memcontrol.c revision c62b1a3b31b5e27a6c5c2e91cc5ce05fdb6344d0
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include "internal.h"
51
52#include <asm/uaccess.h>
53
54struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55#define MEM_CGROUP_RECLAIM_RETRIES	5
56struct mem_cgroup *root_mem_cgroup __read_mostly;
57
58#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60int do_swap_account __read_mostly;
61static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62#else
63#define do_swap_account		(0)
64#endif
65
66#define SOFTLIMIT_EVENTS_THRESH (1000)
67#define THRESHOLDS_EVENTS_THRESH (100)
68
69/*
70 * Statistics for memory cgroup.
71 */
72enum mem_cgroup_stat_index {
73	/*
74	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
75	 */
76	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
77	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
78	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
79	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
80	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
81	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
82	MEM_CGROUP_STAT_SOFTLIMIT, /* decrements on each page in/out.
83					used by soft limit implementation */
84	MEM_CGROUP_STAT_THRESHOLDS, /* decrements on each page in/out.
85					used by threshold implementation */
86
87	MEM_CGROUP_STAT_NSTATS,
88};
89
90struct mem_cgroup_stat_cpu {
91	s64 count[MEM_CGROUP_STAT_NSTATS];
92};
93
94/*
95 * per-zone information in memory controller.
96 */
97struct mem_cgroup_per_zone {
98	/*
99	 * spin_lock to protect the per cgroup LRU
100	 */
101	struct list_head	lists[NR_LRU_LISTS];
102	unsigned long		count[NR_LRU_LISTS];
103
104	struct zone_reclaim_stat reclaim_stat;
105	struct rb_node		tree_node;	/* RB tree node */
106	unsigned long long	usage_in_excess;/* Set to the value by which */
107						/* the soft limit is exceeded*/
108	bool			on_tree;
109	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
110						/* use container_of	   */
111};
112/* Macro for accessing counter */
113#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
114
115struct mem_cgroup_per_node {
116	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
117};
118
119struct mem_cgroup_lru_info {
120	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
121};
122
123/*
124 * Cgroups above their limits are maintained in a RB-Tree, independent of
125 * their hierarchy representation
126 */
127
128struct mem_cgroup_tree_per_zone {
129	struct rb_root rb_root;
130	spinlock_t lock;
131};
132
133struct mem_cgroup_tree_per_node {
134	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
135};
136
137struct mem_cgroup_tree {
138	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
139};
140
141static struct mem_cgroup_tree soft_limit_tree __read_mostly;
142
143struct mem_cgroup_threshold {
144	struct eventfd_ctx *eventfd;
145	u64 threshold;
146};
147
148struct mem_cgroup_threshold_ary {
149	/* An array index points to threshold just below usage. */
150	atomic_t current_threshold;
151	/* Size of entries[] */
152	unsigned int size;
153	/* Array of thresholds */
154	struct mem_cgroup_threshold entries[0];
155};
156
157static bool mem_cgroup_threshold_check(struct mem_cgroup *mem);
158static void mem_cgroup_threshold(struct mem_cgroup *mem);
159
160/*
161 * The memory controller data structure. The memory controller controls both
162 * page cache and RSS per cgroup. We would eventually like to provide
163 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
164 * to help the administrator determine what knobs to tune.
165 *
166 * TODO: Add a water mark for the memory controller. Reclaim will begin when
167 * we hit the water mark. May be even add a low water mark, such that
168 * no reclaim occurs from a cgroup at it's low water mark, this is
169 * a feature that will be implemented much later in the future.
170 */
171struct mem_cgroup {
172	struct cgroup_subsys_state css;
173	/*
174	 * the counter to account for memory usage
175	 */
176	struct res_counter res;
177	/*
178	 * the counter to account for mem+swap usage.
179	 */
180	struct res_counter memsw;
181	/*
182	 * Per cgroup active and inactive list, similar to the
183	 * per zone LRU lists.
184	 */
185	struct mem_cgroup_lru_info info;
186
187	/*
188	  protect against reclaim related member.
189	*/
190	spinlock_t reclaim_param_lock;
191
192	int	prev_priority;	/* for recording reclaim priority */
193
194	/*
195	 * While reclaiming in a hierarchy, we cache the last child we
196	 * reclaimed from.
197	 */
198	int last_scanned_child;
199	/*
200	 * Should the accounting and control be hierarchical, per subtree?
201	 */
202	bool use_hierarchy;
203	unsigned long	last_oom_jiffies;
204	atomic_t	refcnt;
205
206	unsigned int	swappiness;
207
208	/* set when res.limit == memsw.limit */
209	bool		memsw_is_minimum;
210
211	/* protect arrays of thresholds */
212	struct mutex thresholds_lock;
213
214	/* thresholds for memory usage. RCU-protected */
215	struct mem_cgroup_threshold_ary *thresholds;
216
217	/* thresholds for mem+swap usage. RCU-protected */
218	struct mem_cgroup_threshold_ary *memsw_thresholds;
219
220	/*
221	 * Should we move charges of a task when a task is moved into this
222	 * mem_cgroup ? And what type of charges should we move ?
223	 */
224	unsigned long 	move_charge_at_immigrate;
225
226	/*
227	 * percpu counter.
228	 */
229	struct mem_cgroup_stat_cpu *stat;
230};
231
232/* Stuffs for move charges at task migration. */
233/*
234 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
235 * left-shifted bitmap of these types.
236 */
237enum move_type {
238	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
239	NR_MOVE_TYPE,
240};
241
242/* "mc" and its members are protected by cgroup_mutex */
243static struct move_charge_struct {
244	struct mem_cgroup *from;
245	struct mem_cgroup *to;
246	unsigned long precharge;
247	unsigned long moved_charge;
248	unsigned long moved_swap;
249	struct task_struct *moving_task;	/* a task moving charges */
250	wait_queue_head_t waitq;		/* a waitq for other context */
251} mc = {
252	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
253};
254
255/*
256 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
257 * limit reclaim to prevent infinite loops, if they ever occur.
258 */
259#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
260#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
261
262enum charge_type {
263	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
264	MEM_CGROUP_CHARGE_TYPE_MAPPED,
265	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
266	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
267	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
268	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
269	NR_CHARGE_TYPE,
270};
271
272/* only for here (for easy reading.) */
273#define PCGF_CACHE	(1UL << PCG_CACHE)
274#define PCGF_USED	(1UL << PCG_USED)
275#define PCGF_LOCK	(1UL << PCG_LOCK)
276/* Not used, but added here for completeness */
277#define PCGF_ACCT	(1UL << PCG_ACCT)
278
279/* for encoding cft->private value on file */
280#define _MEM			(0)
281#define _MEMSWAP		(1)
282#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
283#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
284#define MEMFILE_ATTR(val)	((val) & 0xffff)
285
286/*
287 * Reclaim flags for mem_cgroup_hierarchical_reclaim
288 */
289#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
290#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
291#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
292#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
293#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
294#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
295
296static void mem_cgroup_get(struct mem_cgroup *mem);
297static void mem_cgroup_put(struct mem_cgroup *mem);
298static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
299static void drain_all_stock_async(void);
300
301static struct mem_cgroup_per_zone *
302mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
303{
304	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
305}
306
307struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
308{
309	return &mem->css;
310}
311
312static struct mem_cgroup_per_zone *
313page_cgroup_zoneinfo(struct page_cgroup *pc)
314{
315	struct mem_cgroup *mem = pc->mem_cgroup;
316	int nid = page_cgroup_nid(pc);
317	int zid = page_cgroup_zid(pc);
318
319	if (!mem)
320		return NULL;
321
322	return mem_cgroup_zoneinfo(mem, nid, zid);
323}
324
325static struct mem_cgroup_tree_per_zone *
326soft_limit_tree_node_zone(int nid, int zid)
327{
328	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
329}
330
331static struct mem_cgroup_tree_per_zone *
332soft_limit_tree_from_page(struct page *page)
333{
334	int nid = page_to_nid(page);
335	int zid = page_zonenum(page);
336
337	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
338}
339
340static void
341__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
342				struct mem_cgroup_per_zone *mz,
343				struct mem_cgroup_tree_per_zone *mctz,
344				unsigned long long new_usage_in_excess)
345{
346	struct rb_node **p = &mctz->rb_root.rb_node;
347	struct rb_node *parent = NULL;
348	struct mem_cgroup_per_zone *mz_node;
349
350	if (mz->on_tree)
351		return;
352
353	mz->usage_in_excess = new_usage_in_excess;
354	if (!mz->usage_in_excess)
355		return;
356	while (*p) {
357		parent = *p;
358		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
359					tree_node);
360		if (mz->usage_in_excess < mz_node->usage_in_excess)
361			p = &(*p)->rb_left;
362		/*
363		 * We can't avoid mem cgroups that are over their soft
364		 * limit by the same amount
365		 */
366		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
367			p = &(*p)->rb_right;
368	}
369	rb_link_node(&mz->tree_node, parent, p);
370	rb_insert_color(&mz->tree_node, &mctz->rb_root);
371	mz->on_tree = true;
372}
373
374static void
375__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
376				struct mem_cgroup_per_zone *mz,
377				struct mem_cgroup_tree_per_zone *mctz)
378{
379	if (!mz->on_tree)
380		return;
381	rb_erase(&mz->tree_node, &mctz->rb_root);
382	mz->on_tree = false;
383}
384
385static void
386mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
387				struct mem_cgroup_per_zone *mz,
388				struct mem_cgroup_tree_per_zone *mctz)
389{
390	spin_lock(&mctz->lock);
391	__mem_cgroup_remove_exceeded(mem, mz, mctz);
392	spin_unlock(&mctz->lock);
393}
394
395static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
396{
397	bool ret = false;
398	s64 val;
399
400	val = this_cpu_read(mem->stat->count[MEM_CGROUP_STAT_SOFTLIMIT]);
401	if (unlikely(val < 0)) {
402		this_cpu_write(mem->stat->count[MEM_CGROUP_STAT_SOFTLIMIT],
403				SOFTLIMIT_EVENTS_THRESH);
404		ret = true;
405	}
406	return ret;
407}
408
409static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
410{
411	unsigned long long excess;
412	struct mem_cgroup_per_zone *mz;
413	struct mem_cgroup_tree_per_zone *mctz;
414	int nid = page_to_nid(page);
415	int zid = page_zonenum(page);
416	mctz = soft_limit_tree_from_page(page);
417
418	/*
419	 * Necessary to update all ancestors when hierarchy is used.
420	 * because their event counter is not touched.
421	 */
422	for (; mem; mem = parent_mem_cgroup(mem)) {
423		mz = mem_cgroup_zoneinfo(mem, nid, zid);
424		excess = res_counter_soft_limit_excess(&mem->res);
425		/*
426		 * We have to update the tree if mz is on RB-tree or
427		 * mem is over its softlimit.
428		 */
429		if (excess || mz->on_tree) {
430			spin_lock(&mctz->lock);
431			/* if on-tree, remove it */
432			if (mz->on_tree)
433				__mem_cgroup_remove_exceeded(mem, mz, mctz);
434			/*
435			 * Insert again. mz->usage_in_excess will be updated.
436			 * If excess is 0, no tree ops.
437			 */
438			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
439			spin_unlock(&mctz->lock);
440		}
441	}
442}
443
444static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
445{
446	int node, zone;
447	struct mem_cgroup_per_zone *mz;
448	struct mem_cgroup_tree_per_zone *mctz;
449
450	for_each_node_state(node, N_POSSIBLE) {
451		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
452			mz = mem_cgroup_zoneinfo(mem, node, zone);
453			mctz = soft_limit_tree_node_zone(node, zone);
454			mem_cgroup_remove_exceeded(mem, mz, mctz);
455		}
456	}
457}
458
459static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
460{
461	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
462}
463
464static struct mem_cgroup_per_zone *
465__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
466{
467	struct rb_node *rightmost = NULL;
468	struct mem_cgroup_per_zone *mz;
469
470retry:
471	mz = NULL;
472	rightmost = rb_last(&mctz->rb_root);
473	if (!rightmost)
474		goto done;		/* Nothing to reclaim from */
475
476	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
477	/*
478	 * Remove the node now but someone else can add it back,
479	 * we will to add it back at the end of reclaim to its correct
480	 * position in the tree.
481	 */
482	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
483	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
484		!css_tryget(&mz->mem->css))
485		goto retry;
486done:
487	return mz;
488}
489
490static struct mem_cgroup_per_zone *
491mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
492{
493	struct mem_cgroup_per_zone *mz;
494
495	spin_lock(&mctz->lock);
496	mz = __mem_cgroup_largest_soft_limit_node(mctz);
497	spin_unlock(&mctz->lock);
498	return mz;
499}
500
501static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
502		enum mem_cgroup_stat_index idx)
503{
504	int cpu;
505	s64 val = 0;
506
507	for_each_possible_cpu(cpu)
508		val += per_cpu(mem->stat->count[idx], cpu);
509	return val;
510}
511
512static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
513{
514	s64 ret;
515
516	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
517	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
518	return ret;
519}
520
521static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
522					 bool charge)
523{
524	int val = (charge) ? 1 : -1;
525	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
526}
527
528static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
529					 struct page_cgroup *pc,
530					 bool charge)
531{
532	int val = (charge) ? 1 : -1;
533
534	preempt_disable();
535
536	if (PageCgroupCache(pc))
537		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
538	else
539		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
540
541	if (charge)
542		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
543	else
544		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
545	__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_SOFTLIMIT]);
546	__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_THRESHOLDS]);
547
548	preempt_enable();
549}
550
551static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
552					enum lru_list idx)
553{
554	int nid, zid;
555	struct mem_cgroup_per_zone *mz;
556	u64 total = 0;
557
558	for_each_online_node(nid)
559		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
560			mz = mem_cgroup_zoneinfo(mem, nid, zid);
561			total += MEM_CGROUP_ZSTAT(mz, idx);
562		}
563	return total;
564}
565
566static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
567{
568	return container_of(cgroup_subsys_state(cont,
569				mem_cgroup_subsys_id), struct mem_cgroup,
570				css);
571}
572
573struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
574{
575	/*
576	 * mm_update_next_owner() may clear mm->owner to NULL
577	 * if it races with swapoff, page migration, etc.
578	 * So this can be called with p == NULL.
579	 */
580	if (unlikely(!p))
581		return NULL;
582
583	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
584				struct mem_cgroup, css);
585}
586
587static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
588{
589	struct mem_cgroup *mem = NULL;
590
591	if (!mm)
592		return NULL;
593	/*
594	 * Because we have no locks, mm->owner's may be being moved to other
595	 * cgroup. We use css_tryget() here even if this looks
596	 * pessimistic (rather than adding locks here).
597	 */
598	rcu_read_lock();
599	do {
600		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
601		if (unlikely(!mem))
602			break;
603	} while (!css_tryget(&mem->css));
604	rcu_read_unlock();
605	return mem;
606}
607
608/*
609 * Call callback function against all cgroup under hierarchy tree.
610 */
611static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
612			  int (*func)(struct mem_cgroup *, void *))
613{
614	int found, ret, nextid;
615	struct cgroup_subsys_state *css;
616	struct mem_cgroup *mem;
617
618	if (!root->use_hierarchy)
619		return (*func)(root, data);
620
621	nextid = 1;
622	do {
623		ret = 0;
624		mem = NULL;
625
626		rcu_read_lock();
627		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
628				   &found);
629		if (css && css_tryget(css))
630			mem = container_of(css, struct mem_cgroup, css);
631		rcu_read_unlock();
632
633		if (mem) {
634			ret = (*func)(mem, data);
635			css_put(&mem->css);
636		}
637		nextid = found + 1;
638	} while (!ret && css);
639
640	return ret;
641}
642
643static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
644{
645	return (mem == root_mem_cgroup);
646}
647
648/*
649 * Following LRU functions are allowed to be used without PCG_LOCK.
