memcontrol.c revision bd112db872c2f69993c86f458467acb4a14da010
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/mutex.h>
31#include <linux/slab.h>
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
35#include <linux/seq_file.h>
36#include <linux/vmalloc.h>
37#include <linux/mm_inline.h>
38#include <linux/page_cgroup.h>
39#include "internal.h"
40
41#include <asm/uaccess.h>
42
43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44#define MEM_CGROUP_RECLAIM_RETRIES	5
45
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account		(0)
52#endif
53
54static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
55
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60	/*
61	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62	 */
63	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
64	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
65	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
66	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
67
68	MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72	s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
76	struct mem_cgroup_stat_cpu cpustat[0];
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83		enum mem_cgroup_stat_index idx, int val)
84{
85	stat->count[idx] += val;
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89		enum mem_cgroup_stat_index idx)
90{
91	int cpu;
92	s64 ret = 0;
93	for_each_possible_cpu(cpu)
94		ret += stat->cpustat[cpu].count[idx];
95	return ret;
96}
97
98/*
99 * per-zone information in memory controller.
100 */
101struct mem_cgroup_per_zone {
102	/*
103	 * spin_lock to protect the per cgroup LRU
104	 */
105	struct list_head	lists[NR_LRU_LISTS];
106	unsigned long		count[NR_LRU_LISTS];
107
108	struct zone_reclaim_stat reclaim_stat;
109};
110/* Macro for accessing counter */
111#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
112
113struct mem_cgroup_per_node {
114	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115};
116
117struct mem_cgroup_lru_info {
118	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119};
120
121/*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
131 */
132struct mem_cgroup {
133	struct cgroup_subsys_state css;
134	/*
135	 * the counter to account for memory usage
136	 */
137	struct res_counter res;
138	/*
139	 * the counter to account for mem+swap usage.
140	 */
141	struct res_counter memsw;
142	/*
143	 * Per cgroup active and inactive list, similar to the
144	 * per zone LRU lists.
145	 */
146	struct mem_cgroup_lru_info info;
147
148	/*
149	  protect against reclaim related member.
150	*/
151	spinlock_t reclaim_param_lock;
152
153	int	prev_priority;	/* for recording reclaim priority */
154
155	/*
156	 * While reclaiming in a hiearchy, we cache the last child we
157	 * reclaimed from. Protected by hierarchy_mutex
158	 */
159	struct mem_cgroup *last_scanned_child;
160	/*
161	 * Should the accounting and control be hierarchical, per subtree?
162	 */
163	bool use_hierarchy;
164	unsigned long	last_oom_jiffies;
165	atomic_t	refcnt;
166
167	unsigned int	swappiness;
168
169	/*
170	 * statistics. This must be placed at the end of memcg.
171	 */
172	struct mem_cgroup_stat stat;
173};
174
175enum charge_type {
176	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177	MEM_CGROUP_CHARGE_TYPE_MAPPED,
178	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
179	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
180	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
181	NR_CHARGE_TYPE,
182};
183
184/* only for here (for easy reading.) */
185#define PCGF_CACHE	(1UL << PCG_CACHE)
186#define PCGF_USED	(1UL << PCG_USED)
187#define PCGF_LOCK	(1UL << PCG_LOCK)
188static const unsigned long
189pcg_default_flags[NR_CHARGE_TYPE] = {
190	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191	PCGF_USED | PCGF_LOCK, /* Anon */
192	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193	0, /* FORCE */
194};
195
196/* for encoding cft->private value on file */
197#define _MEM			(0)
198#define _MEMSWAP		(1)
199#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
200#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
201#define MEMFILE_ATTR(val)	((val) & 0xffff)
202
203static void mem_cgroup_get(struct mem_cgroup *mem);
204static void mem_cgroup_put(struct mem_cgroup *mem);
205
206static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207					 struct page_cgroup *pc,
208					 bool charge)
209{
210	int val = (charge)? 1 : -1;
211	struct mem_cgroup_stat *stat = &mem->stat;
212	struct mem_cgroup_stat_cpu *cpustat;
213	int cpu = get_cpu();
214
215	cpustat = &stat->cpustat[cpu];
216	if (PageCgroupCache(pc))
217		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218	else
219		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220
221	if (charge)
222		__mem_cgroup_stat_add_safe(cpustat,
223				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224	else
225		__mem_cgroup_stat_add_safe(cpustat,
226				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227	put_cpu();
228}
229
230static struct mem_cgroup_per_zone *
231mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232{
233	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234}
235
236static struct mem_cgroup_per_zone *
237page_cgroup_zoneinfo(struct page_cgroup *pc)
238{
239	struct mem_cgroup *mem = pc->mem_cgroup;
240	int nid = page_cgroup_nid(pc);
241	int zid = page_cgroup_zid(pc);
242
243	if (!mem)
244		return NULL;
245
246	return mem_cgroup_zoneinfo(mem, nid, zid);
247}
248
249static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250					enum lru_list idx)
251{
252	int nid, zid;
253	struct mem_cgroup_per_zone *mz;
254	u64 total = 0;
255
256	for_each_online_node(nid)
257		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258			mz = mem_cgroup_zoneinfo(mem, nid, zid);
259			total += MEM_CGROUP_ZSTAT(mz, idx);
260		}
261	return total;
262}
263
264static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
265{
266	return container_of(cgroup_subsys_state(cont,
267				mem_cgroup_subsys_id), struct mem_cgroup,
268				css);
269}
270
271struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272{
273	/*
274	 * mm_update_next_owner() may clear mm->owner to NULL
275	 * if it races with swapoff, page migration, etc.
276	 * So this can be called with p == NULL.
277	 */
278	if (unlikely(!p))
279		return NULL;
280
281	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282				struct mem_cgroup, css);
283}
284
285static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
286{
287	struct mem_cgroup *mem = NULL;
288	/*
289	 * Because we have no locks, mm->owner's may be being moved to other
290	 * cgroup. We use css_tryget() here even if this looks
291	 * pessimistic (rather than adding locks here).
292	 */
293	rcu_read_lock();
294	do {
295		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
296		if (unlikely(!mem))
297			break;
298	} while (!css_tryget(&mem->css));
299	rcu_read_unlock();
300	return mem;
301}
302
303static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
304{
305	if (!mem)
306		return true;
307	return css_is_removed(&mem->css);
308}
309
310/*
311 * Following LRU functions are allowed to be used without PCG_LOCK.
312 * Operations are called by routine of global LRU independently from memcg.
313 * What we have to take care of here is validness of pc->mem_cgroup.
314 *
315 * Changes to pc->mem_cgroup happens when
316 * 1. charge
317 * 2. moving account
318 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
319 * It is added to LRU before charge.
320 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
321 * When moving account, the page is not on LRU. It's isolated.
322 */
323
324void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
325{
326	struct page_cgroup *pc;
327	struct mem_cgroup *mem;
328	struct mem_cgroup_per_zone *mz;
329
330	if (mem_cgroup_disabled())
331		return;
332	pc = lookup_page_cgroup(page);
333	/* can happen while we handle swapcache. */
334	if (list_empty(&pc->lru) || !pc->mem_cgroup)
335		return;
336	/*
337	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
338	 * removed from global LRU.
339	 */
340	mz = page_cgroup_zoneinfo(pc);
341	mem = pc->mem_cgroup;
342	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
343	list_del_init(&pc->lru);
344	return;
345}
346
347void mem_cgroup_del_lru(struct page *page)
348{
349	mem_cgroup_del_lru_list(page, page_lru(page));
350}
351
352void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
353{
354	struct mem_cgroup_per_zone *mz;
355	struct page_cgroup *pc;
356
357	if (mem_cgroup_disabled())
358		return;
359
360	pc = lookup_page_cgroup(page);
361	/*
362	 * Used bit is set without atomic ops but after smp_wmb().
