memcontrol.c revision aa20d489ceb024f91aae084ee00c47fc6a12255c
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/limits.h>
31#include <linux/mutex.h>
32#include <linux/rbtree.h>
33#include <linux/slab.h>
34#include <linux/swap.h>
35#include <linux/spinlock.h>
36#include <linux/fs.h>
37#include <linux/seq_file.h>
38#include <linux/vmalloc.h>
39#include <linux/mm_inline.h>
40#include <linux/page_cgroup.h>
41#include <linux/cpu.h>
42#include "internal.h"
43
44#include <asm/uaccess.h>
45
46struct cgroup_subsys mem_cgroup_subsys __read_mostly;
47#define MEM_CGROUP_RECLAIM_RETRIES	5
48struct mem_cgroup *root_mem_cgroup __read_mostly;
49
50#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
51/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
52int do_swap_account __read_mostly;
53static int really_do_swap_account __initdata = 1; /* for remember boot option*/
54#else
55#define do_swap_account		(0)
56#endif
57
58#define SOFTLIMIT_EVENTS_THRESH (1000)
59
60/*
61 * Statistics for memory cgroup.
62 */
63enum mem_cgroup_stat_index {
64	/*
65	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66	 */
67	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
69	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
70	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
71	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74
75	MEM_CGROUP_STAT_NSTATS,
76};
77
78struct mem_cgroup_stat_cpu {
79	s64 count[MEM_CGROUP_STAT_NSTATS];
80} ____cacheline_aligned_in_smp;
81
82struct mem_cgroup_stat {
83	struct mem_cgroup_stat_cpu cpustat[0];
84};
85
86static inline void
87__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
88				enum mem_cgroup_stat_index idx)
89{
90	stat->count[idx] = 0;
91}
92
93static inline s64
94__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
95				enum mem_cgroup_stat_index idx)
96{
97	return stat->count[idx];
98}
99
100/*
101 * For accounting under irq disable, no need for increment preempt count.
102 */
103static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104		enum mem_cgroup_stat_index idx, int val)
105{
106	stat->count[idx] += val;
107}
108
109static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
110		enum mem_cgroup_stat_index idx)
111{
112	int cpu;
113	s64 ret = 0;
114	for_each_possible_cpu(cpu)
115		ret += stat->cpustat[cpu].count[idx];
116	return ret;
117}
118
119static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
120{
121	s64 ret;
122
123	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
124	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
125	return ret;
126}
127
128/*
129 * per-zone information in memory controller.
130 */
131struct mem_cgroup_per_zone {
132	/*
133	 * spin_lock to protect the per cgroup LRU
134	 */
135	struct list_head	lists[NR_LRU_LISTS];
136	unsigned long		count[NR_LRU_LISTS];
137
138	struct zone_reclaim_stat reclaim_stat;
139	struct rb_node		tree_node;	/* RB tree node */
140	unsigned long long	usage_in_excess;/* Set to the value by which */
141						/* the soft limit is exceeded*/
142	bool			on_tree;
143	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
144						/* use container_of	   */
145};
146/* Macro for accessing counter */
147#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
148
149struct mem_cgroup_per_node {
150	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151};
152
153struct mem_cgroup_lru_info {
154	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155};
156
157/*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162struct mem_cgroup_tree_per_zone {
163	struct rb_root rb_root;
164	spinlock_t lock;
165};
166
167struct mem_cgroup_tree_per_node {
168	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169};
170
171struct mem_cgroup_tree {
172	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173};
174
175static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
177/*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 *
183 * TODO: Add a water mark for the memory controller. Reclaim will begin when
184 * we hit the water mark. May be even add a low water mark, such that
185 * no reclaim occurs from a cgroup at it's low water mark, this is
186 * a feature that will be implemented much later in the future.
187 */
188struct mem_cgroup {
189	struct cgroup_subsys_state css;
190	/*
191	 * the counter to account for memory usage
192	 */
193	struct res_counter res;
194	/*
195	 * the counter to account for mem+swap usage.
196	 */
197	struct res_counter memsw;
198	/*
199	 * Per cgroup active and inactive list, similar to the
200	 * per zone LRU lists.
201	 */
202	struct mem_cgroup_lru_info info;
203
204	/*
205	  protect against reclaim related member.
206	*/
207	spinlock_t reclaim_param_lock;
208
209	int	prev_priority;	/* for recording reclaim priority */
210
211	/*
212	 * While reclaiming in a hierarchy, we cache the last child we
213	 * reclaimed from.
214	 */
215	int last_scanned_child;
216	/*
217	 * Should the accounting and control be hierarchical, per subtree?
218	 */
219	bool use_hierarchy;
220	unsigned long	last_oom_jiffies;
221	atomic_t	refcnt;
222
223	unsigned int	swappiness;
224
225	/* set when res.limit == memsw.limit */
226	bool		memsw_is_minimum;
227
228	/*
229	 * statistics. This must be placed at the end of memcg.
230	 */
231	struct mem_cgroup_stat stat;
232};
233
234/*
235 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
236 * limit reclaim to prevent infinite loops, if they ever occur.
237 */
238#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
239#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
240
241enum charge_type {
242	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
243	MEM_CGROUP_CHARGE_TYPE_MAPPED,
244	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
245	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
246	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
247	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
248	NR_CHARGE_TYPE,
249};
250
251/* only for here (for easy reading.) */
252#define PCGF_CACHE	(1UL << PCG_CACHE)
253#define PCGF_USED	(1UL << PCG_USED)
254#define PCGF_LOCK	(1UL << PCG_LOCK)
255/* Not used, but added here for completeness */
256#define PCGF_ACCT	(1UL << PCG_ACCT)
257
258/* for encoding cft->private value on file */
259#define _MEM			(0)
260#define _MEMSWAP		(1)
261#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
262#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
263#define MEMFILE_ATTR(val)	((val) & 0xffff)
264
265/*
266 * Reclaim flags for mem_cgroup_hierarchical_reclaim
267 */
268#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
269#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
270#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
271#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
273#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274
275static void mem_cgroup_get(struct mem_cgroup *mem);
276static void mem_cgroup_put(struct mem_cgroup *mem);
277static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278static void drain_all_stock_async(void);
279
280static struct mem_cgroup_per_zone *
281mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
282{
283	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
284}
285
286static struct mem_cgroup_per_zone *
287page_cgroup_zoneinfo(struct page_cgroup *pc)
288{
289	struct mem_cgroup *mem = pc->mem_cgroup;
290	int nid = page_cgroup_nid(pc);
291	int zid = page_cgroup_zid(pc);
292
293	if (!mem)
294		return NULL;
295
296	return mem_cgroup_zoneinfo(mem, nid, zid);
297}
298
299static struct mem_cgroup_tree_per_zone *
300soft_limit_tree_node_zone(int nid, int zid)
301{
302	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
303}
304
305static struct mem_cgroup_tree_per_zone *
306soft_limit_tree_from_page(struct page *page)
307{
308	int nid = page_to_nid(page);
309	int zid = page_zonenum(page);
310
311	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
312}
313
314static void
315__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
316				struct mem_cgroup_per_zone *mz,
317				struct mem_cgroup_tree_per_zone *mctz,
318				unsigned long long new_usage_in_excess)
319{
320	struct rb_node **p = &mctz->rb_root.rb_node;
321	struct rb_node *parent = NULL;
322	struct mem_cgroup_per_zone *mz_node;
323
324	if (mz->on_tree)
325		return;
326
327	mz->usage_in_excess = new_usage_in_excess;
328	if (!mz->usage_in_excess)
329		return;
330	while (*p) {
331		parent = *p;
332		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
333					tree_node);
334		if (mz->usage_in_excess < mz_node->usage_in_excess)
335			p = &(*p)->rb_left;
336		/*
337		 * We can't avoid mem cgroups that are over their soft
338		 * limit by the same amount
339		 */
340		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
341			p = &(*p)->rb_right;
342	}
343	rb_link_node(&mz->tree_node, parent, p);
344	rb_insert_color(&mz->tree_node, &mctz->rb_root);
345	mz->on_tree = true;
346}
347
348static void
349__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
350				struct mem_cgroup_per_zone *mz,
351				struct mem_cgroup_tree_per_zone *mctz)
352{
353	if (!mz->on_tree)
354		return;
355	rb_erase(&mz->tree_node, &mctz->rb_root);
356	mz->on_tree = false;
357}
358
359static void
360mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
361				struct mem_cgroup_per_zone *mz,
362				struct mem_cgroup_tree_per_zone *mctz)
363{
364	spin_lock(&mctz->lock);
365	__mem_cgroup_remove_exceeded(mem, mz, mctz);
366	spin_unlock(&mctz->lock);
367}
368
369static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
370{
371	bool ret = false;
372	int cpu;
373	s64 val;
374	struct mem_cgroup_stat_cpu *cpustat;
375
376	cpu = get_cpu();
377	cpustat = &mem->stat.cpustat[cpu];
378	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
379	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
380		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
381		ret = true;
382	}
383	put_cpu();
384	return ret;
385}
386
387static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
388{
389	unsigned long long excess;
390	struct mem_cgroup_per_zone *mz;
391	struct mem_cgroup_tree_per_zone *mctz;
392	int nid = page_to_nid(page);
393	int zid = page_zonenum(page);
394	mctz = soft_limit_tree_from_page(page);
395
396	/*
397	 * Necessary to update all ancestors when hierarchy is used.
398	 * because their event counter is not touched.
399	 */
400	for (; mem; mem = parent_mem_cgroup(mem)) {
401		mz = mem_cgroup_zoneinfo(mem, nid, zid);
402		excess = res_counter_soft_limit_excess(&mem->res);
403		/*
404		 * We have to update the tree if mz is on RB-tree or
405		 * mem is over its softlimit.
406		 */
407		if (excess || mz->on_tree) {
408			spin_lock(&mctz->lock);
409			/* if on-tree, remove it */
410			if (mz->on_tree)
411				__mem_cgroup_remove_exceeded(mem, mz, mctz);
412			/*
413			 * Insert again. mz->usage_in_excess will be updated.
414			 * If excess is 0, no tree ops.
415			 */
416			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
417			spin_unlock(&mctz->lock);
418		}
419	}
420}
421
422static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
423{
424	int node, zone;
425	struct mem_cgroup_per_zone *mz;
426	struct mem_cgroup_tree_per_zone *mctz;
427
428	for_each_node_state(node, N_POSSIBLE) {
429		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
430			mz = mem_cgroup_zoneinfo(mem, node, zone);
431			mctz = soft_limit_tree_node_zone(node, zone);
432			mem_cgroup_remove_exceeded(mem, mz, mctz);
433		}
434	}
435}
436
437static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
438{
439	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
440}
441
442static struct mem_cgroup_per_zone *
443__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
444{
445	struct rb_node *rightmost = NULL;
446	struct mem_cgroup_per_zone *mz;
447
448retry:
449	mz = NULL;
450	rightmost = rb_last(&mctz->rb_root);
451	if (!rightmost)
452		goto done;		/* Nothing to reclaim from */
453
454	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
455	/*
456	 * Remove the node now but someone else can add it back,
457	 * we will to add it back at the end of reclaim to its correct
458	 * position in the tree.
