memcontrol.c revision ad324e94475a04cfcdfdb11ad20f8ea81268e411
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account		(0)
74#endif
75
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90	/*
91	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92	 */
93	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100	/* incremented at every  pagein/pageout */
101	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103
104	MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108	s64 count[MEM_CGROUP_STAT_NSTATS];
109};
110
111/*
112 * per-zone information in memory controller.
113 */
114struct mem_cgroup_per_zone {
115	/*
116	 * spin_lock to protect the per cgroup LRU
117	 */
118	struct list_head	lists[NR_LRU_LISTS];
119	unsigned long		count[NR_LRU_LISTS];
120
121	struct zone_reclaim_stat reclaim_stat;
122	struct rb_node		tree_node;	/* RB tree node */
123	unsigned long long	usage_in_excess;/* Set to the value by which */
124						/* the soft limit is exceeded*/
125	bool			on_tree;
126	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127						/* use container_of	   */
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146	struct rb_root rb_root;
147	spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160struct mem_cgroup_threshold {
161	struct eventfd_ctx *eventfd;
162	u64 threshold;
163};
164
165/* For threshold */
166struct mem_cgroup_threshold_ary {
167	/* An array index points to threshold just below usage. */
168	int current_threshold;
169	/* Size of entries[] */
170	unsigned int size;
171	/* Array of thresholds */
172	struct mem_cgroup_threshold entries[0];
173};
174
175struct mem_cgroup_thresholds {
176	/* Primary thresholds array */
177	struct mem_cgroup_threshold_ary *primary;
178	/*
179	 * Spare threshold array.
180	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181	 * It must be able to store at least primary->size - 1 entries.
182	 */
183	struct mem_cgroup_threshold_ary *spare;
184};
185
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188	struct list_head list;
189	struct eventfd_ctx *eventfd;
190};
191
192static void mem_cgroup_threshold(struct mem_cgroup *mem);
193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206struct mem_cgroup {
207	struct cgroup_subsys_state css;
208	/*
209	 * the counter to account for memory usage
210	 */
211	struct res_counter res;
212	/*
213	 * the counter to account for mem+swap usage.
214	 */
215	struct res_counter memsw;
216	/*
217	 * Per cgroup active and inactive list, similar to the
218	 * per zone LRU lists.
219	 */
220	struct mem_cgroup_lru_info info;
221
222	/*
223	  protect against reclaim related member.
224	*/
225	spinlock_t reclaim_param_lock;
226
227	/*
228	 * While reclaiming in a hierarchy, we cache the last child we
229	 * reclaimed from.
230	 */
231	int last_scanned_child;
232	/*
233	 * Should the accounting and control be hierarchical, per subtree?
234	 */
235	bool use_hierarchy;
236	atomic_t	oom_lock;
237	atomic_t	refcnt;
238
239	unsigned int	swappiness;
240	/* OOM-Killer disable */
241	int		oom_kill_disable;
242
243	/* set when res.limit == memsw.limit */
244	bool		memsw_is_minimum;
245
246	/* protect arrays of thresholds */
247	struct mutex thresholds_lock;
248
249	/* thresholds for memory usage. RCU-protected */
250	struct mem_cgroup_thresholds thresholds;
251
252	/* thresholds for mem+swap usage. RCU-protected */
253	struct mem_cgroup_thresholds memsw_thresholds;
254
255	/* For oom notifier event fd */
256	struct list_head oom_notify;
257
258	/*
259	 * Should we move charges of a task when a task is moved into this
260	 * mem_cgroup ? And what type of charges should we move ?
261	 */
262	unsigned long 	move_charge_at_immigrate;
263	/*
264	 * percpu counter.
265	 */
266	struct mem_cgroup_stat_cpu *stat;
267	/*
268	 * used when a cpu is offlined or other synchronizations
269	 * See mem_cgroup_read_stat().
270	 */
271	struct mem_cgroup_stat_cpu nocpu_base;
272	spinlock_t pcp_counter_lock;
273};
274
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
281	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283	NR_MOVE_TYPE,
284};
285
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
288	spinlock_t	  lock; /* for from, to */
289	struct mem_cgroup *from;
290	struct mem_cgroup *to;
291	unsigned long precharge;
292	unsigned long moved_charge;
293	unsigned long moved_swap;
294	struct task_struct *moving_task;	/* a task moving charges */
295	wait_queue_head_t waitq;		/* a waitq for other context */
296} mc = {
297	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
300
301static bool move_anon(void)
302{
303	return test_bit(MOVE_CHARGE_TYPE_ANON,
304					&mc.to->move_charge_at_immigrate);
305}
306
307static bool move_file(void)
308{
309	return test_bit(MOVE_CHARGE_TYPE_FILE,
310					&mc.to->move_charge_at_immigrate);
311}
312
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
318#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
319
320enum charge_type {
321	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
325	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
326	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327	NR_CHARGE_TYPE,
328};
329
330/* for encoding cft->private value on file */
331#define _MEM			(0)
332#define _MEMSWAP		(1)
333#define _OOM_TYPE		(2)
334#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
335#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
336#define MEMFILE_ATTR(val)	((val) & 0xffff)
337/* Used for OOM nofiier */
338#define OOM_CONTROL		(0)
339
340/*
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
342 */
343#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
344#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
346#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
348#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349
350static void mem_cgroup_get(struct mem_cgroup *mem);
351static void mem_cgroup_put(struct mem_cgroup *mem);
352static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353static void drain_all_stock_async(void);
354
355static struct mem_cgroup_per_zone *
356mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357{
358	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359}
360
361struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362{
363	return &mem->css;
364}
365
366static struct mem_cgroup_per_zone *
367page_cgroup_zoneinfo(struct page_cgroup *pc)
368{
369	struct mem_cgroup *mem = pc->mem_cgroup;
370	int nid = page_cgroup_nid(pc);
371	int zid = page_cgroup_zid(pc);
372
373	return mem_cgroup_zoneinfo(mem, nid, zid);
374}
375
376static struct mem_cgroup_tree_per_zone *
377soft_limit_tree_node_zone(int nid, int zid)
378{
379	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
380}
381
382static struct mem_cgroup_tree_per_zone *
383soft_limit_tree_from_page(struct page *page)
384{
385	int nid = page_to_nid(page);
386	int zid = page_zonenum(page);
387
388	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
389}
390
391static void
392__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
393				struct mem_cgroup_per_zone *mz,
394				struct mem_cgroup_tree_per_zone *mctz,
395				unsigned long long new_usage_in_excess)
396{
397	struct rb_node **p = &mctz->rb_root.rb_node;
398	struct rb_node *parent = NULL;
399	struct mem_cgroup_per_zone *mz_node;
400
401	if (mz->on_tree)
402		return;
403
404	mz->usage_in_excess = new_usage_in_excess;
405	if (!mz->usage_in_excess)
406		return;
407	while (*p) {
408		parent = *p;
409		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
410					tree_node);
411		if (mz->usage_in_excess < mz_node->usage_in_excess)
412			p = &(*p)->rb_left;
413		/*
414		 * We can't avoid mem cgroups that are over their soft
415		 * limit by the same amount
416		 */
417		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
418			p = &(*p)->rb_right;
419	}
420	rb_link_node(&mz->tree_node, parent, p);
421	rb_insert_color(&mz->tree_node, &mctz->rb_root);
422	mz->on_tree = true;
423}
424
425static void
426__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
427				struct mem_cgroup_per_zone *mz,
428				struct mem_cgroup_tree_per_zone *mctz)
429{
430	if (!mz->on_tree)
431		return;
432	rb_erase(&mz->tree_node, &mctz->rb_root);
433	mz->on_tree = false;
434}
435
436static void
437mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438				struct mem_cgroup_per_zone *mz,
439				struct mem_cgroup_tree_per_zone *mctz)
440{
441	spin_lock(&mctz->lock);
442	__mem_cgroup_remove_exceeded(mem, mz, mctz);
443	spin_unlock(&mctz->lock);
444}
445
446
447static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
448{
449	unsigned long long excess;
450	struct mem_cgroup_per_zone *mz;
451	struct mem_cgroup_tree_per_zone *mctz;
452	int nid = page_to_nid(page);
453	int zid = page_zonenum(page);
454	mctz = soft_limit_tree_from_page(page);
455
456	/*
457	 * Necessary to update all ancestors when hierarchy is used.
458	 * because their event counter is not touched.
459	 */
460	for (; mem; mem = parent_mem_cgroup(mem)) {
461		mz = mem_cgroup_zoneinfo(mem, nid, zid);
462		excess = res_counter_soft_limit_excess(&mem->res);
463		/*
464		 * We have to update the tree if mz is on RB-tree or
465		 * mem is over its softlimit.
466		 */
467		if (excess || mz->on_tree) {
468			spin_lock(&mctz->lock);
469			/* if on-tree, remove it */
470			if (mz->on_tree)
471				__mem_cgroup_remove_exceeded(mem, mz, mctz);
472			/*
473			 * Insert again. mz->usage_in_excess will be updated.
474			 * If excess is 0, no tree ops.
475			 */
476			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
477			spin_unlock(&mctz->lock);
478		}
479	}
480}
481
482static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
483{
484	int node, zone;
485	struct mem_cgroup_per_zone *mz;
486	struct mem_cgroup_tree_per_zone *mctz;
487
488	for_each_node_state(node, N_POSSIBLE) {
489		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
490			mz = mem_cgroup_zoneinfo(mem, node, zone);
491			mctz = soft_limit_tree_node_zone(node, zone);
492			mem_cgroup_remove_exceeded(mem, mz, mctz);
493		}
494	}
495}
496
497static struct mem_cgroup_per_zone *
498__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
499{
500	struct rb_node *rightmost = NULL;
501	struct mem_cgroup_per_zone *mz;
502
503retry:
504	mz = NULL;
505	rightmost = rb_last(&mctz->rb_root);
506	if (!rightmost)
507		goto done;		/* Nothing to reclaim from */
508
509	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
510	/*
511	 * Remove the node now but someone else can add it back,
512	 * we will to add it back at the end of reclaim to its correct
513	 * position in the tree.
514	 */
515	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
516	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
517		!css_tryget(&mz->mem->css))
518		goto retry;
519done:
520	return mz;
521}
522
523static struct mem_cgroup_per_zone *
524mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526	struct mem_cgroup_per_zone *mz;
527
528	spin_lock(&mctz->lock);
529	mz = __mem_cgroup_largest_soft_limit_node(mctz);
530	spin_unlock(&mctz->lock);
531	return mz;
532}
533
534/*
535 * Implementation Note: reading percpu statistics for memcg.
536 *
537 * Both of vmstat[] and percpu_counter has threshold and do periodic
538 * synchronization to implement "quick" read. There are trade-off between
539 * reading cost and precision of value. Then, we may have a chance to implement
540 * a periodic synchronizion of counter in memcg's counter.
541 *
542 * But this _read() function is used for user interface now. The user accounts
543 * memory usage by memory cgroup and he _always_ requires exact value because
544 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
545 * have to visit all online cpus and make sum. So, for now, unnecessary
546 * synchronization is not implemented. (just implemented for cpu hotplug)
547 *
548 * If there are kernel internal actions which can make use of some not-exact
549 * value, and reading all cpu value can be performance bottleneck in some
550 * common workload, threashold and synchonization as vmstat[] should be
551 * implemented.
552 */
553static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
554		enum mem_cgroup_stat_index idx)
555{
556	int cpu;
557	s64 val = 0;
558
559	get_online_cpus();
560	for_each_online_cpu(cpu)
561		val += per_cpu(mem->stat->count[idx], cpu);
562#ifdef CONFIG_HOTPLUG_CPU
563	spin_lock(&mem->pcp_counter_lock);
564	val += mem->nocpu_base.count[idx];
565	spin_unlock(&mem->pcp_counter_lock);
566#endif
567	put_online_cpus();
568	return val;
569}
570
571static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
572{
573	s64 ret;
574
575	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
576	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
577	return ret;
578}
579
580static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
581					 bool charge)
582{
583	int val = (charge) ? 1 : -1;
584	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
585}
586
587static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
588					 bool file, int nr_pages)
589{
590	preempt_disable();
591
592	if (file)
593		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
594	else
595		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
596
597	/* pagein of a big page is an event. So, ignore page size */
598	if (nr_pages > 0)
599		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
600	else {
601		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
602		nr_pages = -nr_pages; /* for event */
603	}
604
605	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
606
607	preempt_enable();
608}
609
610static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
611					enum lru_list idx)
612{
613	int nid, zid;
614	struct mem_cgroup_per_zone *mz;
615	u64 total = 0;
616
617	for_each_online_node(nid)
618		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
619			mz = mem_cgroup_zoneinfo(mem, nid, zid);
620			total += MEM_CGROUP_ZSTAT(mz, idx);
621		}
622	return total;
623}
624
625static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
626{
627	s64 val;
628
629	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
630
631	return !(val & ((1 << event_mask_shift) - 1));
632}
633
634/*
635 * Check events in order.
636 *
637 */
638static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
639{
640	/* threshold event is triggered in finer grain than soft limit */
641	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
642		mem_cgroup_threshold(mem);
643		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
644			mem_cgroup_update_tree(mem, page);
645	}
646}
647
648static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
649{
650	return container_of(cgroup_subsys_state(cont,
651				mem_cgroup_subsys_id), struct mem_cgroup,
652				css);
653}
654
655struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
656{
657	/*
658	 * mm_update_next_owner() may clear mm->owner to NULL
659	 * if it races with swapoff, page migration, etc.
660	 * So this can be called with p == NULL.
661	 */
662	if (unlikely(!p))
663		return NULL;
664
665	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
666				struct mem_cgroup, css);
667}
668
669static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
670{
671	struct mem_cgroup *mem = NULL;
672
673	if (!mm)
674		return NULL;
675	/*
676	 * Because we have no locks, mm->owner's may be being moved to other
677	 * cgroup. We use css_tryget() here even if this looks
678	 * pessimistic (rather than adding locks here).
679	 */
680	rcu_read_lock();
681	do {
682		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
683		if (unlikely(!mem))
684			break;
685	} while (!css_tryget(&mem->css));
686	rcu_read_unlock();
687	return mem;
688}
689
690/* The caller has to guarantee "mem" exists before calling this */
691static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
692{
693	struct cgroup_subsys_state *css;
694	int found;
695
696	if (!mem) /* ROOT cgroup has the smallest ID */
697		return root_mem_cgroup; /*css_put/get against root is ignored*/
698	if (!mem->use_hierarchy) {
699		if (css_tryget(&mem->css))
700			return mem;
701		return NULL;
702	}
703	rcu_read_lock();
704	/*
705	 * searching a memory cgroup which has the smallest ID under given
706	 * ROOT cgroup. (ID >= 1)
707	 */
708	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
709	if (css && css_tryget(css))
710		mem = container_of(css, struct mem_cgroup, css);
711	else
712		mem = NULL;
713	rcu_read_unlock();
714	return mem;
715}
716
717static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
718					struct mem_cgroup *root,
719					bool cond)
720{
721	int nextid = css_id(&iter->css) + 1;
722	int found;
723	int hierarchy_used;
724	struct cgroup_subsys_state *css;
725
726	hierarchy_used = iter->use_hierarchy;
727
728	css_put(&iter->css);
729	/* If no ROOT, walk all, ignore hierarchy */
730	if (!cond || (root && !hierarchy_used))
731		return NULL;
732
733	if (!root)
734		root = root_mem_cgroup;
735
736	do {
737		iter = NULL;
738		rcu_read_lock();
739
740		css = css_get_next(&mem_cgroup_subsys, nextid,
741				&root->css, &found);
742		if (css && css_tryget(css))
743			iter = container_of(css, struct mem_cgroup, css);
744		rcu_read_unlock();
745		/* If css is NULL, no more cgroups will be found */
746		nextid = found + 1;
747	} while (css && !iter);
748
749	return iter;
750}
751/*
752 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
753 * be careful that "break" loop is not allowed. We have reference count.
754 * Instead of that modify "cond" to be false and "continue" to exit the loop.
755 */
756#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
757	for (iter = mem_cgroup_start_loop(root);\
758	     iter != NULL;\
759	     iter = mem_cgroup_get_next(iter, root, cond))
760
761#define for_each_mem_cgroup_tree(iter, root) \
762	for_each_mem_cgroup_tree_cond(iter, root, true)
763
764#define for_each_mem_cgroup_all(iter) \
765	for_each_mem_cgroup_tree_cond(iter, NULL, true)
766
767
768static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
769{
770	return (mem == root_mem_cgroup);
771}
772
773/*
774 * Following LRU functions are allowed to be used without PCG_LOCK.
775 * Operations are called by routine of global LRU independently from memcg.
776 * What we have to take care of here is validness of pc->mem_cgroup.
777 *
778 * Changes to pc->mem_cgroup happens when
779 * 1. charge
780 * 2. moving account
781 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
782 * It is added to LRU before charge.
783 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
784 * When moving account, the page is not on LRU. It's isolated.
785 */
786
787void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
788{
789	struct page_cgroup *pc;
790	struct mem_cgroup_per_zone *mz;
791
792	if (mem_cgroup_disabled())
793		return;
794	pc = lookup_page_cgroup(page);
795	/* can happen while we handle swapcache. */
796	if (!TestClearPageCgroupAcctLRU(pc))
797		return;
798	VM_BUG_ON(!pc->mem_cgroup);
799	/*
800	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
801	 * removed from global LRU.
802	 */
803	mz = page_cgroup_zoneinfo(pc);
804	/* huge page split is done under lru_lock. so, we have no races. */
805	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
806	if (mem_cgroup_is_root(pc->mem_cgroup))
807		return;
808	VM_BUG_ON(list_empty(&pc->lru));
809	list_del_init(&pc->lru);
810}
811
812void mem_cgroup_del_lru(struct page *page)
813{
814	mem_cgroup_del_lru_list(page, page_lru(page));
815}
816
817/*
818 * Writeback is about to end against a page which has been marked for immediate
819 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
820 * inactive list.