363	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
364	 */
365	smp_rmb();
366	/* unused page is not rotated. */
367	if (!PageCgroupUsed(pc))
368		return;
369	mz = page_cgroup_zoneinfo(pc);
370	list_move(&pc->lru, &mz->lists[lru]);
371}
372
373void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
374{
375	struct page_cgroup *pc;
376	struct mem_cgroup_per_zone *mz;
377
378	if (mem_cgroup_disabled())
379		return;
380	pc = lookup_page_cgroup(page);
381	/*
382	 * Used bit is set without atomic ops but after smp_wmb().
383	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
384	 */
385	smp_rmb();
386	if (!PageCgroupUsed(pc))
387		return;
388
389	mz = page_cgroup_zoneinfo(pc);
390	MEM_CGROUP_ZSTAT(mz, lru) += 1;
391	list_add(&pc->lru, &mz->lists[lru]);
392}
393
394/*
395 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
396 * lru because the page may.be reused after it's fully uncharged (because of
397 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
398 * it again. This function is only used to charge SwapCache. It's done under
399 * lock_page and expected that zone->lru_lock is never held.
400 */
401static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
402{
403	unsigned long flags;
404	struct zone *zone = page_zone(page);
405	struct page_cgroup *pc = lookup_page_cgroup(page);
406
407	spin_lock_irqsave(&zone->lru_lock, flags);
408	/*
409	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
410	 * is guarded by lock_page() because the page is SwapCache.
411	 */
412	if (!PageCgroupUsed(pc))
413		mem_cgroup_del_lru_list(page, page_lru(page));
414	spin_unlock_irqrestore(&zone->lru_lock, flags);
415}
416
417static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
418{
419	unsigned long flags;
420	struct zone *zone = page_zone(page);
421	struct page_cgroup *pc = lookup_page_cgroup(page);
422
423	spin_lock_irqsave(&zone->lru_lock, flags);
424	/* link when the page is linked to LRU but page_cgroup isn't */
425	if (PageLRU(page) && list_empty(&pc->lru))
426		mem_cgroup_add_lru_list(page, page_lru(page));
427	spin_unlock_irqrestore(&zone->lru_lock, flags);
428}
429
430
431void mem_cgroup_move_lists(struct page *page,
432			   enum lru_list from, enum lru_list to)
433{
434	if (mem_cgroup_disabled())
435		return;
436	mem_cgroup_del_lru_list(page, from);
437	mem_cgroup_add_lru_list(page, to);
438}
439
440int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
441{
442	int ret;
443
444	task_lock(task);
445	ret = task->mm && mm_match_cgroup(task->mm, mem);
446	task_unlock(task);
447	return ret;
448}
449
450/*
451 * Calculate mapped_ratio under memory controller. This will be used in
452 * vmscan.c for deteremining we have to reclaim mapped pages.
453 */
454int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
455{
456	long total, rss;
457
458	/*
459	 * usage is recorded in bytes. But, here, we assume the number of
460	 * physical pages can be represented by "long" on any arch.
461	 */
462	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
463	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
464	return (int)((rss * 100L) / total);
465}
466
467/*
468 * prev_priority control...this will be used in memory reclaim path.
469 */
470int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
471{
472	int prev_priority;
473
474	spin_lock(&mem->reclaim_param_lock);
475	prev_priority = mem->prev_priority;
476	spin_unlock(&mem->reclaim_param_lock);
477
478	return prev_priority;
479}
480
481void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
482{
483	spin_lock(&mem->reclaim_param_lock);
484	if (priority < mem->prev_priority)
485		mem->prev_priority = priority;
486	spin_unlock(&mem->reclaim_param_lock);
487}
488
489void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
490{
491	spin_lock(&mem->reclaim_param_lock);
492	mem->prev_priority = priority;
493	spin_unlock(&mem->reclaim_param_lock);
494}
495
496static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
497{
498	unsigned long active;
499	unsigned long inactive;
500	unsigned long gb;
501	unsigned long inactive_ratio;
502
503	inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
504	active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
505
506	gb = (inactive + active) >> (30 - PAGE_SHIFT);
507	if (gb)
508		inactive_ratio = int_sqrt(10 * gb);
509	else
510		inactive_ratio = 1;
511
512	if (present_pages) {
513		present_pages[0] = inactive;
514		present_pages[1] = active;
515	}
516
517	return inactive_ratio;
518}
519
520int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
521{
522	unsigned long active;
523	unsigned long inactive;
524	unsigned long present_pages[2];
525	unsigned long inactive_ratio;
526
527	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
528
529	inactive = present_pages[0];
530	active = present_pages[1];
531
532	if (inactive * inactive_ratio < active)
533		return 1;
534
535	return 0;
536}
537
538unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
539				       struct zone *zone,
540				       enum lru_list lru)
541{
542	int nid = zone->zone_pgdat->node_id;
543	int zid = zone_idx(zone);
544	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
545
546	return MEM_CGROUP_ZSTAT(mz, lru);
547}
548
549struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
550						      struct zone *zone)
551{
552	int nid = zone->zone_pgdat->node_id;
553	int zid = zone_idx(zone);
554	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
555
556	return &mz->reclaim_stat;
557}
558
559struct zone_reclaim_stat *
560mem_cgroup_get_reclaim_stat_from_page(struct page *page)
561{
562	struct page_cgroup *pc;
563	struct mem_cgroup_per_zone *mz;
564
565	if (mem_cgroup_disabled())
566		return NULL;
567
568	pc = lookup_page_cgroup(page);
569	/*
570	 * Used bit is set without atomic ops but after smp_wmb().
571	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
572	 */
573	smp_rmb();
574	if (!PageCgroupUsed(pc))
575		return NULL;
576
577	mz = page_cgroup_zoneinfo(pc);
578	if (!mz)
579		return NULL;
580
581	return &mz->reclaim_stat;
582}
583
584unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
585					struct list_head *dst,
586					unsigned long *scanned, int order,
587					int mode, struct zone *z,
588					struct mem_cgroup *mem_cont,
589					int active, int file)
590{
591	unsigned long nr_taken = 0;
592	struct page *page;
593	unsigned long scan;
594	LIST_HEAD(pc_list);
595	struct list_head *src;
596	struct page_cgroup *pc, *tmp;
597	int nid = z->zone_pgdat->node_id;
598	int zid = zone_idx(z);
599	struct mem_cgroup_per_zone *mz;
600	int lru = LRU_FILE * !!file + !!active;
601
602	BUG_ON(!mem_cont);
603	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
604	src = &mz->lists[lru];
605
606	scan = 0;
607	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
608		if (scan >= nr_to_scan)
609			break;
610
611		page = pc->page;
612		if (unlikely(!PageCgroupUsed(pc)))
613			continue;
614		if (unlikely(!PageLRU(page)))
615			continue;
616
617		scan++;
618		if (__isolate_lru_page(page, mode, file) == 0) {
619			list_move(&page->lru, dst);
620			nr_taken++;
621		}
622	}
623
624	*scanned = scan;
625	return nr_taken;
626}
627
628#define mem_cgroup_from_res_counter(counter, member)	\
629	container_of(counter, struct mem_cgroup, member)
630
631/*
632 * This routine finds the DFS walk successor. This routine should be
633 * called with hierarchy_mutex held
634 */
635static struct mem_cgroup *
636mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
637{
638	struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
639
640	curr_cgroup = curr->css.cgroup;
641	root_cgroup = root_mem->css.cgroup;
642
643	if (!list_empty(&curr_cgroup->children)) {
644		/*
645		 * Walk down to children
646		 */
647		mem_cgroup_put(curr);
648		cgroup = list_entry(curr_cgroup->children.next,
649						struct cgroup, sibling);
650		curr = mem_cgroup_from_cont(cgroup);
651		mem_cgroup_get(curr);
652		goto done;
653	}
654
655visit_parent:
656	if (curr_cgroup == root_cgroup) {
657		mem_cgroup_put(curr);
658		curr = root_mem;
659		mem_cgroup_get(curr);
660		goto done;
661	}
662
663	/*
664	 * Goto next sibling
665	 */
666	if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
667		mem_cgroup_put(curr);
668		cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
669						sibling);
670		curr = mem_cgroup_from_cont(cgroup);
671		mem_cgroup_get(curr);
672		goto done;
673	}
674
675	/*
676	 * Go up to next parent and next parent's sibling if need be
677	 */
678	curr_cgroup = curr_cgroup->parent;
679	goto visit_parent;
680
681done:
682	root_mem->last_scanned_child = curr;
683	return curr;
684}
685
686/*
687 * Visit the first child (need not be the first child as per the ordering
688 * of the cgroup list, since we track last_scanned_child) of @mem and use
689 * that to reclaim free pages from.
