memcontrol.c revision ef8745c1e7fc5413d760b3b958f3fd3a0beaad72
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
23#include <linux/mm.h>
24#include <linux/pagemap.h>
25#include <linux/smp.h>
26#include <linux/page-flags.h>
27#include <linux/backing-dev.h>
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
30#include <linux/limits.h>
31#include <linux/mutex.h>
32#include <linux/rbtree.h>
33#include <linux/slab.h>
34#include <linux/swap.h>
35#include <linux/spinlock.h>
36#include <linux/fs.h>
37#include <linux/seq_file.h>
38#include <linux/vmalloc.h>
39#include <linux/mm_inline.h>
40#include <linux/page_cgroup.h>
41#include "internal.h"
42
43#include <asm/uaccess.h>
44
45struct cgroup_subsys mem_cgroup_subsys __read_mostly;
46#define MEM_CGROUP_RECLAIM_RETRIES	5
47struct mem_cgroup *root_mem_cgroup __read_mostly;
48
49#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
50/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51int do_swap_account __read_mostly;
52static int really_do_swap_account __initdata = 1; /* for remember boot option*/
53#else
54#define do_swap_account		(0)
55#endif
56
57static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
58#define SOFTLIMIT_EVENTS_THRESH (1000)
59
60/*
61 * Statistics for memory cgroup.
62 */
63enum mem_cgroup_stat_index {
64	/*
65	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66	 */
67	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
68	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
69	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
70	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
71	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
72	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
73	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74
75	MEM_CGROUP_STAT_NSTATS,
76};
77
78struct mem_cgroup_stat_cpu {
79	s64 count[MEM_CGROUP_STAT_NSTATS];
80} ____cacheline_aligned_in_smp;
81
82struct mem_cgroup_stat {
83	struct mem_cgroup_stat_cpu cpustat[0];
84};
85
86static inline void
87__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
88				enum mem_cgroup_stat_index idx)
89{
90	stat->count[idx] = 0;
91}
92
93static inline s64
94__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
95				enum mem_cgroup_stat_index idx)
96{
97	return stat->count[idx];
98}
99
100/*
101 * For accounting under irq disable, no need for increment preempt count.
102 */
103static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104		enum mem_cgroup_stat_index idx, int val)
105{
106	stat->count[idx] += val;
107}
108
109static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
110		enum mem_cgroup_stat_index idx)
111{
112	int cpu;
113	s64 ret = 0;
114	for_each_possible_cpu(cpu)
115		ret += stat->cpustat[cpu].count[idx];
116	return ret;
117}
118
119static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
120{
121	s64 ret;
122
123	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
124	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
125	return ret;
126}
127
128/*
129 * per-zone information in memory controller.
130 */
131struct mem_cgroup_per_zone {
132	/*
133	 * spin_lock to protect the per cgroup LRU
134	 */
135	struct list_head	lists[NR_LRU_LISTS];
136	unsigned long		count[NR_LRU_LISTS];
137
138	struct zone_reclaim_stat reclaim_stat;
139	struct rb_node		tree_node;	/* RB tree node */
140	unsigned long long	usage_in_excess;/* Set to the value by which */
141						/* the soft limit is exceeded*/
142	bool			on_tree;
143	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
144						/* use container_of	   */
145};
146/* Macro for accessing counter */
147#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
148
149struct mem_cgroup_per_node {
150	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151};
152
153struct mem_cgroup_lru_info {
154	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155};
156
157/*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162struct mem_cgroup_tree_per_zone {
163	struct rb_root rb_root;
164	spinlock_t lock;
165};
166
167struct mem_cgroup_tree_per_node {
168	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169};
170
171struct mem_cgroup_tree {
172	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173};
174
175static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
177/*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 *
183 * TODO: Add a water mark for the memory controller. Reclaim will begin when
184 * we hit the water mark. May be even add a low water mark, such that
185 * no reclaim occurs from a cgroup at it's low water mark, this is
186 * a feature that will be implemented much later in the future.
187 */
188struct mem_cgroup {
189	struct cgroup_subsys_state css;
190	/*
191	 * the counter to account for memory usage
192	 */
193	struct res_counter res;
194	/*
195	 * the counter to account for mem+swap usage.
196	 */
197	struct res_counter memsw;
198	/*
199	 * Per cgroup active and inactive list, similar to the
200	 * per zone LRU lists.
201	 */
202	struct mem_cgroup_lru_info info;
203
204	/*
205	  protect against reclaim related member.
206	*/
207	spinlock_t reclaim_param_lock;
208
209	int	prev_priority;	/* for recording reclaim priority */
210
211	/*
212	 * While reclaiming in a hiearchy, we cache the last child we
213	 * reclaimed from.
214	 */
215	int last_scanned_child;
216	/*
217	 * Should the accounting and control be hierarchical, per subtree?
218	 */
219	bool use_hierarchy;
220	unsigned long	last_oom_jiffies;
221	atomic_t	refcnt;
222
223	unsigned int	swappiness;
224
225	/* set when res.limit == memsw.limit */
226	bool		memsw_is_minimum;
227
228	/*
229	 * statistics. This must be placed at the end of memcg.
230	 */
231	struct mem_cgroup_stat stat;
232};
233
234/*
235 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
236 * limit reclaim to prevent infinite loops, if they ever occur.
237 */
238#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
239#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
240
241enum charge_type {
242	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
243	MEM_CGROUP_CHARGE_TYPE_MAPPED,
244	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
245	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
246	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
247	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
248	NR_CHARGE_TYPE,
249};
250
251/* only for here (for easy reading.) */
252#define PCGF_CACHE	(1UL << PCG_CACHE)
253#define PCGF_USED	(1UL << PCG_USED)
254#define PCGF_LOCK	(1UL << PCG_LOCK)
255/* Not used, but added here for completeness */
256#define PCGF_ACCT	(1UL << PCG_ACCT)
257
258/* for encoding cft->private value on file */
259#define _MEM			(0)
260#define _MEMSWAP		(1)
261#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
262#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
263#define MEMFILE_ATTR(val)	((val) & 0xffff)
264
265/*
266 * Reclaim flags for mem_cgroup_hierarchical_reclaim
267 */
268#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
269#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
270#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
271#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
273#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274
275static void mem_cgroup_get(struct mem_cgroup *mem);
276static void mem_cgroup_put(struct mem_cgroup *mem);
277static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278
279static struct mem_cgroup_per_zone *
280mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
281{
282	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
283}
284
285static struct mem_cgroup_per_zone *
286page_cgroup_zoneinfo(struct page_cgroup *pc)
287{
288	struct mem_cgroup *mem = pc->mem_cgroup;
289	int nid = page_cgroup_nid(pc);
290	int zid = page_cgroup_zid(pc);
291
292	if (!mem)
293		return NULL;
294
295	return mem_cgroup_zoneinfo(mem, nid, zid);
296}
297
298static struct mem_cgroup_tree_per_zone *
299soft_limit_tree_node_zone(int nid, int zid)
300{
301	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
302}
303
304static struct mem_cgroup_tree_per_zone *
305soft_limit_tree_from_page(struct page *page)
306{
307	int nid = page_to_nid(page);
308	int zid = page_zonenum(page);
309
310	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
311}
312
313static void
314__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
315				struct mem_cgroup_per_zone *mz,
316				struct mem_cgroup_tree_per_zone *mctz,
317				unsigned long long new_usage_in_excess)
318{
319	struct rb_node **p = &mctz->rb_root.rb_node;
320	struct rb_node *parent = NULL;
321	struct mem_cgroup_per_zone *mz_node;
322
323	if (mz->on_tree)
324		return;
325
326	mz->usage_in_excess = new_usage_in_excess;
327	if (!mz->usage_in_excess)
328		return;
329	while (*p) {
330		parent = *p;
331		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
332					tree_node);
333		if (mz->usage_in_excess < mz_node->usage_in_excess)
334			p = &(*p)->rb_left;
335		/*
336		 * We can't avoid mem cgroups that are over their soft
337		 * limit by the same amount
338		 */
339		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
340			p = &(*p)->rb_right;
341	}
342	rb_link_node(&mz->tree_node, parent, p);
343	rb_insert_color(&mz->tree_node, &mctz->rb_root);
344	mz->on_tree = true;
345}
346
347static void
348__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
349				struct mem_cgroup_per_zone *mz,
350				struct mem_cgroup_tree_per_zone *mctz)
351{
352	if (!mz->on_tree)
353		return;
354	rb_erase(&mz->tree_node, &mctz->rb_root);
355	mz->on_tree = false;
356}
357
358static void
359mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
360				struct mem_cgroup_per_zone *mz,
361				struct mem_cgroup_tree_per_zone *mctz)
362{
363	spin_lock(&mctz->lock);
364	__mem_cgroup_remove_exceeded(mem, mz, mctz);
365	spin_unlock(&mctz->lock);
366}
367
368static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
369{
370	bool ret = false;
371	int cpu;
372	s64 val;
373	struct mem_cgroup_stat_cpu *cpustat;
374
375	cpu = get_cpu();
376	cpustat = &mem->stat.cpustat[cpu];
377	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
378	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
379		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
380		ret = true;
381	}
382	put_cpu();
383	return ret;
384}
385
386static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
387{
388	unsigned long long excess;
389	struct mem_cgroup_per_zone *mz;
390	struct mem_cgroup_tree_per_zone *mctz;
391	int nid = page_to_nid(page);
392	int zid = page_zonenum(page);
393	mctz = soft_limit_tree_from_page(page);
394
395	/*
396	 * Necessary to update all ancestors when hierarchy is used.
397	 * because their event counter is not touched.
398	 */
399	for (; mem; mem = parent_mem_cgroup(mem)) {
400		mz = mem_cgroup_zoneinfo(mem, nid, zid);
401		excess = res_counter_soft_limit_excess(&mem->res);
402		/*
403		 * We have to update the tree if mz is on RB-tree or
404		 * mem is over its softlimit.