650 * Operations are called by routine of global LRU independently from memcg.
651 * What we have to take care of here is validness of pc->mem_cgroup.
652 *
653 * Changes to pc->mem_cgroup happens when
654 * 1. charge
655 * 2. moving account
656 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
657 * It is added to LRU before charge.
658 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
659 * When moving account, the page is not on LRU. It's isolated.
660 */
661
662void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
663{
664	struct page_cgroup *pc;
665	struct mem_cgroup_per_zone *mz;
666
667	if (mem_cgroup_disabled())
668		return;
669	pc = lookup_page_cgroup(page);
670	/* can happen while we handle swapcache. */
671	if (!TestClearPageCgroupAcctLRU(pc))
672		return;
673	VM_BUG_ON(!pc->mem_cgroup);
674	/*
675	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
676	 * removed from global LRU.
677	 */
678	mz = page_cgroup_zoneinfo(pc);
679	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
680	if (mem_cgroup_is_root(pc->mem_cgroup))
681		return;
682	VM_BUG_ON(list_empty(&pc->lru));
683	list_del_init(&pc->lru);
684	return;
685}
686
687void mem_cgroup_del_lru(struct page *page)
688{
689	mem_cgroup_del_lru_list(page, page_lru(page));
690}
691
692void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
693{
694	struct mem_cgroup_per_zone *mz;
695	struct page_cgroup *pc;
696
697	if (mem_cgroup_disabled())
698		return;
699
700	pc = lookup_page_cgroup(page);
701	/*
702	 * Used bit is set without atomic ops but after smp_wmb().
703	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
704	 */
705	smp_rmb();
706	/* unused or root page is not rotated. */
707	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
708		return;
709	mz = page_cgroup_zoneinfo(pc);
710	list_move(&pc->lru, &mz->lists[lru]);
711}
712
713void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
714{
715	struct page_cgroup *pc;
716	struct mem_cgroup_per_zone *mz;
717
718	if (mem_cgroup_disabled())
719		return;
720	pc = lookup_page_cgroup(page);
721	VM_BUG_ON(PageCgroupAcctLRU(pc));
722	/*
723	 * Used bit is set without atomic ops but after smp_wmb().
724	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
725	 */
726	smp_rmb();
727	if (!PageCgroupUsed(pc))
728		return;
729
730	mz = page_cgroup_zoneinfo(pc);
731	MEM_CGROUP_ZSTAT(mz, lru) += 1;
732	SetPageCgroupAcctLRU(pc);
733	if (mem_cgroup_is_root(pc->mem_cgroup))
734		return;
735	list_add(&pc->lru, &mz->lists[lru]);
736}
737
738/*
739 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
740 * lru because the page may.be reused after it's fully uncharged (because of
741 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
742 * it again. This function is only used to charge SwapCache. It's done under
743 * lock_page and expected that zone->lru_lock is never held.
744 */
745static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
746{
747	unsigned long flags;
748	struct zone *zone = page_zone(page);
749	struct page_cgroup *pc = lookup_page_cgroup(page);
750
751	spin_lock_irqsave(&zone->lru_lock, flags);
752	/*
753	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
754	 * is guarded by lock_page() because the page is SwapCache.
755	 */
756	if (!PageCgroupUsed(pc))
757		mem_cgroup_del_lru_list(page, page_lru(page));
758	spin_unlock_irqrestore(&zone->lru_lock, flags);
759}
760
761static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
762{
763	unsigned long flags;
764	struct zone *zone = page_zone(page);
765	struct page_cgroup *pc = lookup_page_cgroup(page);
766
767	spin_lock_irqsave(&zone->lru_lock, flags);
768	/* link when the page is linked to LRU but page_cgroup isn't */
769	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
770		mem_cgroup_add_lru_list(page, page_lru(page));
771	spin_unlock_irqrestore(&zone->lru_lock, flags);
772}
773
774
775void mem_cgroup_move_lists(struct page *page,
776			   enum lru_list from, enum lru_list to)
777{
778	if (mem_cgroup_disabled())
779		return;
780	mem_cgroup_del_lru_list(page, from);
781	mem_cgroup_add_lru_list(page, to);
782}
783
784int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
785{
786	int ret;
787	struct mem_cgroup *curr = NULL;
788
789	task_lock(task);
790	rcu_read_lock();
791	curr = try_get_mem_cgroup_from_mm(task->mm);
792	rcu_read_unlock();
793	task_unlock(task);
794	if (!curr)
795		return 0;
796	/*
797	 * We should check use_hierarchy of "mem" not "curr". Because checking
798	 * use_hierarchy of "curr" here make this function true if hierarchy is
799	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
800	 * hierarchy(even if use_hierarchy is disabled in "mem").
801	 */
802	if (mem->use_hierarchy)
803		ret = css_is_ancestor(&curr->css, &mem->css);
804	else
805		ret = (curr == mem);
806	css_put(&curr->css);
807	return ret;
808}
809
810/*
811 * prev_priority control...this will be used in memory reclaim path.
812 */
813int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
814{
815	int prev_priority;
816
817	spin_lock(&mem->reclaim_param_lock);
818	prev_priority = mem->prev_priority;
819	spin_unlock(&mem->reclaim_param_lock);
820
821	return prev_priority;
822}
823
824void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
825{
826	spin_lock(&mem->reclaim_param_lock);
827	if (priority < mem->prev_priority)
828		mem->prev_priority = priority;
829	spin_unlock(&mem->reclaim_param_lock);
830}
831
832void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
833{
834	spin_lock(&mem->reclaim_param_lock);
835	mem->prev_priority = priority;
836	spin_unlock(&mem->reclaim_param_lock);
837}
838
839static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
840{
841	unsigned long active;
842	unsigned long inactive;
843	unsigned long gb;
844	unsigned long inactive_ratio;
845
846	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
847	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
848
849	gb = (inactive + active) >> (30 - PAGE_SHIFT);
850	if (gb)
851		inactive_ratio = int_sqrt(10 * gb);
852	else
853		inactive_ratio = 1;
854
855	if (present_pages) {
856		present_pages[0] = inactive;
857		present_pages[1] = active;
858	}
859
860	return inactive_ratio;
861}
862
863int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
864{
865	unsigned long active;
866	unsigned long inactive;
867	unsigned long present_pages[2];
868	unsigned long inactive_ratio;
869
870	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
871
872	inactive = present_pages[0];
873	active = present_pages[1];
874
875	if (inactive * inactive_ratio < active)
876		return 1;
877
878	return 0;
879}
880
881int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
882{
883	unsigned long active;
884	unsigned long inactive;
885
886	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
887	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
888
889	return (active > inactive);
890}
891
892unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
893				       struct zone *zone,
894				       enum lru_list lru)
895{
896	int nid = zone->zone_pgdat->node_id;
897	int zid = zone_idx(zone);
898	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
899
900	return MEM_CGROUP_ZSTAT(mz, lru);
901}
902
903struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
904						      struct zone *zone)
905{
906	int nid = zone->zone_pgdat->node_id;
907	int zid = zone_idx(zone);
908	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
909
910	return &mz->reclaim_stat;
911}
912
913struct zone_reclaim_stat *
914mem_cgroup_get_reclaim_stat_from_page(struct page *page)
915{
916	struct page_cgroup *pc;
917	struct mem_cgroup_per_zone *mz;
918
919	if (mem_cgroup_disabled())
920		return NULL;
921
922	pc = lookup_page_cgroup(page);
923	/*
924	 * Used bit is set without atomic ops but after smp_wmb().
925	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
926	 */
927	smp_rmb();
928	if (!PageCgroupUsed(pc))
929		return NULL;
930
931	mz = page_cgroup_zoneinfo(pc);
932	if (!mz)
933		return NULL;
934
935	return &mz->reclaim_stat;
936}
937
938unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
939					struct list_head *dst,
940					unsigned long *scanned, int order,
941					int mode, struct zone *z,
942					struct mem_cgroup *mem_cont,
943					int active, int file)
944{
945	unsigned long nr_taken = 0;
946	struct page *page;
947	unsigned long scan;
948	LIST_HEAD(pc_list);
949	struct list_head *src;
950	struct page_cgroup *pc, *tmp;
951	int nid = z->zone_pgdat->node_id;
952	int zid = zone_idx(z);
953	struct mem_cgroup_per_zone *mz;
954	int lru = LRU_FILE * file + active;
955	int ret;
956
957	BUG_ON(!mem_cont);
958	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
959	src = &mz->lists[lru];
960
961	scan = 0;
962	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
963		if (scan >= nr_to_scan)
964			break;
965
966		page = pc->page;
967		if (unlikely(!PageCgroupUsed(pc)))
968			continue;
969		if (unlikely(!PageLRU(page)))
970			continue;
971
972		scan++;
973		ret = __isolate_lru_page(page, mode, file);
974		switch (ret) {
975		case 0:
976			list_move(&page->lru, dst);
977			mem_cgroup_del_lru(page);
978			nr_taken++;
979			break;
980		case -EBUSY:
981			/* we don't affect global LRU but rotate in our LRU */
982			mem_cgroup_rotate_lru_list(page, page_lru(page));
983			break;
984		default:
985			break;
986		}
987	}
988
989	*scanned = scan;
990	return nr_taken;
991}
992
993#define mem_cgroup_from_res_counter(counter, member)	\
994	container_of(counter, struct mem_cgroup, member)
995
996static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
997{
998	if (do_swap_account) {
999		if (res_counter_check_under_limit(&mem->res) &&
1000			res_counter_check_under_limit(&mem->memsw))
1001			return true;
1002	} else
1003		if (res_counter_check_under_limit(&mem->res))
1004			return true;
1005	return false;
1006}
1007
1008static unsigned int get_swappiness(struct mem_cgroup *memcg)
1009{
1010	struct cgroup *cgrp = memcg->css.cgroup;
1011	unsigned int swappiness;
1012
1013	/* root ? */
1014	if (cgrp->parent == NULL)
1015		return vm_swappiness;
1016
1017	spin_lock(&memcg->reclaim_param_lock);
1018	swappiness = memcg->swappiness;
1019	spin_unlock(&memcg->reclaim_param_lock);
1020
1021	return swappiness;
1022}
1023
1024static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1025{
1026	int *val = data;
1027	(*val)++;
1028	return 0;
1029}
1030
1031/**
1032 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1033 * @memcg: The memory cgroup that went over limit
1034 * @p: Task that is going to be killed
1035 *
1036 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1037 * enabled
1038 */
1039void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1040{
1041	struct cgroup *task_cgrp;
1042	struct cgroup *mem_cgrp;
1043	/*
1044	 * Need a buffer in BSS, can't rely on allocations. The code relies
1045	 * on the assumption that OOM is serialized for memory controller.
1046	 * If this assumption is broken, revisit this code.
1047	 */
1048	static char memcg_name[PATH_MAX];
1049	int ret;
1050
1051	if (!memcg || !p)
1052		return;
1053
1054
1055	rcu_read_lock();
1056
1057	mem_cgrp = memcg->css.cgroup;
1058	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1059
1060	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1061	if (ret < 0) {
1062		/*
1063		 * Unfortunately, we are unable to convert to a useful name
1064		 * But we'll still print out the usage information
1065		 */
1066		rcu_read_unlock();
1067		goto done;
1068	}
1069	rcu_read_unlock();
1070
1071	printk(KERN_INFO "Task in %s killed", memcg_name);
1072
1073	rcu_read_lock();
1074	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1075	if (ret < 0) {
1076		rcu_read_unlock();
1077		goto done;
1078	}
1079	rcu_read_unlock();
1080
1081	/*
1082	 * Continues from above, so we don't need an KERN_ level
1083	 */
1084	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1085done:
1086
1087	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1088		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1089		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1090		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1091	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1092		"failcnt %llu\n",
1093		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1094		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1095		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1096}
1097
1098/*
1099 * This function returns the number of memcg under hierarchy tree. Returns
1100 * 1(self count) if no children.
1101 */
1102static int mem_cgroup_count_children(struct mem_cgroup *mem)
1103{
1104	int num = 0;
1105 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1106	return num;
1107}
1108
1109/*
1110 * Visit the first child (need not be the first child as per the ordering
1111 * of the cgroup list, since we track last_scanned_child) of @mem and use
1112 * that to reclaim free pages from.
1113 */
1114static struct mem_cgroup *
1115mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1116{
1117	struct mem_cgroup *ret = NULL;
1118	struct cgroup_subsys_state *css;
1119	int nextid, found;
1120
1121	if (!root_mem->use_hierarchy) {
1122		css_get(&root_mem->css);
1123		ret = root_mem;
1124	}
1125
1126	while (!ret) {
1127		rcu_read_lock();
1128		nextid = root_mem->last_scanned_child + 1;
1129		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1130				   &found);
1131		if (css && css_tryget(css))
1132			ret = container_of(css, struct mem_cgroup, css);
1133
1134		rcu_read_unlock();
1135		/* Updates scanning parameter */
1136		spin_lock(&root_mem->reclaim_param_lock);
1137		if (!css) {
1138			/* this means start scan from ID:1 */
1139			root_mem->last_scanned_child = 0;
1140		} else
1141			root_mem->last_scanned_child = found;
1142		spin_unlock(&root_mem->reclaim_param_lock);
1143	}
1144
1145	return ret;
1146}
1147
1148/*
1149 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1150 * we reclaimed from, so that we don't end up penalizing one child extensively
1151 * based on its position in the children list.
1152 *
1153 * root_mem is the original ancestor that we've been reclaim from.
1154 *
1155 * We give up and return to the caller when we visit root_mem twice.
1156 * (other groups can be removed while we're walking....)
1157 *
1158 * If shrink==true, for avoiding to free too much, this returns immedieately.
1159 */
1160static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1161						struct zone *zone,
1162						gfp_t gfp_mask,
1163						unsigned long reclaim_options)
1164{
1165	struct mem_cgroup *victim;
1166	int ret, total = 0;
1167	int loop = 0;
1168	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1169	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1170	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1171	unsigned long excess = mem_cgroup_get_excess(root_mem);
1172
1173	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1174	if (root_mem->memsw_is_minimum)
1175		noswap = true;
1176
1177	while (1) {
1178		victim = mem_cgroup_select_victim(root_mem);
1179		if (victim == root_mem) {
1180			loop++;
1181			if (loop >= 1)
1182				drain_all_stock_async();
1183			if (loop >= 2) {
1184				/*
1185				 * If we have not been able to reclaim
1186				 * anything, it might because there are
1187				 * no reclaimable pages under this hierarchy
1188				 */
1189				if (!check_soft || !total) {
1190					css_put(&victim->css);
1191					break;
1192				}
1193				/*
1194				 * We want to do more targetted reclaim.
