem.cg_proto;
429}
430EXPORT_SYMBOL(tcp_proto_cgroup);
431#endif /* CONFIG_INET */
432#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
434static void drain_all_stock_async(struct mem_cgroup *memcg);
435
436static struct mem_cgroup_per_zone *
437mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438{
439	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440}
441
442struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443{
444	return &memcg->css;
445}
446
447static struct mem_cgroup_per_zone *
448page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449{
450	int nid = page_to_nid(page);
451	int zid = page_zonenum(page);
452
453	return mem_cgroup_zoneinfo(memcg, nid, zid);
454}
455
456static struct mem_cgroup_tree_per_zone *
457soft_limit_tree_node_zone(int nid, int zid)
458{
459	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460}
461
462static struct mem_cgroup_tree_per_zone *
463soft_limit_tree_from_page(struct page *page)
464{
465	int nid = page_to_nid(page);
466	int zid = page_zonenum(page);
467
468	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469}
470
471static void
472__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473				struct mem_cgroup_per_zone *mz,
474				struct mem_cgroup_tree_per_zone *mctz,
475				unsigned long long new_usage_in_excess)
476{
477	struct rb_node **p = &mctz->rb_root.rb_node;
478	struct rb_node *parent = NULL;
479	struct mem_cgroup_per_zone *mz_node;
480
481	if (mz->on_tree)
482		return;
483
484	mz->usage_in_excess = new_usage_in_excess;
485	if (!mz->usage_in_excess)
486		return;
487	while (*p) {
488		parent = *p;
489		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490					tree_node);
491		if (mz->usage_in_excess < mz_node->usage_in_excess)
492			p = &(*p)->rb_left;
493		/*
494		 * We can't avoid mem cgroups that are over their soft
495		 * limit by the same amount
496		 */
497		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498			p = &(*p)->rb_right;
499	}
500	rb_link_node(&mz->tree_node, parent, p);
501	rb_insert_color(&mz->tree_node, &mctz->rb_root);
502	mz->on_tree = true;
503}
504
505static void
506__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507				struct mem_cgroup_per_zone *mz,
508				struct mem_cgroup_tree_per_zone *mctz)
509{
510	if (!mz->on_tree)
511		return;
512	rb_erase(&mz->tree_node, &mctz->rb_root);
513	mz->on_tree = false;
514}
515
516static void
517mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518				struct mem_cgroup_per_zone *mz,
519				struct mem_cgroup_tree_per_zone *mctz)
520{
521	spin_lock(&mctz->lock);
522	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523	spin_unlock(&mctz->lock);
524}
525
526
527static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528{
529	unsigned long long excess;
530	struct mem_cgroup_per_zone *mz;
531	struct mem_cgroup_tree_per_zone *mctz;
532	int nid = page_to_nid(page);
533	int zid = page_zonenum(page);
534	mctz = soft_limit_tree_from_page(page);
535
536	/*
537	 * Necessary to update all ancestors when hierarchy is used.
538	 * because their event counter is not touched.
539	 */
540	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542		excess = res_counter_soft_limit_excess(&memcg->res);
543		/*
544		 * We have to update the tree if mz is on RB-tree or
545		 * mem is over its softlimit.
546		 */
547		if (excess || mz->on_tree) {
548			spin_lock(&mctz->lock);
549			/* if on-tree, remove it */
550			if (mz->on_tree)
551				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552			/*
553			 * Insert again. mz->usage_in_excess will be updated.
554			 * If excess is 0, no tree ops.
555			 */
556			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557			spin_unlock(&mctz->lock);
558		}
559	}
560}
561
562static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563{
564	int node, zone;
565	struct mem_cgroup_per_zone *mz;
566	struct mem_cgroup_tree_per_zone *mctz;
567
568	for_each_node_state(node, N_POSSIBLE) {
569		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571			mctz = soft_limit_tree_node_zone(node, zone);
572			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573		}
574	}
575}
576
577static struct mem_cgroup_per_zone *
578__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579{
580	struct rb_node *rightmost = NULL;
581	struct mem_cgroup_per_zone *mz;
582
583retry:
584	mz = NULL;
585	rightmost = rb_last(&mctz->rb_root);
586	if (!rightmost)
587		goto done;		/* Nothing to reclaim from */
588
589	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590	/*
591	 * Remove the node now but someone else can add it back,
592	 * we will to add it back at the end of reclaim to its correct
593	 * position in the tree.
594	 */
595	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597		!css_tryget(&mz->mem->css))
598		goto retry;
599done:
600	return mz;
601}
602
603static struct mem_cgroup_per_zone *
604mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605{
606	struct mem_cgroup_per_zone *mz;
607
608	spin_lock(&mctz->lock);
609	mz = __mem_cgroup_largest_soft_limit_node(mctz);
610	spin_unlock(&mctz->lock);
611	return mz;
612}
613
614/*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
633static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634				 enum mem_cgroup_stat_index idx)
635{
636	long val = 0;
637	int cpu;
638
639	get_online_cpus();
640	for_each_online_cpu(cpu)
641		val += per_cpu(memcg->stat->count[idx], cpu);
642#ifdef CONFIG_HOTPLUG_CPU
643	spin_lock(&memcg->pcp_counter_lock);
644	val += memcg->nocpu_base.count[idx];
645	spin_unlock(&memcg->pcp_counter_lock);
646#endif
647	put_online_cpus();
648	return val;
649}
650
651static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652					 bool charge)
653{
654	int val = (charge) ? 1 : -1;
655	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656}
657
658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659					    enum mem_cgroup_events_index idx)
660{
661	unsigned long val = 0;
662	int cpu;
663
664	for_each_online_cpu(cpu)
665		val += per_cpu(memcg->stat->events[idx], cpu);
666#ifdef CONFIG_HOTPLUG_CPU
667	spin_lock(&memcg->pcp_counter_lock);
668	val += memcg->nocpu_base.events[idx];
669	spin_unlock(&memcg->pcp_counter_lock);
670#endif
671	return val;
672}
673
674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675					 bool file, int nr_pages)
676{
677	preempt_disable();
678
679	if (file)
680		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681				nr_pages);
682	else
683		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684				nr_pages);
685
686	/* pagein of a big page is an event. So, ignore page size */
687	if (nr_pages > 0)
688		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689	else {
690		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691		nr_pages = -nr_pages; /* for event */
692	}
693
694	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695
696	preempt_enable();
697}
698
699unsigned long
700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701			unsigned int lru_mask)
702{
703	struct mem_cgroup_per_zone *mz;
704	enum lru_list l;
705	unsigned long ret = 0;
706
707	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708
709	for_each_lru(l) {
710		if (BIT(l) & lru_mask)
711			ret += MEM_CGROUP_ZSTAT(mz, l);
712	}
713	return ret;
714}
715
716static unsigned long
717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718			int nid, unsigned int lru_mask)
719{
720	u64 total = 0;
721	int zid;
722
723	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724		total += mem_cgroup_zone_nr_lru_pages(memcg,
725						nid, zid, lru_mask);
726
727	return total;
728}
729
730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731			unsigned int lru_mask)
732{
733	int nid;
734	u64 total = 0;
735
736	for_each_node_state(nid, N_HIGH_MEMORY)
737		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738	return total;
739}
740
741static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742				       enum mem_cgroup_events_target target)
743{
744	unsigned long val, next;
745
746	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747	next = __this_cpu_read(memcg->stat->targets[target]);
748	/* from time_after() in jiffies.h */
749	if ((long)next - (long)val < 0) {
750		switch (target) {
751		case MEM_CGROUP_TARGET_THRESH:
752			next = val + THRESHOLDS_EVENTS_TARGET;
753			break;
754		case MEM_CGROUP_TARGET_SOFTLIMIT:
755			next = val + SOFTLIMIT_EVENTS_TARGET;
756			break;
757		case MEM_CGROUP_TARGET_NUMAINFO:
758			next = val + NUMAINFO_EVENTS_TARGET;
759			break;
760		default:
761			break;
762		}
763		__this_cpu_write(memcg->stat->targets[target], next);
764		return true;
765	}
766	return false;
767}
768
769/*
770 * Check events in order.
771 *
772 */
773static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774{
775	preempt_disable();
776	/* threshold event is triggered in finer grain than soft limit */
777	if (unlikely(mem_cgroup_event_ratelimit(memcg,
778						MEM_CGROUP_TARGET_THRESH))) {
779		bool do_softlimit, do_numainfo;
780
781		do_softlimit = mem_cgroup_event_ratelimit(memcg,
782						MEM_CGROUP_TARGET_SOFTLIMIT);
783#if MAX_NUMNODES > 1
784		do_numainfo = mem_cgroup_event_ratelimit(memcg,
785						MEM_CGROUP_TARGET_NUMAINFO);
786#endif
787		preempt_enable();
788
789		mem_cgroup_threshold(memcg);
790		if (unlikely(do_softlimit))
791			mem_cgroup_update_tree(memcg, page);
792#if MAX_NUMNODES > 1
793		if (unlikely(do_numainfo))
794			atomic_inc(&memcg->numainfo_events);
795#endif
796	} else
797		preempt_enable();
798}
799
800struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
801{
802	return container_of(cgroup_subsys_state(cont,
803				mem_cgroup_subsys_id), struct mem_cgroup,
804				css);
805}
806
807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808{
809	/*
810	 * mm_update_next_owner() may clear mm->owner to NULL
811	 * if it races with swapoff, page migration, etc.
812	 * So this can be called with p == NULL.
813	 */
814	if (unlikely(!p))
815		return NULL;
816
817	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818				struct mem_cgroup, css);
819}
820
821struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822{
823	struct mem_cgroup *memcg = NULL;
824
825	if (!mm)
826		return NULL;
827	/*
828	 * Because we have no locks, mm->owner's may be being moved to other
829	 * cgroup. We use css_tryget() here even if this looks
830	 * pessimistic (rather than adding locks here).
831	 */
832	rcu_read_lock();
833	do {
834		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835		if (unlikely(!memcg))
836			break;
837	} while (!css_tryget(&memcg->css));
838	rcu_read_unlock();
839	return memcg;
840}
841
842/**
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 *
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
850 *
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
854 *
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
858 */
859struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860				   struct mem_cgroup *prev,
861				   struct mem_cgroup_reclaim_cookie *reclaim)
862{
863	struct mem_cgroup *memcg = NULL;
864	int id = 0;
865
866	if (mem_cgroup_disabled())
867		return NULL;
868
869	if (!root)
870		root = root_mem_cgroup;
871
872	if (prev && !reclaim)
873		id = css_id(&prev->css);
874
875	if (prev && prev != root)
876		css_put(&prev->css);
877
878	if (!root->use_hierarchy && root != root_mem_cgroup) {
879		if (prev)
880			return NULL;
881		return root;
882	}
883
884	while (!memcg) {
885		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886		struct cgroup_subsys_state *css;
887
888		if (reclaim) {
889			int nid = zone_to_nid(reclaim->zone);
890			int zid = zone_idx(reclaim->zone);
891			struct mem_cgroup_per_zone *mz;
892
893			mz = mem_cgroup_zoneinfo(root, nid, zid);
894			iter = &mz->reclaim_iter[reclaim->priority];
895			if (prev && reclaim->generation != iter->generation)
896				return NULL;
897			id = iter->position;
898		}
899
900		rcu_read_lock();
901		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902		if (css) {
903			if (css == &root->css || css_tryget(css))
904				memcg = container_of(css,
905						     struct mem_cgroup, css);
906		} else
907			id = 0;
908		rcu_read_unlock();
909
910		if (reclaim) {
911			iter->position = id;
912			if (!css)
913				iter->generation++;
914			else if (!prev && memcg)
915				reclaim->generation = iter->generation;
916		}
917
918		if (prev && !css)
919			return NULL;
920	}
921	return memcg;
922}
923
924/**
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928 */
929void mem_cgroup_iter_break(struct mem_cgroup *root,
930			   struct mem_cgroup *prev)
931{
932	if (!root)
933		root = root_mem_cgroup;
934	if (prev && prev != root)
935		css_put(&prev->css);
936}
937
938/*
939 * Iteration constructs for visiting all cgroups (under a tree).  If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943#define for_each_mem_cgroup_tree(iter, root)		\
944	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945	     iter != NULL;				\
946	     iter = mem_cgroup_iter(root, iter, NULL))
947
948#define for_each_mem_cgroup(iter)			\
949	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950	     iter != NULL;				\
951	     iter = mem_cgroup_iter(NULL, iter, NULL))
952
953static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954{
955	return (memcg == root_mem_cgroup);
956}
957
958void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959{
960	struct mem_cgroup *memcg;
961
962	if (!mm)
963		return;
964
965	rcu_read_lock();
966	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967	if (unlikely(!memcg))
968		goto out;
969
970	switch (idx) {
971	case PGFAULT:
972		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973		break;
974	case PGMAJFAULT:
975		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976		break;
977	default:
978		BUG();
979	}
980out:
981	rcu_read_unlock();
982}
983EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
985/**
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
989 *
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem.  This can be the global zone lruvec, if the memory controller
992 * is disabled.
993 */
994struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995				      struct mem_cgroup *memcg)
996{
997	struct mem_cgroup_per_zone *mz;
998
999	if (mem_cgroup_disabled())
1000		return &zone->lruvec;
1001
1002	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003	return &mz->lruvec;
1004}
1005
1006/*
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1010 *
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1018 */
1019
1020/**
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1025 *
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1028 *
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1031 */
1032struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033				       enum lru_list lru)
1034{
1035	struct mem_cgroup_per_zone *mz;
1036	struct mem_cgroup *memcg;
1037	struct page_cgroup *pc;
1038
1039	if (mem_cgroup_disabled())
1040		return &zone->lruvec;
1041
1042	pc = lookup_page_cgroup(page);
1043	VM_BUG_ON(PageCgroupAcctLRU(pc));
1044	/*
1045	 * putback:				charge:
1046	 * SetPageLRU				SetPageCgroupUsed
1047	 * smp_mb				smp_mb
1048	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1049	 *
1050	 * Ensure that one of the two sides adds the page to the memcg
1051	 * LRU during a race.
1052	 */
1053	smp_mb();
1054	/*
1055	 * If the page is uncharged, it may be freed soon, but it
1056	 * could also be swap cache (readahead, swapoff) that needs to
1057	 * be reclaimable in the future.  root_mem_cgroup will babysit
1058	 * it for the time being.
1059	 */
1060	if (PageCgroupUsed(pc)) {
1061		/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1062		smp_rmb();
1063		memcg = pc->mem_cgroup;
1064		SetPageCgroupAcctLRU(pc);
1065	} else
1066		memcg = root_mem_cgroup;
1067	mz = page_cgroup_zoneinfo(memcg, page);
1068	/* compound_order() is stabilized through lru_lock */
1069	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1070	return &mz->lruvec;
1071}
1072
1073/**
1074 * mem_cgroup_lru_del_list - account for removing an lru page
1075 * @page: the page
1076 * @lru: target lru
1077 *
1078 * This function accounts for @page being removed from @lru.
1079 *
1080 * The callsite is then responsible for physically unlinking
1081 * @page->lru.
1082 */
1083void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1084{
1085	struct mem_cgroup_per_zone *mz;
1086	struct mem_cgroup *memcg;
1087	struct page_cgroup *pc;
1088
1089	if (mem_cgroup_disabled())
1090		return;
1091
1092	pc = lookup_page_cgroup(page);
1093	/*
1094	 * root_mem_cgroup babysits uncharged LRU pages, but
1095	 * PageCgroupUsed is cleared when the page is about to get
1096	 * freed.  PageCgroupAcctLRU remembers whether the
1097	 * LRU-accounting happened against pc->mem_cgroup or
1098	 * root_mem_cgroup.
1099	 */
1100	if (TestClearPageCgroupAcctLRU(pc)) {
1101		VM_BUG_ON(!pc->mem_cgroup);
1102		memcg = pc->mem_cgroup;
1103	} else
1104		memcg = root_mem_cgroup;
1105	mz = page_cgroup_zoneinfo(memcg, page);
1106	/* huge page split is done under lru_lock. so, we have no races. */
1107	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1108}
1109
1110void mem_cgroup_lru_del(struct page *page)
1111{
1112	mem_cgroup_lru_del_list(page, page_lru(page));
1113}
1114
1115/**
1116 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1117 * @zone: zone of the page
1118 * @page: the page
1119 * @from: current lru
1120 * @to: target lru
1121 *
1122 * This function accounts for @page being moved between the lrus @from
1123 * and @to, and returns the lruvec for the given @zone and the memcg
1124 * @page is charged to.
1125 *
1126 * The callsite is then responsible for physically relinking
1127 * @page->lru to the returned lruvec->lists[@to].
1128 */
1129struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1130					 struct page *page,
1131					 enum lru_list from,
1132					 enum lru_list to)
1133{
1134	/* XXX: Optimize this, especially for @from == @to */
1135	mem_cgroup_lru_del_list(page, from);
1136	return mem_cgroup_lru_add_list(zone, page, to);
1137}
1138
1139/*
1140 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1141 * while it's linked to lru because the page may be reused after it's fully
1142 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1143 * It's done under lock_page and expected that zone->lru_lock isnever held.
1144 */
1145static void mem_cgroup_lru_del_before_commit(struct page *page)
1146{
1147	enum lru_list lru;
1148	unsigned long flags;
1149	struct zone *zone = page_zone(page);
1150	struct page_cgroup *pc = lookup_page_cgroup(page);
1151
1152	/*
1153	 * Doing this check without taking ->lru_lock seems wrong but this
1154	 * is safe. Because if page_cgroup's USED bit is unset, the page
1155	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1156	 * set, the commit after this will fail, anyway.
1157	 * This all charge/uncharge is done under some mutual execustion.
1158	 * So, we don't need to taking care of changes in USED bit.
1159	 */
1160	if (likely(!PageLRU(page)))
1161		return;
1162
1163	spin_lock_irqsave(&zone->lru_lock, flags);
1164	lru = page_lru(page);
1165	/*
1166	 * The uncharged page could still be registered to the LRU of
1167	 * the stale pc->mem_cgroup.
1168	 *
1169	 * As pc->mem_cgroup is about to get overwritten, the old LRU
1170	 * accounting needs to be taken care of.  Let root_mem_cgroup
1171	 * babysit the page until the new memcg is responsible for it.
1172	 *
1173	 * The PCG_USED bit is guarded by lock_page() as the page is
1174	 * swapcache/pagecache.