459	 */
460	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
461	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
462		!css_tryget(&mz->mem->css))
463		goto retry;
464done:
465	return mz;
466}
467
468static struct mem_cgroup_per_zone *
469mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
470{
471	struct mem_cgroup_per_zone *mz;
472
473	spin_lock(&mctz->lock);
474	mz = __mem_cgroup_largest_soft_limit_node(mctz);
475	spin_unlock(&mctz->lock);
476	return mz;
477}
478
479static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
480					 bool charge)
481{
482	int val = (charge) ? 1 : -1;
483	struct mem_cgroup_stat *stat = &mem->stat;
484	struct mem_cgroup_stat_cpu *cpustat;
485	int cpu = get_cpu();
486
487	cpustat = &stat->cpustat[cpu];
488	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
489	put_cpu();
490}
491
492static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
493					 struct page_cgroup *pc,
494					 bool charge)
495{
496	int val = (charge) ? 1 : -1;
497	struct mem_cgroup_stat *stat = &mem->stat;
498	struct mem_cgroup_stat_cpu *cpustat;
499	int cpu = get_cpu();
500
501	cpustat = &stat->cpustat[cpu];
502	if (PageCgroupCache(pc))
503		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
504	else
505		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
506
507	if (charge)
508		__mem_cgroup_stat_add_safe(cpustat,
509				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
510	else
511		__mem_cgroup_stat_add_safe(cpustat,
512				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
513	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
514	put_cpu();
515}
516
517static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
518					enum lru_list idx)
519{
520	int nid, zid;
521	struct mem_cgroup_per_zone *mz;
522	u64 total = 0;
523
524	for_each_online_node(nid)
525		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
526			mz = mem_cgroup_zoneinfo(mem, nid, zid);
527			total += MEM_CGROUP_ZSTAT(mz, idx);
528		}
529	return total;
530}
531
532static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
533{
534	return container_of(cgroup_subsys_state(cont,
535				mem_cgroup_subsys_id), struct mem_cgroup,
536				css);
537}
538
539struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
540{
541	/*
542	 * mm_update_next_owner() may clear mm->owner to NULL
543	 * if it races with swapoff, page migration, etc.
544	 * So this can be called with p == NULL.
545	 */
546	if (unlikely(!p))
547		return NULL;
548
549	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
550				struct mem_cgroup, css);
551}
552
553static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
554{
555	struct mem_cgroup *mem = NULL;
556
557	if (!mm)
558		return NULL;
559	/*
560	 * Because we have no locks, mm->owner's may be being moved to other
561	 * cgroup. We use css_tryget() here even if this looks
562	 * pessimistic (rather than adding locks here).
563	 */
564	rcu_read_lock();
565	do {
566		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
567		if (unlikely(!mem))
568			break;
569	} while (!css_tryget(&mem->css));
570	rcu_read_unlock();
571	return mem;
572}
573
574/*
575 * Call callback function against all cgroup under hierarchy tree.
576 */
577static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
578			  int (*func)(struct mem_cgroup *, void *))
579{
580	int found, ret, nextid;
581	struct cgroup_subsys_state *css;
582	struct mem_cgroup *mem;
583
584	if (!root->use_hierarchy)
585		return (*func)(root, data);
586
587	nextid = 1;
588	do {
589		ret = 0;
590		mem = NULL;
591
592		rcu_read_lock();
593		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
594				   &found);
595		if (css && css_tryget(css))
596			mem = container_of(css, struct mem_cgroup, css);
597		rcu_read_unlock();
598
599		if (mem) {
600			ret = (*func)(mem, data);
601			css_put(&mem->css);
602		}
603		nextid = found + 1;
604	} while (!ret && css);
605
606	return ret;
607}
608
609static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
610{
611	return (mem == root_mem_cgroup);
612}
613
614/*
615 * Following LRU functions are allowed to be used without PCG_LOCK.
616 * Operations are called by routine of global LRU independently from memcg.
617 * What we have to take care of here is validness of pc->mem_cgroup.
618 *
619 * Changes to pc->mem_cgroup happens when
620 * 1. charge
621 * 2. moving account
622 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
623 * It is added to LRU before charge.
624 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
625 * When moving account, the page is not on LRU. It's isolated.
626 */
627
628void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
629{
630	struct page_cgroup *pc;
631	struct mem_cgroup_per_zone *mz;
632
633	if (mem_cgroup_disabled())
634		return;
635	pc = lookup_page_cgroup(page);
636	/* can happen while we handle swapcache. */
637	if (!TestClearPageCgroupAcctLRU(pc))
638		return;
639	VM_BUG_ON(!pc->mem_cgroup);
640	/*
641	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
642	 * removed from global LRU.
643	 */
644	mz = page_cgroup_zoneinfo(pc);
645	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
646	if (mem_cgroup_is_root(pc->mem_cgroup))
647		return;
648	VM_BUG_ON(list_empty(&pc->lru));
649	list_del_init(&pc->lru);
650	return;
651}
652
653void mem_cgroup_del_lru(struct page *page)
654{
655	mem_cgroup_del_lru_list(page, page_lru(page));
656}
657
658void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
659{
660	struct mem_cgroup_per_zone *mz;
661	struct page_cgroup *pc;
662
663	if (mem_cgroup_disabled())
664		return;
665
666	pc = lookup_page_cgroup(page);
667	/*
668	 * Used bit is set without atomic ops but after smp_wmb().
669	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
670	 */
671	smp_rmb();
672	/* unused or root page is not rotated. */
673	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
674		return;
675	mz = page_cgroup_zoneinfo(pc);
676	list_move(&pc->lru, &mz->lists[lru]);
677}
678
679void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
680{
681	struct page_cgroup *pc;
682	struct mem_cgroup_per_zone *mz;
683
684	if (mem_cgroup_disabled())
685		return;
686	pc = lookup_page_cgroup(page);
687	VM_BUG_ON(PageCgroupAcctLRU(pc));
688	/*
689	 * Used bit is set without atomic ops but after smp_wmb().
690	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
691	 */
692	smp_rmb();
693	if (!PageCgroupUsed(pc))
694		return;
695
696	mz = page_cgroup_zoneinfo(pc);
697	MEM_CGROUP_ZSTAT(mz, lru) += 1;
698	SetPageCgroupAcctLRU(pc);
699	if (mem_cgroup_is_root(pc->mem_cgroup))
700		return;
701	list_add(&pc->lru, &mz->lists[lru]);
702}
703
704/*
705 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
706 * lru because the page may.be reused after it's fully uncharged (because of
707 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
708 * it again. This function is only used to charge SwapCache. It's done under
709 * lock_page and expected that zone->lru_lock is never held.
710 */
711static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
712{
713	unsigned long flags;
714	struct zone *zone = page_zone(page);
715	struct page_cgroup *pc = lookup_page_cgroup(page);
716
717	spin_lock_irqsave(&zone->lru_lock, flags);
718	/*
719	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
720	 * is guarded by lock_page() because the page is SwapCache.
721	 */
722	if (!PageCgroupUsed(pc))
723		mem_cgroup_del_lru_list(page, page_lru(page));
724	spin_unlock_irqrestore(&zone->lru_lock, flags);
725}
726
727static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
728{
729	unsigned long flags;
730	struct zone *zone = page_zone(page);
731	struct page_cgroup *pc = lookup_page_cgroup(page);
732
733	spin_lock_irqsave(&zone->lru_lock, flags);
734	/* link when the page is linked to LRU but page_cgroup isn't */
735	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
736		mem_cgroup_add_lru_list(page, page_lru(page));
737	spin_unlock_irqrestore(&zone->lru_lock, flags);
738}
739
740
741void mem_cgroup_move_lists(struct page *page,
742			   enum lru_list from, enum lru_list to)
743{
744	if (mem_cgroup_disabled())
745		return;
746	mem_cgroup_del_lru_list(page, from);
747	mem_cgroup_add_lru_list(page, to);
748}
749
750int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
751{
752	int ret;
753	struct mem_cgroup *curr = NULL;
754
755	task_lock(task);
756	rcu_read_lock();
757	curr = try_get_mem_cgroup_from_mm(task->mm);
758	rcu_read_unlock();
759	task_unlock(task);
760	if (!curr)
761		return 0;
762	/*
763	 * We should check use_hierarchy of "mem" not "curr". Because checking
764	 * use_hierarchy of "curr" here make this function true if hierarchy is
765	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
766	 * hierarchy(even if use_hierarchy is disabled in "mem").
767	 */
768	if (mem->use_hierarchy)
769		ret = css_is_ancestor(&curr->css, &mem->css);
770	else
771		ret = (curr == mem);
772	css_put(&curr->css);
773	return ret;
774}
775
776/*
777 * prev_priority control...this will be used in memory reclaim path.
778 */
779int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
780{
781	int prev_priority;
782
783	spin_lock(&mem->reclaim_param_lock);
784	prev_priority = mem->prev_priority;
785	spin_unlock(&mem->reclaim_param_lock);
786
787	return prev_priority;
788}
789
790void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
791{
792	spin_lock(&mem->reclaim_param_lock);
793	if (priority < mem->prev_priority)
794		mem->prev_priority = priority;
795	spin_unlock(&mem->reclaim_param_lock);
796}
797
798void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
799{
800	spin_lock(&mem->reclaim_param_lock);
801	mem->prev_priority = priority;
802	spin_unlock(&mem->reclaim_param_lock);
803}
804
805static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
806{
807	unsigned long active;
808	unsigned long inactive;
809	unsigned long gb;
810	unsigned long inactive_ratio;
811
812	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
813	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
814
815	gb = (inactive + active) >> (30 - PAGE_SHIFT);
816	if (gb)
817		inactive_ratio = int_sqrt(10 * gb);
818	else
819		inactive_ratio = 1;
820
821	if (present_pages) {
822		present_pages[0] = inactive;
823		present_pages[1] = active;
824	}
825
826	return inactive_ratio;
827}
828
829int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
830{
831	unsigned long active;
832	unsigned long inactive;
833	unsigned long present_pages[2];
834	unsigned long inactive_ratio;
835
836	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
837
838	inactive = present_pages[0];
839	active = present_pages[1];
840
841	if (inactive * inactive_ratio < active)
842		return 1;
843
844	return 0;
845}
846
847int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
848{
849	unsigned long active;
850	unsigned long inactive;
851
852	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
853	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
854
855	return (active > inactive);
856}
857
858unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
859				       struct zone *zone,
860				       enum lru_list lru)
861{
862	int nid = zone->zone_pgdat->node_id;
863	int zid = zone_idx(zone);
864	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
865
866	return MEM_CGROUP_ZSTAT(mz, lru);
867}
868
869struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
870						      struct zone *zone)
871{
872	int nid = zone->zone_pgdat->node_id;
873	int zid = zone_idx(zone);
874	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
875
876	return &mz->reclaim_stat;
877}
878
879struct zone_reclaim_stat *
880mem_cgroup_get_reclaim_stat_from_page(struct page *page)
881{
882	struct page_cgroup *pc;
883	struct mem_cgroup_per_zone *mz;
884
885	if (mem_cgroup_disabled())
886		return NULL;
887
888	pc = lookup_page_cgroup(page);
889	/*
890	 * Used bit is set without atomic ops but after smp_wmb().
891	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
892	 */
893	smp_rmb();
894	if (!PageCgroupUsed(pc))
895		return NULL;
896
897	mz = page_cgroup_zoneinfo(pc);
898	if (!mz)
899		return NULL;
900
901	return &mz->reclaim_stat;
902}
903
904unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
905					struct list_head *dst,
906					unsigned long *scanned, int order,
907					int mode, struct zone *z,
908					struct mem_cgroup *mem_cont,
909					int active, int file)
910{
911	unsigned long nr_taken = 0;
912	struct page *page;
913	unsigned long scan;
914	LIST_HEAD(pc_list);
915	struct list_head *src;
916	struct page_cgroup *pc, *tmp;
917	int nid = z->zone_pgdat->node_id;
918	int zid = zone_idx(z);
919	struct mem_cgroup_per_zone *mz;
920	int lru = LRU_FILE * file + active;
921	int ret;
922
923	BUG_ON(!mem_cont);
924	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
925	src = &mz->lists[lru];
926
927	scan = 0;
928	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
929		if (scan >= nr_to_scan)
930			break;
931
932		page = pc->page;
933		if (unlikely(!PageCgroupUsed(pc)))
934			continue;
935		if (unlikely(!PageLRU(page)))
936			continue;
937
938		scan++;
939		ret = __isolate_lru_page(page, mode, file);
940		switch (ret) {
941		case 0:
942			list_move(&page->lru, dst);
943			mem_cgroup_del_lru(page);
944			nr_taken++;
945			break;
946		case -EBUSY:
947			/* we don't affect global LRU but rotate in our LRU */
948			mem_cgroup_rotate_lru_list(page, page_lru(page));
949			break;
950		default:
951			break;
952		}
953	}
954
955	*scanned = scan;
956	return nr_taken;
957}
958
959#define mem_cgroup_from_res_counter(counter, member)	\
960	container_of(counter, struct mem_cgroup, member)
961
962static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
963{
964	if (do_swap_account) {
965		if (res_counter_check_under_limit(&mem->res) &&
966			res_counter_check_under_limit(&mem->memsw))
967			return true;
968	} else
969		if (res_counter_check_under_limit(&mem->res))
970			return true;
971	return false;
972}
973
974static unsigned int get_swappiness(struct mem_cgroup *memcg)
975{
976	struct cgroup *cgrp = memcg->css.cgroup;
977	unsigned int swappiness;
978
979	/* root ? */
980	if (cgrp->parent == NULL)
981		return vm_swappiness;
982
983	spin_lock(&memcg->reclaim_param_lock);
984	swappiness = memcg->swappiness;
985	spin_unlock(&memcg->reclaim_param_lock);
986
987	return swappiness;
988}
989
990static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
991{
992	int *val = data;
993	(*val)++;
994	return 0;
995}
996
997/**
998 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
999 * @memcg: The memory cgroup that went over limit
1000 * @p: Task that is going to be killed
1001 *
1002 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1003 * enabled
1004 */
1005void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1006{
1007	struct cgroup *task_cgrp;
1008	struct cgroup *mem_cgrp;
1009	/*
1010	 * Need a buffer in BSS, can't rely on allocations. The code relies
1011	 * on the assumption that OOM is serialized for memory controller.
