memcontrol.c revision c8dad2bb6307f5b00f804a686917105206a4d5c9
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
25#include <linux/page-flags.h>
26#include <linux/backing-dev.h>
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
29#include <linux/slab.h>
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
33#include <linux/seq_file.h>
34#include <linux/vmalloc.h>
35#include <linux/mm_inline.h>
36#include <linux/page_cgroup.h>
37
38#include <asm/uaccess.h>
39
40struct cgroup_subsys mem_cgroup_subsys __read_mostly;
41#define MEM_CGROUP_RECLAIM_RETRIES	5
42
43/*
44 * Statistics for memory cgroup.
45 */
46enum mem_cgroup_stat_index {
47	/*
48	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49	 */
50	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
51	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
52	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
53	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
54
55	MEM_CGROUP_STAT_NSTATS,
56};
57
58struct mem_cgroup_stat_cpu {
59	s64 count[MEM_CGROUP_STAT_NSTATS];
60} ____cacheline_aligned_in_smp;
61
62struct mem_cgroup_stat {
63	struct mem_cgroup_stat_cpu cpustat[0];
64};
65
66/*
67 * For accounting under irq disable, no need for increment preempt count.
68 */
69static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
70		enum mem_cgroup_stat_index idx, int val)
71{
72	stat->count[idx] += val;
73}
74
75static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76		enum mem_cgroup_stat_index idx)
77{
78	int cpu;
79	s64 ret = 0;
80	for_each_possible_cpu(cpu)
81		ret += stat->cpustat[cpu].count[idx];
82	return ret;
83}
84
85/*
86 * per-zone information in memory controller.
87 */
88struct mem_cgroup_per_zone {
89	/*
90	 * spin_lock to protect the per cgroup LRU
91	 */
92	spinlock_t		lru_lock;
93	struct list_head	lists[NR_LRU_LISTS];
94	unsigned long		count[NR_LRU_LISTS];
95};
96/* Macro for accessing counter */
97#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
98
99struct mem_cgroup_per_node {
100	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
101};
102
103struct mem_cgroup_lru_info {
104	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
105};
106
107/*
108 * The memory controller data structure. The memory controller controls both
109 * page cache and RSS per cgroup. We would eventually like to provide
110 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
111 * to help the administrator determine what knobs to tune.
112 *
113 * TODO: Add a water mark for the memory controller. Reclaim will begin when
114 * we hit the water mark. May be even add a low water mark, such that
115 * no reclaim occurs from a cgroup at it's low water mark, this is
116 * a feature that will be implemented much later in the future.
117 */
118struct mem_cgroup {
119	struct cgroup_subsys_state css;
120	/*
121	 * the counter to account for memory usage
122	 */
123	struct res_counter res;
124	/*
125	 * Per cgroup active and inactive list, similar to the
126	 * per zone LRU lists.
127	 */
128	struct mem_cgroup_lru_info info;
129
130	int	prev_priority;	/* for recording reclaim priority */
131	/*
132	 * statistics. This must be placed at the end of memcg.
133	 */
134	struct mem_cgroup_stat stat;
135};
136
137enum charge_type {
138	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
139	MEM_CGROUP_CHARGE_TYPE_MAPPED,
140	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
141	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
142	NR_CHARGE_TYPE,
143};
144
145/* only for here (for easy reading.) */
146#define PCGF_CACHE	(1UL << PCG_CACHE)
147#define PCGF_USED	(1UL << PCG_USED)
148#define PCGF_ACTIVE	(1UL << PCG_ACTIVE)
149#define PCGF_LOCK	(1UL << PCG_LOCK)
150#define PCGF_FILE	(1UL << PCG_FILE)
151static const unsigned long
152pcg_default_flags[NR_CHARGE_TYPE] = {
153	PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
154	PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
155	PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
156	0, /* FORCE */
157};
158
159/*
160 * Always modified under lru lock. Then, not necessary to preempt_disable()
161 */
162static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
163					 struct page_cgroup *pc,
164					 bool charge)
165{
166	int val = (charge)? 1 : -1;
167	struct mem_cgroup_stat *stat = &mem->stat;
168	struct mem_cgroup_stat_cpu *cpustat;
169
170	VM_BUG_ON(!irqs_disabled());
171
172	cpustat = &stat->cpustat[smp_processor_id()];
173	if (PageCgroupCache(pc))
174		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
175	else
176		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
177
178	if (charge)
179		__mem_cgroup_stat_add_safe(cpustat,
180				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
181	else
182		__mem_cgroup_stat_add_safe(cpustat,
183				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
184}
185
186static struct mem_cgroup_per_zone *
187mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
188{
189	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
190}
191
192static struct mem_cgroup_per_zone *
193page_cgroup_zoneinfo(struct page_cgroup *pc)
194{
195	struct mem_cgroup *mem = pc->mem_cgroup;
196	int nid = page_cgroup_nid(pc);
197	int zid = page_cgroup_zid(pc);
198
199	return mem_cgroup_zoneinfo(mem, nid, zid);
200}
201
202static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
203					enum lru_list idx)
204{
205	int nid, zid;
206	struct mem_cgroup_per_zone *mz;
207	u64 total = 0;
208
209	for_each_online_node(nid)
210		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
211			mz = mem_cgroup_zoneinfo(mem, nid, zid);
212			total += MEM_CGROUP_ZSTAT(mz, idx);
213		}
214	return total;
215}
216
217static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
218{
219	return container_of(cgroup_subsys_state(cont,
220				mem_cgroup_subsys_id), struct mem_cgroup,
221				css);
222}
223
224struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
225{
226	/*
227	 * mm_update_next_owner() may clear mm->owner to NULL
228	 * if it races with swapoff, page migration, etc.