1175	 */
1176	if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
1177		del_page_from_lru_list(zone, page, lru);
1178		add_page_to_lru_list(zone, page, lru);
1179	}
1180	spin_unlock_irqrestore(&zone->lru_lock, flags);
1181}
1182
1183static void mem_cgroup_lru_add_after_commit(struct page *page)
1184{
1185	enum lru_list lru;
1186	unsigned long flags;
1187	struct zone *zone = page_zone(page);
1188	struct page_cgroup *pc = lookup_page_cgroup(page);
1189	/*
1190	 * putback:				charge:
1191	 * SetPageLRU				SetPageCgroupUsed
1192	 * smp_mb				smp_mb
1193	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1194	 *
1195	 * Ensure that one of the two sides adds the page to the memcg
1196	 * LRU during a race.
1197	 */
1198	smp_mb();
1199	/* taking care of that the page is added to LRU while we commit it */
1200	if (likely(!PageLRU(page)))
1201		return;
1202	spin_lock_irqsave(&zone->lru_lock, flags);
1203	lru = page_lru(page);
1204	/*
1205	 * If the page is not on the LRU, someone will soon put it
1206	 * there.  If it is, and also already accounted for on the
1207	 * memcg-side, it must be on the right lruvec as setting
1208	 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
1209	 * Otherwise, root_mem_cgroup has been babysitting the page
1210	 * during the charge.  Move it to the new memcg now.
1211	 */
1212	if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
1213		del_page_from_lru_list(zone, page, lru);
1214		add_page_to_lru_list(zone, page, lru);
1215	}
1216	spin_unlock_irqrestore(&zone->lru_lock, flags);
1217}
1218
1219/*
1220 * Checks whether given mem is same or in the root_mem_cgroup's
1221 * hierarchy subtree
1222 */
1223static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1224		struct mem_cgroup *memcg)
1225{
1226	if (root_memcg != memcg) {
1227		return (root_memcg->use_hierarchy &&
1228			css_is_ancestor(&memcg->css, &root_memcg->css));
1229	}
1230
1231	return true;
1232}
1233
1234int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1235{
1236	int ret;
1237	struct mem_cgroup *curr = NULL;
1238	struct task_struct *p;
1239
1240	p = find_lock_task_mm(task);
1241	if (!p)
1242		return 0;
1243	curr = try_get_mem_cgroup_from_mm(p->mm);
1244	task_unlock(p);
1245	if (!curr)
1246		return 0;
1247	/*
1248	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1249	 * use_hierarchy of "curr" here make this function true if hierarchy is
1250	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1251	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1252	 */
1253	ret = mem_cgroup_same_or_subtree(memcg, curr);
1254	css_put(&curr->css);
1255	return ret;
1256}
1257
1258int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1259{
1260	unsigned long inactive_ratio;
1261	int nid = zone_to_nid(zone);
1262	int zid = zone_idx(zone);
1263	unsigned long inactive;
1264	unsigned long active;
1265	unsigned long gb;
1266
1267	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1268						BIT(LRU_INACTIVE_ANON));
1269	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1270					      BIT(LRU_ACTIVE_ANON));
1271
1272	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1273	if (gb)
1274		inactive_ratio = int_sqrt(10 * gb);
1275	else
1276		inactive_ratio = 1;
1277
1278	return inactive * inactive_ratio < active;
1279}
1280
1281int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1282{
1283	unsigned long active;
1284	unsigned long inactive;
1285	int zid = zone_idx(zone);
1286	int nid = zone_to_nid(zone);
1287
1288	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1289						BIT(LRU_INACTIVE_FILE));
1290	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1291					      BIT(LRU_ACTIVE_FILE));
1292
1293	return (active > inactive);
1294}
1295
1296struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1297						      struct zone *zone)
1298{
1299	int nid = zone_to_nid(zone);
1300	int zid = zone_idx(zone);
1301	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1302
1303	return &mz->reclaim_stat;
1304}
1305
1306struct zone_reclaim_stat *
1307mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1308{
1309	struct page_cgroup *pc;
1310	struct mem_cgroup_per_zone *mz;
1311
1312	if (mem_cgroup_disabled())
1313		return NULL;
1314
1315	pc = lookup_page_cgroup(page);
1316	if (!PageCgroupUsed(pc))
1317		return NULL;
1318	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1319	smp_rmb();
1320	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1321	return &mz->reclaim_stat;
1322}
1323
1324#define mem_cgroup_from_res_counter(counter, member)	\
1325	container_of(counter, struct mem_cgroup, member)
1326
1327/**
1328 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1329 * @mem: the memory cgroup
1330 *
1331 * Returns the maximum amount of memory @mem can be charged with, in
1332 * pages.
1333 */
1334static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1335{
1336	unsigned long long margin;
1337
1338	margin = res_counter_margin(&memcg->res);
1339	if (do_swap_account)
1340		margin = min(margin, res_counter_margin(&memcg->memsw));
1341	return margin >> PAGE_SHIFT;
1342}
1343
1344int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1345{
1346	struct cgroup *cgrp = memcg->css.cgroup;
1347
1348	/* root ? */
1349	if (cgrp->parent == NULL)
1350		return vm_swappiness;
1351
1352	return memcg->swappiness;
1353}
1354
1355static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1356{
1357	int cpu;
1358
1359	get_online_cpus();
1360	spin_lock(&memcg->pcp_counter_lock);
1361	for_each_online_cpu(cpu)
1362		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1363	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1364	spin_unlock(&memcg->pcp_counter_lock);
1365	put_online_cpus();
1366
1367	synchronize_rcu();
1368}
1369
1370static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1371{
1372	int cpu;
1373
1374	if (!memcg)
1375		return;
1376	get_online_cpus();
1377	spin_lock(&memcg->pcp_counter_lock);
1378	for_each_online_cpu(cpu)
1379		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1380	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1381	spin_unlock(&memcg->pcp_counter_lock);
1382	put_online_cpus();
1383}
1384/*
1385 * 2 routines for checking "mem" is under move_account() or not.
1386 *
1387 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1388 *			  for avoiding race in accounting. If true,
1389 *			  pc->mem_cgroup may be overwritten.
1390 *
1391 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1392 *			  under hierarchy of moving cgroups. This is for
1393 *			  waiting at hith-memory prressure caused by "move".
1394 */
1395
1396static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1397{
1398	VM_BUG_ON(!rcu_read_lock_held());
1399	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1400}
1401
1402static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1403{
1404	struct mem_cgroup *from;
1405	struct mem_cgroup *to;
1406	bool ret = false;
1407	/*
1408	 * Unlike task_move routines, we access mc.to, mc.from not under
1409	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1410	 */
1411	spin_lock(&mc.lock);
1412	from = mc.from;
1413	to = mc.to;
1414	if (!from)
1415		goto unlock;
1416
1417	ret = mem_cgroup_same_or_subtree(memcg, from)
1418		|| mem_cgroup_same_or_subtree(memcg, to);
1419unlock:
1420	spin_unlock(&mc.lock);
1421	return ret;
1422}
1423
1424static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1425{
1426	if (mc.moving_task && current != mc.moving_task) {
1427		if (mem_cgroup_under_move(memcg)) {
1428			DEFINE_WAIT(wait);
1429			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1430			/* moving charge context might have finished. */
1431			if (mc.moving_task)
1432				schedule();
1433			finish_wait(&mc.waitq, &wait);
1434			return true;
1435		}
1436	}
1437	return false;
1438}
1439
1440/**
1441 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1442 * @memcg: The memory cgroup that went over limit
1443 * @p: Task that is going to be killed
1444 *
1445 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1446 * enabled
1447 */
1448void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1449{
1450	struct cgroup *task_cgrp;
1451	struct cgroup *mem_cgrp;
1452	/*
1453	 * Need a buffer in BSS, can't rely on allocations. The code relies
1454	 * on the assumption that OOM is serialized for memory controller.
1455	 * If this assumption is broken, revisit this code.
1456	 */
1457	static char memcg_name[PATH_MAX];
1458	int ret;
1459
1460	if (!memcg || !p)
1461		return;
1462
1463
1464	rcu_read_lock();
1465
1466	mem_cgrp = memcg->css.cgroup;
1467	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1468
1469	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1470	if (ret < 0) {
1471		/*
1472		 * Unfortunately, we are unable to convert to a useful name
1473		 * But we'll still print out the usage information
1474		 */
1475		rcu_read_unlock();
1476		goto done;
1477	}
1478	rcu_read_unlock();
1479
1480	printk(KERN_INFO "Task in %s killed", memcg_name);
1481
1482	rcu_read_lock();
1483	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1484	if (ret < 0) {
1485		rcu_read_unlock();
1486		goto done;
1487	}
1488	rcu_read_unlock();
1489
1490	/*
1491	 * Continues from above, so we don't need an KERN_ level
1492	 */
1493	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1494done:
1495
1496	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1497		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1498		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1499		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1500	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1501		"failcnt %llu\n",
1502		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1503		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1504		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1505}
1506
1507/*
1508 * This function returns the number of memcg under hierarchy tree. Returns
1509 * 1(self count) if no children.
1510 */
1511static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1512{
1513	int num = 0;
1514	struct mem_cgroup *iter;
1515
1516	for_each_mem_cgroup_tree(iter, memcg)
1517		num++;
1518	return num;
1519}
1520
1521/*
1522 * Return the memory (and swap, if configured) limit for a memcg.
1523 */
1524u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1525{
1526	u64 limit;
1527	u64 memsw;
1528
1529	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1530	limit += total_swap_pages << PAGE_SHIFT;
1531
1532	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1533	/*
1534	 * If memsw is finite and limits the amount of swap space available
1535	 * to this memcg, return that limit.
1536	 */
1537	return min(limit, memsw);
1538}
1539
1540static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1541					gfp_t gfp_mask,
1542					unsigned long flags)
1543{
1544	unsigned long total = 0;
1545	bool noswap = false;
1546	int loop;
1547
1548	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1549		noswap = true;
1550	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1551		noswap = true;
1552
1553	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1554		if (loop)
1555			drain_all_stock_async(memcg);
1556		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1557		/*
1558		 * Allow limit shrinkers, which are triggered directly
1559		 * by userspace, to catch signals and stop reclaim
1560		 * after minimal progress, regardless of the margin.
1561		 */
1562		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1563			break;
1564		if (mem_cgroup_margin(memcg))
1565			break;
1566		/*
1567		 * If nothing was reclaimed after two attempts, there
1568		 * may be no reclaimable pages in this hierarchy.
1569		 */
1570		if (loop && !total)
1571			break;
1572	}
1573	return total;
1574}
1575
1576/**
1577 * test_mem_cgroup_node_reclaimable
1578 * @mem: the target memcg
1579 * @nid: the node ID to be checked.
1580 * @noswap : specify true here if the user wants flle only information.
1581 *
1582 * This function returns whether the specified memcg contains any
1583 * reclaimable pages on a node. Returns true if there are any reclaimable
1584 * pages in the node.
1585 */
1586static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1587		int nid, bool noswap)
1588{
1589	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1590		return true;
1591	if (noswap || !total_swap_pages)
1592		return false;
1593	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1594		return true;
1595	return false;
1596
1597}
1598#if MAX_NUMNODES > 1
1599
1600/*
1601 * Always updating the nodemask is not very good - even if we have an empty
1602 * list or the wrong list here, we can start from some node and traverse all
1603 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1604 *
1605 */
1606static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1607{
1608	int nid;
1609	/*
1610	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1611	 * pagein/pageout changes since the last update.
1612	 */
1613	if (!atomic_read(&memcg->numainfo_events))
1614		return;
1615	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1616		return;
1617
1618	/* make a nodemask where this memcg uses memory from */
1619	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1620
1621	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1622
1623		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1624			node_clear(nid, memcg->scan_nodes);
1625	}
1626
1627	atomic_set(&memcg->numainfo_events, 0);
1628	atomic_set(&memcg->numainfo_updating, 0);
1629}
1630
1631/*
1632 * Selecting a node where we start reclaim from. Because what we need is just
1633 * reducing usage counter, start from anywhere is O,K. Considering
1634 * memory reclaim from current node, there are pros. and cons.
1635 *
1636 * Freeing memory from current node means freeing memory from a node which
1637 * we'll use or we've used. So, it may make LRU bad. And if several threads
1638 * hit limits, it will see a contention on a node. But freeing from remote
1639 * node means more costs for memory reclaim because of memory latency.
1640 *
1641 * Now, we use round-robin. Better algorithm is welcomed.
1642 */
1643int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1644{
1645	int node;
1646
1647	mem_cgroup_may_update_nodemask(memcg);
1648	node = memcg->last_scanned_node;
1649
1650	node = next_node(node, memcg->scan_nodes);
1651	if (node == MAX_NUMNODES)
1652		node = first_node(memcg->scan_nodes);
1653	/*
1654	 * We call this when we hit limit, not when pages are added to LRU.
1655	 * No LRU may hold pages because all pages are UNEVICTABLE or
1656	 * memcg is too small and all pages are not on LRU. In that case,
1657	 * we use curret node.
1658	 */
1659	if (unlikely(node == MAX_NUMNODES))
1660		node = numa_node_id();
1661
1662	memcg->last_scanned_node = node;
1663	return node;
1664}
1665
1666/*
1667 * Check all nodes whether it contains reclaimable pages or not.
1668 * For quick scan, we make use of scan_nodes. This will allow us to skip
1669 * unused nodes. But scan_nodes is lazily updated and may not cotain
1670 * enough new information. We need to do double check.
1671 */
1672bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673{
1674	int nid;
1675
1676	/*
1677	 * quick check...making use of scan_node.
1678	 * We can skip unused nodes.
1679	 */
1680	if (!nodes_empty(memcg->scan_nodes)) {
1681		for (nid = first_node(memcg->scan_nodes);
1682		     nid < MAX_NUMNODES;
1683		     nid = next_node(nid, memcg->scan_nodes)) {
1684
1685			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1686				return true;
1687		}
1688	}
1689	/*
1690	 * Check rest of nodes.
1691	 */
1692	for_each_node_state(nid, N_HIGH_MEMORY) {
1693		if (node_isset(nid, memcg->scan_nodes))
1694			continue;
1695		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1696			return true;
1697	}
1698	return false;
1699}
1700
1701#else
1702int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1703{
1704	return 0;
1705}
1706
1707bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1708{
1709	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1710}
1711#endif
1712
1713static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714				   struct zone *zone,
1715				   gfp_t gfp_mask,
1716				   unsigned long *total_scanned)
1717{
1718	struct mem_cgroup *victim = NULL;
1719	int total = 0;
1720	int loop = 0;
1721	unsigned long excess;
1722	unsigned long nr_scanned;
1723	struct mem_cgroup_reclaim_cookie reclaim = {
1724		.zone = zone,
1725		.priority = 0,
1726	};
1727
1728	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1729
1730	while (1) {
1731		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1732		if (!victim) {
1733			loop++;
1734			if (loop >= 2) {
1735				/*
1736				 * If we have not been able to reclaim
1737				 * anything, it might because there are
1738				 * no reclaimable pages under this hierarchy
1739				 */
1740				if (!total)
1741					break;
1742				/*
1743				 * We want to do more targeted reclaim.
1744				 * excess >> 2 is not to excessive so as to
1745				 * reclaim too much, nor too less that we keep
1746				 * coming back to reclaim from this cgroup
1747				 */
1748				if (total >= (excess >> 2) ||
1749					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1750					break;
1751			}
1752			continue;
1753		}
1754		if (!mem_cgroup_reclaimable(victim, false))
1755			continue;
1756		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1757						     zone, &nr_scanned);
1758		*total_scanned += nr_scanned;
1759		if (!res_counter_soft_limit_excess(&root_memcg->res))
1760			break;
1761	}
1762	mem_cgroup_iter_break(root_memcg, victim);
1763	return total;
1764}
1765
1766/*
1767 * Check OOM-Killer is already running under our hierarchy.
1768 * If someone is running, return false.
1769 * Has to be called with memcg_oom_lock
1770 */
1771static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1772{
1773	struct mem_cgroup *iter, *failed = NULL;
1774
1775	for_each_mem_cgroup_tree(iter, memcg) {
1776		if (iter->oom_lock) {
1777			/*
1778			 * this subtree of our hierarchy is already locked
1779			 * so we cannot give a lock.
1780			 */
1781			failed = iter;
1782			mem_cgroup_iter_break(memcg, iter);
1783			break;
1784		} else
1785			iter->oom_lock = true;
1786	}
1787
1788	if (!failed)
1789		return true;
1790
1791	/*
1792	 * OK, we failed to lock the whole subtree so we have to clean up
1793	 * what we set up to the failing subtree
1794	 */
1795	for_each_mem_cgroup_tree(iter, memcg) {
1796		if (iter == failed) {
1797			mem_cgroup_iter_break(memcg, iter);
1798			break;
1799		}
1800		iter->oom_lock = false;
1801	}
1802	return false;
1803}
1804
1805/*
1806 * Has to be called with memcg_oom_lock
1807 */
1808static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1809{
1810	struct mem_cgroup *iter;
1811
1812	for_each_mem_cgroup_tree(iter, memcg)
1813		iter->oom_lock = false;
1814	return 0;
1815}
1816
1817static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1818{
1819	struct mem_cgroup *iter;
1820
1821	for_each_mem_cgroup_tree(iter, memcg)
1822		atomic_inc(&iter->under_oom);
1823}
1824
1825static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1826{
1827	struct mem_cgroup *iter;
1828
1829	/*
1830	 * When a new child is created while the hierarchy is under oom,
1831	 * mem_cgroup_oom_lock() may not be called. We have to use
1832	 * atomic_add_unless() here.
1833	 */
1834	for_each_mem_cgroup_tree(iter, memcg)
1835		atomic_add_unless(&iter->under_oom, -1, 0);
1836}
1837
1838static DEFINE_SPINLOCK(memcg_oom_lock);
1839static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1840
1841struct oom_wait_info {
1842	struct mem_cgroup *mem;
1843	wait_queue_t	wait;
1844};
1845
1846static int memcg_oom_wake_function(wait_queue_t *wait,
1847	unsigned mode, int sync, void *arg)
1848{
1849	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1850			  *oom_wait_memcg;
1851	struct oom_wait_info *oom_wait_info;
1852
1853	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1854	oom_wait_memcg = oom_wait_info->mem;
1855
1856	/*
1857	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1858	 * Then we can use css_is_ancestor without taking care of RCU.