405		 */
406		if (excess || mz->on_tree) {
407			spin_lock(&mctz->lock);
408			/* if on-tree, remove it */
409			if (mz->on_tree)
410				__mem_cgroup_remove_exceeded(mem, mz, mctz);
411			/*
412			 * Insert again. mz->usage_in_excess will be updated.
413			 * If excess is 0, no tree ops.
414			 */
415			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
416			spin_unlock(&mctz->lock);
417		}
418	}
419}
420
421static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
422{
423	int node, zone;
424	struct mem_cgroup_per_zone *mz;
425	struct mem_cgroup_tree_per_zone *mctz;
426
427	for_each_node_state(node, N_POSSIBLE) {
428		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
429			mz = mem_cgroup_zoneinfo(mem, node, zone);
430			mctz = soft_limit_tree_node_zone(node, zone);
431			mem_cgroup_remove_exceeded(mem, mz, mctz);
432		}
433	}
434}
435
436static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
437{
438	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
439}
440
441static struct mem_cgroup_per_zone *
442__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
443{
444	struct rb_node *rightmost = NULL;
445	struct mem_cgroup_per_zone *mz;
446
447retry:
448	mz = NULL;
449	rightmost = rb_last(&mctz->rb_root);
450	if (!rightmost)
451		goto done;		/* Nothing to reclaim from */
452
453	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
454	/*
455	 * Remove the node now but someone else can add it back,
456	 * we will to add it back at the end of reclaim to its correct
457	 * position in the tree.
458	 */
459	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
460	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
461		!css_tryget(&mz->mem->css))
462		goto retry;
463done:
464	return mz;
465}
466
467static struct mem_cgroup_per_zone *
468mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
469{
470	struct mem_cgroup_per_zone *mz;
471
472	spin_lock(&mctz->lock);
473	mz = __mem_cgroup_largest_soft_limit_node(mctz);
474	spin_unlock(&mctz->lock);
475	return mz;
476}
477
478static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
479					 bool charge)
480{
481	int val = (charge) ? 1 : -1;
482	struct mem_cgroup_stat *stat = &mem->stat;
483	struct mem_cgroup_stat_cpu *cpustat;
484	int cpu = get_cpu();
485
486	cpustat = &stat->cpustat[cpu];
487	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
488	put_cpu();
489}
490
491static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
492					 struct page_cgroup *pc,
493					 bool charge)
494{
495	int val = (charge) ? 1 : -1;
496	struct mem_cgroup_stat *stat = &mem->stat;
497	struct mem_cgroup_stat_cpu *cpustat;
498	int cpu = get_cpu();
499
500	cpustat = &stat->cpustat[cpu];
501	if (PageCgroupCache(pc))
502		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
503	else
504		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
505
506	if (charge)
507		__mem_cgroup_stat_add_safe(cpustat,
508				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
509	else
510		__mem_cgroup_stat_add_safe(cpustat,
511				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
512	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
513	put_cpu();
514}
515
516static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
517					enum lru_list idx)
518{
519	int nid, zid;
520	struct mem_cgroup_per_zone *mz;
521	u64 total = 0;
522
523	for_each_online_node(nid)
524		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
525			mz = mem_cgroup_zoneinfo(mem, nid, zid);
526			total += MEM_CGROUP_ZSTAT(mz, idx);
527		}
528	return total;
529}
530
531static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
532{
533	return container_of(cgroup_subsys_state(cont,
534				mem_cgroup_subsys_id), struct mem_cgroup,
535				css);
536}
537
538struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
539{
540	/*
541	 * mm_update_next_owner() may clear mm->owner to NULL
542	 * if it races with swapoff, page migration, etc.
543	 * So this can be called with p == NULL.
544	 */
545	if (unlikely(!p))
546		return NULL;
547
548	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
549				struct mem_cgroup, css);
550}
551
552static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
553{
554	struct mem_cgroup *mem = NULL;
555
556	if (!mm)
557		return NULL;
558	/*
559	 * Because we have no locks, mm->owner's may be being moved to other
560	 * cgroup. We use css_tryget() here even if this looks
561	 * pessimistic (rather than adding locks here).
562	 */
563	rcu_read_lock();
564	do {
565		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
566		if (unlikely(!mem))
567			break;
568	} while (!css_tryget(&mem->css));
569	rcu_read_unlock();
570	return mem;
571}
572
573/*
574 * Call callback function against all cgroup under hierarchy tree.
575 */
576static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
577			  int (*func)(struct mem_cgroup *, void *))
578{
579	int found, ret, nextid;
580	struct cgroup_subsys_state *css;
581	struct mem_cgroup *mem;
582
583	if (!root->use_hierarchy)
584		return (*func)(root, data);
585
586	nextid = 1;
587	do {
588		ret = 0;
589		mem = NULL;
590
591		rcu_read_lock();
592		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
593				   &found);
594		if (css && css_tryget(css))
595			mem = container_of(css, struct mem_cgroup, css);
596		rcu_read_unlock();
597
598		if (mem) {
599			ret = (*func)(mem, data);
600			css_put(&mem->css);
601		}
602		nextid = found + 1;
603	} while (!ret && css);
604
605	return ret;
606}
607
608static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
609{
610	return (mem == root_mem_cgroup);
611}
612
613/*
614 * Following LRU functions are allowed to be used without PCG_LOCK.
615 * Operations are called by routine of global LRU independently from memcg.
616 * What we have to take care of here is validness of pc->mem_cgroup.
617 *
618 * Changes to pc->mem_cgroup happens when
619 * 1. charge
620 * 2. moving account
621 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
622 * It is added to LRU before charge.
623 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
624 * When moving account, the page is not on LRU. It's isolated.
625 */
626
627void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
628{
629	struct page_cgroup *pc;
630	struct mem_cgroup_per_zone *mz;
631
632	if (mem_cgroup_disabled())
633		return;
634	pc = lookup_page_cgroup(page);
635	/* can happen while we handle swapcache. */
636	if (!TestClearPageCgroupAcctLRU(pc))
637		return;
638	VM_BUG_ON(!pc->mem_cgroup);
639	/*
640	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
641	 * removed from global LRU.
642	 */
643	mz = page_cgroup_zoneinfo(pc);
644	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
645	if (mem_cgroup_is_root(pc->mem_cgroup))
646		return;
647	VM_BUG_ON(list_empty(&pc->lru));
648	list_del_init(&pc->lru);
649	return;
650}
651
652void mem_cgroup_del_lru(struct page *page)
653{
654	mem_cgroup_del_lru_list(page, page_lru(page));
655}
656
657void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
658{
659	struct mem_cgroup_per_zone *mz;
660	struct page_cgroup *pc;
661
662	if (mem_cgroup_disabled())
663		return;
664
665	pc = lookup_page_cgroup(page);
666	/*
667	 * Used bit is set without atomic ops but after smp_wmb().
668	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
669	 */
670	smp_rmb();
671	/* unused or root page is not rotated. */
672	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
673		return;
674	mz = page_cgroup_zoneinfo(pc);
675	list_move(&pc->lru, &mz->lists[lru]);
676}
677
678void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
679{
680	struct page_cgroup *pc;
681	struct mem_cgroup_per_zone *mz;
682
683	if (mem_cgroup_disabled())
684		return;
685	pc = lookup_page_cgroup(page);
686	VM_BUG_ON(PageCgroupAcctLRU(pc));
687	/*
688	 * Used bit is set without atomic ops but after smp_wmb().
689	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
690	 */
691	smp_rmb();
692	if (!PageCgroupUsed(pc))
693		return;
694
695	mz = page_cgroup_zoneinfo(pc);
696	MEM_CGROUP_ZSTAT(mz, lru) += 1;
697	SetPageCgroupAcctLRU(pc);
698	if (mem_cgroup_is_root(pc->mem_cgroup))
699		return;
700	list_add(&pc->lru, &mz->lists[lru]);
701}
702
703/*
704 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
705 * lru because the page may.be reused after it's fully uncharged (because of
706 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
707 * it again. This function is only used to charge SwapCache. It's done under
708 * lock_page and expected that zone->lru_lock is never held.
709 */
710static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
711{
712	unsigned long flags;
713	struct zone *zone = page_zone(page);
714	struct page_cgroup *pc = lookup_page_cgroup(page);
715
716	spin_lock_irqsave(&zone->lru_lock, flags);
717	/*
718	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
719	 * is guarded by lock_page() because the page is SwapCache.
720	 */
721	if (!PageCgroupUsed(pc))
722		mem_cgroup_del_lru_list(page, page_lru(page));
723	spin_unlock_irqrestore(&zone->lru_lock, flags);
724}
725
726static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
727{
728	unsigned long flags;
729	struct zone *zone = page_zone(page);
730	struct page_cgroup *pc = lookup_page_cgroup(page);
731
732	spin_lock_irqsave(&zone->lru_lock, flags);
733	/* link when the page is linked to LRU but page_cgroup isn't */
734	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
735		mem_cgroup_add_lru_list(page, page_lru(page));
736	spin_unlock_irqrestore(&zone->lru_lock, flags);
737}
738
739
740void mem_cgroup_move_lists(struct page *page,
741			   enum lru_list from, enum lru_list to)
742{
743	if (mem_cgroup_disabled())
744		return;
745	mem_cgroup_del_lru_list(page, from);
746	mem_cgroup_add_lru_list(page, to);
747}
748
749int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
750{
751	int ret;
752	struct mem_cgroup *curr = NULL;
753
754	task_lock(task);
755	rcu_read_lock();
756	curr = try_get_mem_cgroup_from_mm(task->mm);
757	rcu_read_unlock();
758	task_unlock(task);
759	if (!curr)
760		return 0;
761	if (curr->use_hierarchy)
762		ret = css_is_ancestor(&curr->css, &mem->css);
763	else
764		ret = (curr == mem);
765	css_put(&curr->css);
766	return ret;
767}
768
769/*
770 * prev_priority control...this will be used in memory reclaim path.
