memcontrol.c revision cede86acd8bd5d2205dec28db8ac86410a3a19e8
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
25#include <linux/page-flags.h>
26#include <linux/backing-dev.h>
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
29#include <linux/slab.h>
30#include <linux/swap.h>
31#include <linux/spinlock.h>
32#include <linux/fs.h>
33#include <linux/seq_file.h>
34#include <linux/vmalloc.h>
35
36#include <asm/uaccess.h>
37
38struct cgroup_subsys mem_cgroup_subsys __read_mostly;
39static struct kmem_cache *page_cgroup_cache __read_mostly;
40#define MEM_CGROUP_RECLAIM_RETRIES	5
41
42/*
43 * Statistics for memory cgroup.
44 */
45enum mem_cgroup_stat_index {
46	/*
47	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
48	 */
49	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
50	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
51	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
52	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
53
54	MEM_CGROUP_STAT_NSTATS,
55};
56
57struct mem_cgroup_stat_cpu {
58	s64 count[MEM_CGROUP_STAT_NSTATS];
59} ____cacheline_aligned_in_smp;
60
61struct mem_cgroup_stat {
62	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
63};
64
65/*
66 * For accounting under irq disable, no need for increment preempt count.
67 */
68static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
69		enum mem_cgroup_stat_index idx, int val)
70{
71	int cpu = smp_processor_id();
72	stat->cpustat[cpu].count[idx] += val;
73}
74
75static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
76		enum mem_cgroup_stat_index idx)
77{
78	int cpu;
79	s64 ret = 0;
80	for_each_possible_cpu(cpu)
81		ret += stat->cpustat[cpu].count[idx];
82	return ret;
83}
84
85/*
86 * per-zone information in memory controller.
87 */
88
89enum mem_cgroup_zstat_index {
90	MEM_CGROUP_ZSTAT_ACTIVE,
91	MEM_CGROUP_ZSTAT_INACTIVE,
92
93	NR_MEM_CGROUP_ZSTAT,
94};
95
96struct mem_cgroup_per_zone {
97	/*
98	 * spin_lock to protect the per cgroup LRU
99	 */
100	spinlock_t		lru_lock;
101	struct list_head	active_list;
102	struct list_head	inactive_list;
103	unsigned long count[NR_MEM_CGROUP_ZSTAT];
104};
105/* Macro for accessing counter */
106#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
107
108struct mem_cgroup_per_node {
109	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
110};
111
112struct mem_cgroup_lru_info {
113	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
114};
115
116/*
117 * The memory controller data structure. The memory controller controls both
118 * page cache and RSS per cgroup. We would eventually like to provide
119 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
120 * to help the administrator determine what knobs to tune.
121 *
122 * TODO: Add a water mark for the memory controller. Reclaim will begin when
123 * we hit the water mark. May be even add a low water mark, such that
124 * no reclaim occurs from a cgroup at it's low water mark, this is
125 * a feature that will be implemented much later in the future.
126 */
127struct mem_cgroup {
128	struct cgroup_subsys_state css;
129	/*
130	 * the counter to account for memory usage
131	 */
132	struct res_counter res;
133	/*
134	 * Per cgroup active and inactive list, similar to the
135	 * per zone LRU lists.
136	 */
137	struct mem_cgroup_lru_info info;
138
139	int	prev_priority;	/* for recording reclaim priority */
140	/*
141	 * statistics.
142	 */
143	struct mem_cgroup_stat stat;
144};
145static struct mem_cgroup init_mem_cgroup;
146
147/*
148 * We use the lower bit of the page->page_cgroup pointer as a bit spin
149 * lock.  We need to ensure that page->page_cgroup is at least two
150 * byte aligned (based on comments from Nick Piggin).  But since
151 * bit_spin_lock doesn't actually set that lock bit in a non-debug
152 * uniprocessor kernel, we should avoid setting it here too.