690 */
691static struct mem_cgroup *
692mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
693{
694	struct cgroup *cgroup;
695	struct mem_cgroup *ret;
696	bool obsolete;
697
698	obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
699
700	/*
701	 * Scan all children under the mem_cgroup mem
702	 */
703	mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
704	if (list_empty(&root_mem->css.cgroup->children)) {
705		ret = root_mem;
706		goto done;
707	}
708
709	if (!root_mem->last_scanned_child || obsolete) {
710
711		if (obsolete && root_mem->last_scanned_child)
712			mem_cgroup_put(root_mem->last_scanned_child);
713
714		cgroup = list_first_entry(&root_mem->css.cgroup->children,
715				struct cgroup, sibling);
716		ret = mem_cgroup_from_cont(cgroup);
717		mem_cgroup_get(ret);
718	} else
719		ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
720						root_mem);
721
722done:
723	root_mem->last_scanned_child = ret;
724	mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
725	return ret;
726}
727
728static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
729{
730	if (do_swap_account) {
731		if (res_counter_check_under_limit(&mem->res) &&
732			res_counter_check_under_limit(&mem->memsw))
733			return true;
734	} else
735		if (res_counter_check_under_limit(&mem->res))
736			return true;
737	return false;
738}
739
740static unsigned int get_swappiness(struct mem_cgroup *memcg)
741{
742	struct cgroup *cgrp = memcg->css.cgroup;
743	unsigned int swappiness;
744
745	/* root ? */
746	if (cgrp->parent == NULL)
747		return vm_swappiness;
748
749	spin_lock(&memcg->reclaim_param_lock);
750	swappiness = memcg->swappiness;
751	spin_unlock(&memcg->reclaim_param_lock);
752
753	return swappiness;
754}
755
756/*
757 * Dance down the hierarchy if needed to reclaim memory. We remember the
758 * last child we reclaimed from, so that we don't end up penalizing
759 * one child extensively based on its position in the children list.
760 *
761 * root_mem is the original ancestor that we've been reclaim from.
762 */
763static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
764						gfp_t gfp_mask, bool noswap)
765{
766	struct mem_cgroup *next_mem;
767	int ret = 0;
768
769	/*
770	 * Reclaim unconditionally and don't check for return value.
771	 * We need to reclaim in the current group and down the tree.
772	 * One might think about checking for children before reclaiming,
773	 * but there might be left over accounting, even after children
774	 * have left.
775	 */
776	ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
777					   get_swappiness(root_mem));
778	if (mem_cgroup_check_under_limit(root_mem))
779		return 0;
780	if (!root_mem->use_hierarchy)
781		return ret;
782
783	next_mem = mem_cgroup_get_first_node(root_mem);
784
785	while (next_mem != root_mem) {
786		if (mem_cgroup_is_obsolete(next_mem)) {
787			mem_cgroup_put(next_mem);
788			next_mem = mem_cgroup_get_first_node(root_mem);
789			continue;
790		}
791		ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
792						   get_swappiness(next_mem));
793		if (mem_cgroup_check_under_limit(root_mem))
794			return 0;
795		mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
796		next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
797		mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
798	}
799	return ret;
800}
801
802bool mem_cgroup_oom_called(struct task_struct *task)
803{
804	bool ret = false;
805	struct mem_cgroup *mem;
806	struct mm_struct *mm;
807
808	rcu_read_lock();
809	mm = task->mm;
810	if (!mm)
811		mm = &init_mm;
812	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
813	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
814		ret = true;
815	rcu_read_unlock();
816	return ret;
817}
818/*
819 * Unlike exported interface, "oom" parameter is added. if oom==true,
820 * oom-killer can be invoked.
821 */
822static int __mem_cgroup_try_charge(struct mm_struct *mm,
823			gfp_t gfp_mask, struct mem_cgroup **memcg,
824			bool oom)
825{
826	struct mem_cgroup *mem, *mem_over_limit;
827	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
828	struct res_counter *fail_res;
829
830	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
831		/* Don't account this! */
832		*memcg = NULL;
833		return 0;
834	}
835
836	/*
837	 * We always charge the cgroup the mm_struct belongs to.
838	 * The mm_struct's mem_cgroup changes on task migration if the
839	 * thread group leader migrates. It's possible that mm is not
840	 * set, if so charge the init_mm (happens for pagecache usage).
841	 */
842	mem = *memcg;
843	if (likely(!mem)) {
844		mem = try_get_mem_cgroup_from_mm(mm);
845		*memcg = mem;
846	} else {
847		css_get(&mem->css);
848	}
849	if (unlikely(!mem))
850		return 0;
851
852	VM_BUG_ON(mem_cgroup_is_obsolete(mem));
853
854	while (1) {
855		int ret;
856		bool noswap = false;
857
858		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
859		if (likely(!ret)) {
860			if (!do_swap_account)
861				break;
862			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
863							&fail_res);
864			if (likely(!ret))
865				break;
866			/* mem+swap counter fails */
867			res_counter_uncharge(&mem->res, PAGE_SIZE);
868			noswap = true;
869			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
870									memsw);
871		} else
872			/* mem counter fails */
873			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
874									res);
875
876		if (!(gfp_mask & __GFP_WAIT))
877			goto nomem;
878
879		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
880							noswap);
881
882		/*
883		 * try_to_free_mem_cgroup_pages() might not give us a full
884		 * picture of reclaim. Some pages are reclaimed and might be
885		 * moved to swap cache or just unmapped from the cgroup.
886		 * Check the limit again to see if the reclaim reduced the
887		 * current usage of the cgroup before giving up
888		 *
889		 */
890		if (mem_cgroup_check_under_limit(mem_over_limit))
891			continue;
892
893		if (!nr_retries--) {
894			if (oom) {
895				mutex_lock(&memcg_tasklist);
896				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
897				mutex_unlock(&memcg_tasklist);
898				mem_over_limit->last_oom_jiffies = jiffies;
899			}
900			goto nomem;
901		}
902	}
903	return 0;
904nomem:
905	css_put(&mem->css);
906	return -ENOMEM;
907}
908
909static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
910{
911	struct mem_cgroup *mem;
912	swp_entry_t ent;
913
914	if (!PageSwapCache(page))
915		return NULL;
916
917	ent.val = page_private(page);
918	mem = lookup_swap_cgroup(ent);
919	if (!mem)
920		return NULL;
921	if (!css_tryget(&mem->css))
922		return NULL;
923	return mem;
924}
925
926/*
927 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
928 * USED state. If already USED, uncharge and return.