1195				 * excess >> 2 is not to excessive so as to
1196				 * reclaim too much, nor too less that we keep
1197				 * coming back to reclaim from this cgroup
1198				 */
1199				if (total >= (excess >> 2) ||
1200					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1201					css_put(&victim->css);
1202					break;
1203				}
1204			}
1205		}
1206		if (!mem_cgroup_local_usage(victim)) {
1207			/* this cgroup's local usage == 0 */
1208			css_put(&victim->css);
1209			continue;
1210		}
1211		/* we use swappiness of local cgroup */
1212		if (check_soft)
1213			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1214				noswap, get_swappiness(victim), zone,
1215				zone->zone_pgdat->node_id);
1216		else
1217			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1218						noswap, get_swappiness(victim));
1219		css_put(&victim->css);
1220		/*
1221		 * At shrinking usage, we can't check we should stop here or
1222		 * reclaim more. It's depends on callers. last_scanned_child
1223		 * will work enough for keeping fairness under tree.
1224		 */
1225		if (shrink)
1226			return ret;
1227		total += ret;
1228		if (check_soft) {
1229			if (res_counter_check_under_soft_limit(&root_mem->res))
1230				return total;
1231		} else if (mem_cgroup_check_under_limit(root_mem))
1232			return 1 + total;
1233	}
1234	return total;
1235}
1236
1237bool mem_cgroup_oom_called(struct task_struct *task)
1238{
1239	bool ret = false;
1240	struct mem_cgroup *mem;
1241	struct mm_struct *mm;
1242
1243	rcu_read_lock();
1244	mm = task->mm;
1245	if (!mm)
1246		mm = &init_mm;
1247	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1248	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1249		ret = true;
1250	rcu_read_unlock();
1251	return ret;
1252}
1253
1254static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1255{
1256	mem->last_oom_jiffies = jiffies;
1257	return 0;
1258}
1259
1260static void record_last_oom(struct mem_cgroup *mem)
1261{
1262	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1263}
1264
1265/*
1266 * Currently used to update mapped file statistics, but the routine can be
1267 * generalized to update other statistics as well.
1268 */
1269void mem_cgroup_update_file_mapped(struct page *page, int val)
1270{
1271	struct mem_cgroup *mem;
1272	struct page_cgroup *pc;
1273
1274	pc = lookup_page_cgroup(page);
1275	if (unlikely(!pc))
1276		return;
1277
1278	lock_page_cgroup(pc);
1279	mem = pc->mem_cgroup;
1280	if (!mem)
1281		goto done;
1282
1283	if (!PageCgroupUsed(pc))
1284		goto done;
1285
1286	/*
1287	 * Preemption is already disabled. We can use __this_cpu_xxx
1288	 */
1289	__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], val);
1290
1291done:
1292	unlock_page_cgroup(pc);
1293}
1294
1295/*
1296 * size of first charge trial. "32" comes from vmscan.c's magic value.
1297 * TODO: maybe necessary to use big numbers in big irons.
1298 */
1299#define CHARGE_SIZE	(32 * PAGE_SIZE)
1300struct memcg_stock_pcp {
1301	struct mem_cgroup *cached; /* this never be root cgroup */
1302	int charge;
1303	struct work_struct work;
1304};
1305static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1306static atomic_t memcg_drain_count;
1307
1308/*
1309 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1310 * from local stock and true is returned. If the stock is 0 or charges from a
1311 * cgroup which is not current target, returns false. This stock will be
1312 * refilled.
1313 */
1314static bool consume_stock(struct mem_cgroup *mem)
1315{
1316	struct memcg_stock_pcp *stock;
1317	bool ret = true;
1318
1319	stock = &get_cpu_var(memcg_stock);
1320	if (mem == stock->cached && stock->charge)
1321		stock->charge -= PAGE_SIZE;
1322	else /* need to call res_counter_charge */
1323		ret = false;
1324	put_cpu_var(memcg_stock);
1325	return ret;
1326}
1327
1328/*
1329 * Returns stocks cached in percpu to res_counter and reset cached information.
1330 */
1331static void drain_stock(struct memcg_stock_pcp *stock)
1332{
1333	struct mem_cgroup *old = stock->cached;
1334
1335	if (stock->charge) {
1336		res_counter_uncharge(&old->res, stock->charge);
1337		if (do_swap_account)
1338			res_counter_uncharge(&old->memsw, stock->charge);
1339	}
1340	stock->cached = NULL;
1341	stock->charge = 0;
1342}
1343
1344/*
1345 * This must be called under preempt disabled or must be called by
1346 * a thread which is pinned to local cpu.
1347 */
1348static void drain_local_stock(struct work_struct *dummy)
1349{
1350	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1351	drain_stock(stock);
1352}
1353
1354/*
1355 * Cache charges(val) which is from res_counter, to local per_cpu area.
1356 * This will be consumed by consumt_stock() function, later.
1357 */
1358static void refill_stock(struct mem_cgroup *mem, int val)
1359{
1360	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1361
1362	if (stock->cached != mem) { /* reset if necessary */
1363		drain_stock(stock);
1364		stock->cached = mem;
1365	}
1366	stock->charge += val;
1367	put_cpu_var(memcg_stock);
1368}
1369
1370/*
1371 * Tries to drain stocked charges in other cpus. This function is asynchronous
1372 * and just put a work per cpu for draining localy on each cpu. Caller can
1373 * expects some charges will be back to res_counter later but cannot wait for
1374 * it.
1375 */
1376static void drain_all_stock_async(void)
1377{
1378	int cpu;
1379	/* This function is for scheduling "drain" in asynchronous way.
1380	 * The result of "drain" is not directly handled by callers. Then,
1381	 * if someone is calling drain, we don't have to call drain more.
1382	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1383	 * there is a race. We just do loose check here.
1384	 */
1385	if (atomic_read(&memcg_drain_count))
1386		return;
1387	/* Notify other cpus that system-wide "drain" is running */
1388	atomic_inc(&memcg_drain_count);
1389	get_online_cpus();
1390	for_each_online_cpu(cpu) {
1391		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1392		schedule_work_on(cpu, &stock->work);
1393	}
1394 	put_online_cpus();
1395	atomic_dec(&memcg_drain_count);
1396	/* We don't wait for flush_work */
1397}
1398
1399/* This is a synchronous drain interface. */
1400static void drain_all_stock_sync(void)
1401{
1402	/* called when force_empty is called */
1403	atomic_inc(&memcg_drain_count);
1404	schedule_on_each_cpu(drain_local_stock);
1405	atomic_dec(&memcg_drain_count);
1406}
1407
1408static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1409					unsigned long action,
1410					void *hcpu)
1411{
1412	int cpu = (unsigned long)hcpu;
1413	struct memcg_stock_pcp *stock;
1414
1415	if (action != CPU_DEAD)
1416		return NOTIFY_OK;
1417	stock = &per_cpu(memcg_stock, cpu);
1418	drain_stock(stock);
1419	return NOTIFY_OK;
1420}
1421
1422/*
1423 * Unlike exported interface, "oom" parameter is added. if oom==true,
1424 * oom-killer can be invoked.
1425 */
1426static int __mem_cgroup_try_charge(struct mm_struct *mm,
1427			gfp_t gfp_mask, struct mem_cgroup **memcg,
1428			bool oom, struct page *page)
1429{
1430	struct mem_cgroup *mem, *mem_over_limit;
1431	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1432	struct res_counter *fail_res;
1433	int csize = CHARGE_SIZE;
1434
1435	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1436		/* Don't account this! */
1437		*memcg = NULL;
1438		return 0;
1439	}
1440
1441	/*
1442	 * We always charge the cgroup the mm_struct belongs to.
1443	 * The mm_struct's mem_cgroup changes on task migration if the
1444	 * thread group leader migrates. It's possible that mm is not
1445	 * set, if so charge the init_mm (happens for pagecache usage).
1446	 */
1447	mem = *memcg;
1448	if (likely(!mem)) {
1449		mem = try_get_mem_cgroup_from_mm(mm);
1450		*memcg = mem;
1451	} else {
1452		css_get(&mem->css);
1453	}
1454	if (unlikely(!mem))
1455		return 0;
1456
1457	VM_BUG_ON(css_is_removed(&mem->css));
1458	if (mem_cgroup_is_root(mem))
1459		goto done;
1460
1461	while (1) {
1462		int ret = 0;
1463		unsigned long flags = 0;
1464
1465		if (consume_stock(mem))
1466			goto charged;
1467
1468		ret = res_counter_charge(&mem->res, csize, &fail_res);
1469		if (likely(!ret)) {
1470			if (!do_swap_account)
1471				break;
1472			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1473			if (likely(!ret))
1474				break;
1475			/* mem+swap counter fails */
1476			res_counter_uncharge(&mem->res, csize);
1477			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1478			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1479									memsw);
1480		} else
1481			/* mem counter fails */
1482			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1483									res);
1484
1485		/* reduce request size and retry */
1486		if (csize > PAGE_SIZE) {
1487			csize = PAGE_SIZE;
1488			continue;
1489		}
1490		if (!(gfp_mask & __GFP_WAIT))
1491			goto nomem;
1492
1493		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1494						gfp_mask, flags);
1495		if (ret)
1496			continue;
1497
1498		/*
1499		 * try_to_free_mem_cgroup_pages() might not give us a full
1500		 * picture of reclaim. Some pages are reclaimed and might be
1501		 * moved to swap cache or just unmapped from the cgroup.
1502		 * Check the limit again to see if the reclaim reduced the
1503		 * current usage of the cgroup before giving up
1504		 *
1505		 */
1506		if (mem_cgroup_check_under_limit(mem_over_limit))
1507			continue;
1508
1509		/* try to avoid oom while someone is moving charge */
1510		if (mc.moving_task && current != mc.moving_task) {
1511			struct mem_cgroup *from, *to;
1512			bool do_continue = false;
1513			/*
1514			 * There is a small race that "from" or "to" can be
1515			 * freed by rmdir, so we use css_tryget().
1516			 */
1517			rcu_read_lock();
1518			from = mc.from;
1519			to = mc.to;
1520			if (from && css_tryget(&from->css)) {
1521				if (mem_over_limit->use_hierarchy)
1522					do_continue = css_is_ancestor(
1523							&from->css,
1524							&mem_over_limit->css);
1525				else
1526					do_continue = (from == mem_over_limit);
1527				css_put(&from->css);
1528			}
1529			if (!do_continue && to && css_tryget(&to->css)) {
1530				if (mem_over_limit->use_hierarchy)
1531					do_continue = css_is_ancestor(
1532							&to->css,
1533							&mem_over_limit->css);
1534				else
1535					do_continue = (to == mem_over_limit);
1536				css_put(&to->css);
1537			}
1538			rcu_read_unlock();
1539			if (do_continue) {
1540				DEFINE_WAIT(wait);
1541				prepare_to_wait(&mc.waitq, &wait,
1542							TASK_INTERRUPTIBLE);
1543				/* moving charge context might have finished. */
1544				if (mc.moving_task)
1545					schedule();
1546				finish_wait(&mc.waitq, &wait);
1547				continue;
1548			}
1549		}
1550
1551		if (!nr_retries--) {
1552			if (oom) {
1553				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1554				record_last_oom(mem_over_limit);
1555			}
1556			goto nomem;
1557		}
1558	}
1559	if (csize > PAGE_SIZE)
1560		refill_stock(mem, csize - PAGE_SIZE);
1561charged:
1562	/*
1563	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1564	 * if they exceeds softlimit.
1565	 */
1566	if (page && mem_cgroup_soft_limit_check(mem))
1567		mem_cgroup_update_tree(mem, page);
1568done:
1569	if (mem_cgroup_threshold_check(mem))
1570		mem_cgroup_threshold(mem);
1571	return 0;
1572nomem:
1573	css_put(&mem->css);
1574	return -ENOMEM;
1575}
1576
1577/*
1578 * Somemtimes we have to undo a charge we got by try_charge().
1579 * This function is for that and do uncharge, put css's refcnt.
1580 * gotten by try_charge().
1581 */
1582static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1583							unsigned long count)
1584{
1585	if (!mem_cgroup_is_root(mem)) {
1586		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1587		if (do_swap_account)
1588			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1589		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1590		WARN_ON_ONCE(count > INT_MAX);
1591		__css_put(&mem->css, (int)count);
1592	}
1593	/* we don't need css_put for root */
1594}
1595
1596static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1597{
1598	__mem_cgroup_cancel_charge(mem, 1);
1599}
1600
1601/*
1602 * A helper function to get mem_cgroup from ID. must be called under
1603 * rcu_read_lock(). The caller must check css_is_removed() or some if
1604 * it's concern. (dropping refcnt from swap can be called against removed
1605 * memcg.)
1606 */
1607static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1608{
1609	struct cgroup_subsys_state *css;
1610
1611	/* ID 0 is unused ID */
1612	if (!id)
1613		return NULL;
1614	css = css_lookup(&mem_cgroup_subsys, id);
1615	if (!css)
1616		return NULL;
1617	return container_of(css, struct mem_cgroup, css);
1618}
1619
1620struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1621{
1622	struct mem_cgroup *mem = NULL;
1623	struct page_cgroup *pc;
1624	unsigned short id;
1625	swp_entry_t ent;
1626
1627	VM_BUG_ON(!PageLocked(page));
1628
1629	pc = lookup_page_cgroup(page);
1630	lock_page_cgroup(pc);
1631	if (PageCgroupUsed(pc)) {
1632		mem = pc->mem_cgroup;
1633		if (mem && !css_tryget(&mem->css))
1634			mem = NULL;
1635	} else if (PageSwapCache(page)) {
1636		ent.val = page_private(page);
1637		id = lookup_swap_cgroup(ent);
1638		rcu_read_lock();
1639		mem = mem_cgroup_lookup(id);
1640		if (mem && !css_tryget(&mem->css))
1641			mem = NULL;
1642		rcu_read_unlock();
1643	}
1644	unlock_page_cgroup(pc);
1645	return mem;
1646}
1647
1648/*
1649 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1650 * USED state. If already USED, uncharge and return.
1651 */
1652
1653static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1654				     struct page_cgroup *pc,
1655				     enum charge_type ctype)
1656{
1657	/* try_charge() can return NULL to *memcg, taking care of it. */
1658	if (!mem)
1659		return;
1660
1661	lock_page_cgroup(pc);
1662	if (unlikely(PageCgroupUsed(pc))) {
1663		unlock_page_cgroup(pc);
1664		mem_cgroup_cancel_charge(mem);
1665		return;
1666	}
1667
1668	pc->mem_cgroup = mem;
1669	/*
1670	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1671	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1672	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1673	 * before USED bit, we need memory barrier here.
1674	 * See mem_cgroup_add_lru_list(), etc.
1675 	 */
1676	smp_wmb();
1677	switch (ctype) {
1678	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1679	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1680		SetPageCgroupCache(pc);
1681		SetPageCgroupUsed(pc);
1682		break;
1683	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1684		ClearPageCgroupCache(pc);
1685		SetPageCgroupUsed(pc);
1686		break;
1687	default:
1688		break;
1689	}
1690
1691	mem_cgroup_charge_statistics(mem, pc, true);
1692
1693	unlock_page_cgroup(pc);
1694}
1695
1696/**
1697 * __mem_cgroup_move_account - move account of the page
1698 * @pc:	page_cgroup of the page.
1699 * @from: mem_cgroup which the page is moved from.
1700 * @to:	mem_cgroup which the page is moved to. @from != @to.
1701 * @uncharge: whether we should call uncharge and css_put against @from.
1702 *
1703 * The caller must confirm following.
1704 * - page is not on LRU (isolate_page() is useful.)
1705 * - the pc is locked, used, and ->mem_cgroup points to @from.