153 */
154#define PAGE_CGROUP_LOCK_BIT 	0x0
155#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
156#define PAGE_CGROUP_LOCK 	(1 << PAGE_CGROUP_LOCK_BIT)
157#else
158#define PAGE_CGROUP_LOCK	0x0
159#endif
160
161/*
162 * A page_cgroup page is associated with every page descriptor. The
163 * page_cgroup helps us identify information about the cgroup
164 */
165struct page_cgroup {
166	struct list_head lru;		/* per cgroup LRU list */
167	struct page *page;
168	struct mem_cgroup *mem_cgroup;
169	int flags;
170};
171#define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
172#define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
173
174static int page_cgroup_nid(struct page_cgroup *pc)
175{
176	return page_to_nid(pc->page);
177}
178
179static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
180{
181	return page_zonenum(pc->page);
182}
183
184enum charge_type {
185	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
186	MEM_CGROUP_CHARGE_TYPE_MAPPED,
187	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
188};
189
190/*
191 * Always modified under lru lock. Then, not necessary to preempt_disable()
192 */
193static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
194					bool charge)
195{
196	int val = (charge)? 1 : -1;
197	struct mem_cgroup_stat *stat = &mem->stat;
198
199	VM_BUG_ON(!irqs_disabled());
200	if (flags & PAGE_CGROUP_FLAG_CACHE)
201		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
202	else
203		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
204
205	if (charge)
206		__mem_cgroup_stat_add_safe(stat,
207				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
208	else
209		__mem_cgroup_stat_add_safe(stat,
210				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
211}
212
213static struct mem_cgroup_per_zone *
214mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
215{
216	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
217}
218
219static struct mem_cgroup_per_zone *
220page_cgroup_zoneinfo(struct page_cgroup *pc)
221{
222	struct mem_cgroup *mem = pc->mem_cgroup;
223	int nid = page_cgroup_nid(pc);
224	int zid = page_cgroup_zid(pc);
225
226	return mem_cgroup_zoneinfo(mem, nid, zid);
227}
228
229static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
230					enum mem_cgroup_zstat_index idx)
231{
232	int nid, zid;
233	struct mem_cgroup_per_zone *mz;
234	u64 total = 0;
235
236	for_each_online_node(nid)
237		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
238			mz = mem_cgroup_zoneinfo(mem, nid, zid);
239			total += MEM_CGROUP_ZSTAT(mz, idx);
240		}
241	return total;
242}
243
244static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
245{
246	return container_of(cgroup_subsys_state(cont,
247				mem_cgroup_subsys_id), struct mem_cgroup,
248				css);
249}
250
251struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
252{
253	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
254				struct mem_cgroup, css);
255}
256
257static inline int page_cgroup_locked(struct page *page)
258{
259	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
260}
261
262static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
263{
264	VM_BUG_ON(!page_cgroup_locked(page));
265	page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
266}
267
268struct page_cgroup *page_get_page_cgroup(struct page *page)
269{
270	return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
271}
272
273static void lock_page_cgroup(struct page *page)
274{
275	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
276}
277
278static int try_lock_page_cgroup(struct page *page)
279{
280	return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
281}
282
283static void unlock_page_cgroup(struct page *page)
284{
285	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
286}
287
288static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
289			struct page_cgroup *pc)
290{
291	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
292
293	if (from)
294		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
295	else
296		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
297
298	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
299	list_del(&pc->lru);
300}
301
302static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
303				struct page_cgroup *pc)
304{
305	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
306
307	if (!to) {
308		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
309		list_add(&pc->lru, &mz->inactive_list);
310	} else {
311		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
312		list_add(&pc->lru, &mz->active_list);
313	}
314	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
315}
316
317static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
318{
319	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
320	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
321
322	if (from)
323		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
324	else
325		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
326
327	if (active) {
328		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
329		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
330		list_move(&pc->lru, &mz->active_list);
331	} else {
332		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
333		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
334		list_move(&pc->lru, &mz->inactive_list);
335	}
336}
337
338int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
339{
340	int ret;
341
342	task_lock(task);
343	ret = task->mm && mm_match_cgroup(task->mm, mem);
344	task_unlock(task);
345	return ret;
346}
347
348/*
349 * This routine assumes that the appropriate zone's lru lock is already held
350 */
351void mem_cgroup_move_lists(struct page *page, bool active)
352{
353	struct page_cgroup *pc;
354	struct mem_cgroup_per_zone *mz;
355	unsigned long flags;
356
357	if (mem_cgroup_subsys.disabled)
358		return;
359
360	/*
361	 * We cannot lock_page_cgroup while holding zone's lru_lock,
362	 * because other holders of lock_page_cgroup can be interrupted
363	 * with an attempt to rotate_reclaimable_page.  But we cannot
364	 * safely get to page_cgroup without it, so just try_lock it:
365	 * mem_cgroup_isolate_pages allows for page left on wrong list.
