memcontrol.c revision de077d222d5ca6108cab119a09593344c12100ab
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/export.h>
37#include <linux/mutex.h>
38#include <linux/rbtree.h>
39#include <linux/slab.h>
40#include <linux/swap.h>
41#include <linux/swapops.h>
42#include <linux/spinlock.h>
43#include <linux/eventfd.h>
44#include <linux/sort.h>
45#include <linux/fs.h>
46#include <linux/seq_file.h>
47#include <linux/vmalloc.h>
48#include <linux/mm_inline.h>
49#include <linux/page_cgroup.h>
50#include <linux/cpu.h>
51#include <linux/oom.h>
52#include "internal.h"
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
55
56#include <asm/uaccess.h>
57
58#include <trace/events/vmscan.h>
59
60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61#define MEM_CGROUP_RECLAIM_RETRIES	5
62struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66int do_swap_account __read_mostly;
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
75#else
76#define do_swap_account		(0)
77#endif
78
79
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84	/*
85	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86	 */
87	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93	MEM_CGROUP_STAT_NSTATS,
94};
95
96enum mem_cgroup_events_index {
97	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
98	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
101	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102	MEM_CGROUP_EVENTS_NSTATS,
103};
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111	MEM_CGROUP_TARGET_THRESH,
112	MEM_CGROUP_TARGET_SOFTLIMIT,
113	MEM_CGROUP_TARGET_NUMAINFO,
114	MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
118#define NUMAINFO_EVENTS_TARGET	(1024)
119
120struct mem_cgroup_stat_cpu {
121	long count[MEM_CGROUP_STAT_NSTATS];
122	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123	unsigned long targets[MEM_CGROUP_NTARGETS];
124};
125
126struct mem_cgroup_reclaim_iter {
127	/* css_id of the last scanned hierarchy member */
128	int position;
129	/* scan generation, increased every round-trip */
130	unsigned int generation;
131};
132
133/*
134 * per-zone information in memory controller.
135 */
136struct mem_cgroup_per_zone {
137	struct lruvec		lruvec;
138	unsigned long		count[NR_LRU_LISTS];
139
140	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
142	struct zone_reclaim_stat reclaim_stat;
143	struct rb_node		tree_node;	/* RB tree node */
144	unsigned long long	usage_in_excess;/* Set to the value by which */
145						/* the soft limit is exceeded*/
146	bool			on_tree;
147	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
148						/* use container_of	   */
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167	struct rb_root rb_root;
168	spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
181struct mem_cgroup_threshold {
182	struct eventfd_ctx *eventfd;
183	u64 threshold;
184};
185
186/* For threshold */
187struct mem_cgroup_threshold_ary {
188	/* An array index points to threshold just below usage. */
189	int current_threshold;
190	/* Size of entries[] */
191	unsigned int size;
192	/* Array of thresholds */
193	struct mem_cgroup_threshold entries[0];
194};
195
196struct mem_cgroup_thresholds {
197	/* Primary thresholds array */
198	struct mem_cgroup_threshold_ary *primary;
199	/*
200	 * Spare threshold array.
201	 * This is needed to make mem_cgroup_unregister_event() "never fail".
202	 * It must be able to store at least primary->size - 1 entries.
203	 */
204	struct mem_cgroup_threshold_ary *spare;
205};
206
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209	struct list_head list;
210	struct eventfd_ctx *eventfd;
211};
212
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
226 */
227struct mem_cgroup {
228	struct cgroup_subsys_state css;
229	/*
230	 * the counter to account for memory usage
231	 */
232	struct res_counter res;
233	/*
234	 * the counter to account for mem+swap usage.
235	 */
236	struct res_counter memsw;
237	/*
238	 * Per cgroup active and inactive list, similar to the
239	 * per zone LRU lists.
240	 */
241	struct mem_cgroup_lru_info info;
242	int last_scanned_node;
243#if MAX_NUMNODES > 1
244	nodemask_t	scan_nodes;
245	atomic_t	numainfo_events;
246	atomic_t	numainfo_updating;
247#endif
248	/*
249	 * Should the accounting and control be hierarchical, per subtree?
250	 */
251	bool use_hierarchy;
252
253	bool		oom_lock;
254	atomic_t	under_oom;
255
256	atomic_t	refcnt;
257
258	int	swappiness;
259	/* OOM-Killer disable */
260	int		oom_kill_disable;
261
262	/* set when res.limit == memsw.limit */
263	bool		memsw_is_minimum;
264
265	/* protect arrays of thresholds */
266	struct mutex thresholds_lock;
267
268	/* thresholds for memory usage. RCU-protected */
269	struct mem_cgroup_thresholds thresholds;
270
271	/* thresholds for mem+swap usage. RCU-protected */
272	struct mem_cgroup_thresholds memsw_thresholds;
273
274	/* For oom notifier event fd */
275	struct list_head oom_notify;
276
277	/*
278	 * Should we move charges of a task when a task is moved into this
279	 * mem_cgroup ? And what type of charges should we move ?
280	 */
281	unsigned long 	move_charge_at_immigrate;
282	/*
283	 * percpu counter.
284	 */
285	struct mem_cgroup_stat_cpu *stat;
286	/*
287	 * used when a cpu is offlined or other synchronizations
288	 * See mem_cgroup_read_stat().
289	 */
290	struct mem_cgroup_stat_cpu nocpu_base;
291	spinlock_t pcp_counter_lock;
292
293#ifdef CONFIG_INET
294	struct tcp_memcontrol tcp_mem;
295#endif
296};
297
298/* Stuffs for move charges at task migration. */
299/*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303enum move_type {
304	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306	NR_MOVE_TYPE,
307};
308
309/* "mc" and its members are protected by cgroup_mutex */
310static struct move_charge_struct {
311	spinlock_t	  lock; /* for from, to */
312	struct mem_cgroup *from;
313	struct mem_cgroup *to;
314	unsigned long precharge;
315	unsigned long moved_charge;
316	unsigned long moved_swap;
317	struct task_struct *moving_task;	/* a task moving charges */
318	wait_queue_head_t waitq;		/* a waitq for other context */
319} mc = {
320	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322};
323
324static bool move_anon(void)
325{
326	return test_bit(MOVE_CHARGE_TYPE_ANON,
327					&mc.to->move_charge_at_immigrate);
328}
329
330static bool move_file(void)
331{
332	return test_bit(MOVE_CHARGE_TYPE_FILE,
333					&mc.to->move_charge_at_immigrate);
334}
335
336/*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
341#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
342
343enum charge_type {
344	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
348	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
349	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350	NR_CHARGE_TYPE,
351};
352
353/* for encoding cft->private value on file */
354#define _MEM			(0)
355#define _MEMSWAP		(1)
356#define _OOM_TYPE		(2)
357#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
358#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
359#define MEMFILE_ATTR(val)	((val) & 0xffff)
360/* Used for OOM nofiier */
361#define OOM_CONTROL		(0)
362
363/*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
367#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
369#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
371static void mem_cgroup_get(struct mem_cgroup *memcg);
372static void mem_cgroup_put(struct mem_cgroup *memcg);
373
374/* Writing them here to avoid exposing memcg's inner layout */
375#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376#ifdef CONFIG_INET
377#include <net/sock.h>
378#include <net/ip.h>
379
380static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381void sock_update_memcg(struct sock *sk)
382{
383	if (static_branch(&memcg_socket_limit_enabled)) {
384		struct mem_cgroup *memcg;
385
386		BUG_ON(!sk->sk_prot->proto_cgroup);
387
388		/* Socket cloning can throw us here with sk_cgrp already
389		 * filled. It won't however, necessarily happen from
390		 * process context. So the test for root memcg given
391		 * the current task's memcg won't help us in this case.
392		 *
393		 * Respecting the original socket's memcg is a better
394		 * decision in this case.
395		 */
396		if (sk->sk_cgrp) {
397			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398			mem_cgroup_get(sk->sk_cgrp->memcg);
399			return;
400		}
401
402		rcu_read_lock();
403		memcg = mem_cgroup_from_task(current);
404		if (!mem_cgroup_is_root(memcg)) {
405			mem_cgroup_get(memcg);
406			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407		}
408		rcu_read_unlock();
409	}
410}
411EXPORT_SYMBOL(sock_update_memcg);
412
413void sock_release_memcg(struct sock *sk)
414{
415	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416		struct mem_cgroup *memcg;
417		WARN_ON(!sk->sk_cgrp->memcg);
418		memcg = sk->sk_cgrp->memcg;
419		mem_cgroup_put(memcg);
420	}
421}
422
423struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424{
425	if (!memcg || mem_cgroup_is_root(memcg))
426		return NULL;
427
428	return &memcg->tcp_mem.cg_proto;
429}
430EXPORT_SYMBOL(tcp_proto_cgroup);
431#endif /* CONFIG_INET */
432#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
434static void drain_all_stock_async(struct mem_cgroup *memcg);
435
436static struct mem_cgroup_per_zone *
437mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438{
439	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440}
441
442struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443{
444	return &memcg->css;
445}
446
447static struct mem_cgroup_per_zone *
448page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449{
450	int nid = page_to_nid(page);
451	int zid = page_zonenum(page);
452
453	return mem_cgroup_zoneinfo(memcg, nid, zid);
454}
455
456static struct mem_cgroup_tree_per_zone *
457soft_limit_tree_node_zone(int nid, int zid)
458{
459	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460}
461
462static struct mem_cgroup_tree_per_zone *
463soft_limit_tree_from_page(struct page *page)
464{
465	int nid = page_to_nid(page);
466	int zid = page_zonenum(page);
467
468	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469}
470
471static void
472__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473				struct mem_cgroup_per_zone *mz,
474				struct mem_cgroup_tree_per_zone *mctz,
475				unsigned long long new_usage_in_excess)
476{
477	struct rb_node **p = &mctz->rb_root.rb_node;
478	struct rb_node *parent = NULL;
479	struct mem_cgroup_per_zone *mz_node;
480
481	if (mz->on_tree)
482		return;
483
484	mz->usage_in_excess = new_usage_in_excess;
485	if (!mz->usage_in_excess)
486		return;
487	while (*p) {
488		parent = *p;
489		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490					tree_node);
491		if (mz->usage_in_excess < mz_node->usage_in_excess)
492			p = &(*p)->rb_left;
493		/*
494		 * We can't avoid mem cgroups that are over their soft
495		 * limit by the same amount
496		 */
497		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498			p = &(*p)->rb_right;
499	}
500	rb_link_node(&mz->tree_node, parent, p);
501	rb_insert_color(&mz->tree_node, &mctz->rb_root);
502	mz->on_tree = true;
503}
504
505static void
506__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507				struct mem_cgroup_per_zone *mz,
508				struct mem_cgroup_tree_per_zone *mctz)
509{
510	if (!mz->on_tree)
511		return;
512	rb_erase(&mz->tree_node, &mctz->rb_root);
513	mz->on_tree = false;
514}
515
516static void
517mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518				struct mem_cgroup_per_zone *mz,
519				struct mem_cgroup_tree_per_zone *mctz)
520{
521	spin_lock(&mctz->lock);
522	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523	spin_unlock(&mctz->lock);
524}
525
526
527static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528{
529	unsigned long long excess;
530	struct mem_cgroup_per_zone *mz;
531	struct mem_cgroup_tree_per_zone *mctz;
532	int nid = page_to_nid(page);
533	int zid = page_zonenum(page);
534	mctz = soft_limit_tree_from_page(page);
535
536	/*
537	 * Necessary to update all ancestors when hierarchy is used.
538	 * because their event counter is not touched.
539	 */
540	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542		excess = res_counter_soft_limit_excess(&memcg->res);
543		/*
544		 * We have to update the tree if mz is on RB-tree or
545		 * mem is over its softlimit.
546		 */
547		if (excess || mz->on_tree) {
548			spin_lock(&mctz->lock);
549			/* if on-tree, remove it */
550			if (mz->on_tree)
551				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552			/*
553			 * Insert again. mz->usage_in_excess will be updated.
554			 * If excess is 0, no tree ops.
555			 */
556			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557			spin_unlock(&mctz->lock);
558		}
559	}
560}
561
562static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563{
564	int node, zone;
565	struct mem_cgroup_per_zone *mz;
566	struct mem_cgroup_tree_per_zone *mctz;
567
568	for_each_node_state(node, N_POSSIBLE) {
569		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571			mctz = soft_limit_tree_node_zone(node, zone);
572			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573		}
574	}
575}
576
577static struct mem_cgroup_per_zone *
578__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579{
580	struct rb_node *rightmost = NULL;
581	struct mem_cgroup_per_zone *mz;
582
583retry:
584	mz = NULL;
585	rightmost = rb_last(&mctz->rb_root);
586	if (!rightmost)
587		goto done;		/* Nothing to reclaim from */
588
589	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590	/*
591	 * Remove the node now but someone else can add it back,
592	 * we will to add it back at the end of reclaim to its correct
593	 * position in the tree.
594	 */
595	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597		!css_tryget(&mz->mem->css))
598		goto retry;
599done:
600	return mz;
601}
602
603static struct mem_cgroup_per_zone *
604mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605{
606	struct mem_cgroup_per_zone *mz;
607
608	spin_lock(&mctz->lock);
609	mz = __mem_cgroup_largest_soft_limit_node(mctz);
610	spin_unlock(&mctz->lock);
611	return mz;
612}
613
614/*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
633static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634				 enum mem_cgroup_stat_index idx)
635{
636	long val = 0;
637	int cpu;
638
639	get_online_cpus();
640	for_each_online_cpu(cpu)
641		val += per_cpu(memcg->stat->count[idx], cpu);
642#ifdef CONFIG_HOTPLUG_CPU
643	spin_lock(&memcg->pcp_counter_lock);
644	val += memcg->nocpu_base.count[idx];
645	spin_unlock(&memcg->pcp_counter_lock);
646#endif
647	put_online_cpus();
648	return val;
649}
650
651static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652					 bool charge)
653{
654	int val = (charge) ? 1 : -1;
655	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656}
657
658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659					    enum mem_cgroup_events_index idx)
660{
661	unsigned long val = 0;
662	int cpu;
663
664	for_each_online_cpu(cpu)
665		val += per_cpu(memcg->stat->events[idx], cpu);
666#ifdef CONFIG_HOTPLUG_CPU
667	spin_lock(&memcg->pcp_counter_lock);
668	val += memcg->nocpu_base.events[idx];
669	spin_unlock(&memcg->pcp_counter_lock);
670#endif
671	return val;
672}
673
674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675					 bool file, int nr_pages)
676{
677	preempt_disable();
678
679	if (file)
680		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681				nr_pages);
682	else
683		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684				nr_pages);
685
686	/* pagein of a big page is an event. So, ignore page size */
687	if (nr_pages > 0)
688		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689	else {
690		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691		nr_pages = -nr_pages; /* for event */
692	}
693
694	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695
696	preempt_enable();
697}
698
699unsigned long
700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701			unsigned int lru_mask)
702{
703	struct mem_cgroup_per_zone *mz;
704	enum lru_list l;
705	unsigned long ret = 0;
706
707	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708
709	for_each_lru(l) {
710		if (BIT(l) & lru_mask)
711			ret += MEM_CGROUP_ZSTAT(mz, l);
712	}
713	return ret;
714}
715
716static unsigned long
717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718			int nid, unsigned int lru_mask)
719{
720	u64 total = 0;
721	int zid;
722
723	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724		total += mem_cgroup_zone_nr_lru_pages(memcg,
725						nid, zid, lru_mask);
726
727	return total;
728}
729
730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731			unsigned int lru_mask)
732{
733	int nid;
734	u64 total = 0;
735
736	for_each_node_state(nid, N_HIGH_MEMORY)
737		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738	return total;
739}
740
741static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742				       enum mem_cgroup_events_target target)
743{
744	unsigned long val, next;
745
746	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747	next = __this_cpu_read(memcg->stat->targets[target]);
748	/* from time_after() in jiffies.h */
749	if ((long)next - (long)val < 0) {
750		switch (target) {
751		case MEM_CGROUP_TARGET_THRESH:
752			next = val + THRESHOLDS_EVENTS_TARGET;
753			break;
754		case MEM_CGROUP_TARGET_SOFTLIMIT:
755			next = val + SOFTLIMIT_EVENTS_TARGET;
756			break;
757		case MEM_CGROUP_TARGET_NUMAINFO:
758			next = val + NUMAINFO_EVENTS_TARGET;
759			break;
760		default:
761			break;
762		}
763		__this_cpu_write(memcg->stat->targets[target], next);
764		return true;
765	}
766	return false;
767}
768
769/*
770 * Check events in order.
771 *
772 */
773static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774{
775	preempt_disable();
776	/* threshold event is triggered in finer grain than soft limit */
777	if (unlikely(mem_cgroup_event_ratelimit(memcg,
778						MEM_CGROUP_TARGET_THRESH))) {
779		bool do_softlimit, do_numainfo;
780
781		do_softlimit = mem_cgroup_event_ratelimit(memcg,
782						MEM_CGROUP_TARGET_SOFTLIMIT);
783#if MAX_NUMNODES > 1
784		do_numainfo = mem_cgroup_event_ratelimit(memcg,
785						MEM_CGROUP_TARGET_NUMAINFO);
786#endif
787		preempt_enable();
788
789		mem_cgroup_threshold(memcg);
790		if (unlikely(do_softlimit))
791			mem_cgroup_update_tree(memcg, page);
792#if MAX_NUMNODES > 1
793		if (unlikely(do_numainfo))
794			atomic_inc(&memcg->numainfo_events);
795#endif
796	} else
797		preempt_enable();
798}
799
800struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
801{
802	return container_of(cgroup_subsys_state(cont,
803				mem_cgroup_subsys_id), struct mem_cgroup,
804				css);
805}
806
807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808{
809	/*
810	 * mm_update_next_owner() may clear mm->owner to NULL
811	 * if it races with swapoff, page migration, etc.
812	 * So this can be called with p == NULL.
813	 */
814	if (unlikely(!p))
815		return NULL;
816
817	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818				struct mem_cgroup, css);
819}
820
821struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822{
823	struct mem_cgroup *memcg = NULL;
824
825	if (!mm)
826		return NULL;
827	/*
828	 * Because we have no locks, mm->owner's may be being moved to other
829	 * cgroup. We use css_tryget() here even if this looks
830	 * pessimistic (rather than adding locks here).