771 */
772int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
773{
774	int prev_priority;
775
776	spin_lock(&mem->reclaim_param_lock);
777	prev_priority = mem->prev_priority;
778	spin_unlock(&mem->reclaim_param_lock);
779
780	return prev_priority;
781}
782
783void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
784{
785	spin_lock(&mem->reclaim_param_lock);
786	if (priority < mem->prev_priority)
787		mem->prev_priority = priority;
788	spin_unlock(&mem->reclaim_param_lock);
789}
790
791void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
792{
793	spin_lock(&mem->reclaim_param_lock);
794	mem->prev_priority = priority;
795	spin_unlock(&mem->reclaim_param_lock);
796}
797
798static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
799{
800	unsigned long active;
801	unsigned long inactive;
802	unsigned long gb;
803	unsigned long inactive_ratio;
804
805	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
806	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
807
808	gb = (inactive + active) >> (30 - PAGE_SHIFT);
809	if (gb)
810		inactive_ratio = int_sqrt(10 * gb);
811	else
812		inactive_ratio = 1;
813
814	if (present_pages) {
815		present_pages[0] = inactive;
816		present_pages[1] = active;
817	}
818
819	return inactive_ratio;
820}
821
822int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
823{
824	unsigned long active;
825	unsigned long inactive;
826	unsigned long present_pages[2];
827	unsigned long inactive_ratio;
828
829	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
830
831	inactive = present_pages[0];
832	active = present_pages[1];
833
834	if (inactive * inactive_ratio < active)
835		return 1;
836
837	return 0;
838}
839
840int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
841{
842	unsigned long active;
843	unsigned long inactive;
844
845	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
846	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
847
848	return (active > inactive);
849}
850
851unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
852				       struct zone *zone,
853				       enum lru_list lru)
854{
855	int nid = zone->zone_pgdat->node_id;
856	int zid = zone_idx(zone);
857	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
858
859	return MEM_CGROUP_ZSTAT(mz, lru);
860}
861
862struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
863						      struct zone *zone)
864{
865	int nid = zone->zone_pgdat->node_id;
866	int zid = zone_idx(zone);
867	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
868
869	return &mz->reclaim_stat;
870}
871
872struct zone_reclaim_stat *
873mem_cgroup_get_reclaim_stat_from_page(struct page *page)
874{
875	struct page_cgroup *pc;
876	struct mem_cgroup_per_zone *mz;
877
878	if (mem_cgroup_disabled())
879		return NULL;
880
881	pc = lookup_page_cgroup(page);
882	/*
883	 * Used bit is set without atomic ops but after smp_wmb().
884	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
885	 */
886	smp_rmb();
887	if (!PageCgroupUsed(pc))
888		return NULL;
889
890	mz = page_cgroup_zoneinfo(pc);
891	if (!mz)
892		return NULL;
893
894	return &mz->reclaim_stat;
895}
896
897unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
898					struct list_head *dst,
899					unsigned long *scanned, int order,
900					int mode, struct zone *z,
901					struct mem_cgroup *mem_cont,
902					int active, int file)
903{
904	unsigned long nr_taken = 0;
905	struct page *page;
906	unsigned long scan;
907	LIST_HEAD(pc_list);
908	struct list_head *src;
909	struct page_cgroup *pc, *tmp;
910	int nid = z->zone_pgdat->node_id;
911	int zid = zone_idx(z);
912	struct mem_cgroup_per_zone *mz;
913	int lru = LRU_FILE * file + active;
914	int ret;
915
916	BUG_ON(!mem_cont);
917	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
918	src = &mz->lists[lru];
919
920	scan = 0;
921	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
922		if (scan >= nr_to_scan)
923			break;
924
925		page = pc->page;
926		if (unlikely(!PageCgroupUsed(pc)))
927			continue;
928		if (unlikely(!PageLRU(page)))
929			continue;
930
931		scan++;
932		ret = __isolate_lru_page(page, mode, file);
933		switch (ret) {
934		case 0:
935			list_move(&page->lru, dst);
936			mem_cgroup_del_lru(page);
937			nr_taken++;
938			break;
939		case -EBUSY:
940			/* we don't affect global LRU but rotate in our LRU */
941			mem_cgroup_rotate_lru_list(page, page_lru(page));
942			break;
943		default:
944			break;
945		}
946	}
947
948	*scanned = scan;
949	return nr_taken;
950}
951
952#define mem_cgroup_from_res_counter(counter, member)	\
953	container_of(counter, struct mem_cgroup, member)
954
955static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
956{
957	if (do_swap_account) {
958		if (res_counter_check_under_limit(&mem->res) &&
959			res_counter_check_under_limit(&mem->memsw))
960			return true;
961	} else
962		if (res_counter_check_under_limit(&mem->res))
963			return true;
964	return false;
965}
966
967static unsigned int get_swappiness(struct mem_cgroup *memcg)
968{
969	struct cgroup *cgrp = memcg->css.cgroup;
970	unsigned int swappiness;
971
972	/* root ? */
973	if (cgrp->parent == NULL)
974		return vm_swappiness;
975
976	spin_lock(&memcg->reclaim_param_lock);
977	swappiness = memcg->swappiness;
978	spin_unlock(&memcg->reclaim_param_lock);
979
980	return swappiness;
981}
982
983static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
984{
985	int *val = data;
986	(*val)++;
987	return 0;
988}
989
990/**
991 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
992 * @memcg: The memory cgroup that went over limit
993 * @p: Task that is going to be killed
994 *
995 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
996 * enabled
997 */
998void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
999{
1000	struct cgroup *task_cgrp;
1001	struct cgroup *mem_cgrp;
1002	/*
1003	 * Need a buffer in BSS, can't rely on allocations. The code relies
1004	 * on the assumption that OOM is serialized for memory controller.
1005	 * If this assumption is broken, revisit this code.
1006	 */
1007	static char memcg_name[PATH_MAX];
1008	int ret;
1009
1010	if (!memcg)
1011		return;
1012
1013
1014	rcu_read_lock();
1015
1016	mem_cgrp = memcg->css.cgroup;
1017	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1018
1019	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1020	if (ret < 0) {
1021		/*
1022		 * Unfortunately, we are unable to convert to a useful name
1023		 * But we'll still print out the usage information
1024		 */
1025		rcu_read_unlock();
1026		goto done;
1027	}
1028	rcu_read_unlock();
1029
1030	printk(KERN_INFO "Task in %s killed", memcg_name);
1031
1032	rcu_read_lock();
1033	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1034	if (ret < 0) {
1035		rcu_read_unlock();
1036		goto done;
1037	}
1038	rcu_read_unlock();
1039
1040	/*
1041	 * Continues from above, so we don't need an KERN_ level
1042	 */
1043	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1044done:
1045
1046	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1047		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1048		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1049		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1050	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1051		"failcnt %llu\n",
1052		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1053		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1054		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1055}
1056
1057/*
1058 * This function returns the number of memcg under hierarchy tree. Returns
1059 * 1(self count) if no children.
1060 */
1061static int mem_cgroup_count_children(struct mem_cgroup *mem)
1062{
1063	int num = 0;
1064 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1065	return num;
1066}
1067
1068/*
1069 * Visit the first child (need not be the first child as per the ordering
1070 * of the cgroup list, since we track last_scanned_child) of @mem and use
1071 * that to reclaim free pages from.
1072 */
1073static struct mem_cgroup *
1074mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1075{
1076	struct mem_cgroup *ret = NULL;
1077	struct cgroup_subsys_state *css;
1078	int nextid, found;
1079
1080	if (!root_mem->use_hierarchy) {
1081		css_get(&root_mem->css);
1082		ret = root_mem;
1083	}
1084
1085	while (!ret) {
1086		rcu_read_lock();
1087		nextid = root_mem->last_scanned_child + 1;
1088		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1089				   &found);
1090		if (css && css_tryget(css))
1091			ret = container_of(css, struct mem_cgroup, css);
1092
1093		rcu_read_unlock();
1094		/* Updates scanning parameter */
1095		spin_lock(&root_mem->reclaim_param_lock);
1096		if (!css) {
1097			/* this means start scan from ID:1 */
1098			root_mem->last_scanned_child = 0;
1099		} else
1100			root_mem->last_scanned_child = found;
1101		spin_unlock(&root_mem->reclaim_param_lock);
1102	}
1103
1104	return ret;
1105}
1106
1107/*
1108 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1109 * we reclaimed from, so that we don't end up penalizing one child extensively
1110 * based on its position in the children list.
1111 *
1112 * root_mem is the original ancestor that we've been reclaim from.
1113 *
1114 * We give up and return to the caller when we visit root_mem twice.
1115 * (other groups can be removed while we're walking....)
1116 *
1117 * If shrink==true, for avoiding to free too much, this returns immedieately.
1118 */
1119static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1120						struct zone *zone,
1121						gfp_t gfp_mask,
1122						unsigned long reclaim_options)
1123{
1124	struct mem_cgroup *victim;
1125	int ret, total = 0;
1126	int loop = 0;
1127	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1128	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1129	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1130	unsigned long excess = mem_cgroup_get_excess(root_mem);
1131
1132	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1133	if (root_mem->memsw_is_minimum)
1134		noswap = true;
1135
1136	while (1) {
1137		victim = mem_cgroup_select_victim(root_mem);
1138		if (victim == root_mem) {
1139			loop++;
1140			if (loop >= 2) {
1141				/*
1142				 * If we have not been able to reclaim
1143				 * anything, it might because there are
1144				 * no reclaimable pages under this hierarchy
1145				 */
1146				if (!check_soft || !total) {
1147					css_put(&victim->css);
1148					break;
1149				}
1150				/*
1151				 * We want to do more targetted reclaim.
1152				 * excess >> 2 is not to excessive so as to
1153				 * reclaim too much, nor too less that we keep
1154				 * coming back to reclaim from this cgroup
1155				 */
1156				if (total >= (excess >> 2) ||
1157					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1158					css_put(&victim->css);
1159					break;
1160				}
1161			}
1162		}
1163		if (!mem_cgroup_local_usage(&victim->stat)) {
1164			/* this cgroup's local usage == 0 */
1165			css_put(&victim->css);
1166			continue;
1167		}
1168		/* we use swappiness of local cgroup */
1169		if (check_soft)
1170			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1171				noswap, get_swappiness(victim), zone,
1172				zone->zone_pgdat->node_id);
1173		else
1174			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1175						noswap, get_swappiness(victim));
1176		css_put(&victim->css);
1177		/*
1178		 * At shrinking usage, we can't check we should stop here or
1179		 * reclaim more. It's depends on callers. last_scanned_child
1180		 * will work enough for keeping fairness under tree.