1859	 */
1860	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1861		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1862		return 0;
1863	return autoremove_wake_function(wait, mode, sync, arg);
1864}
1865
1866static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1867{
1868	/* for filtering, pass "memcg" as argument. */
1869	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1870}
1871
1872static void memcg_oom_recover(struct mem_cgroup *memcg)
1873{
1874	if (memcg && atomic_read(&memcg->under_oom))
1875		memcg_wakeup_oom(memcg);
1876}
1877
1878/*
1879 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1880 */
1881bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1882{
1883	struct oom_wait_info owait;
1884	bool locked, need_to_kill;
1885
1886	owait.mem = memcg;
1887	owait.wait.flags = 0;
1888	owait.wait.func = memcg_oom_wake_function;
1889	owait.wait.private = current;
1890	INIT_LIST_HEAD(&owait.wait.task_list);
1891	need_to_kill = true;
1892	mem_cgroup_mark_under_oom(memcg);
1893
1894	/* At first, try to OOM lock hierarchy under memcg.*/
1895	spin_lock(&memcg_oom_lock);
1896	locked = mem_cgroup_oom_lock(memcg);
1897	/*
1898	 * Even if signal_pending(), we can't quit charge() loop without
1899	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1900	 * under OOM is always welcomed, use TASK_KILLABLE here.
1901	 */
1902	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1903	if (!locked || memcg->oom_kill_disable)
1904		need_to_kill = false;
1905	if (locked)
1906		mem_cgroup_oom_notify(memcg);
1907	spin_unlock(&memcg_oom_lock);
1908
1909	if (need_to_kill) {
1910		finish_wait(&memcg_oom_waitq, &owait.wait);
1911		mem_cgroup_out_of_memory(memcg, mask);
1912	} else {
1913		schedule();
1914		finish_wait(&memcg_oom_waitq, &owait.wait);
1915	}
1916	spin_lock(&memcg_oom_lock);
1917	if (locked)
1918		mem_cgroup_oom_unlock(memcg);
1919	memcg_wakeup_oom(memcg);
1920	spin_unlock(&memcg_oom_lock);
1921
1922	mem_cgroup_unmark_under_oom(memcg);
1923
1924	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1925		return false;
1926	/* Give chance to dying process */
1927	schedule_timeout_uninterruptible(1);
1928	return true;
1929}
1930
1931/*
1932 * Currently used to update mapped file statistics, but the routine can be
1933 * generalized to update other statistics as well.
1934 *
1935 * Notes: Race condition
1936 *
1937 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1938 * it tends to be costly. But considering some conditions, we doesn't need
1939 * to do so _always_.
1940 *
1941 * Considering "charge", lock_page_cgroup() is not required because all
1942 * file-stat operations happen after a page is attached to radix-tree. There
1943 * are no race with "charge".
1944 *
1945 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1946 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1947 * if there are race with "uncharge". Statistics itself is properly handled
1948 * by flags.
1949 *
1950 * Considering "move", this is an only case we see a race. To make the race
1951 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1952 * possibility of race condition. If there is, we take a lock.
1953 */
1954
1955void mem_cgroup_update_page_stat(struct page *page,
1956				 enum mem_cgroup_page_stat_item idx, int val)
1957{
1958	struct mem_cgroup *memcg;
1959	struct page_cgroup *pc = lookup_page_cgroup(page);
1960	bool need_unlock = false;
1961	unsigned long uninitialized_var(flags);
1962
1963	if (mem_cgroup_disabled())
1964		return;
1965
1966	rcu_read_lock();
1967	memcg = pc->mem_cgroup;
1968	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1969		goto out;
1970	/* pc->mem_cgroup is unstable ? */
1971	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1972		/* take a lock against to access pc->mem_cgroup */
1973		move_lock_page_cgroup(pc, &flags);
1974		need_unlock = true;
1975		memcg = pc->mem_cgroup;
1976		if (!memcg || !PageCgroupUsed(pc))
1977			goto out;
1978	}
1979
1980	switch (idx) {
1981	case MEMCG_NR_FILE_MAPPED:
1982		if (val > 0)
1983			SetPageCgroupFileMapped(pc);
1984		else if (!page_mapped(page))
1985			ClearPageCgroupFileMapped(pc);
1986		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1987		break;
1988	default:
1989		BUG();
1990	}
1991
1992	this_cpu_add(memcg->stat->count[idx], val);
1993
1994out:
1995	if (unlikely(need_unlock))
1996		move_unlock_page_cgroup(pc, &flags);
1997	rcu_read_unlock();
1998	return;
1999}
2000EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2001
2002/*
2003 * size of first charge trial. "32" comes from vmscan.c's magic value.
2004 * TODO: maybe necessary to use big numbers in big irons.
2005 */
2006#define CHARGE_BATCH	32U
2007struct memcg_stock_pcp {
2008	struct mem_cgroup *cached; /* this never be root cgroup */
2009	unsigned int nr_pages;
2010	struct work_struct work;
2011	unsigned long flags;
2012#define FLUSHING_CACHED_CHARGE	(0)
2013};
2014static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2015static DEFINE_MUTEX(percpu_charge_mutex);
2016
2017/*
2018 * Try to consume stocked charge on this cpu. If success, one page is consumed
2019 * from local stock and true is returned. If the stock is 0 or charges from a
2020 * cgroup which is not current target, returns false. This stock will be
2021 * refilled.
2022 */
2023static bool consume_stock(struct mem_cgroup *memcg)
2024{
2025	struct memcg_stock_pcp *stock;
2026	bool ret = true;
2027
2028	stock = &get_cpu_var(memcg_stock);
2029	if (memcg == stock->cached && stock->nr_pages)
2030		stock->nr_pages--;
2031	else /* need to call res_counter_charge */
2032		ret = false;
2033	put_cpu_var(memcg_stock);
2034	return ret;
2035}
2036
2037/*
2038 * Returns stocks cached in percpu to res_counter and reset cached information.
2039 */
2040static void drain_stock(struct memcg_stock_pcp *stock)
2041{
2042	struct mem_cgroup *old = stock->cached;
2043
2044	if (stock->nr_pages) {
2045		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2046
2047		res_counter_uncharge(&old->res, bytes);
2048		if (do_swap_account)
2049			res_counter_uncharge(&old->memsw, bytes);
2050		stock->nr_pages = 0;
2051	}
2052	stock->cached = NULL;
2053}
2054
2055/*
2056 * This must be called under preempt disabled or must be called by
2057 * a thread which is pinned to local cpu.
2058 */
2059static void drain_local_stock(struct work_struct *dummy)
2060{
2061	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2062	drain_stock(stock);
2063	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2064}
2065
2066/*
2067 * Cache charges(val) which is from res_counter, to local per_cpu area.
2068 * This will be consumed by consume_stock() function, later.
2069 */
2070static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2071{
2072	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2073
2074	if (stock->cached != memcg) { /* reset if necessary */
2075		drain_stock(stock);
2076		stock->cached = memcg;
2077	}
2078	stock->nr_pages += nr_pages;
2079	put_cpu_var(memcg_stock);
2080}
2081
2082/*
2083 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2084 * of the hierarchy under it. sync flag says whether we should block
2085 * until the work is done.
2086 */
2087static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2088{
2089	int cpu, curcpu;
2090
2091	/* Notify other cpus that system-wide "drain" is running */
2092	get_online_cpus();
2093	curcpu = get_cpu();
2094	for_each_online_cpu(cpu) {
2095		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2096		struct mem_cgroup *memcg;
2097
2098		memcg = stock->cached;
2099		if (!memcg || !stock->nr_pages)
2100			continue;
2101		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2102			continue;
2103		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2104			if (cpu == curcpu)
2105				drain_local_stock(&stock->work);
2106			else
2107				schedule_work_on(cpu, &stock->work);
2108		}
2109	}
2110	put_cpu();
2111
2112	if (!sync)
2113		goto out;
2114
2115	for_each_online_cpu(cpu) {
2116		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2117		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2118			flush_work(&stock->work);
2119	}
2120out:
2121 	put_online_cpus();
2122}
2123
2124/*
2125 * Tries to drain stocked charges in other cpus. This function is asynchronous
2126 * and just put a work per cpu for draining localy on each cpu. Caller can
2127 * expects some charges will be back to res_counter later but cannot wait for
2128 * it.
2129 */
2130static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2131{
2132	/*
2133	 * If someone calls draining, avoid adding more kworker runs.
2134	 */
2135	if (!mutex_trylock(&percpu_charge_mutex))
2136		return;
2137	drain_all_stock(root_memcg, false);
2138	mutex_unlock(&percpu_charge_mutex);
2139}
2140
2141/* This is a synchronous drain interface. */
2142static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2143{
2144	/* called when force_empty is called */
2145	mutex_lock(&percpu_charge_mutex);
2146	drain_all_stock(root_memcg, true);
2147	mutex_unlock(&percpu_charge_mutex);
2148}
2149
2150/*
2151 * This function drains percpu counter value from DEAD cpu and
2152 * move it to local cpu. Note that this function can be preempted.
2153 */
2154static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2155{
2156	int i;
2157
2158	spin_lock(&memcg->pcp_counter_lock);
2159	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2160		long x = per_cpu(memcg->stat->count[i], cpu);
2161
2162		per_cpu(memcg->stat->count[i], cpu) = 0;
2163		memcg->nocpu_base.count[i] += x;
2164	}
2165	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2166		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2167
2168		per_cpu(memcg->stat->events[i], cpu) = 0;
2169		memcg->nocpu_base.events[i] += x;
2170	}
2171	/* need to clear ON_MOVE value, works as a kind of lock. */
2172	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2173	spin_unlock(&memcg->pcp_counter_lock);
2174}
2175
2176static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2177{
2178	int idx = MEM_CGROUP_ON_MOVE;
2179
2180	spin_lock(&memcg->pcp_counter_lock);
2181	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2182	spin_unlock(&memcg->pcp_counter_lock);
2183}
2184
2185static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2186					unsigned long action,
2187					void *hcpu)
2188{
2189	int cpu = (unsigned long)hcpu;
2190	struct memcg_stock_pcp *stock;
2191	struct mem_cgroup *iter;
2192
2193	if ((action == CPU_ONLINE)) {
2194		for_each_mem_cgroup(iter)
2195			synchronize_mem_cgroup_on_move(iter, cpu);
2196		return NOTIFY_OK;
2197	}
2198
2199	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2200		return NOTIFY_OK;
2201
2202	for_each_mem_cgroup(iter)
2203		mem_cgroup_drain_pcp_counter(iter, cpu);
2204
2205	stock = &per_cpu(memcg_stock, cpu);
2206	drain_stock(stock);
2207	return NOTIFY_OK;
2208}
2209
2210
2211/* See __mem_cgroup_try_charge() for details */
2212enum {
2213	CHARGE_OK,		/* success */
2214	CHARGE_RETRY,		/* need to retry but retry is not bad */
2215	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2216	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2217	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2218};
2219
2220static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2221				unsigned int nr_pages, bool oom_check)
2222{
2223	unsigned long csize = nr_pages * PAGE_SIZE;
2224	struct mem_cgroup *mem_over_limit;
2225	struct res_counter *fail_res;
2226	unsigned long flags = 0;
2227	int ret;
2228
2229	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2230
2231	if (likely(!ret)) {
2232		if (!do_swap_account)
2233			return CHARGE_OK;
2234		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2235		if (likely(!ret))
2236			return CHARGE_OK;
2237
2238		res_counter_uncharge(&memcg->res, csize);
2239		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2240		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2241	} else
2242		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2243	/*
2244	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2245	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2246	 *
2247	 * Never reclaim on behalf of optional batching, retry with a
2248	 * single page instead.
2249	 */
2250	if (nr_pages == CHARGE_BATCH)
2251		return CHARGE_RETRY;
2252
2253	if (!(gfp_mask & __GFP_WAIT))
2254		return CHARGE_WOULDBLOCK;
2255
2256	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2257	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2258		return CHARGE_RETRY;
2259	/*
2260	 * Even though the limit is exceeded at this point, reclaim
2261	 * may have been able to free some pages.  Retry the charge
2262	 * before killing the task.
2263	 *
2264	 * Only for regular pages, though: huge pages are rather
2265	 * unlikely to succeed so close to the limit, and we fall back
2266	 * to regular pages anyway in case of failure.
2267	 */
2268	if (nr_pages == 1 && ret)
2269		return CHARGE_RETRY;
2270
2271	/*
2272	 * At task move, charge accounts can be doubly counted. So, it's
2273	 * better to wait until the end of task_move if something is going on.
2274	 */
2275	if (mem_cgroup_wait_acct_move(mem_over_limit))
2276		return CHARGE_RETRY;
2277
2278	/* If we don't need to call oom-killer at el, return immediately */
2279	if (!oom_check)
2280		return CHARGE_NOMEM;
2281	/* check OOM */
2282	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2283		return CHARGE_OOM_DIE;
2284
2285	return CHARGE_RETRY;
2286}
2287
2288/*
2289 * Unlike exported interface, "oom" parameter is added. if oom==true,
2290 * oom-killer can be invoked.
2291 */
2292static int __mem_cgroup_try_charge(struct mm_struct *mm,
2293				   gfp_t gfp_mask,
2294				   unsigned int nr_pages,
2295				   struct mem_cgroup **ptr,
2296				   bool oom)
2297{
2298	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2299	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2300	struct mem_cgroup *memcg = NULL;
2301	int ret;
2302
2303	/*
2304	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2305	 * in system level. So, allow to go ahead dying process in addition to
2306	 * MEMDIE process.
2307	 */
2308	if (unlikely(test_thread_flag(TIF_MEMDIE)
2309		     || fatal_signal_pending(current)))
2310		goto bypass;
2311
2312	/*
2313	 * We always charge the cgroup the mm_struct belongs to.
2314	 * The mm_struct's mem_cgroup changes on task migration if the
2315	 * thread group leader migrates. It's possible that mm is not
2316	 * set, if so charge the init_mm (happens for pagecache usage).
2317	 */
2318	if (!*ptr && !mm)
2319		goto bypass;
2320again:
2321	if (*ptr) { /* css should be a valid one */
2322		memcg = *ptr;
2323		VM_BUG_ON(css_is_removed(&memcg->css));
2324		if (mem_cgroup_is_root(memcg))
2325			goto done;
2326		if (nr_pages == 1 && consume_stock(memcg))
2327			goto done;
2328		css_get(&memcg->css);
2329	} else {
2330		struct task_struct *p;
2331
2332		rcu_read_lock();
2333		p = rcu_dereference(mm->owner);
2334		/*
2335		 * Because we don't have task_lock(), "p" can exit.
2336		 * In that case, "memcg" can point to root or p can be NULL with
2337		 * race with swapoff. Then, we have small risk of mis-accouning.
2338		 * But such kind of mis-account by race always happens because
2339		 * we don't have cgroup_mutex(). It's overkill and we allo that
2340		 * small race, here.
2341		 * (*) swapoff at el will charge against mm-struct not against
2342		 * task-struct. So, mm->owner can be NULL.
2343		 */
2344		memcg = mem_cgroup_from_task(p);
2345		if (!memcg || mem_cgroup_is_root(memcg)) {
2346			rcu_read_unlock();
2347			goto done;
2348		}
2349		if (nr_pages == 1 && consume_stock(memcg)) {
2350			/*
2351			 * It seems dagerous to access memcg without css_get().
2352			 * But considering how consume_stok works, it's not
2353			 * necessary. If consume_stock success, some charges
2354			 * from this memcg are cached on this cpu. So, we
2355			 * don't need to call css_get()/css_tryget() before
2356			 * calling consume_stock().
2357			 */
2358			rcu_read_unlock();
2359			goto done;
2360		}
2361		/* after here, we may be blocked. we need to get refcnt */
2362		if (!css_tryget(&memcg->css)) {
2363			rcu_read_unlock();
2364			goto again;
2365		}
2366		rcu_read_unlock();
2367	}
2368
2369	do {
2370		bool oom_check;
2371
2372		/* If killed, bypass charge */
2373		if (fatal_signal_pending(current)) {
2374			css_put(&memcg->css);
2375			goto bypass;
2376		}
2377
2378		oom_check = false;
2379		if (oom && !nr_oom_retries) {
2380			oom_check = true;
2381			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382		}
2383
2384		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2385		switch (ret) {
2386		case CHARGE_OK:
2387			break;
2388		case CHARGE_RETRY: /* not in OOM situation but retry */
2389			batch = nr_pages;
2390			css_put(&memcg->css);
2391			memcg = NULL;
2392			goto again;
2393		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2394			css_put(&memcg->css);
2395			goto nomem;
2396		case CHARGE_NOMEM: /* OOM routine works */
2397			if (!oom) {
2398				css_put(&memcg->css);
2399				goto nomem;
2400			}
2401			/* If oom, we never return -ENOMEM */
2402			nr_oom_retries--;
2403			break;
2404		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2405			css_put(&memcg->css);
2406			goto bypass;
2407		}
2408	} while (ret != CHARGE_OK);
2409
2410	if (batch > nr_pages)
2411		refill_stock(memcg, batch - nr_pages);
2412	css_put(&memcg->css);
2413done:
2414	*ptr = memcg;
2415	return 0;
2416nomem:
2417	*ptr = NULL;
2418	return -ENOMEM;
2419bypass:
2420	*ptr = NULL;
2421	return 0;
2422}
2423
2424/*
2425 * Somemtimes we have to undo a charge we got by try_charge().
2426 * This function is for that and do uncharge, put css's refcnt.
2427 * gotten by try_charge().
2428 */
2429static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2430				       unsigned int nr_pages)
2431{
2432	if (!mem_cgroup_is_root(memcg)) {
2433		unsigned long bytes = nr_pages * PAGE_SIZE;
2434
2435		res_counter_uncharge(&memcg->res, bytes);
2436		if (do_swap_account)
2437			res_counter_uncharge(&memcg->memsw, bytes);
2438	}
2439}
2440
2441/*
2442 * A helper function to get mem_cgroup from ID. must be called under
2443 * rcu_read_lock(). The caller must check css_is_removed() or some if
2444 * it's concern. (dropping refcnt from swap can be called against removed
2445 * memcg.)
2446 */
2447static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2448{
2449	struct cgroup_subsys_state *css;
2450
2451	/* ID 0 is unused ID */
2452	if (!id)
2453		return NULL;
2454	css = css_lookup(&mem_cgroup_subsys, id);
2455	if (!css)
2456		return NULL;
2457	return container_of(css, struct mem_cgroup, css);
2458}
2459
2460struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2461{
2462	struct mem_cgroup *memcg = NULL;
2463	struct page_cgroup *pc;
2464	unsigned short id;
2465	swp_entry_t ent;
2466
2467	VM_BUG_ON(!PageLocked(page));
2468
2469	pc = lookup_page_cgroup(page);
2470	lock_page_cgroup(pc);
2471	if (PageCgroupUsed(pc)) {
2472		memcg = pc->mem_cgroup;
2473		if (memcg && !css_tryget(&memcg->css))
2474			memcg = NULL;
2475	} else if (PageSwapCache(page)) {
2476		ent.val = page_private(page);
2477		id = lookup_swap_cgroup_id(ent);
2478		rcu_read_lock();
2479		memcg = mem_cgroup_lookup(id);
2480		if (memcg && !css_tryget(&memcg->css))
2481			memcg = NULL;
2482		rcu_read_unlock();
2483	}
2484	unlock_page_cgroup(pc);
2485	return memcg;
2486}
2487
2488static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2489				       struct page *page,
2490				       unsigned int nr_pages,
2491				       struct page_cgroup *pc,
2492				       enum charge_type ctype)
2493{
2494	lock_page_cgroup(pc);
2495	if (unlikely(PageCgroupUsed(pc))) {
2496		unlock_page_cgroup(pc);
2497		__mem_cgroup_cancel_charge(memcg, nr_pages);
2498		return;
2499	}
2500	/*
2501	 * we don't need page_cgroup_lock about tail pages, becase they are not
2502	 * accessed by any other context at this point.