1012	 * If this assumption is broken, revisit this code.
1013	 */
1014	static char memcg_name[PATH_MAX];
1015	int ret;
1016
1017	if (!memcg || !p)
1018		return;
1019
1020
1021	rcu_read_lock();
1022
1023	mem_cgrp = memcg->css.cgroup;
1024	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1025
1026	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1027	if (ret < 0) {
1028		/*
1029		 * Unfortunately, we are unable to convert to a useful name
1030		 * But we'll still print out the usage information
1031		 */
1032		rcu_read_unlock();
1033		goto done;
1034	}
1035	rcu_read_unlock();
1036
1037	printk(KERN_INFO "Task in %s killed", memcg_name);
1038
1039	rcu_read_lock();
1040	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1041	if (ret < 0) {
1042		rcu_read_unlock();
1043		goto done;
1044	}
1045	rcu_read_unlock();
1046
1047	/*
1048	 * Continues from above, so we don't need an KERN_ level
1049	 */
1050	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1051done:
1052
1053	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1054		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1055		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1056		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1057	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1058		"failcnt %llu\n",
1059		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1060		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1061		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1062}
1063
1064/*
1065 * This function returns the number of memcg under hierarchy tree. Returns
1066 * 1(self count) if no children.
1067 */
1068static int mem_cgroup_count_children(struct mem_cgroup *mem)
1069{
1070	int num = 0;
1071 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1072	return num;
1073}
1074
1075/*
1076 * Visit the first child (need not be the first child as per the ordering
1077 * of the cgroup list, since we track last_scanned_child) of @mem and use
1078 * that to reclaim free pages from.
1079 */
1080static struct mem_cgroup *
1081mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1082{
1083	struct mem_cgroup *ret = NULL;
1084	struct cgroup_subsys_state *css;
1085	int nextid, found;
1086
1087	if (!root_mem->use_hierarchy) {
1088		css_get(&root_mem->css);
1089		ret = root_mem;
1090	}
1091
1092	while (!ret) {
1093		rcu_read_lock();
1094		nextid = root_mem->last_scanned_child + 1;
1095		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1096				   &found);
1097		if (css && css_tryget(css))
1098			ret = container_of(css, struct mem_cgroup, css);
1099
1100		rcu_read_unlock();
1101		/* Updates scanning parameter */
1102		spin_lock(&root_mem->reclaim_param_lock);
1103		if (!css) {
1104			/* this means start scan from ID:1 */
1105			root_mem->last_scanned_child = 0;
1106		} else
1107			root_mem->last_scanned_child = found;
1108		spin_unlock(&root_mem->reclaim_param_lock);
1109	}
1110
1111	return ret;
1112}
1113
1114/*
1115 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1116 * we reclaimed from, so that we don't end up penalizing one child extensively
1117 * based on its position in the children list.
1118 *
1119 * root_mem is the original ancestor that we've been reclaim from.
1120 *
1121 * We give up and return to the caller when we visit root_mem twice.
1122 * (other groups can be removed while we're walking....)
1123 *
1124 * If shrink==true, for avoiding to free too much, this returns immedieately.
1125 */
1126static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1127						struct zone *zone,
1128						gfp_t gfp_mask,
1129						unsigned long reclaim_options)
1130{
1131	struct mem_cgroup *victim;
1132	int ret, total = 0;
1133	int loop = 0;
1134	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1135	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1136	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1137	unsigned long excess = mem_cgroup_get_excess(root_mem);
1138
1139	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1140	if (root_mem->memsw_is_minimum)
1141		noswap = true;
1142
1143	while (1) {
1144		victim = mem_cgroup_select_victim(root_mem);
1145		if (victim == root_mem) {
1146			loop++;
1147			if (loop >= 1)
1148				drain_all_stock_async();
1149			if (loop >= 2) {
1150				/*
1151				 * If we have not been able to reclaim
1152				 * anything, it might because there are
1153				 * no reclaimable pages under this hierarchy
1154				 */
1155				if (!check_soft || !total) {
1156					css_put(&victim->css);
1157					break;
1158				}
1159				/*
1160				 * We want to do more targetted reclaim.
1161				 * excess >> 2 is not to excessive so as to
1162				 * reclaim too much, nor too less that we keep
1163				 * coming back to reclaim from this cgroup
1164				 */
1165				if (total >= (excess >> 2) ||
1166					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1167					css_put(&victim->css);
1168					break;
1169				}
1170			}
1171		}
1172		if (!mem_cgroup_local_usage(&victim->stat)) {
1173			/* this cgroup's local usage == 0 */
1174			css_put(&victim->css);
1175			continue;
1176		}
1177		/* we use swappiness of local cgroup */
1178		if (check_soft)
1179			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1180				noswap, get_swappiness(victim), zone,
1181				zone->zone_pgdat->node_id);
1182		else
1183			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1184						noswap, get_swappiness(victim));
1185		css_put(&victim->css);
1186		/*
1187		 * At shrinking usage, we can't check we should stop here or
1188		 * reclaim more. It's depends on callers. last_scanned_child
1189		 * will work enough for keeping fairness under tree.
1190		 */
1191		if (shrink)
1192			return ret;
1193		total += ret;
1194		if (check_soft) {
1195			if (res_counter_check_under_soft_limit(&root_mem->res))
1196				return total;
1197		} else if (mem_cgroup_check_under_limit(root_mem))
1198			return 1 + total;
1199	}
1200	return total;
1201}
1202
1203bool mem_cgroup_oom_called(struct task_struct *task)
1204{
1205	bool ret = false;
1206	struct mem_cgroup *mem;
1207	struct mm_struct *mm;
1208
1209	rcu_read_lock();
1210	mm = task->mm;
1211	if (!mm)
1212		mm = &init_mm;
1213	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1214	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1215		ret = true;
1216	rcu_read_unlock();
1217	return ret;
1218}
1219
1220static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1221{
1222	mem->last_oom_jiffies = jiffies;
1223	return 0;
1224}
1225
1226static void record_last_oom(struct mem_cgroup *mem)
1227{
1228	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1229}
1230
1231/*
1232 * Currently used to update mapped file statistics, but the routine can be
1233 * generalized to update other statistics as well.
1234 */
1235void mem_cgroup_update_file_mapped(struct page *page, int val)
1236{
1237	struct mem_cgroup *mem;
1238	struct mem_cgroup_stat *stat;
1239	struct mem_cgroup_stat_cpu *cpustat;
1240	int cpu;
1241	struct page_cgroup *pc;
1242
1243	pc = lookup_page_cgroup(page);
1244	if (unlikely(!pc))
1245		return;
1246
1247	lock_page_cgroup(pc);
1248	mem = pc->mem_cgroup;
1249	if (!mem)
1250		goto done;
1251
1252	if (!PageCgroupUsed(pc))
1253		goto done;
1254
1255	/*
1256	 * Preemption is already disabled, we don't need get_cpu()
1257	 */
1258	cpu = smp_processor_id();
1259	stat = &mem->stat;
1260	cpustat = &stat->cpustat[cpu];
1261
1262	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
1263done:
1264	unlock_page_cgroup(pc);
1265}
1266
1267/*
1268 * size of first charge trial. "32" comes from vmscan.c's magic value.
1269 * TODO: maybe necessary to use big numbers in big irons.
1270 */
1271#define CHARGE_SIZE	(32 * PAGE_SIZE)
1272struct memcg_stock_pcp {
1273	struct mem_cgroup *cached; /* this never be root cgroup */
1274	int charge;
1275	struct work_struct work;
1276};
1277static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1278static atomic_t memcg_drain_count;
1279
1280/*
1281 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1282 * from local stock and true is returned. If the stock is 0 or charges from a
1283 * cgroup which is not current target, returns false. This stock will be
1284 * refilled.
1285 */
1286static bool consume_stock(struct mem_cgroup *mem)
1287{
1288	struct memcg_stock_pcp *stock;
1289	bool ret = true;
1290
1291	stock = &get_cpu_var(memcg_stock);
1292	if (mem == stock->cached && stock->charge)
1293		stock->charge -= PAGE_SIZE;
1294	else /* need to call res_counter_charge */
1295		ret = false;
1296	put_cpu_var(memcg_stock);
1297	return ret;
1298}
1299
1300/*
1301 * Returns stocks cached in percpu to res_counter and reset cached information.
1302 */
1303static void drain_stock(struct memcg_stock_pcp *stock)
1304{
1305	struct mem_cgroup *old = stock->cached;
1306
1307	if (stock->charge) {
1308		res_counter_uncharge(&old->res, stock->charge);
1309		if (do_swap_account)
1310			res_counter_uncharge(&old->memsw, stock->charge);
1311	}
1312	stock->cached = NULL;
1313	stock->charge = 0;
1314}
1315
1316/*
1317 * This must be called under preempt disabled or must be called by
1318 * a thread which is pinned to local cpu.
1319 */
1320static void drain_local_stock(struct work_struct *dummy)
1321{
1322	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1323	drain_stock(stock);
1324}
1325
1326/*
1327 * Cache charges(val) which is from res_counter, to local per_cpu area.
1328 * This will be consumed by consumt_stock() function, later.
1329 */
1330static void refill_stock(struct mem_cgroup *mem, int val)
1331{
1332	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1333
1334	if (stock->cached != mem) { /* reset if necessary */
1335		drain_stock(stock);
1336		stock->cached = mem;
1337	}
1338	stock->charge += val;
1339	put_cpu_var(memcg_stock);
1340}
1341
1342/*
1343 * Tries to drain stocked charges in other cpus. This function is asynchronous
1344 * and just put a work per cpu for draining localy on each cpu. Caller can
1345 * expects some charges will be back to res_counter later but cannot wait for
1346 * it.
1347 */
1348static void drain_all_stock_async(void)
1349{
1350	int cpu;
1351	/* This function is for scheduling "drain" in asynchronous way.
1352	 * The result of "drain" is not directly handled by callers. Then,
1353	 * if someone is calling drain, we don't have to call drain more.
1354	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1355	 * there is a race. We just do loose check here.
1356	 */
1357	if (atomic_read(&memcg_drain_count))
1358		return;
1359	/* Notify other cpus that system-wide "drain" is running */
1360	atomic_inc(&memcg_drain_count);
1361	get_online_cpus();
1362	for_each_online_cpu(cpu) {
1363		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1364		schedule_work_on(cpu, &stock->work);
1365	}
1366 	put_online_cpus();
1367	atomic_dec(&memcg_drain_count);
1368	/* We don't wait for flush_work */
1369}
1370
1371/* This is a synchronous drain interface. */
1372static void drain_all_stock_sync(void)
1373{
1374	/* called when force_empty is called */
1375	atomic_inc(&memcg_drain_count);
1376	schedule_on_each_cpu(drain_local_stock);
1377	atomic_dec(&memcg_drain_count);
1378}
1379
1380static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1381					unsigned long action,
1382					void *hcpu)
1383{
1384	int cpu = (unsigned long)hcpu;
1385	struct memcg_stock_pcp *stock;
1386
1387	if (action != CPU_DEAD)
1388		return NOTIFY_OK;
1389	stock = &per_cpu(memcg_stock, cpu);
1390	drain_stock(stock);
1391	return NOTIFY_OK;
1392}
1393
1394/*
1395 * Unlike exported interface, "oom" parameter is added. if oom==true,
1396 * oom-killer can be invoked.