831	 */
832	rcu_read_lock();
833	do {
834		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835		if (unlikely(!memcg))
836			break;
837	} while (!css_tryget(&memcg->css));
838	rcu_read_unlock();
839	return memcg;
840}
841
842/**
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 *
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
850 *
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
854 *
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
858 */
859struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860				   struct mem_cgroup *prev,
861				   struct mem_cgroup_reclaim_cookie *reclaim)
862{
863	struct mem_cgroup *memcg = NULL;
864	int id = 0;
865
866	if (mem_cgroup_disabled())
867		return NULL;
868
869	if (!root)
870		root = root_mem_cgroup;
871
872	if (prev && !reclaim)
873		id = css_id(&prev->css);
874
875	if (prev && prev != root)
876		css_put(&prev->css);
877
878	if (!root->use_hierarchy && root != root_mem_cgroup) {
879		if (prev)
880			return NULL;
881		return root;
882	}
883
884	while (!memcg) {
885		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886		struct cgroup_subsys_state *css;
887
888		if (reclaim) {
889			int nid = zone_to_nid(reclaim->zone);
890			int zid = zone_idx(reclaim->zone);
891			struct mem_cgroup_per_zone *mz;
892
893			mz = mem_cgroup_zoneinfo(root, nid, zid);
894			iter = &mz->reclaim_iter[reclaim->priority];
895			if (prev && reclaim->generation != iter->generation)
896				return NULL;
897			id = iter->position;
898		}
899
900		rcu_read_lock();
901		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902		if (css) {
903			if (css == &root->css || css_tryget(css))
904				memcg = container_of(css,
905						     struct mem_cgroup, css);
906		} else
907			id = 0;
908		rcu_read_unlock();
909
910		if (reclaim) {
911			iter->position = id;
912			if (!css)
913				iter->generation++;
914			else if (!prev && memcg)
915				reclaim->generation = iter->generation;
916		}
917
918		if (prev && !css)
919			return NULL;
920	}
921	return memcg;
922}
923
924/**
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928 */
929void mem_cgroup_iter_break(struct mem_cgroup *root,
930			   struct mem_cgroup *prev)
931{
932	if (!root)
933		root = root_mem_cgroup;
934	if (prev && prev != root)
935		css_put(&prev->css);
936}
937
938/*
939 * Iteration constructs for visiting all cgroups (under a tree).  If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943#define for_each_mem_cgroup_tree(iter, root)		\
944	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945	     iter != NULL;				\
946	     iter = mem_cgroup_iter(root, iter, NULL))
947
948#define for_each_mem_cgroup(iter)			\
949	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950	     iter != NULL;				\
951	     iter = mem_cgroup_iter(NULL, iter, NULL))
952
953static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954{
955	return (memcg == root_mem_cgroup);
956}
957
958void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959{
960	struct mem_cgroup *memcg;
961
962	if (!mm)
963		return;
964
965	rcu_read_lock();
966	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967	if (unlikely(!memcg))
968		goto out;
969
970	switch (idx) {
971	case PGFAULT:
972		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973		break;
974	case PGMAJFAULT:
975		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976		break;
977	default:
978		BUG();
979	}
980out:
981	rcu_read_unlock();
982}
983EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
985/**
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
989 *
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem.  This can be the global zone lruvec, if the memory controller
992 * is disabled.
993 */
994struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995				      struct mem_cgroup *memcg)
996{
997	struct mem_cgroup_per_zone *mz;
998
999	if (mem_cgroup_disabled())
1000		return &zone->lruvec;
1001
1002	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003	return &mz->lruvec;
1004}
1005
1006/*
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1010 *
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1018 */
1019
1020/**
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1025 *
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1028 *
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1031 */
1032struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033				       enum lru_list lru)
1034{
1035	struct mem_cgroup_per_zone *mz;
1036	struct mem_cgroup *memcg;
1037	struct page_cgroup *pc;
1038
1039	if (mem_cgroup_disabled())
1040		return &zone->lruvec;
1041
1042	pc = lookup_page_cgroup(page);
1043	VM_BUG_ON(PageCgroupAcctLRU(pc));
1044	/*
1045	 * putback:				charge:
1046	 * SetPageLRU				SetPageCgroupUsed
1047	 * smp_mb				smp_mb
1048	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1049	 *
1050	 * Ensure that one of the two sides adds the page to the memcg
1051	 * LRU during a race.
1052	 */
1053	smp_mb();
1054	/*
1055	 * If the page is uncharged, it may be freed soon, but it
1056	 * could also be swap cache (readahead, swapoff) that needs to
1057	 * be reclaimable in the future.  root_mem_cgroup will babysit
1058	 * it for the time being.
1059	 */
1060	if (PageCgroupUsed(pc)) {
1061		/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1062		smp_rmb();
1063		memcg = pc->mem_cgroup;
1064		SetPageCgroupAcctLRU(pc);
1065	} else
1066		memcg = root_mem_cgroup;
1067	mz = page_cgroup_zoneinfo(memcg, page);
1068	/* compound_order() is stabilized through lru_lock */
1069	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1070	return &mz->lruvec;
1071}
1072
1073/**
1074 * mem_cgroup_lru_del_list - account for removing an lru page
1075 * @page: the page
1076 * @lru: target lru
1077 *
1078 * This function accounts for @page being removed from @lru.
1079 *
1080 * The callsite is then responsible for physically unlinking
1081 * @page->lru.
1082 */
1083void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1084{
1085	struct mem_cgroup_per_zone *mz;
1086	struct mem_cgroup *memcg;
1087	struct page_cgroup *pc;
1088
1089	if (mem_cgroup_disabled())
1090		return;
1091
1092	pc = lookup_page_cgroup(page);
1093	/*
1094	 * root_mem_cgroup babysits uncharged LRU pages, but
1095	 * PageCgroupUsed is cleared when the page is about to get
1096	 * freed.  PageCgroupAcctLRU remembers whether the
1097	 * LRU-accounting happened against pc->mem_cgroup or
1098	 * root_mem_cgroup.
1099	 */
1100	if (TestClearPageCgroupAcctLRU(pc)) {
1101		VM_BUG_ON(!pc->mem_cgroup);
1102		memcg = pc->mem_cgroup;
1103	} else
1104		memcg = root_mem_cgroup;
1105	mz = page_cgroup_zoneinfo(memcg, page);
1106	/* huge page split is done under lru_lock. so, we have no races. */
1107	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1108}
1109
1110void mem_cgroup_lru_del(struct page *page)
1111{
1112	mem_cgroup_lru_del_list(page, page_lru(page));
1113}
1114
1115/**
1116 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1117 * @zone: zone of the page
1118 * @page: the page
1119 * @from: current lru
1120 * @to: target lru
1121 *
1122 * This function accounts for @page being moved between the lrus @from
1123 * and @to, and returns the lruvec for the given @zone and the memcg
1124 * @page is charged to.
1125 *
1126 * The callsite is then responsible for physically relinking
1127 * @page->lru to the returned lruvec->lists[@to].
1128 */
1129struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1130					 struct page *page,
1131					 enum lru_list from,
1132					 enum lru_list to)
1133{
1134	/* XXX: Optimize this, especially for @from == @to */
1135	mem_cgroup_lru_del_list(page, from);
1136	return mem_cgroup_lru_add_list(zone, page, to);
1137}
1138
1139/*
1140 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1141 * while it's linked to lru because the page may be reused after it's fully
1142 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1143 * It's done under lock_page and expected that zone->lru_lock isnever held.
1144 */
1145static void mem_cgroup_lru_del_before_commit(struct page *page)
1146{
1147	enum lru_list lru;
1148	unsigned long flags;
1149	struct zone *zone = page_zone(page);
1150	struct page_cgroup *pc = lookup_page_cgroup(page);
1151
1152	/*
1153	 * Doing this check without taking ->lru_lock seems wrong but this
1154	 * is safe. Because if page_cgroup's USED bit is unset, the page
1155	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1156	 * set, the commit after this will fail, anyway.
1157	 * This all charge/uncharge is done under some mutual execustion.
1158	 * So, we don't need to taking care of changes in USED bit.
1159	 */
1160	if (likely(!PageLRU(page)))
1161		return;
1162
1163	spin_lock_irqsave(&zone->lru_lock, flags);
1164	lru = page_lru(page);
1165	/*
1166	 * The uncharged page could still be registered to the LRU of
1167	 * the stale pc->mem_cgroup.
1168	 *
1169	 * As pc->mem_cgroup is about to get overwritten, the old LRU
1170	 * accounting needs to be taken care of.  Let root_mem_cgroup
1171	 * babysit the page until the new memcg is responsible for it.
1172	 *
1173	 * The PCG_USED bit is guarded by lock_page() as the page is
1174	 * swapcache/pagecache.
1175	 */
1176	if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
1177		del_page_from_lru_list(zone, page, lru);
1178		add_page_to_lru_list(zone, page, lru);
1179	}
1180	spin_unlock_irqrestore(&zone->lru_lock, flags);
1181}
1182
1183static void mem_cgroup_lru_add_after_commit(struct page *page)
1184{
1185	enum lru_list lru;
1186	unsigned long flags;
1187	struct zone *zone = page_zone(page);
1188	struct page_cgroup *pc = lookup_page_cgroup(page);
1189	/*
1190	 * putback:				charge:
1191	 * SetPageLRU				SetPageCgroupUsed
1192	 * smp_mb				smp_mb
1193	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
1194	 *
1195	 * Ensure that one of the two sides adds the page to the memcg
1196	 * LRU during a race.
1197	 */
1198	smp_mb();
1199	/* taking care of that the page is added to LRU while we commit it */
1200	if (likely(!PageLRU(page)))
1201		return;
1202	spin_lock_irqsave(&zone->lru_lock, flags);
1203	lru = page_lru(page);
1204	/*
1205	 * If the page is not on the LRU, someone will soon put it
1206	 * there.  If it is, and also already accounted for on the
1207	 * memcg-side, it must be on the right lruvec as setting
1208	 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
1209	 * Otherwise, root_mem_cgroup has been babysitting the page
1210	 * during the charge.  Move it to the new memcg now.
1211	 */
1212	if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
1213		del_page_from_lru_list(zone, page, lru);
1214		add_page_to_lru_list(zone, page, lru);
1215	}
1216	spin_unlock_irqrestore(&zone->lru_lock, flags);
1217}
1218
1219/*
1220 * Checks whether given mem is same or in the root_mem_cgroup's
1221 * hierarchy subtree
1222 */
1223static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1224		struct mem_cgroup *memcg)
1225{
1226	if (root_memcg != memcg) {
1227		return (root_memcg->use_hierarchy &&
1228			css_is_ancestor(&memcg->css, &root_memcg->css));
1229	}
1230
1231	return true;
1232}
1233
1234int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1235{
1236	int ret;
1237	struct mem_cgroup *curr = NULL;
1238	struct task_struct *p;
1239
1240	p = find_lock_task_mm(task);
1241	if (p) {
1242		curr = try_get_mem_cgroup_from_mm(p->mm);
1243		task_unlock(p);
1244	} else {
1245		/*
1246		 * All threads may have already detached their mm's, but the oom
1247		 * killer still needs to detect if they have already been oom
1248		 * killed to prevent needlessly killing additional tasks.
1249		 */
1250		task_lock(task);
1251		curr = mem_cgroup_from_task(task);
1252		if (curr)
1253			css_get(&curr->css);
1254		task_unlock(task);
1255	}
1256	if (!curr)
1257		return 0;
1258	/*
1259	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1260	 * use_hierarchy of "curr" here make this function true if hierarchy is
1261	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1262	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1263	 */
1264	ret = mem_cgroup_same_or_subtree(memcg, curr);
1265	css_put(&curr->css);
1266	return ret;
1267}
1268
1269int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1270{
1271	unsigned long inactive_ratio;
1272	int nid = zone_to_nid(zone);
1273	int zid = zone_idx(zone);
1274	unsigned long inactive;
1275	unsigned long active;
1276	unsigned long gb;
1277
1278	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1279						BIT(LRU_INACTIVE_ANON));
1280	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1281					      BIT(LRU_ACTIVE_ANON));
1282
1283	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1284	if (gb)
1285		inactive_ratio = int_sqrt(10 * gb);
1286	else
1287		inactive_ratio = 1;
1288
1289	return inactive * inactive_ratio < active;
1290}
1291
1292int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1293{
1294	unsigned long active;
1295	unsigned long inactive;
1296	int zid = zone_idx(zone);
1297	int nid = zone_to_nid(zone);
1298
1299	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1300						BIT(LRU_INACTIVE_FILE));
1301	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1302					      BIT(LRU_ACTIVE_FILE));
1303
1304	return (active > inactive);
1305}
1306
1307struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1308						      struct zone *zone)
1309{
1310	int nid = zone_to_nid(zone);
1311	int zid = zone_idx(zone);
1312	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1313
1314	return &mz->reclaim_stat;
1315}
1316
1317struct zone_reclaim_stat *
1318mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1319{
1320	struct page_cgroup *pc;
1321	struct mem_cgroup_per_zone *mz;
1322
1323	if (mem_cgroup_disabled())
1324		return NULL;
1325
1326	pc = lookup_page_cgroup(page);
1327	if (!PageCgroupUsed(pc))
1328		return NULL;
1329	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1330	smp_rmb();
1331	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1332	return &mz->reclaim_stat;
1333}
1334
1335#define mem_cgroup_from_res_counter(counter, member)	\
1336	container_of(counter, struct mem_cgroup, member)
1337
1338/**
1339 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1340 * @mem: the memory cgroup
1341 *
1342 * Returns the maximum amount of memory @mem can be charged with, in
1343 * pages.
1344 */
1345static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1346{
1347	unsigned long long margin;
1348
1349	margin = res_counter_margin(&memcg->res);
1350	if (do_swap_account)
1351		margin = min(margin, res_counter_margin(&memcg->memsw));
1352	return margin >> PAGE_SHIFT;
1353}
1354
1355int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1356{
1357	struct cgroup *cgrp = memcg->css.cgroup;
1358
1359	/* root ? */
1360	if (cgrp->parent == NULL)
1361		return vm_swappiness;
1362
1363	return memcg->swappiness;
1364}
1365
1366static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1367{
1368	int cpu;
1369
1370	get_online_cpus();
1371	spin_lock(&memcg->pcp_counter_lock);
1372	for_each_online_cpu(cpu)
1373		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1374	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1375	spin_unlock(&memcg->pcp_counter_lock);
1376	put_online_cpus();
1377
1378	synchronize_rcu();
1379}
1380
1381static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1382{
1383	int cpu;
1384
1385	if (!memcg)
1386		return;
1387	get_online_cpus();
1388	spin_lock(&memcg->pcp_counter_lock);
1389	for_each_online_cpu(cpu)
1390		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1391	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1392	spin_unlock(&memcg->pcp_counter_lock);
1393	put_online_cpus();
1394}
1395/*
1396 * 2 routines for checking "mem" is under move_account() or not.
1397 *
1398 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1399 *			  for avoiding race in accounting. If true,
1400 *			  pc->mem_cgroup may be overwritten.
1401 *
1402 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1403 *			  under hierarchy of moving cgroups. This is for
1404 *			  waiting at hith-memory prressure caused by "move".
1405 */
1406
1407static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1408{
1409	VM_BUG_ON(!rcu_read_lock_held());
1410	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1411}
1412
1413static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414{
1415	struct mem_cgroup *from;
1416	struct mem_cgroup *to;
1417	bool ret = false;
1418	/*
1419	 * Unlike task_move routines, we access mc.to, mc.from not under
1420	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1421	 */
1422	spin_lock(&mc.lock);
1423	from = mc.from;
1424	to = mc.to;
1425	if (!from)
1426		goto unlock;
1427
1428	ret = mem_cgroup_same_or_subtree(memcg, from)
1429		|| mem_cgroup_same_or_subtree(memcg, to);
1430unlock:
1431	spin_unlock(&mc.lock);
1432	return ret;
1433}
1434
1435static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436{
1437	if (mc.moving_task && current != mc.moving_task) {
1438		if (mem_cgroup_under_move(memcg)) {
1439			DEFINE_WAIT(wait);
1440			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1441			/* moving charge context might have finished. */
1442			if (mc.moving_task)
1443				schedule();
1444			finish_wait(&mc.waitq, &wait);
1445			return true;
1446		}
1447	}
1448	return false;
1449}
1450
1451/**
1452 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1453 * @memcg: The memory cgroup that went over limit
1454 * @p: Task that is going to be killed
1455 *
1456 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1457 * enabled
1458 */
1459void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1460{
1461	struct cgroup *task_cgrp;
1462	struct cgroup *mem_cgrp;
1463	/*
1464	 * Need a buffer in BSS, can't rely on allocations. The code relies
1465	 * on the assumption that OOM is serialized for memory controller.
1466	 * If this assumption is broken, revisit this code.
1467	 */
1468	static char memcg_name[PATH_MAX];
1469	int ret;
1470
1471	if (!memcg || !p)
1472		return;
1473
1474
1475	rcu_read_lock();
1476
1477	mem_cgrp = memcg->css.cgroup;
1478	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1479
1480	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1481	if (ret < 0) {
1482		/*
1483		 * Unfortunately, we are unable to convert to a useful name
1484		 * But we'll still print out the usage information
1485		 */
1486		rcu_read_unlock();
1487		goto done;
1488	}
1489	rcu_read_unlock();
1490
1491	printk(KERN_INFO "Task in %s killed", memcg_name);
1492
1493	rcu_read_lock();
1494	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1495	if (ret < 0) {
1496		rcu_read_unlock();
1497		goto done;
1498	}
1499	rcu_read_unlock();
1500
1501	/*
1502	 * Continues from above, so we don't need an KERN_ level
1503	 */
1504	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1505done:
1506
1507	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1508		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1509		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1510		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1511	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1512		"failcnt %llu\n",
1513		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1514		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1515		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1516}
1517
1518/*
1519 * This function returns the number of memcg under hierarchy tree. Returns
1520 * 1(self count) if no children.
1521 */
1522static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1523{
1524	int num = 0;
1525	struct mem_cgroup *iter;
1526
1527	for_each_mem_cgroup_tree(iter, memcg)
1528		num++;
1529	return num;
1530}
1531
1532/*
1533 * Return the memory (and swap, if configured) limit for a memcg.
1534 */
1535u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1536{
1537	u64 limit;
1538	u64 memsw;
1539
1540	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1541	limit += total_swap_pages << PAGE_SHIFT;
1542
1543	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1544	/*
1545	 * If memsw is finite and limits the amount of swap space available
1546	 * to this memcg, return that limit.
1547	 */
1548	return min(limit, memsw);
1549}
1550
1551static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1552					gfp_t gfp_mask,
1553					unsigned long flags)
1554{
1555	unsigned long total = 0;
1556	bool noswap = false;
1557	int loop;
1558
1559	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1560		noswap = true;
1561	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1562		noswap = true;
1563
1564	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1565		if (loop)
1566			drain_all_stock_async(memcg);
1567		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1568		/*
1569		 * Allow limit shrinkers, which are triggered directly
1570		 * by userspace, to catch signals and stop reclaim
1571		 * after minimal progress, regardless of the margin.
1572		 */
1573		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1574			break;
1575		if (mem_cgroup_margin(memcg))
1576			break;
1577		/*
1578		 * If nothing was reclaimed after two attempts, there
1579		 * may be no reclaimable pages in this hierarchy.
1580		 */
1581		if (loop && !total)
1582			break;
1583	}
1584	return total;
1585}
1586
1587/**
1588 * test_mem_cgroup_node_reclaimable
1589 * @mem: the target memcg
1590 * @nid: the node ID to be checked.
1591 * @noswap : specify true here if the user wants flle only information.
1592 *
1593 * This function returns whether the specified memcg contains any
1594 * reclaimable pages on a node. Returns true if there are any reclaimable
1595 * pages in the node.
1596 */
1597static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1598		int nid, bool noswap)
1599{
1600	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1601		return true;
1602	if (noswap || !total_swap_pages)
1603		return false;
1604	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1605		return true;
1606	return false;
1607
1608}
1609#if MAX_NUMNODES > 1
1610
1611/*
1612 * Always updating the nodemask is not very good - even if we have an empty
1613 * list or the wrong list here, we can start from some node and traverse all
1614 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1615 *
1616 */
1617static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1618{
1619	int nid;
1620	/*
1621	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1622	 * pagein/pageout changes since the last update.
1623	 */
1624	if (!atomic_read(&memcg->numainfo_events))
1625		return;
1626	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1627		return;
1628
1629	/* make a nodemask where this memcg uses memory from */
1630	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1631
1632	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1633
1634		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1635			node_clear(nid, memcg->scan_nodes);
1636	}
1637
1638	atomic_set(&memcg->numainfo_events, 0);
1639	atomic_set(&memcg->numainfo_updating, 0);
1640}
1641
1642/*
1643 * Selecting a node where we start reclaim from. Because what we need is just
1644 * reducing usage counter, start from anywhere is O,K. Considering
1645 * memory reclaim from current node, there are pros. and cons.
1646 *
1647 * Freeing memory from current node means freeing memory from a node which
1648 * we'll use or we've used. So, it may make LRU bad. And if several threads
1649 * hit limits, it will see a contention on a node. But freeing from remote
1650 * node means more costs for memory reclaim because of memory latency.