1706 *
1707 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1708 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1709 * true, this function does "uncharge" from old cgroup, but it doesn't if
1710 * @uncharge is false, so a caller should do "uncharge".
1711 */
1712
1713static void __mem_cgroup_move_account(struct page_cgroup *pc,
1714	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1715{
1716	struct page *page;
1717
1718	VM_BUG_ON(from == to);
1719	VM_BUG_ON(PageLRU(pc->page));
1720	VM_BUG_ON(!PageCgroupLocked(pc));
1721	VM_BUG_ON(!PageCgroupUsed(pc));
1722	VM_BUG_ON(pc->mem_cgroup != from);
1723
1724	page = pc->page;
1725	if (page_mapped(page) && !PageAnon(page)) {
1726		/* Update mapped_file data for mem_cgroup */
1727		preempt_disable();
1728		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1729		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1730		preempt_enable();
1731	}
1732	mem_cgroup_charge_statistics(from, pc, false);
1733	if (uncharge)
1734		/* This is not "cancel", but cancel_charge does all we need. */
1735		mem_cgroup_cancel_charge(from);
1736
1737	/* caller should have done css_get */
1738	pc->mem_cgroup = to;
1739	mem_cgroup_charge_statistics(to, pc, true);
1740	/*
1741	 * We charges against "to" which may not have any tasks. Then, "to"
1742	 * can be under rmdir(). But in current implementation, caller of
1743	 * this function is just force_empty() and move charge, so it's
1744	 * garanteed that "to" is never removed. So, we don't check rmdir
1745	 * status here.
1746	 */
1747}
1748
1749/*
1750 * check whether the @pc is valid for moving account and call
1751 * __mem_cgroup_move_account()
1752 */
1753static int mem_cgroup_move_account(struct page_cgroup *pc,
1754		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1755{
1756	int ret = -EINVAL;
1757	lock_page_cgroup(pc);
1758	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1759		__mem_cgroup_move_account(pc, from, to, uncharge);
1760		ret = 0;
1761	}
1762	unlock_page_cgroup(pc);
1763	return ret;
1764}
1765
1766/*
1767 * move charges to its parent.
1768 */
1769
1770static int mem_cgroup_move_parent(struct page_cgroup *pc,
1771				  struct mem_cgroup *child,
1772				  gfp_t gfp_mask)
1773{
1774	struct page *page = pc->page;
1775	struct cgroup *cg = child->css.cgroup;
1776	struct cgroup *pcg = cg->parent;
1777	struct mem_cgroup *parent;
1778	int ret;
1779
1780	/* Is ROOT ? */
1781	if (!pcg)
1782		return -EINVAL;
1783
1784	ret = -EBUSY;
1785	if (!get_page_unless_zero(page))
1786		goto out;
1787	if (isolate_lru_page(page))
1788		goto put;
1789
1790	parent = mem_cgroup_from_cont(pcg);
1791	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1792	if (ret || !parent)
1793		goto put_back;
1794
1795	ret = mem_cgroup_move_account(pc, child, parent, true);
1796	if (ret)
1797		mem_cgroup_cancel_charge(parent);
1798put_back:
1799	putback_lru_page(page);
1800put:
1801	put_page(page);
1802out:
1803	return ret;
1804}
1805
1806/*
1807 * Charge the memory controller for page usage.
1808 * Return
1809 * 0 if the charge was successful
1810 * < 0 if the cgroup is over its limit
1811 */
1812static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1813				gfp_t gfp_mask, enum charge_type ctype,
1814				struct mem_cgroup *memcg)
1815{
1816	struct mem_cgroup *mem;
1817	struct page_cgroup *pc;
1818	int ret;
1819
1820	pc = lookup_page_cgroup(page);
1821	/* can happen at boot */
1822	if (unlikely(!pc))
1823		return 0;
1824	prefetchw(pc);
1825
1826	mem = memcg;
1827	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1828	if (ret || !mem)
1829		return ret;
1830
1831	__mem_cgroup_commit_charge(mem, pc, ctype);
1832	return 0;
1833}
1834
1835int mem_cgroup_newpage_charge(struct page *page,
1836			      struct mm_struct *mm, gfp_t gfp_mask)
1837{
1838	if (mem_cgroup_disabled())
1839		return 0;
1840	if (PageCompound(page))
1841		return 0;
1842	/*
1843	 * If already mapped, we don't have to account.
1844	 * If page cache, page->mapping has address_space.
1845	 * But page->mapping may have out-of-use anon_vma pointer,
1846	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1847	 * is NULL.
1848  	 */
1849	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1850		return 0;
1851	if (unlikely(!mm))
1852		mm = &init_mm;
1853	return mem_cgroup_charge_common(page, mm, gfp_mask,
1854				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1855}
1856
1857static void
1858__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1859					enum charge_type ctype);
1860
1861int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1862				gfp_t gfp_mask)
1863{
1864	struct mem_cgroup *mem = NULL;
1865	int ret;
1866
1867	if (mem_cgroup_disabled())
1868		return 0;
1869	if (PageCompound(page))
1870		return 0;
1871	/*
1872	 * Corner case handling. This is called from add_to_page_cache()
1873	 * in usual. But some FS (shmem) precharges this page before calling it
1874	 * and call add_to_page_cache() with GFP_NOWAIT.
1875	 *
1876	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1877	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1878	 * charge twice. (It works but has to pay a bit larger cost.)
1879	 * And when the page is SwapCache, it should take swap information
1880	 * into account. This is under lock_page() now.
1881	 */
1882	if (!(gfp_mask & __GFP_WAIT)) {
1883		struct page_cgroup *pc;
1884
1885
1886		pc = lookup_page_cgroup(page);
1887		if (!pc)
1888			return 0;
1889		lock_page_cgroup(pc);
1890		if (PageCgroupUsed(pc)) {
1891			unlock_page_cgroup(pc);
1892			return 0;
1893		}
1894		unlock_page_cgroup(pc);
1895	}
1896
1897	if (unlikely(!mm && !mem))
1898		mm = &init_mm;
1899
1900	if (page_is_file_cache(page))
1901		return mem_cgroup_charge_common(page, mm, gfp_mask,
1902				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1903
1904	/* shmem */
1905	if (PageSwapCache(page)) {
1906		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1907		if (!ret)
1908			__mem_cgroup_commit_charge_swapin(page, mem,
1909					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1910	} else
1911		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1912					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1913
1914	return ret;
1915}
1916
1917/*
1918 * While swap-in, try_charge -> commit or cancel, the page is locked.
1919 * And when try_charge() successfully returns, one refcnt to memcg without
1920 * struct page_cgroup is acquired. This refcnt will be consumed by
1921 * "commit()" or removed by "cancel()"
1922 */
1923int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1924				 struct page *page,
1925				 gfp_t mask, struct mem_cgroup **ptr)
1926{
1927	struct mem_cgroup *mem;
1928	int ret;
1929
1930	if (mem_cgroup_disabled())
1931		return 0;
1932
1933	if (!do_swap_account)
1934		goto charge_cur_mm;
1935	/*
1936	 * A racing thread's fault, or swapoff, may have already updated
1937	 * the pte, and even removed page from swap cache: in those cases
1938	 * do_swap_page()'s pte_same() test will fail; but there's also a
1939	 * KSM case which does need to charge the page.
1940	 */
1941	if (!PageSwapCache(page))
1942		goto charge_cur_mm;
1943	mem = try_get_mem_cgroup_from_page(page);
1944	if (!mem)
1945		goto charge_cur_mm;
1946	*ptr = mem;
1947	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1948	/* drop extra refcnt from tryget */
1949	css_put(&mem->css);
1950	return ret;
1951charge_cur_mm:
1952	if (unlikely(!mm))
1953		mm = &init_mm;
1954	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1955}
1956
1957static void
1958__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1959					enum charge_type ctype)
1960{
1961	struct page_cgroup *pc;
1962
1963	if (mem_cgroup_disabled())
1964		return;
1965	if (!ptr)
1966		return;
1967	cgroup_exclude_rmdir(&ptr->css);
1968	pc = lookup_page_cgroup(page);
1969	mem_cgroup_lru_del_before_commit_swapcache(page);
1970	__mem_cgroup_commit_charge(ptr, pc, ctype);
1971	mem_cgroup_lru_add_after_commit_swapcache(page);
1972	/*
1973	 * Now swap is on-memory. This means this page may be
1974	 * counted both as mem and swap....double count.
1975	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1976	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1977	 * may call delete_from_swap_cache() before reach here.
1978	 */
1979	if (do_swap_account && PageSwapCache(page)) {
1980		swp_entry_t ent = {.val = page_private(page)};
1981		unsigned short id;
1982		struct mem_cgroup *memcg;
1983
1984		id = swap_cgroup_record(ent, 0);
1985		rcu_read_lock();
1986		memcg = mem_cgroup_lookup(id);
1987		if (memcg) {
1988			/*
1989			 * This recorded memcg can be obsolete one. So, avoid
1990			 * calling css_tryget
1991			 */
1992			if (!mem_cgroup_is_root(memcg))
1993				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1994			mem_cgroup_swap_statistics(memcg, false);
1995			mem_cgroup_put(memcg);
1996		}
1997		rcu_read_unlock();
1998	}
1999	/*
2000	 * At swapin, we may charge account against cgroup which has no tasks.
2001	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2002	 * In that case, we need to call pre_destroy() again. check it here.
2003	 */
2004	cgroup_release_and_wakeup_rmdir(&ptr->css);
2005}
2006
2007void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2008{
2009	__mem_cgroup_commit_charge_swapin(page, ptr,
2010					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2011}
2012
2013void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2014{
2015	if (mem_cgroup_disabled())
2016		return;
2017	if (!mem)
2018		return;
2019	mem_cgroup_cancel_charge(mem);
2020}
2021
2022static void
2023__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2024{
2025	struct memcg_batch_info *batch = NULL;
2026	bool uncharge_memsw = true;
2027	/* If swapout, usage of swap doesn't decrease */
2028	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2029		uncharge_memsw = false;
2030	/*
2031	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2032	 * In those cases, all pages freed continously can be expected to be in
2033	 * the same cgroup and we have chance to coalesce uncharges.
2034	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2035	 * because we want to do uncharge as soon as possible.
2036	 */
2037	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
2038		goto direct_uncharge;
2039
2040	batch = &current->memcg_batch;
2041	/*
2042	 * In usual, we do css_get() when we remember memcg pointer.
2043	 * But in this case, we keep res->usage until end of a series of
2044	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2045	 */
2046	if (!batch->memcg)
2047		batch->memcg = mem;
2048	/*
2049	 * In typical case, batch->memcg == mem. This means we can
2050	 * merge a series of uncharges to an uncharge of res_counter.
2051	 * If not, we uncharge res_counter ony by one.
2052	 */
2053	if (batch->memcg != mem)
2054		goto direct_uncharge;
2055	/* remember freed charge and uncharge it later */
2056	batch->bytes += PAGE_SIZE;
2057	if (uncharge_memsw)
2058		batch->memsw_bytes += PAGE_SIZE;
2059	return;
2060direct_uncharge:
2061	res_counter_uncharge(&mem->res, PAGE_SIZE);
2062	if (uncharge_memsw)
2063		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2064	return;
2065}
2066
2067/*
2068 * uncharge if !page_mapped(page)
2069 */
2070static struct mem_cgroup *
2071__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2072{
2073	struct page_cgroup *pc;
2074	struct mem_cgroup *mem = NULL;
2075	struct mem_cgroup_per_zone *mz;
2076
2077	if (mem_cgroup_disabled())
2078		return NULL;
2079
2080	if (PageSwapCache(page))
2081		return NULL;
2082
2083	/*
2084	 * Check if our page_cgroup is valid
2085	 */
2086	pc = lookup_page_cgroup(page);
2087	if (unlikely(!pc || !PageCgroupUsed(pc)))
2088		return NULL;
2089
2090	lock_page_cgroup(pc);
2091
2092	mem = pc->mem_cgroup;
2093
2094	if (!PageCgroupUsed(pc))
2095		goto unlock_out;
2096
2097	switch (ctype) {
2098	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2099	case MEM_CGROUP_CHARGE_TYPE_DROP:
2100		if (page_mapped(page))
2101			goto unlock_out;
2102		break;
2103	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2104		if (!PageAnon(page)) {	/* Shared memory */
2105			if (page->mapping && !page_is_file_cache(page))
2106				goto unlock_out;
2107		} else if (page_mapped(page)) /* Anon */
2108				goto unlock_out;
2109		break;
2110	default:
2111		break;
2112	}
2113
2114	if (!mem_cgroup_is_root(mem))
2115		__do_uncharge(mem, ctype);
2116	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2117		mem_cgroup_swap_statistics(mem, true);
2118	mem_cgroup_charge_statistics(mem, pc, false);
2119
2120	ClearPageCgroupUsed(pc);
2121	/*
2122	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2123	 * freed from LRU. This is safe because uncharged page is expected not
2124	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2125	 * special functions.
2126	 */
2127
2128	mz = page_cgroup_zoneinfo(pc);
2129	unlock_page_cgroup(pc);
2130
2131	if (mem_cgroup_soft_limit_check(mem))
2132		mem_cgroup_update_tree(mem, page);
2133	if (mem_cgroup_threshold_check(mem))
2134		mem_cgroup_threshold(mem);
2135	/* at swapout, this memcg will be accessed to record to swap */
2136	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2137		css_put(&mem->css);
2138
2139	return mem;
2140
2141unlock_out:
2142	unlock_page_cgroup(pc);
2143	return NULL;
2144}
2145
2146void mem_cgroup_uncharge_page(struct page *page)
2147{
2148	/* early check. */
2149	if (page_mapped(page))
2150		return;
2151	if (page->mapping && !PageAnon(page))
2152		return;
2153	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2154}
2155
2156void mem_cgroup_uncharge_cache_page(struct page *page)
2157{
2158	VM_BUG_ON(page_mapped(page));
2159	VM_BUG_ON(page->mapping);
2160	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2161}
2162
2163/*
2164 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2165 * In that cases, pages are freed continuously and we can expect pages
2166 * are in the same memcg. All these calls itself limits the number of
2167 * pages freed at once, then uncharge_start/end() is called properly.
2168 * This may be called prural(2) times in a context,
2169 */
2170
2171void mem_cgroup_uncharge_start(void)
2172{
2173	current->memcg_batch.do_batch++;
2174	/* We can do nest. */
2175	if (current->memcg_batch.do_batch == 1) {
2176		current->memcg_batch.memcg = NULL;
2177		current->memcg_batch.bytes = 0;
2178		current->memcg_batch.memsw_bytes = 0;
2179	}
2180}
2181
2182void mem_cgroup_uncharge_end(void)
2183{
2184	struct memcg_batch_info *batch = &current->memcg_batch;
2185
2186	if (!batch->do_batch)
2187		return;
2188
2189	batch->do_batch--;
2190	if (batch->do_batch) /* If stacked, do nothing. */
2191		return;
2192
2193	if (!batch->memcg)
2194		return;
2195	/*
2196	 * This "batch->memcg" is valid without any css_get/put etc...
2197	 * bacause we hide charges behind us.
2198	 */
2199	if (batch->bytes)
2200		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2201	if (batch->memsw_bytes)
2202		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2203	/* forget this pointer (for sanity check) */
2204	batch->memcg = NULL;
2205}
2206
2207#ifdef CONFIG_SWAP
2208/*
2209 * called after __delete_from_swap_cache() and drop "page" account.