1181		 */
1182		if (shrink)
1183			return ret;
1184		total += ret;
1185		if (check_soft) {
1186			if (res_counter_check_under_soft_limit(&root_mem->res))
1187				return total;
1188		} else if (mem_cgroup_check_under_limit(root_mem))
1189			return 1 + total;
1190	}
1191	return total;
1192}
1193
1194bool mem_cgroup_oom_called(struct task_struct *task)
1195{
1196	bool ret = false;
1197	struct mem_cgroup *mem;
1198	struct mm_struct *mm;
1199
1200	rcu_read_lock();
1201	mm = task->mm;
1202	if (!mm)
1203		mm = &init_mm;
1204	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1205	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1206		ret = true;
1207	rcu_read_unlock();
1208	return ret;
1209}
1210
1211static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1212{
1213	mem->last_oom_jiffies = jiffies;
1214	return 0;
1215}
1216
1217static void record_last_oom(struct mem_cgroup *mem)
1218{
1219	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1220}
1221
1222/*
1223 * Currently used to update mapped file statistics, but the routine can be
1224 * generalized to update other statistics as well.
1225 */
1226void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
1227{
1228	struct mem_cgroup *mem;
1229	struct mem_cgroup_stat *stat;
1230	struct mem_cgroup_stat_cpu *cpustat;
1231	int cpu;
1232	struct page_cgroup *pc;
1233
1234	if (!page_is_file_cache(page))
1235		return;
1236
1237	pc = lookup_page_cgroup(page);
1238	if (unlikely(!pc))
1239		return;
1240
1241	lock_page_cgroup(pc);
1242	mem = pc->mem_cgroup;
1243	if (!mem)
1244		goto done;
1245
1246	if (!PageCgroupUsed(pc))
1247		goto done;
1248
1249	/*
1250	 * Preemption is already disabled, we don't need get_cpu()
1251	 */
1252	cpu = smp_processor_id();
1253	stat = &mem->stat;
1254	cpustat = &stat->cpustat[cpu];
1255
1256	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
1257done:
1258	unlock_page_cgroup(pc);
1259}
1260
1261/*
1262 * Unlike exported interface, "oom" parameter is added. if oom==true,
1263 * oom-killer can be invoked.
1264 */
1265static int __mem_cgroup_try_charge(struct mm_struct *mm,
1266			gfp_t gfp_mask, struct mem_cgroup **memcg,
1267			bool oom, struct page *page)
1268{
1269	struct mem_cgroup *mem, *mem_over_limit;
1270	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1271	struct res_counter *fail_res;
1272
1273	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1274		/* Don't account this! */
1275		*memcg = NULL;
1276		return 0;
1277	}
1278
1279	/*
1280	 * We always charge the cgroup the mm_struct belongs to.
1281	 * The mm_struct's mem_cgroup changes on task migration if the
1282	 * thread group leader migrates. It's possible that mm is not
1283	 * set, if so charge the init_mm (happens for pagecache usage).
1284	 */
1285	mem = *memcg;
1286	if (likely(!mem)) {
1287		mem = try_get_mem_cgroup_from_mm(mm);
1288		*memcg = mem;
1289	} else {
1290		css_get(&mem->css);
1291	}
1292	if (unlikely(!mem))
1293		return 0;
1294
1295	VM_BUG_ON(css_is_removed(&mem->css));
1296
1297	while (1) {
1298		int ret = 0;
1299		unsigned long flags = 0;
1300
1301		if (mem_cgroup_is_root(mem))
1302			goto done;
1303		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1304		if (likely(!ret)) {
1305			if (!do_swap_account)
1306				break;
1307			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1308							&fail_res);
1309			if (likely(!ret))
1310				break;
1311			/* mem+swap counter fails */
1312			res_counter_uncharge(&mem->res, PAGE_SIZE);
1313			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1314			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1315									memsw);
1316		} else
1317			/* mem counter fails */
1318			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1319									res);
1320
1321		if (!(gfp_mask & __GFP_WAIT))
1322			goto nomem;
1323
1324		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1325						gfp_mask, flags);
1326		if (ret)
1327			continue;
1328
1329		/*
1330		 * try_to_free_mem_cgroup_pages() might not give us a full
1331		 * picture of reclaim. Some pages are reclaimed and might be
1332		 * moved to swap cache or just unmapped from the cgroup.
1333		 * Check the limit again to see if the reclaim reduced the
1334		 * current usage of the cgroup before giving up
1335		 *
1336		 */
1337		if (mem_cgroup_check_under_limit(mem_over_limit))
1338			continue;
1339
1340		if (!nr_retries--) {
1341			if (oom) {
1342				mutex_lock(&memcg_tasklist);
1343				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1344				mutex_unlock(&memcg_tasklist);
1345				record_last_oom(mem_over_limit);
1346			}
1347			goto nomem;
1348		}
1349	}
1350	/*
1351	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1352	 * if they exceeds softlimit.
1353	 */
1354	if (mem_cgroup_soft_limit_check(mem))
1355		mem_cgroup_update_tree(mem, page);
1356done:
1357	return 0;
1358nomem:
1359	css_put(&mem->css);
1360	return -ENOMEM;
1361}
1362
1363/*
1364 * A helper function to get mem_cgroup from ID. must be called under
1365 * rcu_read_lock(). The caller must check css_is_removed() or some if
1366 * it's concern. (dropping refcnt from swap can be called against removed
1367 * memcg.)
1368 */
1369static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1370{
1371	struct cgroup_subsys_state *css;
1372
1373	/* ID 0 is unused ID */
1374	if (!id)
1375		return NULL;
1376	css = css_lookup(&mem_cgroup_subsys, id);
1377	if (!css)
1378		return NULL;
1379	return container_of(css, struct mem_cgroup, css);
1380}
1381
1382static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1383{
1384	struct mem_cgroup *mem;
1385	struct page_cgroup *pc;
1386	unsigned short id;
1387	swp_entry_t ent;
1388
1389	VM_BUG_ON(!PageLocked(page));
1390
1391	if (!PageSwapCache(page))
1392		return NULL;
1393
1394	pc = lookup_page_cgroup(page);
1395	lock_page_cgroup(pc);
1396	if (PageCgroupUsed(pc)) {
1397		mem = pc->mem_cgroup;
1398		if (mem && !css_tryget(&mem->css))
1399			mem = NULL;
1400	} else {
1401		ent.val = page_private(page);
1402		id = lookup_swap_cgroup(ent);
1403		rcu_read_lock();
1404		mem = mem_cgroup_lookup(id);
1405		if (mem && !css_tryget(&mem->css))
1406			mem = NULL;
1407		rcu_read_unlock();
1408	}
1409	unlock_page_cgroup(pc);
1410	return mem;
1411}
1412
1413/*
1414 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1415 * USED state. If already USED, uncharge and return.
1416 */
1417
1418static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1419				     struct page_cgroup *pc,
1420				     enum charge_type ctype)
1421{
1422	/* try_charge() can return NULL to *memcg, taking care of it. */
1423	if (!mem)
1424		return;
1425
1426	lock_page_cgroup(pc);
1427	if (unlikely(PageCgroupUsed(pc))) {
1428		unlock_page_cgroup(pc);
1429		if (!mem_cgroup_is_root(mem)) {
1430			res_counter_uncharge(&mem->res, PAGE_SIZE);
1431			if (do_swap_account)
1432				res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1433		}
1434		css_put(&mem->css);
1435		return;
1436	}
1437
1438	pc->mem_cgroup = mem;
1439	/*
1440	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1441	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1442	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1443	 * before USED bit, we need memory barrier here.
1444	 * See mem_cgroup_add_lru_list(), etc.
1445 	 */
1446	smp_wmb();
1447	switch (ctype) {
1448	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1449	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1450		SetPageCgroupCache(pc);
1451		SetPageCgroupUsed(pc);
1452		break;
1453	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1454		ClearPageCgroupCache(pc);
1455		SetPageCgroupUsed(pc);
1456		break;
1457	default:
1458		break;
1459	}
1460
1461	mem_cgroup_charge_statistics(mem, pc, true);
1462
1463	unlock_page_cgroup(pc);
1464}
1465
1466/**
1467 * mem_cgroup_move_account - move account of the page
1468 * @pc:	page_cgroup of the page.
1469 * @from: mem_cgroup which the page is moved from.
1470 * @to:	mem_cgroup which the page is moved to. @from != @to.
1471 *
1472 * The caller must confirm following.
1473 * - page is not on LRU (isolate_page() is useful.)
1474 *
1475 * returns 0 at success,
1476 * returns -EBUSY when lock is busy or "pc" is unstable.
1477 *
1478 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1479 * new cgroup. It should be done by a caller.