1397 */
1398static int __mem_cgroup_try_charge(struct mm_struct *mm,
1399			gfp_t gfp_mask, struct mem_cgroup **memcg,
1400			bool oom, struct page *page)
1401{
1402	struct mem_cgroup *mem, *mem_over_limit;
1403	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1404	struct res_counter *fail_res;
1405	int csize = CHARGE_SIZE;
1406
1407	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1408		/* Don't account this! */
1409		*memcg = NULL;
1410		return 0;
1411	}
1412
1413	/*
1414	 * We always charge the cgroup the mm_struct belongs to.
1415	 * The mm_struct's mem_cgroup changes on task migration if the
1416	 * thread group leader migrates. It's possible that mm is not
1417	 * set, if so charge the init_mm (happens for pagecache usage).
1418	 */
1419	mem = *memcg;
1420	if (likely(!mem)) {
1421		mem = try_get_mem_cgroup_from_mm(mm);
1422		*memcg = mem;
1423	} else {
1424		css_get(&mem->css);
1425	}
1426	if (unlikely(!mem))
1427		return 0;
1428
1429	VM_BUG_ON(css_is_removed(&mem->css));
1430	if (mem_cgroup_is_root(mem))
1431		goto done;
1432
1433	while (1) {
1434		int ret = 0;
1435		unsigned long flags = 0;
1436
1437		if (consume_stock(mem))
1438			goto charged;
1439
1440		ret = res_counter_charge(&mem->res, csize, &fail_res);
1441		if (likely(!ret)) {
1442			if (!do_swap_account)
1443				break;
1444			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1445			if (likely(!ret))
1446				break;
1447			/* mem+swap counter fails */
1448			res_counter_uncharge(&mem->res, csize);
1449			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1450			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1451									memsw);
1452		} else
1453			/* mem counter fails */
1454			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1455									res);
1456
1457		/* reduce request size and retry */
1458		if (csize > PAGE_SIZE) {
1459			csize = PAGE_SIZE;
1460			continue;
1461		}
1462		if (!(gfp_mask & __GFP_WAIT))
1463			goto nomem;
1464
1465		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1466						gfp_mask, flags);
1467		if (ret)
1468			continue;
1469
1470		/*
1471		 * try_to_free_mem_cgroup_pages() might not give us a full
1472		 * picture of reclaim. Some pages are reclaimed and might be
1473		 * moved to swap cache or just unmapped from the cgroup.
1474		 * Check the limit again to see if the reclaim reduced the
1475		 * current usage of the cgroup before giving up
1476		 *
1477		 */
1478		if (mem_cgroup_check_under_limit(mem_over_limit))
1479			continue;
1480
1481		if (!nr_retries--) {
1482			if (oom) {
1483				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1484				record_last_oom(mem_over_limit);
1485			}
1486			goto nomem;
1487		}
1488	}
1489	if (csize > PAGE_SIZE)
1490		refill_stock(mem, csize - PAGE_SIZE);
1491charged:
1492	/*
1493	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1494	 * if they exceeds softlimit.
1495	 */
1496	if (mem_cgroup_soft_limit_check(mem))
1497		mem_cgroup_update_tree(mem, page);
1498done:
1499	return 0;
1500nomem:
1501	css_put(&mem->css);
1502	return -ENOMEM;
1503}
1504
1505/*
1506 * Somemtimes we have to undo a charge we got by try_charge().
1507 * This function is for that and do uncharge, put css's refcnt.
1508 * gotten by try_charge().
1509 */
1510static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1511{
1512	if (!mem_cgroup_is_root(mem)) {
1513		res_counter_uncharge(&mem->res, PAGE_SIZE);
1514		if (do_swap_account)
1515			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1516	}
1517	css_put(&mem->css);
1518}
1519
1520/*
1521 * A helper function to get mem_cgroup from ID. must be called under
1522 * rcu_read_lock(). The caller must check css_is_removed() or some if
1523 * it's concern. (dropping refcnt from swap can be called against removed
1524 * memcg.)
1525 */
1526static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1527{
1528	struct cgroup_subsys_state *css;
1529
1530	/* ID 0 is unused ID */
1531	if (!id)
1532		return NULL;
1533	css = css_lookup(&mem_cgroup_subsys, id);
1534	if (!css)
1535		return NULL;
1536	return container_of(css, struct mem_cgroup, css);
1537}
1538
1539static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1540{
1541	struct mem_cgroup *mem;
1542	struct page_cgroup *pc;
1543	unsigned short id;
1544	swp_entry_t ent;
1545
1546	VM_BUG_ON(!PageLocked(page));
1547
1548	if (!PageSwapCache(page))
1549		return NULL;
1550
1551	pc = lookup_page_cgroup(page);
1552	lock_page_cgroup(pc);
1553	if (PageCgroupUsed(pc)) {
1554		mem = pc->mem_cgroup;
1555		if (mem && !css_tryget(&mem->css))
1556			mem = NULL;
1557	} else {
1558		ent.val = page_private(page);
1559		id = lookup_swap_cgroup(ent);
1560		rcu_read_lock();
1561		mem = mem_cgroup_lookup(id);
1562		if (mem && !css_tryget(&mem->css))
1563			mem = NULL;
1564		rcu_read_unlock();
1565	}
1566	unlock_page_cgroup(pc);
1567	return mem;
1568}
1569
1570/*
1571 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1572 * USED state. If already USED, uncharge and return.
1573 */
1574
1575static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1576				     struct page_cgroup *pc,
1577				     enum charge_type ctype)
1578{
1579	/* try_charge() can return NULL to *memcg, taking care of it. */
1580	if (!mem)
1581		return;
1582
1583	lock_page_cgroup(pc);
1584	if (unlikely(PageCgroupUsed(pc))) {
1585		unlock_page_cgroup(pc);
1586		mem_cgroup_cancel_charge(mem);
1587		return;
1588	}
1589
1590	pc->mem_cgroup = mem;
1591	/*
1592	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1593	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1594	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1595	 * before USED bit, we need memory barrier here.
1596	 * See mem_cgroup_add_lru_list(), etc.
1597 	 */
1598	smp_wmb();
1599	switch (ctype) {
1600	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1601	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1602		SetPageCgroupCache(pc);
1603		SetPageCgroupUsed(pc);
1604		break;
1605	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1606		ClearPageCgroupCache(pc);
1607		SetPageCgroupUsed(pc);
1608		break;
1609	default:
1610		break;
1611	}
1612
1613	mem_cgroup_charge_statistics(mem, pc, true);
1614
1615	unlock_page_cgroup(pc);
1616}
1617
1618/**
1619 * __mem_cgroup_move_account - move account of the page
1620 * @pc:	page_cgroup of the page.
1621 * @from: mem_cgroup which the page is moved from.
1622 * @to:	mem_cgroup which the page is moved to. @from != @to.
1623 *
1624 * The caller must confirm following.
1625 * - page is not on LRU (isolate_page() is useful.)
1626 * - the pc is locked, used, and ->mem_cgroup points to @from.
1627 *
1628 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1629 * new cgroup. It should be done by a caller.
1630 */
1631
1632static void __mem_cgroup_move_account(struct page_cgroup *pc,
1633	struct mem_cgroup *from, struct mem_cgroup *to)
1634{
1635	struct page *page;
1636	int cpu;
1637	struct mem_cgroup_stat *stat;
1638	struct mem_cgroup_stat_cpu *cpustat;
1639
1640	VM_BUG_ON(from == to);
1641	VM_BUG_ON(PageLRU(pc->page));
1642	VM_BUG_ON(!PageCgroupLocked(pc));
1643	VM_BUG_ON(!PageCgroupUsed(pc));
1644	VM_BUG_ON(pc->mem_cgroup != from);
1645
1646	if (!mem_cgroup_is_root(from))
1647		res_counter_uncharge(&from->res, PAGE_SIZE);
1648	mem_cgroup_charge_statistics(from, pc, false);
1649
1650	page = pc->page;
1651	if (page_mapped(page) && !PageAnon(page)) {
1652		cpu = smp_processor_id();
1653		/* Update mapped_file data for mem_cgroup "from" */
1654		stat = &from->stat;
1655		cpustat = &stat->cpustat[cpu];
1656		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1657						-1);
1658
1659		/* Update mapped_file data for mem_cgroup "to" */
1660		stat = &to->stat;
1661		cpustat = &stat->cpustat[cpu];
1662		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1663						1);
1664	}
1665
1666	if (do_swap_account && !mem_cgroup_is_root(from))
1667		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1668	css_put(&from->css);
1669
1670	css_get(&to->css);
1671	pc->mem_cgroup = to;
1672	mem_cgroup_charge_statistics(to, pc, true);
1673	/*
1674	 * We charges against "to" which may not have any tasks. Then, "to"
1675	 * can be under rmdir(). But in current implementation, caller of
1676	 * this function is just force_empty() and it's garanteed that
1677	 * "to" is never removed. So, we don't check rmdir status here.
1678	 */
1679}
1680
1681/*
1682 * check whether the @pc is valid for moving account and call
1683 * __mem_cgroup_move_account()
1684 */
1685static int mem_cgroup_move_account(struct page_cgroup *pc,
1686				struct mem_cgroup *from, struct mem_cgroup *to)
1687{
1688	int ret = -EINVAL;
1689	lock_page_cgroup(pc);
1690	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1691		__mem_cgroup_move_account(pc, from, to);
1692		ret = 0;
1693	}
1694	unlock_page_cgroup(pc);
1695	return ret;
1696}
1697
1698/*
1699 * move charges to its parent.
1700 */
1701
1702static int mem_cgroup_move_parent(struct page_cgroup *pc,
1703				  struct mem_cgroup *child,
1704				  gfp_t gfp_mask)
1705{
1706	struct page *page = pc->page;
1707	struct cgroup *cg = child->css.cgroup;
1708	struct cgroup *pcg = cg->parent;
1709	struct mem_cgroup *parent;
1710	int ret;
1711
1712	/* Is ROOT ? */
1713	if (!pcg)
1714		return -EINVAL;
1715
1716	ret = -EBUSY;
1717	if (!get_page_unless_zero(page))
1718		goto out;
1719	if (isolate_lru_page(page))
1720		goto put;
1721
1722	parent = mem_cgroup_from_cont(pcg);
1723	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1724	if (ret || !parent)
1725		goto put_back;
1726
1727	ret = mem_cgroup_move_account(pc, child, parent);
1728	if (!ret)
1729		css_put(&parent->css);	/* drop extra refcnt by try_charge() */
1730	else
1731		mem_cgroup_cancel_charge(parent);	/* does css_put */
1732put_back:
1733	putback_lru_page(page);
1734put:
1735	put_page(page);
1736out:
1737	return ret;
1738}
1739
1740/*
1741 * Charge the memory controller for page usage.
1742 * Return
1743 * 0 if the charge was successful
1744 * < 0 if the cgroup is over its limit
1745 */
1746static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1747				gfp_t gfp_mask, enum charge_type ctype,
1748				struct mem_cgroup *memcg)
1749{
1750	struct mem_cgroup *mem;
1751	struct page_cgroup *pc;
1752	int ret;
1753
1754	pc = lookup_page_cgroup(page);
1755	/* can happen at boot */
1756	if (unlikely(!pc))
1757		return 0;
1758	prefetchw(pc);
1759
1760	mem = memcg;
1761	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1762	if (ret || !mem)
1763		return ret;
1764
1765	__mem_cgroup_commit_charge(mem, pc, ctype);
1766	return 0;
1767}
1768
1769int mem_cgroup_newpage_charge(struct page *page,
1770			      struct mm_struct *mm, gfp_t gfp_mask)
1771{
1772	if (mem_cgroup_disabled())
1773		return 0;
1774	if (PageCompound(page))
1775		return 0;
1776	/*
1777	 * If already mapped, we don't have to account.