2210 * memcg information is recorded to swap_cgroup of "ent"
2211 */
2212void
2213mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2214{
2215	struct mem_cgroup *memcg;
2216	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2217
2218	if (!swapout) /* this was a swap cache but the swap is unused ! */
2219		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2220
2221	memcg = __mem_cgroup_uncharge_common(page, ctype);
2222
2223	/* record memcg information */
2224	if (do_swap_account && swapout && memcg) {
2225		swap_cgroup_record(ent, css_id(&memcg->css));
2226		mem_cgroup_get(memcg);
2227	}
2228	if (swapout && memcg)
2229		css_put(&memcg->css);
2230}
2231#endif
2232
2233#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2234/*
2235 * called from swap_entry_free(). remove record in swap_cgroup and
2236 * uncharge "memsw" account.
2237 */
2238void mem_cgroup_uncharge_swap(swp_entry_t ent)
2239{
2240	struct mem_cgroup *memcg;
2241	unsigned short id;
2242
2243	if (!do_swap_account)
2244		return;
2245
2246	id = swap_cgroup_record(ent, 0);
2247	rcu_read_lock();
2248	memcg = mem_cgroup_lookup(id);
2249	if (memcg) {
2250		/*
2251		 * We uncharge this because swap is freed.
2252		 * This memcg can be obsolete one. We avoid calling css_tryget
2253		 */
2254		if (!mem_cgroup_is_root(memcg))
2255			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2256		mem_cgroup_swap_statistics(memcg, false);
2257		mem_cgroup_put(memcg);
2258	}
2259	rcu_read_unlock();
2260}
2261
2262/**
2263 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2264 * @entry: swap entry to be moved
2265 * @from:  mem_cgroup which the entry is moved from
2266 * @to:  mem_cgroup which the entry is moved to
2267 * @need_fixup: whether we should fixup res_counters and refcounts.
2268 *
2269 * It succeeds only when the swap_cgroup's record for this entry is the same
2270 * as the mem_cgroup's id of @from.
2271 *
2272 * Returns 0 on success, -EINVAL on failure.
2273 *
2274 * The caller must have charged to @to, IOW, called res_counter_charge() about
2275 * both res and memsw, and called css_get().
2276 */
2277static int mem_cgroup_move_swap_account(swp_entry_t entry,
2278		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2279{
2280	unsigned short old_id, new_id;
2281
2282	old_id = css_id(&from->css);
2283	new_id = css_id(&to->css);
2284
2285	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2286		mem_cgroup_swap_statistics(from, false);
2287		mem_cgroup_swap_statistics(to, true);
2288		/*
2289		 * This function is only called from task migration context now.
2290		 * It postpones res_counter and refcount handling till the end
2291		 * of task migration(mem_cgroup_clear_mc()) for performance
2292		 * improvement. But we cannot postpone mem_cgroup_get(to)
2293		 * because if the process that has been moved to @to does
2294		 * swap-in, the refcount of @to might be decreased to 0.
2295		 */
2296		mem_cgroup_get(to);
2297		if (need_fixup) {
2298			if (!mem_cgroup_is_root(from))
2299				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2300			mem_cgroup_put(from);
2301			/*
2302			 * we charged both to->res and to->memsw, so we should
2303			 * uncharge to->res.
2304			 */
2305			if (!mem_cgroup_is_root(to))
2306				res_counter_uncharge(&to->res, PAGE_SIZE);
2307			css_put(&to->css);
2308		}
2309		return 0;
2310	}
2311	return -EINVAL;
2312}
2313#else
2314static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2315		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2316{
2317	return -EINVAL;
2318}
2319#endif
2320
2321/*
2322 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2323 * page belongs to.
2324 */
2325int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2326{
2327	struct page_cgroup *pc;
2328	struct mem_cgroup *mem = NULL;
2329	int ret = 0;
2330
2331	if (mem_cgroup_disabled())
2332		return 0;
2333
2334	pc = lookup_page_cgroup(page);
2335	lock_page_cgroup(pc);
2336	if (PageCgroupUsed(pc)) {
2337		mem = pc->mem_cgroup;
2338		css_get(&mem->css);
2339	}
2340	unlock_page_cgroup(pc);
2341
2342	if (mem) {
2343		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2344						page);
2345		css_put(&mem->css);
2346	}
2347	*ptr = mem;
2348	return ret;
2349}
2350
2351/* remove redundant charge if migration failed*/
2352void mem_cgroup_end_migration(struct mem_cgroup *mem,
2353		struct page *oldpage, struct page *newpage)
2354{
2355	struct page *target, *unused;
2356	struct page_cgroup *pc;
2357	enum charge_type ctype;
2358
2359	if (!mem)
2360		return;
2361	cgroup_exclude_rmdir(&mem->css);
2362	/* at migration success, oldpage->mapping is NULL. */
2363	if (oldpage->mapping) {
2364		target = oldpage;
2365		unused = NULL;
2366	} else {
2367		target = newpage;
2368		unused = oldpage;
2369	}
2370
2371	if (PageAnon(target))
2372		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2373	else if (page_is_file_cache(target))
2374		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2375	else
2376		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2377
2378	/* unused page is not on radix-tree now. */
2379	if (unused)
2380		__mem_cgroup_uncharge_common(unused, ctype);
2381
2382	pc = lookup_page_cgroup(target);
2383	/*
2384	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2385	 * So, double-counting is effectively avoided.
2386	 */
2387	__mem_cgroup_commit_charge(mem, pc, ctype);
2388
2389	/*
2390	 * Both of oldpage and newpage are still under lock_page().
2391	 * Then, we don't have to care about race in radix-tree.
2392	 * But we have to be careful that this page is unmapped or not.
2393	 *
2394	 * There is a case for !page_mapped(). At the start of
2395	 * migration, oldpage was mapped. But now, it's zapped.
2396	 * But we know *target* page is not freed/reused under us.
2397	 * mem_cgroup_uncharge_page() does all necessary checks.
2398	 */
2399	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2400		mem_cgroup_uncharge_page(target);
2401	/*
2402	 * At migration, we may charge account against cgroup which has no tasks
2403	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2404	 * In that case, we need to call pre_destroy() again. check it here.
2405	 */
2406	cgroup_release_and_wakeup_rmdir(&mem->css);
2407}
2408
2409/*
2410 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2411 * Calling hierarchical_reclaim is not enough because we should update
2412 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2413 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2414 * not from the memcg which this page would be charged to.
2415 * try_charge_swapin does all of these works properly.
2416 */
2417int mem_cgroup_shmem_charge_fallback(struct page *page,
2418			    struct mm_struct *mm,
2419			    gfp_t gfp_mask)
2420{
2421	struct mem_cgroup *mem = NULL;
2422	int ret;
2423
2424	if (mem_cgroup_disabled())
2425		return 0;
2426
2427	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2428	if (!ret)
2429		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2430
2431	return ret;
2432}
2433
2434static DEFINE_MUTEX(set_limit_mutex);
2435
2436static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2437				unsigned long long val)
2438{
2439	int retry_count;
2440	u64 memswlimit;
2441	int ret = 0;
2442	int children = mem_cgroup_count_children(memcg);
2443	u64 curusage, oldusage;
2444
2445	/*
2446	 * For keeping hierarchical_reclaim simple, how long we should retry
2447	 * is depends on callers. We set our retry-count to be function
2448	 * of # of children which we should visit in this loop.
2449	 */
2450	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2451
2452	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2453
2454	while (retry_count) {
2455		if (signal_pending(current)) {
2456			ret = -EINTR;
2457			break;
2458		}
2459		/*
2460		 * Rather than hide all in some function, I do this in
2461		 * open coded manner. You see what this really does.
2462		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2463		 */
2464		mutex_lock(&set_limit_mutex);
2465		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2466		if (memswlimit < val) {
2467			ret = -EINVAL;
2468			mutex_unlock(&set_limit_mutex);
2469			break;
2470		}
2471		ret = res_counter_set_limit(&memcg->res, val);
2472		if (!ret) {
2473			if (memswlimit == val)
2474				memcg->memsw_is_minimum = true;
2475			else
2476				memcg->memsw_is_minimum = false;
2477		}
2478		mutex_unlock(&set_limit_mutex);
2479
2480		if (!ret)
2481			break;
2482
2483		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2484						MEM_CGROUP_RECLAIM_SHRINK);
2485		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2486		/* Usage is reduced ? */
2487  		if (curusage >= oldusage)
2488			retry_count--;
2489		else
2490			oldusage = curusage;
2491	}
2492
2493	return ret;
2494}
2495
2496static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2497					unsigned long long val)
2498{
2499	int retry_count;
2500	u64 memlimit, oldusage, curusage;
2501	int children = mem_cgroup_count_children(memcg);
2502	int ret = -EBUSY;
2503
2504	/* see mem_cgroup_resize_res_limit */
2505 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2506	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2507	while (retry_count) {
2508		if (signal_pending(current)) {
2509			ret = -EINTR;
2510			break;
2511		}
2512		/*
2513		 * Rather than hide all in some function, I do this in
2514		 * open coded manner. You see what this really does.
2515		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2516		 */
2517		mutex_lock(&set_limit_mutex);
2518		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2519		if (memlimit > val) {
2520			ret = -EINVAL;
2521			mutex_unlock(&set_limit_mutex);
2522			break;
2523		}
2524		ret = res_counter_set_limit(&memcg->memsw, val);
2525		if (!ret) {
2526			if (memlimit == val)
2527				memcg->memsw_is_minimum = true;
2528			else
2529				memcg->memsw_is_minimum = false;
2530		}
2531		mutex_unlock(&set_limit_mutex);
2532
2533		if (!ret)
2534			break;
2535
2536		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2537						MEM_CGROUP_RECLAIM_NOSWAP |
2538						MEM_CGROUP_RECLAIM_SHRINK);
2539		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2540		/* Usage is reduced ? */
2541		if (curusage >= oldusage)
2542			retry_count--;
2543		else
2544			oldusage = curusage;
2545	}
2546	return ret;
2547}
2548
2549unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2550						gfp_t gfp_mask, int nid,
2551						int zid)
2552{
2553	unsigned long nr_reclaimed = 0;
2554	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2555	unsigned long reclaimed;
2556	int loop = 0;
2557	struct mem_cgroup_tree_per_zone *mctz;
2558	unsigned long long excess;
2559
2560	if (order > 0)
2561		return 0;
2562
2563	mctz = soft_limit_tree_node_zone(nid, zid);
2564	/*
2565	 * This loop can run a while, specially if mem_cgroup's continuously
2566	 * keep exceeding their soft limit and putting the system under
2567	 * pressure
2568	 */
2569	do {
2570		if (next_mz)
2571			mz = next_mz;
2572		else
2573			mz = mem_cgroup_largest_soft_limit_node(mctz);
2574		if (!mz)
2575			break;
2576
2577		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2578						gfp_mask,
2579						MEM_CGROUP_RECLAIM_SOFT);
2580		nr_reclaimed += reclaimed;
2581		spin_lock(&mctz->lock);
2582
2583		/*
2584		 * If we failed to reclaim anything from this memory cgroup
2585		 * it is time to move on to the next cgroup
2586		 */
2587		next_mz = NULL;
2588		if (!reclaimed) {
2589			do {
2590				/*
2591				 * Loop until we find yet another one.
2592				 *
2593				 * By the time we get the soft_limit lock
2594				 * again, someone might have aded the
2595				 * group back on the RB tree. Iterate to
2596				 * make sure we get a different mem.
2597				 * mem_cgroup_largest_soft_limit_node returns
2598				 * NULL if no other cgroup is present on
2599				 * the tree
2600				 */
2601				next_mz =
2602				__mem_cgroup_largest_soft_limit_node(mctz);
2603				if (next_mz == mz) {
2604					css_put(&next_mz->mem->css);
2605					next_mz = NULL;
2606				} else /* next_mz == NULL or other memcg */
2607					break;
2608			} while (1);
2609		}
2610		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2611		excess = res_counter_soft_limit_excess(&mz->mem->res);
2612		/*
2613		 * One school of thought says that we should not add
2614		 * back the node to the tree if reclaim returns 0.
2615		 * But our reclaim could return 0, simply because due
2616		 * to priority we are exposing a smaller subset of
2617		 * memory to reclaim from. Consider this as a longer
2618		 * term TODO.
2619		 */
2620		/* If excess == 0, no tree ops */
2621		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2622		spin_unlock(&mctz->lock);
2623		css_put(&mz->mem->css);
2624		loop++;
2625		/*
2626		 * Could not reclaim anything and there are no more
2627		 * mem cgroups to try or we seem to be looping without
2628		 * reclaiming anything.
2629		 */
2630		if (!nr_reclaimed &&
2631			(next_mz == NULL ||
2632			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2633			break;
2634	} while (!nr_reclaimed);
2635	if (next_mz)
2636		css_put(&next_mz->mem->css);
2637	return nr_reclaimed;
2638}
2639
2640/*
2641 * This routine traverse page_cgroup in given list and drop them all.
2642 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2643 */
2644static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2645				int node, int zid, enum lru_list lru)
2646{
2647	struct zone *zone;
2648	struct mem_cgroup_per_zone *mz;
2649	struct page_cgroup *pc, *busy;
2650	unsigned long flags, loop;
2651	struct list_head *list;
2652	int ret = 0;
2653
2654	zone = &NODE_DATA(node)->node_zones[zid];
2655	mz = mem_cgroup_zoneinfo(mem, node, zid);
2656	list = &mz->lists[lru];
2657
2658	loop = MEM_CGROUP_ZSTAT(mz, lru);
2659	/* give some margin against EBUSY etc...*/
2660	loop += 256;
2661	busy = NULL;
2662	while (loop--) {
2663		ret = 0;
2664		spin_lock_irqsave(&zone->lru_lock, flags);
2665		if (list_empty(list)) {
2666			spin_unlock_irqrestore(&zone->lru_lock, flags);
2667			break;
2668		}
2669		pc = list_entry(list->prev, struct page_cgroup, lru);
2670		if (busy == pc) {
2671			list_move(&pc->lru, list);
2672			busy = NULL;
2673			spin_unlock_irqrestore(&zone->lru_lock, flags);
2674			continue;
2675		}
2676		spin_unlock_irqrestore(&zone->lru_lock, flags);
2677
2678		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2679		if (ret == -ENOMEM)
2680			break;
2681
2682		if (ret == -EBUSY || ret == -EINVAL) {
2683			/* found lock contention or "pc" is obsolete. */
2684			busy = pc;
2685			cond_resched();
2686		} else
2687			busy = NULL;
2688	}
2689
2690	if (!ret && !list_empty(list))
2691		return -EBUSY;
2692	return ret;
2693}
2694
2695/*
2696 * make mem_cgroup's charge to be 0 if there is no task.
2697 * This enables deleting this mem_cgroup.