1480 */
1481
1482static int mem_cgroup_move_account(struct page_cgroup *pc,
1483	struct mem_cgroup *from, struct mem_cgroup *to)
1484{
1485	struct mem_cgroup_per_zone *from_mz, *to_mz;
1486	int nid, zid;
1487	int ret = -EBUSY;
1488	struct page *page;
1489	int cpu;
1490	struct mem_cgroup_stat *stat;
1491	struct mem_cgroup_stat_cpu *cpustat;
1492
1493	VM_BUG_ON(from == to);
1494	VM_BUG_ON(PageLRU(pc->page));
1495
1496	nid = page_cgroup_nid(pc);
1497	zid = page_cgroup_zid(pc);
1498	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1499	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1500
1501	if (!trylock_page_cgroup(pc))
1502		return ret;
1503
1504	if (!PageCgroupUsed(pc))
1505		goto out;
1506
1507	if (pc->mem_cgroup != from)
1508		goto out;
1509
1510	if (!mem_cgroup_is_root(from))
1511		res_counter_uncharge(&from->res, PAGE_SIZE);
1512	mem_cgroup_charge_statistics(from, pc, false);
1513
1514	page = pc->page;
1515	if (page_is_file_cache(page) && page_mapped(page)) {
1516		cpu = smp_processor_id();
1517		/* Update mapped_file data for mem_cgroup "from" */
1518		stat = &from->stat;
1519		cpustat = &stat->cpustat[cpu];
1520		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1521						-1);
1522
1523		/* Update mapped_file data for mem_cgroup "to" */
1524		stat = &to->stat;
1525		cpustat = &stat->cpustat[cpu];
1526		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1527						1);
1528	}
1529
1530	if (do_swap_account && !mem_cgroup_is_root(from))
1531		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1532	css_put(&from->css);
1533
1534	css_get(&to->css);
1535	pc->mem_cgroup = to;
1536	mem_cgroup_charge_statistics(to, pc, true);
1537	ret = 0;
1538out:
1539	unlock_page_cgroup(pc);
1540	/*
1541	 * We charges against "to" which may not have any tasks. Then, "to"
1542	 * can be under rmdir(). But in current implementation, caller of
1543	 * this function is just force_empty() and it's garanteed that
1544	 * "to" is never removed. So, we don't check rmdir status here.
1545	 */
1546	return ret;
1547}
1548
1549/*
1550 * move charges to its parent.
1551 */
1552
1553static int mem_cgroup_move_parent(struct page_cgroup *pc,
1554				  struct mem_cgroup *child,
1555				  gfp_t gfp_mask)
1556{
1557	struct page *page = pc->page;
1558	struct cgroup *cg = child->css.cgroup;
1559	struct cgroup *pcg = cg->parent;
1560	struct mem_cgroup *parent;
1561	int ret;
1562
1563	/* Is ROOT ? */
1564	if (!pcg)
1565		return -EINVAL;
1566
1567
1568	parent = mem_cgroup_from_cont(pcg);
1569
1570
1571	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1572	if (ret || !parent)
1573		return ret;
1574
1575	if (!get_page_unless_zero(page)) {
1576		ret = -EBUSY;
1577		goto uncharge;
1578	}
1579
1580	ret = isolate_lru_page(page);
1581
1582	if (ret)
1583		goto cancel;
1584
1585	ret = mem_cgroup_move_account(pc, child, parent);
1586
1587	putback_lru_page(page);
1588	if (!ret) {
1589		put_page(page);
1590		/* drop extra refcnt by try_charge() */
1591		css_put(&parent->css);
1592		return 0;
1593	}
1594
1595cancel:
1596	put_page(page);
1597uncharge:
1598	/* drop extra refcnt by try_charge() */
1599	css_put(&parent->css);
1600	/* uncharge if move fails */
1601	if (!mem_cgroup_is_root(parent)) {
1602		res_counter_uncharge(&parent->res, PAGE_SIZE);
1603		if (do_swap_account)
1604			res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1605	}
1606	return ret;
1607}
1608
1609/*
1610 * Charge the memory controller for page usage.
1611 * Return
1612 * 0 if the charge was successful
1613 * < 0 if the cgroup is over its limit
1614 */
1615static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1616				gfp_t gfp_mask, enum charge_type ctype,
1617				struct mem_cgroup *memcg)
1618{
1619	struct mem_cgroup *mem;
1620	struct page_cgroup *pc;
1621	int ret;
1622
1623	pc = lookup_page_cgroup(page);
1624	/* can happen at boot */
1625	if (unlikely(!pc))
1626		return 0;
1627	prefetchw(pc);
1628
1629	mem = memcg;
1630	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1631	if (ret || !mem)
1632		return ret;
1633
1634	__mem_cgroup_commit_charge(mem, pc, ctype);
1635	return 0;
1636}
1637
1638int mem_cgroup_newpage_charge(struct page *page,
1639			      struct mm_struct *mm, gfp_t gfp_mask)
1640{
1641	if (mem_cgroup_disabled())
1642		return 0;
1643	if (PageCompound(page))
1644		return 0;
1645	/*
1646	 * If already mapped, we don't have to account.
1647	 * If page cache, page->mapping has address_space.
1648	 * But page->mapping may have out-of-use anon_vma pointer,
1649	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1650	 * is NULL.
1651  	 */
1652	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1653		return 0;
1654	if (unlikely(!mm))
1655		mm = &init_mm;
1656	return mem_cgroup_charge_common(page, mm, gfp_mask,
1657				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1658}
1659
1660static void
1661__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1662					enum charge_type ctype);
1663
1664int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1665				gfp_t gfp_mask)
1666{
1667	struct mem_cgroup *mem = NULL;
1668	int ret;
1669
1670	if (mem_cgroup_disabled())
1671		return 0;
1672	if (PageCompound(page))
1673		return 0;
1674	/*
1675	 * Corner case handling. This is called from add_to_page_cache()
1676	 * in usual. But some FS (shmem) precharges this page before calling it
1677	 * and call add_to_page_cache() with GFP_NOWAIT.
1678	 *
1679	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1680	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1681	 * charge twice. (It works but has to pay a bit larger cost.)
1682	 * And when the page is SwapCache, it should take swap information
1683	 * into account. This is under lock_page() now.
1684	 */
1685	if (!(gfp_mask & __GFP_WAIT)) {
1686		struct page_cgroup *pc;
1687
1688
1689		pc = lookup_page_cgroup(page);
1690		if (!pc)
1691			return 0;
1692		lock_page_cgroup(pc);
1693		if (PageCgroupUsed(pc)) {
1694			unlock_page_cgroup(pc);
1695			return 0;
1696		}
1697		unlock_page_cgroup(pc);
1698	}
1699
1700	if (unlikely(!mm && !mem))
1701		mm = &init_mm;
1702
1703	if (page_is_file_cache(page))
1704		return mem_cgroup_charge_common(page, mm, gfp_mask,
1705				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1706
1707	/* shmem */
1708	if (PageSwapCache(page)) {
1709		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1710		if (!ret)
1711			__mem_cgroup_commit_charge_swapin(page, mem,
1712					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1713	} else
1714		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1715					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1716
1717	return ret;
1718}
1719
1720/*
1721 * While swap-in, try_charge -> commit or cancel, the page is locked.
1722 * And when try_charge() successfully returns, one refcnt to memcg without
1723 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1724 * "commit()" or removed by "cancel()"
1725 */
1726int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1727				 struct page *page,
1728				 gfp_t mask, struct mem_cgroup **ptr)
1729{
1730	struct mem_cgroup *mem;
1731	int ret;
1732
1733	if (mem_cgroup_disabled())
1734		return 0;
1735
1736	if (!do_swap_account)
1737		goto charge_cur_mm;
1738	/*
1739	 * A racing thread's fault, or swapoff, may have already updated
1740	 * the pte, and even removed page from swap cache: return success
1741	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1742	 */
1743	if (!PageSwapCache(page))
1744		return 0;
1745	mem = try_get_mem_cgroup_from_swapcache(page);
1746	if (!mem)
1747		goto charge_cur_mm;
1748	*ptr = mem;
1749	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1750	/* drop extra refcnt from tryget */
1751	css_put(&mem->css);
1752	return ret;
1753charge_cur_mm:
1754	if (unlikely(!mm))
1755		mm = &init_mm;
1756	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1757}
1758
1759static void
1760__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1761					enum charge_type ctype)
1762{
1763	struct page_cgroup *pc;
1764
1765	if (mem_cgroup_disabled())
1766		return;
1767	if (!ptr)
1768		return;
1769	cgroup_exclude_rmdir(&ptr->css);
1770	pc = lookup_page_cgroup(page);
1771	mem_cgroup_lru_del_before_commit_swapcache(page);
1772	__mem_cgroup_commit_charge(ptr, pc, ctype);
1773	mem_cgroup_lru_add_after_commit_swapcache(page);
1774	/*
1775	 * Now swap is on-memory. This means this page may be
1776	 * counted both as mem and swap....double count.
1777	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1778	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1779	 * may call delete_from_swap_cache() before reach here.
1780	 */
1781	if (do_swap_account && PageSwapCache(page)) {
1782		swp_entry_t ent = {.val = page_private(page)};
1783		unsigned short id;
1784		struct mem_cgroup *memcg;
1785
1786		id = swap_cgroup_record(ent, 0);
1787		rcu_read_lock();
1788		memcg = mem_cgroup_lookup(id);
1789		if (memcg) {
1790			/*
1791			 * This recorded memcg can be obsolete one. So, avoid
1792			 * calling css_tryget
1793			 */
1794			if (!mem_cgroup_is_root(memcg))
1795				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1796			mem_cgroup_swap_statistics(memcg, false);
1797			mem_cgroup_put(memcg);
1798		}
1799		rcu_read_unlock();
1800	}
1801	/*
1802	 * At swapin, we may charge account against cgroup which has no tasks.
1803	 * So, rmdir()->pre_destroy() can be called while we do this charge.
1804	 * In that case, we need to call pre_destroy() again. check it here.