1778	 * If page cache, page->mapping has address_space.
1779	 * But page->mapping may have out-of-use anon_vma pointer,
1780	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1781	 * is NULL.
1782  	 */
1783	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1784		return 0;
1785	if (unlikely(!mm))
1786		mm = &init_mm;
1787	return mem_cgroup_charge_common(page, mm, gfp_mask,
1788				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1789}
1790
1791static void
1792__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1793					enum charge_type ctype);
1794
1795int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1796				gfp_t gfp_mask)
1797{
1798	struct mem_cgroup *mem = NULL;
1799	int ret;
1800
1801	if (mem_cgroup_disabled())
1802		return 0;
1803	if (PageCompound(page))
1804		return 0;
1805	/*
1806	 * Corner case handling. This is called from add_to_page_cache()
1807	 * in usual. But some FS (shmem) precharges this page before calling it
1808	 * and call add_to_page_cache() with GFP_NOWAIT.
1809	 *
1810	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1811	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1812	 * charge twice. (It works but has to pay a bit larger cost.)
1813	 * And when the page is SwapCache, it should take swap information
1814	 * into account. This is under lock_page() now.
1815	 */
1816	if (!(gfp_mask & __GFP_WAIT)) {
1817		struct page_cgroup *pc;
1818
1819
1820		pc = lookup_page_cgroup(page);
1821		if (!pc)
1822			return 0;
1823		lock_page_cgroup(pc);
1824		if (PageCgroupUsed(pc)) {
1825			unlock_page_cgroup(pc);
1826			return 0;
1827		}
1828		unlock_page_cgroup(pc);
1829	}
1830
1831	if (unlikely(!mm && !mem))
1832		mm = &init_mm;
1833
1834	if (page_is_file_cache(page))
1835		return mem_cgroup_charge_common(page, mm, gfp_mask,
1836				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1837
1838	/* shmem */
1839	if (PageSwapCache(page)) {
1840		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1841		if (!ret)
1842			__mem_cgroup_commit_charge_swapin(page, mem,
1843					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1844	} else
1845		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1846					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1847
1848	return ret;
1849}
1850
1851/*
1852 * While swap-in, try_charge -> commit or cancel, the page is locked.
1853 * And when try_charge() successfully returns, one refcnt to memcg without
1854 * struct page_cgroup is acquired. This refcnt will be consumed by
1855 * "commit()" or removed by "cancel()"
1856 */
1857int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1858				 struct page *page,
1859				 gfp_t mask, struct mem_cgroup **ptr)
1860{
1861	struct mem_cgroup *mem;
1862	int ret;
1863
1864	if (mem_cgroup_disabled())
1865		return 0;
1866
1867	if (!do_swap_account)
1868		goto charge_cur_mm;
1869	/*
1870	 * A racing thread's fault, or swapoff, may have already updated
1871	 * the pte, and even removed page from swap cache: in those cases
1872	 * do_swap_page()'s pte_same() test will fail; but there's also a
1873	 * KSM case which does need to charge the page.
1874	 */
1875	if (!PageSwapCache(page))
1876		goto charge_cur_mm;
1877	mem = try_get_mem_cgroup_from_swapcache(page);
1878	if (!mem)
1879		goto charge_cur_mm;
1880	*ptr = mem;
1881	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1882	/* drop extra refcnt from tryget */
1883	css_put(&mem->css);
1884	return ret;
1885charge_cur_mm:
1886	if (unlikely(!mm))
1887		mm = &init_mm;
1888	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1889}
1890
1891static void
1892__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1893					enum charge_type ctype)
1894{
1895	struct page_cgroup *pc;
1896
1897	if (mem_cgroup_disabled())
1898		return;
1899	if (!ptr)
1900		return;
1901	cgroup_exclude_rmdir(&ptr->css);
1902	pc = lookup_page_cgroup(page);
1903	mem_cgroup_lru_del_before_commit_swapcache(page);
1904	__mem_cgroup_commit_charge(ptr, pc, ctype);
1905	mem_cgroup_lru_add_after_commit_swapcache(page);
1906	/*
1907	 * Now swap is on-memory. This means this page may be
1908	 * counted both as mem and swap....double count.
1909	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1910	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1911	 * may call delete_from_swap_cache() before reach here.
1912	 */
1913	if (do_swap_account && PageSwapCache(page)) {
1914		swp_entry_t ent = {.val = page_private(page)};
1915		unsigned short id;
1916		struct mem_cgroup *memcg;
1917
1918		id = swap_cgroup_record(ent, 0);
1919		rcu_read_lock();
1920		memcg = mem_cgroup_lookup(id);
1921		if (memcg) {
1922			/*
1923			 * This recorded memcg can be obsolete one. So, avoid
1924			 * calling css_tryget
1925			 */
1926			if (!mem_cgroup_is_root(memcg))
1927				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1928			mem_cgroup_swap_statistics(memcg, false);
1929			mem_cgroup_put(memcg);
1930		}
1931		rcu_read_unlock();
1932	}
1933	/*
1934	 * At swapin, we may charge account against cgroup which has no tasks.
1935	 * So, rmdir()->pre_destroy() can be called while we do this charge.
1936	 * In that case, we need to call pre_destroy() again. check it here.
1937	 */
1938	cgroup_release_and_wakeup_rmdir(&ptr->css);
1939}
1940
1941void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1942{
1943	__mem_cgroup_commit_charge_swapin(page, ptr,
1944					MEM_CGROUP_CHARGE_TYPE_MAPPED);
1945}
1946
1947void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1948{
1949	if (mem_cgroup_disabled())
1950		return;
1951	if (!mem)
1952		return;
1953	mem_cgroup_cancel_charge(mem);
1954}
1955
1956static void
1957__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
1958{
1959	struct memcg_batch_info *batch = NULL;
1960	bool uncharge_memsw = true;
1961	/* If swapout, usage of swap doesn't decrease */
1962	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1963		uncharge_memsw = false;
1964	/*
1965	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
1966	 * In those cases, all pages freed continously can be expected to be in
1967	 * the same cgroup and we have chance to coalesce uncharges.
1968	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
1969	 * because we want to do uncharge as soon as possible.
1970	 */
1971	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
1972		goto direct_uncharge;
1973
1974	batch = &current->memcg_batch;
1975	/*
1976	 * In usual, we do css_get() when we remember memcg pointer.
1977	 * But in this case, we keep res->usage until end of a series of
1978	 * uncharges. Then, it's ok to ignore memcg's refcnt.
1979	 */
1980	if (!batch->memcg)
1981		batch->memcg = mem;
1982	/*
1983	 * In typical case, batch->memcg == mem. This means we can
1984	 * merge a series of uncharges to an uncharge of res_counter.
1985	 * If not, we uncharge res_counter ony by one.
1986	 */
1987	if (batch->memcg != mem)
1988		goto direct_uncharge;
1989	/* remember freed charge and uncharge it later */
1990	batch->bytes += PAGE_SIZE;
1991	if (uncharge_memsw)
1992		batch->memsw_bytes += PAGE_SIZE;
1993	return;
1994direct_uncharge:
1995	res_counter_uncharge(&mem->res, PAGE_SIZE);
1996	if (uncharge_memsw)
1997		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1998	return;
1999}
2000
2001/*
2002 * uncharge if !page_mapped(page)
2003 */
2004static struct mem_cgroup *
2005__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2006{
2007	struct page_cgroup *pc;
2008	struct mem_cgroup *mem = NULL;
2009	struct mem_cgroup_per_zone *mz;
2010
2011	if (mem_cgroup_disabled())
2012		return NULL;
2013
2014	if (PageSwapCache(page))
2015		return NULL;
2016
2017	/*
2018	 * Check if our page_cgroup is valid
2019	 */
2020	pc = lookup_page_cgroup(page);
2021	if (unlikely(!pc || !PageCgroupUsed(pc)))
2022		return NULL;
2023
2024	lock_page_cgroup(pc);
2025
2026	mem = pc->mem_cgroup;
2027
2028	if (!PageCgroupUsed(pc))
2029		goto unlock_out;
2030
2031	switch (ctype) {
2032	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2033	case MEM_CGROUP_CHARGE_TYPE_DROP:
2034		if (page_mapped(page))
2035			goto unlock_out;
2036		break;
2037	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2038		if (!PageAnon(page)) {	/* Shared memory */
2039			if (page->mapping && !page_is_file_cache(page))
2040				goto unlock_out;
2041		} else if (page_mapped(page)) /* Anon */
2042				goto unlock_out;
2043		break;
2044	default:
2045		break;
2046	}
2047
2048	if (!mem_cgroup_is_root(mem))
2049		__do_uncharge(mem, ctype);
2050	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2051		mem_cgroup_swap_statistics(mem, true);
2052	mem_cgroup_charge_statistics(mem, pc, false);
2053
2054	ClearPageCgroupUsed(pc);
2055	/*
2056	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2057	 * freed from LRU. This is safe because uncharged page is expected not
2058	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2059	 * special functions.
2060	 */
2061
2062	mz = page_cgroup_zoneinfo(pc);
2063	unlock_page_cgroup(pc);
2064
2065	if (mem_cgroup_soft_limit_check(mem))
2066		mem_cgroup_update_tree(mem, page);
2067	/* at swapout, this memcg will be accessed to record to swap */
2068	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2069		css_put(&mem->css);
2070
2071	return mem;
2072
2073unlock_out:
2074	unlock_page_cgroup(pc);
2075	return NULL;
2076}
2077
2078void mem_cgroup_uncharge_page(struct page *page)
2079{
2080	/* early check. */
2081	if (page_mapped(page))
2082		return;
2083	if (page->mapping && !PageAnon(page))
2084		return;
2085	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2086}
2087
2088void mem_cgroup_uncharge_cache_page(struct page *page)
2089{
2090	VM_BUG_ON(page_mapped(page));
2091	VM_BUG_ON(page->mapping);
2092	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2093}
2094
2095/*
2096 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2097 * In that cases, pages are freed continuously and we can expect pages
2098 * are in the same memcg. All these calls itself limits the number of
2099 * pages freed at once, then uncharge_start/end() is called properly.
2100 * This may be called prural(2) times in a context,
2101 */
2102
2103void mem_cgroup_uncharge_start(void)
2104{
2105	current->memcg_batch.do_batch++;
2106	/* We can do nest. */
2107	if (current->memcg_batch.do_batch == 1) {
2108		current->memcg_batch.memcg = NULL;
2109		current->memcg_batch.bytes = 0;
2110		current->memcg_batch.memsw_bytes = 0;
2111	}
2112}
2113
2114void mem_cgroup_uncharge_end(void)
2115{
2116	struct memcg_batch_info *batch = &current->memcg_batch;
2117
2118	if (!batch->do_batch)
2119		return;
2120
2121	batch->do_batch--;
2122	if (batch->do_batch) /* If stacked, do nothing. */
2123		return;
2124
2125	if (!batch->memcg)
2126		return;
2127	/*
2128	 * This "batch->memcg" is valid without any css_get/put etc...
2129	 * bacause we hide charges behind us.
2130	 */
2131	if (batch->bytes)
2132		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2133	if (batch->memsw_bytes)
2134		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2135	/* forget this pointer (for sanity check) */
2136	batch->memcg = NULL;
2137}
2138
2139#ifdef CONFIG_SWAP
2140/*
2141 * called after __delete_from_swap_cache() and drop "page" account.
2142 * memcg information is recorded to swap_cgroup of "ent"
2143 */
2144void
2145mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2146{
2147	struct mem_cgroup *memcg;
2148	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2149
2150	if (!swapout) /* this was a swap cache but the swap is unused ! */
2151		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2152
2153	memcg = __mem_cgroup_uncharge_common(page, ctype);
2154
2155	/* record memcg information */
2156	if (do_swap_account && swapout && memcg) {
2157		swap_cgroup_record(ent, css_id(&memcg->css));
2158		mem_cgroup_get(memcg);
2159	}
2160	if (swapout && memcg)
2161		css_put(&memcg->css);
2162}
2163#endif
2164
2165#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2166/*
2167 * called from swap_entry_free(). remove record in swap_cgroup and
2168 * uncharge "memsw" account.