1651 *
1652 * Now, we use round-robin. Better algorithm is welcomed.
1653 */
1654int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1655{
1656	int node;
1657
1658	mem_cgroup_may_update_nodemask(memcg);
1659	node = memcg->last_scanned_node;
1660
1661	node = next_node(node, memcg->scan_nodes);
1662	if (node == MAX_NUMNODES)
1663		node = first_node(memcg->scan_nodes);
1664	/*
1665	 * We call this when we hit limit, not when pages are added to LRU.
1666	 * No LRU may hold pages because all pages are UNEVICTABLE or
1667	 * memcg is too small and all pages are not on LRU. In that case,
1668	 * we use curret node.
1669	 */
1670	if (unlikely(node == MAX_NUMNODES))
1671		node = numa_node_id();
1672
1673	memcg->last_scanned_node = node;
1674	return node;
1675}
1676
1677/*
1678 * Check all nodes whether it contains reclaimable pages or not.
1679 * For quick scan, we make use of scan_nodes. This will allow us to skip
1680 * unused nodes. But scan_nodes is lazily updated and may not cotain
1681 * enough new information. We need to do double check.
1682 */
1683bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1684{
1685	int nid;
1686
1687	/*
1688	 * quick check...making use of scan_node.
1689	 * We can skip unused nodes.
1690	 */
1691	if (!nodes_empty(memcg->scan_nodes)) {
1692		for (nid = first_node(memcg->scan_nodes);
1693		     nid < MAX_NUMNODES;
1694		     nid = next_node(nid, memcg->scan_nodes)) {
1695
1696			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1697				return true;
1698		}
1699	}
1700	/*
1701	 * Check rest of nodes.
1702	 */
1703	for_each_node_state(nid, N_HIGH_MEMORY) {
1704		if (node_isset(nid, memcg->scan_nodes))
1705			continue;
1706		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1707			return true;
1708	}
1709	return false;
1710}
1711
1712#else
1713int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1714{
1715	return 0;
1716}
1717
1718bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1719{
1720	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1721}
1722#endif
1723
1724static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1725				   struct zone *zone,
1726				   gfp_t gfp_mask,
1727				   unsigned long *total_scanned)
1728{
1729	struct mem_cgroup *victim = NULL;
1730	int total = 0;
1731	int loop = 0;
1732	unsigned long excess;
1733	unsigned long nr_scanned;
1734	struct mem_cgroup_reclaim_cookie reclaim = {
1735		.zone = zone,
1736		.priority = 0,
1737	};
1738
1739	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1740
1741	while (1) {
1742		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1743		if (!victim) {
1744			loop++;
1745			if (loop >= 2) {
1746				/*
1747				 * If we have not been able to reclaim
1748				 * anything, it might because there are
1749				 * no reclaimable pages under this hierarchy
1750				 */
1751				if (!total)
1752					break;
1753				/*
1754				 * We want to do more targeted reclaim.
1755				 * excess >> 2 is not to excessive so as to
1756				 * reclaim too much, nor too less that we keep
1757				 * coming back to reclaim from this cgroup
1758				 */
1759				if (total >= (excess >> 2) ||
1760					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1761					break;
1762			}
1763			continue;
1764		}
1765		if (!mem_cgroup_reclaimable(victim, false))
1766			continue;
1767		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1768						     zone, &nr_scanned);
1769		*total_scanned += nr_scanned;
1770		if (!res_counter_soft_limit_excess(&root_memcg->res))
1771			break;
1772	}
1773	mem_cgroup_iter_break(root_memcg, victim);
1774	return total;
1775}
1776
1777/*
1778 * Check OOM-Killer is already running under our hierarchy.
1779 * If someone is running, return false.
1780 * Has to be called with memcg_oom_lock
1781 */
1782static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1783{
1784	struct mem_cgroup *iter, *failed = NULL;
1785
1786	for_each_mem_cgroup_tree(iter, memcg) {
1787		if (iter->oom_lock) {
1788			/*
1789			 * this subtree of our hierarchy is already locked
1790			 * so we cannot give a lock.
1791			 */
1792			failed = iter;
1793			mem_cgroup_iter_break(memcg, iter);
1794			break;
1795		} else
1796			iter->oom_lock = true;
1797	}
1798
1799	if (!failed)
1800		return true;
1801
1802	/*
1803	 * OK, we failed to lock the whole subtree so we have to clean up
1804	 * what we set up to the failing subtree
1805	 */
1806	for_each_mem_cgroup_tree(iter, memcg) {
1807		if (iter == failed) {
1808			mem_cgroup_iter_break(memcg, iter);
1809			break;
1810		}
1811		iter->oom_lock = false;
1812	}
1813	return false;
1814}
1815
1816/*
1817 * Has to be called with memcg_oom_lock
1818 */
1819static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1820{
1821	struct mem_cgroup *iter;
1822
1823	for_each_mem_cgroup_tree(iter, memcg)
1824		iter->oom_lock = false;
1825	return 0;
1826}
1827
1828static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1829{
1830	struct mem_cgroup *iter;
1831
1832	for_each_mem_cgroup_tree(iter, memcg)
1833		atomic_inc(&iter->under_oom);
1834}
1835
1836static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1837{
1838	struct mem_cgroup *iter;
1839
1840	/*
1841	 * When a new child is created while the hierarchy is under oom,
1842	 * mem_cgroup_oom_lock() may not be called. We have to use
1843	 * atomic_add_unless() here.
1844	 */
1845	for_each_mem_cgroup_tree(iter, memcg)
1846		atomic_add_unless(&iter->under_oom, -1, 0);
1847}
1848
1849static DEFINE_SPINLOCK(memcg_oom_lock);
1850static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1851
1852struct oom_wait_info {
1853	struct mem_cgroup *mem;
1854	wait_queue_t	wait;
1855};
1856
1857static int memcg_oom_wake_function(wait_queue_t *wait,
1858	unsigned mode, int sync, void *arg)
1859{
1860	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1861			  *oom_wait_memcg;
1862	struct oom_wait_info *oom_wait_info;
1863
1864	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1865	oom_wait_memcg = oom_wait_info->mem;
1866
1867	/*
1868	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1869	 * Then we can use css_is_ancestor without taking care of RCU.
1870	 */
1871	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1872		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1873		return 0;
1874	return autoremove_wake_function(wait, mode, sync, arg);
1875}
1876
1877static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1878{
1879	/* for filtering, pass "memcg" as argument. */
1880	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1881}
1882
1883static void memcg_oom_recover(struct mem_cgroup *memcg)
1884{
1885	if (memcg && atomic_read(&memcg->under_oom))
1886		memcg_wakeup_oom(memcg);
1887}
1888
1889/*
1890 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1891 */
1892bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1893{
1894	struct oom_wait_info owait;
1895	bool locked, need_to_kill;
1896
1897	owait.mem = memcg;
1898	owait.wait.flags = 0;
1899	owait.wait.func = memcg_oom_wake_function;
1900	owait.wait.private = current;
1901	INIT_LIST_HEAD(&owait.wait.task_list);
1902	need_to_kill = true;
1903	mem_cgroup_mark_under_oom(memcg);
1904
1905	/* At first, try to OOM lock hierarchy under memcg.*/
1906	spin_lock(&memcg_oom_lock);
1907	locked = mem_cgroup_oom_lock(memcg);
1908	/*
1909	 * Even if signal_pending(), we can't quit charge() loop without
1910	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1911	 * under OOM is always welcomed, use TASK_KILLABLE here.
1912	 */
1913	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1914	if (!locked || memcg->oom_kill_disable)
1915		need_to_kill = false;
1916	if (locked)
1917		mem_cgroup_oom_notify(memcg);
1918	spin_unlock(&memcg_oom_lock);
1919
1920	if (need_to_kill) {
1921		finish_wait(&memcg_oom_waitq, &owait.wait);
1922		mem_cgroup_out_of_memory(memcg, mask);
1923	} else {
1924		schedule();
1925		finish_wait(&memcg_oom_waitq, &owait.wait);
1926	}
1927	spin_lock(&memcg_oom_lock);
1928	if (locked)
1929		mem_cgroup_oom_unlock(memcg);
1930	memcg_wakeup_oom(memcg);
1931	spin_unlock(&memcg_oom_lock);
1932
1933	mem_cgroup_unmark_under_oom(memcg);
1934
1935	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1936		return false;
1937	/* Give chance to dying process */
1938	schedule_timeout_uninterruptible(1);
1939	return true;
1940}
1941
1942/*
1943 * Currently used to update mapped file statistics, but the routine can be
1944 * generalized to update other statistics as well.
1945 *
1946 * Notes: Race condition
1947 *
1948 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1949 * it tends to be costly. But considering some conditions, we doesn't need
1950 * to do so _always_.
1951 *
1952 * Considering "charge", lock_page_cgroup() is not required because all
1953 * file-stat operations happen after a page is attached to radix-tree. There
1954 * are no race with "charge".
1955 *
1956 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1957 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1958 * if there are race with "uncharge". Statistics itself is properly handled
1959 * by flags.
1960 *
1961 * Considering "move", this is an only case we see a race. To make the race
1962 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1963 * possibility of race condition. If there is, we take a lock.
1964 */
1965
1966void mem_cgroup_update_page_stat(struct page *page,
1967				 enum mem_cgroup_page_stat_item idx, int val)
1968{
1969	struct mem_cgroup *memcg;
1970	struct page_cgroup *pc = lookup_page_cgroup(page);
1971	bool need_unlock = false;
1972	unsigned long uninitialized_var(flags);
1973
1974	if (mem_cgroup_disabled())
1975		return;
1976
1977	rcu_read_lock();
1978	memcg = pc->mem_cgroup;
1979	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1980		goto out;
1981	/* pc->mem_cgroup is unstable ? */
1982	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1983		/* take a lock against to access pc->mem_cgroup */
1984		move_lock_page_cgroup(pc, &flags);
1985		need_unlock = true;
1986		memcg = pc->mem_cgroup;
1987		if (!memcg || !PageCgroupUsed(pc))
1988			goto out;
1989	}
1990
1991	switch (idx) {
1992	case MEMCG_NR_FILE_MAPPED:
1993		if (val > 0)
1994			SetPageCgroupFileMapped(pc);
1995		else if (!page_mapped(page))
1996			ClearPageCgroupFileMapped(pc);
1997		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1998		break;
1999	default:
2000		BUG();
2001	}
2002
2003	this_cpu_add(memcg->stat->count[idx], val);
2004
2005out:
2006	if (unlikely(need_unlock))
2007		move_unlock_page_cgroup(pc, &flags);
2008	rcu_read_unlock();
2009	return;
2010}
2011EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2012
2013/*
2014 * size of first charge trial. "32" comes from vmscan.c's magic value.
2015 * TODO: maybe necessary to use big numbers in big irons.
2016 */
2017#define CHARGE_BATCH	32U
2018struct memcg_stock_pcp {
2019	struct mem_cgroup *cached; /* this never be root cgroup */
2020	unsigned int nr_pages;
2021	struct work_struct work;
2022	unsigned long flags;
2023#define FLUSHING_CACHED_CHARGE	(0)
2024};
2025static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2026static DEFINE_MUTEX(percpu_charge_mutex);
2027
2028/*
2029 * Try to consume stocked charge on this cpu. If success, one page is consumed
2030 * from local stock and true is returned. If the stock is 0 or charges from a
2031 * cgroup which is not current target, returns false. This stock will be
2032 * refilled.
2033 */
2034static bool consume_stock(struct mem_cgroup *memcg)
2035{
2036	struct memcg_stock_pcp *stock;
2037	bool ret = true;
2038
2039	stock = &get_cpu_var(memcg_stock);
2040	if (memcg == stock->cached && stock->nr_pages)
2041		stock->nr_pages--;
2042	else /* need to call res_counter_charge */
2043		ret = false;
2044	put_cpu_var(memcg_stock);
2045	return ret;
2046}
2047
2048/*
2049 * Returns stocks cached in percpu to res_counter and reset cached information.
2050 */
2051static void drain_stock(struct memcg_stock_pcp *stock)
2052{
2053	struct mem_cgroup *old = stock->cached;
2054
2055	if (stock->nr_pages) {
2056		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2057
2058		res_counter_uncharge(&old->res, bytes);
2059		if (do_swap_account)
2060			res_counter_uncharge(&old->memsw, bytes);
2061		stock->nr_pages = 0;
2062	}
2063	stock->cached = NULL;
2064}
2065
2066/*
2067 * This must be called under preempt disabled or must be called by
2068 * a thread which is pinned to local cpu.
2069 */
2070static void drain_local_stock(struct work_struct *dummy)
2071{
2072	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2073	drain_stock(stock);
2074	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2075}
2076
2077/*
2078 * Cache charges(val) which is from res_counter, to local per_cpu area.
2079 * This will be consumed by consume_stock() function, later.
2080 */
2081static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2082{
2083	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2084
2085	if (stock->cached != memcg) { /* reset if necessary */
2086		drain_stock(stock);
2087		stock->cached = memcg;
2088	}
2089	stock->nr_pages += nr_pages;
2090	put_cpu_var(memcg_stock);
2091}
2092
2093/*
2094 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2095 * of the hierarchy under it. sync flag says whether we should block
2096 * until the work is done.
2097 */
2098static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2099{
2100	int cpu, curcpu;
2101
2102	/* Notify other cpus that system-wide "drain" is running */
2103	get_online_cpus();
2104	curcpu = get_cpu();
2105	for_each_online_cpu(cpu) {
2106		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2107		struct mem_cgroup *memcg;
2108
2109		memcg = stock->cached;
2110		if (!memcg || !stock->nr_pages)
2111			continue;
2112		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2113			continue;
2114		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2115			if (cpu == curcpu)
2116				drain_local_stock(&stock->work);
2117			else
2118				schedule_work_on(cpu, &stock->work);
2119		}
2120	}
2121	put_cpu();
2122
2123	if (!sync)
2124		goto out;
2125
2126	for_each_online_cpu(cpu) {
2127		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2128		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2129			flush_work(&stock->work);
2130	}
2131out:
2132 	put_online_cpus();
2133}
2134
2135/*
2136 * Tries to drain stocked charges in other cpus. This function is asynchronous
2137 * and just put a work per cpu for draining localy on each cpu. Caller can
2138 * expects some charges will be back to res_counter later but cannot wait for
2139 * it.
2140 */
2141static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2142{
2143	/*
2144	 * If someone calls draining, avoid adding more kworker runs.
2145	 */
2146	if (!mutex_trylock(&percpu_charge_mutex))
2147		return;
2148	drain_all_stock(root_memcg, false);
2149	mutex_unlock(&percpu_charge_mutex);
2150}
2151
2152/* This is a synchronous drain interface. */
2153static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2154{
2155	/* called when force_empty is called */
2156	mutex_lock(&percpu_charge_mutex);
2157	drain_all_stock(root_memcg, true);
2158	mutex_unlock(&percpu_charge_mutex);
2159}
2160
2161/*
2162 * This function drains percpu counter value from DEAD cpu and
2163 * move it to local cpu. Note that this function can be preempted.
2164 */
2165static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2166{
2167	int i;
2168
2169	spin_lock(&memcg->pcp_counter_lock);
2170	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2171		long x = per_cpu(memcg->stat->count[i], cpu);
2172
2173		per_cpu(memcg->stat->count[i], cpu) = 0;
2174		memcg->nocpu_base.count[i] += x;
2175	}
2176	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2177		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2178
2179		per_cpu(memcg->stat->events[i], cpu) = 0;
2180		memcg->nocpu_base.events[i] += x;
2181	}
2182	/* need to clear ON_MOVE value, works as a kind of lock. */
2183	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2184	spin_unlock(&memcg->pcp_counter_lock);
2185}
2186
2187static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2188{
2189	int idx = MEM_CGROUP_ON_MOVE;
2190
2191	spin_lock(&memcg->pcp_counter_lock);
2192	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2193	spin_unlock(&memcg->pcp_counter_lock);
2194}
2195
2196static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2197					unsigned long action,
2198					void *hcpu)
2199{
2200	int cpu = (unsigned long)hcpu;
2201	struct memcg_stock_pcp *stock;
2202	struct mem_cgroup *iter;
2203
2204	if ((action == CPU_ONLINE)) {
2205		for_each_mem_cgroup(iter)
2206			synchronize_mem_cgroup_on_move(iter, cpu);
2207		return NOTIFY_OK;
2208	}
2209
2210	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2211		return NOTIFY_OK;
2212
2213	for_each_mem_cgroup(iter)
2214		mem_cgroup_drain_pcp_counter(iter, cpu);
2215
2216	stock = &per_cpu(memcg_stock, cpu);
2217	drain_stock(stock);
2218	return NOTIFY_OK;
2219}
2220
2221
2222/* See __mem_cgroup_try_charge() for details */
2223enum {
2224	CHARGE_OK,		/* success */
2225	CHARGE_RETRY,		/* need to retry but retry is not bad */
2226	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2227	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2228	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2229};
2230
2231static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2232				unsigned int nr_pages, bool oom_check)
2233{
2234	unsigned long csize = nr_pages * PAGE_SIZE;
2235	struct mem_cgroup *mem_over_limit;
2236	struct res_counter *fail_res;
2237	unsigned long flags = 0;
2238	int ret;
2239
2240	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2241
2242	if (likely(!ret)) {
2243		if (!do_swap_account)
2244			return CHARGE_OK;
2245		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2246		if (likely(!ret))
2247			return CHARGE_OK;
2248
2249		res_counter_uncharge(&memcg->res, csize);
2250		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2251		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2252	} else
2253		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2254	/*
2255	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2256	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2257	 *
2258	 * Never reclaim on behalf of optional batching, retry with a
2259	 * single page instead.
2260	 */
2261	if (nr_pages == CHARGE_BATCH)
2262		return CHARGE_RETRY;
2263
2264	if (!(gfp_mask & __GFP_WAIT))
2265		return CHARGE_WOULDBLOCK;
2266
2267	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2268	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2269		return CHARGE_RETRY;
2270	/*
2271	 * Even though the limit is exceeded at this point, reclaim
2272	 * may have been able to free some pages.  Retry the charge
2273	 * before killing the task.
2274	 *
2275	 * Only for regular pages, though: huge pages are rather
2276	 * unlikely to succeed so close to the limit, and we fall back
2277	 * to regular pages anyway in case of failure.
2278	 */
2279	if (nr_pages == 1 && ret)
2280		return CHARGE_RETRY;
2281
2282	/*
2283	 * At task move, charge accounts can be doubly counted. So, it's
2284	 * better to wait until the end of task_move if something is going on.
2285	 */
2286	if (mem_cgroup_wait_acct_move(mem_over_limit))
2287		return CHARGE_RETRY;
2288
2289	/* If we don't need to call oom-killer at el, return immediately */
2290	if (!oom_check)
2291		return CHARGE_NOMEM;
2292	/* check OOM */
2293	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2294		return CHARGE_OOM_DIE;
2295
2296	return CHARGE_RETRY;
2297}
2298
2299/*
2300 * Unlike exported interface, "oom" parameter is added. if oom==true,
2301 * oom-killer can be invoked.
2302 */
2303static int __mem_cgroup_try_charge(struct mm_struct *mm,
2304				   gfp_t gfp_mask,
2305				   unsigned int nr_pages,
2306				   struct mem_cgroup **ptr,
2307				   bool oom)
2308{
2309	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2310	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2311	struct mem_cgroup *memcg = NULL;
2312	int ret;
2313
2314	/*
2315	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2316	 * in system level. So, allow to go ahead dying process in addition to
2317	 * MEMDIE process.
2318	 */
2319	if (unlikely(test_thread_flag(TIF_MEMDIE)
2320		     || fatal_signal_pending(current)))
2321		goto bypass;
2322
2323	/*
2324	 * We always charge the cgroup the mm_struct belongs to.