1805	 */
1806	cgroup_release_and_wakeup_rmdir(&ptr->css);
1807}
1808
1809void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1810{
1811	__mem_cgroup_commit_charge_swapin(page, ptr,
1812					MEM_CGROUP_CHARGE_TYPE_MAPPED);
1813}
1814
1815void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1816{
1817	if (mem_cgroup_disabled())
1818		return;
1819	if (!mem)
1820		return;
1821	if (!mem_cgroup_is_root(mem)) {
1822		res_counter_uncharge(&mem->res, PAGE_SIZE);
1823		if (do_swap_account)
1824			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1825	}
1826	css_put(&mem->css);
1827}
1828
1829
1830/*
1831 * uncharge if !page_mapped(page)
1832 */
1833static struct mem_cgroup *
1834__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1835{
1836	struct page_cgroup *pc;
1837	struct mem_cgroup *mem = NULL;
1838	struct mem_cgroup_per_zone *mz;
1839
1840	if (mem_cgroup_disabled())
1841		return NULL;
1842
1843	if (PageSwapCache(page))
1844		return NULL;
1845
1846	/*
1847	 * Check if our page_cgroup is valid
1848	 */
1849	pc = lookup_page_cgroup(page);
1850	if (unlikely(!pc || !PageCgroupUsed(pc)))
1851		return NULL;
1852
1853	lock_page_cgroup(pc);
1854
1855	mem = pc->mem_cgroup;
1856
1857	if (!PageCgroupUsed(pc))
1858		goto unlock_out;
1859
1860	switch (ctype) {
1861	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1862	case MEM_CGROUP_CHARGE_TYPE_DROP:
1863		if (page_mapped(page))
1864			goto unlock_out;
1865		break;
1866	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1867		if (!PageAnon(page)) {	/* Shared memory */
1868			if (page->mapping && !page_is_file_cache(page))
1869				goto unlock_out;
1870		} else if (page_mapped(page)) /* Anon */
1871				goto unlock_out;
1872		break;
1873	default:
1874		break;
1875	}
1876
1877	if (!mem_cgroup_is_root(mem)) {
1878		res_counter_uncharge(&mem->res, PAGE_SIZE);
1879		if (do_swap_account &&
1880				(ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1881			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1882	}
1883	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1884		mem_cgroup_swap_statistics(mem, true);
1885	mem_cgroup_charge_statistics(mem, pc, false);
1886
1887	ClearPageCgroupUsed(pc);
1888	/*
1889	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1890	 * freed from LRU. This is safe because uncharged page is expected not
1891	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1892	 * special functions.
1893	 */
1894
1895	mz = page_cgroup_zoneinfo(pc);
1896	unlock_page_cgroup(pc);
1897
1898	if (mem_cgroup_soft_limit_check(mem))
1899		mem_cgroup_update_tree(mem, page);
1900	/* at swapout, this memcg will be accessed to record to swap */
1901	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1902		css_put(&mem->css);
1903
1904	return mem;
1905
1906unlock_out:
1907	unlock_page_cgroup(pc);
1908	return NULL;
1909}
1910
1911void mem_cgroup_uncharge_page(struct page *page)
1912{
1913	/* early check. */
1914	if (page_mapped(page))
1915		return;
1916	if (page->mapping && !PageAnon(page))
1917		return;
1918	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1919}
1920
1921void mem_cgroup_uncharge_cache_page(struct page *page)
1922{
1923	VM_BUG_ON(page_mapped(page));
1924	VM_BUG_ON(page->mapping);
1925	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1926}
1927
1928#ifdef CONFIG_SWAP
1929/*
1930 * called after __delete_from_swap_cache() and drop "page" account.
1931 * memcg information is recorded to swap_cgroup of "ent"
1932 */
1933void
1934mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1935{
1936	struct mem_cgroup *memcg;
1937	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1938
1939	if (!swapout) /* this was a swap cache but the swap is unused ! */
1940		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1941
1942	memcg = __mem_cgroup_uncharge_common(page, ctype);
1943
1944	/* record memcg information */
1945	if (do_swap_account && swapout && memcg) {
1946		swap_cgroup_record(ent, css_id(&memcg->css));
1947		mem_cgroup_get(memcg);
1948	}
1949	if (swapout && memcg)
1950		css_put(&memcg->css);
1951}
1952#endif
1953
1954#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1955/*
1956 * called from swap_entry_free(). remove record in swap_cgroup and
1957 * uncharge "memsw" account.
1958 */
1959void mem_cgroup_uncharge_swap(swp_entry_t ent)
1960{
1961	struct mem_cgroup *memcg;
1962	unsigned short id;
1963
1964	if (!do_swap_account)
1965		return;
1966
1967	id = swap_cgroup_record(ent, 0);
1968	rcu_read_lock();
1969	memcg = mem_cgroup_lookup(id);
1970	if (memcg) {
1971		/*
1972		 * We uncharge this because swap is freed.
1973		 * This memcg can be obsolete one. We avoid calling css_tryget
1974		 */
1975		if (!mem_cgroup_is_root(memcg))
1976			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1977		mem_cgroup_swap_statistics(memcg, false);
1978		mem_cgroup_put(memcg);
1979	}
1980	rcu_read_unlock();
1981}
1982#endif
1983
1984/*
1985 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1986 * page belongs to.
1987 */
1988int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1989{
1990	struct page_cgroup *pc;
1991	struct mem_cgroup *mem = NULL;
1992	int ret = 0;
1993
1994	if (mem_cgroup_disabled())
1995		return 0;
1996
1997	pc = lookup_page_cgroup(page);
1998	lock_page_cgroup(pc);
1999	if (PageCgroupUsed(pc)) {
2000		mem = pc->mem_cgroup;
2001		css_get(&mem->css);
2002	}
2003	unlock_page_cgroup(pc);
2004
2005	if (mem) {
2006		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2007						page);
2008		css_put(&mem->css);
2009	}
2010	*ptr = mem;
2011	return ret;
2012}
2013
2014/* remove redundant charge if migration failed*/
2015void mem_cgroup_end_migration(struct mem_cgroup *mem,
2016		struct page *oldpage, struct page *newpage)
2017{
2018	struct page *target, *unused;
2019	struct page_cgroup *pc;
2020	enum charge_type ctype;
2021
2022	if (!mem)
2023		return;
2024	cgroup_exclude_rmdir(&mem->css);
2025	/* at migration success, oldpage->mapping is NULL. */
2026	if (oldpage->mapping) {
2027		target = oldpage;
2028		unused = NULL;
2029	} else {
2030		target = newpage;
2031		unused = oldpage;
2032	}
2033
2034	if (PageAnon(target))
2035		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2036	else if (page_is_file_cache(target))
2037		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2038	else
2039		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2040
2041	/* unused page is not on radix-tree now. */
2042	if (unused)
2043		__mem_cgroup_uncharge_common(unused, ctype);
2044
2045	pc = lookup_page_cgroup(target);
2046	/*
2047	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2048	 * So, double-counting is effectively avoided.
2049	 */
2050	__mem_cgroup_commit_charge(mem, pc, ctype);
2051
2052	/*
2053	 * Both of oldpage and newpage are still under lock_page().
2054	 * Then, we don't have to care about race in radix-tree.
2055	 * But we have to be careful that this page is unmapped or not.
2056	 *
2057	 * There is a case for !page_mapped(). At the start of
2058	 * migration, oldpage was mapped. But now, it's zapped.
2059	 * But we know *target* page is not freed/reused under us.
2060	 * mem_cgroup_uncharge_page() does all necessary checks.
2061	 */
2062	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2063		mem_cgroup_uncharge_page(target);
2064	/*
2065	 * At migration, we may charge account against cgroup which has no tasks
2066	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2067	 * In that case, we need to call pre_destroy() again. check it here.
2068	 */
2069	cgroup_release_and_wakeup_rmdir(&mem->css);
2070}
2071
2072/*
2073 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2074 * Calling hierarchical_reclaim is not enough because we should update
2075 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2076 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2077 * not from the memcg which this page would be charged to.
2078 * try_charge_swapin does all of these works properly.
2079 */
2080int mem_cgroup_shmem_charge_fallback(struct page *page,
2081			    struct mm_struct *mm,
2082			    gfp_t gfp_mask)
2083{
2084	struct mem_cgroup *mem = NULL;
2085	int ret;
2086
2087	if (mem_cgroup_disabled())
2088		return 0;
2089
2090	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2091	if (!ret)
2092		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2093
2094	return ret;
2095}
2096
2097static DEFINE_MUTEX(set_limit_mutex);
2098
2099static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2100				unsigned long long val)
2101{
2102	int retry_count;
2103	int progress;
2104	u64 memswlimit;
2105	int ret = 0;
2106	int children = mem_cgroup_count_children(memcg);
2107	u64 curusage, oldusage;
2108
2109	/*
2110	 * For keeping hierarchical_reclaim simple, how long we should retry
2111	 * is depends on callers. We set our retry-count to be function
2112	 * of # of children which we should visit in this loop.
2113	 */
2114	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2115
2116	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2117
2118	while (retry_count) {
2119		if (signal_pending(current)) {
2120			ret = -EINTR;
2121			break;
2122		}
2123		/*
2124		 * Rather than hide all in some function, I do this in
2125		 * open coded manner. You see what this really does.
2126		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2127		 */
2128		mutex_lock(&set_limit_mutex);
2129		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2130		if (memswlimit < val) {
2131			ret = -EINVAL;
2132			mutex_unlock(&set_limit_mutex);
2133			break;
2134		}
2135		ret = res_counter_set_limit(&memcg->res, val);
2136		if (!ret) {
2137			if (memswlimit == val)
2138				memcg->memsw_is_minimum = true;
2139			else
2140				memcg->memsw_is_minimum = false;
2141		}
2142		mutex_unlock(&set_limit_mutex);
2143
2144		if (!ret)
2145			break;
2146
2147		progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
2148						GFP_KERNEL,
2149						MEM_CGROUP_RECLAIM_SHRINK);
2150		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2151		/* Usage is reduced ? */
2152  		if (curusage >= oldusage)
2153			retry_count--;
2154		else
2155			oldusage = curusage;
2156	}
2157
2158	return ret;
2159}
2160
2161static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2162					unsigned long long val)
2163{
2164	int retry_count;
2165	u64 memlimit, oldusage, curusage;
2166	int children = mem_cgroup_count_children(memcg);
2167	int ret = -EBUSY;
2168
2169	/* see mem_cgroup_resize_res_limit */
2170 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2171	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2172	while (retry_count) {
2173		if (signal_pending(current)) {
2174			ret = -EINTR;
2175			break;
2176		}
2177		/*
2178		 * Rather than hide all in some function, I do this in
2179		 * open coded manner. You see what this really does.