2503	 */
2504	pc->mem_cgroup = memcg;
2505	/*
2506	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2507	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2508	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2509	 * before USED bit, we need memory barrier here.
2510	 * See mem_cgroup_add_lru_list(), etc.
2511 	 */
2512	smp_wmb();
2513	switch (ctype) {
2514	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2515	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2516		SetPageCgroupCache(pc);
2517		SetPageCgroupUsed(pc);
2518		break;
2519	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2520		ClearPageCgroupCache(pc);
2521		SetPageCgroupUsed(pc);
2522		break;
2523	default:
2524		break;
2525	}
2526
2527	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2528	unlock_page_cgroup(pc);
2529	/*
2530	 * "charge_statistics" updated event counter. Then, check it.
2531	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2532	 * if they exceeds softlimit.
2533	 */
2534	memcg_check_events(memcg, page);
2535}
2536
2537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2538
2539#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2540			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2541/*
2542 * Because tail pages are not marked as "used", set it. We're under
2543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2544 * charge/uncharge will be never happen and move_account() is done under
2545 * compound_lock(), so we don't have to take care of races.
2546 */
2547void mem_cgroup_split_huge_fixup(struct page *head)
2548{
2549	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2550	struct page_cgroup *pc;
2551	int i;
2552
2553	if (mem_cgroup_disabled())
2554		return;
2555	for (i = 1; i < HPAGE_PMD_NR; i++) {
2556		pc = head_pc + i;
2557		pc->mem_cgroup = head_pc->mem_cgroup;
2558		smp_wmb();/* see __commit_charge() */
2559		/*
2560		 * LRU flags cannot be copied because we need to add tail
2561		 * page to LRU by generic call and our hooks will be called.
2562		 */
2563		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2564	}
2565
2566	if (PageCgroupAcctLRU(head_pc)) {
2567		enum lru_list lru;
2568		struct mem_cgroup_per_zone *mz;
2569		/*
2570		 * We hold lru_lock, then, reduce counter directly.
2571		 */
2572		lru = page_lru(head);
2573		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2574		MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2575	}
2576}
2577#endif
2578
2579/**
2580 * mem_cgroup_move_account - move account of the page
2581 * @page: the page
2582 * @nr_pages: number of regular pages (>1 for huge pages)
2583 * @pc:	page_cgroup of the page.
2584 * @from: mem_cgroup which the page is moved from.
2585 * @to:	mem_cgroup which the page is moved to. @from != @to.
2586 * @uncharge: whether we should call uncharge and css_put against @from.
2587 *
2588 * The caller must confirm following.
2589 * - page is not on LRU (isolate_page() is useful.)
2590 * - compound_lock is held when nr_pages > 1
2591 *
2592 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2593 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2594 * true, this function does "uncharge" from old cgroup, but it doesn't if
2595 * @uncharge is false, so a caller should do "uncharge".
2596 */
2597static int mem_cgroup_move_account(struct page *page,
2598				   unsigned int nr_pages,
2599				   struct page_cgroup *pc,
2600				   struct mem_cgroup *from,
2601				   struct mem_cgroup *to,
2602				   bool uncharge)
2603{
2604	unsigned long flags;
2605	int ret;
2606
2607	VM_BUG_ON(from == to);
2608	VM_BUG_ON(PageLRU(page));
2609	/*
2610	 * The page is isolated from LRU. So, collapse function
2611	 * will not handle this page. But page splitting can happen.
2612	 * Do this check under compound_page_lock(). The caller should
2613	 * hold it.
2614	 */
2615	ret = -EBUSY;
2616	if (nr_pages > 1 && !PageTransHuge(page))
2617		goto out;
2618
2619	lock_page_cgroup(pc);
2620
2621	ret = -EINVAL;
2622	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2623		goto unlock;
2624
2625	move_lock_page_cgroup(pc, &flags);
2626
2627	if (PageCgroupFileMapped(pc)) {
2628		/* Update mapped_file data for mem_cgroup */
2629		preempt_disable();
2630		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2631		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2632		preempt_enable();
2633	}
2634	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2635	if (uncharge)
2636		/* This is not "cancel", but cancel_charge does all we need. */
2637		__mem_cgroup_cancel_charge(from, nr_pages);
2638
2639	/* caller should have done css_get */
2640	pc->mem_cgroup = to;
2641	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2642	/*
2643	 * We charges against "to" which may not have any tasks. Then, "to"
2644	 * can be under rmdir(). But in current implementation, caller of
2645	 * this function is just force_empty() and move charge, so it's
2646	 * guaranteed that "to" is never removed. So, we don't check rmdir
2647	 * status here.
2648	 */
2649	move_unlock_page_cgroup(pc, &flags);
2650	ret = 0;
2651unlock:
2652	unlock_page_cgroup(pc);
2653	/*
2654	 * check events
2655	 */
2656	memcg_check_events(to, page);
2657	memcg_check_events(from, page);
2658out:
2659	return ret;
2660}
2661
2662/*
2663 * move charges to its parent.
2664 */
2665
2666static int mem_cgroup_move_parent(struct page *page,
2667				  struct page_cgroup *pc,
2668				  struct mem_cgroup *child,
2669				  gfp_t gfp_mask)
2670{
2671	struct cgroup *cg = child->css.cgroup;
2672	struct cgroup *pcg = cg->parent;
2673	struct mem_cgroup *parent;
2674	unsigned int nr_pages;
2675	unsigned long uninitialized_var(flags);
2676	int ret;
2677
2678	/* Is ROOT ? */
2679	if (!pcg)
2680		return -EINVAL;
2681
2682	ret = -EBUSY;
2683	if (!get_page_unless_zero(page))
2684		goto out;
2685	if (isolate_lru_page(page))
2686		goto put;
2687
2688	nr_pages = hpage_nr_pages(page);
2689
2690	parent = mem_cgroup_from_cont(pcg);
2691	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2692	if (ret || !parent)
2693		goto put_back;
2694
2695	if (nr_pages > 1)
2696		flags = compound_lock_irqsave(page);
2697
2698	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2699	if (ret)
2700		__mem_cgroup_cancel_charge(parent, nr_pages);
2701
2702	if (nr_pages > 1)
2703		compound_unlock_irqrestore(page, flags);
2704put_back:
2705	putback_lru_page(page);
2706put:
2707	put_page(page);
2708out:
2709	return ret;
2710}
2711
2712/*
2713 * Charge the memory controller for page usage.
2714 * Return
2715 * 0 if the charge was successful
2716 * < 0 if the cgroup is over its limit
2717 */
2718static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2719				gfp_t gfp_mask, enum charge_type ctype)
2720{
2721	struct mem_cgroup *memcg = NULL;
2722	unsigned int nr_pages = 1;
2723	struct page_cgroup *pc;
2724	bool oom = true;
2725	int ret;
2726
2727	if (PageTransHuge(page)) {
2728		nr_pages <<= compound_order(page);
2729		VM_BUG_ON(!PageTransHuge(page));
2730		/*
2731		 * Never OOM-kill a process for a huge page.  The
2732		 * fault handler will fall back to regular pages.
2733		 */
2734		oom = false;
2735	}
2736
2737	pc = lookup_page_cgroup(page);
2738	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2739	if (ret || !memcg)
2740		return ret;
2741
2742	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2743	return 0;
2744}
2745
2746int mem_cgroup_newpage_charge(struct page *page,
2747			      struct mm_struct *mm, gfp_t gfp_mask)
2748{
2749	if (mem_cgroup_disabled())
2750		return 0;
2751	VM_BUG_ON(page_mapped(page));
2752	VM_BUG_ON(page->mapping && !PageAnon(page));
2753	VM_BUG_ON(!mm);
2754	return mem_cgroup_charge_common(page, mm, gfp_mask,
2755					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2756}
2757
2758static void
2759__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2760					enum charge_type ctype);
2761
2762static void
2763__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2764					enum charge_type ctype)
2765{
2766	struct page_cgroup *pc = lookup_page_cgroup(page);
2767	/*
2768	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2769	 * is already on LRU. It means the page may on some other page_cgroup's
2770	 * LRU. Take care of it.
2771	 */
2772	mem_cgroup_lru_del_before_commit(page);
2773	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2774	mem_cgroup_lru_add_after_commit(page);
2775	return;
2776}
2777
2778int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2779				gfp_t gfp_mask)
2780{
2781	struct mem_cgroup *memcg = NULL;
2782	int ret;
2783
2784	if (mem_cgroup_disabled())
2785		return 0;
2786	if (PageCompound(page))
2787		return 0;
2788
2789	if (unlikely(!mm))
2790		mm = &init_mm;
2791
2792	if (page_is_file_cache(page)) {
2793		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2794		if (ret || !memcg)
2795			return ret;
2796
2797		/*
2798		 * FUSE reuses pages without going through the final
2799		 * put that would remove them from the LRU list, make
2800		 * sure that they get relinked properly.
2801		 */
2802		__mem_cgroup_commit_charge_lrucare(page, memcg,
2803					MEM_CGROUP_CHARGE_TYPE_CACHE);
2804		return ret;
2805	}
2806	/* shmem */
2807	if (PageSwapCache(page)) {
2808		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2809		if (!ret)
2810			__mem_cgroup_commit_charge_swapin(page, memcg,
2811					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2812	} else
2813		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2814					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2815
2816	return ret;
2817}
2818
2819/*
2820 * While swap-in, try_charge -> commit or cancel, the page is locked.
2821 * And when try_charge() successfully returns, one refcnt to memcg without
2822 * struct page_cgroup is acquired. This refcnt will be consumed by
2823 * "commit()" or removed by "cancel()"
2824 */
2825int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2826				 struct page *page,
2827				 gfp_t mask, struct mem_cgroup **memcgp)
2828{
2829	struct mem_cgroup *memcg;
2830	int ret;
2831
2832	*memcgp = NULL;
2833
2834	if (mem_cgroup_disabled())
2835		return 0;
2836
2837	if (!do_swap_account)
2838		goto charge_cur_mm;
2839	/*
2840	 * A racing thread's fault, or swapoff, may have already updated
2841	 * the pte, and even removed page from swap cache: in those cases
2842	 * do_swap_page()'s pte_same() test will fail; but there's also a
2843	 * KSM case which does need to charge the page.
2844	 */
2845	if (!PageSwapCache(page))
2846		goto charge_cur_mm;
2847	memcg = try_get_mem_cgroup_from_page(page);
2848	if (!memcg)
2849		goto charge_cur_mm;
2850	*memcgp = memcg;
2851	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2852	css_put(&memcg->css);
2853	return ret;
2854charge_cur_mm:
2855	if (unlikely(!mm))
2856		mm = &init_mm;
2857	return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2858}
2859
2860static void
2861__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2862					enum charge_type ctype)
2863{
2864	if (mem_cgroup_disabled())
2865		return;
2866	if (!memcg)
2867		return;
2868	cgroup_exclude_rmdir(&memcg->css);
2869
2870	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2871	/*
2872	 * Now swap is on-memory. This means this page may be
2873	 * counted both as mem and swap....double count.
2874	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2875	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2876	 * may call delete_from_swap_cache() before reach here.
2877	 */
2878	if (do_swap_account && PageSwapCache(page)) {
2879		swp_entry_t ent = {.val = page_private(page)};
2880		struct mem_cgroup *swap_memcg;
2881		unsigned short id;
2882
2883		id = swap_cgroup_record(ent, 0);
2884		rcu_read_lock();
2885		swap_memcg = mem_cgroup_lookup(id);
2886		if (swap_memcg) {
2887			/*
2888			 * This recorded memcg can be obsolete one. So, avoid
2889			 * calling css_tryget
2890			 */
2891			if (!mem_cgroup_is_root(swap_memcg))
2892				res_counter_uncharge(&swap_memcg->memsw,
2893						     PAGE_SIZE);
2894			mem_cgroup_swap_statistics(swap_memcg, false);
2895			mem_cgroup_put(swap_memcg);
2896		}
2897		rcu_read_unlock();
2898	}
2899	/*
2900	 * At swapin, we may charge account against cgroup which has no tasks.
2901	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2902	 * In that case, we need to call pre_destroy() again. check it here.
2903	 */
2904	cgroup_release_and_wakeup_rmdir(&memcg->css);
2905}
2906
2907void mem_cgroup_commit_charge_swapin(struct page *page,
2908				     struct mem_cgroup *memcg)
2909{
2910	__mem_cgroup_commit_charge_swapin(page, memcg,
2911					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2912}
2913
2914void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2915{
2916	if (mem_cgroup_disabled())
2917		return;
2918	if (!memcg)
2919		return;
2920	__mem_cgroup_cancel_charge(memcg, 1);
2921}
2922
2923static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2924				   unsigned int nr_pages,
2925				   const enum charge_type ctype)
2926{
2927	struct memcg_batch_info *batch = NULL;
2928	bool uncharge_memsw = true;
2929
2930	/* If swapout, usage of swap doesn't decrease */
2931	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2932		uncharge_memsw = false;
2933
2934	batch = &current->memcg_batch;
2935	/*
2936	 * In usual, we do css_get() when we remember memcg pointer.
2937	 * But in this case, we keep res->usage until end of a series of
2938	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2939	 */
2940	if (!batch->memcg)
2941		batch->memcg = memcg;
2942	/*
2943	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2944	 * In those cases, all pages freed continuously can be expected to be in
2945	 * the same cgroup and we have chance to coalesce uncharges.
2946	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2947	 * because we want to do uncharge as soon as possible.
2948	 */
2949
2950	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2951		goto direct_uncharge;
2952
2953	if (nr_pages > 1)
2954		goto direct_uncharge;
2955
2956	/*
2957	 * In typical case, batch->memcg == mem. This means we can
2958	 * merge a series of uncharges to an uncharge of res_counter.
2959	 * If not, we uncharge res_counter ony by one.
2960	 */
2961	if (batch->memcg != memcg)
2962		goto direct_uncharge;
2963	/* remember freed charge and uncharge it later */
2964	batch->nr_pages++;
2965	if (uncharge_memsw)
2966		batch->memsw_nr_pages++;
2967	return;
2968direct_uncharge:
2969	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2970	if (uncharge_memsw)
2971		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2972	if (unlikely(batch->memcg != memcg))
2973		memcg_oom_recover(memcg);
2974	return;
2975}
2976
2977/*
2978 * uncharge if !page_mapped(page)
2979 */
2980static struct mem_cgroup *
2981__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2982{
2983	struct mem_cgroup *memcg = NULL;
2984	unsigned int nr_pages = 1;
2985	struct page_cgroup *pc;
2986
2987	if (mem_cgroup_disabled())
2988		return NULL;
2989
2990	if (PageSwapCache(page))
2991		return NULL;
2992
2993	if (PageTransHuge(page)) {
2994		nr_pages <<= compound_order(page);
2995		VM_BUG_ON(!PageTransHuge(page));
2996	}
2997	/*
2998	 * Check if our page_cgroup is valid
2999	 */
3000	pc = lookup_page_cgroup(page);
3001	if (unlikely(!PageCgroupUsed(pc)))
3002		return NULL;
3003
3004	lock_page_cgroup(pc);
3005
3006	memcg = pc->mem_cgroup;
3007
3008	if (!PageCgroupUsed(pc))
3009		goto unlock_out;
3010
3011	switch (ctype) {
3012	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3013	case MEM_CGROUP_CHARGE_TYPE_DROP:
3014		/* See mem_cgroup_prepare_migration() */
3015		if (page_mapped(page) || PageCgroupMigration(pc))
3016			goto unlock_out;
3017		break;
3018	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3019		if (!PageAnon(page)) {	/* Shared memory */
3020			if (page->mapping && !page_is_file_cache(page))
3021				goto unlock_out;
3022		} else if (page_mapped(page)) /* Anon */
3023				goto unlock_out;
3024		break;
3025	default:
3026		break;
3027	}
3028
3029	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3030
3031	ClearPageCgroupUsed(pc);
3032	/*
3033	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3034	 * freed from LRU. This is safe because uncharged page is expected not
3035	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3036	 * special functions.
3037	 */
3038
3039	unlock_page_cgroup(pc);
3040	/*
3041	 * even after unlock, we have memcg->res.usage here and this memcg
3042	 * will never be freed.
3043	 */
3044	memcg_check_events(memcg, page);
3045	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3046		mem_cgroup_swap_statistics(memcg, true);
3047		mem_cgroup_get(memcg);
3048	}
3049	if (!mem_cgroup_is_root(memcg))
3050		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3051
3052	return memcg;
3053
3054unlock_out:
3055	unlock_page_cgroup(pc);
3056	return NULL;
3057}
3058
3059void mem_cgroup_uncharge_page(struct page *page)
3060{
3061	/* early check. */
3062	if (page_mapped(page))
3063		return;
3064	VM_BUG_ON(page->mapping && !PageAnon(page));
3065	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3066}
3067
3068void mem_cgroup_uncharge_cache_page(struct page *page)
3069{
3070	VM_BUG_ON(page_mapped(page));
3071	VM_BUG_ON(page->mapping);
3072	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3073}
3074
3075/*
3076 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3077 * In that cases, pages are freed continuously and we can expect pages
3078 * are in the same memcg. All these calls itself limits the number of
3079 * pages freed at once, then uncharge_start/end() is called properly.
3080 * This may be called prural(2) times in a context,
3081 */
3082
3083void mem_cgroup_uncharge_start(void)
3084{
3085	current->memcg_batch.do_batch++;
3086	/* We can do nest. */
3087	if (current->memcg_batch.do_batch == 1) {
3088		current->memcg_batch.memcg = NULL;
3089		current->memcg_batch.nr_pages = 0;
3090		current->memcg_batch.memsw_nr_pages = 0;
3091	}
3092}
3093
3094void mem_cgroup_uncharge_end(void)
3095{
3096	struct memcg_batch_info *batch = &current->memcg_batch;
3097
3098	if (!batch->do_batch)
3099		return;
3100
3101	batch->do_batch--;
3102	if (batch->do_batch) /* If stacked, do nothing. */
3103		return;
3104
3105	if (!batch->memcg)
3106		return;
3107	/*
3108	 * This "batch->memcg" is valid without any css_get/put etc...