366	 */
367	if (!try_lock_page_cgroup(page))
368		return;
369
370	pc = page_get_page_cgroup(page);
371	if (pc) {
372		mz = page_cgroup_zoneinfo(pc);
373		spin_lock_irqsave(&mz->lru_lock, flags);
374		__mem_cgroup_move_lists(pc, active);
375		spin_unlock_irqrestore(&mz->lru_lock, flags);
376	}
377	unlock_page_cgroup(page);
378}
379
380/*
381 * Calculate mapped_ratio under memory controller. This will be used in
382 * vmscan.c for deteremining we have to reclaim mapped pages.
383 */
384int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
385{
386	long total, rss;
387
388	/*
389	 * usage is recorded in bytes. But, here, we assume the number of
390	 * physical pages can be represented by "long" on any arch.
391	 */
392	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
393	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
394	return (int)((rss * 100L) / total);
395}
396
397/*
398 * This function is called from vmscan.c. In page reclaiming loop. balance
399 * between active and inactive list is calculated. For memory controller
400 * page reclaiming, we should use using mem_cgroup's imbalance rather than
401 * zone's global lru imbalance.
402 */
403long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
404{
405	unsigned long active, inactive;
406	/* active and inactive are the number of pages. 'long' is ok.*/
407	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
408	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
409	return (long) (active / (inactive + 1));
410}
411
412/*
413 * prev_priority control...this will be used in memory reclaim path.
414 */
415int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
416{
417	return mem->prev_priority;
418}
419
420void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
421{
422	if (priority < mem->prev_priority)
423		mem->prev_priority = priority;
424}
425
426void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
427{
428	mem->prev_priority = priority;
429}
430
431/*
432 * Calculate # of pages to be scanned in this priority/zone.
433 * See also vmscan.c
434 *
435 * priority starts from "DEF_PRIORITY" and decremented in each loop.
436 * (see include/linux/mmzone.h)
437 */
438
439long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
440				   struct zone *zone, int priority)
441{
442	long nr_active;
443	int nid = zone->zone_pgdat->node_id;
444	int zid = zone_idx(zone);
445	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
446
447	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
448	return (nr_active >> priority);
449}
450
451long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
452					struct zone *zone, int priority)
453{
454	long nr_inactive;
455	int nid = zone->zone_pgdat->node_id;
456	int zid = zone_idx(zone);
457	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
458
459	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
460	return (nr_inactive >> priority);
461}
462
463unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
464					struct list_head *dst,
465					unsigned long *scanned, int order,
466					int mode, struct zone *z,
467					struct mem_cgroup *mem_cont,
468					int active)
469{
470	unsigned long nr_taken = 0;
471	struct page *page;
472	unsigned long scan;
473	LIST_HEAD(pc_list);
474	struct list_head *src;
475	struct page_cgroup *pc, *tmp;
476	int nid = z->zone_pgdat->node_id;
477	int zid = zone_idx(z);
478	struct mem_cgroup_per_zone *mz;
479
480	BUG_ON(!mem_cont);
481	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
482	if (active)
483		src = &mz->active_list;
484	else
485		src = &mz->inactive_list;
486
487
488	spin_lock(&mz->lru_lock);
489	scan = 0;
490	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
491		if (scan >= nr_to_scan)
492			break;
493		page = pc->page;
494
495		if (unlikely(!PageLRU(page)))
496			continue;
497
498		if (PageActive(page) && !active) {
499			__mem_cgroup_move_lists(pc, true);
500			continue;
501		}
502		if (!PageActive(page) && active) {
503			__mem_cgroup_move_lists(pc, false);
504			continue;
505		}
506
507		scan++;
508		list_move(&pc->lru, &pc_list);
509
510		if (__isolate_lru_page(page, mode) == 0) {
511			list_move(&page->lru, dst);
512			nr_taken++;
513		}
514	}
515
516	list_splice(&pc_list, src);
517	spin_unlock(&mz->lru_lock);
518
519	*scanned = scan;
520	return nr_taken;
521}
522
523/*
524 * Charge the memory controller for page usage.