2325	 * The mm_struct's mem_cgroup changes on task migration if the
2326	 * thread group leader migrates. It's possible that mm is not
2327	 * set, if so charge the init_mm (happens for pagecache usage).
2328	 */
2329	if (!*ptr && !mm)
2330		goto bypass;
2331again:
2332	if (*ptr) { /* css should be a valid one */
2333		memcg = *ptr;
2334		VM_BUG_ON(css_is_removed(&memcg->css));
2335		if (mem_cgroup_is_root(memcg))
2336			goto done;
2337		if (nr_pages == 1 && consume_stock(memcg))
2338			goto done;
2339		css_get(&memcg->css);
2340	} else {
2341		struct task_struct *p;
2342
2343		rcu_read_lock();
2344		p = rcu_dereference(mm->owner);
2345		/*
2346		 * Because we don't have task_lock(), "p" can exit.
2347		 * In that case, "memcg" can point to root or p can be NULL with
2348		 * race with swapoff. Then, we have small risk of mis-accouning.
2349		 * But such kind of mis-account by race always happens because
2350		 * we don't have cgroup_mutex(). It's overkill and we allo that
2351		 * small race, here.
2352		 * (*) swapoff at el will charge against mm-struct not against
2353		 * task-struct. So, mm->owner can be NULL.
2354		 */
2355		memcg = mem_cgroup_from_task(p);
2356		if (!memcg || mem_cgroup_is_root(memcg)) {
2357			rcu_read_unlock();
2358			goto done;
2359		}
2360		if (nr_pages == 1 && consume_stock(memcg)) {
2361			/*
2362			 * It seems dagerous to access memcg without css_get().
2363			 * But considering how consume_stok works, it's not
2364			 * necessary. If consume_stock success, some charges
2365			 * from this memcg are cached on this cpu. So, we
2366			 * don't need to call css_get()/css_tryget() before
2367			 * calling consume_stock().
2368			 */
2369			rcu_read_unlock();
2370			goto done;
2371		}
2372		/* after here, we may be blocked. we need to get refcnt */
2373		if (!css_tryget(&memcg->css)) {
2374			rcu_read_unlock();
2375			goto again;
2376		}
2377		rcu_read_unlock();
2378	}
2379
2380	do {
2381		bool oom_check;
2382
2383		/* If killed, bypass charge */
2384		if (fatal_signal_pending(current)) {
2385			css_put(&memcg->css);
2386			goto bypass;
2387		}
2388
2389		oom_check = false;
2390		if (oom && !nr_oom_retries) {
2391			oom_check = true;
2392			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2393		}
2394
2395		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2396		switch (ret) {
2397		case CHARGE_OK:
2398			break;
2399		case CHARGE_RETRY: /* not in OOM situation but retry */
2400			batch = nr_pages;
2401			css_put(&memcg->css);
2402			memcg = NULL;
2403			goto again;
2404		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2405			css_put(&memcg->css);
2406			goto nomem;
2407		case CHARGE_NOMEM: /* OOM routine works */
2408			if (!oom) {
2409				css_put(&memcg->css);
2410				goto nomem;
2411			}
2412			/* If oom, we never return -ENOMEM */
2413			nr_oom_retries--;
2414			break;
2415		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2416			css_put(&memcg->css);
2417			goto bypass;
2418		}
2419	} while (ret != CHARGE_OK);
2420
2421	if (batch > nr_pages)
2422		refill_stock(memcg, batch - nr_pages);
2423	css_put(&memcg->css);
2424done:
2425	*ptr = memcg;
2426	return 0;
2427nomem:
2428	*ptr = NULL;
2429	return -ENOMEM;
2430bypass:
2431	*ptr = NULL;
2432	return 0;
2433}
2434
2435/*
2436 * Somemtimes we have to undo a charge we got by try_charge().
2437 * This function is for that and do uncharge, put css's refcnt.
2438 * gotten by try_charge().
2439 */
2440static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2441				       unsigned int nr_pages)
2442{
2443	if (!mem_cgroup_is_root(memcg)) {
2444		unsigned long bytes = nr_pages * PAGE_SIZE;
2445
2446		res_counter_uncharge(&memcg->res, bytes);
2447		if (do_swap_account)
2448			res_counter_uncharge(&memcg->memsw, bytes);
2449	}
2450}
2451
2452/*
2453 * A helper function to get mem_cgroup from ID. must be called under
2454 * rcu_read_lock(). The caller must check css_is_removed() or some if
2455 * it's concern. (dropping refcnt from swap can be called against removed
2456 * memcg.)
2457 */
2458static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2459{
2460	struct cgroup_subsys_state *css;
2461
2462	/* ID 0 is unused ID */
2463	if (!id)
2464		return NULL;
2465	css = css_lookup(&mem_cgroup_subsys, id);
2466	if (!css)
2467		return NULL;
2468	return container_of(css, struct mem_cgroup, css);
2469}
2470
2471struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2472{
2473	struct mem_cgroup *memcg = NULL;
2474	struct page_cgroup *pc;
2475	unsigned short id;
2476	swp_entry_t ent;
2477
2478	VM_BUG_ON(!PageLocked(page));
2479
2480	pc = lookup_page_cgroup(page);
2481	lock_page_cgroup(pc);
2482	if (PageCgroupUsed(pc)) {
2483		memcg = pc->mem_cgroup;
2484		if (memcg && !css_tryget(&memcg->css))
2485			memcg = NULL;
2486	} else if (PageSwapCache(page)) {
2487		ent.val = page_private(page);
2488		id = lookup_swap_cgroup_id(ent);
2489		rcu_read_lock();
2490		memcg = mem_cgroup_lookup(id);
2491		if (memcg && !css_tryget(&memcg->css))
2492			memcg = NULL;
2493		rcu_read_unlock();
2494	}
2495	unlock_page_cgroup(pc);
2496	return memcg;
2497}
2498
2499static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2500				       struct page *page,
2501				       unsigned int nr_pages,
2502				       struct page_cgroup *pc,
2503				       enum charge_type ctype)
2504{
2505	lock_page_cgroup(pc);
2506	if (unlikely(PageCgroupUsed(pc))) {
2507		unlock_page_cgroup(pc);
2508		__mem_cgroup_cancel_charge(memcg, nr_pages);
2509		return;
2510	}
2511	/*
2512	 * we don't need page_cgroup_lock about tail pages, becase they are not
2513	 * accessed by any other context at this point.
2514	 */
2515	pc->mem_cgroup = memcg;
2516	/*
2517	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2518	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2519	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2520	 * before USED bit, we need memory barrier here.
2521	 * See mem_cgroup_add_lru_list(), etc.
2522 	 */
2523	smp_wmb();
2524	switch (ctype) {
2525	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2526	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2527		SetPageCgroupCache(pc);
2528		SetPageCgroupUsed(pc);
2529		break;
2530	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2531		ClearPageCgroupCache(pc);
2532		SetPageCgroupUsed(pc);
2533		break;
2534	default:
2535		break;
2536	}
2537
2538	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2539	unlock_page_cgroup(pc);
2540	/*
2541	 * "charge_statistics" updated event counter. Then, check it.
2542	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2543	 * if they exceeds softlimit.
2544	 */
2545	memcg_check_events(memcg, page);
2546}
2547
2548#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2549
2550#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2551			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2552/*
2553 * Because tail pages are not marked as "used", set it. We're under
2554 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2555 * charge/uncharge will be never happen and move_account() is done under
2556 * compound_lock(), so we don't have to take care of races.
2557 */
2558void mem_cgroup_split_huge_fixup(struct page *head)
2559{
2560	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2561	struct page_cgroup *pc;
2562	int i;
2563
2564	if (mem_cgroup_disabled())
2565		return;
2566	for (i = 1; i < HPAGE_PMD_NR; i++) {
2567		pc = head_pc + i;
2568		pc->mem_cgroup = head_pc->mem_cgroup;
2569		smp_wmb();/* see __commit_charge() */
2570		/*
2571		 * LRU flags cannot be copied because we need to add tail
2572		 * page to LRU by generic call and our hooks will be called.
2573		 */
2574		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2575	}
2576
2577	if (PageCgroupAcctLRU(head_pc)) {
2578		enum lru_list lru;
2579		struct mem_cgroup_per_zone *mz;
2580		/*
2581		 * We hold lru_lock, then, reduce counter directly.
2582		 */
2583		lru = page_lru(head);
2584		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2585		MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2586	}
2587}
2588#endif
2589
2590/**
2591 * mem_cgroup_move_account - move account of the page
2592 * @page: the page
2593 * @nr_pages: number of regular pages (>1 for huge pages)
2594 * @pc:	page_cgroup of the page.
2595 * @from: mem_cgroup which the page is moved from.
2596 * @to:	mem_cgroup which the page is moved to. @from != @to.
2597 * @uncharge: whether we should call uncharge and css_put against @from.
2598 *
2599 * The caller must confirm following.
2600 * - page is not on LRU (isolate_page() is useful.)
2601 * - compound_lock is held when nr_pages > 1
2602 *
2603 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2604 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2605 * true, this function does "uncharge" from old cgroup, but it doesn't if
2606 * @uncharge is false, so a caller should do "uncharge".
2607 */
2608static int mem_cgroup_move_account(struct page *page,
2609				   unsigned int nr_pages,
2610				   struct page_cgroup *pc,
2611				   struct mem_cgroup *from,
2612				   struct mem_cgroup *to,
2613				   bool uncharge)
2614{
2615	unsigned long flags;
2616	int ret;
2617
2618	VM_BUG_ON(from == to);
2619	VM_BUG_ON(PageLRU(page));
2620	/*
2621	 * The page is isolated from LRU. So, collapse function
2622	 * will not handle this page. But page splitting can happen.
2623	 * Do this check under compound_page_lock(). The caller should
2624	 * hold it.
2625	 */
2626	ret = -EBUSY;
2627	if (nr_pages > 1 && !PageTransHuge(page))
2628		goto out;
2629
2630	lock_page_cgroup(pc);
2631
2632	ret = -EINVAL;
2633	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2634		goto unlock;
2635
2636	move_lock_page_cgroup(pc, &flags);
2637
2638	if (PageCgroupFileMapped(pc)) {
2639		/* Update mapped_file data for mem_cgroup */
2640		preempt_disable();
2641		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2642		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2643		preempt_enable();
2644	}
2645	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2646	if (uncharge)
2647		/* This is not "cancel", but cancel_charge does all we need. */
2648		__mem_cgroup_cancel_charge(from, nr_pages);
2649
2650	/* caller should have done css_get */
2651	pc->mem_cgroup = to;
2652	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2653	/*
2654	 * We charges against "to" which may not have any tasks. Then, "to"
2655	 * can be under rmdir(). But in current implementation, caller of
2656	 * this function is just force_empty() and move charge, so it's
2657	 * guaranteed that "to" is never removed. So, we don't check rmdir
2658	 * status here.
2659	 */
2660	move_unlock_page_cgroup(pc, &flags);
2661	ret = 0;
2662unlock:
2663	unlock_page_cgroup(pc);
2664	/*
2665	 * check events
2666	 */
2667	memcg_check_events(to, page);
2668	memcg_check_events(from, page);
2669out:
2670	return ret;
2671}
2672
2673/*
2674 * move charges to its parent.
2675 */
2676
2677static int mem_cgroup_move_parent(struct page *page,
2678				  struct page_cgroup *pc,
2679				  struct mem_cgroup *child,
2680				  gfp_t gfp_mask)
2681{
2682	struct cgroup *cg = child->css.cgroup;
2683	struct cgroup *pcg = cg->parent;
2684	struct mem_cgroup *parent;
2685	unsigned int nr_pages;
2686	unsigned long uninitialized_var(flags);
2687	int ret;
2688
2689	/* Is ROOT ? */
2690	if (!pcg)
2691		return -EINVAL;
2692
2693	ret = -EBUSY;
2694	if (!get_page_unless_zero(page))
2695		goto out;
2696	if (isolate_lru_page(page))
2697		goto put;
2698
2699	nr_pages = hpage_nr_pages(page);
2700
2701	parent = mem_cgroup_from_cont(pcg);
2702	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2703	if (ret || !parent)
2704		goto put_back;
2705
2706	if (nr_pages > 1)
2707		flags = compound_lock_irqsave(page);
2708
2709	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2710	if (ret)
2711		__mem_cgroup_cancel_charge(parent, nr_pages);
2712
2713	if (nr_pages > 1)
2714		compound_unlock_irqrestore(page, flags);
2715put_back:
2716	putback_lru_page(page);
2717put:
2718	put_page(page);
2719out:
2720	return ret;
2721}
2722
2723/*
2724 * Charge the memory controller for page usage.
2725 * Return
2726 * 0 if the charge was successful
2727 * < 0 if the cgroup is over its limit
2728 */
2729static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2730				gfp_t gfp_mask, enum charge_type ctype)
2731{
2732	struct mem_cgroup *memcg = NULL;
2733	unsigned int nr_pages = 1;
2734	struct page_cgroup *pc;
2735	bool oom = true;
2736	int ret;
2737
2738	if (PageTransHuge(page)) {
2739		nr_pages <<= compound_order(page);
2740		VM_BUG_ON(!PageTransHuge(page));
2741		/*
2742		 * Never OOM-kill a process for a huge page.  The
2743		 * fault handler will fall back to regular pages.
2744		 */
2745		oom = false;
2746	}
2747
2748	pc = lookup_page_cgroup(page);
2749	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2750	if (ret || !memcg)
2751		return ret;
2752
2753	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2754	return 0;
2755}
2756
2757int mem_cgroup_newpage_charge(struct page *page,
2758			      struct mm_struct *mm, gfp_t gfp_mask)
2759{
2760	if (mem_cgroup_disabled())
2761		return 0;
2762	VM_BUG_ON(page_mapped(page));
2763	VM_BUG_ON(page->mapping && !PageAnon(page));
2764	VM_BUG_ON(!mm);
2765	return mem_cgroup_charge_common(page, mm, gfp_mask,
2766					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2767}
2768
2769static void
2770__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2771					enum charge_type ctype);
2772
2773static void
2774__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2775					enum charge_type ctype)
2776{
2777	struct page_cgroup *pc = lookup_page_cgroup(page);
2778	/*
2779	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2780	 * is already on LRU. It means the page may on some other page_cgroup's
2781	 * LRU. Take care of it.
2782	 */
2783	mem_cgroup_lru_del_before_commit(page);
2784	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2785	mem_cgroup_lru_add_after_commit(page);
2786	return;
2787}
2788
2789int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2790				gfp_t gfp_mask)
2791{
2792	struct mem_cgroup *memcg = NULL;
2793	int ret;
2794
2795	if (mem_cgroup_disabled())
2796		return 0;
2797	if (PageCompound(page))
2798		return 0;
2799
2800	if (unlikely(!mm))
2801		mm = &init_mm;
2802
2803	if (page_is_file_cache(page)) {
2804		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2805		if (ret || !memcg)
2806			return ret;
2807
2808		/*
2809		 * FUSE reuses pages without going through the final
2810		 * put that would remove them from the LRU list, make
2811		 * sure that they get relinked properly.
2812		 */
2813		__mem_cgroup_commit_charge_lrucare(page, memcg,
2814					MEM_CGROUP_CHARGE_TYPE_CACHE);
2815		return ret;
2816	}
2817	/* shmem */
2818	if (PageSwapCache(page)) {
2819		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2820		if (!ret)
2821			__mem_cgroup_commit_charge_swapin(page, memcg,
2822					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2823	} else
2824		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2825					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2826
2827	return ret;
2828}
2829
2830/*
2831 * While swap-in, try_charge -> commit or cancel, the page is locked.
2832 * And when try_charge() successfully returns, one refcnt to memcg without
2833 * struct page_cgroup is acquired. This refcnt will be consumed by
2834 * "commit()" or removed by "cancel()"
2835 */
2836int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2837				 struct page *page,
2838				 gfp_t mask, struct mem_cgroup **memcgp)
2839{
2840	struct mem_cgroup *memcg;
2841	int ret;
2842
2843	*memcgp = NULL;
2844
2845	if (mem_cgroup_disabled())
2846		return 0;
2847
2848	if (!do_swap_account)
2849		goto charge_cur_mm;
2850	/*
2851	 * A racing thread's fault, or swapoff, may have already updated
2852	 * the pte, and even removed page from swap cache: in those cases
2853	 * do_swap_page()'s pte_same() test will fail; but there's also a
2854	 * KSM case which does need to charge the page.
2855	 */
2856	if (!PageSwapCache(page))
2857		goto charge_cur_mm;
2858	memcg = try_get_mem_cgroup_from_page(page);
2859	if (!memcg)
2860		goto charge_cur_mm;
2861	*memcgp = memcg;
2862	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2863	css_put(&memcg->css);
2864	return ret;
2865charge_cur_mm:
2866	if (unlikely(!mm))
2867		mm = &init_mm;
2868	return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2869}
2870
2871static void
2872__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2873					enum charge_type ctype)
2874{
2875	if (mem_cgroup_disabled())
2876		return;
2877	if (!memcg)
2878		return;
2879	cgroup_exclude_rmdir(&memcg->css);
2880
2881	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2882	/*
2883	 * Now swap is on-memory. This means this page may be
2884	 * counted both as mem and swap....double count.
2885	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2886	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2887	 * may call delete_from_swap_cache() before reach here.
2888	 */
2889	if (do_swap_account && PageSwapCache(page)) {
2890		swp_entry_t ent = {.val = page_private(page)};
2891		struct mem_cgroup *swap_memcg;
2892		unsigned short id;
2893
2894		id = swap_cgroup_record(ent, 0);
2895		rcu_read_lock();
2896		swap_memcg = mem_cgroup_lookup(id);
2897		if (swap_memcg) {
2898			/*
2899			 * This recorded memcg can be obsolete one. So, avoid
2900			 * calling css_tryget
2901			 */
2902			if (!mem_cgroup_is_root(swap_memcg))
2903				res_counter_uncharge(&swap_memcg->memsw,
2904						     PAGE_SIZE);
2905			mem_cgroup_swap_statistics(swap_memcg, false);
2906			mem_cgroup_put(swap_memcg);
2907		}
2908		rcu_read_unlock();
2909	}
2910	/*
2911	 * At swapin, we may charge account against cgroup which has no tasks.
2912	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2913	 * In that case, we need to call pre_destroy() again. check it here.
2914	 */
2915	cgroup_release_and_wakeup_rmdir(&memcg->css);
2916}
2917
2918void mem_cgroup_commit_charge_swapin(struct page *page,
2919				     struct mem_cgroup *memcg)
2920{
2921	__mem_cgroup_commit_charge_swapin(page, memcg,
2922					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
2923}
2924
2925void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2926{
2927	if (mem_cgroup_disabled())
2928		return;
2929	if (!memcg)
2930		return;
2931	__mem_cgroup_cancel_charge(memcg, 1);
2932}
2933
2934static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2935				   unsigned int nr_pages,
2936				   const enum charge_type ctype)
2937{
2938	struct memcg_batch_info *batch = NULL;
2939	bool uncharge_memsw = true;
2940
2941	/* If swapout, usage of swap doesn't decrease */
2942	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2943		uncharge_memsw = false;
2944
2945	batch = &current->memcg_batch;
2946	/*
2947	 * In usual, we do css_get() when we remember memcg pointer.
2948	 * But in this case, we keep res->usage until end of a series of
2949	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2950	 */
2951	if (!batch->memcg)
2952		batch->memcg = memcg;
2953	/*
2954	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2955	 * In those cases, all pages freed continuously can be expected to be in
2956	 * the same cgroup and we have chance to coalesce uncharges.
2957	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2958	 * because we want to do uncharge as soon as possible.