229	 * So this can be called with p == NULL.
230	 */
231	if (unlikely(!p))
232		return NULL;
233
234	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
235				struct mem_cgroup, css);
236}
237
238static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
239			struct page_cgroup *pc)
240{
241	int lru = LRU_BASE;
242
243	if (PageCgroupUnevictable(pc))
244		lru = LRU_UNEVICTABLE;
245	else {
246		if (PageCgroupActive(pc))
247			lru += LRU_ACTIVE;
248		if (PageCgroupFile(pc))
249			lru += LRU_FILE;
250	}
251
252	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
253
254	mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
255	list_del(&pc->lru);
256}
257
258static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
259				struct page_cgroup *pc, bool hot)
260{
261	int lru = LRU_BASE;
262
263	if (PageCgroupUnevictable(pc))
264		lru = LRU_UNEVICTABLE;
265	else {
266		if (PageCgroupActive(pc))
267			lru += LRU_ACTIVE;
268		if (PageCgroupFile(pc))
269			lru += LRU_FILE;
270	}
271
272	MEM_CGROUP_ZSTAT(mz, lru) += 1;
273	if (hot)
274		list_add(&pc->lru, &mz->lists[lru]);
275	else
276		list_add_tail(&pc->lru, &mz->lists[lru]);
277
278	mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
279}
280
281static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
282{
283	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
284	int active    = PageCgroupActive(pc);
285	int file      = PageCgroupFile(pc);
286	int unevictable = PageCgroupUnevictable(pc);
287	enum lru_list from = unevictable ? LRU_UNEVICTABLE :
288				(LRU_FILE * !!file + !!active);
289
290	if (lru == from)
291		return;
292
293	MEM_CGROUP_ZSTAT(mz, from) -= 1;
294	/*
295	 * However this is done under mz->lru_lock, another flags, which
296	 * are not related to LRU, will be modified from out-of-lock.
297	 * We have to use atomic set/clear flags.
298	 */
299	if (is_unevictable_lru(lru)) {
300		ClearPageCgroupActive(pc);
301		SetPageCgroupUnevictable(pc);
302	} else {
303		if (is_active_lru(lru))
304			SetPageCgroupActive(pc);
305		else
306			ClearPageCgroupActive(pc);
307		ClearPageCgroupUnevictable(pc);
308	}
309
310	MEM_CGROUP_ZSTAT(mz, lru) += 1;
311	list_move(&pc->lru, &mz->lists[lru]);
312}
313
314int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
315{
316	int ret;
317
318	task_lock(task);
319	ret = task->mm && mm_match_cgroup(task->mm, mem);
320	task_unlock(task);
321	return ret;
322}
323
324/*
325 * This routine assumes that the appropriate zone's lru lock is already held
326 */
327void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
328{
329	struct page_cgroup *pc;
330	struct mem_cgroup_per_zone *mz;
331	unsigned long flags;
332
333	if (mem_cgroup_subsys.disabled)
334		return;
335
336	/*
337	 * We cannot lock_page_cgroup while holding zone's lru_lock,
338	 * because other holders of lock_page_cgroup can be interrupted
339	 * with an attempt to rotate_reclaimable_page.  But we cannot
340	 * safely get to page_cgroup without it, so just try_lock it:
341	 * mem_cgroup_isolate_pages allows for page left on wrong list.
342	 */
343	pc = lookup_page_cgroup(page);
344	if (!trylock_page_cgroup(pc))
345		return;
346	if (pc && PageCgroupUsed(pc)) {
347		mz = page_cgroup_zoneinfo(pc);
348		spin_lock_irqsave(&mz->lru_lock, flags);
349		__mem_cgroup_move_lists(pc, lru);
350		spin_unlock_irqrestore(&mz->lru_lock, flags);
351	}
352	unlock_page_cgroup(pc);
353}
354
355/*
356 * Calculate mapped_ratio under memory controller. This will be used in
357 * vmscan.c for deteremining we have to reclaim mapped pages.
358 */
359int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
360{
361	long total, rss;
362
363	/*
364	 * usage is recorded in bytes. But, here, we assume the number of
365	 * physical pages can be represented by "long" on any arch.
366	 */
367	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
368	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
369	return (int)((rss * 100L) / total);
370}
371
372/*
373 * prev_priority control...this will be used in memory reclaim path.