525 * Return
526 * 0 if the charge was successful
527 * < 0 if the cgroup is over its limit
528 */
529static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
530				gfp_t gfp_mask, enum charge_type ctype,
531				struct mem_cgroup *memcg)
532{
533	struct mem_cgroup *mem;
534	struct page_cgroup *pc;
535	unsigned long flags;
536	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
537	struct mem_cgroup_per_zone *mz;
538
539	pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask);
540	if (unlikely(pc == NULL))
541		goto err;
542
543	/*
544	 * We always charge the cgroup the mm_struct belongs to.
545	 * The mm_struct's mem_cgroup changes on task migration if the
546	 * thread group leader migrates. It's possible that mm is not
547	 * set, if so charge the init_mm (happens for pagecache usage).
548	 */
549	if (likely(!memcg)) {
550		rcu_read_lock();
551		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
552		/*
553		 * For every charge from the cgroup, increment reference count
554		 */
555		css_get(&mem->css);
556		rcu_read_unlock();
557	} else {
558		mem = memcg;
559		css_get(&memcg->css);
560	}
561
562	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
563		if (!(gfp_mask & __GFP_WAIT))
564			goto out;
565
566		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
567			continue;
568
569		/*
570		 * try_to_free_mem_cgroup_pages() might not give us a full
571		 * picture of reclaim. Some pages are reclaimed and might be
572		 * moved to swap cache or just unmapped from the cgroup.
573		 * Check the limit again to see if the reclaim reduced the
574		 * current usage of the cgroup before giving up
575		 */
576		if (res_counter_check_under_limit(&mem->res))
577			continue;
578
579		if (!nr_retries--) {
580			mem_cgroup_out_of_memory(mem, gfp_mask);
581			goto out;
582		}
583	}
584
585	pc->mem_cgroup = mem;
586	pc->page = page;
587	/*
588	 * If a page is accounted as a page cache, insert to inactive list.
589	 * If anon, insert to active list.
590	 */
591	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
592		pc->flags = PAGE_CGROUP_FLAG_CACHE;
593	else
594		pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
595
596	lock_page_cgroup(page);
597	if (unlikely(page_get_page_cgroup(page))) {
598		unlock_page_cgroup(page);
599		res_counter_uncharge(&mem->res, PAGE_SIZE);
600		css_put(&mem->css);
601		kmem_cache_free(page_cgroup_cache, pc);
602		goto done;
603	}
604	page_assign_page_cgroup(page, pc);
605
606	mz = page_cgroup_zoneinfo(pc);
607	spin_lock_irqsave(&mz->lru_lock, flags);
608	__mem_cgroup_add_list(mz, pc);
609	spin_unlock_irqrestore(&mz->lru_lock, flags);
610
611	unlock_page_cgroup(page);
612done:
613	return 0;
614out:
615	css_put(&mem->css);
616	kmem_cache_free(page_cgroup_cache, pc);
617err:
618	return -ENOMEM;
619}
620
621int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
622{
623	if (mem_cgroup_subsys.disabled)
624		return 0;
625
626	/*
627	 * If already mapped, we don't have to account.