2959	 */
2960
2961	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2962		goto direct_uncharge;
2963
2964	if (nr_pages > 1)
2965		goto direct_uncharge;
2966
2967	/*
2968	 * In typical case, batch->memcg == mem. This means we can
2969	 * merge a series of uncharges to an uncharge of res_counter.
2970	 * If not, we uncharge res_counter ony by one.
2971	 */
2972	if (batch->memcg != memcg)
2973		goto direct_uncharge;
2974	/* remember freed charge and uncharge it later */
2975	batch->nr_pages++;
2976	if (uncharge_memsw)
2977		batch->memsw_nr_pages++;
2978	return;
2979direct_uncharge:
2980	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2981	if (uncharge_memsw)
2982		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2983	if (unlikely(batch->memcg != memcg))
2984		memcg_oom_recover(memcg);
2985	return;
2986}
2987
2988/*
2989 * uncharge if !page_mapped(page)
2990 */
2991static struct mem_cgroup *
2992__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2993{
2994	struct mem_cgroup *memcg = NULL;
2995	unsigned int nr_pages = 1;
2996	struct page_cgroup *pc;
2997
2998	if (mem_cgroup_disabled())
2999		return NULL;
3000
3001	if (PageSwapCache(page))
3002		return NULL;
3003
3004	if (PageTransHuge(page)) {
3005		nr_pages <<= compound_order(page);
3006		VM_BUG_ON(!PageTransHuge(page));
3007	}
3008	/*
3009	 * Check if our page_cgroup is valid
3010	 */
3011	pc = lookup_page_cgroup(page);
3012	if (unlikely(!PageCgroupUsed(pc)))
3013		return NULL;
3014
3015	lock_page_cgroup(pc);
3016
3017	memcg = pc->mem_cgroup;
3018
3019	if (!PageCgroupUsed(pc))
3020		goto unlock_out;
3021
3022	switch (ctype) {
3023	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3024	case MEM_CGROUP_CHARGE_TYPE_DROP:
3025		/* See mem_cgroup_prepare_migration() */
3026		if (page_mapped(page) || PageCgroupMigration(pc))
3027			goto unlock_out;
3028		break;
3029	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3030		if (!PageAnon(page)) {	/* Shared memory */
3031			if (page->mapping && !page_is_file_cache(page))
3032				goto unlock_out;
3033		} else if (page_mapped(page)) /* Anon */
3034				goto unlock_out;
3035		break;
3036	default:
3037		break;
3038	}
3039
3040	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3041
3042	ClearPageCgroupUsed(pc);
3043	/*
3044	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3045	 * freed from LRU. This is safe because uncharged page is expected not
3046	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3047	 * special functions.
3048	 */
3049
3050	unlock_page_cgroup(pc);
3051	/*
3052	 * even after unlock, we have memcg->res.usage here and this memcg
3053	 * will never be freed.
3054	 */
3055	memcg_check_events(memcg, page);
3056	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3057		mem_cgroup_swap_statistics(memcg, true);
3058		mem_cgroup_get(memcg);
3059	}
3060	if (!mem_cgroup_is_root(memcg))
3061		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3062
3063	return memcg;
3064
3065unlock_out:
3066	unlock_page_cgroup(pc);
3067	return NULL;
3068}
3069
3070void mem_cgroup_uncharge_page(struct page *page)
3071{
3072	/* early check. */
3073	if (page_mapped(page))
3074		return;
3075	VM_BUG_ON(page->mapping && !PageAnon(page));
3076	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3077}
3078
3079void mem_cgroup_uncharge_cache_page(struct page *page)
3080{
3081	VM_BUG_ON(page_mapped(page));
3082	VM_BUG_ON(page->mapping);
3083	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3084}
3085
3086/*
3087 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3088 * In that cases, pages are freed continuously and we can expect pages
3089 * are in the same memcg. All these calls itself limits the number of
3090 * pages freed at once, then uncharge_start/end() is called properly.
3091 * This may be called prural(2) times in a context,
3092 */
3093
3094void mem_cgroup_uncharge_start(void)
3095{
3096	current->memcg_batch.do_batch++;
3097	/* We can do nest. */
3098	if (current->memcg_batch.do_batch == 1) {
3099		current->memcg_batch.memcg = NULL;
3100		current->memcg_batch.nr_pages = 0;
3101		current->memcg_batch.memsw_nr_pages = 0;
3102	}
3103}
3104
3105void mem_cgroup_uncharge_end(void)
3106{
3107	struct memcg_batch_info *batch = &current->memcg_batch;
3108
3109	if (!batch->do_batch)
3110		return;
3111
3112	batch->do_batch--;
3113	if (batch->do_batch) /* If stacked, do nothing. */
3114		return;
3115
3116	if (!batch->memcg)
3117		return;
3118	/*
3119	 * This "batch->memcg" is valid without any css_get/put etc...
3120	 * bacause we hide charges behind us.
3121	 */
3122	if (batch->nr_pages)
3123		res_counter_uncharge(&batch->memcg->res,
3124				     batch->nr_pages * PAGE_SIZE);
3125	if (batch->memsw_nr_pages)
3126		res_counter_uncharge(&batch->memcg->memsw,
3127				     batch->memsw_nr_pages * PAGE_SIZE);
3128	memcg_oom_recover(batch->memcg);
3129	/* forget this pointer (for sanity check) */
3130	batch->memcg = NULL;
3131}
3132
3133#ifdef CONFIG_SWAP
3134/*
3135 * called after __delete_from_swap_cache() and drop "page" account.
3136 * memcg information is recorded to swap_cgroup of "ent"
3137 */
3138void
3139mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3140{
3141	struct mem_cgroup *memcg;
3142	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3143
3144	if (!swapout) /* this was a swap cache but the swap is unused ! */
3145		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3146
3147	memcg = __mem_cgroup_uncharge_common(page, ctype);
3148
3149	/*
3150	 * record memcg information,  if swapout && memcg != NULL,
3151	 * mem_cgroup_get() was called in uncharge().
3152	 */
3153	if (do_swap_account && swapout && memcg)
3154		swap_cgroup_record(ent, css_id(&memcg->css));
3155}
3156#endif
3157
3158#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3159/*
3160 * called from swap_entry_free(). remove record in swap_cgroup and
3161 * uncharge "memsw" account.
3162 */
3163void mem_cgroup_uncharge_swap(swp_entry_t ent)
3164{
3165	struct mem_cgroup *memcg;
3166	unsigned short id;
3167
3168	if (!do_swap_account)
3169		return;
3170
3171	id = swap_cgroup_record(ent, 0);
3172	rcu_read_lock();
3173	memcg = mem_cgroup_lookup(id);
3174	if (memcg) {
3175		/*
3176		 * We uncharge this because swap is freed.
3177		 * This memcg can be obsolete one. We avoid calling css_tryget
3178		 */
3179		if (!mem_cgroup_is_root(memcg))
3180			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3181		mem_cgroup_swap_statistics(memcg, false);
3182		mem_cgroup_put(memcg);
3183	}
3184	rcu_read_unlock();
3185}
3186
3187/**
3188 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3189 * @entry: swap entry to be moved
3190 * @from:  mem_cgroup which the entry is moved from
3191 * @to:  mem_cgroup which the entry is moved to
3192 * @need_fixup: whether we should fixup res_counters and refcounts.
3193 *
3194 * It succeeds only when the swap_cgroup's record for this entry is the same
3195 * as the mem_cgroup's id of @from.
3196 *
3197 * Returns 0 on success, -EINVAL on failure.
3198 *
3199 * The caller must have charged to @to, IOW, called res_counter_charge() about
3200 * both res and memsw, and called css_get().
3201 */
3202static int mem_cgroup_move_swap_account(swp_entry_t entry,
3203		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3204{
3205	unsigned short old_id, new_id;
3206
3207	old_id = css_id(&from->css);
3208	new_id = css_id(&to->css);
3209
3210	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3211		mem_cgroup_swap_statistics(from, false);
3212		mem_cgroup_swap_statistics(to, true);
3213		/*
3214		 * This function is only called from task migration context now.
3215		 * It postpones res_counter and refcount handling till the end
3216		 * of task migration(mem_cgroup_clear_mc()) for performance
3217		 * improvement. But we cannot postpone mem_cgroup_get(to)
3218		 * because if the process that has been moved to @to does
3219		 * swap-in, the refcount of @to might be decreased to 0.
3220		 */
3221		mem_cgroup_get(to);
3222		if (need_fixup) {
3223			if (!mem_cgroup_is_root(from))
3224				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3225			mem_cgroup_put(from);
3226			/*
3227			 * we charged both to->res and to->memsw, so we should
3228			 * uncharge to->res.
3229			 */
3230			if (!mem_cgroup_is_root(to))
3231				res_counter_uncharge(&to->res, PAGE_SIZE);
3232		}
3233		return 0;
3234	}
3235	return -EINVAL;
3236}
3237#else
3238static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3239		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3240{
3241	return -EINVAL;
3242}
3243#endif
3244
3245/*
3246 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3247 * page belongs to.
3248 */
3249int mem_cgroup_prepare_migration(struct page *page,
3250	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3251{
3252	struct mem_cgroup *memcg = NULL;
3253	struct page_cgroup *pc;
3254	enum charge_type ctype;
3255	int ret = 0;
3256
3257	*memcgp = NULL;
3258
3259	VM_BUG_ON(PageTransHuge(page));
3260	if (mem_cgroup_disabled())
3261		return 0;
3262
3263	pc = lookup_page_cgroup(page);
3264	lock_page_cgroup(pc);
3265	if (PageCgroupUsed(pc)) {
3266		memcg = pc->mem_cgroup;
3267		css_get(&memcg->css);
3268		/*
3269		 * At migrating an anonymous page, its mapcount goes down
3270		 * to 0 and uncharge() will be called. But, even if it's fully
3271		 * unmapped, migration may fail and this page has to be
3272		 * charged again. We set MIGRATION flag here and delay uncharge
3273		 * until end_migration() is called
3274		 *
3275		 * Corner Case Thinking
3276		 * A)
3277		 * When the old page was mapped as Anon and it's unmap-and-freed
3278		 * while migration was ongoing.
3279		 * If unmap finds the old page, uncharge() of it will be delayed
3280		 * until end_migration(). If unmap finds a new page, it's
3281		 * uncharged when it make mapcount to be 1->0. If unmap code
3282		 * finds swap_migration_entry, the new page will not be mapped
3283		 * and end_migration() will find it(mapcount==0).
3284		 *
3285		 * B)
3286		 * When the old page was mapped but migraion fails, the kernel
3287		 * remaps it. A charge for it is kept by MIGRATION flag even
3288		 * if mapcount goes down to 0. We can do remap successfully
3289		 * without charging it again.
3290		 *
3291		 * C)
3292		 * The "old" page is under lock_page() until the end of
3293		 * migration, so, the old page itself will not be swapped-out.
3294		 * If the new page is swapped out before end_migraton, our
3295		 * hook to usual swap-out path will catch the event.
3296		 */
3297		if (PageAnon(page))
3298			SetPageCgroupMigration(pc);
3299	}
3300	unlock_page_cgroup(pc);
3301	/*
3302	 * If the page is not charged at this point,
3303	 * we return here.
3304	 */
3305	if (!memcg)
3306		return 0;
3307
3308	*memcgp = memcg;
3309	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3310	css_put(&memcg->css);/* drop extra refcnt */
3311	if (ret || *memcgp == NULL) {
3312		if (PageAnon(page)) {
3313			lock_page_cgroup(pc);
3314			ClearPageCgroupMigration(pc);
3315			unlock_page_cgroup(pc);
3316			/*
3317			 * The old page may be fully unmapped while we kept it.
3318			 */
3319			mem_cgroup_uncharge_page(page);
3320		}
3321		return -ENOMEM;
3322	}
3323	/*
3324	 * We charge new page before it's used/mapped. So, even if unlock_page()
3325	 * is called before end_migration, we can catch all events on this new
3326	 * page. In the case new page is migrated but not remapped, new page's
3327	 * mapcount will be finally 0 and we call uncharge in end_migration().
3328	 */
3329	pc = lookup_page_cgroup(newpage);
3330	if (PageAnon(page))
3331		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3332	else if (page_is_file_cache(page))
3333		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3334	else
3335		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3336	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3337	return ret;
3338}
3339
3340/* remove redundant charge if migration failed*/
3341void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3342	struct page *oldpage, struct page *newpage, bool migration_ok)
3343{
3344	struct page *used, *unused;
3345	struct page_cgroup *pc;
3346
3347	if (!memcg)
3348		return;
3349	/* blocks rmdir() */
3350	cgroup_exclude_rmdir(&memcg->css);
3351	if (!migration_ok) {
3352		used = oldpage;
3353		unused = newpage;
3354	} else {
3355		used = newpage;
3356		unused = oldpage;
3357	}
3358	/*
3359	 * We disallowed uncharge of pages under migration because mapcount
3360	 * of the page goes down to zero, temporarly.
3361	 * Clear the flag and check the page should be charged.
3362	 */
3363	pc = lookup_page_cgroup(oldpage);
3364	lock_page_cgroup(pc);
3365	ClearPageCgroupMigration(pc);
3366	unlock_page_cgroup(pc);
3367
3368	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3369
3370	/*
3371	 * If a page is a file cache, radix-tree replacement is very atomic
3372	 * and we can skip this check. When it was an Anon page, its mapcount
3373	 * goes down to 0. But because we added MIGRATION flage, it's not
3374	 * uncharged yet. There are several case but page->mapcount check
3375	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3376	 * check. (see prepare_charge() also)
3377	 */
3378	if (PageAnon(used))
3379		mem_cgroup_uncharge_page(used);
3380	/*
3381	 * At migration, we may charge account against cgroup which has no
3382	 * tasks.
3383	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3384	 * In that case, we need to call pre_destroy() again. check it here.
3385	 */
3386	cgroup_release_and_wakeup_rmdir(&memcg->css);
3387}
3388
3389/*
3390 * At replace page cache, newpage is not under any memcg but it's on
3391 * LRU. So, this function doesn't touch res_counter but handles LRU
3392 * in correct way. Both pages are locked so we cannot race with uncharge.
3393 */
3394void mem_cgroup_replace_page_cache(struct page *oldpage,
3395				  struct page *newpage)
3396{
3397	struct mem_cgroup *memcg;
3398	struct page_cgroup *pc;
3399	struct zone *zone;
3400	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3401	unsigned long flags;
3402
3403	if (mem_cgroup_disabled())
3404		return;
3405
3406	pc = lookup_page_cgroup(oldpage);
3407	/* fix accounting on old pages */
3408	lock_page_cgroup(pc);
3409	memcg = pc->mem_cgroup;
3410	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3411	ClearPageCgroupUsed(pc);
3412	unlock_page_cgroup(pc);
3413
3414	if (PageSwapBacked(oldpage))
3415		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3416
3417	zone = page_zone(newpage);
3418	pc = lookup_page_cgroup(newpage);
3419	/*
3420	 * Even if newpage->mapping was NULL before starting replacement,
3421	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3422	 * LRU while we overwrite pc->mem_cgroup.
3423	 */
3424	spin_lock_irqsave(&zone->lru_lock, flags);
3425	if (PageLRU(newpage))
3426		del_page_from_lru_list(zone, newpage, page_lru(newpage));
3427	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3428	if (PageLRU(newpage))
3429		add_page_to_lru_list(zone, newpage, page_lru(newpage));
3430	spin_unlock_irqrestore(&zone->lru_lock, flags);
3431}
3432
3433#ifdef CONFIG_DEBUG_VM
3434static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3435{
3436	struct page_cgroup *pc;
3437
3438	pc = lookup_page_cgroup(page);
3439	/*
3440	 * Can be NULL while feeding pages into the page allocator for
3441	 * the first time, i.e. during boot or memory hotplug;
3442	 * or when mem_cgroup_disabled().
3443	 */
3444	if (likely(pc) && PageCgroupUsed(pc))
3445		return pc;
3446	return NULL;
3447}
3448
3449bool mem_cgroup_bad_page_check(struct page *page)
3450{
3451	if (mem_cgroup_disabled())
3452		return false;
3453
3454	return lookup_page_cgroup_used(page) != NULL;
3455}
3456
3457void mem_cgroup_print_bad_page(struct page *page)
3458{
3459	struct page_cgroup *pc;
3460
3461	pc = lookup_page_cgroup_used(page);
3462	if (pc) {
3463		int ret = -1;
3464		char *path;
3465
3466		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3467		       pc, pc->flags, pc->mem_cgroup);
3468
3469		path = kmalloc(PATH_MAX, GFP_KERNEL);
3470		if (path) {
3471			rcu_read_lock();
3472			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3473							path, PATH_MAX);
3474			rcu_read_unlock();
3475		}
3476
3477		printk(KERN_CONT "(%s)\n",
3478				(ret < 0) ? "cannot get the path" : path);
3479		kfree(path);
3480	}
3481}
3482#endif
3483
3484static DEFINE_MUTEX(set_limit_mutex);
3485
3486static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3487				unsigned long long val)
3488{
3489	int retry_count;
3490	u64 memswlimit, memlimit;
3491	int ret = 0;
3492	int children = mem_cgroup_count_children(memcg);
3493	u64 curusage, oldusage;
3494	int enlarge;
3495
3496	/*
3497	 * For keeping hierarchical_reclaim simple, how long we should retry
3498	 * is depends on callers. We set our retry-count to be function
3499	 * of # of children which we should visit in this loop.
3500	 */
3501	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3502
3503	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3504
3505	enlarge = 0;
3506	while (retry_count) {
3507		if (signal_pending(current)) {
3508			ret = -EINTR;
3509			break;
3510		}
3511		/*
3512		 * Rather than hide all in some function, I do this in
3513		 * open coded manner. You see what this really does.
3514		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3515		 */
3516		mutex_lock(&set_limit_mutex);
3517		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3518		if (memswlimit < val) {
3519			ret = -EINVAL;
3520			mutex_unlock(&set_limit_mutex);
3521			break;
3522		}
3523
3524		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3525		if (memlimit < val)
3526			enlarge = 1;
3527
3528		ret = res_counter_set_limit(&memcg->res, val);
3529		if (!ret) {
3530			if (memswlimit == val)
3531				memcg->memsw_is_minimum = true;
3532			else
3533				memcg->memsw_is_minimum = false;
3534		}
3535		mutex_unlock(&set_limit_mutex);
3536
3537		if (!ret)
3538			break;
3539
3540		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3541				   MEM_CGROUP_RECLAIM_SHRINK);
3542		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3543		/* Usage is reduced ? */
3544  		if (curusage >= oldusage)
3545			retry_count--;
3546		else
3547			oldusage = curusage;
3548	}
3549	if (!ret && enlarge)
3550		memcg_oom_recover(memcg);
3551
3552	return ret;
3553}
3554
3555static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3556					unsigned long long val)
3557{
3558	int retry_count;
3559	u64 memlimit, memswlimit, oldusage, curusage;
3560	int children = mem_cgroup_count_children(memcg);
3561	int ret = -EBUSY;
3562	int enlarge = 0;
3563
3564	/* see mem_cgroup_resize_res_limit */
3565 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3566	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3567	while (retry_count) {
3568		if (signal_pending(current)) {
3569			ret = -EINTR;
3570			break;
3571		}
3572		/*
3573		 * Rather than hide all in some function, I do this in
3574		 * open coded manner. You see what this really does.