929 */
930
931static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
932				     struct page_cgroup *pc,
933				     enum charge_type ctype)
934{
935	/* try_charge() can return NULL to *memcg, taking care of it. */
936	if (!mem)
937		return;
938
939	lock_page_cgroup(pc);
940	if (unlikely(PageCgroupUsed(pc))) {
941		unlock_page_cgroup(pc);
942		res_counter_uncharge(&mem->res, PAGE_SIZE);
943		if (do_swap_account)
944			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
945		css_put(&mem->css);
946		return;
947	}
948	pc->mem_cgroup = mem;
949	smp_wmb();
950	pc->flags = pcg_default_flags[ctype];
951
952	mem_cgroup_charge_statistics(mem, pc, true);
953
954	unlock_page_cgroup(pc);
955}
956
957/**
958 * mem_cgroup_move_account - move account of the page
959 * @pc:	page_cgroup of the page.
960 * @from: mem_cgroup which the page is moved from.
961 * @to:	mem_cgroup which the page is moved to. @from != @to.
962 *
963 * The caller must confirm following.
964 * - page is not on LRU (isolate_page() is useful.)
965 *
966 * returns 0 at success,
967 * returns -EBUSY when lock is busy or "pc" is unstable.
968 *
969 * This function does "uncharge" from old cgroup but doesn't do "charge" to
970 * new cgroup. It should be done by a caller.
971 */
972
973static int mem_cgroup_move_account(struct page_cgroup *pc,
974	struct mem_cgroup *from, struct mem_cgroup *to)
975{
976	struct mem_cgroup_per_zone *from_mz, *to_mz;
977	int nid, zid;
978	int ret = -EBUSY;
979
980	VM_BUG_ON(from == to);
981	VM_BUG_ON(PageLRU(pc->page));
982
983	nid = page_cgroup_nid(pc);
984	zid = page_cgroup_zid(pc);
985	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
986	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
987
988	if (!trylock_page_cgroup(pc))
989		return ret;
990
991	if (!PageCgroupUsed(pc))
992		goto out;
993
994	if (pc->mem_cgroup != from)
995		goto out;
996
997	css_put(&from->css);
998	res_counter_uncharge(&from->res, PAGE_SIZE);
999	mem_cgroup_charge_statistics(from, pc, false);
1000	if (do_swap_account)
1001		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1002	pc->mem_cgroup = to;
1003	mem_cgroup_charge_statistics(to, pc, true);
1004	css_get(&to->css);
1005	ret = 0;
1006out:
1007	unlock_page_cgroup(pc);
1008	return ret;
1009}
1010
1011/*
1012 * move charges to its parent.
1013 */
1014
1015static int mem_cgroup_move_parent(struct page_cgroup *pc,
1016				  struct mem_cgroup *child,
1017				  gfp_t gfp_mask)
1018{
1019	struct page *page = pc->page;
1020	struct cgroup *cg = child->css.cgroup;
1021	struct cgroup *pcg = cg->parent;
1022	struct mem_cgroup *parent;
1023	int ret;
1024
1025	/* Is ROOT ? */
1026	if (!pcg)
1027		return -EINVAL;
1028
1029
1030	parent = mem_cgroup_from_cont(pcg);
1031
1032
1033	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1034	if (ret || !parent)
1035		return ret;
1036
1037	if (!get_page_unless_zero(page))
1038		return -EBUSY;
1039
1040	ret = isolate_lru_page(page);
1041
1042	if (ret)
1043		goto cancel;
1044
1045	ret = mem_cgroup_move_account(pc, child, parent);
1046
1047	/* drop extra refcnt by try_charge() (move_account increment one) */
1048	css_put(&parent->css);
1049	putback_lru_page(page);
1050	if (!ret) {
1051		put_page(page);
1052		return 0;
1053	}
1054	/* uncharge if move fails */
1055cancel:
1056	res_counter_uncharge(&parent->res, PAGE_SIZE);
1057	if (do_swap_account)
1058		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1059	put_page(page);
1060	return ret;
1061}
1062
1063/*
1064 * Charge the memory controller for page usage.
1065 * Return
1066 * 0 if the charge was successful
1067 * < 0 if the cgroup is over its limit
1068 */
1069static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1070				gfp_t gfp_mask, enum charge_type ctype,
1071				struct mem_cgroup *memcg)
1072{
1073	struct mem_cgroup *mem;
1074	struct page_cgroup *pc;
1075	int ret;
1076
1077	pc = lookup_page_cgroup(page);
1078	/* can happen at boot */
1079	if (unlikely(!pc))
1080		return 0;
1081	prefetchw(pc);
1082
1083	mem = memcg;
1084	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1085	if (ret || !mem)
1086		return ret;
1087
1088	__mem_cgroup_commit_charge(mem, pc, ctype);
1089	return 0;
1090}
1091
1092int mem_cgroup_newpage_charge(struct page *page,
1093			      struct mm_struct *mm, gfp_t gfp_mask)
1094{
1095	if (mem_cgroup_disabled())
1096		return 0;
1097	if (PageCompound(page))
1098		return 0;
1099	/*
1100	 * If already mapped, we don't have to account.
1101	 * If page cache, page->mapping has address_space.
1102	 * But page->mapping may have out-of-use anon_vma pointer,
1103	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1104	 * is NULL.
1105  	 */
1106	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1107		return 0;
1108	if (unlikely(!mm))
1109		mm = &init_mm;
1110	return mem_cgroup_charge_common(page, mm, gfp_mask,
1111				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1112}
1113
1114int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1115				gfp_t gfp_mask)
1116{
1117	struct mem_cgroup *mem = NULL;
1118	int ret;
1119
1120	if (mem_cgroup_disabled())
1121		return 0;
1122	if (PageCompound(page))
1123		return 0;
1124	/*
1125	 * Corner case handling. This is called from add_to_page_cache()
1126	 * in usual. But some FS (shmem) precharges this page before calling it
1127	 * and call add_to_page_cache() with GFP_NOWAIT.
1128	 *
1129	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1130	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1131	 * charge twice. (It works but has to pay a bit larger cost.)
1132	 * And when the page is SwapCache, it should take swap information
1133	 * into account. This is under lock_page() now.
1134	 */
1135	if (!(gfp_mask & __GFP_WAIT)) {
1136		struct page_cgroup *pc;
1137
1138
1139		pc = lookup_page_cgroup(page);
1140		if (!pc)
1141			return 0;
1142		lock_page_cgroup(pc);
1143		if (PageCgroupUsed(pc)) {
1144			unlock_page_cgroup(pc);
1145			return 0;
1146		}
1147		unlock_page_cgroup(pc);
1148	}
1149
1150	if (do_swap_account && PageSwapCache(page)) {
1151		mem = try_get_mem_cgroup_from_swapcache(page);
1152		if (mem)
1153			mm = NULL;
1154		  else
1155			mem = NULL;
1156		/* SwapCache may be still linked to LRU now. */
1157		mem_cgroup_lru_del_before_commit_swapcache(page);
1158	}
1159
1160	if (unlikely(!mm && !mem))
1161		mm = &init_mm;
1162
1163	if (page_is_file_cache(page))
1164		return mem_cgroup_charge_common(page, mm, gfp_mask,
1165				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1166
1167	ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1168				MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1169	if (mem)
1170		css_put(&mem->css);
1171	if (PageSwapCache(page))
1172		mem_cgroup_lru_add_after_commit_swapcache(page);
1173
1174	if (do_swap_account && !ret && PageSwapCache(page)) {
1175		swp_entry_t ent = {.val = page_private(page)};
1176		/* avoid double counting */
1177		mem = swap_cgroup_record(ent, NULL);
1178		if (mem) {
1179			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1180			mem_cgroup_put(mem);
1181		}
1182	}
1183	return ret;
1184}
1185
1186/*
1187 * While swap-in, try_charge -> commit or cancel, the page is locked.