628	 * If page cache, page->mapping has address_space.
629	 * But page->mapping may have out-of-use anon_vma pointer,
630	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
631	 * is NULL.
632  	 */
633	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
634		return 0;
635	if (unlikely(!mm))
636		mm = &init_mm;
637	return mem_cgroup_charge_common(page, mm, gfp_mask,
638				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
639}
640
641int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
642				gfp_t gfp_mask)
643{
644	if (mem_cgroup_subsys.disabled)
645		return 0;
646
647	/*
648	 * Corner case handling. This is called from add_to_page_cache()
649	 * in usual. But some FS (shmem) precharges this page before calling it
650	 * and call add_to_page_cache() with GFP_NOWAIT.
651	 *
652	 * For GFP_NOWAIT case, the page may be pre-charged before calling
653	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
654	 * charge twice. (It works but has to pay a bit larger cost.)
655	 */
656	if (!(gfp_mask & __GFP_WAIT)) {
657		struct page_cgroup *pc;
658
659		lock_page_cgroup(page);
660		pc = page_get_page_cgroup(page);
661		if (pc) {
662			VM_BUG_ON(pc->page != page);
663			VM_BUG_ON(!pc->mem_cgroup);
664			unlock_page_cgroup(page);
665			return 0;
666		}
667		unlock_page_cgroup(page);
668	}
669
670	if (unlikely(!mm))
671		mm = &init_mm;
672
673	return mem_cgroup_charge_common(page, mm, gfp_mask,
674				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
675}
676
677/*
678 * uncharge if !page_mapped(page)
679 */
680static void
681__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
682{
683	struct page_cgroup *pc;
684	struct mem_cgroup *mem;
685	struct mem_cgroup_per_zone *mz;
686	unsigned long flags;
687
688	if (mem_cgroup_subsys.disabled)
689		return;
690
691	/*
692	 * Check if our page_cgroup is valid
693	 */
694	lock_page_cgroup(page);
695	pc = page_get_page_cgroup(page);
696	if (unlikely(!pc))
697		goto unlock;
698
699	VM_BUG_ON(pc->page != page);
700
701	if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
702	    && ((pc->flags & PAGE_CGROUP_FLAG_CACHE)
703		|| page_mapped(page)))
704		goto unlock;
705
706	mz = page_cgroup_zoneinfo(pc);
707	spin_lock_irqsave(&mz->lru_lock, flags);
708	__mem_cgroup_remove_list(mz, pc);
709	spin_unlock_irqrestore(&mz->lru_lock, flags);
710
711	page_assign_page_cgroup(page, NULL);
712	unlock_page_cgroup(page);
713
714	mem = pc->mem_cgroup;
715	res_counter_uncharge(&mem->res, PAGE_SIZE);
716	css_put(&mem->css);
717
718	kmem_cache_free(page_cgroup_cache, pc);
719	return;
720unlock:
721	unlock_page_cgroup(page);
722}
723
724void mem_cgroup_uncharge_page(struct page *page)
725{
726	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
727}
728
729void mem_cgroup_uncharge_cache_page(struct page *page)
730{
731	VM_BUG_ON(page_mapped(page));
732	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
733}
734
735/*
736 * Before starting migration, account against new page.
737 */
738int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
739{
740	struct page_cgroup *pc;
741	struct mem_cgroup *mem = NULL;
742	enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
743	int ret = 0;
744
745	if (mem_cgroup_subsys.disabled)
746		return 0;
747
748	lock_page_cgroup(page);
749	pc = page_get_page_cgroup(page);
750	if (pc) {
751		mem = pc->mem_cgroup;
752		css_get(&mem->css);
753		if (pc->flags & PAGE_CGROUP_FLAG_CACHE)
754			ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
755	}
756	unlock_page_cgroup(page);
757	if (mem) {
758		ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
759			ctype, mem);
760		css_put(&mem->css);
761	}
762	return ret;
763}
764
765/* remove redundant charge if migration failed*/
766void mem_cgroup_end_migration(struct page *newpage)
767{
768	/*
769	 * At success, page->mapping is not NULL.