374 */
375int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
376{
377	return mem->prev_priority;
378}
379
380void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
381{
382	if (priority < mem->prev_priority)
383		mem->prev_priority = priority;
384}
385
386void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
387{
388	mem->prev_priority = priority;
389}
390
391/*
392 * Calculate # of pages to be scanned in this priority/zone.
393 * See also vmscan.c
394 *
395 * priority starts from "DEF_PRIORITY" and decremented in each loop.
396 * (see include/linux/mmzone.h)
397 */
398
399long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
400					int priority, enum lru_list lru)
401{
402	long nr_pages;
403	int nid = zone->zone_pgdat->node_id;
404	int zid = zone_idx(zone);
405	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
406
407	nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
408
409	return (nr_pages >> priority);
410}
411
412unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
413					struct list_head *dst,
414					unsigned long *scanned, int order,
415					int mode, struct zone *z,
416					struct mem_cgroup *mem_cont,
417					int active, int file)
418{
419	unsigned long nr_taken = 0;
420	struct page *page;
421	unsigned long scan;
422	LIST_HEAD(pc_list);
423	struct list_head *src;
424	struct page_cgroup *pc, *tmp;
425	int nid = z->zone_pgdat->node_id;
426	int zid = zone_idx(z);
427	struct mem_cgroup_per_zone *mz;
428	int lru = LRU_FILE * !!file + !!active;
429
430	BUG_ON(!mem_cont);
431	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
432	src = &mz->lists[lru];
433
434	spin_lock(&mz->lru_lock);
435	scan = 0;
436	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
437		if (scan >= nr_to_scan)
438			break;
439		if (unlikely(!PageCgroupUsed(pc)))
440			continue;
441		page = pc->page;
442
443		if (unlikely(!PageLRU(page)))
444			continue;
445
446		/*
447		 * TODO: play better with lumpy reclaim, grabbing anything.
448		 */
449		if (PageUnevictable(page) ||
450		    (PageActive(page) && !active) ||
451		    (!PageActive(page) && active)) {
452			__mem_cgroup_move_lists(pc, page_lru(page));
453			continue;
454		}
455
456		scan++;
457		list_move(&pc->lru, &pc_list);
458
459		if (__isolate_lru_page(page, mode, file) == 0) {
460			list_move(&page->lru, dst);
461			nr_taken++;
462		}
463	}
464
465	list_splice(&pc_list, src);
466	spin_unlock(&mz->lru_lock);
467
468	*scanned = scan;
469	return nr_taken;
470}
471
472/*
473 * Unlike exported interface, "oom" parameter is added. if oom==true,
474 * oom-killer can be invoked.
475 */
476static int __mem_cgroup_try_charge(struct mm_struct *mm,
477			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
478{
479	struct mem_cgroup *mem;
480	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
481	/*
482	 * We always charge the cgroup the mm_struct belongs to.
483	 * The mm_struct's mem_cgroup changes on task migration if the
484	 * thread group leader migrates. It's possible that mm is not
485	 * set, if so charge the init_mm (happens for pagecache usage).
486	 */
487	if (likely(!*memcg)) {
488		rcu_read_lock();
489		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
490		if (unlikely(!mem)) {
491			rcu_read_unlock();
492			return 0;
493		}
494		/*
495		 * For every charge from the cgroup, increment reference count
496		 */
497		css_get(&mem->css);
498		*memcg = mem;
499		rcu_read_unlock();
500	} else {
501		mem = *memcg;
502		css_get(&mem->css);
503	}
504
505
506	while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
507		if (!(gfp_mask & __GFP_WAIT))
508			goto nomem;
509
510		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
511			continue;
512
513		/*
514		 * try_to_free_mem_cgroup_pages() might not give us a full
515		 * picture of reclaim. Some pages are reclaimed and might be
516		 * moved to swap cache or just unmapped from the cgroup.
517		 * Check the limit again to see if the reclaim reduced the
518		 * current usage of the cgroup before giving up
519		 */
520		if (res_counter_check_under_limit(&mem->res))
521			continue;
522
523		if (!nr_retries--) {
524			if (oom)
525				mem_cgroup_out_of_memory(mem, gfp_mask);
526			goto nomem;
527		}
528	}
529	return 0;
530nomem:
531	css_put(&mem->css);
532	return -ENOMEM;
533}
534
535/**
536 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
537 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
538 * @gfp_mask: gfp_mask for reclaim.
539 * @memcg: a pointer to memory cgroup which is charged against.
540 *
541 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
542 * memory cgroup from @mm is got and stored in *memcg.
543 *
544 * Returns 0 if success. -ENOMEM at failure.
545 * This call can invoke OOM-Killer.
546 */
547
548int mem_cgroup_try_charge(struct mm_struct *mm,
549			  gfp_t mask, struct mem_cgroup **memcg)
550{
551	return __mem_cgroup_try_charge(mm, mask, memcg, true);
552}
553
554/*
555 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
556 * USED state. If already USED, uncharge and return.