1188 * And when try_charge() successfully returns, one refcnt to memcg without
1189 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1190 * "commit()" or removed by "cancel()"
1191 */
1192int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1193				 struct page *page,
1194				 gfp_t mask, struct mem_cgroup **ptr)
1195{
1196	struct mem_cgroup *mem;
1197	int ret;
1198
1199	if (mem_cgroup_disabled())
1200		return 0;
1201
1202	if (!do_swap_account)
1203		goto charge_cur_mm;
1204	/*
1205	 * A racing thread's fault, or swapoff, may have already updated
1206	 * the pte, and even removed page from swap cache: return success
1207	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1208	 */
1209	if (!PageSwapCache(page))
1210		return 0;
1211	mem = try_get_mem_cgroup_from_swapcache(page);
1212	if (!mem)
1213		goto charge_cur_mm;
1214	*ptr = mem;
1215	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1216	/* drop extra refcnt from tryget */
1217	css_put(&mem->css);
1218	return ret;
1219charge_cur_mm:
1220	if (unlikely(!mm))
1221		mm = &init_mm;
1222	return __mem_cgroup_try_charge(mm, mask, ptr, true);
1223}
1224
1225void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1226{
1227	struct page_cgroup *pc;
1228
1229	if (mem_cgroup_disabled())
1230		return;
1231	if (!ptr)
1232		return;
1233	pc = lookup_page_cgroup(page);
1234	mem_cgroup_lru_del_before_commit_swapcache(page);
1235	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1236	mem_cgroup_lru_add_after_commit_swapcache(page);
1237	/*
1238	 * Now swap is on-memory. This means this page may be
1239	 * counted both as mem and swap....double count.
1240	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1241	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1242	 * may call delete_from_swap_cache() before reach here.
1243	 */
1244	if (do_swap_account && PageSwapCache(page)) {
1245		swp_entry_t ent = {.val = page_private(page)};
1246		struct mem_cgroup *memcg;
1247		memcg = swap_cgroup_record(ent, NULL);
1248		if (memcg) {
1249			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1250			mem_cgroup_put(memcg);
1251		}
1252
1253	}
1254	/* add this page(page_cgroup) to the LRU we want. */
1255
1256}
1257
1258void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1259{
1260	if (mem_cgroup_disabled())
1261		return;
1262	if (!mem)
1263		return;
1264	res_counter_uncharge(&mem->res, PAGE_SIZE);
1265	if (do_swap_account)
1266		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1267	css_put(&mem->css);
1268}
1269
1270
1271/*
1272 * uncharge if !page_mapped(page)
1273 */
1274static struct mem_cgroup *
1275__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1276{
1277	struct page_cgroup *pc;
1278	struct mem_cgroup *mem = NULL;
1279	struct mem_cgroup_per_zone *mz;
1280
1281	if (mem_cgroup_disabled())
1282		return NULL;
1283
1284	if (PageSwapCache(page))
1285		return NULL;
1286
1287	/*
1288	 * Check if our page_cgroup is valid
1289	 */
1290	pc = lookup_page_cgroup(page);
1291	if (unlikely(!pc || !PageCgroupUsed(pc)))
1292		return NULL;
1293
1294	lock_page_cgroup(pc);
1295
1296	mem = pc->mem_cgroup;
1297
1298	if (!PageCgroupUsed(pc))
1299		goto unlock_out;
1300
1301	switch (ctype) {
1302	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1303		if (page_mapped(page))
1304			goto unlock_out;
1305		break;
1306	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1307		if (!PageAnon(page)) {	/* Shared memory */
1308			if (page->mapping && !page_is_file_cache(page))
1309				goto unlock_out;
1310		} else if (page_mapped(page)) /* Anon */
1311				goto unlock_out;
1312		break;
1313	default:
1314		break;
1315	}
1316
1317	res_counter_uncharge(&mem->res, PAGE_SIZE);
1318	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1319		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1320
1321	mem_cgroup_charge_statistics(mem, pc, false);
1322	ClearPageCgroupUsed(pc);
1323	/*
1324	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1325	 * freed from LRU. This is safe because uncharged page is expected not
1326	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1327	 * special functions.
1328	 */
1329
1330	mz = page_cgroup_zoneinfo(pc);
1331	unlock_page_cgroup(pc);
1332
1333	/* at swapout, this memcg will be accessed to record to swap */
1334	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1335		css_put(&mem->css);
1336
1337	return mem;
1338
1339unlock_out:
1340	unlock_page_cgroup(pc);
1341	return NULL;
1342}
1343
1344void mem_cgroup_uncharge_page(struct page *page)
1345{
1346	/* early check. */
1347	if (page_mapped(page))
1348		return;
1349	if (page->mapping && !PageAnon(page))
1350		return;
1351	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1352}
1353
1354void mem_cgroup_uncharge_cache_page(struct page *page)
1355{
1356	VM_BUG_ON(page_mapped(page));
1357	VM_BUG_ON(page->mapping);
1358	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1359}
1360
1361/*
1362 * called from __delete_from_swap_cache() and drop "page" account.
1363 * memcg information is recorded to swap_cgroup of "ent"
1364 */
1365void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1366{
1367	struct mem_cgroup *memcg;
1368
1369	memcg = __mem_cgroup_uncharge_common(page,
1370					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1371	/* record memcg information */
1372	if (do_swap_account && memcg) {
1373		swap_cgroup_record(ent, memcg);
1374		mem_cgroup_get(memcg);
1375	}
1376	if (memcg)
1377		css_put(&memcg->css);
1378}
1379
1380#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1381/*
1382 * called from swap_entry_free(). remove record in swap_cgroup and
1383 * uncharge "memsw" account.
1384 */
1385void mem_cgroup_uncharge_swap(swp_entry_t ent)
1386{
1387	struct mem_cgroup *memcg;
1388
1389	if (!do_swap_account)
1390		return;
1391
1392	memcg = swap_cgroup_record(ent, NULL);
1393	if (memcg) {
1394		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1395		mem_cgroup_put(memcg);
1396	}
1397}
1398#endif
1399
1400/*
1401 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1402 * page belongs to.
1403 */
1404int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1405{
1406	struct page_cgroup *pc;
1407	struct mem_cgroup *mem = NULL;
1408	int ret = 0;
1409
1410	if (mem_cgroup_disabled())
1411		return 0;
1412
1413	pc = lookup_page_cgroup(page);
1414	lock_page_cgroup(pc);
1415	if (PageCgroupUsed(pc)) {
1416		mem = pc->mem_cgroup;
1417		css_get(&mem->css);
1418	}
1419	unlock_page_cgroup(pc);
1420
1421	if (mem) {
1422		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1423		css_put(&mem->css);
1424	}
1425	*ptr = mem;
1426	return ret;
1427}
1428
1429/* remove redundant charge if migration failed*/
1430void mem_cgroup_end_migration(struct mem_cgroup *mem,
1431		struct page *oldpage, struct page *newpage)
1432{
1433	struct page *target, *unused;
1434	struct page_cgroup *pc;
1435	enum charge_type ctype;
1436
1437	if (!mem)
1438		return;
1439
1440	/* at migration success, oldpage->mapping is NULL. */
1441	if (oldpage->mapping) {
1442		target = oldpage;
1443		unused = NULL;
1444	} else {
1445		target = newpage;
1446		unused = oldpage;
1447	}
1448
1449	if (PageAnon(target))
1450		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1451	else if (page_is_file_cache(target))
1452		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1453	else
1454		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1455
1456	/* unused page is not on radix-tree now. */
1457	if (unused)
1458		__mem_cgroup_uncharge_common(unused, ctype);
1459
1460	pc = lookup_page_cgroup(target);
1461	/*
1462	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1463	 * So, double-counting is effectively avoided.
1464	 */
1465	__mem_cgroup_commit_charge(mem, pc, ctype);
1466
1467	/*
1468	 * Both of oldpage and newpage are still under lock_page().
1469	 * Then, we don't have to care about race in radix-tree.
1470	 * But we have to be careful that this page is unmapped or not.
1471	 *
1472	 * There is a case for !page_mapped(). At the start of
1473	 * migration, oldpage was mapped. But now, it's zapped.