821 */
822void mem_cgroup_rotate_reclaimable_page(struct page *page)
823{
824	struct mem_cgroup_per_zone *mz;
825	struct page_cgroup *pc;
826	enum lru_list lru = page_lru(page);
827
828	if (mem_cgroup_disabled())
829		return;
830
831	pc = lookup_page_cgroup(page);
832	/* unused or root page is not rotated. */
833	if (!PageCgroupUsed(pc))
834		return;
835	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
836	smp_rmb();
837	if (mem_cgroup_is_root(pc->mem_cgroup))
838		return;
839	mz = page_cgroup_zoneinfo(pc);
840	list_move_tail(&pc->lru, &mz->lists[lru]);
841}
842
843void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
844{
845	struct mem_cgroup_per_zone *mz;
846	struct page_cgroup *pc;
847
848	if (mem_cgroup_disabled())
849		return;
850
851	pc = lookup_page_cgroup(page);
852	/* unused or root page is not rotated. */
853	if (!PageCgroupUsed(pc))
854		return;
855	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
856	smp_rmb();
857	if (mem_cgroup_is_root(pc->mem_cgroup))
858		return;
859	mz = page_cgroup_zoneinfo(pc);
860	list_move(&pc->lru, &mz->lists[lru]);
861}
862
863void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
864{
865	struct page_cgroup *pc;
866	struct mem_cgroup_per_zone *mz;
867
868	if (mem_cgroup_disabled())
869		return;
870	pc = lookup_page_cgroup(page);
871	VM_BUG_ON(PageCgroupAcctLRU(pc));
872	if (!PageCgroupUsed(pc))
873		return;
874	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
875	smp_rmb();
876	mz = page_cgroup_zoneinfo(pc);
877	/* huge page split is done under lru_lock. so, we have no races. */
878	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
879	SetPageCgroupAcctLRU(pc);
880	if (mem_cgroup_is_root(pc->mem_cgroup))
881		return;
882	list_add(&pc->lru, &mz->lists[lru]);
883}
884
885/*
886 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
887 * lru because the page may.be reused after it's fully uncharged (because of
888 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
889 * it again. This function is only used to charge SwapCache. It's done under
890 * lock_page and expected that zone->lru_lock is never held.
891 */
892static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
893{
894	unsigned long flags;
895	struct zone *zone = page_zone(page);
896	struct page_cgroup *pc = lookup_page_cgroup(page);
897
898	spin_lock_irqsave(&zone->lru_lock, flags);
899	/*
900	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
901	 * is guarded by lock_page() because the page is SwapCache.
902	 */
903	if (!PageCgroupUsed(pc))
904		mem_cgroup_del_lru_list(page, page_lru(page));
905	spin_unlock_irqrestore(&zone->lru_lock, flags);
906}
907
908static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
909{
910	unsigned long flags;
911	struct zone *zone = page_zone(page);
912	struct page_cgroup *pc = lookup_page_cgroup(page);
913
914	spin_lock_irqsave(&zone->lru_lock, flags);
915	/* link when the page is linked to LRU but page_cgroup isn't */
916	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
917		mem_cgroup_add_lru_list(page, page_lru(page));
918	spin_unlock_irqrestore(&zone->lru_lock, flags);
919}
920
921
922void mem_cgroup_move_lists(struct page *page,
923			   enum lru_list from, enum lru_list to)
924{
925	if (mem_cgroup_disabled())
926		return;
927	mem_cgroup_del_lru_list(page, from);
928	mem_cgroup_add_lru_list(page, to);
929}
930
931int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
932{
933	int ret;
934	struct mem_cgroup *curr = NULL;
935	struct task_struct *p;
936
937	p = find_lock_task_mm(task);
938	if (!p)
939		return 0;
940	curr = try_get_mem_cgroup_from_mm(p->mm);
941	task_unlock(p);
942	if (!curr)
943		return 0;
944	/*
945	 * We should check use_hierarchy of "mem" not "curr". Because checking
946	 * use_hierarchy of "curr" here make this function true if hierarchy is
947	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
948	 * hierarchy(even if use_hierarchy is disabled in "mem").
949	 */
950	if (mem->use_hierarchy)
951		ret = css_is_ancestor(&curr->css, &mem->css);
952	else
953		ret = (curr == mem);
954	css_put(&curr->css);
955	return ret;
956}
957
958static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
959{
960	unsigned long active;
961	unsigned long inactive;
962	unsigned long gb;
963	unsigned long inactive_ratio;
964
965	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
966	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
967
968	gb = (inactive + active) >> (30 - PAGE_SHIFT);
969	if (gb)
970		inactive_ratio = int_sqrt(10 * gb);
971	else
972		inactive_ratio = 1;
973
974	if (present_pages) {
975		present_pages[0] = inactive;
976		present_pages[1] = active;
977	}
978
979	return inactive_ratio;
980}
981
982int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
983{
984	unsigned long active;
985	unsigned long inactive;
986	unsigned long present_pages[2];
987	unsigned long inactive_ratio;
988
989	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
990
991	inactive = present_pages[0];
992	active = present_pages[1];
993
994	if (inactive * inactive_ratio < active)
995		return 1;
996
997	return 0;
998}
999
1000int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1001{
1002	unsigned long active;
1003	unsigned long inactive;
1004
1005	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1006	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1007
1008	return (active > inactive);
1009}
1010
1011unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1012				       struct zone *zone,
1013				       enum lru_list lru)
1014{
1015	int nid = zone_to_nid(zone);
1016	int zid = zone_idx(zone);
1017	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1018
1019	return MEM_CGROUP_ZSTAT(mz, lru);
1020}
1021
1022struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1023						      struct zone *zone)
1024{
1025	int nid = zone_to_nid(zone);
1026	int zid = zone_idx(zone);
1027	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1028
1029	return &mz->reclaim_stat;
1030}
1031
1032struct zone_reclaim_stat *
1033mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1034{
1035	struct page_cgroup *pc;
1036	struct mem_cgroup_per_zone *mz;
1037
1038	if (mem_cgroup_disabled())
1039		return NULL;
1040
1041	pc = lookup_page_cgroup(page);
1042	if (!PageCgroupUsed(pc))
1043		return NULL;
1044	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1045	smp_rmb();
1046	mz = page_cgroup_zoneinfo(pc);
1047	if (!mz)
1048		return NULL;
1049
1050	return &mz->reclaim_stat;
1051}
1052
1053unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1054					struct list_head *dst,
1055					unsigned long *scanned, int order,
1056					int mode, struct zone *z,
1057					struct mem_cgroup *mem_cont,
1058					int active, int file)
1059{
1060	unsigned long nr_taken = 0;
1061	struct page *page;
1062	unsigned long scan;
1063	LIST_HEAD(pc_list);
1064	struct list_head *src;
1065	struct page_cgroup *pc, *tmp;
1066	int nid = zone_to_nid(z);
1067	int zid = zone_idx(z);
1068	struct mem_cgroup_per_zone *mz;
1069	int lru = LRU_FILE * file + active;
1070	int ret;
1071
1072	BUG_ON(!mem_cont);
1073	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1074	src = &mz->lists[lru];
1075
1076	scan = 0;
1077	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1078		if (scan >= nr_to_scan)
1079			break;
1080
1081		page = pc->page;
1082		if (unlikely(!PageCgroupUsed(pc)))
1083			continue;
1084		if (unlikely(!PageLRU(page)))
1085			continue;
1086
1087		scan++;
1088		ret = __isolate_lru_page(page, mode, file);
1089		switch (ret) {
1090		case 0:
1091			list_move(&page->lru, dst);
1092			mem_cgroup_del_lru(page);
1093			nr_taken += hpage_nr_pages(page);
1094			break;
1095		case -EBUSY:
1096			/* we don't affect global LRU but rotate in our LRU */
1097			mem_cgroup_rotate_lru_list(page, page_lru(page));
1098			break;
1099		default:
1100			break;
1101		}
1102	}
1103
1104	*scanned = scan;
1105
1106	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1107				      0, 0, 0, mode);
1108
1109	return nr_taken;
1110}
1111
1112#define mem_cgroup_from_res_counter(counter, member)	\
1113	container_of(counter, struct mem_cgroup, member)
1114
1115/**
1116 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1117 * @mem: the memory cgroup
1118 *
1119 * Returns the maximum amount of memory @mem can be charged with, in
1120 * bytes.
1121 */
1122static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1123{
1124	unsigned long long margin;
1125
1126	margin = res_counter_margin(&mem->res);
1127	if (do_swap_account)
1128		margin = min(margin, res_counter_margin(&mem->memsw));
1129	return margin;
1130}
1131
1132static unsigned int get_swappiness(struct mem_cgroup *memcg)
1133{
1134	struct cgroup *cgrp = memcg->css.cgroup;
1135	unsigned int swappiness;
1136
1137	/* root ? */
1138	if (cgrp->parent == NULL)
1139		return vm_swappiness;
1140
1141	spin_lock(&memcg->reclaim_param_lock);
1142	swappiness = memcg->swappiness;
1143	spin_unlock(&memcg->reclaim_param_lock);
1144
1145	return swappiness;
1146}
1147
1148static void mem_cgroup_start_move(struct mem_cgroup *mem)
1149{
1150	int cpu;
1151
1152	get_online_cpus();
1153	spin_lock(&mem->pcp_counter_lock);
1154	for_each_online_cpu(cpu)
1155		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1156	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1157	spin_unlock(&mem->pcp_counter_lock);
1158	put_online_cpus();
1159
1160	synchronize_rcu();
1161}
1162
1163static void mem_cgroup_end_move(struct mem_cgroup *mem)
1164{
1165	int cpu;
1166
1167	if (!mem)
1168		return;
1169	get_online_cpus();
1170	spin_lock(&mem->pcp_counter_lock);
1171	for_each_online_cpu(cpu)
1172		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1173	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1174	spin_unlock(&mem->pcp_counter_lock);
1175	put_online_cpus();
1176}
1177/*
1178 * 2 routines for checking "mem" is under move_account() or not.
1179 *
1180 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1181 *			  for avoiding race in accounting. If true,
1182 *			  pc->mem_cgroup may be overwritten.
1183 *
1184 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1185 *			  under hierarchy of moving cgroups. This is for
1186 *			  waiting at hith-memory prressure caused by "move".
1187 */
1188
1189static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1190{
1191	VM_BUG_ON(!rcu_read_lock_held());
1192	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1193}
1194
1195static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1196{
1197	struct mem_cgroup *from;
1198	struct mem_cgroup *to;
1199	bool ret = false;
1200	/*
1201	 * Unlike task_move routines, we access mc.to, mc.from not under
1202	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1203	 */
1204	spin_lock(&mc.lock);
1205	from = mc.from;
1206	to = mc.to;
1207	if (!from)
1208		goto unlock;
1209	if (from == mem || to == mem
1210	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1211	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1212		ret = true;
1213unlock:
1214	spin_unlock(&mc.lock);
1215	return ret;
1216}
1217
1218static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1219{
1220	if (mc.moving_task && current != mc.moving_task) {
1221		if (mem_cgroup_under_move(mem)) {
1222			DEFINE_WAIT(wait);
1223			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1224			/* moving charge context might have finished. */
1225			if (mc.moving_task)
1226				schedule();
1227			finish_wait(&mc.waitq, &wait);
1228			return true;
1229		}
1230	}
1231	return false;
1232}
1233
1234/**
1235 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1236 * @memcg: The memory cgroup that went over limit
1237 * @p: Task that is going to be killed
1238 *
1239 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1240 * enabled
1241 */
1242void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1243{
1244	struct cgroup *task_cgrp;
1245	struct cgroup *mem_cgrp;
1246	/*
1247	 * Need a buffer in BSS, can't rely on allocations. The code relies
1248	 * on the assumption that OOM is serialized for memory controller.
1249	 * If this assumption is broken, revisit this code.
1250	 */
1251	static char memcg_name[PATH_MAX];
1252	int ret;
1253
1254	if (!memcg || !p)
1255		return;
1256
1257
1258	rcu_read_lock();
1259
1260	mem_cgrp = memcg->css.cgroup;
1261	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1262
1263	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1264	if (ret < 0) {
1265		/*
1266		 * Unfortunately, we are unable to convert to a useful name
1267		 * But we'll still print out the usage information
1268		 */
1269		rcu_read_unlock();
1270		goto done;
1271	}
1272	rcu_read_unlock();
1273
1274	printk(KERN_INFO "Task in %s killed", memcg_name);
1275
1276	rcu_read_lock();
1277	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1278	if (ret < 0) {
1279		rcu_read_unlock();
1280		goto done;
1281	}
1282	rcu_read_unlock();
1283
1284	/*
1285	 * Continues from above, so we don't need an KERN_ level
1286	 */
1287	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1288done:
1289
1290	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1291		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1292		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1293		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1294	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1295		"failcnt %llu\n",
1296		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1297		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1298		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1299}
1300
1301/*
1302 * This function returns the number of memcg under hierarchy tree. Returns
1303 * 1(self count) if no children.
1304 */
1305static int mem_cgroup_count_children(struct mem_cgroup *mem)
1306{
1307	int num = 0;
1308	struct mem_cgroup *iter;
1309
1310	for_each_mem_cgroup_tree(iter, mem)
1311		num++;
1312	return num;
1313}
1314
1315/*
1316 * Return the memory (and swap, if configured) limit for a memcg.
1317 */
1318u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1319{
1320	u64 limit;
1321	u64 memsw;
1322
1323	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1324	limit += total_swap_pages << PAGE_SHIFT;
1325
1326	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1327	/*
1328	 * If memsw is finite and limits the amount of swap space available
1329	 * to this memcg, return that limit.
1330	 */
1331	return min(limit, memsw);
1332}
1333
1334/*
1335 * Visit the first child (need not be the first child as per the ordering
1336 * of the cgroup list, since we track last_scanned_child) of @mem and use
1337 * that to reclaim free pages from.
1338 */
1339static struct mem_cgroup *
1340mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1341{
1342	struct mem_cgroup *ret = NULL;
1343	struct cgroup_subsys_state *css;
1344	int nextid, found;
1345
1346	if (!root_mem->use_hierarchy) {
1347		css_get(&root_mem->css);
1348		ret = root_mem;
1349	}
1350
1351	while (!ret) {
1352		rcu_read_lock();
1353		nextid = root_mem->last_scanned_child + 1;
1354		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1355				   &found);
1356		if (css && css_tryget(css))
1357			ret = container_of(css, struct mem_cgroup, css);
1358
1359		rcu_read_unlock();
1360		/* Updates scanning parameter */
1361		spin_lock(&root_mem->reclaim_param_lock);
1362		if (!css) {
1363			/* this means start scan from ID:1 */
1364			root_mem->last_scanned_child = 0;
1365		} else
1366			root_mem->last_scanned_child = found;
1367		spin_unlock(&root_mem->reclaim_param_lock);
1368	}
1369
1370	return ret;
1371}
1372
1373/*
1374 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1375 * we reclaimed from, so that we don't end up penalizing one child extensively
1376 * based on its position in the children list.
1377 *
1378 * root_mem is the original ancestor that we've been reclaim from.
1379 *
1380 * We give up and return to the caller when we visit root_mem twice.
1381 * (other groups can be removed while we're walking....)
1382 *
1383 * If shrink==true, for avoiding to free too much, this returns immedieately.
1384 */
1385static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1386						struct zone *zone,
1387						gfp_t gfp_mask,
1388						unsigned long reclaim_options)
1389{
1390	struct mem_cgroup *victim;
1391	int ret, total = 0;
1392	int loop = 0;
1393	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1394	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1395	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1396	unsigned long excess;
1397
1398	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1399
1400	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1401	if (root_mem->memsw_is_minimum)
1402		noswap = true;
1403
1404	while (1) {
1405		victim = mem_cgroup_select_victim(root_mem);
1406		if (victim == root_mem) {
1407			loop++;
1408			if (loop >= 1)
1409				drain_all_stock_async();
1410			if (loop >= 2) {
1411				/*
1412				 * If we have not been able to reclaim
1413				 * anything, it might because there are
1414				 * no reclaimable pages under this hierarchy
1415				 */
1416				if (!check_soft || !total) {
1417					css_put(&victim->css);
1418					break;
1419				}
1420				/*
1421				 * We want to do more targetted reclaim.
1422				 * excess >> 2 is not to excessive so as to
1423				 * reclaim too much, nor too less that we keep
1424				 * coming back to reclaim from this cgroup
1425				 */
1426				if (total >= (excess >> 2) ||
1427					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1428					css_put(&victim->css);
1429					break;
1430				}
1431			}
1432		}
1433		if (!mem_cgroup_local_usage(victim)) {
1434			/* this cgroup's local usage == 0 */
1435			css_put(&victim->css);
1436			continue;
1437		}
1438		/* we use swappiness of local cgroup */
1439		if (check_soft)
1440			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1441				noswap, get_swappiness(victim), zone);
1442		else
1443			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1444						noswap, get_swappiness(victim));
1445		css_put(&victim->css);
1446		/*
1447		 * At shrinking usage, we can't check we should stop here or
1448		 * reclaim more. It's depends on callers. last_scanned_child
1449		 * will work enough for keeping fairness under tree.
1450		 */
1451		if (shrink)
1452			return ret;
1453		total += ret;
1454		if (check_soft) {
1455			if (!res_counter_soft_limit_excess(&root_mem->res))
1456				return total;
1457		} else if (mem_cgroup_margin(root_mem))
1458			return 1 + total;
1459	}
1460	return total;
1461}
1462
1463/*
1464 * Check OOM-Killer is already running under our hierarchy.
1465 * If someone is running, return false.
1466 */
1467static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1468{
1469	int x, lock_count = 0;
1470	struct mem_cgroup *iter;
1471
1472	for_each_mem_cgroup_tree(iter, mem) {
1473		x = atomic_inc_return(&iter->oom_lock);
1474		lock_count = max(x, lock_count);
1475	}
1476
1477	if (lock_count == 1)
1478		return true;
1479	return false;
1480}
1481
1482static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1483{
1484	struct mem_cgroup *iter;
1485
1486	/*
1487	 * When a new child is created while the hierarchy is under oom,
1488	 * mem_cgroup_oom_lock() may not be called. We have to use
1489	 * atomic_add_unless() here.