3575		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3576		 */
3577		mutex_lock(&set_limit_mutex);
3578		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3579		if (memlimit > val) {
3580			ret = -EINVAL;
3581			mutex_unlock(&set_limit_mutex);
3582			break;
3583		}
3584		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3585		if (memswlimit < val)
3586			enlarge = 1;
3587		ret = res_counter_set_limit(&memcg->memsw, val);
3588		if (!ret) {
3589			if (memlimit == val)
3590				memcg->memsw_is_minimum = true;
3591			else
3592				memcg->memsw_is_minimum = false;
3593		}
3594		mutex_unlock(&set_limit_mutex);
3595
3596		if (!ret)
3597			break;
3598
3599		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3600				   MEM_CGROUP_RECLAIM_NOSWAP |
3601				   MEM_CGROUP_RECLAIM_SHRINK);
3602		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3603		/* Usage is reduced ? */
3604		if (curusage >= oldusage)
3605			retry_count--;
3606		else
3607			oldusage = curusage;
3608	}
3609	if (!ret && enlarge)
3610		memcg_oom_recover(memcg);
3611	return ret;
3612}
3613
3614unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3615					    gfp_t gfp_mask,
3616					    unsigned long *total_scanned)
3617{
3618	unsigned long nr_reclaimed = 0;
3619	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3620	unsigned long reclaimed;
3621	int loop = 0;
3622	struct mem_cgroup_tree_per_zone *mctz;
3623	unsigned long long excess;
3624	unsigned long nr_scanned;
3625
3626	if (order > 0)
3627		return 0;
3628
3629	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3630	/*
3631	 * This loop can run a while, specially if mem_cgroup's continuously
3632	 * keep exceeding their soft limit and putting the system under
3633	 * pressure
3634	 */
3635	do {
3636		if (next_mz)
3637			mz = next_mz;
3638		else
3639			mz = mem_cgroup_largest_soft_limit_node(mctz);
3640		if (!mz)
3641			break;
3642
3643		nr_scanned = 0;
3644		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3645						    gfp_mask, &nr_scanned);
3646		nr_reclaimed += reclaimed;
3647		*total_scanned += nr_scanned;
3648		spin_lock(&mctz->lock);
3649
3650		/*
3651		 * If we failed to reclaim anything from this memory cgroup
3652		 * it is time to move on to the next cgroup
3653		 */
3654		next_mz = NULL;
3655		if (!reclaimed) {
3656			do {
3657				/*
3658				 * Loop until we find yet another one.
3659				 *
3660				 * By the time we get the soft_limit lock
3661				 * again, someone might have aded the
3662				 * group back on the RB tree. Iterate to
3663				 * make sure we get a different mem.
3664				 * mem_cgroup_largest_soft_limit_node returns
3665				 * NULL if no other cgroup is present on
3666				 * the tree
3667				 */
3668				next_mz =
3669				__mem_cgroup_largest_soft_limit_node(mctz);
3670				if (next_mz == mz)
3671					css_put(&next_mz->mem->css);
3672				else /* next_mz == NULL or other memcg */
3673					break;
3674			} while (1);
3675		}
3676		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3677		excess = res_counter_soft_limit_excess(&mz->mem->res);
3678		/*
3679		 * One school of thought says that we should not add
3680		 * back the node to the tree if reclaim returns 0.
3681		 * But our reclaim could return 0, simply because due
3682		 * to priority we are exposing a smaller subset of
3683		 * memory to reclaim from. Consider this as a longer
3684		 * term TODO.
3685		 */
3686		/* If excess == 0, no tree ops */
3687		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3688		spin_unlock(&mctz->lock);
3689		css_put(&mz->mem->css);
3690		loop++;
3691		/*
3692		 * Could not reclaim anything and there are no more
3693		 * mem cgroups to try or we seem to be looping without
3694		 * reclaiming anything.
3695		 */
3696		if (!nr_reclaimed &&
3697			(next_mz == NULL ||
3698			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3699			break;
3700	} while (!nr_reclaimed);
3701	if (next_mz)
3702		css_put(&next_mz->mem->css);
3703	return nr_reclaimed;
3704}
3705
3706/*
3707 * This routine traverse page_cgroup in given list and drop them all.
3708 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3709 */
3710static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3711				int node, int zid, enum lru_list lru)
3712{
3713	struct mem_cgroup_per_zone *mz;
3714	unsigned long flags, loop;
3715	struct list_head *list;
3716	struct page *busy;
3717	struct zone *zone;
3718	int ret = 0;
3719
3720	zone = &NODE_DATA(node)->node_zones[zid];
3721	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3722	list = &mz->lruvec.lists[lru];
3723
3724	loop = MEM_CGROUP_ZSTAT(mz, lru);
3725	/* give some margin against EBUSY etc...*/
3726	loop += 256;
3727	busy = NULL;
3728	while (loop--) {
3729		struct page_cgroup *pc;
3730		struct page *page;
3731
3732		ret = 0;
3733		spin_lock_irqsave(&zone->lru_lock, flags);
3734		if (list_empty(list)) {
3735			spin_unlock_irqrestore(&zone->lru_lock, flags);
3736			break;
3737		}
3738		page = list_entry(list->prev, struct page, lru);
3739		if (busy == page) {
3740			list_move(&page->lru, list);
3741			busy = NULL;
3742			spin_unlock_irqrestore(&zone->lru_lock, flags);
3743			continue;
3744		}
3745		spin_unlock_irqrestore(&zone->lru_lock, flags);
3746
3747		pc = lookup_page_cgroup(page);
3748
3749		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3750		if (ret == -ENOMEM)
3751			break;
3752
3753		if (ret == -EBUSY || ret == -EINVAL) {
3754			/* found lock contention or "pc" is obsolete. */
3755			busy = page;
3756			cond_resched();
3757		} else
3758			busy = NULL;
3759	}
3760
3761	if (!ret && !list_empty(list))
3762		return -EBUSY;
3763	return ret;
3764}
3765
3766/*
3767 * make mem_cgroup's charge to be 0 if there is no task.
3768 * This enables deleting this mem_cgroup.
3769 */
3770static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3771{
3772	int ret;
3773	int node, zid, shrink;
3774	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3775	struct cgroup *cgrp = memcg->css.cgroup;
3776
3777	css_get(&memcg->css);
3778
3779	shrink = 0;
3780	/* should free all ? */
3781	if (free_all)
3782		goto try_to_free;
3783move_account:
3784	do {
3785		ret = -EBUSY;
3786		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3787			goto out;
3788		ret = -EINTR;
3789		if (signal_pending(current))
3790			goto out;
3791		/* This is for making all *used* pages to be on LRU. */
3792		lru_add_drain_all();
3793		drain_all_stock_sync(memcg);
3794		ret = 0;
3795		mem_cgroup_start_move(memcg);
3796		for_each_node_state(node, N_HIGH_MEMORY) {
3797			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3798				enum lru_list l;
3799				for_each_lru(l) {
3800					ret = mem_cgroup_force_empty_list(memcg,
3801							node, zid, l);
3802					if (ret)
3803						break;
3804				}
3805			}
3806			if (ret)
3807				break;
3808		}
3809		mem_cgroup_end_move(memcg);
3810		memcg_oom_recover(memcg);
3811		/* it seems parent cgroup doesn't have enough mem */
3812		if (ret == -ENOMEM)
3813			goto try_to_free;
3814		cond_resched();
3815	/* "ret" should also be checked to ensure all lists are empty. */
3816	} while (memcg->res.usage > 0 || ret);
3817out:
3818	css_put(&memcg->css);
3819	return ret;
3820
3821try_to_free:
3822	/* returns EBUSY if there is a task or if we come here twice. */
3823	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3824		ret = -EBUSY;
3825		goto out;
3826	}
3827	/* we call try-to-free pages for make this cgroup empty */
3828	lru_add_drain_all();
3829	/* try to free all pages in this cgroup */
3830	shrink = 1;
3831	while (nr_retries && memcg->res.usage > 0) {
3832		int progress;
3833
3834		if (signal_pending(current)) {
3835			ret = -EINTR;
3836			goto out;
3837		}
3838		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3839						false);
3840		if (!progress) {
3841			nr_retries--;
3842			/* maybe some writeback is necessary */
3843			congestion_wait(BLK_RW_ASYNC, HZ/10);
3844		}
3845
3846	}
3847	lru_add_drain();
3848	/* try move_account...there may be some *locked* pages. */
3849	goto move_account;
3850}
3851
3852int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3853{
3854	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3855}
3856
3857
3858static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3859{
3860	return mem_cgroup_from_cont(cont)->use_hierarchy;
3861}
3862
3863static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3864					u64 val)
3865{
3866	int retval = 0;
3867	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3868	struct cgroup *parent = cont->parent;
3869	struct mem_cgroup *parent_memcg = NULL;
3870
3871	if (parent)
3872		parent_memcg = mem_cgroup_from_cont(parent);
3873
3874	cgroup_lock();
3875	/*
3876	 * If parent's use_hierarchy is set, we can't make any modifications
3877	 * in the child subtrees. If it is unset, then the change can
3878	 * occur, provided the current cgroup has no children.
3879	 *
3880	 * For the root cgroup, parent_mem is NULL, we allow value to be
3881	 * set if there are no children.
3882	 */
3883	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3884				(val == 1 || val == 0)) {
3885		if (list_empty(&cont->children))
3886			memcg->use_hierarchy = val;
3887		else
3888			retval = -EBUSY;
3889	} else
3890		retval = -EINVAL;
3891	cgroup_unlock();
3892
3893	return retval;
3894}
3895
3896
3897static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3898					       enum mem_cgroup_stat_index idx)
3899{
3900	struct mem_cgroup *iter;
3901	long val = 0;
3902
3903	/* Per-cpu values can be negative, use a signed accumulator */
3904	for_each_mem_cgroup_tree(iter, memcg)
3905		val += mem_cgroup_read_stat(iter, idx);
3906
3907	if (val < 0) /* race ? */
3908		val = 0;
3909	return val;
3910}
3911
3912static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3913{
3914	u64 val;
3915
3916	if (!mem_cgroup_is_root(memcg)) {
3917		if (!swap)
3918			return res_counter_read_u64(&memcg->res, RES_USAGE);
3919		else
3920			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3921	}
3922
3923	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3924	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3925
3926	if (swap)
3927		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3928
3929	return val << PAGE_SHIFT;
3930}
3931
3932static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3933{
3934	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3935	u64 val;
3936	int type, name;
3937
3938	type = MEMFILE_TYPE(cft->private);
3939	name = MEMFILE_ATTR(cft->private);
3940	switch (type) {
3941	case _MEM:
3942		if (name == RES_USAGE)
3943			val = mem_cgroup_usage(memcg, false);
3944		else
3945			val = res_counter_read_u64(&memcg->res, name);
3946		break;
3947	case _MEMSWAP:
3948		if (name == RES_USAGE)
3949			val = mem_cgroup_usage(memcg, true);
3950		else
3951			val = res_counter_read_u64(&memcg->memsw, name);
3952		break;
3953	default:
3954		BUG();
3955		break;
3956	}
3957	return val;
3958}
3959/*
3960 * The user of this function is...
3961 * RES_LIMIT.
3962 */
3963static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3964			    const char *buffer)
3965{
3966	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3967	int type, name;
3968	unsigned long long val;
3969	int ret;
3970
3971	type = MEMFILE_TYPE(cft->private);
3972	name = MEMFILE_ATTR(cft->private);
3973	switch (name) {
3974	case RES_LIMIT:
3975		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3976			ret = -EINVAL;
3977			break;
3978		}
3979		/* This function does all necessary parse...reuse it */
3980		ret = res_counter_memparse_write_strategy(buffer, &val);
3981		if (ret)
3982			break;
3983		if (type == _MEM)
3984			ret = mem_cgroup_resize_limit(memcg, val);
3985		else
3986			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3987		break;
3988	case RES_SOFT_LIMIT:
3989		ret = res_counter_memparse_write_strategy(buffer, &val);
3990		if (ret)
3991			break;
3992		/*
3993		 * For memsw, soft limits are hard to implement in terms
3994		 * of semantics, for now, we support soft limits for
3995		 * control without swap
3996		 */
3997		if (type == _MEM)
3998			ret = res_counter_set_soft_limit(&memcg->res, val);
3999		else
4000			ret = -EINVAL;
4001		break;
4002	default:
4003		ret = -EINVAL; /* should be BUG() ? */
4004		break;
4005	}
4006	return ret;
4007}
4008
4009static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4010		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4011{
4012	struct cgroup *cgroup;
4013	unsigned long long min_limit, min_memsw_limit, tmp;
4014
4015	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4016	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4017	cgroup = memcg->css.cgroup;
4018	if (!memcg->use_hierarchy)
4019		goto out;
4020
4021	while (cgroup->parent) {
4022		cgroup = cgroup->parent;
4023		memcg = mem_cgroup_from_cont(cgroup);
4024		if (!memcg->use_hierarchy)
4025			break;
4026		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4027		min_limit = min(min_limit, tmp);
4028		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4029		min_memsw_limit = min(min_memsw_limit, tmp);
4030	}
4031out:
4032	*mem_limit = min_limit;
4033	*memsw_limit = min_memsw_limit;
4034	return;
4035}
4036
4037static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4038{
4039	struct mem_cgroup *memcg;
4040	int type, name;
4041
4042	memcg = mem_cgroup_from_cont(cont);
4043	type = MEMFILE_TYPE(event);
4044	name = MEMFILE_ATTR(event);
4045	switch (name) {
4046	case RES_MAX_USAGE:
4047		if (type == _MEM)
4048			res_counter_reset_max(&memcg->res);
4049		else
4050			res_counter_reset_max(&memcg->memsw);
4051		break;
4052	case RES_FAILCNT:
4053		if (type == _MEM)
4054			res_counter_reset_failcnt(&memcg->res);
4055		else
4056			res_counter_reset_failcnt(&memcg->memsw);
4057		break;
4058	}
4059
4060	return 0;
4061}
4062
4063static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4064					struct cftype *cft)
4065{
4066	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4067}
4068
4069#ifdef CONFIG_MMU
4070static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4071					struct cftype *cft, u64 val)
4072{
4073	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4074
4075	if (val >= (1 << NR_MOVE_TYPE))
4076		return -EINVAL;
4077	/*
4078	 * We check this value several times in both in can_attach() and
4079	 * attach(), so we need cgroup lock to prevent this value from being
4080	 * inconsistent.
4081	 */
4082	cgroup_lock();
4083	memcg->move_charge_at_immigrate = val;
4084	cgroup_unlock();
4085
4086	return 0;
4087}
4088#else
4089static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4090					struct cftype *cft, u64 val)
4091{
4092	return -ENOSYS;
4093}
4094#endif
4095
4096
4097/* For read statistics */
4098enum {
4099	MCS_CACHE,
4100	MCS_RSS,
4101	MCS_FILE_MAPPED,
4102	MCS_PGPGIN,
4103	MCS_PGPGOUT,
4104	MCS_SWAP,
4105	MCS_PGFAULT,
4106	MCS_PGMAJFAULT,
4107	MCS_INACTIVE_ANON,
4108	MCS_ACTIVE_ANON,
4109	MCS_INACTIVE_FILE,
4110	MCS_ACTIVE_FILE,
4111	MCS_UNEVICTABLE,
4112	NR_MCS_STAT,
4113};
4114
4115struct mcs_total_stat {
4116	s64 stat[NR_MCS_STAT];
4117};
4118
4119struct {
4120	char *local_name;
4121	char *total_name;
4122} memcg_stat_strings[NR_MCS_STAT] = {
4123	{"cache", "total_cache"},
4124	{"rss", "total_rss"},
4125	{"mapped_file", "total_mapped_file"},
4126	{"pgpgin", "total_pgpgin"},
4127	{"pgpgout", "total_pgpgout"},
4128	{"swap", "total_swap"},
4129	{"pgfault", "total_pgfault"},
4130	{"pgmajfault", "total_pgmajfault"},
4131	{"inactive_anon", "total_inactive_anon"},
4132	{"active_anon", "total_active_anon"},
4133	{"inactive_file", "total_inactive_file"},
4134	{"active_file", "total_active_file"},
4135	{"unevictable", "total_unevictable"}
4136};
4137
4138
4139static void
4140mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4141{
4142	s64 val;
4143
4144	/* per cpu stat */
4145	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4146	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4147	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4148	s->stat[MCS_RSS] += val * PAGE_SIZE;
4149	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4150	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4151	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4152	s->stat[MCS_PGPGIN] += val;
4153	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4154	s->stat[MCS_PGPGOUT] += val;
4155	if (do_swap_account) {
4156		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4157		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4158	}
4159	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4160	s->stat[MCS_PGFAULT] += val;
4161	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4162	s->stat[MCS_PGMAJFAULT] += val;
4163
4164	/* per zone stat */
4165	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4166	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4167	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4168	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4169	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4170	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4171	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4172	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4173	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4174	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4175}
4176
4177static void
4178mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4179{
4180	struct mem_cgroup *iter;
4181
4182	for_each_mem_cgroup_tree(iter, memcg)
4183		mem_cgroup_get_local_stat(iter, s);
4184}
4185
4186#ifdef CONFIG_NUMA
4187static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4188{
4189	int nid;
4190	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4191	unsigned long node_nr;
4192	struct cgroup *cont = m->private;
4193	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4194
4195	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4196	seq_printf(m, "total=%lu", total_nr);
4197	for_each_node_state(nid, N_HIGH_MEMORY) {
4198		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4199		seq_printf(m, " N%d=%lu", nid, node_nr);
4200	}
4201	seq_putc(m, '\n');
4202
4203	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4204	seq_printf(m, "file=%lu", file_nr);
4205	for_each_node_state(nid, N_HIGH_MEMORY) {
4206		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4207				LRU_ALL_FILE);
4208		seq_printf(m, " N%d=%lu", nid, node_nr);
4209	}
4210	seq_putc(m, '\n');
4211
4212	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4213	seq_printf(m, "anon=%lu", anon_nr);
4214	for_each_node_state(nid, N_HIGH_MEMORY) {
4215		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4216				LRU_ALL_ANON);
4217		seq_printf(m, " N%d=%lu", nid, node_nr);
4218	}
4219	seq_putc(m, '\n');
4220
4221	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4222	seq_printf(m, "unevictable=%lu", unevictable_nr);
4223	for_each_node_state(nid, N_HIGH_MEMORY) {
4224		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4225				BIT(LRU_UNEVICTABLE));
4226		seq_printf(m, " N%d=%lu", nid, node_nr);
4227	}
4228	seq_putc(m, '\n');
4229	return 0;
4230}
4231#endif /* CONFIG_NUMA */
4232
4233static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4234				 struct cgroup_map_cb *cb)
4235{
4236	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4237	struct mcs_total_stat mystat;
4238	int i;
4239
4240	memset(&mystat, 0, sizeof(mystat));
4241	mem_cgroup_get_local_stat(mem_cont, &mystat);
4242
4243
4244	for (i = 0; i < NR_MCS_STAT; i++) {
4245		if (i == MCS_SWAP && !do_swap_account)
4246			continue;
4247		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4248	}
4249
4250	/* Hierarchical information */
4251	{
4252		unsigned long long limit, memsw_limit;
4253		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4254		cb->fill(cb, "hierarchical_memory_limit", limit);
4255		if (do_swap_account)
4256			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4257	}
4258
4259	memset(&mystat, 0, sizeof(mystat));
4260	mem_cgroup_get_total_stat(mem_cont, &mystat);
4261	for (i = 0; i < NR_MCS_STAT; i++) {
4262		if (i == MCS_SWAP && !do_swap_account)
4263			continue;
4264		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4265	}
4266
4267#ifdef CONFIG_DEBUG_VM
4268	{
4269		int nid, zid;
4270		struct mem_cgroup_per_zone *mz;
4271		unsigned long recent_rotated[2] = {0, 0};
4272		unsigned long recent_scanned[2] = {0, 0};
4273
4274		for_each_online_node(nid)
4275			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4276				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4277
4278				recent_rotated[0] +=
4279					mz->reclaim_stat.recent_rotated[0];
4280				recent_rotated[1] +=
4281					mz->reclaim_stat.recent_rotated[1];
4282				recent_scanned[0] +=
4283					mz->reclaim_stat.recent_scanned[0];
4284				recent_scanned[1] +=
4285					mz->reclaim_stat.recent_scanned[1];
4286			}
4287		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4288		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4289		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4290		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4291	}
4292#endif
4293
4294	return 0;
4295}
4296
4297static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4298{
4299	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4300
4301	return mem_cgroup_swappiness(memcg);
4302}
4303
4304static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4305				       u64 val)
4306{
4307	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4308	struct mem_cgroup *parent;
4309
4310	if (val > 100)
4311		return -EINVAL;
4312
4313	if (cgrp->parent == NULL)
4314		return -EINVAL;
4315
4316	parent = mem_cgroup_from_cont(cgrp->parent);
4317
4318	cgroup_lock();
4319
4320	/* If under hierarchy, only empty-root can set this value */
4321	if ((parent->use_hierarchy) ||
4322	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4323		cgroup_unlock();
4324		return -EINVAL;
4325	}
4326
4327	memcg->swappiness = val;
4328
4329	cgroup_unlock();
4330
4331	return 0;
4332}
4333
4334static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4335{
4336	struct mem_cgroup_threshold_ary *t;
4337	u64 usage;
4338	int i;
4339
4340	rcu_read_lock();
4341	if (!swap)
4342		t = rcu_dereference(memcg->thresholds.primary);
4343	else
4344		t = rcu_dereference(memcg->memsw_thresholds.primary);
4345
4346	if (!t)
4347		goto unlock;
4348
4349	usage = mem_cgroup_usage(memcg, swap);
4350
4351	/*
4352	 * current_threshold points to threshold just below usage.