557 */
558
559static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
560				     struct page_cgroup *pc,
561				     enum charge_type ctype)
562{
563	struct mem_cgroup_per_zone *mz;
564	unsigned long flags;
565
566	/* try_charge() can return NULL to *memcg, taking care of it. */
567	if (!mem)
568		return;
569
570	lock_page_cgroup(pc);
571	if (unlikely(PageCgroupUsed(pc))) {
572		unlock_page_cgroup(pc);
573		res_counter_uncharge(&mem->res, PAGE_SIZE);
574		css_put(&mem->css);
575		return;
576	}
577	pc->mem_cgroup = mem;
578	/*
579	 * If a page is accounted as a page cache, insert to inactive list.
580	 * If anon, insert to active list.
581	 */
582	pc->flags = pcg_default_flags[ctype];
583
584	mz = page_cgroup_zoneinfo(pc);
585
586	spin_lock_irqsave(&mz->lru_lock, flags);
587	__mem_cgroup_add_list(mz, pc, true);
588	spin_unlock_irqrestore(&mz->lru_lock, flags);
589	unlock_page_cgroup(pc);
590}
591
592/**
593 * mem_cgroup_move_account - move account of the page
594 * @pc:	page_cgroup of the page.
595 * @from: mem_cgroup which the page is moved from.
596 * @to:	mem_cgroup which the page is moved to. @from != @to.
597 *
598 * The caller must confirm following.
599 * 1. disable irq.
600 * 2. lru_lock of old mem_cgroup(@from) should be held.
601 *
602 * returns 0 at success,
603 * returns -EBUSY when lock is busy or "pc" is unstable.
604 *
605 * This function does "uncharge" from old cgroup but doesn't do "charge" to
606 * new cgroup. It should be done by a caller.
607 */
608
609static int mem_cgroup_move_account(struct page_cgroup *pc,
610	struct mem_cgroup *from, struct mem_cgroup *to)
611{
612	struct mem_cgroup_per_zone *from_mz, *to_mz;
613	int nid, zid;
614	int ret = -EBUSY;
615
616	VM_BUG_ON(!irqs_disabled());
617	VM_BUG_ON(from == to);
618
619	nid = page_cgroup_nid(pc);
620	zid = page_cgroup_zid(pc);
621	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
622	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
623
624
625	if (!trylock_page_cgroup(pc))
626		return ret;
627
628	if (!PageCgroupUsed(pc))
629		goto out;
630
631	if (pc->mem_cgroup != from)
632		goto out;
633
634	if (spin_trylock(&to_mz->lru_lock)) {
635		__mem_cgroup_remove_list(from_mz, pc);
636		css_put(&from->css);
637		res_counter_uncharge(&from->res, PAGE_SIZE);
638		pc->mem_cgroup = to;
639		css_get(&to->css);
640		__mem_cgroup_add_list(to_mz, pc, false);
641		ret = 0;
642		spin_unlock(&to_mz->lru_lock);
643	}
644out:
645	unlock_page_cgroup(pc);
646	return ret;
647}
648
649/*
650 * move charges to its parent.
651 */
652
653static int mem_cgroup_move_parent(struct page_cgroup *pc,
654				  struct mem_cgroup *child,
655				  gfp_t gfp_mask)
656{
657	struct cgroup *cg = child->css.cgroup;
658	struct cgroup *pcg = cg->parent;
659	struct mem_cgroup *parent;
660	struct mem_cgroup_per_zone *mz;
661	unsigned long flags;
662	int ret;
663
664	/* Is ROOT ? */
665	if (!pcg)
666		return -EINVAL;
667
668	parent = mem_cgroup_from_cont(pcg);
669
670	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
671	if (ret)
672		return ret;
673
674	mz = mem_cgroup_zoneinfo(child,
675			page_cgroup_nid(pc), page_cgroup_zid(pc));
676
677	spin_lock_irqsave(&mz->lru_lock, flags);
678	ret = mem_cgroup_move_account(pc, child, parent);
679	spin_unlock_irqrestore(&mz->lru_lock, flags);
680
681	/* drop extra refcnt */
682	css_put(&parent->css);
683	/* uncharge if move fails */
684	if (ret)
685		res_counter_uncharge(&parent->res, PAGE_SIZE);
686
687	return ret;
688}
689
690/*
691 * Charge the memory controller for page usage.
692 * Return
693 * 0 if the charge was successful
694 * < 0 if the cgroup is over its limit
695 */
696static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
697				gfp_t gfp_mask, enum charge_type ctype,
698				struct mem_cgroup *memcg)
699{
700	struct mem_cgroup *mem;
701	struct page_cgroup *pc;
702	int ret;
703
704	pc = lookup_page_cgroup(page);
705	/* can happen at boot */
706	if (unlikely(!pc))
707		return 0;
708	prefetchw(pc);
709
710	mem = memcg;
711	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
712	if (ret)
713		return ret;
714
715	__mem_cgroup_commit_charge(mem, pc, ctype);
716	return 0;
717}
718
719int mem_cgroup_newpage_charge(struct page *page,
720			      struct mm_struct *mm, gfp_t gfp_mask)
721{
722	if (mem_cgroup_subsys.disabled)
723		return 0;
724	if (PageCompound(page))
725		return 0;
726	/*
727	 * If already mapped, we don't have to account.