1474	 * But we know *target* page is not freed/reused under us.
1475	 * mem_cgroup_uncharge_page() does all necessary checks.
1476	 */
1477	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1478		mem_cgroup_uncharge_page(target);
1479}
1480
1481/*
1482 * A call to try to shrink memory usage under specified resource controller.
1483 * This is typically used for page reclaiming for shmem for reducing side
1484 * effect of page allocation from shmem, which is used by some mem_cgroup.
1485 */
1486int mem_cgroup_shrink_usage(struct page *page,
1487			    struct mm_struct *mm,
1488			    gfp_t gfp_mask)
1489{
1490	struct mem_cgroup *mem = NULL;
1491	int progress = 0;
1492	int retry = MEM_CGROUP_RECLAIM_RETRIES;
1493
1494	if (mem_cgroup_disabled())
1495		return 0;
1496	if (page)
1497		mem = try_get_mem_cgroup_from_swapcache(page);
1498	if (!mem && mm)
1499		mem = try_get_mem_cgroup_from_mm(mm);
1500	if (unlikely(!mem))
1501		return 0;
1502
1503	do {
1504		progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1505		progress += mem_cgroup_check_under_limit(mem);
1506	} while (!progress && --retry);
1507
1508	css_put(&mem->css);
1509	if (!retry)
1510		return -ENOMEM;
1511	return 0;
1512}
1513
1514static DEFINE_MUTEX(set_limit_mutex);
1515
1516static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1517				unsigned long long val)
1518{
1519
1520	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1521	int progress;
1522	u64 memswlimit;
1523	int ret = 0;
1524
1525	while (retry_count) {
1526		if (signal_pending(current)) {
1527			ret = -EINTR;
1528			break;
1529		}
1530		/*
1531		 * Rather than hide all in some function, I do this in
1532		 * open coded manner. You see what this really does.
1533		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1534		 */
1535		mutex_lock(&set_limit_mutex);
1536		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1537		if (memswlimit < val) {
1538			ret = -EINVAL;
1539			mutex_unlock(&set_limit_mutex);
1540			break;
1541		}
1542		ret = res_counter_set_limit(&memcg->res, val);
1543		mutex_unlock(&set_limit_mutex);
1544
1545		if (!ret)
1546			break;
1547
1548		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1549							   false);
1550  		if (!progress)			retry_count--;
1551	}
1552
1553	return ret;
1554}
1555
1556int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1557				unsigned long long val)
1558{
1559	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1560	u64 memlimit, oldusage, curusage;
1561	int ret;
1562
1563	if (!do_swap_account)
1564		return -EINVAL;
1565
1566	while (retry_count) {
1567		if (signal_pending(current)) {
1568			ret = -EINTR;
1569			break;
1570		}
1571		/*
1572		 * Rather than hide all in some function, I do this in
1573		 * open coded manner. You see what this really does.
1574		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1575		 */
1576		mutex_lock(&set_limit_mutex);
1577		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1578		if (memlimit > val) {
1579			ret = -EINVAL;
1580			mutex_unlock(&set_limit_mutex);
1581			break;
1582		}
1583		ret = res_counter_set_limit(&memcg->memsw, val);
1584		mutex_unlock(&set_limit_mutex);
1585
1586		if (!ret)
1587			break;
1588
1589		oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1590		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1591		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1592		if (curusage >= oldusage)
1593			retry_count--;
1594	}
1595	return ret;
1596}
1597
1598/*
1599 * This routine traverse page_cgroup in given list and drop them all.
1600 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1601 */
1602static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1603				int node, int zid, enum lru_list lru)
1604{
1605	struct zone *zone;
1606	struct mem_cgroup_per_zone *mz;
1607	struct page_cgroup *pc, *busy;
1608	unsigned long flags, loop;
1609	struct list_head *list;
1610	int ret = 0;
1611
1612	zone = &NODE_DATA(node)->node_zones[zid];
1613	mz = mem_cgroup_zoneinfo(mem, node, zid);
1614	list = &mz->lists[lru];
1615
1616	loop = MEM_CGROUP_ZSTAT(mz, lru);
1617	/* give some margin against EBUSY etc...*/
1618	loop += 256;
1619	busy = NULL;
1620	while (loop--) {
1621		ret = 0;
1622		spin_lock_irqsave(&zone->lru_lock, flags);
1623		if (list_empty(list)) {
1624			spin_unlock_irqrestore(&zone->lru_lock, flags);
1625			break;
1626		}
1627		pc = list_entry(list->prev, struct page_cgroup, lru);
1628		if (busy == pc) {
1629			list_move(&pc->lru, list);
1630			busy = 0;
1631			spin_unlock_irqrestore(&zone->lru_lock, flags);
1632			continue;
1633		}
1634		spin_unlock_irqrestore(&zone->lru_lock, flags);
1635
1636		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1637		if (ret == -ENOMEM)
1638			break;
1639
1640		if (ret == -EBUSY || ret == -EINVAL) {
1641			/* found lock contention or "pc" is obsolete. */
1642			busy = pc;
1643			cond_resched();
1644		} else
1645			busy = NULL;
1646	}
1647
1648	if (!ret && !list_empty(list))
1649		return -EBUSY;
1650	return ret;
1651}
1652
1653/*
1654 * make mem_cgroup's charge to be 0 if there is no task.
1655 * This enables deleting this mem_cgroup.
1656 */
1657static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1658{
1659	int ret;
1660	int node, zid, shrink;
1661	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1662	struct cgroup *cgrp = mem->css.cgroup;
1663
1664	css_get(&mem->css);
1665
1666	shrink = 0;
1667	/* should free all ? */
1668	if (free_all)
1669		goto try_to_free;
1670move_account:
1671	while (mem->res.usage > 0) {
1672		ret = -EBUSY;
1673		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1674			goto out;
1675		ret = -EINTR;
1676		if (signal_pending(current))
1677			goto out;
1678		/* This is for making all *used* pages to be on LRU. */
1679		lru_add_drain_all();
1680		ret = 0;
1681		for_each_node_state(node, N_POSSIBLE) {
1682			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1683				enum lru_list l;
1684				for_each_lru(l) {
1685					ret = mem_cgroup_force_empty_list(mem,
1686							node, zid, l);
1687					if (ret)
1688						break;
1689				}
1690			}
1691			if (ret)
1692				break;
1693		}
1694		/* it seems parent cgroup doesn't have enough mem */
1695		if (ret == -ENOMEM)
1696			goto try_to_free;
1697		cond_resched();
1698	}
1699	ret = 0;
1700out:
1701	css_put(&mem->css);
1702	return ret;
1703
1704try_to_free:
1705	/* returns EBUSY if there is a task or if we come here twice. */
1706	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1707		ret = -EBUSY;
1708		goto out;
1709	}
1710	/* we call try-to-free pages for make this cgroup empty */
1711	lru_add_drain_all();
1712	/* try to free all pages in this cgroup */
1713	shrink = 1;
1714	while (nr_retries && mem->res.usage > 0) {
1715		int progress;
1716
1717		if (signal_pending(current)) {
1718			ret = -EINTR;
1719			goto out;
1720		}
1721		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1722						false, get_swappiness(mem));
1723		if (!progress) {
1724			nr_retries--;
1725			/* maybe some writeback is necessary */
1726			congestion_wait(WRITE, HZ/10);
1727		}
1728
1729	}
1730	lru_add_drain();
1731	/* try move_account...there may be some *locked* pages. */
1732	if (mem->res.usage)
1733		goto move_account;
1734	ret = 0;
1735	goto out;
1736}
1737
1738int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1739{
1740	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1741}
1742
1743
1744static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1745{
1746	return mem_cgroup_from_cont(cont)->use_hierarchy;
1747}
1748
1749static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1750					u64 val)
1751{
1752	int retval = 0;
1753	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1754	struct cgroup *parent = cont->parent;
1755	struct mem_cgroup *parent_mem = NULL;
1756
1757	if (parent)
1758		parent_mem = mem_cgroup_from_cont(parent);
1759
1760	cgroup_lock();
1761	/*
1762	 * If parent's use_hiearchy is set, we can't make any modifications
1763	 * in the child subtrees. If it is unset, then the change can
1764	 * occur, provided the current cgroup has no children.