2169 */
2170void mem_cgroup_uncharge_swap(swp_entry_t ent)
2171{
2172	struct mem_cgroup *memcg;
2173	unsigned short id;
2174
2175	if (!do_swap_account)
2176		return;
2177
2178	id = swap_cgroup_record(ent, 0);
2179	rcu_read_lock();
2180	memcg = mem_cgroup_lookup(id);
2181	if (memcg) {
2182		/*
2183		 * We uncharge this because swap is freed.
2184		 * This memcg can be obsolete one. We avoid calling css_tryget
2185		 */
2186		if (!mem_cgroup_is_root(memcg))
2187			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2188		mem_cgroup_swap_statistics(memcg, false);
2189		mem_cgroup_put(memcg);
2190	}
2191	rcu_read_unlock();
2192}
2193#endif
2194
2195/*
2196 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2197 * page belongs to.
2198 */
2199int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2200{
2201	struct page_cgroup *pc;
2202	struct mem_cgroup *mem = NULL;
2203	int ret = 0;
2204
2205	if (mem_cgroup_disabled())
2206		return 0;
2207
2208	pc = lookup_page_cgroup(page);
2209	lock_page_cgroup(pc);
2210	if (PageCgroupUsed(pc)) {
2211		mem = pc->mem_cgroup;
2212		css_get(&mem->css);
2213	}
2214	unlock_page_cgroup(pc);
2215
2216	if (mem) {
2217		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2218						page);
2219		css_put(&mem->css);
2220	}
2221	*ptr = mem;
2222	return ret;
2223}
2224
2225/* remove redundant charge if migration failed*/
2226void mem_cgroup_end_migration(struct mem_cgroup *mem,
2227		struct page *oldpage, struct page *newpage)
2228{
2229	struct page *target, *unused;
2230	struct page_cgroup *pc;
2231	enum charge_type ctype;
2232
2233	if (!mem)
2234		return;
2235	cgroup_exclude_rmdir(&mem->css);
2236	/* at migration success, oldpage->mapping is NULL. */
2237	if (oldpage->mapping) {
2238		target = oldpage;
2239		unused = NULL;
2240	} else {
2241		target = newpage;
2242		unused = oldpage;
2243	}
2244
2245	if (PageAnon(target))
2246		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2247	else if (page_is_file_cache(target))
2248		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2249	else
2250		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2251
2252	/* unused page is not on radix-tree now. */
2253	if (unused)
2254		__mem_cgroup_uncharge_common(unused, ctype);
2255
2256	pc = lookup_page_cgroup(target);
2257	/*
2258	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2259	 * So, double-counting is effectively avoided.
2260	 */
2261	__mem_cgroup_commit_charge(mem, pc, ctype);
2262
2263	/*
2264	 * Both of oldpage and newpage are still under lock_page().
2265	 * Then, we don't have to care about race in radix-tree.
2266	 * But we have to be careful that this page is unmapped or not.
2267	 *
2268	 * There is a case for !page_mapped(). At the start of
2269	 * migration, oldpage was mapped. But now, it's zapped.
2270	 * But we know *target* page is not freed/reused under us.
2271	 * mem_cgroup_uncharge_page() does all necessary checks.
2272	 */
2273	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2274		mem_cgroup_uncharge_page(target);
2275	/*
2276	 * At migration, we may charge account against cgroup which has no tasks
2277	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2278	 * In that case, we need to call pre_destroy() again. check it here.
2279	 */
2280	cgroup_release_and_wakeup_rmdir(&mem->css);
2281}
2282
2283/*
2284 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2285 * Calling hierarchical_reclaim is not enough because we should update
2286 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2287 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2288 * not from the memcg which this page would be charged to.
2289 * try_charge_swapin does all of these works properly.
2290 */
2291int mem_cgroup_shmem_charge_fallback(struct page *page,
2292			    struct mm_struct *mm,
2293			    gfp_t gfp_mask)
2294{
2295	struct mem_cgroup *mem = NULL;
2296	int ret;
2297
2298	if (mem_cgroup_disabled())
2299		return 0;
2300
2301	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2302	if (!ret)
2303		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2304
2305	return ret;
2306}
2307
2308static DEFINE_MUTEX(set_limit_mutex);
2309
2310static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2311				unsigned long long val)
2312{
2313	int retry_count;
2314	u64 memswlimit;
2315	int ret = 0;
2316	int children = mem_cgroup_count_children(memcg);
2317	u64 curusage, oldusage;
2318
2319	/*
2320	 * For keeping hierarchical_reclaim simple, how long we should retry
2321	 * is depends on callers. We set our retry-count to be function
2322	 * of # of children which we should visit in this loop.
2323	 */
2324	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2325
2326	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2327
2328	while (retry_count) {
2329		if (signal_pending(current)) {
2330			ret = -EINTR;
2331			break;
2332		}
2333		/*
2334		 * Rather than hide all in some function, I do this in
2335		 * open coded manner. You see what this really does.
2336		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2337		 */
2338		mutex_lock(&set_limit_mutex);
2339		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2340		if (memswlimit < val) {
2341			ret = -EINVAL;
2342			mutex_unlock(&set_limit_mutex);
2343			break;
2344		}
2345		ret = res_counter_set_limit(&memcg->res, val);
2346		if (!ret) {
2347			if (memswlimit == val)
2348				memcg->memsw_is_minimum = true;
2349			else
2350				memcg->memsw_is_minimum = false;
2351		}
2352		mutex_unlock(&set_limit_mutex);
2353
2354		if (!ret)
2355			break;
2356
2357		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2358						MEM_CGROUP_RECLAIM_SHRINK);
2359		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2360		/* Usage is reduced ? */
2361  		if (curusage >= oldusage)
2362			retry_count--;
2363		else
2364			oldusage = curusage;
2365	}
2366
2367	return ret;
2368}
2369
2370static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2371					unsigned long long val)
2372{
2373	int retry_count;
2374	u64 memlimit, oldusage, curusage;
2375	int children = mem_cgroup_count_children(memcg);
2376	int ret = -EBUSY;
2377
2378	/* see mem_cgroup_resize_res_limit */
2379 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2380	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2381	while (retry_count) {
2382		if (signal_pending(current)) {
2383			ret = -EINTR;
2384			break;
2385		}
2386		/*
2387		 * Rather than hide all in some function, I do this in
2388		 * open coded manner. You see what this really does.
2389		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2390		 */
2391		mutex_lock(&set_limit_mutex);
2392		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2393		if (memlimit > val) {
2394			ret = -EINVAL;
2395			mutex_unlock(&set_limit_mutex);
2396			break;
2397		}
2398		ret = res_counter_set_limit(&memcg->memsw, val);
2399		if (!ret) {
2400			if (memlimit == val)
2401				memcg->memsw_is_minimum = true;
2402			else
2403				memcg->memsw_is_minimum = false;
2404		}
2405		mutex_unlock(&set_limit_mutex);
2406
2407		if (!ret)
2408			break;
2409
2410		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2411						MEM_CGROUP_RECLAIM_NOSWAP |
2412						MEM_CGROUP_RECLAIM_SHRINK);
2413		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2414		/* Usage is reduced ? */
2415		if (curusage >= oldusage)
2416			retry_count--;
2417		else
2418			oldusage = curusage;
2419	}
2420	return ret;
2421}
2422
2423unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2424						gfp_t gfp_mask, int nid,
2425						int zid)
2426{
2427	unsigned long nr_reclaimed = 0;
2428	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2429	unsigned long reclaimed;
2430	int loop = 0;
2431	struct mem_cgroup_tree_per_zone *mctz;
2432	unsigned long long excess;
2433
2434	if (order > 0)
2435		return 0;
2436
2437	mctz = soft_limit_tree_node_zone(nid, zid);
2438	/*
2439	 * This loop can run a while, specially if mem_cgroup's continuously
2440	 * keep exceeding their soft limit and putting the system under
2441	 * pressure
2442	 */
2443	do {
2444		if (next_mz)
2445			mz = next_mz;
2446		else
2447			mz = mem_cgroup_largest_soft_limit_node(mctz);
2448		if (!mz)
2449			break;
2450
2451		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2452						gfp_mask,
2453						MEM_CGROUP_RECLAIM_SOFT);
2454		nr_reclaimed += reclaimed;
2455		spin_lock(&mctz->lock);
2456
2457		/*
2458		 * If we failed to reclaim anything from this memory cgroup
2459		 * it is time to move on to the next cgroup
2460		 */
2461		next_mz = NULL;
2462		if (!reclaimed) {
2463			do {
2464				/*
2465				 * Loop until we find yet another one.
2466				 *
2467				 * By the time we get the soft_limit lock
2468				 * again, someone might have aded the
2469				 * group back on the RB tree. Iterate to
2470				 * make sure we get a different mem.
2471				 * mem_cgroup_largest_soft_limit_node returns
2472				 * NULL if no other cgroup is present on
2473				 * the tree
2474				 */
2475				next_mz =
2476				__mem_cgroup_largest_soft_limit_node(mctz);
2477				if (next_mz == mz) {
2478					css_put(&next_mz->mem->css);
2479					next_mz = NULL;
2480				} else /* next_mz == NULL or other memcg */
2481					break;
2482			} while (1);
2483		}
2484		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2485		excess = res_counter_soft_limit_excess(&mz->mem->res);
2486		/*
2487		 * One school of thought says that we should not add
2488		 * back the node to the tree if reclaim returns 0.
2489		 * But our reclaim could return 0, simply because due
2490		 * to priority we are exposing a smaller subset of
2491		 * memory to reclaim from. Consider this as a longer
2492		 * term TODO.
2493		 */
2494		/* If excess == 0, no tree ops */
2495		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2496		spin_unlock(&mctz->lock);
2497		css_put(&mz->mem->css);
2498		loop++;
2499		/*
2500		 * Could not reclaim anything and there are no more
2501		 * mem cgroups to try or we seem to be looping without
2502		 * reclaiming anything.
2503		 */
2504		if (!nr_reclaimed &&
2505			(next_mz == NULL ||
2506			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2507			break;
2508	} while (!nr_reclaimed);
2509	if (next_mz)
2510		css_put(&next_mz->mem->css);
2511	return nr_reclaimed;
2512}
2513
2514/*
2515 * This routine traverse page_cgroup in given list and drop them all.
2516 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2517 */
2518static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2519				int node, int zid, enum lru_list lru)
2520{
2521	struct zone *zone;
2522	struct mem_cgroup_per_zone *mz;
2523	struct page_cgroup *pc, *busy;
2524	unsigned long flags, loop;
2525	struct list_head *list;
2526	int ret = 0;
2527
2528	zone = &NODE_DATA(node)->node_zones[zid];
2529	mz = mem_cgroup_zoneinfo(mem, node, zid);
2530	list = &mz->lists[lru];
2531
2532	loop = MEM_CGROUP_ZSTAT(mz, lru);
2533	/* give some margin against EBUSY etc...*/
2534	loop += 256;
2535	busy = NULL;
2536	while (loop--) {
2537		ret = 0;
2538		spin_lock_irqsave(&zone->lru_lock, flags);
2539		if (list_empty(list)) {
2540			spin_unlock_irqrestore(&zone->lru_lock, flags);
2541			break;
2542		}
2543		pc = list_entry(list->prev, struct page_cgroup, lru);
2544		if (busy == pc) {
2545			list_move(&pc->lru, list);
2546			busy = 0;
2547			spin_unlock_irqrestore(&zone->lru_lock, flags);
2548			continue;
2549		}
2550		spin_unlock_irqrestore(&zone->lru_lock, flags);
2551
2552		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2553		if (ret == -ENOMEM)
2554			break;
2555
2556		if (ret == -EBUSY || ret == -EINVAL) {
2557			/* found lock contention or "pc" is obsolete. */
2558			busy = pc;
2559			cond_resched();
2560		} else
2561			busy = NULL;
2562	}
2563
2564	if (!ret && !list_empty(list))
2565		return -EBUSY;
2566	return ret;
2567}
2568
2569/*
2570 * make mem_cgroup's charge to be 0 if there is no task.