728	 * If page cache, page->mapping has address_space.
729	 * But page->mapping may have out-of-use anon_vma pointer,
730	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
731	 * is NULL.
732  	 */
733	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
734		return 0;
735	if (unlikely(!mm))
736		mm = &init_mm;
737	return mem_cgroup_charge_common(page, mm, gfp_mask,
738				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
739}
740
741int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
742				gfp_t gfp_mask)
743{
744	if (mem_cgroup_subsys.disabled)
745		return 0;
746	if (PageCompound(page))
747		return 0;
748	/*
749	 * Corner case handling. This is called from add_to_page_cache()
750	 * in usual. But some FS (shmem) precharges this page before calling it
751	 * and call add_to_page_cache() with GFP_NOWAIT.
752	 *
753	 * For GFP_NOWAIT case, the page may be pre-charged before calling
754	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
755	 * charge twice. (It works but has to pay a bit larger cost.)
756	 */
757	if (!(gfp_mask & __GFP_WAIT)) {
758		struct page_cgroup *pc;
759
760
761		pc = lookup_page_cgroup(page);
762		if (!pc)
763			return 0;
764		lock_page_cgroup(pc);
765		if (PageCgroupUsed(pc)) {
766			unlock_page_cgroup(pc);
767			return 0;
768		}
769		unlock_page_cgroup(pc);
770	}
771
772	if (unlikely(!mm))
773		mm = &init_mm;
774
775	if (page_is_file_cache(page))
776		return mem_cgroup_charge_common(page, mm, gfp_mask,
777				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
778	else
779		return mem_cgroup_charge_common(page, mm, gfp_mask,
780				MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
781}
782
783void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
784{
785	struct page_cgroup *pc;
786
787	if (mem_cgroup_subsys.disabled)
788		return;
789	if (!ptr)
790		return;
791	pc = lookup_page_cgroup(page);
792	__mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
793}
794
795void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
796{
797	if (mem_cgroup_subsys.disabled)
798		return;
799	if (!mem)
800		return;
801	res_counter_uncharge(&mem->res, PAGE_SIZE);
802	css_put(&mem->css);
803}
804
805
806/*
807 * uncharge if !page_mapped(page)
808 */
809static void
810__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
811{
812	struct page_cgroup *pc;
813	struct mem_cgroup *mem;
814	struct mem_cgroup_per_zone *mz;
815	unsigned long flags;
816
817	if (mem_cgroup_subsys.disabled)
818		return;
819
820	/*
821	 * Check if our page_cgroup is valid
822	 */
823	pc = lookup_page_cgroup(page);
824	if (unlikely(!pc || !PageCgroupUsed(pc)))
825		return;
826
827	lock_page_cgroup(pc);
828	if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
829	     || !PageCgroupUsed(pc)) {
830		/* This happens at race in zap_pte_range() and do_swap_page()*/
831		unlock_page_cgroup(pc);
832		return;
833	}
834	ClearPageCgroupUsed(pc);
835	mem = pc->mem_cgroup;
836
837	mz = page_cgroup_zoneinfo(pc);
838	spin_lock_irqsave(&mz->lru_lock, flags);
839	__mem_cgroup_remove_list(mz, pc);
840	spin_unlock_irqrestore(&mz->lru_lock, flags);
841	unlock_page_cgroup(pc);
842
843	res_counter_uncharge(&mem->res, PAGE_SIZE);
844	css_put(&mem->css);
845
846	return;
847}
848
849void mem_cgroup_uncharge_page(struct page *page)
850{
851	/* early check. */
852	if (page_mapped(page))
853		return;
854	if (page->mapping && !PageAnon(page))
855		return;
856	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
857}
858
859void mem_cgroup_uncharge_cache_page(struct page *page)
860{
861	VM_BUG_ON(page_mapped(page));
862	VM_BUG_ON(page->mapping);
863	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
864}
865
866/*
867 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
868 * page belongs to.