1765	 *
1766	 * For the root cgroup, parent_mem is NULL, we allow value to be
1767	 * set if there are no children.
1768	 */
1769	if ((!parent_mem || !parent_mem->use_hierarchy) &&
1770				(val == 1 || val == 0)) {
1771		if (list_empty(&cont->children))
1772			mem->use_hierarchy = val;
1773		else
1774			retval = -EBUSY;
1775	} else
1776		retval = -EINVAL;
1777	cgroup_unlock();
1778
1779	return retval;
1780}
1781
1782static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1783{
1784	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1785	u64 val = 0;
1786	int type, name;
1787
1788	type = MEMFILE_TYPE(cft->private);
1789	name = MEMFILE_ATTR(cft->private);
1790	switch (type) {
1791	case _MEM:
1792		val = res_counter_read_u64(&mem->res, name);
1793		break;
1794	case _MEMSWAP:
1795		if (do_swap_account)
1796			val = res_counter_read_u64(&mem->memsw, name);
1797		break;
1798	default:
1799		BUG();
1800		break;
1801	}
1802	return val;
1803}
1804/*
1805 * The user of this function is...
1806 * RES_LIMIT.
1807 */
1808static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1809			    const char *buffer)
1810{
1811	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1812	int type, name;
1813	unsigned long long val;
1814	int ret;
1815
1816	type = MEMFILE_TYPE(cft->private);
1817	name = MEMFILE_ATTR(cft->private);
1818	switch (name) {
1819	case RES_LIMIT:
1820		/* This function does all necessary parse...reuse it */
1821		ret = res_counter_memparse_write_strategy(buffer, &val);
1822		if (ret)
1823			break;
1824		if (type == _MEM)
1825			ret = mem_cgroup_resize_limit(memcg, val);
1826		else
1827			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1828		break;
1829	default:
1830		ret = -EINVAL; /* should be BUG() ? */
1831		break;
1832	}
1833	return ret;
1834}
1835
1836static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1837		unsigned long long *mem_limit, unsigned long long *memsw_limit)
1838{
1839	struct cgroup *cgroup;
1840	unsigned long long min_limit, min_memsw_limit, tmp;
1841
1842	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1843	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1844	cgroup = memcg->css.cgroup;
1845	if (!memcg->use_hierarchy)
1846		goto out;
1847
1848	while (cgroup->parent) {
1849		cgroup = cgroup->parent;
1850		memcg = mem_cgroup_from_cont(cgroup);
1851		if (!memcg->use_hierarchy)
1852			break;
1853		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1854		min_limit = min(min_limit, tmp);
1855		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1856		min_memsw_limit = min(min_memsw_limit, tmp);
1857	}
1858out:
1859	*mem_limit = min_limit;
1860	*memsw_limit = min_memsw_limit;
1861	return;
1862}
1863
1864static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1865{
1866	struct mem_cgroup *mem;
1867	int type, name;
1868
1869	mem = mem_cgroup_from_cont(cont);
1870	type = MEMFILE_TYPE(event);
1871	name = MEMFILE_ATTR(event);
1872	switch (name) {
1873	case RES_MAX_USAGE:
1874		if (type == _MEM)
1875			res_counter_reset_max(&mem->res);
1876		else
1877			res_counter_reset_max(&mem->memsw);
1878		break;
1879	case RES_FAILCNT:
1880		if (type == _MEM)
1881			res_counter_reset_failcnt(&mem->res);
1882		else
1883			res_counter_reset_failcnt(&mem->memsw);
1884		break;
1885	}
1886	return 0;
1887}
1888
1889static const struct mem_cgroup_stat_desc {
1890	const char *msg;
1891	u64 unit;
1892} mem_cgroup_stat_desc[] = {
1893	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1894	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1895	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1896	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1897};
1898
1899static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1900				 struct cgroup_map_cb *cb)
1901{
1902	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1903	struct mem_cgroup_stat *stat = &mem_cont->stat;
1904	int i;
1905
1906	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1907		s64 val;
1908
1909		val = mem_cgroup_read_stat(stat, i);
1910		val *= mem_cgroup_stat_desc[i].unit;
1911		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1912	}
1913	/* showing # of active pages */
1914	{
1915		unsigned long active_anon, inactive_anon;
1916		unsigned long active_file, inactive_file;
1917		unsigned long unevictable;
1918
1919		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1920						LRU_INACTIVE_ANON);
1921		active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1922						LRU_ACTIVE_ANON);
1923		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1924						LRU_INACTIVE_FILE);
1925		active_file = mem_cgroup_get_all_zonestat(mem_cont,
1926						LRU_ACTIVE_FILE);
1927		unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1928							LRU_UNEVICTABLE);
1929
1930		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1931		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1932		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1933		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1934		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1935
1936	}
1937	{
1938		unsigned long long limit, memsw_limit;
1939		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1940		cb->fill(cb, "hierarchical_memory_limit", limit);
1941		if (do_swap_account)
1942			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1943	}
1944
1945#ifdef CONFIG_DEBUG_VM
1946	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1947
1948	{
1949		int nid, zid;
1950		struct mem_cgroup_per_zone *mz;
1951		unsigned long recent_rotated[2] = {0, 0};
1952		unsigned long recent_scanned[2] = {0, 0};
1953
1954		for_each_online_node(nid)
1955			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1956				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1957
1958				recent_rotated[0] +=
1959					mz->reclaim_stat.recent_rotated[0];
1960				recent_rotated[1] +=
1961					mz->reclaim_stat.recent_rotated[1];
1962				recent_scanned[0] +=
1963					mz->reclaim_stat.recent_scanned[0];
1964				recent_scanned[1] +=
1965					mz->reclaim_stat.recent_scanned[1];
1966			}
1967		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1968		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1969		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1970		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1971	}
1972#endif
1973
1974	return 0;
1975}
1976
1977static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1978{
1979	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1980
1981	return get_swappiness(memcg);
1982}
1983
1984static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1985				       u64 val)
1986{
1987	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1988	struct mem_cgroup *parent;
1989	if (val > 100)
1990		return -EINVAL;
1991
1992	if (cgrp->parent == NULL)
1993		return -EINVAL;
1994
1995	parent = mem_cgroup_from_cont(cgrp->parent);
1996	/* If under hierarchy, only empty-root can set this value */
1997	if ((parent->use_hierarchy) ||
1998	    (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1999		return -EINVAL;
2000
2001	spin_lock(&memcg->reclaim_param_lock);
2002	memcg->swappiness = val;
2003	spin_unlock(&memcg->reclaim_param_lock);
2004
2005	return 0;
2006}
2007
2008
2009static struct cftype mem_cgroup_files[] = {
2010	{
2011		.name = "usage_in_bytes",
2012		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2013		.read_u64 = mem_cgroup_read,
2014	},
2015	{
2016		.name = "max_usage_in_bytes",
2017		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2018		.trigger = mem_cgroup_reset,
2019		.read_u64 = mem_cgroup_read,
2020	},
2021	{
2022		.name = "limit_in_bytes",
2023		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2024		.write_string = mem_cgroup_write,
2025		.read_u64 = mem_cgroup_read,
2026	},
2027	{
2028		.name = "failcnt",
2029		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2030		.trigger = mem_cgroup_reset,
2031		.read_u64 = mem_cgroup_read,
2032	},
2033	{
2034		.name = "stat",
2035		.read_map = mem_control_stat_show,
2036	},
2037	{
2038		.name = "force_empty",
2039		.trigger = mem_cgroup_force_empty_write,
2040	},
2041	{
2042		.name = "use_hierarchy",
2043		.write_u64 = mem_cgroup_hierarchy_write,
2044		.read_u64 = mem_cgroup_hierarchy_read,
2045	},
2046	{
2047		.name = "swappiness",
2048		.read_u64 = mem_cgroup_swappiness_read,
2049		.write_u64 = mem_cgroup_swappiness_write,
2050	},
2051};
2052
2053#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2054static struct cftype memsw_cgroup_files[] = {
2055	{
2056		.name = "memsw.usage_in_bytes",
2057		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2058		.read_u64 = mem_cgroup_read,
2059	},
2060	{
2061		.name = "memsw.max_usage_in_bytes",
2062		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2063		.trigger = mem_cgroup_reset,
2064		.read_u64 = mem_cgroup_read,
2065	},
2066	{
2067		.name = "memsw.limit_in_bytes",
2068		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2069		.write_string = mem_cgroup_write,
2070		.read_u64 = mem_cgroup_read,
2071	},
2072	{
2073		.name = "memsw.failcnt",
2074		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2075		.trigger = mem_cgroup_reset,
2076		.read_u64 = mem_cgroup_read,
2077	},
2078};
2079
2080static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2081{
2082	if (!do_swap_account)
2083		return 0;
2084	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2085				ARRAY_SIZE(memsw_cgroup_files));
2086};
2087#else
2088static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2089{
2090	return 0;
2091}
2092#endif
2093
2094static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2095{
2096	struct mem_cgroup_per_node *pn;
2097	struct mem_cgroup_per_zone *mz;
2098	enum lru_list l;
2099	int zone, tmp = node;
2100	/*
2101	 * This routine is called against possible nodes.