2571 * This enables deleting this mem_cgroup.
2572 */
2573static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2574{
2575	int ret;
2576	int node, zid, shrink;
2577	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2578	struct cgroup *cgrp = mem->css.cgroup;
2579
2580	css_get(&mem->css);
2581
2582	shrink = 0;
2583	/* should free all ? */
2584	if (free_all)
2585		goto try_to_free;
2586move_account:
2587	while (mem->res.usage > 0) {
2588		ret = -EBUSY;
2589		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2590			goto out;
2591		ret = -EINTR;
2592		if (signal_pending(current))
2593			goto out;
2594		/* This is for making all *used* pages to be on LRU. */
2595		lru_add_drain_all();
2596		drain_all_stock_sync();
2597		ret = 0;
2598		for_each_node_state(node, N_HIGH_MEMORY) {
2599			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2600				enum lru_list l;
2601				for_each_lru(l) {
2602					ret = mem_cgroup_force_empty_list(mem,
2603							node, zid, l);
2604					if (ret)
2605						break;
2606				}
2607			}
2608			if (ret)
2609				break;
2610		}
2611		/* it seems parent cgroup doesn't have enough mem */
2612		if (ret == -ENOMEM)
2613			goto try_to_free;
2614		cond_resched();
2615	}
2616	ret = 0;
2617out:
2618	css_put(&mem->css);
2619	return ret;
2620
2621try_to_free:
2622	/* returns EBUSY if there is a task or if we come here twice. */
2623	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2624		ret = -EBUSY;
2625		goto out;
2626	}
2627	/* we call try-to-free pages for make this cgroup empty */
2628	lru_add_drain_all();
2629	/* try to free all pages in this cgroup */
2630	shrink = 1;
2631	while (nr_retries && mem->res.usage > 0) {
2632		int progress;
2633
2634		if (signal_pending(current)) {
2635			ret = -EINTR;
2636			goto out;
2637		}
2638		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2639						false, get_swappiness(mem));
2640		if (!progress) {
2641			nr_retries--;
2642			/* maybe some writeback is necessary */
2643			congestion_wait(BLK_RW_ASYNC, HZ/10);
2644		}
2645
2646	}
2647	lru_add_drain();
2648	/* try move_account...there may be some *locked* pages. */
2649	if (mem->res.usage)
2650		goto move_account;
2651	ret = 0;
2652	goto out;
2653}
2654
2655int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2656{
2657	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2658}
2659
2660
2661static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2662{
2663	return mem_cgroup_from_cont(cont)->use_hierarchy;
2664}
2665
2666static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2667					u64 val)
2668{
2669	int retval = 0;
2670	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2671	struct cgroup *parent = cont->parent;
2672	struct mem_cgroup *parent_mem = NULL;
2673
2674	if (parent)
2675		parent_mem = mem_cgroup_from_cont(parent);
2676
2677	cgroup_lock();
2678	/*
2679	 * If parent's use_hierarchy is set, we can't make any modifications
2680	 * in the child subtrees. If it is unset, then the change can
2681	 * occur, provided the current cgroup has no children.
2682	 *
2683	 * For the root cgroup, parent_mem is NULL, we allow value to be
2684	 * set if there are no children.
2685	 */
2686	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2687				(val == 1 || val == 0)) {
2688		if (list_empty(&cont->children))
2689			mem->use_hierarchy = val;
2690		else
2691			retval = -EBUSY;
2692	} else
2693		retval = -EINVAL;
2694	cgroup_unlock();
2695
2696	return retval;
2697}
2698
2699struct mem_cgroup_idx_data {
2700	s64 val;
2701	enum mem_cgroup_stat_index idx;
2702};
2703
2704static int
2705mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2706{
2707	struct mem_cgroup_idx_data *d = data;
2708	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2709	return 0;
2710}
2711
2712static void
2713mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2714				enum mem_cgroup_stat_index idx, s64 *val)
2715{
2716	struct mem_cgroup_idx_data d;
2717	d.idx = idx;
2718	d.val = 0;
2719	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2720	*val = d.val;
2721}
2722
2723static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2724{
2725	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2726	u64 idx_val, val;
2727	int type, name;
2728
2729	type = MEMFILE_TYPE(cft->private);
2730	name = MEMFILE_ATTR(cft->private);
2731	switch (type) {
2732	case _MEM:
2733		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2734			mem_cgroup_get_recursive_idx_stat(mem,
2735				MEM_CGROUP_STAT_CACHE, &idx_val);
2736			val = idx_val;
2737			mem_cgroup_get_recursive_idx_stat(mem,
2738				MEM_CGROUP_STAT_RSS, &idx_val);
2739			val += idx_val;
2740			val <<= PAGE_SHIFT;
2741		} else
2742			val = res_counter_read_u64(&mem->res, name);
2743		break;
2744	case _MEMSWAP:
2745		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2746			mem_cgroup_get_recursive_idx_stat(mem,
2747				MEM_CGROUP_STAT_CACHE, &idx_val);
2748			val = idx_val;
2749			mem_cgroup_get_recursive_idx_stat(mem,
2750				MEM_CGROUP_STAT_RSS, &idx_val);
2751			val += idx_val;
2752			mem_cgroup_get_recursive_idx_stat(mem,
2753				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2754			val += idx_val;
2755			val <<= PAGE_SHIFT;
2756		} else
2757			val = res_counter_read_u64(&mem->memsw, name);
2758		break;
2759	default:
2760		BUG();
2761		break;
2762	}
2763	return val;
2764}
2765/*
2766 * The user of this function is...
2767 * RES_LIMIT.
2768 */
2769static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2770			    const char *buffer)
2771{
2772	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2773	int type, name;
2774	unsigned long long val;
2775	int ret;
2776
2777	type = MEMFILE_TYPE(cft->private);
2778	name = MEMFILE_ATTR(cft->private);
2779	switch (name) {
2780	case RES_LIMIT:
2781		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2782			ret = -EINVAL;
2783			break;
2784		}
2785		/* This function does all necessary parse...reuse it */
2786		ret = res_counter_memparse_write_strategy(buffer, &val);
2787		if (ret)
2788			break;
2789		if (type == _MEM)
2790			ret = mem_cgroup_resize_limit(memcg, val);
2791		else
2792			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2793		break;
2794	case RES_SOFT_LIMIT:
2795		ret = res_counter_memparse_write_strategy(buffer, &val);
2796		if (ret)
2797			break;
2798		/*
2799		 * For memsw, soft limits are hard to implement in terms
2800		 * of semantics, for now, we support soft limits for
2801		 * control without swap
2802		 */
2803		if (type == _MEM)
2804			ret = res_counter_set_soft_limit(&memcg->res, val);
2805		else
2806			ret = -EINVAL;
2807		break;
2808	default:
2809		ret = -EINVAL; /* should be BUG() ? */
2810		break;
2811	}
2812	return ret;
2813}
2814
2815static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2816		unsigned long long *mem_limit, unsigned long long *memsw_limit)
2817{
2818	struct cgroup *cgroup;
2819	unsigned long long min_limit, min_memsw_limit, tmp;
2820
2821	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2822	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2823	cgroup = memcg->css.cgroup;
2824	if (!memcg->use_hierarchy)
2825		goto out;
2826
2827	while (cgroup->parent) {
2828		cgroup = cgroup->parent;
2829		memcg = mem_cgroup_from_cont(cgroup);
2830		if (!memcg->use_hierarchy)
2831			break;
2832		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2833		min_limit = min(min_limit, tmp);
2834		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2835		min_memsw_limit = min(min_memsw_limit, tmp);
2836	}
2837out:
2838	*mem_limit = min_limit;
2839	*memsw_limit = min_memsw_limit;
2840	return;
2841}
2842
2843static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2844{
2845	struct mem_cgroup *mem;
2846	int type, name;
2847
2848	mem = mem_cgroup_from_cont(cont);
2849	type = MEMFILE_TYPE(event);
2850	name = MEMFILE_ATTR(event);
2851	switch (name) {
2852	case RES_MAX_USAGE:
2853		if (type == _MEM)
2854			res_counter_reset_max(&mem->res);
2855		else
2856			res_counter_reset_max(&mem->memsw);
2857		break;
2858	case RES_FAILCNT:
2859		if (type == _MEM)
2860			res_counter_reset_failcnt(&mem->res);
2861		else
2862			res_counter_reset_failcnt(&mem->memsw);
2863		break;
2864	}
2865
2866	return 0;
2867}
2868
2869
2870/* For read statistics */
2871enum {
2872	MCS_CACHE,
2873	MCS_RSS,
2874	MCS_FILE_MAPPED,
2875	MCS_PGPGIN,
2876	MCS_PGPGOUT,
2877	MCS_SWAP,
2878	MCS_INACTIVE_ANON,
2879	MCS_ACTIVE_ANON,
2880	MCS_INACTIVE_FILE,
2881	MCS_ACTIVE_FILE,
2882	MCS_UNEVICTABLE,
2883	NR_MCS_STAT,
2884};
2885
2886struct mcs_total_stat {
2887	s64 stat[NR_MCS_STAT];
2888};
2889
2890struct {
2891	char *local_name;
2892	char *total_name;
2893} memcg_stat_strings[NR_MCS_STAT] = {
2894	{"cache", "total_cache"},
2895	{"rss", "total_rss"},
2896	{"mapped_file", "total_mapped_file"},
2897	{"pgpgin", "total_pgpgin"},
2898	{"pgpgout", "total_pgpgout"},
2899	{"swap", "total_swap"},
2900	{"inactive_anon", "total_inactive_anon"},
2901	{"active_anon", "total_active_anon"},
2902	{"inactive_file", "total_inactive_file"},
2903	{"active_file", "total_active_file"},
2904	{"unevictable", "total_unevictable"}
2905};
2906
2907
2908static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2909{
2910	struct mcs_total_stat *s = data;
2911	s64 val;
2912
2913	/* per cpu stat */
2914	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2915	s->stat[MCS_CACHE] += val * PAGE_SIZE;
2916	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2917	s->stat[MCS_RSS] += val * PAGE_SIZE;
2918	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
2919	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
2920	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2921	s->stat[MCS_PGPGIN] += val;
2922	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2923	s->stat[MCS_PGPGOUT] += val;
2924	if (do_swap_account) {
2925		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2926		s->stat[MCS_SWAP] += val * PAGE_SIZE;
2927	}
2928
2929	/* per zone stat */
2930	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2931	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2932	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2933	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2934	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2935	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2936	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2937	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2938	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2939	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2940	return 0;
2941}
2942
2943static void
2944mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2945{
2946	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2947}
2948
2949static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2950				 struct cgroup_map_cb *cb)
2951{
2952	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2953	struct mcs_total_stat mystat;
2954	int i;
2955
2956	memset(&mystat, 0, sizeof(mystat));
2957	mem_cgroup_get_local_stat(mem_cont, &mystat);
2958
2959	for (i = 0; i < NR_MCS_STAT; i++) {
2960		if (i == MCS_SWAP && !do_swap_account)
2961			continue;
2962		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2963	}
2964
2965	/* Hierarchical information */
2966	{
2967		unsigned long long limit, memsw_limit;
2968		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2969		cb->fill(cb, "hierarchical_memory_limit", limit);
2970		if (do_swap_account)
2971			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2972	}
2973
2974	memset(&mystat, 0, sizeof(mystat));
2975	mem_cgroup_get_total_stat(mem_cont, &mystat);
2976	for (i = 0; i < NR_MCS_STAT; i++) {
2977		if (i == MCS_SWAP && !do_swap_account)
2978			continue;
2979		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2980	}
2981
2982#ifdef CONFIG_DEBUG_VM
2983	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2984