1490	 */
1491	for_each_mem_cgroup_tree(iter, mem)
1492		atomic_add_unless(&iter->oom_lock, -1, 0);
1493	return 0;
1494}
1495
1496
1497static DEFINE_MUTEX(memcg_oom_mutex);
1498static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1499
1500struct oom_wait_info {
1501	struct mem_cgroup *mem;
1502	wait_queue_t	wait;
1503};
1504
1505static int memcg_oom_wake_function(wait_queue_t *wait,
1506	unsigned mode, int sync, void *arg)
1507{
1508	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1509	struct oom_wait_info *oom_wait_info;
1510
1511	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1512
1513	if (oom_wait_info->mem == wake_mem)
1514		goto wakeup;
1515	/* if no hierarchy, no match */
1516	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1517		return 0;
1518	/*
1519	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1520	 * Then we can use css_is_ancestor without taking care of RCU.
1521	 */
1522	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1523	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1524		return 0;
1525
1526wakeup:
1527	return autoremove_wake_function(wait, mode, sync, arg);
1528}
1529
1530static void memcg_wakeup_oom(struct mem_cgroup *mem)
1531{
1532	/* for filtering, pass "mem" as argument. */
1533	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1534}
1535
1536static void memcg_oom_recover(struct mem_cgroup *mem)
1537{
1538	if (mem && atomic_read(&mem->oom_lock))
1539		memcg_wakeup_oom(mem);
1540}
1541
1542/*
1543 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1544 */
1545bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1546{
1547	struct oom_wait_info owait;
1548	bool locked, need_to_kill;
1549
1550	owait.mem = mem;
1551	owait.wait.flags = 0;
1552	owait.wait.func = memcg_oom_wake_function;
1553	owait.wait.private = current;
1554	INIT_LIST_HEAD(&owait.wait.task_list);
1555	need_to_kill = true;
1556	/* At first, try to OOM lock hierarchy under mem.*/
1557	mutex_lock(&memcg_oom_mutex);
1558	locked = mem_cgroup_oom_lock(mem);
1559	/*
1560	 * Even if signal_pending(), we can't quit charge() loop without
1561	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1562	 * under OOM is always welcomed, use TASK_KILLABLE here.
1563	 */
1564	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1565	if (!locked || mem->oom_kill_disable)
1566		need_to_kill = false;
1567	if (locked)
1568		mem_cgroup_oom_notify(mem);
1569	mutex_unlock(&memcg_oom_mutex);
1570
1571	if (need_to_kill) {
1572		finish_wait(&memcg_oom_waitq, &owait.wait);
1573		mem_cgroup_out_of_memory(mem, mask);
1574	} else {
1575		schedule();
1576		finish_wait(&memcg_oom_waitq, &owait.wait);
1577	}
1578	mutex_lock(&memcg_oom_mutex);
1579	mem_cgroup_oom_unlock(mem);
1580	memcg_wakeup_oom(mem);
1581	mutex_unlock(&memcg_oom_mutex);
1582
1583	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1584		return false;
1585	/* Give chance to dying process */
1586	schedule_timeout(1);
1587	return true;
1588}
1589
1590/*
1591 * Currently used to update mapped file statistics, but the routine can be
1592 * generalized to update other statistics as well.
1593 *
1594 * Notes: Race condition
1595 *
1596 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1597 * it tends to be costly. But considering some conditions, we doesn't need
1598 * to do so _always_.
1599 *
1600 * Considering "charge", lock_page_cgroup() is not required because all
1601 * file-stat operations happen after a page is attached to radix-tree. There
1602 * are no race with "charge".
1603 *
1604 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1605 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1606 * if there are race with "uncharge". Statistics itself is properly handled
1607 * by flags.
1608 *
1609 * Considering "move", this is an only case we see a race. To make the race
1610 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1611 * possibility of race condition. If there is, we take a lock.
1612 */
1613
1614void mem_cgroup_update_page_stat(struct page *page,
1615				 enum mem_cgroup_page_stat_item idx, int val)
1616{
1617	struct mem_cgroup *mem;
1618	struct page_cgroup *pc = lookup_page_cgroup(page);
1619	bool need_unlock = false;
1620	unsigned long uninitialized_var(flags);
1621
1622	if (unlikely(!pc))
1623		return;
1624
1625	rcu_read_lock();
1626	mem = pc->mem_cgroup;
1627	if (unlikely(!mem || !PageCgroupUsed(pc)))
1628		goto out;
1629	/* pc->mem_cgroup is unstable ? */
1630	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1631		/* take a lock against to access pc->mem_cgroup */
1632		move_lock_page_cgroup(pc, &flags);
1633		need_unlock = true;
1634		mem = pc->mem_cgroup;
1635		if (!mem || !PageCgroupUsed(pc))
1636			goto out;
1637	}
1638
1639	switch (idx) {
1640	case MEMCG_NR_FILE_MAPPED:
1641		if (val > 0)
1642			SetPageCgroupFileMapped(pc);
1643		else if (!page_mapped(page))
1644			ClearPageCgroupFileMapped(pc);
1645		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1646		break;
1647	default:
1648		BUG();
1649	}
1650
1651	this_cpu_add(mem->stat->count[idx], val);
1652
1653out:
1654	if (unlikely(need_unlock))
1655		move_unlock_page_cgroup(pc, &flags);
1656	rcu_read_unlock();
1657	return;
1658}
1659EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1660
1661/*
1662 * size of first charge trial. "32" comes from vmscan.c's magic value.
1663 * TODO: maybe necessary to use big numbers in big irons.
1664 */
1665#define CHARGE_SIZE	(32 * PAGE_SIZE)
1666struct memcg_stock_pcp {
1667	struct mem_cgroup *cached; /* this never be root cgroup */
1668	int charge;
1669	struct work_struct work;
1670};
1671static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1672static atomic_t memcg_drain_count;
1673
1674/*
1675 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1676 * from local stock and true is returned. If the stock is 0 or charges from a
1677 * cgroup which is not current target, returns false. This stock will be
1678 * refilled.
1679 */
1680static bool consume_stock(struct mem_cgroup *mem)
1681{
1682	struct memcg_stock_pcp *stock;
1683	bool ret = true;
1684
1685	stock = &get_cpu_var(memcg_stock);
1686	if (mem == stock->cached && stock->charge)
1687		stock->charge -= PAGE_SIZE;
1688	else /* need to call res_counter_charge */
1689		ret = false;
1690	put_cpu_var(memcg_stock);
1691	return ret;
1692}
1693
1694/*
1695 * Returns stocks cached in percpu to res_counter and reset cached information.
1696 */
1697static void drain_stock(struct memcg_stock_pcp *stock)
1698{
1699	struct mem_cgroup *old = stock->cached;
1700
1701	if (stock->charge) {
1702		res_counter_uncharge(&old->res, stock->charge);
1703		if (do_swap_account)
1704			res_counter_uncharge(&old->memsw, stock->charge);
1705	}
1706	stock->cached = NULL;
1707	stock->charge = 0;
1708}
1709
1710/*
1711 * This must be called under preempt disabled or must be called by
1712 * a thread which is pinned to local cpu.
1713 */
1714static void drain_local_stock(struct work_struct *dummy)
1715{
1716	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1717	drain_stock(stock);
1718}
1719
1720/*
1721 * Cache charges(val) which is from res_counter, to local per_cpu area.
1722 * This will be consumed by consume_stock() function, later.
1723 */
1724static void refill_stock(struct mem_cgroup *mem, int val)
1725{
1726	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1727
1728	if (stock->cached != mem) { /* reset if necessary */
1729		drain_stock(stock);
1730		stock->cached = mem;
1731	}
1732	stock->charge += val;
1733	put_cpu_var(memcg_stock);
1734}
1735
1736/*
1737 * Tries to drain stocked charges in other cpus. This function is asynchronous
1738 * and just put a work per cpu for draining localy on each cpu. Caller can
1739 * expects some charges will be back to res_counter later but cannot wait for
1740 * it.
1741 */
1742static void drain_all_stock_async(void)
1743{
1744	int cpu;
1745	/* This function is for scheduling "drain" in asynchronous way.
1746	 * The result of "drain" is not directly handled by callers. Then,
1747	 * if someone is calling drain, we don't have to call drain more.
1748	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1749	 * there is a race. We just do loose check here.
1750	 */
1751	if (atomic_read(&memcg_drain_count))
1752		return;
1753	/* Notify other cpus that system-wide "drain" is running */
1754	atomic_inc(&memcg_drain_count);
1755	get_online_cpus();
1756	for_each_online_cpu(cpu) {
1757		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1758		schedule_work_on(cpu, &stock->work);
1759	}
1760 	put_online_cpus();
1761	atomic_dec(&memcg_drain_count);
1762	/* We don't wait for flush_work */
1763}
1764
1765/* This is a synchronous drain interface. */
1766static void drain_all_stock_sync(void)
1767{
1768	/* called when force_empty is called */
1769	atomic_inc(&memcg_drain_count);
1770	schedule_on_each_cpu(drain_local_stock);
1771	atomic_dec(&memcg_drain_count);
1772}
1773
1774/*
1775 * This function drains percpu counter value from DEAD cpu and
1776 * move it to local cpu. Note that this function can be preempted.
1777 */
1778static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1779{
1780	int i;
1781
1782	spin_lock(&mem->pcp_counter_lock);
1783	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1784		s64 x = per_cpu(mem->stat->count[i], cpu);
1785
1786		per_cpu(mem->stat->count[i], cpu) = 0;
1787		mem->nocpu_base.count[i] += x;
1788	}
1789	/* need to clear ON_MOVE value, works as a kind of lock. */
1790	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1791	spin_unlock(&mem->pcp_counter_lock);
1792}
1793
1794static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1795{
1796	int idx = MEM_CGROUP_ON_MOVE;
1797
1798	spin_lock(&mem->pcp_counter_lock);
1799	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1800	spin_unlock(&mem->pcp_counter_lock);
1801}
1802
1803static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1804					unsigned long action,
1805					void *hcpu)
1806{
1807	int cpu = (unsigned long)hcpu;
1808	struct memcg_stock_pcp *stock;
1809	struct mem_cgroup *iter;
1810
1811	if ((action == CPU_ONLINE)) {
1812		for_each_mem_cgroup_all(iter)
1813			synchronize_mem_cgroup_on_move(iter, cpu);
1814		return NOTIFY_OK;
1815	}
1816
1817	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1818		return NOTIFY_OK;
1819
1820	for_each_mem_cgroup_all(iter)
1821		mem_cgroup_drain_pcp_counter(iter, cpu);
1822
1823	stock = &per_cpu(memcg_stock, cpu);
1824	drain_stock(stock);
1825	return NOTIFY_OK;
1826}
1827
1828
1829/* See __mem_cgroup_try_charge() for details */
1830enum {
1831	CHARGE_OK,		/* success */
1832	CHARGE_RETRY,		/* need to retry but retry is not bad */
1833	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1834	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1835	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1836};
1837
1838static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1839				int csize, bool oom_check)
1840{
1841	struct mem_cgroup *mem_over_limit;
1842	struct res_counter *fail_res;
1843	unsigned long flags = 0;
1844	int ret;
1845
1846	ret = res_counter_charge(&mem->res, csize, &fail_res);
1847
1848	if (likely(!ret)) {
1849		if (!do_swap_account)
1850			return CHARGE_OK;
1851		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1852		if (likely(!ret))
1853			return CHARGE_OK;
1854
1855		res_counter_uncharge(&mem->res, csize);
1856		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1857		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1858	} else
1859		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1860	/*
1861	 * csize can be either a huge page (HPAGE_SIZE), a batch of
1862	 * regular pages (CHARGE_SIZE), or a single regular page
1863	 * (PAGE_SIZE).
1864	 *
1865	 * Never reclaim on behalf of optional batching, retry with a
1866	 * single page instead.
1867	 */
1868	if (csize == CHARGE_SIZE)
1869		return CHARGE_RETRY;
1870
1871	if (!(gfp_mask & __GFP_WAIT))
1872		return CHARGE_WOULDBLOCK;
1873
1874	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1875					      gfp_mask, flags);
1876	if (mem_cgroup_margin(mem_over_limit) >= csize)
1877		return CHARGE_RETRY;
1878	/*
1879	 * Even though the limit is exceeded at this point, reclaim
1880	 * may have been able to free some pages.  Retry the charge
1881	 * before killing the task.
1882	 *
1883	 * Only for regular pages, though: huge pages are rather
1884	 * unlikely to succeed so close to the limit, and we fall back
1885	 * to regular pages anyway in case of failure.
1886	 */
1887	if (csize == PAGE_SIZE && ret)
1888		return CHARGE_RETRY;
1889
1890	/*
1891	 * At task move, charge accounts can be doubly counted. So, it's
1892	 * better to wait until the end of task_move if something is going on.
1893	 */
1894	if (mem_cgroup_wait_acct_move(mem_over_limit))
1895		return CHARGE_RETRY;
1896
1897	/* If we don't need to call oom-killer at el, return immediately */
1898	if (!oom_check)
1899		return CHARGE_NOMEM;
1900	/* check OOM */
1901	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1902		return CHARGE_OOM_DIE;
1903
1904	return CHARGE_RETRY;
1905}
1906
1907/*
1908 * Unlike exported interface, "oom" parameter is added. if oom==true,
1909 * oom-killer can be invoked.
1910 */
1911static int __mem_cgroup_try_charge(struct mm_struct *mm,
1912				   gfp_t gfp_mask,
1913				   struct mem_cgroup **memcg, bool oom,
1914				   int page_size)
1915{
1916	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1917	struct mem_cgroup *mem = NULL;
1918	int ret;
1919	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1920
1921	/*
1922	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1923	 * in system level. So, allow to go ahead dying process in addition to
1924	 * MEMDIE process.
1925	 */
1926	if (unlikely(test_thread_flag(TIF_MEMDIE)
1927		     || fatal_signal_pending(current)))
1928		goto bypass;
1929
1930	/*
1931	 * We always charge the cgroup the mm_struct belongs to.
1932	 * The mm_struct's mem_cgroup changes on task migration if the
1933	 * thread group leader migrates. It's possible that mm is not
1934	 * set, if so charge the init_mm (happens for pagecache usage).
1935	 */
1936	if (!*memcg && !mm)
1937		goto bypass;
1938again:
1939	if (*memcg) { /* css should be a valid one */
1940		mem = *memcg;
1941		VM_BUG_ON(css_is_removed(&mem->css));
1942		if (mem_cgroup_is_root(mem))
1943			goto done;
1944		if (page_size == PAGE_SIZE && consume_stock(mem))
1945			goto done;
1946		css_get(&mem->css);
1947	} else {
1948		struct task_struct *p;
1949
1950		rcu_read_lock();
1951		p = rcu_dereference(mm->owner);
1952		/*
1953		 * Because we don't have task_lock(), "p" can exit.
1954		 * In that case, "mem" can point to root or p can be NULL with
1955		 * race with swapoff. Then, we have small risk of mis-accouning.
1956		 * But such kind of mis-account by race always happens because
1957		 * we don't have cgroup_mutex(). It's overkill and we allo that
1958		 * small race, here.
1959		 * (*) swapoff at el will charge against mm-struct not against
1960		 * task-struct. So, mm->owner can be NULL.
1961		 */
1962		mem = mem_cgroup_from_task(p);
1963		if (!mem || mem_cgroup_is_root(mem)) {
1964			rcu_read_unlock();
1965			goto done;
1966		}
1967		if (page_size == PAGE_SIZE && consume_stock(mem)) {
1968			/*
1969			 * It seems dagerous to access memcg without css_get().
1970			 * But considering how consume_stok works, it's not
1971			 * necessary. If consume_stock success, some charges
1972			 * from this memcg are cached on this cpu. So, we
1973			 * don't need to call css_get()/css_tryget() before
1974			 * calling consume_stock().
1975			 */
1976			rcu_read_unlock();
1977			goto done;
1978		}
1979		/* after here, we may be blocked. we need to get refcnt */
1980		if (!css_tryget(&mem->css)) {
1981			rcu_read_unlock();
1982			goto again;
1983		}
1984		rcu_read_unlock();
1985	}
1986
1987	do {
1988		bool oom_check;
1989
1990		/* If killed, bypass charge */
1991		if (fatal_signal_pending(current)) {
1992			css_put(&mem->css);
1993			goto bypass;
1994		}
1995
1996		oom_check = false;
1997		if (oom && !nr_oom_retries) {
1998			oom_check = true;
1999			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2000		}
2001
2002		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2003
2004		switch (ret) {
2005		case CHARGE_OK:
2006			break;
2007		case CHARGE_RETRY: /* not in OOM situation but retry */
2008			csize = page_size;
2009			css_put(&mem->css);
2010			mem = NULL;
2011			goto again;
2012		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2013			css_put(&mem->css);
2014			goto nomem;
2015		case CHARGE_NOMEM: /* OOM routine works */
2016			if (!oom) {
2017				css_put(&mem->css);
2018				goto nomem;
2019			}
2020			/* If oom, we never return -ENOMEM */
2021			nr_oom_retries--;
2022			break;
2023		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2024			css_put(&mem->css);
2025			goto bypass;
2026		}
2027	} while (ret != CHARGE_OK);
2028
2029	if (csize > page_size)
2030		refill_stock(mem, csize - page_size);
2031	css_put(&mem->css);
2032done:
2033	*memcg = mem;
2034	return 0;
2035nomem:
2036	*memcg = NULL;
2037	return -ENOMEM;
2038bypass:
2039	*memcg = NULL;
2040	return 0;
2041}
2042
2043/*
2044 * Somemtimes we have to undo a charge we got by try_charge().
2045 * This function is for that and do uncharge, put css's refcnt.
2046 * gotten by try_charge().
2047 */
2048static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2049							unsigned long count)
2050{
2051	if (!mem_cgroup_is_root(mem)) {
2052		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2053		if (do_swap_account)
2054			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2055	}
2056}
2057
2058static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2059				     int page_size)
2060{
2061	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2062}
2063
2064/*
2065 * A helper function to get mem_cgroup from ID. must be called under
2066 * rcu_read_lock(). The caller must check css_is_removed() or some if
2067 * it's concern. (dropping refcnt from swap can be called against removed
2068 * memcg.)