3109	 * bacause we hide charges behind us.
3110	 */
3111	if (batch->nr_pages)
3112		res_counter_uncharge(&batch->memcg->res,
3113				     batch->nr_pages * PAGE_SIZE);
3114	if (batch->memsw_nr_pages)
3115		res_counter_uncharge(&batch->memcg->memsw,
3116				     batch->memsw_nr_pages * PAGE_SIZE);
3117	memcg_oom_recover(batch->memcg);
3118	/* forget this pointer (for sanity check) */
3119	batch->memcg = NULL;
3120}
3121
3122#ifdef CONFIG_SWAP
3123/*
3124 * called after __delete_from_swap_cache() and drop "page" account.
3125 * memcg information is recorded to swap_cgroup of "ent"
3126 */
3127void
3128mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3129{
3130	struct mem_cgroup *memcg;
3131	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3132
3133	if (!swapout) /* this was a swap cache but the swap is unused ! */
3134		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3135
3136	memcg = __mem_cgroup_uncharge_common(page, ctype);
3137
3138	/*
3139	 * record memcg information,  if swapout && memcg != NULL,
3140	 * mem_cgroup_get() was called in uncharge().
3141	 */
3142	if (do_swap_account && swapout && memcg)
3143		swap_cgroup_record(ent, css_id(&memcg->css));
3144}
3145#endif
3146
3147#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3148/*
3149 * called from swap_entry_free(). remove record in swap_cgroup and
3150 * uncharge "memsw" account.
3151 */
3152void mem_cgroup_uncharge_swap(swp_entry_t ent)
3153{
3154	struct mem_cgroup *memcg;
3155	unsigned short id;
3156
3157	if (!do_swap_account)
3158		return;
3159
3160	id = swap_cgroup_record(ent, 0);
3161	rcu_read_lock();
3162	memcg = mem_cgroup_lookup(id);
3163	if (memcg) {
3164		/*
3165		 * We uncharge this because swap is freed.
3166		 * This memcg can be obsolete one. We avoid calling css_tryget
3167		 */
3168		if (!mem_cgroup_is_root(memcg))
3169			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3170		mem_cgroup_swap_statistics(memcg, false);
3171		mem_cgroup_put(memcg);
3172	}
3173	rcu_read_unlock();
3174}
3175
3176/**
3177 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3178 * @entry: swap entry to be moved
3179 * @from:  mem_cgroup which the entry is moved from
3180 * @to:  mem_cgroup which the entry is moved to
3181 * @need_fixup: whether we should fixup res_counters and refcounts.
3182 *
3183 * It succeeds only when the swap_cgroup's record for this entry is the same
3184 * as the mem_cgroup's id of @from.
3185 *
3186 * Returns 0 on success, -EINVAL on failure.
3187 *
3188 * The caller must have charged to @to, IOW, called res_counter_charge() about
3189 * both res and memsw, and called css_get().
3190 */
3191static int mem_cgroup_move_swap_account(swp_entry_t entry,
3192		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3193{
3194	unsigned short old_id, new_id;
3195
3196	old_id = css_id(&from->css);
3197	new_id = css_id(&to->css);
3198
3199	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3200		mem_cgroup_swap_statistics(from, false);
3201		mem_cgroup_swap_statistics(to, true);
3202		/*
3203		 * This function is only called from task migration context now.
3204		 * It postpones res_counter and refcount handling till the end
3205		 * of task migration(mem_cgroup_clear_mc()) for performance
3206		 * improvement. But we cannot postpone mem_cgroup_get(to)
3207		 * because if the process that has been moved to @to does
3208		 * swap-in, the refcount of @to might be decreased to 0.
3209		 */
3210		mem_cgroup_get(to);
3211		if (need_fixup) {
3212			if (!mem_cgroup_is_root(from))
3213				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3214			mem_cgroup_put(from);
3215			/*
3216			 * we charged both to->res and to->memsw, so we should
3217			 * uncharge to->res.
3218			 */
3219			if (!mem_cgroup_is_root(to))
3220				res_counter_uncharge(&to->res, PAGE_SIZE);
3221		}
3222		return 0;
3223	}
3224	return -EINVAL;
3225}
3226#else
3227static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3228		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3229{
3230	return -EINVAL;
3231}
3232#endif
3233
3234/*
3235 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3236 * page belongs to.
3237 */
3238int mem_cgroup_prepare_migration(struct page *page,
3239	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3240{
3241	struct mem_cgroup *memcg = NULL;
3242	struct page_cgroup *pc;
3243	enum charge_type ctype;
3244	int ret = 0;
3245
3246	*memcgp = NULL;
3247
3248	VM_BUG_ON(PageTransHuge(page));
3249	if (mem_cgroup_disabled())
3250		return 0;
3251
3252	pc = lookup_page_cgroup(page);
3253	lock_page_cgroup(pc);
3254	if (PageCgroupUsed(pc)) {
3255		memcg = pc->mem_cgroup;
3256		css_get(&memcg->css);
3257		/*
3258		 * At migrating an anonymous page, its mapcount goes down
3259		 * to 0 and uncharge() will be called. But, even if it's fully
3260		 * unmapped, migration may fail and this page has to be
3261		 * charged again. We set MIGRATION flag here and delay uncharge
3262		 * until end_migration() is called
3263		 *
3264		 * Corner Case Thinking
3265		 * A)
3266		 * When the old page was mapped as Anon and it's unmap-and-freed
3267		 * while migration was ongoing.
3268		 * If unmap finds the old page, uncharge() of it will be delayed
3269		 * until end_migration(). If unmap finds a new page, it's
3270		 * uncharged when it make mapcount to be 1->0. If unmap code
3271		 * finds swap_migration_entry, the new page will not be mapped
3272		 * and end_migration() will find it(mapcount==0).
3273		 *
3274		 * B)
3275		 * When the old page was mapped but migraion fails, the kernel
3276		 * remaps it. A charge for it is kept by MIGRATION flag even
3277		 * if mapcount goes down to 0. We can do remap successfully
3278		 * without charging it again.
3279		 *
3280		 * C)
3281		 * The "old" page is under lock_page() until the end of
3282		 * migration, so, the old page itself will not be swapped-out.
3283		 * If the new page is swapped out before end_migraton, our
3284		 * hook to usual swap-out path will catch the event.
3285		 */
3286		if (PageAnon(page))
3287			SetPageCgroupMigration(pc);
3288	}
3289	unlock_page_cgroup(pc);
3290	/*
3291	 * If the page is not charged at this point,
3292	 * we return here.
3293	 */
3294	if (!memcg)
3295		return 0;
3296
3297	*memcgp = memcg;
3298	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3299	css_put(&memcg->css);/* drop extra refcnt */
3300	if (ret || *memcgp == NULL) {
3301		if (PageAnon(page)) {
3302			lock_page_cgroup(pc);
3303			ClearPageCgroupMigration(pc);
3304			unlock_page_cgroup(pc);
3305			/*
3306			 * The old page may be fully unmapped while we kept it.
3307			 */
3308			mem_cgroup_uncharge_page(page);
3309		}
3310		return -ENOMEM;
3311	}
3312	/*
3313	 * We charge new page before it's used/mapped. So, even if unlock_page()
3314	 * is called before end_migration, we can catch all events on this new
3315	 * page. In the case new page is migrated but not remapped, new page's
3316	 * mapcount will be finally 0 and we call uncharge in end_migration().
3317	 */
3318	pc = lookup_page_cgroup(newpage);
3319	if (PageAnon(page))
3320		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3321	else if (page_is_file_cache(page))
3322		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3323	else
3324		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3325	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3326	return ret;
3327}
3328
3329/* remove redundant charge if migration failed*/
3330void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3331	struct page *oldpage, struct page *newpage, bool migration_ok)
3332{
3333	struct page *used, *unused;
3334	struct page_cgroup *pc;
3335
3336	if (!memcg)
3337		return;
3338	/* blocks rmdir() */
3339	cgroup_exclude_rmdir(&memcg->css);
3340	if (!migration_ok) {
3341		used = oldpage;
3342		unused = newpage;
3343	} else {
3344		used = newpage;
3345		unused = oldpage;
3346	}
3347	/*
3348	 * We disallowed uncharge of pages under migration because mapcount
3349	 * of the page goes down to zero, temporarly.
3350	 * Clear the flag and check the page should be charged.
3351	 */
3352	pc = lookup_page_cgroup(oldpage);
3353	lock_page_cgroup(pc);
3354	ClearPageCgroupMigration(pc);
3355	unlock_page_cgroup(pc);
3356
3357	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3358
3359	/*
3360	 * If a page is a file cache, radix-tree replacement is very atomic
3361	 * and we can skip this check. When it was an Anon page, its mapcount
3362	 * goes down to 0. But because we added MIGRATION flage, it's not
3363	 * uncharged yet. There are several case but page->mapcount check
3364	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3365	 * check. (see prepare_charge() also)
3366	 */
3367	if (PageAnon(used))
3368		mem_cgroup_uncharge_page(used);
3369	/*
3370	 * At migration, we may charge account against cgroup which has no
3371	 * tasks.
3372	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3373	 * In that case, we need to call pre_destroy() again. check it here.
3374	 */
3375	cgroup_release_and_wakeup_rmdir(&memcg->css);
3376}
3377
3378/*
3379 * At replace page cache, newpage is not under any memcg but it's on
3380 * LRU. So, this function doesn't touch res_counter but handles LRU
3381 * in correct way. Both pages are locked so we cannot race with uncharge.
3382 */
3383void mem_cgroup_replace_page_cache(struct page *oldpage,
3384				  struct page *newpage)
3385{
3386	struct mem_cgroup *memcg;
3387	struct page_cgroup *pc;
3388	struct zone *zone;
3389	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3390	unsigned long flags;
3391
3392	if (mem_cgroup_disabled())
3393		return;
3394
3395	pc = lookup_page_cgroup(oldpage);
3396	/* fix accounting on old pages */
3397	lock_page_cgroup(pc);
3398	memcg = pc->mem_cgroup;
3399	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3400	ClearPageCgroupUsed(pc);
3401	unlock_page_cgroup(pc);
3402
3403	if (PageSwapBacked(oldpage))
3404		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3405
3406	zone = page_zone(newpage);
3407	pc = lookup_page_cgroup(newpage);
3408	/*
3409	 * Even if newpage->mapping was NULL before starting replacement,
3410	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3411	 * LRU while we overwrite pc->mem_cgroup.
3412	 */
3413	spin_lock_irqsave(&zone->lru_lock, flags);
3414	if (PageLRU(newpage))
3415		del_page_from_lru_list(zone, newpage, page_lru(newpage));
3416	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3417	if (PageLRU(newpage))
3418		add_page_to_lru_list(zone, newpage, page_lru(newpage));
3419	spin_unlock_irqrestore(&zone->lru_lock, flags);
3420}
3421
3422#ifdef CONFIG_DEBUG_VM
3423static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3424{
3425	struct page_cgroup *pc;
3426
3427	pc = lookup_page_cgroup(page);
3428	/*
3429	 * Can be NULL while feeding pages into the page allocator for
3430	 * the first time, i.e. during boot or memory hotplug;
3431	 * or when mem_cgroup_disabled().
3432	 */
3433	if (likely(pc) && PageCgroupUsed(pc))
3434		return pc;
3435	return NULL;
3436}
3437
3438bool mem_cgroup_bad_page_check(struct page *page)
3439{
3440	if (mem_cgroup_disabled())
3441		return false;
3442
3443	return lookup_page_cgroup_used(page) != NULL;
3444}
3445
3446void mem_cgroup_print_bad_page(struct page *page)
3447{
3448	struct page_cgroup *pc;
3449
3450	pc = lookup_page_cgroup_used(page);
3451	if (pc) {
3452		int ret = -1;
3453		char *path;
3454
3455		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3456		       pc, pc->flags, pc->mem_cgroup);
3457
3458		path = kmalloc(PATH_MAX, GFP_KERNEL);
3459		if (path) {
3460			rcu_read_lock();
3461			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3462							path, PATH_MAX);
3463			rcu_read_unlock();
3464		}
3465
3466		printk(KERN_CONT "(%s)\n",
3467				(ret < 0) ? "cannot get the path" : path);
3468		kfree(path);
3469	}
3470}
3471#endif
3472
3473static DEFINE_MUTEX(set_limit_mutex);
3474
3475static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3476				unsigned long long val)
3477{
3478	int retry_count;
3479	u64 memswlimit, memlimit;
3480	int ret = 0;
3481	int children = mem_cgroup_count_children(memcg);
3482	u64 curusage, oldusage;
3483	int enlarge;
3484
3485	/*
3486	 * For keeping hierarchical_reclaim simple, how long we should retry
3487	 * is depends on callers. We set our retry-count to be function
3488	 * of # of children which we should visit in this loop.
3489	 */
3490	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3491
3492	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3493
3494	enlarge = 0;
3495	while (retry_count) {
3496		if (signal_pending(current)) {
3497			ret = -EINTR;
3498			break;
3499		}
3500		/*
3501		 * Rather than hide all in some function, I do this in
3502		 * open coded manner. You see what this really does.
3503		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3504		 */
3505		mutex_lock(&set_limit_mutex);
3506		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3507		if (memswlimit < val) {
3508			ret = -EINVAL;
3509			mutex_unlock(&set_limit_mutex);
3510			break;
3511		}
3512
3513		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3514		if (memlimit < val)
3515			enlarge = 1;
3516
3517		ret = res_counter_set_limit(&memcg->res, val);
3518		if (!ret) {
3519			if (memswlimit == val)
3520				memcg->memsw_is_minimum = true;
3521			else
3522				memcg->memsw_is_minimum = false;
3523		}
3524		mutex_unlock(&set_limit_mutex);
3525
3526		if (!ret)
3527			break;
3528
3529		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3530				   MEM_CGROUP_RECLAIM_SHRINK);
3531		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3532		/* Usage is reduced ? */
3533  		if (curusage >= oldusage)
3534			retry_count--;
3535		else
3536			oldusage = curusage;
3537	}
3538	if (!ret && enlarge)
3539		memcg_oom_recover(memcg);
3540
3541	return ret;
3542}
3543
3544static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3545					unsigned long long val)
3546{
3547	int retry_count;
3548	u64 memlimit, memswlimit, oldusage, curusage;
3549	int children = mem_cgroup_count_children(memcg);
3550	int ret = -EBUSY;
3551	int enlarge = 0;
3552
3553	/* see mem_cgroup_resize_res_limit */
3554 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3555	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3556	while (retry_count) {
3557		if (signal_pending(current)) {
3558			ret = -EINTR;
3559			break;
3560		}
3561		/*
3562		 * Rather than hide all in some function, I do this in
3563		 * open coded manner. You see what this really does.
3564		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3565		 */
3566		mutex_lock(&set_limit_mutex);
3567		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3568		if (memlimit > val) {
3569			ret = -EINVAL;
3570			mutex_unlock(&set_limit_mutex);
3571			break;
3572		}
3573		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3574		if (memswlimit < val)
3575			enlarge = 1;
3576		ret = res_counter_set_limit(&memcg->memsw, val);
3577		if (!ret) {
3578			if (memlimit == val)
3579				memcg->memsw_is_minimum = true;
3580			else
3581				memcg->memsw_is_minimum = false;
3582		}
3583		mutex_unlock(&set_limit_mutex);
3584
3585		if (!ret)
3586			break;
3587
3588		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3589				   MEM_CGROUP_RECLAIM_NOSWAP |
3590				   MEM_CGROUP_RECLAIM_SHRINK);
3591		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3592		/* Usage is reduced ? */
3593		if (curusage >= oldusage)
3594			retry_count--;
3595		else
3596			oldusage = curusage;
3597	}
3598	if (!ret && enlarge)
3599		memcg_oom_recover(memcg);
3600	return ret;
3601}
3602
3603unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3604					    gfp_t gfp_mask,
3605					    unsigned long *total_scanned)
3606{
3607	unsigned long nr_reclaimed = 0;
3608	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3609	unsigned long reclaimed;
3610	int loop = 0;
3611	struct mem_cgroup_tree_per_zone *mctz;
3612	unsigned long long excess;
3613	unsigned long nr_scanned;
3614
3615	if (order > 0)
3616		return 0;
3617
3618	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3619	/*
3620	 * This loop can run a while, specially if mem_cgroup's continuously
3621	 * keep exceeding their soft limit and putting the system under
3622	 * pressure
3623	 */
3624	do {
3625		if (next_mz)
3626			mz = next_mz;
3627		else
3628			mz = mem_cgroup_largest_soft_limit_node(mctz);
3629		if (!mz)
3630			break;
3631
3632		nr_scanned = 0;
3633		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3634						    gfp_mask, &nr_scanned);
3635		nr_reclaimed += reclaimed;
3636		*total_scanned += nr_scanned;
3637		spin_lock(&mctz->lock);
3638
3639		/*
3640		 * If we failed to reclaim anything from this memory cgroup
3641		 * it is time to move on to the next cgroup
3642		 */
3643		next_mz = NULL;
3644		if (!reclaimed) {
3645			do {
3646				/*
3647				 * Loop until we find yet another one.
3648				 *
3649				 * By the time we get the soft_limit lock
3650				 * again, someone might have aded the
3651				 * group back on the RB tree. Iterate to
3652				 * make sure we get a different mem.
3653				 * mem_cgroup_largest_soft_limit_node returns
3654				 * NULL if no other cgroup is present on
3655				 * the tree
3656				 */
3657				next_mz =
3658				__mem_cgroup_largest_soft_limit_node(mctz);
3659				if (next_mz == mz)
3660					css_put(&next_mz->mem->css);
3661				else /* next_mz == NULL or other memcg */
3662					break;
3663			} while (1);
3664		}
3665		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3666		excess = res_counter_soft_limit_excess(&mz->mem->res);
3667		/*
3668		 * One school of thought says that we should not add
3669		 * back the node to the tree if reclaim returns 0.
3670		 * But our reclaim could return 0, simply because due
3671		 * to priority we are exposing a smaller subset of
3672		 * memory to reclaim from. Consider this as a longer
3673		 * term TODO.
3674		 */
3675		/* If excess == 0, no tree ops */
3676		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3677		spin_unlock(&mctz->lock);
3678		css_put(&mz->mem->css);
3679		loop++;
3680		/*
3681		 * Could not reclaim anything and there are no more
3682		 * mem cgroups to try or we seem to be looping without
3683		 * reclaiming anything.