770	 * special rollback care is necessary when
771	 * 1. at migration failure. (newpage->mapping is cleared in this case)
772	 * 2. the newpage was moved but not remapped again because the task
773	 *    exits and the newpage is obsolete. In this case, the new page
774	 *    may be a swapcache. So, we just call mem_cgroup_uncharge_page()
775	 *    always for avoiding mess. The  page_cgroup will be removed if
776	 *    unnecessary. File cache pages is still on radix-tree. Don't
777	 *    care it.
778	 */
779	if (!newpage->mapping)
780		__mem_cgroup_uncharge_common(newpage,
781					 MEM_CGROUP_CHARGE_TYPE_FORCE);
782	else if (PageAnon(newpage))
783		mem_cgroup_uncharge_page(newpage);
784}
785
786/*
787 * A call to try to shrink memory usage under specified resource controller.
788 * This is typically used for page reclaiming for shmem for reducing side
789 * effect of page allocation from shmem, which is used by some mem_cgroup.
790 */
791int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
792{
793	struct mem_cgroup *mem;
794	int progress = 0;
795	int retry = MEM_CGROUP_RECLAIM_RETRIES;
796
797	if (mem_cgroup_subsys.disabled)
798		return 0;
799
800	rcu_read_lock();
801	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
802	css_get(&mem->css);
803	rcu_read_unlock();
804
805	do {
806		progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
807	} while (!progress && --retry);
808
809	css_put(&mem->css);
810	if (!retry)
811		return -ENOMEM;
812	return 0;
813}
814
815/*
816 * This routine traverse page_cgroup in given list and drop them all.
817 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
818 */
819#define FORCE_UNCHARGE_BATCH	(128)
820static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
821			    struct mem_cgroup_per_zone *mz,
822			    int active)
823{
824	struct page_cgroup *pc;
825	struct page *page;
826	int count = FORCE_UNCHARGE_BATCH;
827	unsigned long flags;
828	struct list_head *list;
829
830	if (active)
831		list = &mz->active_list;
832	else
833		list = &mz->inactive_list;
834
835	spin_lock_irqsave(&mz->lru_lock, flags);
836	while (!list_empty(list)) {
837		pc = list_entry(list->prev, struct page_cgroup, lru);
838		page = pc->page;
839		get_page(page);
840		spin_unlock_irqrestore(&mz->lru_lock, flags);
841		/*
842		 * Check if this page is on LRU. !LRU page can be found
843		 * if it's under page migration.
844		 */
845		if (PageLRU(page)) {
846			__mem_cgroup_uncharge_common(page,
847					MEM_CGROUP_CHARGE_TYPE_FORCE);
848			put_page(page);
849			if (--count <= 0) {
850				count = FORCE_UNCHARGE_BATCH;
851				cond_resched();
852			}
853		} else
854			cond_resched();
855		spin_lock_irqsave(&mz->lru_lock, flags);
856	}
857	spin_unlock_irqrestore(&mz->lru_lock, flags);
858}
859
860/*
861 * make mem_cgroup's charge to be 0 if there is no task.
862 * This enables deleting this mem_cgroup.
863 */
864static int mem_cgroup_force_empty(struct mem_cgroup *mem)
865{
866	int ret = -EBUSY;
867	int node, zid;
868
869	css_get(&mem->css);
870	/*
871	 * page reclaim code (kswapd etc..) will move pages between
872	 * active_list <-> inactive_list while we don't take a lock.
873	 * So, we have to do loop here until all lists are empty.