2069 */
2070static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2071{
2072	struct cgroup_subsys_state *css;
2073
2074	/* ID 0 is unused ID */
2075	if (!id)
2076		return NULL;
2077	css = css_lookup(&mem_cgroup_subsys, id);
2078	if (!css)
2079		return NULL;
2080	return container_of(css, struct mem_cgroup, css);
2081}
2082
2083struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2084{
2085	struct mem_cgroup *mem = NULL;
2086	struct page_cgroup *pc;
2087	unsigned short id;
2088	swp_entry_t ent;
2089
2090	VM_BUG_ON(!PageLocked(page));
2091
2092	pc = lookup_page_cgroup(page);
2093	lock_page_cgroup(pc);
2094	if (PageCgroupUsed(pc)) {
2095		mem = pc->mem_cgroup;
2096		if (mem && !css_tryget(&mem->css))
2097			mem = NULL;
2098	} else if (PageSwapCache(page)) {
2099		ent.val = page_private(page);
2100		id = lookup_swap_cgroup(ent);
2101		rcu_read_lock();
2102		mem = mem_cgroup_lookup(id);
2103		if (mem && !css_tryget(&mem->css))
2104			mem = NULL;
2105		rcu_read_unlock();
2106	}
2107	unlock_page_cgroup(pc);
2108	return mem;
2109}
2110
2111static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2112				       struct page_cgroup *pc,
2113				       enum charge_type ctype,
2114				       int page_size)
2115{
2116	int nr_pages = page_size >> PAGE_SHIFT;
2117
2118	lock_page_cgroup(pc);
2119	if (unlikely(PageCgroupUsed(pc))) {
2120		unlock_page_cgroup(pc);
2121		mem_cgroup_cancel_charge(mem, page_size);
2122		return;
2123	}
2124	/*
2125	 * we don't need page_cgroup_lock about tail pages, becase they are not
2126	 * accessed by any other context at this point.
2127	 */
2128	pc->mem_cgroup = mem;
2129	/*
2130	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2131	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2132	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2133	 * before USED bit, we need memory barrier here.
2134	 * See mem_cgroup_add_lru_list(), etc.
2135 	 */
2136	smp_wmb();
2137	switch (ctype) {
2138	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2139	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2140		SetPageCgroupCache(pc);
2141		SetPageCgroupUsed(pc);
2142		break;
2143	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2144		ClearPageCgroupCache(pc);
2145		SetPageCgroupUsed(pc);
2146		break;
2147	default:
2148		break;
2149	}
2150
2151	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2152	unlock_page_cgroup(pc);
2153	/*
2154	 * "charge_statistics" updated event counter. Then, check it.
2155	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2156	 * if they exceeds softlimit.
2157	 */
2158	memcg_check_events(mem, pc->page);
2159}
2160
2161#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2162
2163#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2164			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2165/*
2166 * Because tail pages are not marked as "used", set it. We're under
2167 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2168 */
2169void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2170{
2171	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2172	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2173	unsigned long flags;
2174
2175	if (mem_cgroup_disabled())
2176		return;
2177	/*
2178	 * We have no races with charge/uncharge but will have races with
2179	 * page state accounting.
2180	 */
2181	move_lock_page_cgroup(head_pc, &flags);
2182
2183	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2184	smp_wmb(); /* see __commit_charge() */
2185	if (PageCgroupAcctLRU(head_pc)) {
2186		enum lru_list lru;
2187		struct mem_cgroup_per_zone *mz;
2188
2189		/*
2190		 * LRU flags cannot be copied because we need to add tail
2191		 *.page to LRU by generic call and our hook will be called.
2192		 * We hold lru_lock, then, reduce counter directly.
2193		 */
2194		lru = page_lru(head);
2195		mz = page_cgroup_zoneinfo(head_pc);
2196		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2197	}
2198	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2199	move_unlock_page_cgroup(head_pc, &flags);
2200}
2201#endif
2202
2203/**
2204 * __mem_cgroup_move_account - move account of the page
2205 * @pc:	page_cgroup of the page.
2206 * @from: mem_cgroup which the page is moved from.
2207 * @to:	mem_cgroup which the page is moved to. @from != @to.
2208 * @uncharge: whether we should call uncharge and css_put against @from.
2209 *
2210 * The caller must confirm following.
2211 * - page is not on LRU (isolate_page() is useful.)
2212 * - the pc is locked, used, and ->mem_cgroup points to @from.
2213 *
2214 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2215 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2216 * true, this function does "uncharge" from old cgroup, but it doesn't if
2217 * @uncharge is false, so a caller should do "uncharge".
2218 */
2219
2220static void __mem_cgroup_move_account(struct page_cgroup *pc,
2221	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2222	int charge_size)
2223{
2224	int nr_pages = charge_size >> PAGE_SHIFT;
2225
2226	VM_BUG_ON(from == to);
2227	VM_BUG_ON(PageLRU(pc->page));
2228	VM_BUG_ON(!page_is_cgroup_locked(pc));
2229	VM_BUG_ON(!PageCgroupUsed(pc));
2230	VM_BUG_ON(pc->mem_cgroup != from);
2231
2232	if (PageCgroupFileMapped(pc)) {
2233		/* Update mapped_file data for mem_cgroup */
2234		preempt_disable();
2235		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2236		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2237		preempt_enable();
2238	}
2239	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2240	if (uncharge)
2241		/* This is not "cancel", but cancel_charge does all we need. */
2242		mem_cgroup_cancel_charge(from, charge_size);
2243
2244	/* caller should have done css_get */
2245	pc->mem_cgroup = to;
2246	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2247	/*
2248	 * We charges against "to" which may not have any tasks. Then, "to"
2249	 * can be under rmdir(). But in current implementation, caller of
2250	 * this function is just force_empty() and move charge, so it's
2251	 * garanteed that "to" is never removed. So, we don't check rmdir
2252	 * status here.
2253	 */
2254}
2255
2256/*
2257 * check whether the @pc is valid for moving account and call
2258 * __mem_cgroup_move_account()
2259 */
2260static int mem_cgroup_move_account(struct page_cgroup *pc,
2261		struct mem_cgroup *from, struct mem_cgroup *to,
2262		bool uncharge, int charge_size)
2263{
2264	int ret = -EINVAL;
2265	unsigned long flags;
2266	/*
2267	 * The page is isolated from LRU. So, collapse function
2268	 * will not handle this page. But page splitting can happen.
2269	 * Do this check under compound_page_lock(). The caller should
2270	 * hold it.
2271	 */
2272	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2273		return -EBUSY;
2274
2275	lock_page_cgroup(pc);
2276	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2277		move_lock_page_cgroup(pc, &flags);
2278		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2279		move_unlock_page_cgroup(pc, &flags);
2280		ret = 0;
2281	}
2282	unlock_page_cgroup(pc);
2283	/*
2284	 * check events
2285	 */
2286	memcg_check_events(to, pc->page);
2287	memcg_check_events(from, pc->page);
2288	return ret;
2289}
2290
2291/*
2292 * move charges to its parent.
2293 */
2294
2295static int mem_cgroup_move_parent(struct page_cgroup *pc,
2296				  struct mem_cgroup *child,
2297				  gfp_t gfp_mask)
2298{
2299	struct page *page = pc->page;
2300	struct cgroup *cg = child->css.cgroup;
2301	struct cgroup *pcg = cg->parent;
2302	struct mem_cgroup *parent;
2303	int page_size = PAGE_SIZE;
2304	unsigned long flags;
2305	int ret;
2306
2307	/* Is ROOT ? */
2308	if (!pcg)
2309		return -EINVAL;
2310
2311	ret = -EBUSY;
2312	if (!get_page_unless_zero(page))
2313		goto out;
2314	if (isolate_lru_page(page))
2315		goto put;
2316
2317	if (PageTransHuge(page))
2318		page_size = HPAGE_SIZE;
2319
2320	parent = mem_cgroup_from_cont(pcg);
2321	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2322				&parent, false, page_size);
2323	if (ret || !parent)
2324		goto put_back;
2325
2326	if (page_size > PAGE_SIZE)
2327		flags = compound_lock_irqsave(page);
2328
2329	ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2330	if (ret)
2331		mem_cgroup_cancel_charge(parent, page_size);
2332
2333	if (page_size > PAGE_SIZE)
2334		compound_unlock_irqrestore(page, flags);
2335put_back:
2336	putback_lru_page(page);
2337put:
2338	put_page(page);
2339out:
2340	return ret;
2341}
2342
2343/*
2344 * Charge the memory controller for page usage.
2345 * Return
2346 * 0 if the charge was successful
2347 * < 0 if the cgroup is over its limit
2348 */
2349static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2350				gfp_t gfp_mask, enum charge_type ctype)
2351{
2352	struct mem_cgroup *mem = NULL;
2353	int page_size = PAGE_SIZE;
2354	struct page_cgroup *pc;
2355	bool oom = true;
2356	int ret;
2357
2358	if (PageTransHuge(page)) {
2359		page_size <<= compound_order(page);
2360		VM_BUG_ON(!PageTransHuge(page));
2361		/*
2362		 * Never OOM-kill a process for a huge page.  The
2363		 * fault handler will fall back to regular pages.
2364		 */
2365		oom = false;
2366	}
2367
2368	pc = lookup_page_cgroup(page);
2369	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2370
2371	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2372	if (ret || !mem)
2373		return ret;
2374
2375	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2376	return 0;
2377}
2378
2379int mem_cgroup_newpage_charge(struct page *page,
2380			      struct mm_struct *mm, gfp_t gfp_mask)
2381{
2382	if (mem_cgroup_disabled())
2383		return 0;
2384	/*
2385	 * If already mapped, we don't have to account.
2386	 * If page cache, page->mapping has address_space.
2387	 * But page->mapping may have out-of-use anon_vma pointer,
2388	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2389	 * is NULL.
2390  	 */
2391	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2392		return 0;
2393	if (unlikely(!mm))
2394		mm = &init_mm;
2395	return mem_cgroup_charge_common(page, mm, gfp_mask,
2396				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2397}
2398
2399static void
2400__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2401					enum charge_type ctype);
2402
2403int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2404				gfp_t gfp_mask)
2405{
2406	int ret;
2407
2408	if (mem_cgroup_disabled())
2409		return 0;
2410	if (PageCompound(page))
2411		return 0;
2412	/*
2413	 * Corner case handling. This is called from add_to_page_cache()
2414	 * in usual. But some FS (shmem) precharges this page before calling it
2415	 * and call add_to_page_cache() with GFP_NOWAIT.
2416	 *
2417	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2418	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2419	 * charge twice. (It works but has to pay a bit larger cost.)
2420	 * And when the page is SwapCache, it should take swap information
2421	 * into account. This is under lock_page() now.
2422	 */
2423	if (!(gfp_mask & __GFP_WAIT)) {
2424		struct page_cgroup *pc;
2425
2426		pc = lookup_page_cgroup(page);
2427		if (!pc)
2428			return 0;
2429		lock_page_cgroup(pc);
2430		if (PageCgroupUsed(pc)) {
2431			unlock_page_cgroup(pc);
2432			return 0;
2433		}
2434		unlock_page_cgroup(pc);
2435	}
2436
2437	if (unlikely(!mm))
2438		mm = &init_mm;
2439
2440	if (page_is_file_cache(page))
2441		return mem_cgroup_charge_common(page, mm, gfp_mask,
2442				MEM_CGROUP_CHARGE_TYPE_CACHE);
2443
2444	/* shmem */
2445	if (PageSwapCache(page)) {
2446		struct mem_cgroup *mem;
2447
2448		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2449		if (!ret)
2450			__mem_cgroup_commit_charge_swapin(page, mem,
2451					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2452	} else
2453		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2454					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2455
2456	return ret;
2457}
2458
2459/*
2460 * While swap-in, try_charge -> commit or cancel, the page is locked.
2461 * And when try_charge() successfully returns, one refcnt to memcg without
2462 * struct page_cgroup is acquired. This refcnt will be consumed by
2463 * "commit()" or removed by "cancel()"
2464 */
2465int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2466				 struct page *page,
2467				 gfp_t mask, struct mem_cgroup **ptr)
2468{
2469	struct mem_cgroup *mem;
2470	int ret;
2471
2472	*ptr = NULL;
2473
2474	if (mem_cgroup_disabled())
2475		return 0;
2476
2477	if (!do_swap_account)
2478		goto charge_cur_mm;
2479	/*
2480	 * A racing thread's fault, or swapoff, may have already updated
2481	 * the pte, and even removed page from swap cache: in those cases
2482	 * do_swap_page()'s pte_same() test will fail; but there's also a
2483	 * KSM case which does need to charge the page.
2484	 */
2485	if (!PageSwapCache(page))
2486		goto charge_cur_mm;
2487	mem = try_get_mem_cgroup_from_page(page);
2488	if (!mem)
2489		goto charge_cur_mm;
2490	*ptr = mem;
2491	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2492	css_put(&mem->css);
2493	return ret;
2494charge_cur_mm:
2495	if (unlikely(!mm))
2496		mm = &init_mm;
2497	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2498}
2499
2500static void
2501__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2502					enum charge_type ctype)
2503{
2504	struct page_cgroup *pc;
2505
2506	if (mem_cgroup_disabled())
2507		return;
2508	if (!ptr)
2509		return;
2510	cgroup_exclude_rmdir(&ptr->css);
2511	pc = lookup_page_cgroup(page);
2512	mem_cgroup_lru_del_before_commit_swapcache(page);
2513	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2514	mem_cgroup_lru_add_after_commit_swapcache(page);
2515	/*
2516	 * Now swap is on-memory. This means this page may be
2517	 * counted both as mem and swap....double count.
2518	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2519	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2520	 * may call delete_from_swap_cache() before reach here.
2521	 */
2522	if (do_swap_account && PageSwapCache(page)) {
2523		swp_entry_t ent = {.val = page_private(page)};
2524		unsigned short id;
2525		struct mem_cgroup *memcg;
2526
2527		id = swap_cgroup_record(ent, 0);
2528		rcu_read_lock();
2529		memcg = mem_cgroup_lookup(id);
2530		if (memcg) {
2531			/*
2532			 * This recorded memcg can be obsolete one. So, avoid
2533			 * calling css_tryget
2534			 */
2535			if (!mem_cgroup_is_root(memcg))
2536				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2537			mem_cgroup_swap_statistics(memcg, false);
2538			mem_cgroup_put(memcg);
2539		}
2540		rcu_read_unlock();
2541	}
2542	/*
2543	 * At swapin, we may charge account against cgroup which has no tasks.
2544	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2545	 * In that case, we need to call pre_destroy() again. check it here.
2546	 */
2547	cgroup_release_and_wakeup_rmdir(&ptr->css);
2548}
2549
2550void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2551{
2552	__mem_cgroup_commit_charge_swapin(page, ptr,
2553					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2554}
2555
2556void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2557{
2558	if (mem_cgroup_disabled())
2559		return;
2560	if (!mem)
2561		return;
2562	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2563}
2564
2565static void
2566__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2567	      int page_size)
2568{
2569	struct memcg_batch_info *batch = NULL;
2570	bool uncharge_memsw = true;
2571	/* If swapout, usage of swap doesn't decrease */
2572	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2573		uncharge_memsw = false;
2574
2575	batch = &current->memcg_batch;
2576	/*
2577	 * In usual, we do css_get() when we remember memcg pointer.
2578	 * But in this case, we keep res->usage until end of a series of
2579	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2580	 */
2581	if (!batch->memcg)
2582		batch->memcg = mem;
2583	/*
2584	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2585	 * In those cases, all pages freed continously can be expected to be in
2586	 * the same cgroup and we have chance to coalesce uncharges.
2587	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2588	 * because we want to do uncharge as soon as possible.
2589	 */
2590
2591	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2592		goto direct_uncharge;
2593
2594	if (page_size != PAGE_SIZE)
2595		goto direct_uncharge;
2596
2597	/*
2598	 * In typical case, batch->memcg == mem. This means we can
2599	 * merge a series of uncharges to an uncharge of res_counter.
2600	 * If not, we uncharge res_counter ony by one.
2601	 */
2602	if (batch->memcg != mem)
2603		goto direct_uncharge;
2604	/* remember freed charge and uncharge it later */
2605	batch->bytes += PAGE_SIZE;
2606	if (uncharge_memsw)
2607		batch->memsw_bytes += PAGE_SIZE;
2608	return;
2609direct_uncharge:
2610	res_counter_uncharge(&mem->res, page_size);
2611	if (uncharge_memsw)
2612		res_counter_uncharge(&mem->memsw, page_size);
2613	if (unlikely(batch->memcg != mem))
2614		memcg_oom_recover(mem);
2615	return;
2616}
2617
2618/*
2619 * uncharge if !page_mapped(page)
2620 */
2621static struct mem_cgroup *
2622__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2623{
2624	int count;
2625	struct page_cgroup *pc;
2626	struct mem_cgroup *mem = NULL;
2627	int page_size = PAGE_SIZE;
2628
2629	if (mem_cgroup_disabled())
2630		return NULL;
2631
2632	if (PageSwapCache(page))
2633		return NULL;
2634
2635	if (PageTransHuge(page)) {
2636		page_size <<= compound_order(page);
2637		VM_BUG_ON(!PageTransHuge(page));
2638	}
2639
2640	count = page_size >> PAGE_SHIFT;
2641	/*
2642	 * Check if our page_cgroup is valid
2643	 */
2644	pc = lookup_page_cgroup(page);
2645	if (unlikely(!pc || !PageCgroupUsed(pc)))
2646		return NULL;
2647
2648	lock_page_cgroup(pc);
2649
2650	mem = pc->mem_cgroup;
2651
2652	if (!PageCgroupUsed(pc))
2653		goto unlock_out;
2654
2655	switch (ctype) {
2656	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2657	case MEM_CGROUP_CHARGE_TYPE_DROP:
2658		/* See mem_cgroup_prepare_migration() */
2659		if (page_mapped(page) || PageCgroupMigration(pc))
2660			goto unlock_out;
2661		break;
2662	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2663		if (!PageAnon(page)) {	/* Shared memory */
2664			if (page->mapping && !page_is_file_cache(page))
2665				goto unlock_out;
2666		} else if (page_mapped(page)) /* Anon */
2667				goto unlock_out;
2668		break;
2669	default:
2670		break;
2671	}
2672
2673	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2674
2675	ClearPageCgroupUsed(pc);
2676	/*
2677	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2678	 * freed from LRU. This is safe because uncharged page is expected not
2679	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2680	 * special functions.