3684		 */
3685		if (!nr_reclaimed &&
3686			(next_mz == NULL ||
3687			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3688			break;
3689	} while (!nr_reclaimed);
3690	if (next_mz)
3691		css_put(&next_mz->mem->css);
3692	return nr_reclaimed;
3693}
3694
3695/*
3696 * This routine traverse page_cgroup in given list and drop them all.
3697 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3698 */
3699static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3700				int node, int zid, enum lru_list lru)
3701{
3702	struct mem_cgroup_per_zone *mz;
3703	unsigned long flags, loop;
3704	struct list_head *list;
3705	struct page *busy;
3706	struct zone *zone;
3707	int ret = 0;
3708
3709	zone = &NODE_DATA(node)->node_zones[zid];
3710	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3711	list = &mz->lruvec.lists[lru];
3712
3713	loop = MEM_CGROUP_ZSTAT(mz, lru);
3714	/* give some margin against EBUSY etc...*/
3715	loop += 256;
3716	busy = NULL;
3717	while (loop--) {
3718		struct page_cgroup *pc;
3719		struct page *page;
3720
3721		ret = 0;
3722		spin_lock_irqsave(&zone->lru_lock, flags);
3723		if (list_empty(list)) {
3724			spin_unlock_irqrestore(&zone->lru_lock, flags);
3725			break;
3726		}
3727		page = list_entry(list->prev, struct page, lru);
3728		if (busy == page) {
3729			list_move(&page->lru, list);
3730			busy = NULL;
3731			spin_unlock_irqrestore(&zone->lru_lock, flags);
3732			continue;
3733		}
3734		spin_unlock_irqrestore(&zone->lru_lock, flags);
3735
3736		pc = lookup_page_cgroup(page);
3737
3738		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3739		if (ret == -ENOMEM)
3740			break;
3741
3742		if (ret == -EBUSY || ret == -EINVAL) {
3743			/* found lock contention or "pc" is obsolete. */
3744			busy = page;
3745			cond_resched();
3746		} else
3747			busy = NULL;
3748	}
3749
3750	if (!ret && !list_empty(list))
3751		return -EBUSY;
3752	return ret;
3753}
3754
3755/*
3756 * make mem_cgroup's charge to be 0 if there is no task.
3757 * This enables deleting this mem_cgroup.
3758 */
3759static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3760{
3761	int ret;
3762	int node, zid, shrink;
3763	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3764	struct cgroup *cgrp = memcg->css.cgroup;
3765
3766	css_get(&memcg->css);
3767
3768	shrink = 0;
3769	/* should free all ? */
3770	if (free_all)
3771		goto try_to_free;
3772move_account:
3773	do {
3774		ret = -EBUSY;
3775		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3776			goto out;
3777		ret = -EINTR;
3778		if (signal_pending(current))
3779			goto out;
3780		/* This is for making all *used* pages to be on LRU. */
3781		lru_add_drain_all();
3782		drain_all_stock_sync(memcg);
3783		ret = 0;
3784		mem_cgroup_start_move(memcg);
3785		for_each_node_state(node, N_HIGH_MEMORY) {
3786			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3787				enum lru_list l;
3788				for_each_lru(l) {
3789					ret = mem_cgroup_force_empty_list(memcg,
3790							node, zid, l);
3791					if (ret)
3792						break;
3793				}
3794			}
3795			if (ret)
3796				break;
3797		}
3798		mem_cgroup_end_move(memcg);
3799		memcg_oom_recover(memcg);
3800		/* it seems parent cgroup doesn't have enough mem */
3801		if (ret == -ENOMEM)
3802			goto try_to_free;
3803		cond_resched();
3804	/* "ret" should also be checked to ensure all lists are empty. */
3805	} while (memcg->res.usage > 0 || ret);
3806out:
3807	css_put(&memcg->css);
3808	return ret;
3809
3810try_to_free:
3811	/* returns EBUSY if there is a task or if we come here twice. */
3812	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3813		ret = -EBUSY;
3814		goto out;
3815	}
3816	/* we call try-to-free pages for make this cgroup empty */
3817	lru_add_drain_all();
3818	/* try to free all pages in this cgroup */
3819	shrink = 1;
3820	while (nr_retries && memcg->res.usage > 0) {
3821		int progress;
3822
3823		if (signal_pending(current)) {
3824			ret = -EINTR;
3825			goto out;
3826		}
3827		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3828						false);
3829		if (!progress) {
3830			nr_retries--;
3831			/* maybe some writeback is necessary */
3832			congestion_wait(BLK_RW_ASYNC, HZ/10);
3833		}
3834
3835	}
3836	lru_add_drain();
3837	/* try move_account...there may be some *locked* pages. */
3838	goto move_account;
3839}
3840
3841int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3842{
3843	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3844}
3845
3846
3847static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3848{
3849	return mem_cgroup_from_cont(cont)->use_hierarchy;
3850}
3851
3852static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3853					u64 val)
3854{
3855	int retval = 0;
3856	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3857	struct cgroup *parent = cont->parent;
3858	struct mem_cgroup *parent_memcg = NULL;
3859
3860	if (parent)
3861		parent_memcg = mem_cgroup_from_cont(parent);
3862
3863	cgroup_lock();
3864	/*
3865	 * If parent's use_hierarchy is set, we can't make any modifications
3866	 * in the child subtrees. If it is unset, then the change can
3867	 * occur, provided the current cgroup has no children.
3868	 *
3869	 * For the root cgroup, parent_mem is NULL, we allow value to be
3870	 * set if there are no children.
3871	 */
3872	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3873				(val == 1 || val == 0)) {
3874		if (list_empty(&cont->children))
3875			memcg->use_hierarchy = val;
3876		else
3877			retval = -EBUSY;
3878	} else
3879		retval = -EINVAL;
3880	cgroup_unlock();
3881
3882	return retval;
3883}
3884
3885
3886static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3887					       enum mem_cgroup_stat_index idx)
3888{
3889	struct mem_cgroup *iter;
3890	long val = 0;
3891
3892	/* Per-cpu values can be negative, use a signed accumulator */
3893	for_each_mem_cgroup_tree(iter, memcg)
3894		val += mem_cgroup_read_stat(iter, idx);
3895
3896	if (val < 0) /* race ? */
3897		val = 0;
3898	return val;
3899}
3900
3901static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3902{
3903	u64 val;
3904
3905	if (!mem_cgroup_is_root(memcg)) {
3906		if (!swap)
3907			return res_counter_read_u64(&memcg->res, RES_USAGE);
3908		else
3909			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3910	}
3911
3912	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3913	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3914
3915	if (swap)
3916		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3917
3918	return val << PAGE_SHIFT;
3919}
3920
3921static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3922{
3923	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3924	u64 val;
3925	int type, name;
3926
3927	type = MEMFILE_TYPE(cft->private);
3928	name = MEMFILE_ATTR(cft->private);
3929	switch (type) {
3930	case _MEM:
3931		if (name == RES_USAGE)
3932			val = mem_cgroup_usage(memcg, false);
3933		else
3934			val = res_counter_read_u64(&memcg->res, name);
3935		break;
3936	case _MEMSWAP:
3937		if (name == RES_USAGE)
3938			val = mem_cgroup_usage(memcg, true);
3939		else
3940			val = res_counter_read_u64(&memcg->memsw, name);
3941		break;
3942	default:
3943		BUG();
3944		break;
3945	}
3946	return val;
3947}
3948/*
3949 * The user of this function is...
3950 * RES_LIMIT.
3951 */
3952static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3953			    const char *buffer)
3954{
3955	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3956	int type, name;
3957	unsigned long long val;
3958	int ret;
3959
3960	type = MEMFILE_TYPE(cft->private);
3961	name = MEMFILE_ATTR(cft->private);
3962	switch (name) {
3963	case RES_LIMIT:
3964		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3965			ret = -EINVAL;
3966			break;
3967		}
3968		/* This function does all necessary parse...reuse it */
3969		ret = res_counter_memparse_write_strategy(buffer, &val);
3970		if (ret)
3971			break;
3972		if (type == _MEM)
3973			ret = mem_cgroup_resize_limit(memcg, val);
3974		else
3975			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3976		break;
3977	case RES_SOFT_LIMIT:
3978		ret = res_counter_memparse_write_strategy(buffer, &val);
3979		if (ret)
3980			break;
3981		/*
3982		 * For memsw, soft limits are hard to implement in terms
3983		 * of semantics, for now, we support soft limits for
3984		 * control without swap
3985		 */
3986		if (type == _MEM)
3987			ret = res_counter_set_soft_limit(&memcg->res, val);
3988		else
3989			ret = -EINVAL;
3990		break;
3991	default:
3992		ret = -EINVAL; /* should be BUG() ? */
3993		break;
3994	}
3995	return ret;
3996}
3997
3998static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3999		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4000{
4001	struct cgroup *cgroup;
4002	unsigned long long min_limit, min_memsw_limit, tmp;
4003
4004	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4005	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4006	cgroup = memcg->css.cgroup;
4007	if (!memcg->use_hierarchy)
4008		goto out;
4009
4010	while (cgroup->parent) {
4011		cgroup = cgroup->parent;
4012		memcg = mem_cgroup_from_cont(cgroup);
4013		if (!memcg->use_hierarchy)
4014			break;
4015		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4016		min_limit = min(min_limit, tmp);
4017		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4018		min_memsw_limit = min(min_memsw_limit, tmp);
4019	}
4020out:
4021	*mem_limit = min_limit;
4022	*memsw_limit = min_memsw_limit;
4023	return;
4024}
4025
4026static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4027{
4028	struct mem_cgroup *memcg;
4029	int type, name;
4030
4031	memcg = mem_cgroup_from_cont(cont);
4032	type = MEMFILE_TYPE(event);
4033	name = MEMFILE_ATTR(event);
4034	switch (name) {
4035	case RES_MAX_USAGE:
4036		if (type == _MEM)
4037			res_counter_reset_max(&memcg->res);
4038		else
4039			res_counter_reset_max(&memcg->memsw);
4040		break;
4041	case RES_FAILCNT:
4042		if (type == _MEM)
4043			res_counter_reset_failcnt(&memcg->res);
4044		else
4045			res_counter_reset_failcnt(&memcg->memsw);
4046		break;
4047	}
4048
4049	return 0;
4050}
4051
4052static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4053					struct cftype *cft)
4054{
4055	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4056}
4057
4058#ifdef CONFIG_MMU
4059static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4060					struct cftype *cft, u64 val)
4061{
4062	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4063
4064	if (val >= (1 << NR_MOVE_TYPE))
4065		return -EINVAL;
4066	/*
4067	 * We check this value several times in both in can_attach() and
4068	 * attach(), so we need cgroup lock to prevent this value from being
4069	 * inconsistent.
4070	 */
4071	cgroup_lock();
4072	memcg->move_charge_at_immigrate = val;
4073	cgroup_unlock();
4074
4075	return 0;
4076}
4077#else
4078static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4079					struct cftype *cft, u64 val)
4080{
4081	return -ENOSYS;
4082}
4083#endif
4084
4085
4086/* For read statistics */
4087enum {
4088	MCS_CACHE,
4089	MCS_RSS,
4090	MCS_FILE_MAPPED,
4091	MCS_PGPGIN,
4092	MCS_PGPGOUT,
4093	MCS_SWAP,
4094	MCS_PGFAULT,
4095	MCS_PGMAJFAULT,
4096	MCS_INACTIVE_ANON,
4097	MCS_ACTIVE_ANON,
4098	MCS_INACTIVE_FILE,
4099	MCS_ACTIVE_FILE,
4100	MCS_UNEVICTABLE,
4101	NR_MCS_STAT,
4102};
4103
4104struct mcs_total_stat {
4105	s64 stat[NR_MCS_STAT];
4106};
4107
4108struct {
4109	char *local_name;
4110	char *total_name;
4111} memcg_stat_strings[NR_MCS_STAT] = {
4112	{"cache", "total_cache"},
4113	{"rss", "total_rss"},
4114	{"mapped_file", "total_mapped_file"},
4115	{"pgpgin", "total_pgpgin"},
4116	{"pgpgout", "total_pgpgout"},
4117	{"swap", "total_swap"},
4118	{"pgfault", "total_pgfault"},
4119	{"pgmajfault", "total_pgmajfault"},
4120	{"inactive_anon", "total_inactive_anon"},
4121	{"active_anon", "total_active_anon"},
4122	{"inactive_file", "total_inactive_file"},
4123	{"active_file", "total_active_file"},
4124	{"unevictable", "total_unevictable"}
4125};
4126
4127
4128static void
4129mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4130{
4131	s64 val;
4132
4133	/* per cpu stat */
4134	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4135	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4136	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4137	s->stat[MCS_RSS] += val * PAGE_SIZE;
4138	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4139	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4140	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4141	s->stat[MCS_PGPGIN] += val;
4142	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4143	s->stat[MCS_PGPGOUT] += val;
4144	if (do_swap_account) {
4145		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4146		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4147	}
4148	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4149	s->stat[MCS_PGFAULT] += val;
4150	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4151	s->stat[MCS_PGMAJFAULT] += val;
4152
4153	/* per zone stat */
4154	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4155	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4156	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4157	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4158	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4159	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4160	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4161	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4162	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4163	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4164}
4165
4166static void
4167mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4168{
4169	struct mem_cgroup *iter;
4170
4171	for_each_mem_cgroup_tree(iter, memcg)
4172		mem_cgroup_get_local_stat(iter, s);
4173}
4174
4175#ifdef CONFIG_NUMA
4176static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4177{
4178	int nid;
4179	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4180	unsigned long node_nr;
4181	struct cgroup *cont = m->private;
4182	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4183
4184	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4185	seq_printf(m, "total=%lu", total_nr);
4186	for_each_node_state(nid, N_HIGH_MEMORY) {
4187		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4188		seq_printf(m, " N%d=%lu", nid, node_nr);
4189	}
4190	seq_putc(m, '\n');
4191
4192	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4193	seq_printf(m, "file=%lu", file_nr);
4194	for_each_node_state(nid, N_HIGH_MEMORY) {
4195		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4196				LRU_ALL_FILE);
4197		seq_printf(m, " N%d=%lu", nid, node_nr);
4198	}
4199	seq_putc(m, '\n');
4200
4201	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4202	seq_printf(m, "anon=%lu", anon_nr);
4203	for_each_node_state(nid, N_HIGH_MEMORY) {
4204		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4205				LRU_ALL_ANON);
4206		seq_printf(m, " N%d=%lu", nid, node_nr);
4207	}
4208	seq_putc(m, '\n');
4209
4210	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4211	seq_printf(m, "unevictable=%lu", unevictable_nr);
4212	for_each_node_state(nid, N_HIGH_MEMORY) {
4213		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4214				BIT(LRU_UNEVICTABLE));
4215		seq_printf(m, " N%d=%lu", nid, node_nr);
4216	}
4217	seq_putc(m, '\n');
4218	return 0;
4219}
4220#endif /* CONFIG_NUMA */
4221
4222static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4223				 struct cgroup_map_cb *cb)
4224{
4225	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4226	struct mcs_total_stat mystat;
4227	int i;
4228
4229	memset(&mystat, 0, sizeof(mystat));
4230	mem_cgroup_get_local_stat(mem_cont, &mystat);
4231
4232
4233	for (i = 0; i < NR_MCS_STAT; i++) {
4234		if (i == MCS_SWAP && !do_swap_account)
4235			continue;
4236		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4237	}
4238
4239	/* Hierarchical information */
4240	{
4241		unsigned long long limit, memsw_limit;
4242		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4243		cb->fill(cb, "hierarchical_memory_limit", limit);
4244		if (do_swap_account)
4245			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4246	}
4247
4248	memset(&mystat, 0, sizeof(mystat));
4249	mem_cgroup_get_total_stat(mem_cont, &mystat);
4250	for (i = 0; i < NR_MCS_STAT; i++) {
4251		if (i == MCS_SWAP && !do_swap_account)
4252			continue;
4253		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4254	}
4255
4256#ifdef CONFIG_DEBUG_VM
4257	{
4258		int nid, zid;
4259		struct mem_cgroup_per_zone *mz;
4260		unsigned long recent_rotated[2] = {0, 0};
4261		unsigned long recent_scanned[2] = {0, 0};
4262
4263		for_each_online_node(nid)
4264			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4265				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4266
4267				recent_rotated[0] +=
4268					mz->reclaim_stat.recent_rotated[0];
4269				recent_rotated[1] +=
4270					mz->reclaim_stat.recent_rotated[1];
4271				recent_scanned[0] +=
4272					mz->reclaim_stat.recent_scanned[0];
4273				recent_scanned[1] +=
4274					mz->reclaim_stat.recent_scanned[1];
4275			}
4276		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4277		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4278		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4279		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4280	}
4281#endif
4282
4283	return 0;
4284}
4285
4286static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4287{
4288	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4289
4290	return mem_cgroup_swappiness(memcg);
4291}
4292
4293static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4294				       u64 val)
4295{
4296	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4297	struct mem_cgroup *parent;
4298
4299	if (val > 100)
4300		return -EINVAL;
4301
4302	if (cgrp->parent == NULL)
4303		return -EINVAL;
4304
4305	parent = mem_cgroup_from_cont(cgrp->parent);
4306
4307	cgroup_lock();
4308
4309	/* If under hierarchy, only empty-root can set this value */
4310	if ((parent->use_hierarchy) ||
4311	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4312		cgroup_unlock();
4313		return -EINVAL;
4314	}
4315
4316	memcg->swappiness = val;
4317
4318	cgroup_unlock();
4319
4320	return 0;
4321}
4322
4323static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4324{
4325	struct mem_cgroup_threshold_ary *t;
4326	u64 usage;
4327	int i;
4328
4329	rcu_read_lock();
4330	if (!swap)
4331		t = rcu_dereference(memcg->thresholds.primary);
4332	else
4333		t = rcu_dereference(memcg->memsw_thresholds.primary);
4334
4335	if (!t)
4336		goto unlock;
4337
4338	usage = mem_cgroup_usage(memcg, swap);
4339
4340	/*
4341	 * current_threshold points to threshold just below usage.
4342	 * If it's not true, a threshold was crossed after last
4343	 * call of __mem_cgroup_threshold().
4344	 */
4345	i = t->current_threshold;
4346
4347	/*
4348	 * Iterate backward over array of thresholds starting from
4349	 * current_threshold and check if a threshold is crossed.
4350	 * If none of thresholds below usage is crossed, we read
4351	 * only one element of the array here.