869 */
870int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
871{
872	struct page_cgroup *pc;
873	struct mem_cgroup *mem = NULL;
874	int ret = 0;
875
876	if (mem_cgroup_subsys.disabled)
877		return 0;
878
879	pc = lookup_page_cgroup(page);
880	lock_page_cgroup(pc);
881	if (PageCgroupUsed(pc)) {
882		mem = pc->mem_cgroup;
883		css_get(&mem->css);
884	}
885	unlock_page_cgroup(pc);
886
887	if (mem) {
888		ret = mem_cgroup_try_charge(NULL, GFP_HIGHUSER_MOVABLE, &mem);
889		css_put(&mem->css);
890	}
891	*ptr = mem;
892	return ret;
893}
894
895/* remove redundant charge if migration failed*/
896void mem_cgroup_end_migration(struct mem_cgroup *mem,
897		struct page *oldpage, struct page *newpage)
898{
899	struct page *target, *unused;
900	struct page_cgroup *pc;
901	enum charge_type ctype;
902
903	if (!mem)
904		return;
905
906	/* at migration success, oldpage->mapping is NULL. */
907	if (oldpage->mapping) {
908		target = oldpage;
909		unused = NULL;
910	} else {
911		target = newpage;
912		unused = oldpage;
913	}
914
915	if (PageAnon(target))
916		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
917	else if (page_is_file_cache(target))
918		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
919	else
920		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
921
922	/* unused page is not on radix-tree now. */
923	if (unused && ctype != MEM_CGROUP_CHARGE_TYPE_MAPPED)
924		__mem_cgroup_uncharge_common(unused, ctype);
925
926	pc = lookup_page_cgroup(target);
927	/*
928	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
929	 * So, double-counting is effectively avoided.
930	 */
931	__mem_cgroup_commit_charge(mem, pc, ctype);
932
933	/*
934	 * Both of oldpage and newpage are still under lock_page().
935	 * Then, we don't have to care about race in radix-tree.
936	 * But we have to be careful that this page is unmapped or not.
937	 *
938	 * There is a case for !page_mapped(). At the start of
939	 * migration, oldpage was mapped. But now, it's zapped.
940	 * But we know *target* page is not freed/reused under us.
941	 * mem_cgroup_uncharge_page() does all necessary checks.
942	 */
943	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
944		mem_cgroup_uncharge_page(target);
945}
946
947/*
948 * A call to try to shrink memory usage under specified resource controller.
949 * This is typically used for page reclaiming for shmem for reducing side
950 * effect of page allocation from shmem, which is used by some mem_cgroup.
951 */
952int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
953{
954	struct mem_cgroup *mem;
955	int progress = 0;
956	int retry = MEM_CGROUP_RECLAIM_RETRIES;
957
958	if (mem_cgroup_subsys.disabled)
959		return 0;
960	if (!mm)
961		return 0;
962
963	rcu_read_lock();
964	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
965	if (unlikely(!mem)) {
966		rcu_read_unlock();
967		return 0;
968	}
969	css_get(&mem->css);
970	rcu_read_unlock();
971
972	do {
973		progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
974		progress += res_counter_check_under_limit(&mem->res);
975	} while (!progress && --retry);
976
977	css_put(&mem->css);
978	if (!retry)
979		return -ENOMEM;
980	return 0;
981}
982
983static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
984				   unsigned long long val)
985{
986
987	int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
988	int progress;
989	int ret = 0;
990
991	while (res_counter_set_limit(&memcg->res, val)) {
992		if (signal_pending(current)) {
993			ret = -EINTR;
994			break;
995		}
996		if (!retry_count) {
997			ret = -EBUSY;
998			break;
999		}
1000		progress = try_to_free_mem_cgroup_pages(memcg,
1001				GFP_HIGHUSER_MOVABLE);
1002		if (!progress)
1003			retry_count--;
1004	}
1005	return ret;
1006}
1007
1008
1009/*
1010 * This routine traverse page_cgroup in given list and drop them all.
1011 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1012 */
1013static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1014			    struct mem_cgroup_per_zone *mz,
1015			    enum lru_list lru)
1016{
1017	struct page_cgroup *pc, *busy;
1018	unsigned long flags;
1019	unsigned long loop;
1020	struct list_head *list;
1021	int ret = 0;
1022
1023	list = &mz->lists[lru];
1024
1025	loop = MEM_CGROUP_ZSTAT(mz, lru);
1026	/* give some margin against EBUSY etc...*/
1027	loop += 256;
1028	busy = NULL;
1029	while (loop--) {
1030		ret = 0;
1031		spin_lock_irqsave(&mz->lru_lock, flags);
1032		if (list_empty(list)) {
1033			spin_unlock_irqrestore(&mz->lru_lock, flags);
1034			break;
1035		}
1036		pc = list_entry(list->prev, struct page_cgroup, lru);
1037		if (busy == pc) {
1038			list_move(&pc->lru, list);
1039			busy = 0;
1040			spin_unlock_irqrestore(&mz->lru_lock, flags);
1041			continue;
1042		}
1043		spin_unlock_irqrestore(&mz->lru_lock, flags);
1044
1045		ret = mem_cgroup_move_parent(pc, mem, GFP_HIGHUSER_MOVABLE);
1046		if (ret == -ENOMEM)
1047			break;
1048
1049		if (ret == -EBUSY || ret == -EINVAL) {
1050			/* found lock contention or "pc" is obsolete. */
1051			busy = pc;
1052			cond_resched();
1053		} else
1054			busy = NULL;
1055	}
1056	if (!ret && !list_empty(list))
1057		return -EBUSY;
1058	return ret;
1059}
1060
1061/*
1062 * make mem_cgroup's charge to be 0 if there is no task.
1063 * This enables deleting this mem_cgroup.