2102	 * But it's BUG to call kmalloc() against offline node.
2103	 *
2104	 * TODO: this routine can waste much memory for nodes which will
2105	 *       never be onlined. It's better to use memory hotplug callback
2106	 *       function.
2107	 */
2108	if (!node_state(node, N_NORMAL_MEMORY))
2109		tmp = -1;
2110	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2111	if (!pn)
2112		return 1;
2113
2114	mem->info.nodeinfo[node] = pn;
2115	memset(pn, 0, sizeof(*pn));
2116
2117	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2118		mz = &pn->zoneinfo[zone];
2119		for_each_lru(l)
2120			INIT_LIST_HEAD(&mz->lists[l]);
2121	}
2122	return 0;
2123}
2124
2125static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2126{
2127	kfree(mem->info.nodeinfo[node]);
2128}
2129
2130static int mem_cgroup_size(void)
2131{
2132	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2133	return sizeof(struct mem_cgroup) + cpustat_size;
2134}
2135
2136static struct mem_cgroup *mem_cgroup_alloc(void)
2137{
2138	struct mem_cgroup *mem;
2139	int size = mem_cgroup_size();
2140
2141	if (size < PAGE_SIZE)
2142		mem = kmalloc(size, GFP_KERNEL);
2143	else
2144		mem = vmalloc(size);
2145
2146	if (mem)
2147		memset(mem, 0, size);
2148	return mem;
2149}
2150
2151/*
2152 * At destroying mem_cgroup, references from swap_cgroup can remain.
2153 * (scanning all at force_empty is too costly...)
2154 *
2155 * Instead of clearing all references at force_empty, we remember
2156 * the number of reference from swap_cgroup and free mem_cgroup when
2157 * it goes down to 0.
2158 *
2159 * Removal of cgroup itself succeeds regardless of refs from swap.
2160 */
2161
2162static void __mem_cgroup_free(struct mem_cgroup *mem)
2163{
2164	int node;
2165
2166	for_each_node_state(node, N_POSSIBLE)
2167		free_mem_cgroup_per_zone_info(mem, node);
2168
2169	if (mem_cgroup_size() < PAGE_SIZE)
2170		kfree(mem);
2171	else
2172		vfree(mem);
2173}
2174
2175static void mem_cgroup_get(struct mem_cgroup *mem)
2176{
2177	atomic_inc(&mem->refcnt);
2178}
2179
2180static void mem_cgroup_put(struct mem_cgroup *mem)
2181{
2182	if (atomic_dec_and_test(&mem->refcnt))
2183		__mem_cgroup_free(mem);
2184}
2185
2186
2187#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2188static void __init enable_swap_cgroup(void)
2189{
2190	if (!mem_cgroup_disabled() && really_do_swap_account)
2191		do_swap_account = 1;
2192}
2193#else
2194static void __init enable_swap_cgroup(void)
2195{
2196}
2197#endif
2198
2199static struct cgroup_subsys_state *
2200mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2201{
2202	struct mem_cgroup *mem, *parent;
2203	int node;
2204
2205	mem = mem_cgroup_alloc();
2206	if (!mem)
2207		return ERR_PTR(-ENOMEM);
2208
2209	for_each_node_state(node, N_POSSIBLE)
2210		if (alloc_mem_cgroup_per_zone_info(mem, node))
2211			goto free_out;
2212	/* root ? */
2213	if (cont->parent == NULL) {
2214		enable_swap_cgroup();
2215		parent = NULL;
2216	} else {
2217		parent = mem_cgroup_from_cont(cont->parent);
2218		mem->use_hierarchy = parent->use_hierarchy;
2219	}
2220
2221	if (parent && parent->use_hierarchy) {
2222		res_counter_init(&mem->res, &parent->res);
2223		res_counter_init(&mem->memsw, &parent->memsw);
2224	} else {
2225		res_counter_init(&mem->res, NULL);
2226		res_counter_init(&mem->memsw, NULL);
2227	}
2228	mem->last_scanned_child = NULL;
2229	spin_lock_init(&mem->reclaim_param_lock);
2230
2231	if (parent)
2232		mem->swappiness = get_swappiness(parent);
2233	atomic_set(&mem->refcnt, 1);
2234	return &mem->css;
2235free_out:
2236	__mem_cgroup_free(mem);
2237	return ERR_PTR(-ENOMEM);
2238}
2239
2240static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2241					struct cgroup *cont)
2242{
2243	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2244	mem_cgroup_force_empty(mem, false);
2245}
2246
2247static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2248				struct cgroup *cont)
2249{
2250	mem_cgroup_put(mem_cgroup_from_cont(cont));
2251}
2252
2253static int mem_cgroup_populate(struct cgroup_subsys *ss,
2254				struct cgroup *cont)
2255{
2256	int ret;
2257
2258	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2259				ARRAY_SIZE(mem_cgroup_files));
2260
2261	if (!ret)
2262		ret = register_memsw_files(cont, ss);
2263	return ret;
2264}
2265
2266static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2267				struct cgroup *cont,
2268				struct cgroup *old_cont,
2269				struct task_struct *p)
2270{
2271	mutex_lock(&memcg_tasklist);
2272	/*
2273	 * FIXME: It's better to move charges of this process from old
2274	 * memcg to new memcg. But it's just on TODO-List now.
2275	 */
2276	mutex_unlock(&memcg_tasklist);
2277}
2278
2279struct cgroup_subsys mem_cgroup_subsys = {
2280	.name = "memory",
2281	.subsys_id = mem_cgroup_subsys_id,
2282	.create = mem_cgroup_create,
2283	.pre_destroy = mem_cgroup_pre_destroy,
2284	.destroy = mem_cgroup_destroy,
2285	.populate = mem_cgroup_populate,
2286	.attach = mem_cgroup_move_task,
2287	.early_init = 0,
2288};
2289
2290#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2291
2292static int __init disable_swap_account(char *s)
2293{
2294	really_do_swap_account = 0;
2295	return 1;
2296}
2297__setup("noswapaccount", disable_swap_account);
2298#endif
2299