4352	 */
4353	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4354		eventfd_signal(t->entries[i].eventfd, 1);
4355
4356	/* i = current_threshold + 1 */
4357	i++;
4358
4359	/*
4360	 * Iterate forward over array of thresholds starting from
4361	 * current_threshold+1 and check if a threshold is crossed.
4362	 * If none of thresholds above usage is crossed, we read
4363	 * only one element of the array here.
4364	 */
4365	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4366		eventfd_signal(t->entries[i].eventfd, 1);
4367
4368	/* Update current_threshold */
4369	t->current_threshold = i - 1;
4370unlock:
4371	rcu_read_unlock();
4372}
4373
4374static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4375{
4376	while (memcg) {
4377		__mem_cgroup_threshold(memcg, false);
4378		if (do_swap_account)
4379			__mem_cgroup_threshold(memcg, true);
4380
4381		memcg = parent_mem_cgroup(memcg);
4382	}
4383}
4384
4385static int compare_thresholds(const void *a, const void *b)
4386{
4387	const struct mem_cgroup_threshold *_a = a;
4388	const struct mem_cgroup_threshold *_b = b;
4389
4390	return _a->threshold - _b->threshold;
4391}
4392
4393static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4394{
4395	struct mem_cgroup_eventfd_list *ev;
4396
4397	list_for_each_entry(ev, &memcg->oom_notify, list)
4398		eventfd_signal(ev->eventfd, 1);
4399	return 0;
4400}
4401
4402static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4403{
4404	struct mem_cgroup *iter;
4405
4406	for_each_mem_cgroup_tree(iter, memcg)
4407		mem_cgroup_oom_notify_cb(iter);
4408}
4409
4410static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4411	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4412{
4413	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4414	struct mem_cgroup_thresholds *thresholds;
4415	struct mem_cgroup_threshold_ary *new;
4416	int type = MEMFILE_TYPE(cft->private);
4417	u64 threshold, usage;
4418	int i, size, ret;
4419
4420	ret = res_counter_memparse_write_strategy(args, &threshold);
4421	if (ret)
4422		return ret;
4423
4424	mutex_lock(&memcg->thresholds_lock);
4425
4426	if (type == _MEM)
4427		thresholds = &memcg->thresholds;
4428	else if (type == _MEMSWAP)
4429		thresholds = &memcg->memsw_thresholds;
4430	else
4431		BUG();
4432
4433	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4434
4435	/* Check if a threshold crossed before adding a new one */
4436	if (thresholds->primary)
4437		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4438
4439	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4440
4441	/* Allocate memory for new array of thresholds */
4442	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4443			GFP_KERNEL);
4444	if (!new) {
4445		ret = -ENOMEM;
4446		goto unlock;
4447	}
4448	new->size = size;
4449
4450	/* Copy thresholds (if any) to new array */
4451	if (thresholds->primary) {
4452		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4453				sizeof(struct mem_cgroup_threshold));
4454	}
4455
4456	/* Add new threshold */
4457	new->entries[size - 1].eventfd = eventfd;
4458	new->entries[size - 1].threshold = threshold;
4459
4460	/* Sort thresholds. Registering of new threshold isn't time-critical */
4461	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4462			compare_thresholds, NULL);
4463
4464	/* Find current threshold */
4465	new->current_threshold = -1;
4466	for (i = 0; i < size; i++) {
4467		if (new->entries[i].threshold < usage) {
4468			/*
4469			 * new->current_threshold will not be used until
4470			 * rcu_assign_pointer(), so it's safe to increment
4471			 * it here.
4472			 */
4473			++new->current_threshold;
4474		}
4475	}
4476
4477	/* Free old spare buffer and save old primary buffer as spare */
4478	kfree(thresholds->spare);
4479	thresholds->spare = thresholds->primary;
4480
4481	rcu_assign_pointer(thresholds->primary, new);
4482
4483	/* To be sure that nobody uses thresholds */
4484	synchronize_rcu();
4485
4486unlock:
4487	mutex_unlock(&memcg->thresholds_lock);
4488
4489	return ret;
4490}
4491
4492static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4493	struct cftype *cft, struct eventfd_ctx *eventfd)
4494{
4495	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4496	struct mem_cgroup_thresholds *thresholds;
4497	struct mem_cgroup_threshold_ary *new;
4498	int type = MEMFILE_TYPE(cft->private);
4499	u64 usage;
4500	int i, j, size;
4501
4502	mutex_lock(&memcg->thresholds_lock);
4503	if (type == _MEM)
4504		thresholds = &memcg->thresholds;
4505	else if (type == _MEMSWAP)
4506		thresholds = &memcg->memsw_thresholds;
4507	else
4508		BUG();
4509
4510	/*
4511	 * Something went wrong if we trying to unregister a threshold
4512	 * if we don't have thresholds
4513	 */
4514	BUG_ON(!thresholds);
4515
4516	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4517
4518	/* Check if a threshold crossed before removing */
4519	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4520
4521	/* Calculate new number of threshold */
4522	size = 0;
4523	for (i = 0; i < thresholds->primary->size; i++) {
4524		if (thresholds->primary->entries[i].eventfd != eventfd)
4525			size++;
4526	}
4527
4528	new = thresholds->spare;
4529
4530	/* Set thresholds array to NULL if we don't have thresholds */
4531	if (!size) {
4532		kfree(new);
4533		new = NULL;
4534		goto swap_buffers;
4535	}
4536
4537	new->size = size;
4538
4539	/* Copy thresholds and find current threshold */
4540	new->current_threshold = -1;
4541	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4542		if (thresholds->primary->entries[i].eventfd == eventfd)
4543			continue;
4544
4545		new->entries[j] = thresholds->primary->entries[i];
4546		if (new->entries[j].threshold < usage) {
4547			/*
4548			 * new->current_threshold will not be used
4549			 * until rcu_assign_pointer(), so it's safe to increment
4550			 * it here.
4551			 */
4552			++new->current_threshold;
4553		}
4554		j++;
4555	}
4556
4557swap_buffers:
4558	/* Swap primary and spare array */
4559	thresholds->spare = thresholds->primary;
4560	rcu_assign_pointer(thresholds->primary, new);
4561
4562	/* To be sure that nobody uses thresholds */
4563	synchronize_rcu();
4564
4565	mutex_unlock(&memcg->thresholds_lock);
4566}
4567
4568static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4569	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4570{
4571	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4572	struct mem_cgroup_eventfd_list *event;
4573	int type = MEMFILE_TYPE(cft->private);
4574
4575	BUG_ON(type != _OOM_TYPE);
4576	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4577	if (!event)
4578		return -ENOMEM;
4579
4580	spin_lock(&memcg_oom_lock);
4581
4582	event->eventfd = eventfd;
4583	list_add(&event->list, &memcg->oom_notify);
4584
4585	/* already in OOM ? */
4586	if (atomic_read(&memcg->under_oom))
4587		eventfd_signal(eventfd, 1);
4588	spin_unlock(&memcg_oom_lock);
4589
4590	return 0;
4591}
4592
4593static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4594	struct cftype *cft, struct eventfd_ctx *eventfd)
4595{
4596	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4597	struct mem_cgroup_eventfd_list *ev, *tmp;
4598	int type = MEMFILE_TYPE(cft->private);
4599
4600	BUG_ON(type != _OOM_TYPE);
4601
4602	spin_lock(&memcg_oom_lock);
4603
4604	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4605		if (ev->eventfd == eventfd) {
4606			list_del(&ev->list);
4607			kfree(ev);
4608		}
4609	}
4610
4611	spin_unlock(&memcg_oom_lock);
4612}
4613
4614static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4615	struct cftype *cft,  struct cgroup_map_cb *cb)
4616{
4617	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4618
4619	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4620
4621	if (atomic_read(&memcg->under_oom))
4622		cb->fill(cb, "under_oom", 1);
4623	else
4624		cb->fill(cb, "under_oom", 0);
4625	return 0;
4626}
4627
4628static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4629	struct cftype *cft, u64 val)
4630{
4631	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4632	struct mem_cgroup *parent;
4633
4634	/* cannot set to root cgroup and only 0 and 1 are allowed */
4635	if (!cgrp->parent || !((val == 0) || (val == 1)))
4636		return -EINVAL;
4637
4638	parent = mem_cgroup_from_cont(cgrp->parent);
4639
4640	cgroup_lock();
4641	/* oom-kill-disable is a flag for subhierarchy. */
4642	if ((parent->use_hierarchy) ||
4643	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4644		cgroup_unlock();
4645		return -EINVAL;
4646	}
4647	memcg->oom_kill_disable = val;
4648	if (!val)
4649		memcg_oom_recover(memcg);
4650	cgroup_unlock();
4651	return 0;
4652}
4653
4654#ifdef CONFIG_NUMA
4655static const struct file_operations mem_control_numa_stat_file_operations = {
4656	.read = seq_read,
4657	.llseek = seq_lseek,
4658	.release = single_release,
4659};
4660
4661static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4662{
4663	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4664
4665	file->f_op = &mem_control_numa_stat_file_operations;
4666	return single_open(file, mem_control_numa_stat_show, cont);
4667}
4668#endif /* CONFIG_NUMA */
4669
4670#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4671static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4672{
4673	/*
4674	 * Part of this would be better living in a separate allocation
4675	 * function, leaving us with just the cgroup tree population work.
4676	 * We, however, depend on state such as network's proto_list that
4677	 * is only initialized after cgroup creation. I found the less
4678	 * cumbersome way to deal with it to defer it all to populate time
4679	 */
4680	return mem_cgroup_sockets_init(cont, ss);
4681};
4682
4683static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4684				struct cgroup *cont)
4685{
4686	mem_cgroup_sockets_destroy(cont, ss);
4687}
4688#else
4689static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4690{
4691	return 0;
4692}
4693
4694static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4695				struct cgroup *cont)
4696{
4697}
4698#endif
4699
4700static struct cftype mem_cgroup_files[] = {
4701	{
4702		.name = "usage_in_bytes",
4703		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4704		.read_u64 = mem_cgroup_read,
4705		.register_event = mem_cgroup_usage_register_event,
4706		.unregister_event = mem_cgroup_usage_unregister_event,
4707	},
4708	{
4709		.name = "max_usage_in_bytes",
4710		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4711		.trigger = mem_cgroup_reset,
4712		.read_u64 = mem_cgroup_read,
4713	},
4714	{
4715		.name = "limit_in_bytes",
4716		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4717		.write_string = mem_cgroup_write,
4718		.read_u64 = mem_cgroup_read,
4719	},
4720	{
4721		.name = "soft_limit_in_bytes",
4722		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4723		.write_string = mem_cgroup_write,
4724		.read_u64 = mem_cgroup_read,
4725	},
4726	{
4727		.name = "failcnt",
4728		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4729		.trigger = mem_cgroup_reset,
4730		.read_u64 = mem_cgroup_read,
4731	},
4732	{
4733		.name = "stat",
4734		.read_map = mem_control_stat_show,
4735	},
4736	{
4737		.name = "force_empty",
4738		.trigger = mem_cgroup_force_empty_write,
4739	},
4740	{
4741		.name = "use_hierarchy",
4742		.write_u64 = mem_cgroup_hierarchy_write,
4743		.read_u64 = mem_cgroup_hierarchy_read,
4744	},
4745	{
4746		.name = "swappiness",
4747		.read_u64 = mem_cgroup_swappiness_read,
4748		.write_u64 = mem_cgroup_swappiness_write,
4749	},
4750	{
4751		.name = "move_charge_at_immigrate",
4752		.read_u64 = mem_cgroup_move_charge_read,
4753		.write_u64 = mem_cgroup_move_charge_write,
4754	},
4755	{
4756		.name = "oom_control",
4757		.read_map = mem_cgroup_oom_control_read,
4758		.write_u64 = mem_cgroup_oom_control_write,
4759		.register_event = mem_cgroup_oom_register_event,
4760		.unregister_event = mem_cgroup_oom_unregister_event,
4761		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4762	},
4763#ifdef CONFIG_NUMA
4764	{
4765		.name = "numa_stat",
4766		.open = mem_control_numa_stat_open,
4767		.mode = S_IRUGO,
4768	},
4769#endif
4770};
4771
4772#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4773static struct cftype memsw_cgroup_files[] = {
4774	{
4775		.name = "memsw.usage_in_bytes",
4776		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4777		.read_u64 = mem_cgroup_read,
4778		.register_event = mem_cgroup_usage_register_event,
4779		.unregister_event = mem_cgroup_usage_unregister_event,
4780	},
4781	{
4782		.name = "memsw.max_usage_in_bytes",
4783		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4784		.trigger = mem_cgroup_reset,
4785		.read_u64 = mem_cgroup_read,
4786	},
4787	{
4788		.name = "memsw.limit_in_bytes",
4789		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4790		.write_string = mem_cgroup_write,
4791		.read_u64 = mem_cgroup_read,
4792	},
4793	{
4794		.name = "memsw.failcnt",
4795		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4796		.trigger = mem_cgroup_reset,
4797		.read_u64 = mem_cgroup_read,
4798	},
4799};
4800
4801static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4802{
4803	if (!do_swap_account)
4804		return 0;
4805	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4806				ARRAY_SIZE(memsw_cgroup_files));
4807};
4808#else
4809static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4810{
4811	return 0;
4812}
4813#endif
4814
4815static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4816{
4817	struct mem_cgroup_per_node *pn;
4818	struct mem_cgroup_per_zone *mz;
4819	enum lru_list l;
4820	int zone, tmp = node;
4821	/*
4822	 * This routine is called against possible nodes.
4823	 * But it's BUG to call kmalloc() against offline node.
4824	 *
4825	 * TODO: this routine can waste much memory for nodes which will
4826	 *       never be onlined. It's better to use memory hotplug callback
4827	 *       function.
4828	 */
4829	if (!node_state(node, N_NORMAL_MEMORY))
4830		tmp = -1;
4831	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4832	if (!pn)
4833		return 1;
4834
4835	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4836		mz = &pn->zoneinfo[zone];
4837		for_each_lru(l)
4838			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4839		mz->usage_in_excess = 0;
4840		mz->on_tree = false;
4841		mz->mem = memcg;
4842	}
4843	memcg->info.nodeinfo[node] = pn;
4844	return 0;
4845}
4846
4847static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4848{
4849	kfree(memcg->info.nodeinfo[node]);
4850}
4851
4852static struct mem_cgroup *mem_cgroup_alloc(void)
4853{
4854	struct mem_cgroup *mem;
4855	int size = sizeof(struct mem_cgroup);
4856
4857	/* Can be very big if MAX_NUMNODES is very big */
4858	if (size < PAGE_SIZE)
4859		mem = kzalloc(size, GFP_KERNEL);
4860	else
4861		mem = vzalloc(size);
4862
4863	if (!mem)
4864		return NULL;
4865
4866	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4867	if (!mem->stat)
4868		goto out_free;
4869	spin_lock_init(&mem->pcp_counter_lock);
4870	return mem;
4871
4872out_free:
4873	if (size < PAGE_SIZE)
4874		kfree(mem);
4875	else
4876		vfree(mem);
4877	return NULL;
4878}
4879
4880/*
4881 * At destroying mem_cgroup, references from swap_cgroup can remain.
4882 * (scanning all at force_empty is too costly...)
4883 *
4884 * Instead of clearing all references at force_empty, we remember
4885 * the number of reference from swap_cgroup and free mem_cgroup when
4886 * it goes down to 0.
4887 *
4888 * Removal of cgroup itself succeeds regardless of refs from swap.
4889 */
4890
4891static void __mem_cgroup_free(struct mem_cgroup *memcg)
4892{
4893	int node;
4894
4895	mem_cgroup_remove_from_trees(memcg);
4896	free_css_id(&mem_cgroup_subsys, &memcg->css);
4897
4898	for_each_node_state(node, N_POSSIBLE)
4899		free_mem_cgroup_per_zone_info(memcg, node);
4900
4901	free_percpu(memcg->stat);
4902	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4903		kfree(memcg);
4904	else
4905		vfree(memcg);
4906}
4907
4908static void mem_cgroup_get(struct mem_cgroup *memcg)
4909{
4910	atomic_inc(&memcg->refcnt);
4911}
4912
4913static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4914{
4915	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4916		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4917		__mem_cgroup_free(memcg);
4918		if (parent)
4919			mem_cgroup_put(parent);
4920	}
4921}
4922
4923static void mem_cgroup_put(struct mem_cgroup *memcg)
4924{
4925	__mem_cgroup_put(memcg, 1);
4926}
4927
4928/*
4929 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4930 */
4931struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4932{
4933	if (!memcg->res.parent)
4934		return NULL;
4935	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4936}
4937EXPORT_SYMBOL(parent_mem_cgroup);
4938
4939#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4940static void __init enable_swap_cgroup(void)
4941{
4942	if (!mem_cgroup_disabled() && really_do_swap_account)
4943		do_swap_account = 1;
4944}
4945#else
4946static void __init enable_swap_cgroup(void)
4947{
4948}
4949#endif
4950
4951static int mem_cgroup_soft_limit_tree_init(void)
4952{
4953	struct mem_cgroup_tree_per_node *rtpn;
4954	struct mem_cgroup_tree_per_zone *rtpz;
4955	int tmp, node, zone;
4956
4957	for_each_node_state(node, N_POSSIBLE) {
4958		tmp = node;
4959		if (!node_state(node, N_NORMAL_MEMORY))
4960			tmp = -1;
4961		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4962		if (!rtpn)
4963			return 1;
4964
4965		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4966
4967		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4968			rtpz = &rtpn->rb_tree_per_zone[zone];
4969			rtpz->rb_root = RB_ROOT;
4970			spin_lock_init(&rtpz->lock);
4971		}
4972	}
4973	return 0;
4974}
4975
4976static struct cgroup_subsys_state * __ref
4977mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4978{
4979	struct mem_cgroup *memcg, *parent;
4980	long error = -ENOMEM;
4981	int node;
4982
4983	memcg = mem_cgroup_alloc();
4984	if (!memcg)
4985		return ERR_PTR(error);
4986
4987	for_each_node_state(node, N_POSSIBLE)
4988		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4989			goto free_out;
4990
4991	/* root ? */
4992	if (cont->parent == NULL) {
4993		int cpu;
4994		enable_swap_cgroup();
4995		parent = NULL;
4996		if (mem_cgroup_soft_limit_tree_init())
4997			goto free_out;
4998		root_mem_cgroup = memcg;
4999		for_each_possible_cpu(cpu) {
5000			struct memcg_stock_pcp *stock =
5001						&per_cpu(memcg_stock, cpu);
5002			INIT_WORK(&stock->work, drain_local_stock);
5003		}
5004		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5005	} else {
5006		parent = mem_cgroup_from_cont(cont->parent);
5007		memcg->use_hierarchy = parent->use_hierarchy;
5008		memcg->oom_kill_disable = parent->oom_kill_disable;
5009	}
5010
5011	if (parent && parent->use_hierarchy) {
5012		res_counter_init(&memcg->res, &parent->res);
5013		res_counter_init(&memcg->memsw, &parent->memsw);
5014		/*
5015		 * We increment refcnt of the parent to ensure that we can
5016		 * safely access it on res_counter_charge/uncharge.