874	 */
875	while (mem->res.usage > 0) {
876		if (atomic_read(&mem->css.cgroup->count) > 0)
877			goto out;
878		for_each_node_state(node, N_POSSIBLE)
879			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
880				struct mem_cgroup_per_zone *mz;
881				mz = mem_cgroup_zoneinfo(mem, node, zid);
882				/* drop all page_cgroup in active_list */
883				mem_cgroup_force_empty_list(mem, mz, 1);
884				/* drop all page_cgroup in inactive_list */
885				mem_cgroup_force_empty_list(mem, mz, 0);
886			}
887	}
888	ret = 0;
889out:
890	css_put(&mem->css);
891	return ret;
892}
893
894static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
895{
896	return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
897				    cft->private);
898}
899
900static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
901			    const char *buffer)
902{
903	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
904				 cft->private, buffer,
905				 res_counter_memparse_write_strategy);
906}
907
908static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
909{
910	struct mem_cgroup *mem;
911
912	mem = mem_cgroup_from_cont(cont);
913	switch (event) {
914	case RES_MAX_USAGE:
915		res_counter_reset_max(&mem->res);
916		break;
917	case RES_FAILCNT:
918		res_counter_reset_failcnt(&mem->res);
919		break;
920	}
921	return 0;
922}
923
924static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
925{
926	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
927}
928
929static const struct mem_cgroup_stat_desc {
930	const char *msg;
931	u64 unit;
932} mem_cgroup_stat_desc[] = {
933	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
934	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
935	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
936	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
937};
938
939static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
940				 struct cgroup_map_cb *cb)
941{
942	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
943	struct mem_cgroup_stat *stat = &mem_cont->stat;
944	int i;
945
946	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
947		s64 val;
948
949		val = mem_cgroup_read_stat(stat, i);
950		val *= mem_cgroup_stat_desc[i].unit;
951		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
952	}
953	/* showing # of active pages */
954	{
955		unsigned long active, inactive;
956
957		inactive = mem_cgroup_get_all_zonestat(mem_cont,
958						MEM_CGROUP_ZSTAT_INACTIVE);
959		active = mem_cgroup_get_all_zonestat(mem_cont,
960						MEM_CGROUP_ZSTAT_ACTIVE);
961		cb->fill(cb, "active", (active) * PAGE_SIZE);
962		cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
963	}
964	return 0;
965}
966
967static struct cftype mem_cgroup_files[] = {
968	{
969		.name = "usage_in_bytes",
970		.private = RES_USAGE,
971		.read_u64 = mem_cgroup_read,
972	},
973	{
974		.name = "max_usage_in_bytes",
975		.private = RES_MAX_USAGE,
976		.trigger = mem_cgroup_reset,
977		.read_u64 = mem_cgroup_read,
978	},
979	{
980		.name = "limit_in_bytes",
981		.private = RES_LIMIT,
982		.write_string = mem_cgroup_write,
983		.read_u64 = mem_cgroup_read,
984	},
985	{
986		.name = "failcnt",
987		.private = RES_FAILCNT,
988		.trigger = mem_cgroup_reset,
989		.read_u64 = mem_cgroup_read,
990	},
991	{
992		.name = "force_empty",
993		.trigger = mem_force_empty_write,
994	},
995	{
996		.name = "stat",
997		.read_map = mem_control_stat_show,
998	},
999};
1000
1001static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1002{
1003	struct mem_cgroup_per_node *pn;
1004	struct mem_cgroup_per_zone *mz;
1005	int zone, tmp = node;
1006	/*
1007	 * This routine is called against possible nodes.
1008	 * But it's BUG to call kmalloc() against offline node.
1009	 *
1010	 * TODO: this routine can waste much memory for nodes which will
1011	 *       never be onlined. It's better to use memory hotplug callback
1012	 *       function.