2681	 */
2682
2683	unlock_page_cgroup(pc);
2684	/*
2685	 * even after unlock, we have mem->res.usage here and this memcg
2686	 * will never be freed.
2687	 */
2688	memcg_check_events(mem, page);
2689	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2690		mem_cgroup_swap_statistics(mem, true);
2691		mem_cgroup_get(mem);
2692	}
2693	if (!mem_cgroup_is_root(mem))
2694		__do_uncharge(mem, ctype, page_size);
2695
2696	return mem;
2697
2698unlock_out:
2699	unlock_page_cgroup(pc);
2700	return NULL;
2701}
2702
2703void mem_cgroup_uncharge_page(struct page *page)
2704{
2705	/* early check. */
2706	if (page_mapped(page))
2707		return;
2708	if (page->mapping && !PageAnon(page))
2709		return;
2710	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2711}
2712
2713void mem_cgroup_uncharge_cache_page(struct page *page)
2714{
2715	VM_BUG_ON(page_mapped(page));
2716	VM_BUG_ON(page->mapping);
2717	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2718}
2719
2720/*
2721 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2722 * In that cases, pages are freed continuously and we can expect pages
2723 * are in the same memcg. All these calls itself limits the number of
2724 * pages freed at once, then uncharge_start/end() is called properly.
2725 * This may be called prural(2) times in a context,
2726 */
2727
2728void mem_cgroup_uncharge_start(void)
2729{
2730	current->memcg_batch.do_batch++;
2731	/* We can do nest. */
2732	if (current->memcg_batch.do_batch == 1) {
2733		current->memcg_batch.memcg = NULL;
2734		current->memcg_batch.bytes = 0;
2735		current->memcg_batch.memsw_bytes = 0;
2736	}
2737}
2738
2739void mem_cgroup_uncharge_end(void)
2740{
2741	struct memcg_batch_info *batch = &current->memcg_batch;
2742
2743	if (!batch->do_batch)
2744		return;
2745
2746	batch->do_batch--;
2747	if (batch->do_batch) /* If stacked, do nothing. */
2748		return;
2749
2750	if (!batch->memcg)
2751		return;
2752	/*
2753	 * This "batch->memcg" is valid without any css_get/put etc...
2754	 * bacause we hide charges behind us.
2755	 */
2756	if (batch->bytes)
2757		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2758	if (batch->memsw_bytes)
2759		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2760	memcg_oom_recover(batch->memcg);
2761	/* forget this pointer (for sanity check) */
2762	batch->memcg = NULL;
2763}
2764
2765#ifdef CONFIG_SWAP
2766/*
2767 * called after __delete_from_swap_cache() and drop "page" account.
2768 * memcg information is recorded to swap_cgroup of "ent"
2769 */
2770void
2771mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2772{
2773	struct mem_cgroup *memcg;
2774	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2775
2776	if (!swapout) /* this was a swap cache but the swap is unused ! */
2777		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2778
2779	memcg = __mem_cgroup_uncharge_common(page, ctype);
2780
2781	/*
2782	 * record memcg information,  if swapout && memcg != NULL,
2783	 * mem_cgroup_get() was called in uncharge().
2784	 */
2785	if (do_swap_account && swapout && memcg)
2786		swap_cgroup_record(ent, css_id(&memcg->css));
2787}
2788#endif
2789
2790#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2791/*
2792 * called from swap_entry_free(). remove record in swap_cgroup and
2793 * uncharge "memsw" account.
2794 */
2795void mem_cgroup_uncharge_swap(swp_entry_t ent)
2796{
2797	struct mem_cgroup *memcg;
2798	unsigned short id;
2799
2800	if (!do_swap_account)
2801		return;
2802
2803	id = swap_cgroup_record(ent, 0);
2804	rcu_read_lock();
2805	memcg = mem_cgroup_lookup(id);
2806	if (memcg) {
2807		/*
2808		 * We uncharge this because swap is freed.
2809		 * This memcg can be obsolete one. We avoid calling css_tryget
2810		 */
2811		if (!mem_cgroup_is_root(memcg))
2812			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2813		mem_cgroup_swap_statistics(memcg, false);
2814		mem_cgroup_put(memcg);
2815	}
2816	rcu_read_unlock();
2817}
2818
2819/**
2820 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2821 * @entry: swap entry to be moved
2822 * @from:  mem_cgroup which the entry is moved from
2823 * @to:  mem_cgroup which the entry is moved to
2824 * @need_fixup: whether we should fixup res_counters and refcounts.
2825 *
2826 * It succeeds only when the swap_cgroup's record for this entry is the same
2827 * as the mem_cgroup's id of @from.
2828 *
2829 * Returns 0 on success, -EINVAL on failure.
2830 *
2831 * The caller must have charged to @to, IOW, called res_counter_charge() about
2832 * both res and memsw, and called css_get().
2833 */
2834static int mem_cgroup_move_swap_account(swp_entry_t entry,
2835		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2836{
2837	unsigned short old_id, new_id;
2838
2839	old_id = css_id(&from->css);
2840	new_id = css_id(&to->css);
2841
2842	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2843		mem_cgroup_swap_statistics(from, false);
2844		mem_cgroup_swap_statistics(to, true);
2845		/*
2846		 * This function is only called from task migration context now.
2847		 * It postpones res_counter and refcount handling till the end
2848		 * of task migration(mem_cgroup_clear_mc()) for performance
2849		 * improvement. But we cannot postpone mem_cgroup_get(to)
2850		 * because if the process that has been moved to @to does
2851		 * swap-in, the refcount of @to might be decreased to 0.
2852		 */
2853		mem_cgroup_get(to);
2854		if (need_fixup) {
2855			if (!mem_cgroup_is_root(from))
2856				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2857			mem_cgroup_put(from);
2858			/*
2859			 * we charged both to->res and to->memsw, so we should
2860			 * uncharge to->res.
2861			 */
2862			if (!mem_cgroup_is_root(to))
2863				res_counter_uncharge(&to->res, PAGE_SIZE);
2864		}
2865		return 0;
2866	}
2867	return -EINVAL;
2868}
2869#else
2870static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2871		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2872{
2873	return -EINVAL;
2874}
2875#endif
2876
2877/*
2878 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2879 * page belongs to.
2880 */
2881int mem_cgroup_prepare_migration(struct page *page,
2882	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2883{
2884	struct page_cgroup *pc;
2885	struct mem_cgroup *mem = NULL;
2886	enum charge_type ctype;
2887	int ret = 0;
2888
2889	*ptr = NULL;
2890
2891	VM_BUG_ON(PageTransHuge(page));
2892	if (mem_cgroup_disabled())
2893		return 0;
2894
2895	pc = lookup_page_cgroup(page);
2896	lock_page_cgroup(pc);
2897	if (PageCgroupUsed(pc)) {
2898		mem = pc->mem_cgroup;
2899		css_get(&mem->css);
2900		/*
2901		 * At migrating an anonymous page, its mapcount goes down
2902		 * to 0 and uncharge() will be called. But, even if it's fully
2903		 * unmapped, migration may fail and this page has to be
2904		 * charged again. We set MIGRATION flag here and delay uncharge
2905		 * until end_migration() is called
2906		 *
2907		 * Corner Case Thinking
2908		 * A)
2909		 * When the old page was mapped as Anon and it's unmap-and-freed
2910		 * while migration was ongoing.
2911		 * If unmap finds the old page, uncharge() of it will be delayed
2912		 * until end_migration(). If unmap finds a new page, it's
2913		 * uncharged when it make mapcount to be 1->0. If unmap code
2914		 * finds swap_migration_entry, the new page will not be mapped
2915		 * and end_migration() will find it(mapcount==0).
2916		 *
2917		 * B)
2918		 * When the old page was mapped but migraion fails, the kernel
2919		 * remaps it. A charge for it is kept by MIGRATION flag even
2920		 * if mapcount goes down to 0. We can do remap successfully
2921		 * without charging it again.
2922		 *
2923		 * C)
2924		 * The "old" page is under lock_page() until the end of
2925		 * migration, so, the old page itself will not be swapped-out.
2926		 * If the new page is swapped out before end_migraton, our
2927		 * hook to usual swap-out path will catch the event.
2928		 */
2929		if (PageAnon(page))
2930			SetPageCgroupMigration(pc);
2931	}
2932	unlock_page_cgroup(pc);
2933	/*
2934	 * If the page is not charged at this point,
2935	 * we return here.
2936	 */
2937	if (!mem)
2938		return 0;
2939
2940	*ptr = mem;
2941	ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2942	css_put(&mem->css);/* drop extra refcnt */
2943	if (ret || *ptr == NULL) {
2944		if (PageAnon(page)) {
2945			lock_page_cgroup(pc);
2946			ClearPageCgroupMigration(pc);
2947			unlock_page_cgroup(pc);
2948			/*
2949			 * The old page may be fully unmapped while we kept it.
2950			 */
2951			mem_cgroup_uncharge_page(page);
2952		}
2953		return -ENOMEM;
2954	}
2955	/*
2956	 * We charge new page before it's used/mapped. So, even if unlock_page()
2957	 * is called before end_migration, we can catch all events on this new
2958	 * page. In the case new page is migrated but not remapped, new page's
2959	 * mapcount will be finally 0 and we call uncharge in end_migration().
2960	 */
2961	pc = lookup_page_cgroup(newpage);
2962	if (PageAnon(page))
2963		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2964	else if (page_is_file_cache(page))
2965		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2966	else
2967		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2968	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2969	return ret;
2970}
2971
2972/* remove redundant charge if migration failed*/
2973void mem_cgroup_end_migration(struct mem_cgroup *mem,
2974	struct page *oldpage, struct page *newpage, bool migration_ok)
2975{
2976	struct page *used, *unused;
2977	struct page_cgroup *pc;
2978
2979	if (!mem)
2980		return;
2981	/* blocks rmdir() */
2982	cgroup_exclude_rmdir(&mem->css);
2983	if (!migration_ok) {
2984		used = oldpage;
2985		unused = newpage;
2986	} else {
2987		used = newpage;
2988		unused = oldpage;
2989	}
2990	/*
2991	 * We disallowed uncharge of pages under migration because mapcount
2992	 * of the page goes down to zero, temporarly.
2993	 * Clear the flag and check the page should be charged.
2994	 */
2995	pc = lookup_page_cgroup(oldpage);
2996	lock_page_cgroup(pc);
2997	ClearPageCgroupMigration(pc);
2998	unlock_page_cgroup(pc);
2999
3000	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3001
3002	/*
3003	 * If a page is a file cache, radix-tree replacement is very atomic
3004	 * and we can skip this check. When it was an Anon page, its mapcount
3005	 * goes down to 0. But because we added MIGRATION flage, it's not
3006	 * uncharged yet. There are several case but page->mapcount check
3007	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3008	 * check. (see prepare_charge() also)
3009	 */
3010	if (PageAnon(used))
3011		mem_cgroup_uncharge_page(used);
3012	/*
3013	 * At migration, we may charge account against cgroup which has no
3014	 * tasks.
3015	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3016	 * In that case, we need to call pre_destroy() again. check it here.
3017	 */
3018	cgroup_release_and_wakeup_rmdir(&mem->css);
3019}
3020
3021/*
3022 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3023 * Calling hierarchical_reclaim is not enough because we should update
3024 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3025 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3026 * not from the memcg which this page would be charged to.
3027 * try_charge_swapin does all of these works properly.
3028 */
3029int mem_cgroup_shmem_charge_fallback(struct page *page,
3030			    struct mm_struct *mm,
3031			    gfp_t gfp_mask)
3032{
3033	struct mem_cgroup *mem;
3034	int ret;
3035
3036	if (mem_cgroup_disabled())
3037		return 0;
3038
3039	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3040	if (!ret)
3041		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3042
3043	return ret;
3044}
3045
3046#ifdef CONFIG_DEBUG_VM
3047static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3048{
3049	struct page_cgroup *pc;
3050
3051	pc = lookup_page_cgroup(page);
3052	if (likely(pc) && PageCgroupUsed(pc))
3053		return pc;
3054	return NULL;
3055}
3056
3057bool mem_cgroup_bad_page_check(struct page *page)
3058{
3059	if (mem_cgroup_disabled())
3060		return false;
3061
3062	return lookup_page_cgroup_used(page) != NULL;
3063}
3064
3065void mem_cgroup_print_bad_page(struct page *page)
3066{
3067	struct page_cgroup *pc;
3068
3069	pc = lookup_page_cgroup_used(page);
3070	if (pc) {
3071		int ret = -1;
3072		char *path;
3073
3074		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3075		       pc, pc->flags, pc->mem_cgroup);
3076
3077		path = kmalloc(PATH_MAX, GFP_KERNEL);
3078		if (path) {
3079			rcu_read_lock();
3080			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3081							path, PATH_MAX);
3082			rcu_read_unlock();
3083		}
3084
3085		printk(KERN_CONT "(%s)\n",
3086				(ret < 0) ? "cannot get the path" : path);
3087		kfree(path);
3088	}
3089}
3090#endif
3091
3092static DEFINE_MUTEX(set_limit_mutex);
3093
3094static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3095				unsigned long long val)
3096{
3097	int retry_count;
3098	u64 memswlimit, memlimit;
3099	int ret = 0;
3100	int children = mem_cgroup_count_children(memcg);
3101	u64 curusage, oldusage;
3102	int enlarge;
3103
3104	/*
3105	 * For keeping hierarchical_reclaim simple, how long we should retry
3106	 * is depends on callers. We set our retry-count to be function
3107	 * of # of children which we should visit in this loop.
3108	 */
3109	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3110
3111	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3112
3113	enlarge = 0;
3114	while (retry_count) {
3115		if (signal_pending(current)) {
3116			ret = -EINTR;
3117			break;
3118		}
3119		/*
3120		 * Rather than hide all in some function, I do this in
3121		 * open coded manner. You see what this really does.
3122		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3123		 */
3124		mutex_lock(&set_limit_mutex);
3125		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3126		if (memswlimit < val) {
3127			ret = -EINVAL;
3128			mutex_unlock(&set_limit_mutex);
3129			break;
3130		}
3131
3132		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3133		if (memlimit < val)
3134			enlarge = 1;
3135
3136		ret = res_counter_set_limit(&memcg->res, val);
3137		if (!ret) {
3138			if (memswlimit == val)
3139				memcg->memsw_is_minimum = true;
3140			else
3141				memcg->memsw_is_minimum = false;
3142		}
3143		mutex_unlock(&set_limit_mutex);
3144
3145		if (!ret)
3146			break;
3147
3148		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3149						MEM_CGROUP_RECLAIM_SHRINK);
3150		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3151		/* Usage is reduced ? */
3152  		if (curusage >= oldusage)
3153			retry_count--;
3154		else
3155			oldusage = curusage;
3156	}
3157	if (!ret && enlarge)
3158		memcg_oom_recover(memcg);
3159
3160	return ret;
3161}
3162
3163static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3164					unsigned long long val)
3165{
3166	int retry_count;
3167	u64 memlimit, memswlimit, oldusage, curusage;
3168	int children = mem_cgroup_count_children(memcg);
3169	int ret = -EBUSY;
3170	int enlarge = 0;
3171
3172	/* see mem_cgroup_resize_res_limit */
3173 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3174	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3175	while (retry_count) {
3176		if (signal_pending(current)) {
3177			ret = -EINTR;
3178			break;
3179		}
3180		/*
3181		 * Rather than hide all in some function, I do this in
3182		 * open coded manner. You see what this really does.
3183		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3184		 */
3185		mutex_lock(&set_limit_mutex);
3186		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3187		if (memlimit > val) {
3188			ret = -EINVAL;
3189			mutex_unlock(&set_limit_mutex);
3190			break;
3191		}
3192		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3193		if (memswlimit < val)
3194			enlarge = 1;
3195		ret = res_counter_set_limit(&memcg->memsw, val);
3196		if (!ret) {
3197			if (memlimit == val)
3198				memcg->memsw_is_minimum = true;
3199			else
3200				memcg->memsw_is_minimum = false;
3201		}
3202		mutex_unlock(&set_limit_mutex);
3203
3204		if (!ret)
3205			break;
3206
3207		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3208						MEM_CGROUP_RECLAIM_NOSWAP |
3209						MEM_CGROUP_RECLAIM_SHRINK);
3210		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3211		/* Usage is reduced ? */
3212		if (curusage >= oldusage)
3213			retry_count--;
3214		else
3215			oldusage = curusage;
3216	}
3217	if (!ret && enlarge)
3218		memcg_oom_recover(memcg);
3219	return ret;
3220}
3221
3222unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3223					    gfp_t gfp_mask)
3224{
3225	unsigned long nr_reclaimed = 0;
3226	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3227	unsigned long reclaimed;
3228	int loop = 0;
3229	struct mem_cgroup_tree_per_zone *mctz;
3230	unsigned long long excess;
3231
3232	if (order > 0)
3233		return 0;
3234
3235	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3236	/*
3237	 * This loop can run a while, specially if mem_cgroup's continuously
3238	 * keep exceeding their soft limit and putting the system under
3239	 * pressure
3240	 */
3241	do {
3242		if (next_mz)
3243			mz = next_mz;
3244		else
3245			mz = mem_cgroup_largest_soft_limit_node(mctz);
3246		if (!mz)
3247			break;
3248
3249		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3250						gfp_mask,
3251						MEM_CGROUP_RECLAIM_SOFT);
3252		nr_reclaimed += reclaimed;
3253		spin_lock(&mctz->lock);
3254
3255		/*
3256		 * If we failed to reclaim anything from this memory cgroup
3257		 * it is time to move on to the next cgroup
3258		 */
3259		next_mz = NULL;
3260		if (!reclaimed) {
3261			do {
3262				/*
3263				 * Loop until we find yet another one.