5017		 * This refcnt will be decremented when freeing this
5018		 * mem_cgroup(see mem_cgroup_put).
5019		 */
5020		mem_cgroup_get(parent);
5021	} else {
5022		res_counter_init(&memcg->res, NULL);
5023		res_counter_init(&memcg->memsw, NULL);
5024	}
5025	memcg->last_scanned_node = MAX_NUMNODES;
5026	INIT_LIST_HEAD(&memcg->oom_notify);
5027
5028	if (parent)
5029		memcg->swappiness = mem_cgroup_swappiness(parent);
5030	atomic_set(&memcg->refcnt, 1);
5031	memcg->move_charge_at_immigrate = 0;
5032	mutex_init(&memcg->thresholds_lock);
5033	return &memcg->css;
5034free_out:
5035	__mem_cgroup_free(memcg);
5036	return ERR_PTR(error);
5037}
5038
5039static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5040					struct cgroup *cont)
5041{
5042	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5043
5044	return mem_cgroup_force_empty(memcg, false);
5045}
5046
5047static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5048				struct cgroup *cont)
5049{
5050	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5051
5052	kmem_cgroup_destroy(ss, cont);
5053
5054	mem_cgroup_put(memcg);
5055}
5056
5057static int mem_cgroup_populate(struct cgroup_subsys *ss,
5058				struct cgroup *cont)
5059{
5060	int ret;
5061
5062	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5063				ARRAY_SIZE(mem_cgroup_files));
5064
5065	if (!ret)
5066		ret = register_memsw_files(cont, ss);
5067
5068	if (!ret)
5069		ret = register_kmem_files(cont, ss);
5070
5071	return ret;
5072}
5073
5074#ifdef CONFIG_MMU
5075/* Handlers for move charge at task migration. */
5076#define PRECHARGE_COUNT_AT_ONCE	256
5077static int mem_cgroup_do_precharge(unsigned long count)
5078{
5079	int ret = 0;
5080	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5081	struct mem_cgroup *memcg = mc.to;
5082
5083	if (mem_cgroup_is_root(memcg)) {
5084		mc.precharge += count;
5085		/* we don't need css_get for root */
5086		return ret;
5087	}
5088	/* try to charge at once */
5089	if (count > 1) {
5090		struct res_counter *dummy;
5091		/*
5092		 * "memcg" cannot be under rmdir() because we've already checked
5093		 * by cgroup_lock_live_cgroup() that it is not removed and we
5094		 * are still under the same cgroup_mutex. So we can postpone
5095		 * css_get().
5096		 */
5097		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5098			goto one_by_one;
5099		if (do_swap_account && res_counter_charge(&memcg->memsw,
5100						PAGE_SIZE * count, &dummy)) {
5101			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5102			goto one_by_one;
5103		}
5104		mc.precharge += count;
5105		return ret;
5106	}
5107one_by_one:
5108	/* fall back to one by one charge */
5109	while (count--) {
5110		if (signal_pending(current)) {
5111			ret = -EINTR;
5112			break;
5113		}
5114		if (!batch_count--) {
5115			batch_count = PRECHARGE_COUNT_AT_ONCE;
5116			cond_resched();
5117		}
5118		ret = __mem_cgroup_try_charge(NULL,
5119					GFP_KERNEL, 1, &memcg, false);
5120		if (ret || !memcg)
5121			/* mem_cgroup_clear_mc() will do uncharge later */
5122			return -ENOMEM;
5123		mc.precharge++;
5124	}
5125	return ret;
5126}
5127
5128/**
5129 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5130 * @vma: the vma the pte to be checked belongs
5131 * @addr: the address corresponding to the pte to be checked
5132 * @ptent: the pte to be checked
5133 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5134 *
5135 * Returns
5136 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5137 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5138 *     move charge. if @target is not NULL, the page is stored in target->page
5139 *     with extra refcnt got(Callers should handle it).
5140 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5141 *     target for charge migration. if @target is not NULL, the entry is stored
5142 *     in target->ent.
5143 *
5144 * Called with pte lock held.
5145 */
5146union mc_target {
5147	struct page	*page;
5148	swp_entry_t	ent;
5149};
5150
5151enum mc_target_type {
5152	MC_TARGET_NONE,	/* not used */
5153	MC_TARGET_PAGE,
5154	MC_TARGET_SWAP,
5155};
5156
5157static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5158						unsigned long addr, pte_t ptent)
5159{
5160	struct page *page = vm_normal_page(vma, addr, ptent);
5161
5162	if (!page || !page_mapped(page))
5163		return NULL;
5164	if (PageAnon(page)) {
5165		/* we don't move shared anon */
5166		if (!move_anon() || page_mapcount(page) > 2)
5167			return NULL;
5168	} else if (!move_file())
5169		/* we ignore mapcount for file pages */
5170		return NULL;
5171	if (!get_page_unless_zero(page))
5172		return NULL;
5173
5174	return page;
5175}
5176
5177static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5178			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5179{
5180	int usage_count;
5181	struct page *page = NULL;
5182	swp_entry_t ent = pte_to_swp_entry(ptent);
5183
5184	if (!move_anon() || non_swap_entry(ent))
5185		return NULL;
5186	usage_count = mem_cgroup_count_swap_user(ent, &page);
5187	if (usage_count > 1) { /* we don't move shared anon */
5188		if (page)
5189			put_page(page);
5190		return NULL;
5191	}
5192	if (do_swap_account)
5193		entry->val = ent.val;
5194
5195	return page;
5196}
5197
5198static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5199			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5200{
5201	struct page *page = NULL;
5202	struct inode *inode;
5203	struct address_space *mapping;
5204	pgoff_t pgoff;
5205
5206	if (!vma->vm_file) /* anonymous vma */
5207		return NULL;
5208	if (!move_file())
5209		return NULL;
5210
5211	inode = vma->vm_file->f_path.dentry->d_inode;
5212	mapping = vma->vm_file->f_mapping;
5213	if (pte_none(ptent))
5214		pgoff = linear_page_index(vma, addr);
5215	else /* pte_file(ptent) is true */
5216		pgoff = pte_to_pgoff(ptent);
5217
5218	/* page is moved even if it's not RSS of this task(page-faulted). */
5219	page = find_get_page(mapping, pgoff);
5220
5221#ifdef CONFIG_SWAP
5222	/* shmem/tmpfs may report page out on swap: account for that too. */
5223	if (radix_tree_exceptional_entry(page)) {
5224		swp_entry_t swap = radix_to_swp_entry(page);
5225		if (do_swap_account)
5226			*entry = swap;
5227		page = find_get_page(&swapper_space, swap.val);
5228	}
5229#endif
5230	return page;
5231}
5232
5233static int is_target_pte_for_mc(struct vm_area_struct *vma,
5234		unsigned long addr, pte_t ptent, union mc_target *target)
5235{
5236	struct page *page = NULL;
5237	struct page_cgroup *pc;
5238	int ret = 0;
5239	swp_entry_t ent = { .val = 0 };
5240
5241	if (pte_present(ptent))
5242		page = mc_handle_present_pte(vma, addr, ptent);
5243	else if (is_swap_pte(ptent))
5244		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5245	else if (pte_none(ptent) || pte_file(ptent))
5246		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5247
5248	if (!page && !ent.val)
5249		return 0;
5250	if (page) {
5251		pc = lookup_page_cgroup(page);
5252		/*
5253		 * Do only loose check w/o page_cgroup lock.
5254		 * mem_cgroup_move_account() checks the pc is valid or not under
5255		 * the lock.
5256		 */
5257		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5258			ret = MC_TARGET_PAGE;
5259			if (target)
5260				target->page = page;
5261		}
5262		if (!ret || !target)
5263			put_page(page);
5264	}
5265	/* There is a swap entry and a page doesn't exist or isn't charged */
5266	if (ent.val && !ret &&
5267			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5268		ret = MC_TARGET_SWAP;
5269		if (target)
5270			target->ent = ent;
5271	}
5272	return ret;
5273}
5274
5275static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5276					unsigned long addr, unsigned long end,
5277					struct mm_walk *walk)
5278{
5279	struct vm_area_struct *vma = walk->private;
5280	pte_t *pte;
5281	spinlock_t *ptl;
5282
5283	split_huge_page_pmd(walk->mm, pmd);
5284
5285	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5286	for (; addr != end; pte++, addr += PAGE_SIZE)
5287		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5288			mc.precharge++;	/* increment precharge temporarily */
5289	pte_unmap_unlock(pte - 1, ptl);
5290	cond_resched();
5291
5292	return 0;
5293}
5294
5295static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5296{
5297	unsigned long precharge;
5298	struct vm_area_struct *vma;
5299
5300	down_read(&mm->mmap_sem);
5301	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5302		struct mm_walk mem_cgroup_count_precharge_walk = {
5303			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5304			.mm = mm,
5305			.private = vma,
5306		};
5307		if (is_vm_hugetlb_page(vma))
5308			continue;
5309		walk_page_range(vma->vm_start, vma->vm_end,
5310					&mem_cgroup_count_precharge_walk);
5311	}
5312	up_read(&mm->mmap_sem);
5313
5314	precharge = mc.precharge;
5315	mc.precharge = 0;
5316
5317	return precharge;
5318}
5319
5320static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5321{
5322	unsigned long precharge = mem_cgroup_count_precharge(mm);
5323
5324	VM_BUG_ON(mc.moving_task);
5325	mc.moving_task = current;
5326	return mem_cgroup_do_precharge(precharge);
5327}
5328
5329/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5330static void __mem_cgroup_clear_mc(void)
5331{
5332	struct mem_cgroup *from = mc.from;
5333	struct mem_cgroup *to = mc.to;
5334
5335	/* we must uncharge all the leftover precharges from mc.to */
5336	if (mc.precharge) {
5337		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5338		mc.precharge = 0;
5339	}
5340	/*
5341	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5342	 * we must uncharge here.
5343	 */
5344	if (mc.moved_charge) {
5345		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5346		mc.moved_charge = 0;
5347	}
5348	/* we must fixup refcnts and charges */
5349	if (mc.moved_swap) {
5350		/* uncharge swap account from the old cgroup */
5351		if (!mem_cgroup_is_root(mc.from))
5352			res_counter_uncharge(&mc.from->memsw,
5353						PAGE_SIZE * mc.moved_swap);
5354		__mem_cgroup_put(mc.from, mc.moved_swap);
5355
5356		if (!mem_cgroup_is_root(mc.to)) {
5357			/*
5358			 * we charged both to->res and to->memsw, so we should
5359			 * uncharge to->res.
5360			 */
5361			res_counter_uncharge(&mc.to->res,
5362						PAGE_SIZE * mc.moved_swap);
5363		}
5364		/* we've already done mem_cgroup_get(mc.to) */
5365		mc.moved_swap = 0;
5366	}
5367	memcg_oom_recover(from);
5368	memcg_oom_recover(to);
5369	wake_up_all(&mc.waitq);
5370}
5371
5372static void mem_cgroup_clear_mc(void)
5373{
5374	struct mem_cgroup *from = mc.from;
5375
5376	/*
5377	 * we must clear moving_task before waking up waiters at the end of
5378	 * task migration.
5379	 */
5380	mc.moving_task = NULL;
5381	__mem_cgroup_clear_mc();
5382	spin_lock(&mc.lock);
5383	mc.from = NULL;
5384	mc.to = NULL;
5385	spin_unlock(&mc.lock);
5386	mem_cgroup_end_move(from);
5387}
5388
5389static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5390				struct cgroup *cgroup,
5391				struct cgroup_taskset *tset)
5392{
5393	struct task_struct *p = cgroup_taskset_first(tset);
5394	int ret = 0;
5395	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5396
5397	if (memcg->move_charge_at_immigrate) {
5398		struct mm_struct *mm;
5399		struct mem_cgroup *from = mem_cgroup_from_task(p);
5400
5401		VM_BUG_ON(from == memcg);
5402
5403		mm = get_task_mm(p);
5404		if (!mm)
5405			return 0;
5406		/* We move charges only when we move a owner of the mm */
5407		if (mm->owner == p) {
5408			VM_BUG_ON(mc.from);
5409			VM_BUG_ON(mc.to);
5410			VM_BUG_ON(mc.precharge);
5411			VM_BUG_ON(mc.moved_charge);
5412			VM_BUG_ON(mc.moved_swap);
5413			mem_cgroup_start_move(from);
5414			spin_lock(&mc.lock);
5415			mc.from = from;
5416			mc.to = memcg;
5417			spin_unlock(&mc.lock);
5418			/* We set mc.moving_task later */
5419
5420			ret = mem_cgroup_precharge_mc(mm);
5421			if (ret)
5422				mem_cgroup_clear_mc();
5423		}
5424		mmput(mm);
5425	}
5426	return ret;
5427}
5428
5429static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5430				struct cgroup *cgroup,
5431				struct cgroup_taskset *tset)
5432{
5433	mem_cgroup_clear_mc();
5434}
5435
5436static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5437				unsigned long addr, unsigned long end,
5438				struct mm_walk *walk)
5439{
5440	int ret = 0;
5441	struct vm_area_struct *vma = walk->private;
5442	pte_t *pte;
5443	spinlock_t *ptl;
5444
5445	split_huge_page_pmd(walk->mm, pmd);
5446retry:
5447	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5448	for (; addr != end; addr += PAGE_SIZE) {
5449		pte_t ptent = *(pte++);
5450		union mc_target target;
5451		int type;
5452		struct page *page;
5453		struct page_cgroup *pc;
5454		swp_entry_t ent;
5455
5456		if (!mc.precharge)
5457			break;
5458
5459		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5460		switch (type) {
5461		case MC_TARGET_PAGE:
5462			page = target.page;
5463			if (isolate_lru_page(page))
5464				goto put;
5465			pc = lookup_page_cgroup(page);
5466			if (!mem_cgroup_move_account(page, 1, pc,
5467						     mc.from, mc.to, false)) {
5468				mc.precharge--;
5469				/* we uncharge from mc.from later. */
5470				mc.moved_charge++;
5471			}
5472			putback_lru_page(page);
5473put:			/* is_target_pte_for_mc() gets the page */
5474			put_page(page);
5475			break;
5476		case MC_TARGET_SWAP:
5477			ent = target.ent;
5478			if (!mem_cgroup_move_swap_account(ent,
5479						mc.from, mc.to, false)) {
5480				mc.precharge--;
5481				/* we fixup refcnts and charges later. */
5482				mc.moved_swap++;
5483			}
5484			break;
5485		default:
5486			break;
5487		}
5488	}
5489	pte_unmap_unlock(pte - 1, ptl);
5490	cond_resched();
5491
5492	if (addr != end) {
5493		/*
5494		 * We have consumed all precharges we got in can_attach().
5495		 * We try charge one by one, but don't do any additional
5496		 * charges to mc.to if we have failed in charge once in attach()
5497		 * phase.
5498		 */
5499		ret = mem_cgroup_do_precharge(1);
5500		if (!ret)
5501			goto retry;
5502	}
5503
5504	return ret;
5505}
5506
5507static void mem_cgroup_move_charge(struct mm_struct *mm)
5508{
5509	struct vm_area_struct *vma;
5510
5511	lru_add_drain_all();
5512retry:
5513	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5514		/*
5515		 * Someone who are holding the mmap_sem might be waiting in
5516		 * waitq. So we cancel all extra charges, wake up all waiters,
5517		 * and retry. Because we cancel precharges, we might not be able
5518		 * to move enough charges, but moving charge is a best-effort
5519		 * feature anyway, so it wouldn't be a big problem.
5520		 */
5521		__mem_cgroup_clear_mc();
5522		cond_resched();
5523		goto retry;
5524	}
5525	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5526		int ret;
5527		struct mm_walk mem_cgroup_move_charge_walk = {
5528			.pmd_entry = mem_cgroup_move_charge_pte_range,
5529			.mm = mm,
5530			.private = vma,
5531		};
5532		if (is_vm_hugetlb_page(vma))
5533			continue;
5534		ret = walk_page_range(vma->vm_start, vma->vm_end,
5535						&mem_cgroup_move_charge_walk);
5536		if (ret)
5537			/*
5538			 * means we have consumed all precharges and failed in
5539			 * doing additional charge. Just abandon here.
5540			 */
5541			break;
5542	}
5543	up_read(&mm->mmap_sem);
5544}
5545
5546static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5547				struct cgroup *cont,
5548				struct cgroup_taskset *tset)
5549{
5550	struct task_struct *p = cgroup_taskset_first(tset);
5551	struct mm_struct *mm = get_task_mm(p);
5552
5553	if (mm) {
5554		if (mc.to)
5555			mem_cgroup_move_charge(mm);
5556		put_swap_token(mm);
5557		mmput(mm);
5558	}
5559	if (mc.to)
5560		mem_cgroup_clear_mc();
5561}
5562#else	/* !CONFIG_MMU */
5563static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5564				struct cgroup *cgroup,
5565				struct cgroup_taskset *tset)
5566{
5567	return 0;
5568}
5569static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5570				struct cgroup *cgroup,
5571				struct cgroup_taskset *tset)
5572{
5573}
5574static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5575				struct cgroup *cont,
5576				struct cgroup_taskset *tset)
5577{
5578}
5579#endif
5580
5581struct cgroup_subsys mem_cgroup_subsys = {
5582	.name = "memory",
5583	.subsys_id = mem_cgroup_subsys_id,
5584	.create = mem_cgroup_create,
5585	.pre_destroy = mem_cgroup_pre_destroy,
5586	.destroy = mem_cgroup_destroy,
5587	.populate = mem_cgroup_populate,
5588	.can_attach = mem_cgroup_can_attach,
5589	.cancel_attach = mem_cgroup_cancel_attach,
5590	.attach = mem_cgroup_move_task,
5591	.early_init = 0,
5592	.use_id = 1,
5593};
5594
5595#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5596static int __init enable_swap_account(char *s)
5597{
5598	/* consider enabled if no parameter or 1 is given */
5599	if (!strcmp(s, "1"))
5600		really_do_swap_account = 1;
5601	else if (!strcmp(s, "0"))
5602		really_do_swap_account = 0;
5603	return 1;
5604}
5605__setup("swapaccount=", enable_swap_account);
5606
5607#endif
5608