2985	{
2986		int nid, zid;
2987		struct mem_cgroup_per_zone *mz;
2988		unsigned long recent_rotated[2] = {0, 0};
2989		unsigned long recent_scanned[2] = {0, 0};
2990
2991		for_each_online_node(nid)
2992			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2993				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2994
2995				recent_rotated[0] +=
2996					mz->reclaim_stat.recent_rotated[0];
2997				recent_rotated[1] +=
2998					mz->reclaim_stat.recent_rotated[1];
2999				recent_scanned[0] +=
3000					mz->reclaim_stat.recent_scanned[0];
3001				recent_scanned[1] +=
3002					mz->reclaim_stat.recent_scanned[1];
3003			}
3004		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3005		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3006		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3007		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3008	}
3009#endif
3010
3011	return 0;
3012}
3013
3014static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3015{
3016	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3017
3018	return get_swappiness(memcg);
3019}
3020
3021static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3022				       u64 val)
3023{
3024	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3025	struct mem_cgroup *parent;
3026
3027	if (val > 100)
3028		return -EINVAL;
3029
3030	if (cgrp->parent == NULL)
3031		return -EINVAL;
3032
3033	parent = mem_cgroup_from_cont(cgrp->parent);
3034
3035	cgroup_lock();
3036
3037	/* If under hierarchy, only empty-root can set this value */
3038	if ((parent->use_hierarchy) ||
3039	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3040		cgroup_unlock();
3041		return -EINVAL;
3042	}
3043
3044	spin_lock(&memcg->reclaim_param_lock);
3045	memcg->swappiness = val;
3046	spin_unlock(&memcg->reclaim_param_lock);
3047
3048	cgroup_unlock();
3049
3050	return 0;
3051}
3052
3053
3054static struct cftype mem_cgroup_files[] = {
3055	{
3056		.name = "usage_in_bytes",
3057		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3058		.read_u64 = mem_cgroup_read,
3059	},
3060	{
3061		.name = "max_usage_in_bytes",
3062		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3063		.trigger = mem_cgroup_reset,
3064		.read_u64 = mem_cgroup_read,
3065	},
3066	{
3067		.name = "limit_in_bytes",
3068		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3069		.write_string = mem_cgroup_write,
3070		.read_u64 = mem_cgroup_read,
3071	},
3072	{
3073		.name = "soft_limit_in_bytes",
3074		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3075		.write_string = mem_cgroup_write,
3076		.read_u64 = mem_cgroup_read,
3077	},
3078	{
3079		.name = "failcnt",
3080		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3081		.trigger = mem_cgroup_reset,
3082		.read_u64 = mem_cgroup_read,
3083	},
3084	{
3085		.name = "stat",
3086		.read_map = mem_control_stat_show,
3087	},
3088	{
3089		.name = "force_empty",
3090		.trigger = mem_cgroup_force_empty_write,
3091	},
3092	{
3093		.name = "use_hierarchy",
3094		.write_u64 = mem_cgroup_hierarchy_write,
3095		.read_u64 = mem_cgroup_hierarchy_read,
3096	},
3097	{
3098		.name = "swappiness",
3099		.read_u64 = mem_cgroup_swappiness_read,
3100		.write_u64 = mem_cgroup_swappiness_write,
3101	},
3102};
3103
3104#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3105static struct cftype memsw_cgroup_files[] = {
3106	{
3107		.name = "memsw.usage_in_bytes",
3108		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3109		.read_u64 = mem_cgroup_read,
3110	},
3111	{
3112		.name = "memsw.max_usage_in_bytes",
3113		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3114		.trigger = mem_cgroup_reset,
3115		.read_u64 = mem_cgroup_read,
3116	},
3117	{
3118		.name = "memsw.limit_in_bytes",
3119		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3120		.write_string = mem_cgroup_write,
3121		.read_u64 = mem_cgroup_read,
3122	},
3123	{
3124		.name = "memsw.failcnt",
3125		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3126		.trigger = mem_cgroup_reset,
3127		.read_u64 = mem_cgroup_read,
3128	},
3129};
3130
3131static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3132{
3133	if (!do_swap_account)
3134		return 0;
3135	return cgroup_add_files(cont, ss, memsw_cgroup_files,
3136				ARRAY_SIZE(memsw_cgroup_files));
3137};
3138#else
3139static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3140{
3141	return 0;
3142}
3143#endif
3144
3145static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3146{
3147	struct mem_cgroup_per_node *pn;
3148	struct mem_cgroup_per_zone *mz;
3149	enum lru_list l;
3150	int zone, tmp = node;
3151	/*
3152	 * This routine is called against possible nodes.
3153	 * But it's BUG to call kmalloc() against offline node.
3154	 *
3155	 * TODO: this routine can waste much memory for nodes which will
3156	 *       never be onlined. It's better to use memory hotplug callback
3157	 *       function.
3158	 */
3159	if (!node_state(node, N_NORMAL_MEMORY))
3160		tmp = -1;
3161	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3162	if (!pn)
3163		return 1;
3164
3165	mem->info.nodeinfo[node] = pn;
3166	memset(pn, 0, sizeof(*pn));
3167
3168	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3169		mz = &pn->zoneinfo[zone];
3170		for_each_lru(l)
3171			INIT_LIST_HEAD(&mz->lists[l]);
3172		mz->usage_in_excess = 0;
3173		mz->on_tree = false;
3174		mz->mem = mem;
3175	}
3176	return 0;
3177}
3178
3179static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3180{
3181	kfree(mem->info.nodeinfo[node]);
3182}
3183
3184static int mem_cgroup_size(void)
3185{
3186	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
3187	return sizeof(struct mem_cgroup) + cpustat_size;
3188}
3189
3190static struct mem_cgroup *mem_cgroup_alloc(void)
3191{
3192	struct mem_cgroup *mem;
3193	int size = mem_cgroup_size();
3194
3195	if (size < PAGE_SIZE)
3196		mem = kmalloc(size, GFP_KERNEL);
3197	else
3198		mem = vmalloc(size);
3199
3200	if (mem)
3201		memset(mem, 0, size);
3202	return mem;
3203}
3204
3205/*
3206 * At destroying mem_cgroup, references from swap_cgroup can remain.
3207 * (scanning all at force_empty is too costly...)
3208 *
3209 * Instead of clearing all references at force_empty, we remember
3210 * the number of reference from swap_cgroup and free mem_cgroup when
3211 * it goes down to 0.
3212 *
3213 * Removal of cgroup itself succeeds regardless of refs from swap.
3214 */
3215
3216static void __mem_cgroup_free(struct mem_cgroup *mem)
3217{
3218	int node;
3219
3220	mem_cgroup_remove_from_trees(mem);
3221	free_css_id(&mem_cgroup_subsys, &mem->css);
3222
3223	for_each_node_state(node, N_POSSIBLE)
3224		free_mem_cgroup_per_zone_info(mem, node);
3225
3226	if (mem_cgroup_size() < PAGE_SIZE)
3227		kfree(mem);
3228	else
3229		vfree(mem);
3230}
3231
3232static void mem_cgroup_get(struct mem_cgroup *mem)
3233{
3234	atomic_inc(&mem->refcnt);
3235}
3236
3237static void mem_cgroup_put(struct mem_cgroup *mem)
3238{
3239	if (atomic_dec_and_test(&mem->refcnt)) {
3240		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3241		__mem_cgroup_free(mem);
3242		if (parent)
3243			mem_cgroup_put(parent);
3244	}
3245}
3246
3247/*
3248 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3249 */
3250static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3251{
3252	if (!mem->res.parent)
3253		return NULL;
3254	return mem_cgroup_from_res_counter(mem->res.parent, res);
3255}
3256
3257#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3258static void __init enable_swap_cgroup(void)
3259{
3260	if (!mem_cgroup_disabled() && really_do_swap_account)
3261		do_swap_account = 1;
3262}
3263#else
3264static void __init enable_swap_cgroup(void)
3265{
3266}
3267#endif
3268
3269static int mem_cgroup_soft_limit_tree_init(void)
3270{
3271	struct mem_cgroup_tree_per_node *rtpn;
3272	struct mem_cgroup_tree_per_zone *rtpz;
3273	int tmp, node, zone;
3274
3275	for_each_node_state(node, N_POSSIBLE) {
3276		tmp = node;
3277		if (!node_state(node, N_NORMAL_MEMORY))
3278			tmp = -1;
3279		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3280		if (!rtpn)
3281			return 1;
3282
3283		soft_limit_tree.rb_tree_per_node[node] = rtpn;
3284
3285		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3286			rtpz = &rtpn->rb_tree_per_zone[zone];
3287			rtpz->rb_root = RB_ROOT;
3288			spin_lock_init(&rtpz->lock);
3289		}
3290	}
3291	return 0;
3292}
3293
3294static struct cgroup_subsys_state * __ref
3295mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3296{
3297	struct mem_cgroup *mem, *parent;
3298	long error = -ENOMEM;
3299	int node;
3300
3301	mem = mem_cgroup_alloc();
3302	if (!mem)
3303		return ERR_PTR(error);
3304
3305	for_each_node_state(node, N_POSSIBLE)
3306		if (alloc_mem_cgroup_per_zone_info(mem, node))
3307			goto free_out;
3308
3309	/* root ? */
3310	if (cont->parent == NULL) {
3311		int cpu;
3312		enable_swap_cgroup();
3313		parent = NULL;
3314		root_mem_cgroup = mem;
3315		if (mem_cgroup_soft_limit_tree_init())
3316			goto free_out;
3317		for_each_possible_cpu(cpu) {
3318			struct memcg_stock_pcp *stock =
3319						&per_cpu(memcg_stock, cpu);
3320			INIT_WORK(&stock->work, drain_local_stock);
3321		}
3322		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3323
3324	} else {
3325		parent = mem_cgroup_from_cont(cont->parent);
3326		mem->use_hierarchy = parent->use_hierarchy;
3327	}
3328
3329	if (parent && parent->use_hierarchy) {
3330		res_counter_init(&mem->res, &parent->res);
3331		res_counter_init(&mem->memsw, &parent->memsw);
3332		/*
3333		 * We increment refcnt of the parent to ensure that we can
3334		 * safely access it on res_counter_charge/uncharge.
3335		 * This refcnt will be decremented when freeing this
3336		 * mem_cgroup(see mem_cgroup_put).
3337		 */
3338		mem_cgroup_get(parent);
3339	} else {
3340		res_counter_init(&mem->res, NULL);
3341		res_counter_init(&mem->memsw, NULL);
3342	}
3343	mem->last_scanned_child = 0;
3344	spin_lock_init(&mem->reclaim_param_lock);
3345
3346	if (parent)
3347		mem->swappiness = get_swappiness(parent);
3348	atomic_set(&mem->refcnt, 1);
3349	return &mem->css;
3350free_out:
3351	__mem_cgroup_free(mem);
3352	root_mem_cgroup = NULL;
3353	return ERR_PTR(error);
3354}
3355
3356static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3357					struct cgroup *cont)
3358{
3359	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3360
3361	return mem_cgroup_force_empty(mem, false);
3362}
3363
3364static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3365				struct cgroup *cont)
3366{
3367	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3368
3369	mem_cgroup_put(mem);
3370}
3371
3372static int mem_cgroup_populate(struct cgroup_subsys *ss,
3373				struct cgroup *cont)
3374{
3375	int ret;
3376
3377	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3378				ARRAY_SIZE(mem_cgroup_files));
3379
3380	if (!ret)
3381		ret = register_memsw_files(cont, ss);
3382	return ret;
3383}
3384
3385static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3386				struct cgroup *cont,
3387				struct cgroup *old_cont,
3388				struct task_struct *p,
3389				bool threadgroup)
3390{
3391	/*
3392	 * FIXME: It's better to move charges of this process from old
3393	 * memcg to new memcg. But it's just on TODO-List now.
3394	 */
3395}
3396
3397struct cgroup_subsys mem_cgroup_subsys = {
3398	.name = "memory",
3399	.subsys_id = mem_cgroup_subsys_id,
3400	.create = mem_cgroup_create,
3401	.pre_destroy = mem_cgroup_pre_destroy,
3402	.destroy = mem_cgroup_destroy,
3403	.populate = mem_cgroup_populate,
3404	.attach = mem_cgroup_move_task,
3405	.early_init = 0,
3406	.use_id = 1,
3407};
3408
3409#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3410
3411static int __init disable_swap_account(char *s)
3412{
3413	really_do_swap_account = 0;
3414	return 1;
3415}
3416__setup("noswapaccount", disable_swap_account);
3417#endif
3418