1064 */
1065static int mem_cgroup_force_empty(struct mem_cgroup *mem)
1066{
1067	int ret;
1068	int node, zid, shrink;
1069	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1070
1071	css_get(&mem->css);
1072
1073	shrink = 0;
1074move_account:
1075	while (mem->res.usage > 0) {
1076		ret = -EBUSY;
1077		if (atomic_read(&mem->css.cgroup->count) > 0)
1078			goto out;
1079
1080		/* This is for making all *used* pages to be on LRU. */
1081		lru_add_drain_all();
1082		ret = 0;
1083		for_each_node_state(node, N_POSSIBLE) {
1084			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1085				struct mem_cgroup_per_zone *mz;
1086				enum lru_list l;
1087				mz = mem_cgroup_zoneinfo(mem, node, zid);
1088				for_each_lru(l) {
1089					ret = mem_cgroup_force_empty_list(mem,
1090								  mz, l);
1091					if (ret)
1092						break;
1093				}
1094			}
1095			if (ret)
1096				break;
1097		}
1098		/* it seems parent cgroup doesn't have enough mem */
1099		if (ret == -ENOMEM)
1100			goto try_to_free;
1101		cond_resched();
1102	}
1103	ret = 0;
1104out:
1105	css_put(&mem->css);
1106	return ret;
1107
1108try_to_free:
1109	/* returns EBUSY if we come here twice. */
1110	if (shrink)  {
1111		ret = -EBUSY;
1112		goto out;
1113	}
1114	/* try to free all pages in this cgroup */
1115	shrink = 1;
1116	while (nr_retries && mem->res.usage > 0) {
1117		int progress;
1118		progress = try_to_free_mem_cgroup_pages(mem,
1119						  GFP_HIGHUSER_MOVABLE);
1120		if (!progress)
1121			nr_retries--;
1122
1123	}
1124	/* try move_account...there may be some *locked* pages. */
1125	if (mem->res.usage)
1126		goto move_account;
1127	ret = 0;
1128	goto out;
1129}
1130
1131static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1132{
1133	return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
1134				    cft->private);
1135}
1136/*
1137 * The user of this function is...
1138 * RES_LIMIT.
1139 */
1140static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1141			    const char *buffer)
1142{
1143	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1144	unsigned long long val;
1145	int ret;
1146
1147	switch (cft->private) {
1148	case RES_LIMIT:
1149		/* This function does all necessary parse...reuse it */
1150		ret = res_counter_memparse_write_strategy(buffer, &val);
1151		if (!ret)
1152			ret = mem_cgroup_resize_limit(memcg, val);
1153		break;
1154	default:
1155		ret = -EINVAL; /* should be BUG() ? */
1156		break;
1157	}
1158	return ret;
1159}
1160
1161static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1162{
1163	struct mem_cgroup *mem;
1164
1165	mem = mem_cgroup_from_cont(cont);
1166	switch (event) {
1167	case RES_MAX_USAGE:
1168		res_counter_reset_max(&mem->res);
1169		break;
1170	case RES_FAILCNT:
1171		res_counter_reset_failcnt(&mem->res);
1172		break;
1173	}
1174	return 0;
1175}
1176
1177static const struct mem_cgroup_stat_desc {
1178	const char *msg;
1179	u64 unit;
1180} mem_cgroup_stat_desc[] = {
1181	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1182	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1183	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1184	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1185};
1186
1187static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1188				 struct cgroup_map_cb *cb)
1189{
1190	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1191	struct mem_cgroup_stat *stat = &mem_cont->stat;
1192	int i;
1193
1194	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1195		s64 val;
1196
1197		val = mem_cgroup_read_stat(stat, i);
1198		val *= mem_cgroup_stat_desc[i].unit;
1199		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1200	}
1201	/* showing # of active pages */
1202	{
1203		unsigned long active_anon, inactive_anon;
1204		unsigned long active_file, inactive_file;
1205		unsigned long unevictable;
1206
1207		inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1208						LRU_INACTIVE_ANON);
1209		active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1210						LRU_ACTIVE_ANON);
1211		inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1212						LRU_INACTIVE_FILE);
1213		active_file = mem_cgroup_get_all_zonestat(mem_cont,
1214						LRU_ACTIVE_FILE);
1215		unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1216							LRU_UNEVICTABLE);
1217
1218		cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1219		cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1220		cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1221		cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1222		cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1223
1224	}
1225	return 0;
1226}
1227
1228static struct cftype mem_cgroup_files[] = {
1229	{
1230		.name = "usage_in_bytes",
1231		.private = RES_USAGE,
1232		.read_u64 = mem_cgroup_read,
1233	},
1234	{
1235		.name = "max_usage_in_bytes",
1236		.private = RES_MAX_USAGE,
1237		.trigger = mem_cgroup_reset,
1238		.read_u64 = mem_cgroup_read,
1239	},
1240	{
1241		.name = "limit_in_bytes",
1242		.private = RES_LIMIT,
1243		.write_string = mem_cgroup_write,
1244		.read_u64 = mem_cgroup_read,
1245	},
1246	{
1247		.name = "failcnt",
1248		.private = RES_FAILCNT,
1249		.trigger = mem_cgroup_reset,
1250		.read_u64 = mem_cgroup_read,
1251	},
1252	{
1253		.name = "stat",
1254		.read_map = mem_control_stat_show,
1255	},
1256};
1257
1258static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1259{
1260	struct mem_cgroup_per_node *pn;
1261	struct mem_cgroup_per_zone *mz;
1262	enum lru_list l;
1263	int zone, tmp = node;
1264	/*
1265	 * This routine is called against possible nodes.