3264				 *
3265				 * By the time we get the soft_limit lock
3266				 * again, someone might have aded the
3267				 * group back on the RB tree. Iterate to
3268				 * make sure we get a different mem.
3269				 * mem_cgroup_largest_soft_limit_node returns
3270				 * NULL if no other cgroup is present on
3271				 * the tree
3272				 */
3273				next_mz =
3274				__mem_cgroup_largest_soft_limit_node(mctz);
3275				if (next_mz == mz) {
3276					css_put(&next_mz->mem->css);
3277					next_mz = NULL;
3278				} else /* next_mz == NULL or other memcg */
3279					break;
3280			} while (1);
3281		}
3282		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3283		excess = res_counter_soft_limit_excess(&mz->mem->res);
3284		/*
3285		 * One school of thought says that we should not add
3286		 * back the node to the tree if reclaim returns 0.
3287		 * But our reclaim could return 0, simply because due
3288		 * to priority we are exposing a smaller subset of
3289		 * memory to reclaim from. Consider this as a longer
3290		 * term TODO.
3291		 */
3292		/* If excess == 0, no tree ops */
3293		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3294		spin_unlock(&mctz->lock);
3295		css_put(&mz->mem->css);
3296		loop++;
3297		/*
3298		 * Could not reclaim anything and there are no more
3299		 * mem cgroups to try or we seem to be looping without
3300		 * reclaiming anything.
3301		 */
3302		if (!nr_reclaimed &&
3303			(next_mz == NULL ||
3304			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3305			break;
3306	} while (!nr_reclaimed);
3307	if (next_mz)
3308		css_put(&next_mz->mem->css);
3309	return nr_reclaimed;
3310}
3311
3312/*
3313 * This routine traverse page_cgroup in given list and drop them all.
3314 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3315 */
3316static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3317				int node, int zid, enum lru_list lru)
3318{
3319	struct zone *zone;
3320	struct mem_cgroup_per_zone *mz;
3321	struct page_cgroup *pc, *busy;
3322	unsigned long flags, loop;
3323	struct list_head *list;
3324	int ret = 0;
3325
3326	zone = &NODE_DATA(node)->node_zones[zid];
3327	mz = mem_cgroup_zoneinfo(mem, node, zid);
3328	list = &mz->lists[lru];
3329
3330	loop = MEM_CGROUP_ZSTAT(mz, lru);
3331	/* give some margin against EBUSY etc...*/
3332	loop += 256;
3333	busy = NULL;
3334	while (loop--) {
3335		ret = 0;
3336		spin_lock_irqsave(&zone->lru_lock, flags);
3337		if (list_empty(list)) {
3338			spin_unlock_irqrestore(&zone->lru_lock, flags);
3339			break;
3340		}
3341		pc = list_entry(list->prev, struct page_cgroup, lru);
3342		if (busy == pc) {
3343			list_move(&pc->lru, list);
3344			busy = NULL;
3345			spin_unlock_irqrestore(&zone->lru_lock, flags);
3346			continue;
3347		}
3348		spin_unlock_irqrestore(&zone->lru_lock, flags);
3349
3350		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3351		if (ret == -ENOMEM)
3352			break;
3353
3354		if (ret == -EBUSY || ret == -EINVAL) {
3355			/* found lock contention or "pc" is obsolete. */
3356			busy = pc;
3357			cond_resched();
3358		} else
3359			busy = NULL;
3360	}
3361
3362	if (!ret && !list_empty(list))
3363		return -EBUSY;
3364	return ret;
3365}
3366
3367/*
3368 * make mem_cgroup's charge to be 0 if there is no task.
3369 * This enables deleting this mem_cgroup.
3370 */
3371static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3372{
3373	int ret;
3374	int node, zid, shrink;
3375	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3376	struct cgroup *cgrp = mem->css.cgroup;
3377
3378	css_get(&mem->css);
3379
3380	shrink = 0;
3381	/* should free all ? */
3382	if (free_all)
3383		goto try_to_free;
3384move_account:
3385	do {
3386		ret = -EBUSY;
3387		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3388			goto out;
3389		ret = -EINTR;
3390		if (signal_pending(current))
3391			goto out;
3392		/* This is for making all *used* pages to be on LRU. */
3393		lru_add_drain_all();
3394		drain_all_stock_sync();
3395		ret = 0;
3396		mem_cgroup_start_move(mem);
3397		for_each_node_state(node, N_HIGH_MEMORY) {
3398			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3399				enum lru_list l;
3400				for_each_lru(l) {
3401					ret = mem_cgroup_force_empty_list(mem,
3402							node, zid, l);
3403					if (ret)
3404						break;
3405				}
3406			}
3407			if (ret)
3408				break;
3409		}
3410		mem_cgroup_end_move(mem);
3411		memcg_oom_recover(mem);
3412		/* it seems parent cgroup doesn't have enough mem */
3413		if (ret == -ENOMEM)
3414			goto try_to_free;
3415		cond_resched();
3416	/* "ret" should also be checked to ensure all lists are empty. */
3417	} while (mem->res.usage > 0 || ret);
3418out:
3419	css_put(&mem->css);
3420	return ret;
3421
3422try_to_free:
3423	/* returns EBUSY if there is a task or if we come here twice. */
3424	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3425		ret = -EBUSY;
3426		goto out;
3427	}
3428	/* we call try-to-free pages for make this cgroup empty */
3429	lru_add_drain_all();
3430	/* try to free all pages in this cgroup */
3431	shrink = 1;
3432	while (nr_retries && mem->res.usage > 0) {
3433		int progress;
3434
3435		if (signal_pending(current)) {
3436			ret = -EINTR;
3437			goto out;
3438		}
3439		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3440						false, get_swappiness(mem));
3441		if (!progress) {
3442			nr_retries--;
3443			/* maybe some writeback is necessary */
3444			congestion_wait(BLK_RW_ASYNC, HZ/10);
3445		}
3446
3447	}
3448	lru_add_drain();
3449	/* try move_account...there may be some *locked* pages. */
3450	goto move_account;
3451}
3452
3453int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3454{
3455	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3456}
3457
3458
3459static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3460{
3461	return mem_cgroup_from_cont(cont)->use_hierarchy;
3462}
3463
3464static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3465					u64 val)
3466{
3467	int retval = 0;
3468	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3469	struct cgroup *parent = cont->parent;
3470	struct mem_cgroup *parent_mem = NULL;
3471
3472	if (parent)
3473		parent_mem = mem_cgroup_from_cont(parent);
3474
3475	cgroup_lock();
3476	/*
3477	 * If parent's use_hierarchy is set, we can't make any modifications
3478	 * in the child subtrees. If it is unset, then the change can
3479	 * occur, provided the current cgroup has no children.
3480	 *
3481	 * For the root cgroup, parent_mem is NULL, we allow value to be
3482	 * set if there are no children.
3483	 */
3484	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3485				(val == 1 || val == 0)) {
3486		if (list_empty(&cont->children))
3487			mem->use_hierarchy = val;
3488		else
3489			retval = -EBUSY;
3490	} else
3491		retval = -EINVAL;
3492	cgroup_unlock();
3493
3494	return retval;
3495}
3496
3497
3498static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3499				enum mem_cgroup_stat_index idx)
3500{
3501	struct mem_cgroup *iter;
3502	s64 val = 0;
3503
3504	/* each per cpu's value can be minus.Then, use s64 */
3505	for_each_mem_cgroup_tree(iter, mem)
3506		val += mem_cgroup_read_stat(iter, idx);
3507
3508	if (val < 0) /* race ? */
3509		val = 0;
3510	return val;
3511}
3512
3513static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3514{
3515	u64 val;
3516
3517	if (!mem_cgroup_is_root(mem)) {
3518		if (!swap)
3519			return res_counter_read_u64(&mem->res, RES_USAGE);
3520		else
3521			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3522	}
3523
3524	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3525	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3526
3527	if (swap)
3528		val += mem_cgroup_get_recursive_idx_stat(mem,
3529				MEM_CGROUP_STAT_SWAPOUT);
3530
3531	return val << PAGE_SHIFT;
3532}
3533
3534static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3535{
3536	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3537	u64 val;
3538	int type, name;
3539
3540	type = MEMFILE_TYPE(cft->private);
3541	name = MEMFILE_ATTR(cft->private);
3542	switch (type) {
3543	case _MEM:
3544		if (name == RES_USAGE)
3545			val = mem_cgroup_usage(mem, false);
3546		else
3547			val = res_counter_read_u64(&mem->res, name);
3548		break;
3549	case _MEMSWAP:
3550		if (name == RES_USAGE)
3551			val = mem_cgroup_usage(mem, true);
3552		else
3553			val = res_counter_read_u64(&mem->memsw, name);
3554		break;
3555	default:
3556		BUG();
3557		break;
3558	}
3559	return val;
3560}
3561/*
3562 * The user of this function is...
3563 * RES_LIMIT.
3564 */
3565static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3566			    const char *buffer)
3567{
3568	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3569	int type, name;
3570	unsigned long long val;
3571	int ret;
3572
3573	type = MEMFILE_TYPE(cft->private);
3574	name = MEMFILE_ATTR(cft->private);
3575	switch (name) {
3576	case RES_LIMIT:
3577		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3578			ret = -EINVAL;
3579			break;
3580		}
3581		/* This function does all necessary parse...reuse it */
3582		ret = res_counter_memparse_write_strategy(buffer, &val);
3583		if (ret)
3584			break;
3585		if (type == _MEM)
3586			ret = mem_cgroup_resize_limit(memcg, val);
3587		else
3588			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3589		break;
3590	case RES_SOFT_LIMIT:
3591		ret = res_counter_memparse_write_strategy(buffer, &val);
3592		if (ret)
3593			break;
3594		/*
3595		 * For memsw, soft limits are hard to implement in terms
3596		 * of semantics, for now, we support soft limits for
3597		 * control without swap
3598		 */
3599		if (type == _MEM)
3600			ret = res_counter_set_soft_limit(&memcg->res, val);
3601		else
3602			ret = -EINVAL;
3603		break;
3604	default:
3605		ret = -EINVAL; /* should be BUG() ? */
3606		break;
3607	}
3608	return ret;
3609}
3610
3611static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3612		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3613{
3614	struct cgroup *cgroup;
3615	unsigned long long min_limit, min_memsw_limit, tmp;
3616
3617	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3618	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3619	cgroup = memcg->css.cgroup;
3620	if (!memcg->use_hierarchy)
3621		goto out;
3622
3623	while (cgroup->parent) {
3624		cgroup = cgroup->parent;
3625		memcg = mem_cgroup_from_cont(cgroup);
3626		if (!memcg->use_hierarchy)
3627			break;
3628		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3629		min_limit = min(min_limit, tmp);
3630		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3631		min_memsw_limit = min(min_memsw_limit, tmp);
3632	}
3633out:
3634	*mem_limit = min_limit;
3635	*memsw_limit = min_memsw_limit;
3636	return;
3637}
3638
3639static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3640{
3641	struct mem_cgroup *mem;
3642	int type, name;
3643
3644	mem = mem_cgroup_from_cont(cont);
3645	type = MEMFILE_TYPE(event);
3646	name = MEMFILE_ATTR(event);
3647	switch (name) {
3648	case RES_MAX_USAGE:
3649		if (type == _MEM)
3650			res_counter_reset_max(&mem->res);
3651		else
3652			res_counter_reset_max(&mem->memsw);
3653		break;
3654	case RES_FAILCNT:
3655		if (type == _MEM)
3656			res_counter_reset_failcnt(&mem->res);
3657		else
3658			res_counter_reset_failcnt(&mem->memsw);
3659		break;
3660	}
3661
3662	return 0;
3663}
3664
3665static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3666					struct cftype *cft)
3667{
3668	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3669}
3670
3671#ifdef CONFIG_MMU
3672static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3673					struct cftype *cft, u64 val)
3674{
3675	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3676
3677	if (val >= (1 << NR_MOVE_TYPE))
3678		return -EINVAL;
3679	/*
3680	 * We check this value several times in both in can_attach() and
3681	 * attach(), so we need cgroup lock to prevent this value from being
3682	 * inconsistent.
3683	 */
3684	cgroup_lock();
3685	mem->move_charge_at_immigrate = val;
3686	cgroup_unlock();
3687
3688	return 0;
3689}
3690#else
3691static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3692					struct cftype *cft, u64 val)
3693{
3694	return -ENOSYS;
3695}
3696#endif
3697
3698
3699/* For read statistics */
3700enum {
3701	MCS_CACHE,
3702	MCS_RSS,
3703	MCS_FILE_MAPPED,
3704	MCS_PGPGIN,
3705	MCS_PGPGOUT,
3706	MCS_SWAP,
3707	MCS_INACTIVE_ANON,
3708	MCS_ACTIVE_ANON,
3709	MCS_INACTIVE_FILE,
3710	MCS_ACTIVE_FILE,
3711	MCS_UNEVICTABLE,
3712	NR_MCS_STAT,
3713};
3714
3715struct mcs_total_stat {
3716	s64 stat[NR_MCS_STAT];
3717};
3718
3719struct {
3720	char *local_name;
3721	char *total_name;
3722} memcg_stat_strings[NR_MCS_STAT] = {
3723	{"cache", "total_cache"},
3724	{"rss", "total_rss"},
3725	{"mapped_file", "total_mapped_file"},
3726	{"pgpgin", "total_pgpgin"},
3727	{"pgpgout", "total_pgpgout"},
3728	{"swap", "total_swap"},
3729	{"inactive_anon", "total_inactive_anon"},
3730	{"active_anon", "total_active_anon"},
3731	{"inactive_file", "total_inactive_file"},
3732	{"active_file", "total_active_file"},
3733	{"unevictable", "total_unevictable"}
3734};
3735
3736
3737static void
3738mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3739{
3740	s64 val;
3741
3742	/* per cpu stat */
3743	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3744	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3745	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3746	s->stat[MCS_RSS] += val * PAGE_SIZE;
3747	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3748	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3749	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3750	s->stat[MCS_PGPGIN] += val;
3751	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3752	s->stat[MCS_PGPGOUT] += val;
3753	if (do_swap_account) {
3754		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3755		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3756	}
3757
3758	/* per zone stat */
3759	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3760	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3761	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3762	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3763	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3764	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3765	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3766	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3767	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3768	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3769}
3770
3771static void
3772mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3773{
3774	struct mem_cgroup *iter;
3775
3776	for_each_mem_cgroup_tree(iter, mem)
3777		mem_cgroup_get_local_stat(iter, s);
3778}
3779
3780static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3781				 struct cgroup_map_cb *cb)
3782{
3783	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3784	struct mcs_total_stat mystat;
3785	int i;
3786
3787	memset(&mystat, 0, sizeof(mystat));
3788	mem_cgroup_get_local_stat(mem_cont, &mystat);
3789
3790	for (i = 0; i < NR_MCS_STAT; i++) {
3791		if (i == MCS_SWAP && !do_swap_account)
3792			continue;
3793		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3794	}
3795
3796	/* Hierarchical information */
3797	{
3798		unsigned long long limit, memsw_limit;
3799		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3800		cb->fill(cb, "hierarchical_memory_limit", limit);
3801		if (do_swap_account)
3802			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3803	}
3804
3805	memset(&mystat, 0, sizeof(mystat));
3806	mem_cgroup_get_total_stat(mem_cont, &mystat);
3807	for (i = 0; i < NR_MCS_STAT; i++) {
3808		if (i == MCS_SWAP && !do_swap_account)
3809			continue;
3810		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3811	}
3812
3813#ifdef CONFIG_DEBUG_VM
3814	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3815
3816	{
3817		int nid, zid;
3818		struct mem_cgroup_per_zone *mz;
3819		unsigned long recent_rotated[2] = {0, 0};
3820		unsigned long recent_scanned[2] = {0, 0};
3821
3822		for_each_online_node(nid)
3823			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3824				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3825
3826				recent_rotated[0] +=
3827					mz->reclaim_stat.recent_rotated[0];
3828				recent_rotated[1] +=
3829					mz->reclaim_stat.recent_rotated[1];
3830				recent_scanned[0] +=
3831					mz->reclaim_stat.recent_scanned[0];
3832				recent_scanned[1] +=
3833					mz->reclaim_stat.recent_scanned[1];
3834			}
3835		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3836		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3837		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3838		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3839	}
3840#endif
3841
3842	return 0;
3843}
3844
3845static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3846{
3847	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3848
3849	return get_swappiness(memcg);
3850}
3851
3852static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3853				       u64 val)
3854{
3855	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3856	struct mem_cgroup *parent;
3857
3858	if (val > 100)
3859		return -EINVAL;
3860
3861	if (cgrp->parent == NULL)
3862		return -EINVAL;
3863
3864	parent = mem_cgroup_from_cont(cgrp->parent);
3865
3866	cgroup_lock();
3867
3868	/* If under hierarchy, only empty-root can set this value */
3869	if ((parent->use_hierarchy) ||
3870	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3871		cgroup_unlock();
3872		return -EINVAL;
3873	}
3874
3875	spin_lock(&memcg->reclaim_param_lock);
3876	memcg->swappiness = val;
3877	spin_unlock(&memcg->reclaim_param_lock);
3878
3879	cgroup_unlock();
3880
3881	return 0;
3882}
3883
3884static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3885{
3886	struct mem_cgroup_threshold_ary *t;
3887	u64 usage;
3888	int i;
3889
3890	rcu_read_lock();
3891	if (!swap)
3892		t = rcu_dereference(memcg->thresholds.primary);
3893	else
3894		t = rcu_dereference(memcg->memsw_thresholds.primary);
3895
3896	if (!t)
3897		goto unlock;
3898
3899	usage = mem_cgroup_usage(memcg, swap);
3900
3901	/*
3902	 * current_threshold points to threshold just below usage.
3903	 * If it's not true, a threshold was crossed after last
3904	 * call of __mem_cgroup_threshold().
3905	 */
3906	i = t->current_threshold;
3907
3908	/*
3909	 * Iterate backward over array of thresholds starting from
3910	 * current_threshold and check if a threshold is crossed.