2698 */
2699static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2700{
2701	int ret;
2702	int node, zid, shrink;
2703	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2704	struct cgroup *cgrp = mem->css.cgroup;
2705
2706	css_get(&mem->css);
2707
2708	shrink = 0;
2709	/* should free all ? */
2710	if (free_all)
2711		goto try_to_free;
2712move_account:
2713	do {
2714		ret = -EBUSY;
2715		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2716			goto out;
2717		ret = -EINTR;
2718		if (signal_pending(current))
2719			goto out;
2720		/* This is for making all *used* pages to be on LRU. */
2721		lru_add_drain_all();
2722		drain_all_stock_sync();
2723		ret = 0;
2724		for_each_node_state(node, N_HIGH_MEMORY) {
2725			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2726				enum lru_list l;
2727				for_each_lru(l) {
2728					ret = mem_cgroup_force_empty_list(mem,
2729							node, zid, l);
2730					if (ret)
2731						break;
2732				}
2733			}
2734			if (ret)
2735				break;
2736		}
2737		/* it seems parent cgroup doesn't have enough mem */
2738		if (ret == -ENOMEM)
2739			goto try_to_free;
2740		cond_resched();
2741	/* "ret" should also be checked to ensure all lists are empty. */
2742	} while (mem->res.usage > 0 || ret);
2743out:
2744	css_put(&mem->css);
2745	return ret;
2746
2747try_to_free:
2748	/* returns EBUSY if there is a task or if we come here twice. */
2749	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2750		ret = -EBUSY;
2751		goto out;
2752	}
2753	/* we call try-to-free pages for make this cgroup empty */
2754	lru_add_drain_all();
2755	/* try to free all pages in this cgroup */
2756	shrink = 1;
2757	while (nr_retries && mem->res.usage > 0) {
2758		int progress;
2759
2760		if (signal_pending(current)) {
2761			ret = -EINTR;
2762			goto out;
2763		}
2764		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2765						false, get_swappiness(mem));
2766		if (!progress) {
2767			nr_retries--;
2768			/* maybe some writeback is necessary */
2769			congestion_wait(BLK_RW_ASYNC, HZ/10);
2770		}
2771
2772	}
2773	lru_add_drain();
2774	/* try move_account...there may be some *locked* pages. */
2775	goto move_account;
2776}
2777
2778int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2779{
2780	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2781}
2782
2783
2784static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2785{
2786	return mem_cgroup_from_cont(cont)->use_hierarchy;
2787}
2788
2789static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2790					u64 val)
2791{
2792	int retval = 0;
2793	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2794	struct cgroup *parent = cont->parent;
2795	struct mem_cgroup *parent_mem = NULL;
2796
2797	if (parent)
2798		parent_mem = mem_cgroup_from_cont(parent);
2799
2800	cgroup_lock();
2801	/*
2802	 * If parent's use_hierarchy is set, we can't make any modifications
2803	 * in the child subtrees. If it is unset, then the change can
2804	 * occur, provided the current cgroup has no children.
2805	 *
2806	 * For the root cgroup, parent_mem is NULL, we allow value to be
2807	 * set if there are no children.
2808	 */
2809	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2810				(val == 1 || val == 0)) {
2811		if (list_empty(&cont->children))
2812			mem->use_hierarchy = val;
2813		else
2814			retval = -EBUSY;
2815	} else
2816		retval = -EINVAL;
2817	cgroup_unlock();
2818
2819	return retval;
2820}
2821
2822struct mem_cgroup_idx_data {
2823	s64 val;
2824	enum mem_cgroup_stat_index idx;
2825};
2826
2827static int
2828mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2829{
2830	struct mem_cgroup_idx_data *d = data;
2831	d->val += mem_cgroup_read_stat(mem, d->idx);
2832	return 0;
2833}
2834
2835static void
2836mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2837				enum mem_cgroup_stat_index idx, s64 *val)
2838{
2839	struct mem_cgroup_idx_data d;
2840	d.idx = idx;
2841	d.val = 0;
2842	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2843	*val = d.val;
2844}
2845
2846static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
2847{
2848	u64 idx_val, val;
2849
2850	if (!mem_cgroup_is_root(mem)) {
2851		if (!swap)
2852			return res_counter_read_u64(&mem->res, RES_USAGE);
2853		else
2854			return res_counter_read_u64(&mem->memsw, RES_USAGE);
2855	}
2856
2857	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
2858	val = idx_val;
2859	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
2860	val += idx_val;
2861
2862	if (swap) {
2863		mem_cgroup_get_recursive_idx_stat(mem,
2864				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2865		val += idx_val;
2866	}
2867
2868	return val << PAGE_SHIFT;
2869}
2870
2871static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2872{
2873	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2874	u64 val;
2875	int type, name;
2876
2877	type = MEMFILE_TYPE(cft->private);
2878	name = MEMFILE_ATTR(cft->private);
2879	switch (type) {
2880	case _MEM:
2881		if (name == RES_USAGE)
2882			val = mem_cgroup_usage(mem, false);
2883		else
2884			val = res_counter_read_u64(&mem->res, name);
2885		break;
2886	case _MEMSWAP:
2887		if (name == RES_USAGE)
2888			val = mem_cgroup_usage(mem, true);
2889		else
2890			val = res_counter_read_u64(&mem->memsw, name);
2891		break;
2892	default:
2893		BUG();
2894		break;
2895	}
2896	return val;
2897}
2898/*
2899 * The user of this function is...
2900 * RES_LIMIT.
2901 */
2902static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2903			    const char *buffer)
2904{
2905	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2906	int type, name;
2907	unsigned long long val;
2908	int ret;
2909
2910	type = MEMFILE_TYPE(cft->private);
2911	name = MEMFILE_ATTR(cft->private);
2912	switch (name) {
2913	case RES_LIMIT:
2914		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2915			ret = -EINVAL;
2916			break;
2917		}
2918		/* This function does all necessary parse...reuse it */
2919		ret = res_counter_memparse_write_strategy(buffer, &val);
2920		if (ret)
2921			break;
2922		if (type == _MEM)
2923			ret = mem_cgroup_resize_limit(memcg, val);
2924		else
2925			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2926		break;
2927	case RES_SOFT_LIMIT:
2928		ret = res_counter_memparse_write_strategy(buffer, &val);
2929		if (ret)
2930			break;
2931		/*
2932		 * For memsw, soft limits are hard to implement in terms
2933		 * of semantics, for now, we support soft limits for
2934		 * control without swap
2935		 */
2936		if (type == _MEM)
2937			ret = res_counter_set_soft_limit(&memcg->res, val);
2938		else
2939			ret = -EINVAL;
2940		break;
2941	default:
2942		ret = -EINVAL; /* should be BUG() ? */
2943		break;
2944	}
2945	return ret;
2946}
2947
2948static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2949		unsigned long long *mem_limit, unsigned long long *memsw_limit)
2950{
2951	struct cgroup *cgroup;
2952	unsigned long long min_limit, min_memsw_limit, tmp;
2953
2954	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2955	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2956	cgroup = memcg->css.cgroup;
2957	if (!memcg->use_hierarchy)
2958		goto out;
2959
2960	while (cgroup->parent) {
2961		cgroup = cgroup->parent;
2962		memcg = mem_cgroup_from_cont(cgroup);
2963		if (!memcg->use_hierarchy)
2964			break;
2965		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2966		min_limit = min(min_limit, tmp);
2967		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2968		min_memsw_limit = min(min_memsw_limit, tmp);
2969	}
2970out:
2971	*mem_limit = min_limit;
2972	*memsw_limit = min_memsw_limit;
2973	return;
2974}
2975
2976static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2977{
2978	struct mem_cgroup *mem;
2979	int type, name;
2980
2981	mem = mem_cgroup_from_cont(cont);
2982	type = MEMFILE_TYPE(event);
2983	name = MEMFILE_ATTR(event);
2984	switch (name) {
2985	case RES_MAX_USAGE:
2986		if (type == _MEM)
2987			res_counter_reset_max(&mem->res);
2988		else
2989			res_counter_reset_max(&mem->memsw);
2990		break;
2991	case RES_FAILCNT:
2992		if (type == _MEM)
2993			res_counter_reset_failcnt(&mem->res);
2994		else
2995			res_counter_reset_failcnt(&mem->memsw);
2996		break;
2997	}
2998
2999	return 0;
3000}
3001
3002static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3003					struct cftype *cft)
3004{
3005	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3006}
3007
3008#ifdef CONFIG_MMU
3009static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3010					struct cftype *cft, u64 val)
3011{
3012	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3013
3014	if (val >= (1 << NR_MOVE_TYPE))
3015		return -EINVAL;
3016	/*
3017	 * We check this value several times in both in can_attach() and
3018	 * attach(), so we need cgroup lock to prevent this value from being
3019	 * inconsistent.
3020	 */
3021	cgroup_lock();
3022	mem->move_charge_at_immigrate = val;
3023	cgroup_unlock();
3024
3025	return 0;
3026}
3027#else
3028static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3029					struct cftype *cft, u64 val)
3030{
3031	return -ENOSYS;
3032}
3033#endif
3034
3035
3036/* For read statistics */
3037enum {
3038	MCS_CACHE,
3039	MCS_RSS,
3040	MCS_FILE_MAPPED,
3041	MCS_PGPGIN,
3042	MCS_PGPGOUT,
3043	MCS_SWAP,
3044	MCS_INACTIVE_ANON,
3045	MCS_ACTIVE_ANON,
3046	MCS_INACTIVE_FILE,
3047	MCS_ACTIVE_FILE,
3048	MCS_UNEVICTABLE,
3049	NR_MCS_STAT,
3050};
3051
3052struct mcs_total_stat {
3053	s64 stat[NR_MCS_STAT];
3054};
3055
3056struct {
3057	char *local_name;
3058	char *total_name;
3059} memcg_stat_strings[NR_MCS_STAT] = {
3060	{"cache", "total_cache"},
3061	{"rss", "total_rss"},
3062	{"mapped_file", "total_mapped_file"},
3063	{"pgpgin", "total_pgpgin"},
3064	{"pgpgout", "total_pgpgout"},
3065	{"swap", "total_swap"},
3066	{"inactive_anon", "total_inactive_anon"},
3067	{"active_anon", "total_active_anon"},
3068	{"inactive_file", "total_inactive_file"},
3069	{"active_file", "total_active_file"},
3070	{"unevictable", "total_unevictable"}
3071};
3072
3073
3074static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3075{
3076	struct mcs_total_stat *s = data;
3077	s64 val;
3078
3079	/* per cpu stat */
3080	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3081	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3082	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3083	s->stat[MCS_RSS] += val * PAGE_SIZE;
3084	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3085	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3086	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3087	s->stat[MCS_PGPGIN] += val;
3088	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3089	s->stat[MCS_PGPGOUT] += val;
3090	if (do_swap_account) {
3091		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3092		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3093	}
3094
3095	/* per zone stat */
3096	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3097	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3098	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3099	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3100	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3101	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3102	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3103	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3104	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3105	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3106	return 0;
3107}
3108
3109static void
3110mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3111{
3112	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3113}
3114
3115static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3116				 struct cgroup_map_cb *cb)
3117{
3118	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3119	struct mcs_total_stat mystat;
3120	int i;
3121
3122	memset(&mystat, 0, sizeof(mystat));
3123	mem_cgroup_get_local_stat(mem_cont, &mystat);
3124
3125	for (i = 0; i < NR_MCS_STAT; i++) {
3126		if (i == MCS_SWAP && !do_swap_account)
3127			continue;
3128		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3129	}
3130
3131	/* Hierarchical information */
3132	{
3133		unsigned long long limit, memsw_limit;
3134		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3135		cb->fill(cb, "hierarchical_memory_limit", limit);
3136		if (do_swap_account)
3137			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3138	}
3139
3140	memset(&mystat, 0, sizeof(mystat));
3141	mem_cgroup_get_total_stat(mem_cont, &mystat);
3142	for (i = 0; i < NR_MCS_STAT; i++) {
3143		if (i == MCS_SWAP && !do_swap_account)
3144			continue;
3145		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3146	}
3147
3148#ifdef CONFIG_DEBUG_VM
3149	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3150
3151	{
3152		int nid, zid;
3153		struct mem_cgroup_per_zone *mz;
3154		unsigned long recent_rotated[2] = {0, 0};
3155		unsigned long recent_scanned[2] = {0, 0};
3156
3157		for_each_online_node(nid)
3158			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3159				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3160
3161				recent_rotated[0] +=
3162					mz->reclaim_stat.recent_rotated[0];
3163				recent_rotated[1] +=
3164					mz->reclaim_stat.recent_rotated[1];
3165				recent_scanned[0] +=
3166					mz->reclaim_stat.recent_scanned[0];
3167				recent_scanned[1] +=
3168					mz->reclaim_stat.recent_scanned[1];
3169			}
3170		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3171		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3172		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3173		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3174	}
3175#endif
3176
3177	return 0;
3178}
3179
3180static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3181{
3182	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3183
3184	return get_swappiness(memcg);
3185}
3186
3187static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3188				       u64 val)
3189{
3190	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3191	struct mem_cgroup *parent;
3192
3193	if (val > 100)
3194		return -EINVAL;
3195
3196	if (cgrp->parent == NULL)
3197		return -EINVAL;
3198
3199	parent = mem_cgroup_from_cont(cgrp->parent);
3200
3201	cgroup_lock();
3202
3203	/* If under hierarchy, only empty-root can set this value */
3204	if ((parent->use_hierarchy) ||
3205	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3206		cgroup_unlock();
3207		return -EINVAL;
3208	}
3209
3210	spin_lock(&memcg->reclaim_param_lock);
3211	memcg->swappiness = val;
3212	spin_unlock(&memcg->reclaim_param_lock);
3213
3214	cgroup_unlock();
3215
3216	return 0;
3217}
3218
3219static bool mem_cgroup_threshold_check(struct mem_cgroup *mem)
3220{
3221	bool ret = false;
3222	s64 val;
3223
3224	val = this_cpu_read(mem->stat->count[MEM_CGROUP_STAT_THRESHOLDS]);
3225	if (unlikely(val < 0)) {
3226		this_cpu_write(mem->stat->count[MEM_CGROUP_STAT_THRESHOLDS],
3227				THRESHOLDS_EVENTS_THRESH);
3228		ret = true;
3229	}
3230	return ret;
3231}
3232
3233static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3234{
3235	struct mem_cgroup_threshold_ary *t;
3236	u64 usage;
3237	int i;
3238
3239	rcu_read_lock();
3240	if (!swap)
3241		t = rcu_dereference(memcg->thresholds);
3242	else
3243		t = rcu_dereference(memcg->memsw_thresholds);
3244
3245	if (!t)
3246		goto unlock;
3247
3248	usage = mem_cgroup_usage(memcg, swap);
3249
3250	/*
3251	 * current_threshold points to threshold just below usage.
3252	 * If it's not true, a threshold was crossed after last
3253	 * call of __mem_cgroup_threshold().
3254	 */
3255	i = atomic_read(&t->current_threshold);
3256
3257	/*
3258	 * Iterate backward over array of thresholds starting from
3259	 * current_threshold and check if a threshold is crossed.
3260	 * If none of thresholds below usage is crossed, we read
3261	 * only one element of the array here.
3262	 */
3263	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3264		eventfd_signal(t->entries[i].eventfd, 1);
3265
3266	/* i = current_threshold + 1 */
3267	i++;
3268
3269	/*
3270	 * Iterate forward over array of thresholds starting from
3271	 * current_threshold+1 and check if a threshold is crossed.
3272	 * If none of thresholds above usage is crossed, we read
3273	 * only one element of the array here.