1013	 */
1014	if (!node_state(node, N_NORMAL_MEMORY))
1015		tmp = -1;
1016	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
1017	if (!pn)
1018		return 1;
1019
1020	mem->info.nodeinfo[node] = pn;
1021	memset(pn, 0, sizeof(*pn));
1022
1023	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1024		mz = &pn->zoneinfo[zone];
1025		INIT_LIST_HEAD(&mz->active_list);
1026		INIT_LIST_HEAD(&mz->inactive_list);
1027		spin_lock_init(&mz->lru_lock);
1028	}
1029	return 0;
1030}
1031
1032static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1033{
1034	kfree(mem->info.nodeinfo[node]);
1035}
1036
1037static struct mem_cgroup *mem_cgroup_alloc(void)
1038{
1039	struct mem_cgroup *mem;
1040
1041	if (sizeof(*mem) < PAGE_SIZE)
1042		mem = kmalloc(sizeof(*mem), GFP_KERNEL);
1043	else
1044		mem = vmalloc(sizeof(*mem));
1045
1046	if (mem)
1047		memset(mem, 0, sizeof(*mem));
1048	return mem;
1049}
1050
1051static void mem_cgroup_free(struct mem_cgroup *mem)
1052{
1053	if (sizeof(*mem) < PAGE_SIZE)
1054		kfree(mem);
1055	else
1056		vfree(mem);
1057}
1058
1059
1060static struct cgroup_subsys_state *
1061mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1062{
1063	struct mem_cgroup *mem;
1064	int node;
1065
1066	if (unlikely((cont->parent) == NULL)) {
1067		mem = &init_mem_cgroup;
1068		page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1069	} else {
1070		mem = mem_cgroup_alloc();
1071		if (!mem)
1072			return ERR_PTR(-ENOMEM);
1073	}
1074
1075	res_counter_init(&mem->res);
1076
1077	for_each_node_state(node, N_POSSIBLE)
1078		if (alloc_mem_cgroup_per_zone_info(mem, node))
1079			goto free_out;
1080
1081	return &mem->css;
1082free_out:
1083	for_each_node_state(node, N_POSSIBLE)
1084		free_mem_cgroup_per_zone_info(mem, node);
1085	if (cont->parent != NULL)
1086		mem_cgroup_free(mem);
1087	return ERR_PTR(-ENOMEM);
1088}
1089
1090static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1091					struct cgroup *cont)
1092{
1093	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1094	mem_cgroup_force_empty(mem);
1095}
1096
1097static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1098				struct cgroup *cont)
1099{
1100	int node;
1101	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1102
1103	for_each_node_state(node, N_POSSIBLE)
1104		free_mem_cgroup_per_zone_info(mem, node);
1105
1106	mem_cgroup_free(mem_cgroup_from_cont(cont));
1107}
1108
1109static int mem_cgroup_populate(struct cgroup_subsys *ss,
1110				struct cgroup *cont)
1111{
1112	return cgroup_add_files(cont, ss, mem_cgroup_files,
1113					ARRAY_SIZE(mem_cgroup_files));
1114}
1115
1116static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1117				struct cgroup *cont,
1118				struct cgroup *old_cont,
1119				struct task_struct *p)
1120{
1121	struct mm_struct *mm;
1122	struct mem_cgroup *mem, *old_mem;
1123
1124	mm = get_task_mm(p);
1125	if (mm == NULL)
1126		return;
1127
1128	mem = mem_cgroup_from_cont(cont);
1129	old_mem = mem_cgroup_from_cont(old_cont);
1130
1131	if (mem == old_mem)
1132		goto out;
1133
1134	/*
1135	 * Only thread group leaders are allowed to migrate, the mm_struct is
1136	 * in effect owned by the leader
1137	 */
1138	if (!thread_group_leader(p))
1139		goto out;
1140
1141out:
1142	mmput(mm);
1143}
1144
1145struct cgroup_subsys mem_cgroup_subsys = {
1146	.name = "memory",
1147	.subsys_id = mem_cgroup_subsys_id,
1148	.create = mem_cgroup_create,
1149	.pre_destroy = mem_cgroup_pre_destroy,
1150	.destroy = mem_cgroup_destroy,
1151	.populate = mem_cgroup_populate,
1152	.attach = mem_cgroup_move_task,
1153	.early_init = 0,
1154};
1155