3911	 * If none of thresholds below usage is crossed, we read
3912	 * only one element of the array here.
3913	 */
3914	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3915		eventfd_signal(t->entries[i].eventfd, 1);
3916
3917	/* i = current_threshold + 1 */
3918	i++;
3919
3920	/*
3921	 * Iterate forward over array of thresholds starting from
3922	 * current_threshold+1 and check if a threshold is crossed.
3923	 * If none of thresholds above usage is crossed, we read
3924	 * only one element of the array here.
3925	 */
3926	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3927		eventfd_signal(t->entries[i].eventfd, 1);
3928
3929	/* Update current_threshold */
3930	t->current_threshold = i - 1;
3931unlock:
3932	rcu_read_unlock();
3933}
3934
3935static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3936{
3937	while (memcg) {
3938		__mem_cgroup_threshold(memcg, false);
3939		if (do_swap_account)
3940			__mem_cgroup_threshold(memcg, true);
3941
3942		memcg = parent_mem_cgroup(memcg);
3943	}
3944}
3945
3946static int compare_thresholds(const void *a, const void *b)
3947{
3948	const struct mem_cgroup_threshold *_a = a;
3949	const struct mem_cgroup_threshold *_b = b;
3950
3951	return _a->threshold - _b->threshold;
3952}
3953
3954static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3955{
3956	struct mem_cgroup_eventfd_list *ev;
3957
3958	list_for_each_entry(ev, &mem->oom_notify, list)
3959		eventfd_signal(ev->eventfd, 1);
3960	return 0;
3961}
3962
3963static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3964{
3965	struct mem_cgroup *iter;
3966
3967	for_each_mem_cgroup_tree(iter, mem)
3968		mem_cgroup_oom_notify_cb(iter);
3969}
3970
3971static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3972	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3973{
3974	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3975	struct mem_cgroup_thresholds *thresholds;
3976	struct mem_cgroup_threshold_ary *new;
3977	int type = MEMFILE_TYPE(cft->private);
3978	u64 threshold, usage;
3979	int i, size, ret;
3980
3981	ret = res_counter_memparse_write_strategy(args, &threshold);
3982	if (ret)
3983		return ret;
3984
3985	mutex_lock(&memcg->thresholds_lock);
3986
3987	if (type == _MEM)
3988		thresholds = &memcg->thresholds;
3989	else if (type == _MEMSWAP)
3990		thresholds = &memcg->memsw_thresholds;
3991	else
3992		BUG();
3993
3994	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3995
3996	/* Check if a threshold crossed before adding a new one */
3997	if (thresholds->primary)
3998		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3999
4000	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4001
4002	/* Allocate memory for new array of thresholds */
4003	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4004			GFP_KERNEL);
4005	if (!new) {
4006		ret = -ENOMEM;
4007		goto unlock;
4008	}
4009	new->size = size;
4010
4011	/* Copy thresholds (if any) to new array */
4012	if (thresholds->primary) {
4013		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4014				sizeof(struct mem_cgroup_threshold));
4015	}
4016
4017	/* Add new threshold */
4018	new->entries[size - 1].eventfd = eventfd;
4019	new->entries[size - 1].threshold = threshold;
4020
4021	/* Sort thresholds. Registering of new threshold isn't time-critical */
4022	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4023			compare_thresholds, NULL);
4024
4025	/* Find current threshold */
4026	new->current_threshold = -1;
4027	for (i = 0; i < size; i++) {
4028		if (new->entries[i].threshold < usage) {
4029			/*
4030			 * new->current_threshold will not be used until
4031			 * rcu_assign_pointer(), so it's safe to increment
4032			 * it here.
4033			 */
4034			++new->current_threshold;
4035		}
4036	}
4037
4038	/* Free old spare buffer and save old primary buffer as spare */
4039	kfree(thresholds->spare);
4040	thresholds->spare = thresholds->primary;
4041
4042	rcu_assign_pointer(thresholds->primary, new);
4043
4044	/* To be sure that nobody uses thresholds */
4045	synchronize_rcu();
4046
4047unlock:
4048	mutex_unlock(&memcg->thresholds_lock);
4049
4050	return ret;
4051}
4052
4053static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4054	struct cftype *cft, struct eventfd_ctx *eventfd)
4055{
4056	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4057	struct mem_cgroup_thresholds *thresholds;
4058	struct mem_cgroup_threshold_ary *new;
4059	int type = MEMFILE_TYPE(cft->private);
4060	u64 usage;
4061	int i, j, size;
4062
4063	mutex_lock(&memcg->thresholds_lock);
4064	if (type == _MEM)
4065		thresholds = &memcg->thresholds;
4066	else if (type == _MEMSWAP)
4067		thresholds = &memcg->memsw_thresholds;
4068	else
4069		BUG();
4070
4071	/*
4072	 * Something went wrong if we trying to unregister a threshold
4073	 * if we don't have thresholds
4074	 */
4075	BUG_ON(!thresholds);
4076
4077	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4078
4079	/* Check if a threshold crossed before removing */
4080	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4081
4082	/* Calculate new number of threshold */
4083	size = 0;
4084	for (i = 0; i < thresholds->primary->size; i++) {
4085		if (thresholds->primary->entries[i].eventfd != eventfd)
4086			size++;
4087	}
4088
4089	new = thresholds->spare;
4090
4091	/* Set thresholds array to NULL if we don't have thresholds */
4092	if (!size) {
4093		kfree(new);
4094		new = NULL;
4095		goto swap_buffers;
4096	}
4097
4098	new->size = size;
4099
4100	/* Copy thresholds and find current threshold */
4101	new->current_threshold = -1;
4102	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4103		if (thresholds->primary->entries[i].eventfd == eventfd)
4104			continue;
4105
4106		new->entries[j] = thresholds->primary->entries[i];
4107		if (new->entries[j].threshold < usage) {
4108			/*
4109			 * new->current_threshold will not be used
4110			 * until rcu_assign_pointer(), so it's safe to increment
4111			 * it here.
4112			 */
4113			++new->current_threshold;
4114		}
4115		j++;
4116	}
4117
4118swap_buffers:
4119	/* Swap primary and spare array */
4120	thresholds->spare = thresholds->primary;
4121	rcu_assign_pointer(thresholds->primary, new);
4122
4123	/* To be sure that nobody uses thresholds */
4124	synchronize_rcu();
4125
4126	mutex_unlock(&memcg->thresholds_lock);
4127}
4128
4129static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4130	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4131{
4132	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4133	struct mem_cgroup_eventfd_list *event;
4134	int type = MEMFILE_TYPE(cft->private);
4135
4136	BUG_ON(type != _OOM_TYPE);
4137	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4138	if (!event)
4139		return -ENOMEM;
4140
4141	mutex_lock(&memcg_oom_mutex);
4142
4143	event->eventfd = eventfd;
4144	list_add(&event->list, &memcg->oom_notify);
4145
4146	/* already in OOM ? */
4147	if (atomic_read(&memcg->oom_lock))
4148		eventfd_signal(eventfd, 1);
4149	mutex_unlock(&memcg_oom_mutex);
4150
4151	return 0;
4152}
4153
4154static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4155	struct cftype *cft, struct eventfd_ctx *eventfd)
4156{
4157	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4158	struct mem_cgroup_eventfd_list *ev, *tmp;
4159	int type = MEMFILE_TYPE(cft->private);
4160
4161	BUG_ON(type != _OOM_TYPE);
4162
4163	mutex_lock(&memcg_oom_mutex);
4164
4165	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4166		if (ev->eventfd == eventfd) {
4167			list_del(&ev->list);
4168			kfree(ev);
4169		}
4170	}
4171
4172	mutex_unlock(&memcg_oom_mutex);
4173}
4174
4175static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4176	struct cftype *cft,  struct cgroup_map_cb *cb)
4177{
4178	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4179
4180	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4181
4182	if (atomic_read(&mem->oom_lock))
4183		cb->fill(cb, "under_oom", 1);
4184	else
4185		cb->fill(cb, "under_oom", 0);
4186	return 0;
4187}
4188
4189static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4190	struct cftype *cft, u64 val)
4191{
4192	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4193	struct mem_cgroup *parent;
4194
4195	/* cannot set to root cgroup and only 0 and 1 are allowed */
4196	if (!cgrp->parent || !((val == 0) || (val == 1)))
4197		return -EINVAL;
4198
4199	parent = mem_cgroup_from_cont(cgrp->parent);
4200
4201	cgroup_lock();
4202	/* oom-kill-disable is a flag for subhierarchy. */
4203	if ((parent->use_hierarchy) ||
4204	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4205		cgroup_unlock();
4206		return -EINVAL;
4207	}
4208	mem->oom_kill_disable = val;
4209	if (!val)
4210		memcg_oom_recover(mem);
4211	cgroup_unlock();
4212	return 0;
4213}
4214
4215static struct cftype mem_cgroup_files[] = {
4216	{
4217		.name = "usage_in_bytes",
4218		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4219		.read_u64 = mem_cgroup_read,
4220		.register_event = mem_cgroup_usage_register_event,
4221		.unregister_event = mem_cgroup_usage_unregister_event,
4222	},
4223	{
4224		.name = "max_usage_in_bytes",
4225		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4226		.trigger = mem_cgroup_reset,
4227		.read_u64 = mem_cgroup_read,
4228	},
4229	{
4230		.name = "limit_in_bytes",
4231		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4232		.write_string = mem_cgroup_write,
4233		.read_u64 = mem_cgroup_read,
4234	},
4235	{
4236		.name = "soft_limit_in_bytes",
4237		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4238		.write_string = mem_cgroup_write,
4239		.read_u64 = mem_cgroup_read,
4240	},
4241	{
4242		.name = "failcnt",
4243		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4244		.trigger = mem_cgroup_reset,
4245		.read_u64 = mem_cgroup_read,
4246	},
4247	{
4248		.name = "stat",
4249		.read_map = mem_control_stat_show,
4250	},
4251	{
4252		.name = "force_empty",
4253		.trigger = mem_cgroup_force_empty_write,
4254	},
4255	{
4256		.name = "use_hierarchy",
4257		.write_u64 = mem_cgroup_hierarchy_write,
4258		.read_u64 = mem_cgroup_hierarchy_read,
4259	},
4260	{
4261		.name = "swappiness",
4262		.read_u64 = mem_cgroup_swappiness_read,
4263		.write_u64 = mem_cgroup_swappiness_write,
4264	},
4265	{
4266		.name = "move_charge_at_immigrate",
4267		.read_u64 = mem_cgroup_move_charge_read,
4268		.write_u64 = mem_cgroup_move_charge_write,
4269	},
4270	{
4271		.name = "oom_control",
4272		.read_map = mem_cgroup_oom_control_read,
4273		.write_u64 = mem_cgroup_oom_control_write,
4274		.register_event = mem_cgroup_oom_register_event,
4275		.unregister_event = mem_cgroup_oom_unregister_event,
4276		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4277	},
4278};
4279
4280#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4281static struct cftype memsw_cgroup_files[] = {
4282	{
4283		.name = "memsw.usage_in_bytes",
4284		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4285		.read_u64 = mem_cgroup_read,
4286		.register_event = mem_cgroup_usage_register_event,
4287		.unregister_event = mem_cgroup_usage_unregister_event,
4288	},
4289	{
4290		.name = "memsw.max_usage_in_bytes",
4291		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4292		.trigger = mem_cgroup_reset,
4293		.read_u64 = mem_cgroup_read,
4294	},
4295	{
4296		.name = "memsw.limit_in_bytes",
4297		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4298		.write_string = mem_cgroup_write,
4299		.read_u64 = mem_cgroup_read,
4300	},
4301	{
4302		.name = "memsw.failcnt",
4303		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4304		.trigger = mem_cgroup_reset,
4305		.read_u64 = mem_cgroup_read,
4306	},
4307};
4308
4309static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4310{
4311	if (!do_swap_account)
4312		return 0;
4313	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4314				ARRAY_SIZE(memsw_cgroup_files));
4315};
4316#else
4317static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4318{
4319	return 0;
4320}
4321#endif
4322
4323static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4324{
4325	struct mem_cgroup_per_node *pn;
4326	struct mem_cgroup_per_zone *mz;
4327	enum lru_list l;
4328	int zone, tmp = node;
4329	/*
4330	 * This routine is called against possible nodes.
4331	 * But it's BUG to call kmalloc() against offline node.
4332	 *
4333	 * TODO: this routine can waste much memory for nodes which will
4334	 *       never be onlined. It's better to use memory hotplug callback
4335	 *       function.
4336	 */
4337	if (!node_state(node, N_NORMAL_MEMORY))
4338		tmp = -1;
4339	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4340	if (!pn)
4341		return 1;
4342
4343	mem->info.nodeinfo[node] = pn;
4344	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4345		mz = &pn->zoneinfo[zone];
4346		for_each_lru(l)
4347			INIT_LIST_HEAD(&mz->lists[l]);
4348		mz->usage_in_excess = 0;
4349		mz->on_tree = false;
4350		mz->mem = mem;
4351	}
4352	return 0;
4353}
4354
4355static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4356{
4357	kfree(mem->info.nodeinfo[node]);
4358}
4359
4360static struct mem_cgroup *mem_cgroup_alloc(void)
4361{
4362	struct mem_cgroup *mem;
4363	int size = sizeof(struct mem_cgroup);
4364
4365	/* Can be very big if MAX_NUMNODES is very big */
4366	if (size < PAGE_SIZE)
4367		mem = kzalloc(size, GFP_KERNEL);
4368	else
4369		mem = vzalloc(size);
4370
4371	if (!mem)
4372		return NULL;
4373
4374	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4375	if (!mem->stat)
4376		goto out_free;
4377	spin_lock_init(&mem->pcp_counter_lock);
4378	return mem;
4379
4380out_free:
4381	if (size < PAGE_SIZE)
4382		kfree(mem);
4383	else
4384		vfree(mem);
4385	return NULL;
4386}
4387
4388/*
4389 * At destroying mem_cgroup, references from swap_cgroup can remain.
4390 * (scanning all at force_empty is too costly...)
4391 *
4392 * Instead of clearing all references at force_empty, we remember
4393 * the number of reference from swap_cgroup and free mem_cgroup when
4394 * it goes down to 0.
4395 *
4396 * Removal of cgroup itself succeeds regardless of refs from swap.
4397 */
4398
4399static void __mem_cgroup_free(struct mem_cgroup *mem)
4400{
4401	int node;
4402
4403	mem_cgroup_remove_from_trees(mem);
4404	free_css_id(&mem_cgroup_subsys, &mem->css);
4405
4406	for_each_node_state(node, N_POSSIBLE)
4407		free_mem_cgroup_per_zone_info(mem, node);
4408
4409	free_percpu(mem->stat);
4410	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4411		kfree(mem);
4412	else
4413		vfree(mem);
4414}
4415
4416static void mem_cgroup_get(struct mem_cgroup *mem)
4417{
4418	atomic_inc(&mem->refcnt);
4419}
4420
4421static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4422{
4423	if (atomic_sub_and_test(count, &mem->refcnt)) {
4424		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4425		__mem_cgroup_free(mem);
4426		if (parent)
4427			mem_cgroup_put(parent);
4428	}
4429}
4430
4431static void mem_cgroup_put(struct mem_cgroup *mem)
4432{
4433	__mem_cgroup_put(mem, 1);
4434}
4435
4436/*
4437 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4438 */
4439static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4440{
4441	if (!mem->res.parent)
4442		return NULL;
4443	return mem_cgroup_from_res_counter(mem->res.parent, res);
4444}
4445
4446#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4447static void __init enable_swap_cgroup(void)
4448{
4449	if (!mem_cgroup_disabled() && really_do_swap_account)
4450		do_swap_account = 1;
4451}
4452#else
4453static void __init enable_swap_cgroup(void)
4454{
4455}
4456#endif
4457
4458static int mem_cgroup_soft_limit_tree_init(void)
4459{
4460	struct mem_cgroup_tree_per_node *rtpn;
4461	struct mem_cgroup_tree_per_zone *rtpz;
4462	int tmp, node, zone;
4463
4464	for_each_node_state(node, N_POSSIBLE) {
4465		tmp = node;
4466		if (!node_state(node, N_NORMAL_MEMORY))
4467			tmp = -1;
4468		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4469		if (!rtpn)
4470			return 1;
4471
4472		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4473
4474		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4475			rtpz = &rtpn->rb_tree_per_zone[zone];
4476			rtpz->rb_root = RB_ROOT;
4477			spin_lock_init(&rtpz->lock);
4478		}
4479	}
4480	return 0;
4481}
4482
4483static struct cgroup_subsys_state * __ref
4484mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4485{
4486	struct mem_cgroup *mem, *parent;
4487	long error = -ENOMEM;
4488	int node;
4489
4490	mem = mem_cgroup_alloc();
4491	if (!mem)
4492		return ERR_PTR(error);
4493
4494	for_each_node_state(node, N_POSSIBLE)
4495		if (alloc_mem_cgroup_per_zone_info(mem, node))
4496			goto free_out;
4497
4498	/* root ? */
4499	if (cont->parent == NULL) {
4500		int cpu;
4501		enable_swap_cgroup();
4502		parent = NULL;
4503		root_mem_cgroup = mem;
4504		if (mem_cgroup_soft_limit_tree_init())
4505			goto free_out;
4506		for_each_possible_cpu(cpu) {
4507			struct memcg_stock_pcp *stock =
4508						&per_cpu(memcg_stock, cpu);
4509			INIT_WORK(&stock->work, drain_local_stock);
4510		}
4511		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4512	} else {
4513		parent = mem_cgroup_from_cont(cont->parent);
4514		mem->use_hierarchy = parent->use_hierarchy;
4515		mem->oom_kill_disable = parent->oom_kill_disable;
4516	}
4517
4518	if (parent && parent->use_hierarchy) {
4519		res_counter_init(&mem->res, &parent->res);
4520		res_counter_init(&mem->memsw, &parent->memsw);
4521		/*
4522		 * We increment refcnt of the parent to ensure that we can
4523		 * safely access it on res_counter_charge/uncharge.