3274	 */
3275	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3276		eventfd_signal(t->entries[i].eventfd, 1);
3277
3278	/* Update current_threshold */
3279	atomic_set(&t->current_threshold, i - 1);
3280unlock:
3281	rcu_read_unlock();
3282}
3283
3284static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3285{
3286	__mem_cgroup_threshold(memcg, false);
3287	if (do_swap_account)
3288		__mem_cgroup_threshold(memcg, true);
3289}
3290
3291static int compare_thresholds(const void *a, const void *b)
3292{
3293	const struct mem_cgroup_threshold *_a = a;
3294	const struct mem_cgroup_threshold *_b = b;
3295
3296	return _a->threshold - _b->threshold;
3297}
3298
3299static int mem_cgroup_register_event(struct cgroup *cgrp, struct cftype *cft,
3300		struct eventfd_ctx *eventfd, const char *args)
3301{
3302	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3303	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3304	int type = MEMFILE_TYPE(cft->private);
3305	u64 threshold, usage;
3306	int size;
3307	int i, ret;
3308
3309	ret = res_counter_memparse_write_strategy(args, &threshold);
3310	if (ret)
3311		return ret;
3312
3313	mutex_lock(&memcg->thresholds_lock);
3314	if (type == _MEM)
3315		thresholds = memcg->thresholds;
3316	else if (type == _MEMSWAP)
3317		thresholds = memcg->memsw_thresholds;
3318	else
3319		BUG();
3320
3321	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3322
3323	/* Check if a threshold crossed before adding a new one */
3324	if (thresholds)
3325		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3326
3327	if (thresholds)
3328		size = thresholds->size + 1;
3329	else
3330		size = 1;
3331
3332	/* Allocate memory for new array of thresholds */
3333	thresholds_new = kmalloc(sizeof(*thresholds_new) +
3334			size * sizeof(struct mem_cgroup_threshold),
3335			GFP_KERNEL);
3336	if (!thresholds_new) {
3337		ret = -ENOMEM;
3338		goto unlock;
3339	}
3340	thresholds_new->size = size;
3341
3342	/* Copy thresholds (if any) to new array */
3343	if (thresholds)
3344		memcpy(thresholds_new->entries, thresholds->entries,
3345				thresholds->size *
3346				sizeof(struct mem_cgroup_threshold));
3347	/* Add new threshold */
3348	thresholds_new->entries[size - 1].eventfd = eventfd;
3349	thresholds_new->entries[size - 1].threshold = threshold;
3350
3351	/* Sort thresholds. Registering of new threshold isn't time-critical */
3352	sort(thresholds_new->entries, size,
3353			sizeof(struct mem_cgroup_threshold),
3354			compare_thresholds, NULL);
3355
3356	/* Find current threshold */
3357	atomic_set(&thresholds_new->current_threshold, -1);
3358	for (i = 0; i < size; i++) {
3359		if (thresholds_new->entries[i].threshold < usage) {
3360			/*
3361			 * thresholds_new->current_threshold will not be used
3362			 * until rcu_assign_pointer(), so it's safe to increment
3363			 * it here.
3364			 */
3365			atomic_inc(&thresholds_new->current_threshold);
3366		}
3367	}
3368
3369	/*
3370	 * We need to increment refcnt to be sure that all thresholds
3371	 * will be unregistered before calling __mem_cgroup_free()
3372	 */
3373	mem_cgroup_get(memcg);
3374
3375	if (type == _MEM)
3376		rcu_assign_pointer(memcg->thresholds, thresholds_new);
3377	else
3378		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3379
3380	/* To be sure that nobody uses thresholds before freeing it */
3381	synchronize_rcu();
3382
3383	kfree(thresholds);
3384unlock:
3385	mutex_unlock(&memcg->thresholds_lock);
3386
3387	return ret;
3388}
3389
3390static int mem_cgroup_unregister_event(struct cgroup *cgrp, struct cftype *cft,
3391		struct eventfd_ctx *eventfd)
3392{
3393	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3394	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3395	int type = MEMFILE_TYPE(cft->private);
3396	u64 usage;
3397	int size = 0;
3398	int i, j, ret;
3399
3400	mutex_lock(&memcg->thresholds_lock);
3401	if (type == _MEM)
3402		thresholds = memcg->thresholds;
3403	else if (type == _MEMSWAP)
3404		thresholds = memcg->memsw_thresholds;
3405	else
3406		BUG();
3407
3408	/*
3409	 * Something went wrong if we trying to unregister a threshold
3410	 * if we don't have thresholds
3411	 */
3412	BUG_ON(!thresholds);
3413
3414	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3415
3416	/* Check if a threshold crossed before removing */
3417	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3418
3419	/* Calculate new number of threshold */
3420	for (i = 0; i < thresholds->size; i++) {
3421		if (thresholds->entries[i].eventfd != eventfd)
3422			size++;
3423	}
3424
3425	/* Set thresholds array to NULL if we don't have thresholds */
3426	if (!size) {
3427		thresholds_new = NULL;
3428		goto assign;
3429	}
3430
3431	/* Allocate memory for new array of thresholds */
3432	thresholds_new = kmalloc(sizeof(*thresholds_new) +
3433			size * sizeof(struct mem_cgroup_threshold),
3434			GFP_KERNEL);
3435	if (!thresholds_new) {
3436		ret = -ENOMEM;
3437		goto unlock;
3438	}
3439	thresholds_new->size = size;
3440
3441	/* Copy thresholds and find current threshold */
3442	atomic_set(&thresholds_new->current_threshold, -1);
3443	for (i = 0, j = 0; i < thresholds->size; i++) {
3444		if (thresholds->entries[i].eventfd == eventfd)
3445			continue;
3446
3447		thresholds_new->entries[j] = thresholds->entries[i];
3448		if (thresholds_new->entries[j].threshold < usage) {
3449			/*
3450			 * thresholds_new->current_threshold will not be used
3451			 * until rcu_assign_pointer(), so it's safe to increment
3452			 * it here.
3453			 */
3454			atomic_inc(&thresholds_new->current_threshold);
3455		}
3456		j++;
3457	}
3458
3459assign:
3460	if (type == _MEM)
3461		rcu_assign_pointer(memcg->thresholds, thresholds_new);
3462	else
3463		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3464
3465	/* To be sure that nobody uses thresholds before freeing it */
3466	synchronize_rcu();
3467
3468	for (i = 0; i < thresholds->size - size; i++)
3469		mem_cgroup_put(memcg);
3470
3471	kfree(thresholds);
3472unlock:
3473	mutex_unlock(&memcg->thresholds_lock);
3474
3475	return ret;
3476}
3477
3478static struct cftype mem_cgroup_files[] = {
3479	{
3480		.name = "usage_in_bytes",
3481		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3482		.read_u64 = mem_cgroup_read,
3483		.register_event = mem_cgroup_register_event,
3484		.unregister_event = mem_cgroup_unregister_event,
3485	},
3486	{
3487		.name = "max_usage_in_bytes",
3488		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3489		.trigger = mem_cgroup_reset,
3490		.read_u64 = mem_cgroup_read,
3491	},
3492	{
3493		.name = "limit_in_bytes",
3494		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3495		.write_string = mem_cgroup_write,
3496		.read_u64 = mem_cgroup_read,
3497	},
3498	{
3499		.name = "soft_limit_in_bytes",
3500		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3501		.write_string = mem_cgroup_write,
3502		.read_u64 = mem_cgroup_read,
3503	},
3504	{
3505		.name = "failcnt",
3506		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3507		.trigger = mem_cgroup_reset,
3508		.read_u64 = mem_cgroup_read,
3509	},
3510	{
3511		.name = "stat",
3512		.read_map = mem_control_stat_show,
3513	},
3514	{
3515		.name = "force_empty",
3516		.trigger = mem_cgroup_force_empty_write,
3517	},
3518	{
3519		.name = "use_hierarchy",
3520		.write_u64 = mem_cgroup_hierarchy_write,
3521		.read_u64 = mem_cgroup_hierarchy_read,
3522	},
3523	{
3524		.name = "swappiness",
3525		.read_u64 = mem_cgroup_swappiness_read,
3526		.write_u64 = mem_cgroup_swappiness_write,
3527	},
3528	{
3529		.name = "move_charge_at_immigrate",
3530		.read_u64 = mem_cgroup_move_charge_read,
3531		.write_u64 = mem_cgroup_move_charge_write,
3532	},
3533};
3534
3535#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3536static struct cftype memsw_cgroup_files[] = {
3537	{
3538		.name = "memsw.usage_in_bytes",
3539		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3540		.read_u64 = mem_cgroup_read,
3541		.register_event = mem_cgroup_register_event,
3542		.unregister_event = mem_cgroup_unregister_event,
3543	},
3544	{
3545		.name = "memsw.max_usage_in_bytes",
3546		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3547		.trigger = mem_cgroup_reset,
3548		.read_u64 = mem_cgroup_read,
3549	},
3550	{
3551		.name = "memsw.limit_in_bytes",
3552		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3553		.write_string = mem_cgroup_write,
3554		.read_u64 = mem_cgroup_read,
3555	},
3556	{
3557		.name = "memsw.failcnt",
3558		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3559		.trigger = mem_cgroup_reset,
3560		.read_u64 = mem_cgroup_read,
3561	},
3562};
3563
3564static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3565{
3566	if (!do_swap_account)
3567		return 0;
3568	return cgroup_add_files(cont, ss, memsw_cgroup_files,
3569				ARRAY_SIZE(memsw_cgroup_files));
3570};
3571#else
3572static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3573{
3574	return 0;
3575}
3576#endif
3577
3578static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3579{
3580	struct mem_cgroup_per_node *pn;
3581	struct mem_cgroup_per_zone *mz;
3582	enum lru_list l;
3583	int zone, tmp = node;
3584	/*
3585	 * This routine is called against possible nodes.
3586	 * But it's BUG to call kmalloc() against offline node.
3587	 *
3588	 * TODO: this routine can waste much memory for nodes which will
3589	 *       never be onlined. It's better to use memory hotplug callback
3590	 *       function.
3591	 */
3592	if (!node_state(node, N_NORMAL_MEMORY))
3593		tmp = -1;
3594	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3595	if (!pn)
3596		return 1;
3597
3598	mem->info.nodeinfo[node] = pn;
3599	memset(pn, 0, sizeof(*pn));
3600
3601	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3602		mz = &pn->zoneinfo[zone];
3603		for_each_lru(l)
3604			INIT_LIST_HEAD(&mz->lists[l]);
3605		mz->usage_in_excess = 0;
3606		mz->on_tree = false;
3607		mz->mem = mem;
3608	}
3609	return 0;
3610}
3611
3612static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3613{
3614	kfree(mem->info.nodeinfo[node]);
3615}
3616
3617static struct mem_cgroup *mem_cgroup_alloc(void)
3618{
3619	struct mem_cgroup *mem;
3620	int size = sizeof(struct mem_cgroup);
3621
3622	/* Can be very big if MAX_NUMNODES is very big */
3623	if (size < PAGE_SIZE)
3624		mem = kmalloc(size, GFP_KERNEL);
3625	else
3626		mem = vmalloc(size);
3627
3628	if (mem)
3629		memset(mem, 0, size);
3630	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3631	if (!mem->stat) {
3632		if (size < PAGE_SIZE)
3633			kfree(mem);
3634		else
3635			vfree(mem);
3636		mem = NULL;
3637	}
3638	return mem;
3639}
3640
3641/*
3642 * At destroying mem_cgroup, references from swap_cgroup can remain.
3643 * (scanning all at force_empty is too costly...)
3644 *
3645 * Instead of clearing all references at force_empty, we remember
3646 * the number of reference from swap_cgroup and free mem_cgroup when
3647 * it goes down to 0.
3648 *
3649 * Removal of cgroup itself succeeds regardless of refs from swap.
3650 */
3651
3652static void __mem_cgroup_free(struct mem_cgroup *mem)
3653{
3654	int node;
3655
3656	mem_cgroup_remove_from_trees(mem);
3657	free_css_id(&mem_cgroup_subsys, &mem->css);
3658
3659	for_each_node_state(node, N_POSSIBLE)
3660		free_mem_cgroup_per_zone_info(mem, node);
3661
3662	free_percpu(mem->stat);
3663	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3664		kfree(mem);
3665	else
3666		vfree(mem);
3667}
3668
3669static void mem_cgroup_get(struct mem_cgroup *mem)
3670{
3671	atomic_inc(&mem->refcnt);
3672}
3673
3674static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3675{
3676	if (atomic_sub_and_test(count, &mem->refcnt)) {
3677		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3678		__mem_cgroup_free(mem);
3679		if (parent)
3680			mem_cgroup_put(parent);
3681	}
3682}
3683
3684static void mem_cgroup_put(struct mem_cgroup *mem)
3685{
3686	__mem_cgroup_put(mem, 1);
3687}
3688
3689/*
3690 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3691 */
3692static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3693{
3694	if (!mem->res.parent)
3695		return NULL;
3696	return mem_cgroup_from_res_counter(mem->res.parent, res);
3697}
3698
3699#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3700static void __init enable_swap_cgroup(void)
3701{
3702	if (!mem_cgroup_disabled() && really_do_swap_account)
3703		do_swap_account = 1;
3704}
3705#else
3706static void __init enable_swap_cgroup(void)
3707{
3708}
3709#endif
3710
3711static int mem_cgroup_soft_limit_tree_init(void)
3712{
3713	struct mem_cgroup_tree_per_node *rtpn;
3714	struct mem_cgroup_tree_per_zone *rtpz;
3715	int tmp, node, zone;
3716
3717	for_each_node_state(node, N_POSSIBLE) {
3718		tmp = node;
3719		if (!node_state(node, N_NORMAL_MEMORY))
3720			tmp = -1;
3721		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3722		if (!rtpn)
3723			return 1;
3724
3725		soft_limit_tree.rb_tree_per_node[node] = rtpn;
3726
3727		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3728			rtpz = &rtpn->rb_tree_per_zone[zone];
3729			rtpz->rb_root = RB_ROOT;
3730			spin_lock_init(&rtpz->lock);
3731		}
3732	}
3733	return 0;
3734}
3735
3736static struct cgroup_subsys_state * __ref
3737mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3738{
3739	struct mem_cgroup *mem, *parent;
3740	long error = -ENOMEM;
3741	int node;
3742
3743	mem = mem_cgroup_alloc();
3744	if (!mem)
3745		return ERR_PTR(error);
3746
3747	for_each_node_state(node, N_POSSIBLE)
3748		if (alloc_mem_cgroup_per_zone_info(mem, node))
3749			goto free_out;
3750
3751	/* root ? */
3752	if (cont->parent == NULL) {
3753		int cpu;
3754		enable_swap_cgroup();
3755		parent = NULL;
3756		root_mem_cgroup = mem;
3757		if (mem_cgroup_soft_limit_tree_init())
3758			goto free_out;
3759		for_each_possible_cpu(cpu) {
3760			struct memcg_stock_pcp *stock =
3761						&per_cpu(memcg_stock, cpu);
3762			INIT_WORK(&stock->work, drain_local_stock);
3763		}
3764		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3765	} else {
3766		parent = mem_cgroup_from_cont(cont->parent);
3767		mem->use_hierarchy = parent->use_hierarchy;
3768	}
3769
3770	if (parent && parent->use_hierarchy) {
3771		res_counter_init(&mem->res, &parent->res);
3772		res_counter_init(&mem->memsw, &parent->memsw);
3773		/*
3774		 * We increment refcnt of the parent to ensure that we can
3775		 * safely access it on res_counter_charge/uncharge.
3776		 * This refcnt will be decremented when freeing this
3777		 * mem_cgroup(see mem_cgroup_put).