2180		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2181		 */
2182		mutex_lock(&set_limit_mutex);
2183		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2184		if (memlimit > val) {
2185			ret = -EINVAL;
2186			mutex_unlock(&set_limit_mutex);
2187			break;
2188		}
2189		ret = res_counter_set_limit(&memcg->memsw, val);
2190		if (!ret) {
2191			if (memlimit == val)
2192				memcg->memsw_is_minimum = true;
2193			else
2194				memcg->memsw_is_minimum = false;
2195		}
2196		mutex_unlock(&set_limit_mutex);
2197
2198		if (!ret)
2199			break;
2200
2201		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2202						MEM_CGROUP_RECLAIM_NOSWAP |
2203						MEM_CGROUP_RECLAIM_SHRINK);
2204		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2205		/* Usage is reduced ? */
2206		if (curusage >= oldusage)
2207			retry_count--;
2208		else
2209			oldusage = curusage;
2210	}
2211	return ret;
2212}
2213
2214unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2215						gfp_t gfp_mask, int nid,
2216						int zid)
2217{
2218	unsigned long nr_reclaimed = 0;
2219	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2220	unsigned long reclaimed;
2221	int loop = 0;
2222	struct mem_cgroup_tree_per_zone *mctz;
2223	unsigned long long excess;
2224
2225	if (order > 0)
2226		return 0;
2227
2228	mctz = soft_limit_tree_node_zone(nid, zid);
2229	/*
2230	 * This loop can run a while, specially if mem_cgroup's continuously
2231	 * keep exceeding their soft limit and putting the system under
2232	 * pressure
2233	 */
2234	do {
2235		if (next_mz)
2236			mz = next_mz;
2237		else
2238			mz = mem_cgroup_largest_soft_limit_node(mctz);
2239		if (!mz)
2240			break;
2241
2242		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2243						gfp_mask,
2244						MEM_CGROUP_RECLAIM_SOFT);
2245		nr_reclaimed += reclaimed;
2246		spin_lock(&mctz->lock);
2247
2248		/*
2249		 * If we failed to reclaim anything from this memory cgroup
2250		 * it is time to move on to the next cgroup
2251		 */
2252		next_mz = NULL;
2253		if (!reclaimed) {
2254			do {
2255				/*
2256				 * Loop until we find yet another one.
2257				 *
2258				 * By the time we get the soft_limit lock
2259				 * again, someone might have aded the
2260				 * group back on the RB tree. Iterate to
2261				 * make sure we get a different mem.
2262				 * mem_cgroup_largest_soft_limit_node returns
2263				 * NULL if no other cgroup is present on
2264				 * the tree
2265				 */
2266				next_mz =
2267				__mem_cgroup_largest_soft_limit_node(mctz);
2268				if (next_mz == mz) {
2269					css_put(&next_mz->mem->css);
2270					next_mz = NULL;
2271				} else /* next_mz == NULL or other memcg */
2272					break;
2273			} while (1);
2274		}
2275		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2276		excess = res_counter_soft_limit_excess(&mz->mem->res);
2277		/*
2278		 * One school of thought says that we should not add
2279		 * back the node to the tree if reclaim returns 0.
2280		 * But our reclaim could return 0, simply because due
2281		 * to priority we are exposing a smaller subset of
2282		 * memory to reclaim from. Consider this as a longer
2283		 * term TODO.
2284		 */
2285		/* If excess == 0, no tree ops */
2286		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2287		spin_unlock(&mctz->lock);
2288		css_put(&mz->mem->css);
2289		loop++;
2290		/*
2291		 * Could not reclaim anything and there are no more
2292		 * mem cgroups to try or we seem to be looping without
2293		 * reclaiming anything.
2294		 */
2295		if (!nr_reclaimed &&
2296			(next_mz == NULL ||
2297			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2298			break;
2299	} while (!nr_reclaimed);
2300	if (next_mz)
2301		css_put(&next_mz->mem->css);
2302	return nr_reclaimed;
2303}
2304
2305/*
2306 * This routine traverse page_cgroup in given list and drop them all.
2307 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2308 */
2309static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2310				int node, int zid, enum lru_list lru)
2311{
2312	struct zone *zone;
2313	struct mem_cgroup_per_zone *mz;
2314	struct page_cgroup *pc, *busy;
2315	unsigned long flags, loop;
2316	struct list_head *list;
2317	int ret = 0;
2318
2319	zone = &NODE_DATA(node)->node_zones[zid];
2320	mz = mem_cgroup_zoneinfo(mem, node, zid);
2321	list = &mz->lists[lru];
2322
2323	loop = MEM_CGROUP_ZSTAT(mz, lru);
2324	/* give some margin against EBUSY etc...*/
2325	loop += 256;
2326	busy = NULL;
2327	while (loop--) {
2328		ret = 0;
2329		spin_lock_irqsave(&zone->lru_lock, flags);
2330		if (list_empty(list)) {
2331			spin_unlock_irqrestore(&zone->lru_lock, flags);
2332			break;
2333		}
2334		pc = list_entry(list->prev, struct page_cgroup, lru);
2335		if (busy == pc) {
2336			list_move(&pc->lru, list);
2337			busy = 0;
2338			spin_unlock_irqrestore(&zone->lru_lock, flags);
2339			continue;
2340		}
2341		spin_unlock_irqrestore(&zone->lru_lock, flags);
2342
2343		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2344		if (ret == -ENOMEM)
2345			break;
2346
2347		if (ret == -EBUSY || ret == -EINVAL) {
2348			/* found lock contention or "pc" is obsolete. */
2349			busy = pc;
2350			cond_resched();
2351		} else
2352			busy = NULL;
2353	}
2354
2355	if (!ret && !list_empty(list))
2356		return -EBUSY;
2357	return ret;
2358}
2359
2360/*
2361 * make mem_cgroup's charge to be 0 if there is no task.
2362 * This enables deleting this mem_cgroup.
2363 */
2364static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2365{
2366	int ret;
2367	int node, zid, shrink;
2368	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2369	struct cgroup *cgrp = mem->css.cgroup;
2370
2371	css_get(&mem->css);
2372
2373	shrink = 0;
2374	/* should free all ? */
2375	if (free_all)
2376		goto try_to_free;
2377move_account:
2378	while (mem->res.usage > 0) {
2379		ret = -EBUSY;
2380		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2381			goto out;
2382		ret = -EINTR;
2383		if (signal_pending(current))
2384			goto out;
2385		/* This is for making all *used* pages to be on LRU. */
2386		lru_add_drain_all();
2387		ret = 0;
2388		for_each_node_state(node, N_HIGH_MEMORY) {
2389			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2390				enum lru_list l;
2391				for_each_lru(l) {
2392					ret = mem_cgroup_force_empty_list(mem,
2393							node, zid, l);
2394					if (ret)
2395						break;
2396				}
2397			}
2398			if (ret)
2399				break;
2400		}
2401		/* it seems parent cgroup doesn't have enough mem */
2402		if (ret == -ENOMEM)
2403			goto try_to_free;
2404		cond_resched();
2405	}
2406	ret = 0;
2407out:
2408	css_put(&mem->css);
2409	return ret;
2410
2411try_to_free:
2412	/* returns EBUSY if there is a task or if we come here twice. */
2413	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2414		ret = -EBUSY;
2415		goto out;
2416	}
2417	/* we call try-to-free pages for make this cgroup empty */
2418	lru_add_drain_all();
2419	/* try to free all pages in this cgroup */
2420	shrink = 1;
2421	while (nr_retries && mem->res.usage > 0) {
2422		int progress;
2423
2424		if (signal_pending(current)) {
2425			ret = -EINTR;
2426			goto out;
2427		}
2428		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2429						false, get_swappiness(mem));
2430		if (!progress) {
2431			nr_retries--;
2432			/* maybe some writeback is necessary */
2433			congestion_wait(BLK_RW_ASYNC, HZ/10);
2434		}
2435
2436	}
2437	lru_add_drain();
2438	/* try move_account...there may be some *locked* pages. */
2439	if (mem->res.usage)
2440		goto move_account;
2441	ret = 0;
2442	goto out;
2443}
2444
2445int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2446{
2447	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2448}
2449
2450
2451static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2452{
2453	return mem_cgroup_from_cont(cont)->use_hierarchy;
2454}
2455
2456static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2457					u64 val)
2458{
2459	int retval = 0;
2460	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2461	struct cgroup *parent = cont->parent;
2462	struct mem_cgroup *parent_mem = NULL;
2463
2464	if (parent)
2465		parent_mem = mem_cgroup_from_cont(parent);
2466
2467	cgroup_lock();
2468	/*
2469	 * If parent's use_hiearchy is set, we can't make any modifications
2470	 * in the child subtrees. If it is unset, then the change can
2471	 * occur, provided the current cgroup has no children.
2472	 *
2473	 * For the root cgroup, parent_mem is NULL, we allow value to be
2474	 * set if there are no children.
2475	 */
2476	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2477				(val == 1 || val == 0)) {
2478		if (list_empty(&cont->children))
2479			mem->use_hierarchy = val;
2480		else
2481			retval = -EBUSY;
2482	} else
2483		retval = -EINVAL;
2484	cgroup_unlock();
2485
2486	return retval;
2487}
2488
2489struct mem_cgroup_idx_data {
2490	s64 val;
2491	enum mem_cgroup_stat_index idx;
2492};
2493
2494static int
2495mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2496{
2497	struct mem_cgroup_idx_data *d = data;
2498	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2499	return 0;
2500}
2501
2502static void
2503mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2504				enum mem_cgroup_stat_index idx, s64 *val)
2505{
2506	struct mem_cgroup_idx_data d;
2507	d.idx = idx;
2508	d.val = 0;
2509	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2510	*val = d.val;
2511}
2512
2513static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2514{
2515	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2516	u64 idx_val, val;
2517	int type, name;
2518
2519	type = MEMFILE_TYPE(cft->private);
2520	name = MEMFILE_ATTR(cft->private);
2521	switch (type) {
2522	case _MEM:
2523		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2524			mem_cgroup_get_recursive_idx_stat(mem,
2525				MEM_CGROUP_STAT_CACHE, &idx_val);
2526			val = idx_val;
2527			mem_cgroup_get_recursive_idx_stat(mem,
2528				MEM_CGROUP_STAT_RSS, &idx_val);
2529			val += idx_val;
2530			val <<= PAGE_SHIFT;
2531		} else
2532			val = res_counter_read_u64(&mem->res, name);
2533		break;
2534	case _MEMSWAP:
2535		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2536			mem_cgroup_get_recursive_idx_stat(mem,
2537				MEM_CGROUP_STAT_CACHE, &idx_val);
2538			val = idx_val;
2539			mem_cgroup_get_recursive_idx_stat(mem,
2540				MEM_CGROUP_STAT_RSS, &idx_val);
2541			val += idx_val;
2542			mem_cgroup_get_recursive_idx_stat(mem,
2543				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2544			val <<= PAGE_SHIFT;
2545		} else
2546			val = res_counter_read_u64(&mem->memsw, name);
2547		break;
2548	default:
2549		BUG();
2550		break;
2551	}
2552	return val;
2553}
2554/*
2555 * The user of this function is...