1266	 * But it's BUG to call kmalloc() against offline node.
1267	 *
1268	 * TODO: this routine can waste much memory for nodes which will
1269	 *       never be onlined. It's better to use memory hotplug callback
1270	 *       function.
1271	 */
1272	if (!node_state(node, N_NORMAL_MEMORY))
1273		tmp = -1;
1274	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1275	if (!pn)
1276		return 1;
1277
1278	mem->info.nodeinfo[node] = pn;
1279	memset(pn, 0, sizeof(*pn));
1280
1281	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1282		mz = &pn->zoneinfo[zone];
1283		spin_lock_init(&mz->lru_lock);
1284		for_each_lru(l)
1285			INIT_LIST_HEAD(&mz->lists[l]);
1286	}
1287	return 0;
1288}
1289
1290static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1291{
1292	kfree(mem->info.nodeinfo[node]);
1293}
1294
1295static int mem_cgroup_size(void)
1296{
1297	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1298	return sizeof(struct mem_cgroup) + cpustat_size;
1299}
1300
1301static struct mem_cgroup *mem_cgroup_alloc(void)
1302{
1303	struct mem_cgroup *mem;
1304	int size = mem_cgroup_size();
1305
1306	if (size < PAGE_SIZE)
1307		mem = kmalloc(size, GFP_KERNEL);
1308	else
1309		mem = vmalloc(size);
1310
1311	if (mem)
1312		memset(mem, 0, size);
1313	return mem;
1314}
1315
1316static void mem_cgroup_free(struct mem_cgroup *mem)
1317{
1318	if (mem_cgroup_size() < PAGE_SIZE)
1319		kfree(mem);
1320	else
1321		vfree(mem);
1322}
1323
1324
1325static struct cgroup_subsys_state *
1326mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1327{
1328	struct mem_cgroup *mem;
1329	int node;
1330
1331	mem = mem_cgroup_alloc();
1332	if (!mem)
1333		return ERR_PTR(-ENOMEM);
1334
1335	res_counter_init(&mem->res);
1336
1337	for_each_node_state(node, N_POSSIBLE)
1338		if (alloc_mem_cgroup_per_zone_info(mem, node))
1339			goto free_out;
1340
1341	return &mem->css;
1342free_out:
1343	for_each_node_state(node, N_POSSIBLE)
1344		free_mem_cgroup_per_zone_info(mem, node);
1345	mem_cgroup_free(mem);
1346	return ERR_PTR(-ENOMEM);
1347}
1348
1349static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1350					struct cgroup *cont)
1351{
1352	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1353	mem_cgroup_force_empty(mem);
1354}
1355
1356static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1357				struct cgroup *cont)
1358{
1359	int node;
1360	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1361
1362	for_each_node_state(node, N_POSSIBLE)
1363		free_mem_cgroup_per_zone_info(mem, node);
1364
1365	mem_cgroup_free(mem_cgroup_from_cont(cont));
1366}
1367
1368static int mem_cgroup_populate(struct cgroup_subsys *ss,
1369				struct cgroup *cont)
1370{
1371	return cgroup_add_files(cont, ss, mem_cgroup_files,
1372					ARRAY_SIZE(mem_cgroup_files));
1373}
1374
1375static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1376				struct cgroup *cont,
1377				struct cgroup *old_cont,
1378				struct task_struct *p)
1379{
1380	struct mm_struct *mm;
1381	struct mem_cgroup *mem, *old_mem;
1382
1383	mm = get_task_mm(p);
1384	if (mm == NULL)
1385		return;
1386
1387	mem = mem_cgroup_from_cont(cont);
1388	old_mem = mem_cgroup_from_cont(old_cont);
1389
1390	/*
1391	 * Only thread group leaders are allowed to migrate, the mm_struct is
1392	 * in effect owned by the leader
1393	 */
1394	if (!thread_group_leader(p))
1395		goto out;
1396
1397out:
1398	mmput(mm);
1399}
1400
1401struct cgroup_subsys mem_cgroup_subsys = {
1402	.name = "memory",
1403	.subsys_id = mem_cgroup_subsys_id,
1404	.create = mem_cgroup_create,
1405	.pre_destroy = mem_cgroup_pre_destroy,
1406	.destroy = mem_cgroup_destroy,
1407	.populate = mem_cgroup_populate,
1408	.attach = mem_cgroup_move_task,
1409	.early_init = 0,
1410};
1411