3778		 */
3779		mem_cgroup_get(parent);
3780	} else {
3781		res_counter_init(&mem->res, NULL);
3782		res_counter_init(&mem->memsw, NULL);
3783	}
3784	mem->last_scanned_child = 0;
3785	spin_lock_init(&mem->reclaim_param_lock);
3786
3787	if (parent)
3788		mem->swappiness = get_swappiness(parent);
3789	atomic_set(&mem->refcnt, 1);
3790	mem->move_charge_at_immigrate = 0;
3791	mutex_init(&mem->thresholds_lock);
3792	return &mem->css;
3793free_out:
3794	__mem_cgroup_free(mem);
3795	root_mem_cgroup = NULL;
3796	return ERR_PTR(error);
3797}
3798
3799static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3800					struct cgroup *cont)
3801{
3802	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3803
3804	return mem_cgroup_force_empty(mem, false);
3805}
3806
3807static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3808				struct cgroup *cont)
3809{
3810	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3811
3812	mem_cgroup_put(mem);
3813}
3814
3815static int mem_cgroup_populate(struct cgroup_subsys *ss,
3816				struct cgroup *cont)
3817{
3818	int ret;
3819
3820	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3821				ARRAY_SIZE(mem_cgroup_files));
3822
3823	if (!ret)
3824		ret = register_memsw_files(cont, ss);
3825	return ret;
3826}
3827
3828#ifdef CONFIG_MMU
3829/* Handlers for move charge at task migration. */
3830#define PRECHARGE_COUNT_AT_ONCE	256
3831static int mem_cgroup_do_precharge(unsigned long count)
3832{
3833	int ret = 0;
3834	int batch_count = PRECHARGE_COUNT_AT_ONCE;
3835	struct mem_cgroup *mem = mc.to;
3836
3837	if (mem_cgroup_is_root(mem)) {
3838		mc.precharge += count;
3839		/* we don't need css_get for root */
3840		return ret;
3841	}
3842	/* try to charge at once */
3843	if (count > 1) {
3844		struct res_counter *dummy;
3845		/*
3846		 * "mem" cannot be under rmdir() because we've already checked
3847		 * by cgroup_lock_live_cgroup() that it is not removed and we
3848		 * are still under the same cgroup_mutex. So we can postpone
3849		 * css_get().
3850		 */
3851		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
3852			goto one_by_one;
3853		if (do_swap_account && res_counter_charge(&mem->memsw,
3854						PAGE_SIZE * count, &dummy)) {
3855			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
3856			goto one_by_one;
3857		}
3858		mc.precharge += count;
3859		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
3860		WARN_ON_ONCE(count > INT_MAX);
3861		__css_get(&mem->css, (int)count);
3862		return ret;
3863	}
3864one_by_one:
3865	/* fall back to one by one charge */
3866	while (count--) {
3867		if (signal_pending(current)) {
3868			ret = -EINTR;
3869			break;
3870		}
3871		if (!batch_count--) {
3872			batch_count = PRECHARGE_COUNT_AT_ONCE;
3873			cond_resched();
3874		}
3875		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem,
3876								false, NULL);
3877		if (ret || !mem)
3878			/* mem_cgroup_clear_mc() will do uncharge later */
3879			return -ENOMEM;
3880		mc.precharge++;
3881	}
3882	return ret;
3883}
3884#else	/* !CONFIG_MMU */
3885static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
3886				struct cgroup *cgroup,
3887				struct task_struct *p,
3888				bool threadgroup)
3889{
3890	return 0;
3891}
3892static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
3893				struct cgroup *cgroup,
3894				struct task_struct *p,
3895				bool threadgroup)
3896{
3897}
3898static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3899				struct cgroup *cont,
3900				struct cgroup *old_cont,
3901				struct task_struct *p,
3902				bool threadgroup)
3903{
3904}
3905#endif
3906
3907/**
3908 * is_target_pte_for_mc - check a pte whether it is valid for move charge
3909 * @vma: the vma the pte to be checked belongs
3910 * @addr: the address corresponding to the pte to be checked
3911 * @ptent: the pte to be checked
3912 * @target: the pointer the target page or swap ent will be stored(can be NULL)
3913 *
3914 * Returns
3915 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
3916 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
3917 *     move charge. if @target is not NULL, the page is stored in target->page
3918 *     with extra refcnt got(Callers should handle it).
3919 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
3920 *     target for charge migration. if @target is not NULL, the entry is stored
3921 *     in target->ent.
3922 *
3923 * Called with pte lock held.
3924 */
3925union mc_target {
3926	struct page	*page;
3927	swp_entry_t	ent;
3928};
3929
3930enum mc_target_type {
3931	MC_TARGET_NONE,	/* not used */
3932	MC_TARGET_PAGE,
3933	MC_TARGET_SWAP,
3934};
3935
3936static int is_target_pte_for_mc(struct vm_area_struct *vma,
3937		unsigned long addr, pte_t ptent, union mc_target *target)
3938{
3939	struct page *page = NULL;
3940	struct page_cgroup *pc;
3941	int ret = 0;
3942	swp_entry_t ent = { .val = 0 };
3943	int usage_count = 0;
3944	bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
3945					&mc.to->move_charge_at_immigrate);
3946
3947	if (!pte_present(ptent)) {
3948		/* TODO: handle swap of shmes/tmpfs */
3949		if (pte_none(ptent) || pte_file(ptent))
3950			return 0;
3951		else if (is_swap_pte(ptent)) {
3952			ent = pte_to_swp_entry(ptent);
3953			if (!move_anon || non_swap_entry(ent))
3954				return 0;
3955			usage_count = mem_cgroup_count_swap_user(ent, &page);
3956		}
3957	} else {
3958		page = vm_normal_page(vma, addr, ptent);
3959		if (!page || !page_mapped(page))
3960			return 0;
3961		/*
3962		 * TODO: We don't move charges of file(including shmem/tmpfs)
3963		 * pages for now.
3964		 */
3965		if (!move_anon || !PageAnon(page))
3966			return 0;
3967		if (!get_page_unless_zero(page))
3968			return 0;
3969		usage_count = page_mapcount(page);
3970	}
3971	if (usage_count > 1) {
3972		/*
3973		 * TODO: We don't move charges of shared(used by multiple
3974		 * processes) pages for now.
3975		 */
3976		if (page)
3977			put_page(page);
3978		return 0;
3979	}
3980	if (page) {
3981		pc = lookup_page_cgroup(page);
3982		/*
3983		 * Do only loose check w/o page_cgroup lock.
3984		 * mem_cgroup_move_account() checks the pc is valid or not under
3985		 * the lock.
3986		 */
3987		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
3988			ret = MC_TARGET_PAGE;
3989			if (target)
3990				target->page = page;
3991		}
3992		if (!ret || !target)
3993			put_page(page);
3994	}
3995	/* throught */
3996	if (ent.val && do_swap_account && !ret &&
3997			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
3998		ret = MC_TARGET_SWAP;
3999		if (target)
4000			target->ent = ent;
4001	}
4002	return ret;
4003}
4004
4005static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4006					unsigned long addr, unsigned long end,
4007					struct mm_walk *walk)
4008{
4009	struct vm_area_struct *vma = walk->private;
4010	pte_t *pte;
4011	spinlock_t *ptl;
4012
4013	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4014	for (; addr != end; pte++, addr += PAGE_SIZE)
4015		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4016			mc.precharge++;	/* increment precharge temporarily */
4017	pte_unmap_unlock(pte - 1, ptl);
4018	cond_resched();
4019
4020	return 0;
4021}
4022
4023static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4024{
4025	unsigned long precharge;
4026	struct vm_area_struct *vma;
4027
4028	down_read(&mm->mmap_sem);
4029	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4030		struct mm_walk mem_cgroup_count_precharge_walk = {
4031			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4032			.mm = mm,
4033			.private = vma,
4034		};
4035		if (is_vm_hugetlb_page(vma))
4036			continue;
4037		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
4038		if (vma->vm_flags & VM_SHARED)
4039			continue;
4040		walk_page_range(vma->vm_start, vma->vm_end,
4041					&mem_cgroup_count_precharge_walk);
4042	}
4043	up_read(&mm->mmap_sem);
4044
4045	precharge = mc.precharge;
4046	mc.precharge = 0;
4047
4048	return precharge;
4049}
4050
4051static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4052{
4053	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4054}
4055
4056static void mem_cgroup_clear_mc(void)
4057{
4058	/* we must uncharge all the leftover precharges from mc.to */
4059	if (mc.precharge) {
4060		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4061		mc.precharge = 0;
4062	}
4063	/*
4064	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4065	 * we must uncharge here.
4066	 */
4067	if (mc.moved_charge) {
4068		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4069		mc.moved_charge = 0;
4070	}
4071	/* we must fixup refcnts and charges */
4072	if (mc.moved_swap) {
4073		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4074		/* uncharge swap account from the old cgroup */
4075		if (!mem_cgroup_is_root(mc.from))
4076			res_counter_uncharge(&mc.from->memsw,
4077						PAGE_SIZE * mc.moved_swap);
4078		__mem_cgroup_put(mc.from, mc.moved_swap);
4079
4080		if (!mem_cgroup_is_root(mc.to)) {
4081			/*
4082			 * we charged both to->res and to->memsw, so we should
4083			 * uncharge to->res.
4084			 */
4085			res_counter_uncharge(&mc.to->res,
4086						PAGE_SIZE * mc.moved_swap);
4087			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4088			__css_put(&mc.to->css, mc.moved_swap);
4089		}
4090		/* we've already done mem_cgroup_get(mc.to) */
4091
4092		mc.moved_swap = 0;
4093	}
4094	mc.from = NULL;
4095	mc.to = NULL;
4096	mc.moving_task = NULL;
4097	wake_up_all(&mc.waitq);
4098}
4099
4100static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4101				struct cgroup *cgroup,
4102				struct task_struct *p,
4103				bool threadgroup)
4104{
4105	int ret = 0;
4106	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4107
4108	if (mem->move_charge_at_immigrate) {
4109		struct mm_struct *mm;
4110		struct mem_cgroup *from = mem_cgroup_from_task(p);
4111
4112		VM_BUG_ON(from == mem);
4113
4114		mm = get_task_mm(p);
4115		if (!mm)
4116			return 0;
4117		/* We move charges only when we move a owner of the mm */
4118		if (mm->owner == p) {
4119			VM_BUG_ON(mc.from);
4120			VM_BUG_ON(mc.to);
4121			VM_BUG_ON(mc.precharge);
4122			VM_BUG_ON(mc.moved_charge);
4123			VM_BUG_ON(mc.moved_swap);
4124			VM_BUG_ON(mc.moving_task);
4125			mc.from = from;
4126			mc.to = mem;
4127			mc.precharge = 0;
4128			mc.moved_charge = 0;
4129			mc.moved_swap = 0;
4130			mc.moving_task = current;
4131
4132			ret = mem_cgroup_precharge_mc(mm);
4133			if (ret)
4134				mem_cgroup_clear_mc();
4135		}
4136		mmput(mm);
4137	}
4138	return ret;
4139}
4140
4141static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4142				struct cgroup *cgroup,
4143				struct task_struct *p,
4144				bool threadgroup)
4145{
4146	mem_cgroup_clear_mc();
4147}
4148
4149static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4150				unsigned long addr, unsigned long end,
4151				struct mm_walk *walk)
4152{
4153	int ret = 0;
4154	struct vm_area_struct *vma = walk->private;
4155	pte_t *pte;
4156	spinlock_t *ptl;
4157
4158retry:
4159	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4160	for (; addr != end; addr += PAGE_SIZE) {
4161		pte_t ptent = *(pte++);
4162		union mc_target target;
4163		int type;
4164		struct page *page;
4165		struct page_cgroup *pc;
4166		swp_entry_t ent;
4167
4168		if (!mc.precharge)
4169			break;
4170
4171		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4172		switch (type) {
4173		case MC_TARGET_PAGE:
4174			page = target.page;
4175			if (isolate_lru_page(page))
4176				goto put;
4177			pc = lookup_page_cgroup(page);
4178			if (!mem_cgroup_move_account(pc,
4179						mc.from, mc.to, false)) {
4180				mc.precharge--;
4181				/* we uncharge from mc.from later. */
4182				mc.moved_charge++;
4183			}
4184			putback_lru_page(page);
4185put:			/* is_target_pte_for_mc() gets the page */
4186			put_page(page);
4187			break;
4188		case MC_TARGET_SWAP:
4189			ent = target.ent;
4190			if (!mem_cgroup_move_swap_account(ent,
4191						mc.from, mc.to, false)) {
4192				mc.precharge--;
4193				/* we fixup refcnts and charges later. */
4194				mc.moved_swap++;
4195			}
4196			break;
4197		default:
4198			break;
4199		}
4200	}
4201	pte_unmap_unlock(pte - 1, ptl);
4202	cond_resched();
4203
4204	if (addr != end) {
4205		/*
4206		 * We have consumed all precharges we got in can_attach().
4207		 * We try charge one by one, but don't do any additional
4208		 * charges to mc.to if we have failed in charge once in attach()
4209		 * phase.
4210		 */
4211		ret = mem_cgroup_do_precharge(1);
4212		if (!ret)
4213			goto retry;
4214	}
4215
4216	return ret;
4217}
4218
4219static void mem_cgroup_move_charge(struct mm_struct *mm)
4220{
4221	struct vm_area_struct *vma;
4222
4223	lru_add_drain_all();
4224	down_read(&mm->mmap_sem);
4225	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4226		int ret;
4227		struct mm_walk mem_cgroup_move_charge_walk = {
4228			.pmd_entry = mem_cgroup_move_charge_pte_range,
4229			.mm = mm,
4230			.private = vma,
4231		};
4232		if (is_vm_hugetlb_page(vma))
4233			continue;
4234		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
4235		if (vma->vm_flags & VM_SHARED)
4236			continue;
4237		ret = walk_page_range(vma->vm_start, vma->vm_end,
4238						&mem_cgroup_move_charge_walk);
4239		if (ret)
4240			/*
4241			 * means we have consumed all precharges and failed in
4242			 * doing additional charge. Just abandon here.
4243			 */
4244			break;
4245	}
4246	up_read(&mm->mmap_sem);
4247}
4248
4249static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4250				struct cgroup *cont,
4251				struct cgroup *old_cont,
4252				struct task_struct *p,
4253				bool threadgroup)
4254{
4255	struct mm_struct *mm;
4256
4257	if (!mc.to)
4258		/* no need to move charge */
4259		return;
4260
4261	mm = get_task_mm(p);
4262	if (mm) {
4263		mem_cgroup_move_charge(mm);
4264		mmput(mm);
4265	}
4266	mem_cgroup_clear_mc();
4267}
4268
4269struct cgroup_subsys mem_cgroup_subsys = {
4270	.name = "memory",
4271	.subsys_id = mem_cgroup_subsys_id,
4272	.create = mem_cgroup_create,
4273	.pre_destroy = mem_cgroup_pre_destroy,
4274	.destroy = mem_cgroup_destroy,
4275	.populate = mem_cgroup_populate,
4276	.can_attach = mem_cgroup_can_attach,
4277	.cancel_attach = mem_cgroup_cancel_attach,
4278	.attach = mem_cgroup_move_task,
4279	.early_init = 0,
4280	.use_id = 1,
4281};
4282
4283#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4284
4285static int __init disable_swap_account(char *s)
4286{
4287	really_do_swap_account = 0;
4288	return 1;
4289}
4290__setup("noswapaccount", disable_swap_account);
4291#endif
4292