4353	 * If it's not true, a threshold was crossed after last
4354	 * call of __mem_cgroup_threshold().
4355	 */
4356	i = t->current_threshold;
4357
4358	/*
4359	 * Iterate backward over array of thresholds starting from
4360	 * current_threshold and check if a threshold is crossed.
4361	 * If none of thresholds below usage is crossed, we read
4362	 * only one element of the array here.
4363	 */
4364	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4365		eventfd_signal(t->entries[i].eventfd, 1);
4366
4367	/* i = current_threshold + 1 */
4368	i++;
4369
4370	/*
4371	 * Iterate forward over array of thresholds starting from
4372	 * current_threshold+1 and check if a threshold is crossed.
4373	 * If none of thresholds above usage is crossed, we read
4374	 * only one element of the array here.
4375	 */
4376	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4377		eventfd_signal(t->entries[i].eventfd, 1);
4378
4379	/* Update current_threshold */
4380	t->current_threshold = i - 1;
4381unlock:
4382	rcu_read_unlock();
4383}
4384
4385static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4386{
4387	while (memcg) {
4388		__mem_cgroup_threshold(memcg, false);
4389		if (do_swap_account)
4390			__mem_cgroup_threshold(memcg, true);
4391
4392		memcg = parent_mem_cgroup(memcg);
4393	}
4394}
4395
4396static int compare_thresholds(const void *a, const void *b)
4397{
4398	const struct mem_cgroup_threshold *_a = a;
4399	const struct mem_cgroup_threshold *_b = b;
4400
4401	return _a->threshold - _b->threshold;
4402}
4403
4404static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4405{
4406	struct mem_cgroup_eventfd_list *ev;
4407
4408	list_for_each_entry(ev, &memcg->oom_notify, list)
4409		eventfd_signal(ev->eventfd, 1);
4410	return 0;
4411}
4412
4413static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4414{
4415	struct mem_cgroup *iter;
4416
4417	for_each_mem_cgroup_tree(iter, memcg)
4418		mem_cgroup_oom_notify_cb(iter);
4419}
4420
4421static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4422	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4423{
4424	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4425	struct mem_cgroup_thresholds *thresholds;
4426	struct mem_cgroup_threshold_ary *new;
4427	int type = MEMFILE_TYPE(cft->private);
4428	u64 threshold, usage;
4429	int i, size, ret;
4430
4431	ret = res_counter_memparse_write_strategy(args, &threshold);
4432	if (ret)
4433		return ret;
4434
4435	mutex_lock(&memcg->thresholds_lock);
4436
4437	if (type == _MEM)
4438		thresholds = &memcg->thresholds;
4439	else if (type == _MEMSWAP)
4440		thresholds = &memcg->memsw_thresholds;
4441	else
4442		BUG();
4443
4444	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4445
4446	/* Check if a threshold crossed before adding a new one */
4447	if (thresholds->primary)
4448		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4449
4450	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4451
4452	/* Allocate memory for new array of thresholds */
4453	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4454			GFP_KERNEL);
4455	if (!new) {
4456		ret = -ENOMEM;
4457		goto unlock;
4458	}
4459	new->size = size;
4460
4461	/* Copy thresholds (if any) to new array */
4462	if (thresholds->primary) {
4463		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4464				sizeof(struct mem_cgroup_threshold));
4465	}
4466
4467	/* Add new threshold */
4468	new->entries[size - 1].eventfd = eventfd;
4469	new->entries[size - 1].threshold = threshold;
4470
4471	/* Sort thresholds. Registering of new threshold isn't time-critical */
4472	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4473			compare_thresholds, NULL);
4474
4475	/* Find current threshold */
4476	new->current_threshold = -1;
4477	for (i = 0; i < size; i++) {
4478		if (new->entries[i].threshold < usage) {
4479			/*
4480			 * new->current_threshold will not be used until
4481			 * rcu_assign_pointer(), so it's safe to increment
4482			 * it here.
4483			 */
4484			++new->current_threshold;
4485		}
4486	}
4487
4488	/* Free old spare buffer and save old primary buffer as spare */
4489	kfree(thresholds->spare);
4490	thresholds->spare = thresholds->primary;
4491
4492	rcu_assign_pointer(thresholds->primary, new);
4493
4494	/* To be sure that nobody uses thresholds */
4495	synchronize_rcu();
4496
4497unlock:
4498	mutex_unlock(&memcg->thresholds_lock);
4499
4500	return ret;
4501}
4502
4503static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4504	struct cftype *cft, struct eventfd_ctx *eventfd)
4505{
4506	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4507	struct mem_cgroup_thresholds *thresholds;
4508	struct mem_cgroup_threshold_ary *new;
4509	int type = MEMFILE_TYPE(cft->private);
4510	u64 usage;
4511	int i, j, size;
4512
4513	mutex_lock(&memcg->thresholds_lock);
4514	if (type == _MEM)
4515		thresholds = &memcg->thresholds;
4516	else if (type == _MEMSWAP)
4517		thresholds = &memcg->memsw_thresholds;
4518	else
4519		BUG();
4520
4521	/*
4522	 * Something went wrong if we trying to unregister a threshold
4523	 * if we don't have thresholds
4524	 */
4525	BUG_ON(!thresholds);
4526
4527	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4528
4529	/* Check if a threshold crossed before removing */
4530	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4531
4532	/* Calculate new number of threshold */
4533	size = 0;
4534	for (i = 0; i < thresholds->primary->size; i++) {
4535		if (thresholds->primary->entries[i].eventfd != eventfd)
4536			size++;
4537	}
4538
4539	new = thresholds->spare;
4540
4541	/* Set thresholds array to NULL if we don't have thresholds */
4542	if (!size) {
4543		kfree(new);
4544		new = NULL;
4545		goto swap_buffers;
4546	}
4547
4548	new->size = size;
4549
4550	/* Copy thresholds and find current threshold */
4551	new->current_threshold = -1;
4552	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4553		if (thresholds->primary->entries[i].eventfd == eventfd)
4554			continue;
4555
4556		new->entries[j] = thresholds->primary->entries[i];
4557		if (new->entries[j].threshold < usage) {
4558			/*
4559			 * new->current_threshold will not be used
4560			 * until rcu_assign_pointer(), so it's safe to increment
4561			 * it here.
4562			 */
4563			++new->current_threshold;
4564		}
4565		j++;
4566	}
4567
4568swap_buffers:
4569	/* Swap primary and spare array */
4570	thresholds->spare = thresholds->primary;
4571	rcu_assign_pointer(thresholds->primary, new);
4572
4573	/* To be sure that nobody uses thresholds */
4574	synchronize_rcu();
4575
4576	mutex_unlock(&memcg->thresholds_lock);
4577}
4578
4579static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4580	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4581{
4582	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4583	struct mem_cgroup_eventfd_list *event;
4584	int type = MEMFILE_TYPE(cft->private);
4585
4586	BUG_ON(type != _OOM_TYPE);
4587	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4588	if (!event)
4589		return -ENOMEM;
4590
4591	spin_lock(&memcg_oom_lock);
4592
4593	event->eventfd = eventfd;
4594	list_add(&event->list, &memcg->oom_notify);
4595
4596	/* already in OOM ? */
4597	if (atomic_read(&memcg->under_oom))
4598		eventfd_signal(eventfd, 1);
4599	spin_unlock(&memcg_oom_lock);
4600
4601	return 0;
4602}
4603
4604static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4605	struct cftype *cft, struct eventfd_ctx *eventfd)
4606{
4607	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4608	struct mem_cgroup_eventfd_list *ev, *tmp;
4609	int type = MEMFILE_TYPE(cft->private);
4610
4611	BUG_ON(type != _OOM_TYPE);
4612
4613	spin_lock(&memcg_oom_lock);
4614
4615	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4616		if (ev->eventfd == eventfd) {
4617			list_del(&ev->list);
4618			kfree(ev);
4619		}
4620	}
4621
4622	spin_unlock(&memcg_oom_lock);
4623}
4624
4625static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4626	struct cftype *cft,  struct cgroup_map_cb *cb)
4627{
4628	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4629
4630	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4631
4632	if (atomic_read(&memcg->under_oom))
4633		cb->fill(cb, "under_oom", 1);
4634	else
4635		cb->fill(cb, "under_oom", 0);
4636	return 0;
4637}
4638
4639static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4640	struct cftype *cft, u64 val)
4641{
4642	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4643	struct mem_cgroup *parent;
4644
4645	/* cannot set to root cgroup and only 0 and 1 are allowed */
4646	if (!cgrp->parent || !((val == 0) || (val == 1)))
4647		return -EINVAL;
4648
4649	parent = mem_cgroup_from_cont(cgrp->parent);
4650
4651	cgroup_lock();
4652	/* oom-kill-disable is a flag for subhierarchy. */
4653	if ((parent->use_hierarchy) ||
4654	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4655		cgroup_unlock();
4656		return -EINVAL;
4657	}
4658	memcg->oom_kill_disable = val;
4659	if (!val)
4660		memcg_oom_recover(memcg);
4661	cgroup_unlock();
4662	return 0;
4663}
4664
4665#ifdef CONFIG_NUMA
4666static const struct file_operations mem_control_numa_stat_file_operations = {
4667	.read = seq_read,
4668	.llseek = seq_lseek,
4669	.release = single_release,
4670};
4671
4672static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4673{
4674	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4675
4676	file->f_op = &mem_control_numa_stat_file_operations;
4677	return single_open(file, mem_control_numa_stat_show, cont);
4678}
4679#endif /* CONFIG_NUMA */
4680
4681#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4682static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4683{
4684	/*
4685	 * Part of this would be better living in a separate allocation
4686	 * function, leaving us with just the cgroup tree population work.
4687	 * We, however, depend on state such as network's proto_list that
4688	 * is only initialized after cgroup creation. I found the less
4689	 * cumbersome way to deal with it to defer it all to populate time
4690	 */
4691	return mem_cgroup_sockets_init(cont, ss);
4692};
4693
4694static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4695				struct cgroup *cont)
4696{
4697	mem_cgroup_sockets_destroy(cont, ss);
4698}
4699#else
4700static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4701{
4702	return 0;
4703}
4704
4705static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4706				struct cgroup *cont)
4707{
4708}
4709#endif
4710
4711static struct cftype mem_cgroup_files[] = {
4712	{
4713		.name = "usage_in_bytes",
4714		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4715		.read_u64 = mem_cgroup_read,
4716		.register_event = mem_cgroup_usage_register_event,
4717		.unregister_event = mem_cgroup_usage_unregister_event,
4718	},
4719	{
4720		.name = "max_usage_in_bytes",
4721		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4722		.trigger = mem_cgroup_reset,
4723		.read_u64 = mem_cgroup_read,
4724	},
4725	{
4726		.name = "limit_in_bytes",
4727		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4728		.write_string = mem_cgroup_write,
4729		.read_u64 = mem_cgroup_read,
4730	},
4731	{
4732		.name = "soft_limit_in_bytes",
4733		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4734		.write_string = mem_cgroup_write,
4735		.read_u64 = mem_cgroup_read,
4736	},
4737	{
4738		.name = "failcnt",
4739		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4740		.trigger = mem_cgroup_reset,
4741		.read_u64 = mem_cgroup_read,
4742	},
4743	{
4744		.name = "stat",
4745		.read_map = mem_control_stat_show,
4746	},
4747	{
4748		.name = "force_empty",
4749		.trigger = mem_cgroup_force_empty_write,
4750	},
4751	{
4752		.name = "use_hierarchy",
4753		.write_u64 = mem_cgroup_hierarchy_write,
4754		.read_u64 = mem_cgroup_hierarchy_read,
4755	},
4756	{
4757		.name = "swappiness",
4758		.read_u64 = mem_cgroup_swappiness_read,
4759		.write_u64 = mem_cgroup_swappiness_write,
4760	},
4761	{
4762		.name = "move_charge_at_immigrate",
4763		.read_u64 = mem_cgroup_move_charge_read,
4764		.write_u64 = mem_cgroup_move_charge_write,
4765	},
4766	{
4767		.name = "oom_control",
4768		.read_map = mem_cgroup_oom_control_read,
4769		.write_u64 = mem_cgroup_oom_control_write,
4770		.register_event = mem_cgroup_oom_register_event,
4771		.unregister_event = mem_cgroup_oom_unregister_event,
4772		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4773	},
4774#ifdef CONFIG_NUMA
4775	{
4776		.name = "numa_stat",
4777		.open = mem_control_numa_stat_open,
4778		.mode = S_IRUGO,
4779	},
4780#endif
4781};
4782
4783#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4784static struct cftype memsw_cgroup_files[] = {
4785	{
4786		.name = "memsw.usage_in_bytes",
4787		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4788		.read_u64 = mem_cgroup_read,
4789		.register_event = mem_cgroup_usage_register_event,
4790		.unregister_event = mem_cgroup_usage_unregister_event,
4791	},
4792	{
4793		.name = "memsw.max_usage_in_bytes",
4794		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4795		.trigger = mem_cgroup_reset,
4796		.read_u64 = mem_cgroup_read,
4797	},
4798	{
4799		.name = "memsw.limit_in_bytes",
4800		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4801		.write_string = mem_cgroup_write,
4802		.read_u64 = mem_cgroup_read,
4803	},
4804	{
4805		.name = "memsw.failcnt",
4806		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4807		.trigger = mem_cgroup_reset,
4808		.read_u64 = mem_cgroup_read,
4809	},
4810};
4811
4812static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4813{
4814	if (!do_swap_account)
4815		return 0;
4816	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4817				ARRAY_SIZE(memsw_cgroup_files));
4818};
4819#else
4820static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4821{
4822	return 0;
4823}
4824#endif
4825
4826static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4827{
4828	struct mem_cgroup_per_node *pn;
4829	struct mem_cgroup_per_zone *mz;
4830	enum lru_list l;
4831	int zone, tmp = node;
4832	/*
4833	 * This routine is called against possible nodes.
4834	 * But it's BUG to call kmalloc() against offline node.
4835	 *
4836	 * TODO: this routine can waste much memory for nodes which will
4837	 *       never be onlined. It's better to use memory hotplug callback
4838	 *       function.
4839	 */
4840	if (!node_state(node, N_NORMAL_MEMORY))
4841		tmp = -1;
4842	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4843	if (!pn)
4844		return 1;
4845
4846	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4847		mz = &pn->zoneinfo[zone];
4848		for_each_lru(l)
4849			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4850		mz->usage_in_excess = 0;
4851		mz->on_tree = false;
4852		mz->mem = memcg;
4853	}
4854	memcg->info.nodeinfo[node] = pn;
4855	return 0;
4856}
4857
4858static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4859{
4860	kfree(memcg->info.nodeinfo[node]);
4861}
4862
4863static struct mem_cgroup *mem_cgroup_alloc(void)
4864{
4865	struct mem_cgroup *mem;
4866	int size = sizeof(struct mem_cgroup);
4867
4868	/* Can be very big if MAX_NUMNODES is very big */
4869	if (size < PAGE_SIZE)
4870		mem = kzalloc(size, GFP_KERNEL);
4871	else
4872		mem = vzalloc(size);
4873
4874	if (!mem)
4875		return NULL;
4876
4877	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4878	if (!mem->stat)
4879		goto out_free;
4880	spin_lock_init(&mem->pcp_counter_lock);
4881	return mem;
4882
4883out_free:
4884	if (size < PAGE_SIZE)
4885		kfree(mem);
4886	else
4887		vfree(mem);
4888	return NULL;
4889}
4890
4891/*
4892 * At destroying mem_cgroup, references from swap_cgroup can remain.
4893 * (scanning all at force_empty is too costly...)
4894 *
4895 * Instead of clearing all references at force_empty, we remember
4896 * the number of reference from swap_cgroup and free mem_cgroup when
4897 * it goes down to 0.
4898 *
4899 * Removal of cgroup itself succeeds regardless of refs from swap.
4900 */
4901
4902static void __mem_cgroup_free(struct mem_cgroup *memcg)
4903{
4904	int node;
4905
4906	mem_cgroup_remove_from_trees(memcg);
4907	free_css_id(&mem_cgroup_subsys, &memcg->css);
4908
4909	for_each_node_state(node, N_POSSIBLE)
4910		free_mem_cgroup_per_zone_info(memcg, node);
4911
4912	free_percpu(memcg->stat);
4913	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4914		kfree(memcg);
4915	else
4916		vfree(memcg);
4917}
4918
4919static void mem_cgroup_get(struct mem_cgroup *memcg)
4920{
4921	atomic_inc(&memcg->refcnt);
4922}
4923
4924static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4925{
4926	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4927		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4928		__mem_cgroup_free(memcg);
4929		if (parent)
4930			mem_cgroup_put(parent);
4931	}
4932}
4933
4934static void mem_cgroup_put(struct mem_cgroup *memcg)
4935{
4936	__mem_cgroup_put(memcg, 1);
4937}
4938
4939/*
4940 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4941 */
4942struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4943{
4944	if (!memcg->res.parent)
4945		return NULL;
4946	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4947}
4948EXPORT_SYMBOL(parent_mem_cgroup);
4949
4950#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4951static void __init enable_swap_cgroup(void)
4952{
4953	if (!mem_cgroup_disabled() && really_do_swap_account)
4954		do_swap_account = 1;
4955}
4956#else
4957static void __init enable_swap_cgroup(void)
4958{
4959}
4960#endif
4961
4962static int mem_cgroup_soft_limit_tree_init(void)
4963{
4964	struct mem_cgroup_tree_per_node *rtpn;
4965	struct mem_cgroup_tree_per_zone *rtpz;
4966	int tmp, node, zone;
4967
4968	for_each_node_state(node, N_POSSIBLE) {
4969		tmp = node;
4970		if (!node_state(node, N_NORMAL_MEMORY))
4971			tmp = -1;
4972		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4973		if (!rtpn)
4974			goto err_cleanup;
4975
4976		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4977
4978		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4979			rtpz = &rtpn->rb_tree_per_zone[zone];
4980			rtpz->rb_root = RB_ROOT;
4981			spin_lock_init(&rtpz->lock);
4982		}
4983	}
4984	return 0;
4985
4986err_cleanup:
4987	for_each_node_state(node, N_POSSIBLE) {
4988		if (!soft_limit_tree.rb_tree_per_node[node])
4989			break;
4990		kfree(soft_limit_tree.rb_tree_per_node[node]);
4991		soft_limit_tree.rb_tree_per_node[node] = NULL;
4992	}
4993	return 1;
4994
4995}
4996
4997static struct cgroup_subsys_state * __ref
4998mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4999{
5000	struct mem_cgroup *memcg, *parent;
5001	long error = -ENOMEM;
5002	int node;
5003
5004	memcg = mem_cgroup_alloc();
5005	if (!memcg)
5006		return ERR_PTR(error);
5007
5008	for_each_node_state(node, N_POSSIBLE)
5009		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5010			goto free_out;
5011
5012	/* root ? */
5013	if (cont->parent == NULL) {
5014		int cpu;
5015		enable_swap_cgroup();
5016		parent = NULL;
5017		if (mem_cgroup_soft_limit_tree_init())
5018			goto free_out;
5019		root_mem_cgroup = memcg;
5020		for_each_possible_cpu(cpu) {
5021			struct memcg_stock_pcp *stock =
5022						&per_cpu(memcg_stock, cpu);
5023			INIT_WORK(&stock->work, drain_local_stock);
5024		}
5025		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5026	} else {
5027		parent = mem_cgroup_from_cont(cont->parent);
5028		memcg->use_hierarchy = parent->use_hierarchy;
5029		memcg->oom_kill_disable = parent->oom_kill_disable;
5030	}
5031
5032	if (parent && parent->use_hierarchy) {
5033		res_counter_init(&memcg->res, &parent->res);
5034		res_counter_init(&memcg->memsw, &parent->memsw);
5035		/*
5036		 * We increment refcnt of the parent to ensure that we can
5037		 * safely access it on res_counter_charge/uncharge.