4524		 * This refcnt will be decremented when freeing this
4525		 * mem_cgroup(see mem_cgroup_put).
4526		 */
4527		mem_cgroup_get(parent);
4528	} else {
4529		res_counter_init(&mem->res, NULL);
4530		res_counter_init(&mem->memsw, NULL);
4531	}
4532	mem->last_scanned_child = 0;
4533	spin_lock_init(&mem->reclaim_param_lock);
4534	INIT_LIST_HEAD(&mem->oom_notify);
4535
4536	if (parent)
4537		mem->swappiness = get_swappiness(parent);
4538	atomic_set(&mem->refcnt, 1);
4539	mem->move_charge_at_immigrate = 0;
4540	mutex_init(&mem->thresholds_lock);
4541	return &mem->css;
4542free_out:
4543	__mem_cgroup_free(mem);
4544	root_mem_cgroup = NULL;
4545	return ERR_PTR(error);
4546}
4547
4548static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4549					struct cgroup *cont)
4550{
4551	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4552
4553	return mem_cgroup_force_empty(mem, false);
4554}
4555
4556static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4557				struct cgroup *cont)
4558{
4559	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4560
4561	mem_cgroup_put(mem);
4562}
4563
4564static int mem_cgroup_populate(struct cgroup_subsys *ss,
4565				struct cgroup *cont)
4566{
4567	int ret;
4568
4569	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4570				ARRAY_SIZE(mem_cgroup_files));
4571
4572	if (!ret)
4573		ret = register_memsw_files(cont, ss);
4574	return ret;
4575}
4576
4577#ifdef CONFIG_MMU
4578/* Handlers for move charge at task migration. */
4579#define PRECHARGE_COUNT_AT_ONCE	256
4580static int mem_cgroup_do_precharge(unsigned long count)
4581{
4582	int ret = 0;
4583	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4584	struct mem_cgroup *mem = mc.to;
4585
4586	if (mem_cgroup_is_root(mem)) {
4587		mc.precharge += count;
4588		/* we don't need css_get for root */
4589		return ret;
4590	}
4591	/* try to charge at once */
4592	if (count > 1) {
4593		struct res_counter *dummy;
4594		/*
4595		 * "mem" cannot be under rmdir() because we've already checked
4596		 * by cgroup_lock_live_cgroup() that it is not removed and we
4597		 * are still under the same cgroup_mutex. So we can postpone
4598		 * css_get().
4599		 */
4600		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4601			goto one_by_one;
4602		if (do_swap_account && res_counter_charge(&mem->memsw,
4603						PAGE_SIZE * count, &dummy)) {
4604			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4605			goto one_by_one;
4606		}
4607		mc.precharge += count;
4608		return ret;
4609	}
4610one_by_one:
4611	/* fall back to one by one charge */
4612	while (count--) {
4613		if (signal_pending(current)) {
4614			ret = -EINTR;
4615			break;
4616		}
4617		if (!batch_count--) {
4618			batch_count = PRECHARGE_COUNT_AT_ONCE;
4619			cond_resched();
4620		}
4621		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4622					      PAGE_SIZE);
4623		if (ret || !mem)
4624			/* mem_cgroup_clear_mc() will do uncharge later */
4625			return -ENOMEM;
4626		mc.precharge++;
4627	}
4628	return ret;
4629}
4630
4631/**
4632 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4633 * @vma: the vma the pte to be checked belongs
4634 * @addr: the address corresponding to the pte to be checked
4635 * @ptent: the pte to be checked
4636 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4637 *
4638 * Returns
4639 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4640 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4641 *     move charge. if @target is not NULL, the page is stored in target->page
4642 *     with extra refcnt got(Callers should handle it).
4643 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4644 *     target for charge migration. if @target is not NULL, the entry is stored
4645 *     in target->ent.
4646 *
4647 * Called with pte lock held.
4648 */
4649union mc_target {
4650	struct page	*page;
4651	swp_entry_t	ent;
4652};
4653
4654enum mc_target_type {
4655	MC_TARGET_NONE,	/* not used */
4656	MC_TARGET_PAGE,
4657	MC_TARGET_SWAP,
4658};
4659
4660static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4661						unsigned long addr, pte_t ptent)
4662{
4663	struct page *page = vm_normal_page(vma, addr, ptent);
4664
4665	if (!page || !page_mapped(page))
4666		return NULL;
4667	if (PageAnon(page)) {
4668		/* we don't move shared anon */
4669		if (!move_anon() || page_mapcount(page) > 2)
4670			return NULL;
4671	} else if (!move_file())
4672		/* we ignore mapcount for file pages */
4673		return NULL;
4674	if (!get_page_unless_zero(page))
4675		return NULL;
4676
4677	return page;
4678}
4679
4680static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4681			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4682{
4683	int usage_count;
4684	struct page *page = NULL;
4685	swp_entry_t ent = pte_to_swp_entry(ptent);
4686
4687	if (!move_anon() || non_swap_entry(ent))
4688		return NULL;
4689	usage_count = mem_cgroup_count_swap_user(ent, &page);
4690	if (usage_count > 1) { /* we don't move shared anon */
4691		if (page)
4692			put_page(page);
4693		return NULL;
4694	}
4695	if (do_swap_account)
4696		entry->val = ent.val;
4697
4698	return page;
4699}
4700
4701static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4702			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4703{
4704	struct page *page = NULL;
4705	struct inode *inode;
4706	struct address_space *mapping;
4707	pgoff_t pgoff;
4708
4709	if (!vma->vm_file) /* anonymous vma */
4710		return NULL;
4711	if (!move_file())
4712		return NULL;
4713
4714	inode = vma->vm_file->f_path.dentry->d_inode;
4715	mapping = vma->vm_file->f_mapping;
4716	if (pte_none(ptent))
4717		pgoff = linear_page_index(vma, addr);
4718	else /* pte_file(ptent) is true */
4719		pgoff = pte_to_pgoff(ptent);
4720
4721	/* page is moved even if it's not RSS of this task(page-faulted). */
4722	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4723		page = find_get_page(mapping, pgoff);
4724	} else { /* shmem/tmpfs file. we should take account of swap too. */
4725		swp_entry_t ent;
4726		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4727		if (do_swap_account)
4728			entry->val = ent.val;
4729	}
4730
4731	return page;
4732}
4733
4734static int is_target_pte_for_mc(struct vm_area_struct *vma,
4735		unsigned long addr, pte_t ptent, union mc_target *target)
4736{
4737	struct page *page = NULL;
4738	struct page_cgroup *pc;
4739	int ret = 0;
4740	swp_entry_t ent = { .val = 0 };
4741
4742	if (pte_present(ptent))
4743		page = mc_handle_present_pte(vma, addr, ptent);
4744	else if (is_swap_pte(ptent))
4745		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4746	else if (pte_none(ptent) || pte_file(ptent))
4747		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4748
4749	if (!page && !ent.val)
4750		return 0;
4751	if (page) {
4752		pc = lookup_page_cgroup(page);
4753		/*
4754		 * Do only loose check w/o page_cgroup lock.
4755		 * mem_cgroup_move_account() checks the pc is valid or not under
4756		 * the lock.
4757		 */
4758		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4759			ret = MC_TARGET_PAGE;
4760			if (target)
4761				target->page = page;
4762		}
4763		if (!ret || !target)
4764			put_page(page);
4765	}
4766	/* There is a swap entry and a page doesn't exist or isn't charged */
4767	if (ent.val && !ret &&
4768			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4769		ret = MC_TARGET_SWAP;
4770		if (target)
4771			target->ent = ent;
4772	}
4773	return ret;
4774}
4775
4776static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4777					unsigned long addr, unsigned long end,
4778					struct mm_walk *walk)
4779{
4780	struct vm_area_struct *vma = walk->private;
4781	pte_t *pte;
4782	spinlock_t *ptl;
4783
4784	split_huge_page_pmd(walk->mm, pmd);
4785
4786	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4787	for (; addr != end; pte++, addr += PAGE_SIZE)
4788		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4789			mc.precharge++;	/* increment precharge temporarily */
4790	pte_unmap_unlock(pte - 1, ptl);
4791	cond_resched();
4792
4793	return 0;
4794}
4795
4796static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4797{
4798	unsigned long precharge;
4799	struct vm_area_struct *vma;
4800
4801	down_read(&mm->mmap_sem);
4802	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4803		struct mm_walk mem_cgroup_count_precharge_walk = {
4804			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4805			.mm = mm,
4806			.private = vma,
4807		};
4808		if (is_vm_hugetlb_page(vma))
4809			continue;
4810		walk_page_range(vma->vm_start, vma->vm_end,
4811					&mem_cgroup_count_precharge_walk);
4812	}
4813	up_read(&mm->mmap_sem);
4814
4815	precharge = mc.precharge;
4816	mc.precharge = 0;
4817
4818	return precharge;
4819}
4820
4821static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4822{
4823	unsigned long precharge = mem_cgroup_count_precharge(mm);
4824
4825	VM_BUG_ON(mc.moving_task);
4826	mc.moving_task = current;
4827	return mem_cgroup_do_precharge(precharge);
4828}
4829
4830/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4831static void __mem_cgroup_clear_mc(void)
4832{
4833	struct mem_cgroup *from = mc.from;
4834	struct mem_cgroup *to = mc.to;
4835
4836	/* we must uncharge all the leftover precharges from mc.to */
4837	if (mc.precharge) {
4838		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4839		mc.precharge = 0;
4840	}
4841	/*
4842	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4843	 * we must uncharge here.
4844	 */
4845	if (mc.moved_charge) {
4846		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4847		mc.moved_charge = 0;
4848	}
4849	/* we must fixup refcnts and charges */
4850	if (mc.moved_swap) {
4851		/* uncharge swap account from the old cgroup */
4852		if (!mem_cgroup_is_root(mc.from))
4853			res_counter_uncharge(&mc.from->memsw,
4854						PAGE_SIZE * mc.moved_swap);
4855		__mem_cgroup_put(mc.from, mc.moved_swap);
4856
4857		if (!mem_cgroup_is_root(mc.to)) {
4858			/*
4859			 * we charged both to->res and to->memsw, so we should
4860			 * uncharge to->res.
4861			 */
4862			res_counter_uncharge(&mc.to->res,
4863						PAGE_SIZE * mc.moved_swap);
4864		}
4865		/* we've already done mem_cgroup_get(mc.to) */
4866		mc.moved_swap = 0;
4867	}
4868	memcg_oom_recover(from);
4869	memcg_oom_recover(to);
4870	wake_up_all(&mc.waitq);
4871}
4872
4873static void mem_cgroup_clear_mc(void)
4874{
4875	struct mem_cgroup *from = mc.from;
4876
4877	/*
4878	 * we must clear moving_task before waking up waiters at the end of
4879	 * task migration.
4880	 */
4881	mc.moving_task = NULL;
4882	__mem_cgroup_clear_mc();
4883	spin_lock(&mc.lock);
4884	mc.from = NULL;
4885	mc.to = NULL;
4886	spin_unlock(&mc.lock);
4887	mem_cgroup_end_move(from);
4888}
4889
4890static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4891				struct cgroup *cgroup,
4892				struct task_struct *p,
4893				bool threadgroup)
4894{
4895	int ret = 0;
4896	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4897
4898	if (mem->move_charge_at_immigrate) {
4899		struct mm_struct *mm;
4900		struct mem_cgroup *from = mem_cgroup_from_task(p);
4901
4902		VM_BUG_ON(from == mem);
4903
4904		mm = get_task_mm(p);
4905		if (!mm)
4906			return 0;
4907		/* We move charges only when we move a owner of the mm */
4908		if (mm->owner == p) {
4909			VM_BUG_ON(mc.from);
4910			VM_BUG_ON(mc.to);
4911			VM_BUG_ON(mc.precharge);
4912			VM_BUG_ON(mc.moved_charge);
4913			VM_BUG_ON(mc.moved_swap);
4914			mem_cgroup_start_move(from);
4915			spin_lock(&mc.lock);
4916			mc.from = from;
4917			mc.to = mem;
4918			spin_unlock(&mc.lock);
4919			/* We set mc.moving_task later */
4920
4921			ret = mem_cgroup_precharge_mc(mm);
4922			if (ret)
4923				mem_cgroup_clear_mc();
4924		}
4925		mmput(mm);
4926	}
4927	return ret;
4928}
4929
4930static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4931				struct cgroup *cgroup,
4932				struct task_struct *p,
4933				bool threadgroup)
4934{
4935	mem_cgroup_clear_mc();
4936}
4937
4938static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4939				unsigned long addr, unsigned long end,
4940				struct mm_walk *walk)
4941{
4942	int ret = 0;
4943	struct vm_area_struct *vma = walk->private;
4944	pte_t *pte;
4945	spinlock_t *ptl;
4946
4947	split_huge_page_pmd(walk->mm, pmd);
4948retry:
4949	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4950	for (; addr != end; addr += PAGE_SIZE) {
4951		pte_t ptent = *(pte++);
4952		union mc_target target;
4953		int type;
4954		struct page *page;
4955		struct page_cgroup *pc;
4956		swp_entry_t ent;
4957
4958		if (!mc.precharge)
4959			break;
4960
4961		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4962		switch (type) {
4963		case MC_TARGET_PAGE:
4964			page = target.page;
4965			if (isolate_lru_page(page))
4966				goto put;
4967			pc = lookup_page_cgroup(page);
4968			if (!mem_cgroup_move_account(pc,
4969					mc.from, mc.to, false, PAGE_SIZE)) {
4970				mc.precharge--;
4971				/* we uncharge from mc.from later. */
4972				mc.moved_charge++;
4973			}
4974			putback_lru_page(page);
4975put:			/* is_target_pte_for_mc() gets the page */
4976			put_page(page);
4977			break;
4978		case MC_TARGET_SWAP:
4979			ent = target.ent;
4980			if (!mem_cgroup_move_swap_account(ent,
4981						mc.from, mc.to, false)) {
4982				mc.precharge--;
4983				/* we fixup refcnts and charges later. */
4984				mc.moved_swap++;
4985			}
4986			break;
4987		default:
4988			break;
4989		}
4990	}
4991	pte_unmap_unlock(pte - 1, ptl);
4992	cond_resched();
4993
4994	if (addr != end) {
4995		/*
4996		 * We have consumed all precharges we got in can_attach().
4997		 * We try charge one by one, but don't do any additional
4998		 * charges to mc.to if we have failed in charge once in attach()
4999		 * phase.
5000		 */
5001		ret = mem_cgroup_do_precharge(1);
5002		if (!ret)
5003			goto retry;
5004	}
5005
5006	return ret;
5007}
5008
5009static void mem_cgroup_move_charge(struct mm_struct *mm)
5010{
5011	struct vm_area_struct *vma;
5012
5013	lru_add_drain_all();
5014retry:
5015	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5016		/*
5017		 * Someone who are holding the mmap_sem might be waiting in
5018		 * waitq. So we cancel all extra charges, wake up all waiters,
5019		 * and retry. Because we cancel precharges, we might not be able
5020		 * to move enough charges, but moving charge is a best-effort
5021		 * feature anyway, so it wouldn't be a big problem.
5022		 */
5023		__mem_cgroup_clear_mc();
5024		cond_resched();
5025		goto retry;
5026	}
5027	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5028		int ret;
5029		struct mm_walk mem_cgroup_move_charge_walk = {
5030			.pmd_entry = mem_cgroup_move_charge_pte_range,
5031			.mm = mm,
5032			.private = vma,
5033		};
5034		if (is_vm_hugetlb_page(vma))
5035			continue;
5036		ret = walk_page_range(vma->vm_start, vma->vm_end,
5037						&mem_cgroup_move_charge_walk);
5038		if (ret)
5039			/*
5040			 * means we have consumed all precharges and failed in
5041			 * doing additional charge. Just abandon here.
5042			 */
5043			break;
5044	}
5045	up_read(&mm->mmap_sem);
5046}
5047
5048static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5049				struct cgroup *cont,
5050				struct cgroup *old_cont,
5051				struct task_struct *p,
5052				bool threadgroup)
5053{
5054	struct mm_struct *mm;
5055
5056	if (!mc.to)
5057		/* no need to move charge */
5058		return;
5059
5060	mm = get_task_mm(p);
5061	if (mm) {
5062		mem_cgroup_move_charge(mm);
5063		mmput(mm);
5064	}
5065	mem_cgroup_clear_mc();
5066}
5067#else	/* !CONFIG_MMU */
5068static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5069				struct cgroup *cgroup,
5070				struct task_struct *p,
5071				bool threadgroup)
5072{
5073	return 0;
5074}
5075static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5076				struct cgroup *cgroup,
5077				struct task_struct *p,
5078				bool threadgroup)
5079{
5080}
5081static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5082				struct cgroup *cont,
5083				struct cgroup *old_cont,
5084				struct task_struct *p,
5085				bool threadgroup)
5086{
5087}
5088#endif
5089
5090struct cgroup_subsys mem_cgroup_subsys = {
5091	.name = "memory",
5092	.subsys_id = mem_cgroup_subsys_id,
5093	.create = mem_cgroup_create,
5094	.pre_destroy = mem_cgroup_pre_destroy,
5095	.destroy = mem_cgroup_destroy,
5096	.populate = mem_cgroup_populate,
5097	.can_attach = mem_cgroup_can_attach,
5098	.cancel_attach = mem_cgroup_cancel_attach,
5099	.attach = mem_cgroup_move_task,
5100	.early_init = 0,
5101	.use_id = 1,
5102};
5103
5104#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5105static int __init enable_swap_account(char *s)
5106{
5107	/* consider enabled if no parameter or 1 is given */
5108	if (!(*s) || !strcmp(s, "=1"))
5109		really_do_swap_account = 1;
5110	else if (!strcmp(s, "=0"))
5111		really_do_swap_account = 0;
5112	return 1;
5113}
5114__setup("swapaccount", enable_swap_account);
5115
5116static int __init disable_swap_account(char *s)
5117{
5118	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5119	enable_swap_account("=0");
5120	return 1;
5121}
5122__setup("noswapaccount", disable_swap_account);
5123#endif
5124