5038		 * This refcnt will be decremented when freeing this
5039		 * mem_cgroup(see mem_cgroup_put).
5040		 */
5041		mem_cgroup_get(parent);
5042	} else {
5043		res_counter_init(&memcg->res, NULL);
5044		res_counter_init(&memcg->memsw, NULL);
5045	}
5046	memcg->last_scanned_node = MAX_NUMNODES;
5047	INIT_LIST_HEAD(&memcg->oom_notify);
5048
5049	if (parent)
5050		memcg->swappiness = mem_cgroup_swappiness(parent);
5051	atomic_set(&memcg->refcnt, 1);
5052	memcg->move_charge_at_immigrate = 0;
5053	mutex_init(&memcg->thresholds_lock);
5054	return &memcg->css;
5055free_out:
5056	__mem_cgroup_free(memcg);
5057	return ERR_PTR(error);
5058}
5059
5060static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5061					struct cgroup *cont)
5062{
5063	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5064
5065	return mem_cgroup_force_empty(memcg, false);
5066}
5067
5068static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5069				struct cgroup *cont)
5070{
5071	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5072
5073	kmem_cgroup_destroy(ss, cont);
5074
5075	mem_cgroup_put(memcg);
5076}
5077
5078static int mem_cgroup_populate(struct cgroup_subsys *ss,
5079				struct cgroup *cont)
5080{
5081	int ret;
5082
5083	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5084				ARRAY_SIZE(mem_cgroup_files));
5085
5086	if (!ret)
5087		ret = register_memsw_files(cont, ss);
5088
5089	if (!ret)
5090		ret = register_kmem_files(cont, ss);
5091
5092	return ret;
5093}
5094
5095#ifdef CONFIG_MMU
5096/* Handlers for move charge at task migration. */
5097#define PRECHARGE_COUNT_AT_ONCE	256
5098static int mem_cgroup_do_precharge(unsigned long count)
5099{
5100	int ret = 0;
5101	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5102	struct mem_cgroup *memcg = mc.to;
5103
5104	if (mem_cgroup_is_root(memcg)) {
5105		mc.precharge += count;
5106		/* we don't need css_get for root */
5107		return ret;
5108	}
5109	/* try to charge at once */
5110	if (count > 1) {
5111		struct res_counter *dummy;
5112		/*
5113		 * "memcg" cannot be under rmdir() because we've already checked
5114		 * by cgroup_lock_live_cgroup() that it is not removed and we
5115		 * are still under the same cgroup_mutex. So we can postpone
5116		 * css_get().
5117		 */
5118		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5119			goto one_by_one;
5120		if (do_swap_account && res_counter_charge(&memcg->memsw,
5121						PAGE_SIZE * count, &dummy)) {
5122			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5123			goto one_by_one;
5124		}
5125		mc.precharge += count;
5126		return ret;
5127	}
5128one_by_one:
5129	/* fall back to one by one charge */
5130	while (count--) {
5131		if (signal_pending(current)) {
5132			ret = -EINTR;
5133			break;
5134		}
5135		if (!batch_count--) {
5136			batch_count = PRECHARGE_COUNT_AT_ONCE;
5137			cond_resched();
5138		}
5139		ret = __mem_cgroup_try_charge(NULL,
5140					GFP_KERNEL, 1, &memcg, false);
5141		if (ret || !memcg)
5142			/* mem_cgroup_clear_mc() will do uncharge later */
5143			return -ENOMEM;
5144		mc.precharge++;
5145	}
5146	return ret;
5147}
5148
5149/**
5150 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5151 * @vma: the vma the pte to be checked belongs
5152 * @addr: the address corresponding to the pte to be checked
5153 * @ptent: the pte to be checked
5154 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5155 *
5156 * Returns
5157 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5158 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5159 *     move charge. if @target is not NULL, the page is stored in target->page
5160 *     with extra refcnt got(Callers should handle it).
5161 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5162 *     target for charge migration. if @target is not NULL, the entry is stored
5163 *     in target->ent.
5164 *
5165 * Called with pte lock held.
5166 */
5167union mc_target {
5168	struct page	*page;
5169	swp_entry_t	ent;
5170};
5171
5172enum mc_target_type {
5173	MC_TARGET_NONE,	/* not used */
5174	MC_TARGET_PAGE,
5175	MC_TARGET_SWAP,
5176};
5177
5178static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5179						unsigned long addr, pte_t ptent)
5180{
5181	struct page *page = vm_normal_page(vma, addr, ptent);
5182
5183	if (!page || !page_mapped(page))
5184		return NULL;
5185	if (PageAnon(page)) {
5186		/* we don't move shared anon */
5187		if (!move_anon() || page_mapcount(page) > 2)
5188			return NULL;
5189	} else if (!move_file())
5190		/* we ignore mapcount for file pages */
5191		return NULL;
5192	if (!get_page_unless_zero(page))
5193		return NULL;
5194
5195	return page;
5196}
5197
5198static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5199			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5200{
5201	int usage_count;
5202	struct page *page = NULL;
5203	swp_entry_t ent = pte_to_swp_entry(ptent);
5204
5205	if (!move_anon() || non_swap_entry(ent))
5206		return NULL;
5207	usage_count = mem_cgroup_count_swap_user(ent, &page);
5208	if (usage_count > 1) { /* we don't move shared anon */
5209		if (page)
5210			put_page(page);
5211		return NULL;
5212	}
5213	if (do_swap_account)
5214		entry->val = ent.val;
5215
5216	return page;
5217}
5218
5219static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5220			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5221{
5222	struct page *page = NULL;
5223	struct inode *inode;
5224	struct address_space *mapping;
5225	pgoff_t pgoff;
5226
5227	if (!vma->vm_file) /* anonymous vma */
5228		return NULL;
5229	if (!move_file())
5230		return NULL;
5231
5232	inode = vma->vm_file->f_path.dentry->d_inode;
5233	mapping = vma->vm_file->f_mapping;
5234	if (pte_none(ptent))
5235		pgoff = linear_page_index(vma, addr);
5236	else /* pte_file(ptent) is true */
5237		pgoff = pte_to_pgoff(ptent);
5238
5239	/* page is moved even if it's not RSS of this task(page-faulted). */
5240	page = find_get_page(mapping, pgoff);
5241
5242#ifdef CONFIG_SWAP
5243	/* shmem/tmpfs may report page out on swap: account for that too. */
5244	if (radix_tree_exceptional_entry(page)) {
5245		swp_entry_t swap = radix_to_swp_entry(page);
5246		if (do_swap_account)
5247			*entry = swap;
5248		page = find_get_page(&swapper_space, swap.val);
5249	}
5250#endif
5251	return page;
5252}
5253
5254static int is_target_pte_for_mc(struct vm_area_struct *vma,
5255		unsigned long addr, pte_t ptent, union mc_target *target)
5256{
5257	struct page *page = NULL;
5258	struct page_cgroup *pc;
5259	int ret = 0;
5260	swp_entry_t ent = { .val = 0 };
5261
5262	if (pte_present(ptent))
5263		page = mc_handle_present_pte(vma, addr, ptent);
5264	else if (is_swap_pte(ptent))
5265		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5266	else if (pte_none(ptent) || pte_file(ptent))
5267		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5268
5269	if (!page && !ent.val)
5270		return 0;
5271	if (page) {
5272		pc = lookup_page_cgroup(page);
5273		/*
5274		 * Do only loose check w/o page_cgroup lock.
5275		 * mem_cgroup_move_account() checks the pc is valid or not under
5276		 * the lock.
5277		 */
5278		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5279			ret = MC_TARGET_PAGE;
5280			if (target)
5281				target->page = page;
5282		}
5283		if (!ret || !target)
5284			put_page(page);
5285	}
5286	/* There is a swap entry and a page doesn't exist or isn't charged */
5287	if (ent.val && !ret &&
5288			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5289		ret = MC_TARGET_SWAP;
5290		if (target)
5291			target->ent = ent;
5292	}
5293	return ret;
5294}
5295
5296static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5297					unsigned long addr, unsigned long end,
5298					struct mm_walk *walk)
5299{
5300	struct vm_area_struct *vma = walk->private;
5301	pte_t *pte;
5302	spinlock_t *ptl;
5303
5304	split_huge_page_pmd(walk->mm, pmd);
5305
5306	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5307	for (; addr != end; pte++, addr += PAGE_SIZE)
5308		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5309			mc.precharge++;	/* increment precharge temporarily */
5310	pte_unmap_unlock(pte - 1, ptl);
5311	cond_resched();
5312
5313	return 0;
5314}
5315
5316static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5317{
5318	unsigned long precharge;
5319	struct vm_area_struct *vma;
5320
5321	down_read(&mm->mmap_sem);
5322	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5323		struct mm_walk mem_cgroup_count_precharge_walk = {
5324			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5325			.mm = mm,
5326			.private = vma,
5327		};
5328		if (is_vm_hugetlb_page(vma))
5329			continue;
5330		walk_page_range(vma->vm_start, vma->vm_end,
5331					&mem_cgroup_count_precharge_walk);
5332	}
5333	up_read(&mm->mmap_sem);
5334
5335	precharge = mc.precharge;
5336	mc.precharge = 0;
5337
5338	return precharge;
5339}
5340
5341static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5342{
5343	unsigned long precharge = mem_cgroup_count_precharge(mm);
5344
5345	VM_BUG_ON(mc.moving_task);
5346	mc.moving_task = current;
5347	return mem_cgroup_do_precharge(precharge);
5348}
5349
5350/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5351static void __mem_cgroup_clear_mc(void)
5352{
5353	struct mem_cgroup *from = mc.from;
5354	struct mem_cgroup *to = mc.to;
5355
5356	/* we must uncharge all the leftover precharges from mc.to */
5357	if (mc.precharge) {
5358		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5359		mc.precharge = 0;
5360	}
5361	/*
5362	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5363	 * we must uncharge here.
5364	 */
5365	if (mc.moved_charge) {
5366		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5367		mc.moved_charge = 0;
5368	}
5369	/* we must fixup refcnts and charges */
5370	if (mc.moved_swap) {
5371		/* uncharge swap account from the old cgroup */
5372		if (!mem_cgroup_is_root(mc.from))
5373			res_counter_uncharge(&mc.from->memsw,
5374						PAGE_SIZE * mc.moved_swap);
5375		__mem_cgroup_put(mc.from, mc.moved_swap);
5376
5377		if (!mem_cgroup_is_root(mc.to)) {
5378			/*
5379			 * we charged both to->res and to->memsw, so we should
5380			 * uncharge to->res.
5381			 */
5382			res_counter_uncharge(&mc.to->res,
5383						PAGE_SIZE * mc.moved_swap);
5384		}
5385		/* we've already done mem_cgroup_get(mc.to) */
5386		mc.moved_swap = 0;
5387	}
5388	memcg_oom_recover(from);
5389	memcg_oom_recover(to);
5390	wake_up_all(&mc.waitq);
5391}
5392
5393static void mem_cgroup_clear_mc(void)
5394{
5395	struct mem_cgroup *from = mc.from;
5396
5397	/*
5398	 * we must clear moving_task before waking up waiters at the end of
5399	 * task migration.
5400	 */
5401	mc.moving_task = NULL;
5402	__mem_cgroup_clear_mc();
5403	spin_lock(&mc.lock);
5404	mc.from = NULL;
5405	mc.to = NULL;
5406	spin_unlock(&mc.lock);
5407	mem_cgroup_end_move(from);
5408}
5409
5410static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5411				struct cgroup *cgroup,
5412				struct cgroup_taskset *tset)
5413{
5414	struct task_struct *p = cgroup_taskset_first(tset);
5415	int ret = 0;
5416	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5417
5418	if (memcg->move_charge_at_immigrate) {
5419		struct mm_struct *mm;
5420		struct mem_cgroup *from = mem_cgroup_from_task(p);
5421
5422		VM_BUG_ON(from == memcg);
5423
5424		mm = get_task_mm(p);
5425		if (!mm)
5426			return 0;
5427		/* We move charges only when we move a owner of the mm */
5428		if (mm->owner == p) {
5429			VM_BUG_ON(mc.from);
5430			VM_BUG_ON(mc.to);
5431			VM_BUG_ON(mc.precharge);
5432			VM_BUG_ON(mc.moved_charge);
5433			VM_BUG_ON(mc.moved_swap);
5434			mem_cgroup_start_move(from);
5435			spin_lock(&mc.lock);
5436			mc.from = from;
5437			mc.to = memcg;
5438			spin_unlock(&mc.lock);
5439			/* We set mc.moving_task later */
5440
5441			ret = mem_cgroup_precharge_mc(mm);
5442			if (ret)
5443				mem_cgroup_clear_mc();
5444		}
5445		mmput(mm);
5446	}
5447	return ret;
5448}
5449
5450static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5451				struct cgroup *cgroup,
5452				struct cgroup_taskset *tset)
5453{
5454	mem_cgroup_clear_mc();
5455}
5456
5457static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5458				unsigned long addr, unsigned long end,
5459				struct mm_walk *walk)
5460{
5461	int ret = 0;
5462	struct vm_area_struct *vma = walk->private;
5463	pte_t *pte;
5464	spinlock_t *ptl;
5465
5466	split_huge_page_pmd(walk->mm, pmd);
5467retry:
5468	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5469	for (; addr != end; addr += PAGE_SIZE) {
5470		pte_t ptent = *(pte++);
5471		union mc_target target;
5472		int type;
5473		struct page *page;
5474		struct page_cgroup *pc;
5475		swp_entry_t ent;
5476
5477		if (!mc.precharge)
5478			break;
5479
5480		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5481		switch (type) {
5482		case MC_TARGET_PAGE:
5483			page = target.page;
5484			if (isolate_lru_page(page))
5485				goto put;
5486			pc = lookup_page_cgroup(page);
5487			if (!mem_cgroup_move_account(page, 1, pc,
5488						     mc.from, mc.to, false)) {
5489				mc.precharge--;
5490				/* we uncharge from mc.from later. */
5491				mc.moved_charge++;
5492			}
5493			putback_lru_page(page);
5494put:			/* is_target_pte_for_mc() gets the page */
5495			put_page(page);
5496			break;
5497		case MC_TARGET_SWAP:
5498			ent = target.ent;
5499			if (!mem_cgroup_move_swap_account(ent,
5500						mc.from, mc.to, false)) {
5501				mc.precharge--;
5502				/* we fixup refcnts and charges later. */
5503				mc.moved_swap++;
5504			}
5505			break;
5506		default:
5507			break;
5508		}
5509	}
5510	pte_unmap_unlock(pte - 1, ptl);
5511	cond_resched();
5512
5513	if (addr != end) {
5514		/*
5515		 * We have consumed all precharges we got in can_attach().
5516		 * We try charge one by one, but don't do any additional
5517		 * charges to mc.to if we have failed in charge once in attach()
5518		 * phase.
5519		 */
5520		ret = mem_cgroup_do_precharge(1);
5521		if (!ret)
5522			goto retry;
5523	}
5524
5525	return ret;
5526}
5527
5528static void mem_cgroup_move_charge(struct mm_struct *mm)
5529{
5530	struct vm_area_struct *vma;
5531
5532	lru_add_drain_all();
5533retry:
5534	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5535		/*
5536		 * Someone who are holding the mmap_sem might be waiting in
5537		 * waitq. So we cancel all extra charges, wake up all waiters,
5538		 * and retry. Because we cancel precharges, we might not be able
5539		 * to move enough charges, but moving charge is a best-effort
5540		 * feature anyway, so it wouldn't be a big problem.
5541		 */
5542		__mem_cgroup_clear_mc();
5543		cond_resched();
5544		goto retry;
5545	}
5546	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5547		int ret;
5548		struct mm_walk mem_cgroup_move_charge_walk = {
5549			.pmd_entry = mem_cgroup_move_charge_pte_range,
5550			.mm = mm,
5551			.private = vma,
5552		};
5553		if (is_vm_hugetlb_page(vma))
5554			continue;
5555		ret = walk_page_range(vma->vm_start, vma->vm_end,
5556						&mem_cgroup_move_charge_walk);
5557		if (ret)
5558			/*
5559			 * means we have consumed all precharges and failed in
5560			 * doing additional charge. Just abandon here.
5561			 */
5562			break;
5563	}
5564	up_read(&mm->mmap_sem);
5565}
5566
5567static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5568				struct cgroup *cont,
5569				struct cgroup_taskset *tset)
5570{
5571	struct task_struct *p = cgroup_taskset_first(tset);
5572	struct mm_struct *mm = get_task_mm(p);
5573
5574	if (mm) {
5575		if (mc.to)
5576			mem_cgroup_move_charge(mm);
5577		put_swap_token(mm);
5578		mmput(mm);
5579	}
5580	if (mc.to)
5581		mem_cgroup_clear_mc();
5582}
5583#else	/* !CONFIG_MMU */
5584static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5585				struct cgroup *cgroup,
5586				struct cgroup_taskset *tset)
5587{
5588	return 0;
5589}
5590static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5591				struct cgroup *cgroup,
5592				struct cgroup_taskset *tset)
5593{
5594}
5595static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5596				struct cgroup *cont,
5597				struct cgroup_taskset *tset)
5598{
5599}
5600#endif
5601
5602struct cgroup_subsys mem_cgroup_subsys = {
5603	.name = "memory",
5604	.subsys_id = mem_cgroup_subsys_id,
5605	.create = mem_cgroup_create,
5606	.pre_destroy = mem_cgroup_pre_destroy,
5607	.destroy = mem_cgroup_destroy,
5608	.populate = mem_cgroup_populate,
5609	.can_attach = mem_cgroup_can_attach,
5610	.cancel_attach = mem_cgroup_cancel_attach,
5611	.attach = mem_cgroup_move_task,
5612	.early_init = 0,
5613	.use_id = 1,
5614};
5615
5616#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5617static int __init enable_swap_account(char *s)
5618{
5619	/* consider enabled if no parameter or 1 is given */
5620	if (!strcmp(s, "1"))
5621		really_do_swap_account = 1;
5622	else if (!strcmp(s, "0"))
5623		really_do_swap_account = 0;
5624	return 1;
5625}
5626__setup("swapaccount=", enable_swap_account);
5627
5628#endif
5629