2556 * RES_LIMIT.
2557 */
2558static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2559			    const char *buffer)
2560{
2561	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2562	int type, name;
2563	unsigned long long val;
2564	int ret;
2565
2566	type = MEMFILE_TYPE(cft->private);
2567	name = MEMFILE_ATTR(cft->private);
2568	switch (name) {
2569	case RES_LIMIT:
2570		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2571			ret = -EINVAL;
2572			break;
2573		}
2574		/* This function does all necessary parse...reuse it */
2575		ret = res_counter_memparse_write_strategy(buffer, &val);
2576		if (ret)
2577			break;
2578		if (type == _MEM)
2579			ret = mem_cgroup_resize_limit(memcg, val);
2580		else
2581			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2582		break;
2583	case RES_SOFT_LIMIT:
2584		ret = res_counter_memparse_write_strategy(buffer, &val);
2585		if (ret)
2586			break;
2587		/*
2588		 * For memsw, soft limits are hard to implement in terms
2589		 * of semantics, for now, we support soft limits for
2590		 * control without swap
2591		 */
2592		if (type == _MEM)
2593			ret = res_counter_set_soft_limit(&memcg->res, val);
2594		else
2595			ret = -EINVAL;
2596		break;
2597	default:
2598		ret = -EINVAL; /* should be BUG() ? */
2599		break;
2600	}
2601	return ret;
2602}
2603
2604static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2605		unsigned long long *mem_limit, unsigned long long *memsw_limit)
2606{
2607	struct cgroup *cgroup;
2608	unsigned long long min_limit, min_memsw_limit, tmp;
2609
2610	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2611	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2612	cgroup = memcg->css.cgroup;
2613	if (!memcg->use_hierarchy)
2614		goto out;
2615
2616	while (cgroup->parent) {
2617		cgroup = cgroup->parent;
2618		memcg = mem_cgroup_from_cont(cgroup);
2619		if (!memcg->use_hierarchy)
2620			break;
2621		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2622		min_limit = min(min_limit, tmp);
2623		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2624		min_memsw_limit = min(min_memsw_limit, tmp);
2625	}
2626out:
2627	*mem_limit = min_limit;
2628	*memsw_limit = min_memsw_limit;
2629	return;
2630}
2631
2632static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2633{
2634	struct mem_cgroup *mem;
2635	int type, name;
2636
2637	mem = mem_cgroup_from_cont(cont);
2638	type = MEMFILE_TYPE(event);
2639	name = MEMFILE_ATTR(event);
2640	switch (name) {
2641	case RES_MAX_USAGE:
2642		if (type == _MEM)
2643			res_counter_reset_max(&mem->res);
2644		else
2645			res_counter_reset_max(&mem->memsw);
2646		break;
2647	case RES_FAILCNT:
2648		if (type == _MEM)
2649			res_counter_reset_failcnt(&mem->res);
2650		else
2651			res_counter_reset_failcnt(&mem->memsw);
2652		break;
2653	}
2654
2655	return 0;
2656}
2657
2658
2659/* For read statistics */
2660enum {
2661	MCS_CACHE,
2662	MCS_RSS,
2663	MCS_MAPPED_FILE,
2664	MCS_PGPGIN,
2665	MCS_PGPGOUT,
2666	MCS_SWAP,
2667	MCS_INACTIVE_ANON,
2668	MCS_ACTIVE_ANON,
2669	MCS_INACTIVE_FILE,
2670	MCS_ACTIVE_FILE,
2671	MCS_UNEVICTABLE,
2672	NR_MCS_STAT,
2673};
2674
2675struct mcs_total_stat {
2676	s64 stat[NR_MCS_STAT];
2677};
2678
2679struct {
2680	char *local_name;
2681	char *total_name;
2682} memcg_stat_strings[NR_MCS_STAT] = {
2683	{"cache", "total_cache"},
2684	{"rss", "total_rss"},
2685	{"mapped_file", "total_mapped_file"},
2686	{"pgpgin", "total_pgpgin"},
2687	{"pgpgout", "total_pgpgout"},
2688	{"swap", "total_swap"},
2689	{"inactive_anon", "total_inactive_anon"},
2690	{"active_anon", "total_active_anon"},
2691	{"inactive_file", "total_inactive_file"},
2692	{"active_file", "total_active_file"},
2693	{"unevictable", "total_unevictable"}
2694};
2695
2696
2697static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2698{
2699	struct mcs_total_stat *s = data;
2700	s64 val;
2701
2702	/* per cpu stat */
2703	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2704	s->stat[MCS_CACHE] += val * PAGE_SIZE;
2705	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2706	s->stat[MCS_RSS] += val * PAGE_SIZE;
2707	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2708	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2709	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2710	s->stat[MCS_PGPGIN] += val;
2711	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2712	s->stat[MCS_PGPGOUT] += val;
2713	if (do_swap_account) {
2714		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2715		s->stat[MCS_SWAP] += val * PAGE_SIZE;
2716	}
2717
2718	/* per zone stat */
2719	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2720	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2721	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2722	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2723	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2724	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2725	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2726	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2727	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2728	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2729	return 0;
2730}
2731
2732static void
2733mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2734{
2735	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2736}
2737
2738static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2739				 struct cgroup_map_cb *cb)
2740{
2741	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2742	struct mcs_total_stat mystat;
2743	int i;
2744
2745	memset(&mystat, 0, sizeof(mystat));
2746	mem_cgroup_get_local_stat(mem_cont, &mystat);
2747
2748	for (i = 0; i < NR_MCS_STAT; i++) {
2749		if (i == MCS_SWAP && !do_swap_account)
2750			continue;
2751		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2752	}
2753
2754	/* Hierarchical information */
2755	{
2756		unsigned long long limit, memsw_limit;
2757		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2758		cb->fill(cb, "hierarchical_memory_limit", limit);
2759		if (do_swap_account)
2760			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2761	}
2762
2763	memset(&mystat, 0, sizeof(mystat));
2764	mem_cgroup_get_total_stat(mem_cont, &mystat);
2765	for (i = 0; i < NR_MCS_STAT; i++) {
2766		if (i == MCS_SWAP && !do_swap_account)
2767			continue;
2768		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2769	}
2770
2771#ifdef CONFIG_DEBUG_VM
2772	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2773
2774	{
2775		int nid, zid;
2776		struct mem_cgroup_per_zone *mz;
2777		unsigned long recent_rotated[2] = {0, 0};
2778		unsigned long recent_scanned[2] = {0, 0};
2779
2780		for_each_online_node(nid)
2781			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2782				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2783
2784				recent_rotated[0] +=
2785					mz->reclaim_stat.recent_rotated[0];
2786				recent_rotated[1] +=
2787					mz->reclaim_stat.recent_rotated[1];
2788				recent_scanned[0] +=
2789					mz->reclaim_stat.recent_scanned[0];
2790				recent_scanned[1] +=
2791					mz->reclaim_stat.recent_scanned[1];
2792			}
2793		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2794		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2795		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2796		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2797	}
2798#endif
2799
2800	return 0;
2801}
2802
2803static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2804{
2805	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2806
2807	return get_swappiness(memcg);
2808}
2809
2810static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2811				       u64 val)
2812{
2813	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2814	struct mem_cgroup *parent;
2815
2816	if (val > 100)
2817		return -EINVAL;
2818
2819	if (cgrp->parent == NULL)
2820		return -EINVAL;
2821
2822	parent = mem_cgroup_from_cont(cgrp->parent);
2823
2824	cgroup_lock();
2825
2826	/* If under hierarchy, only empty-root can set this value */
2827	if ((parent->use_hierarchy) ||
2828	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2829		cgroup_unlock();
2830		return -EINVAL;
2831	}
2832
2833	spin_lock(&memcg->reclaim_param_lock);
2834	memcg->swappiness = val;
2835	spin_unlock(&memcg->reclaim_param_lock);
2836
2837	cgroup_unlock();
2838
2839	return 0;
2840}
2841
2842
2843static struct cftype mem_cgroup_files[] = {
2844	{
2845		.name = "usage_in_bytes",
2846		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2847		.read_u64 = mem_cgroup_read,
2848	},
2849	{
2850		.name = "max_usage_in_bytes",
2851		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2852		.trigger = mem_cgroup_reset,
2853		.read_u64 = mem_cgroup_read,
2854	},
2855	{
2856		.name = "limit_in_bytes",
2857		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2858		.write_string = mem_cgroup_write,
2859		.read_u64 = mem_cgroup_read,
2860	},
2861	{
2862		.name = "soft_limit_in_bytes",
2863		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2864		.write_string = mem_cgroup_write,
2865		.read_u64 = mem_cgroup_read,
2866	},
2867	{
2868		.name = "failcnt",
2869		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2870		.trigger = mem_cgroup_reset,
2871		.read_u64 = mem_cgroup_read,
2872	},
2873	{
2874		.name = "stat",
2875		.read_map = mem_control_stat_show,
2876	},
2877	{
2878		.name = "force_empty",
2879		.trigger = mem_cgroup_force_empty_write,
2880	},
2881	{
2882		.name = "use_hierarchy",
2883		.write_u64 = mem_cgroup_hierarchy_write,
2884		.read_u64 = mem_cgroup_hierarchy_read,
2885	},
2886	{
2887		.name = "swappiness",
2888		.read_u64 = mem_cgroup_swappiness_read,
2889		.write_u64 = mem_cgroup_swappiness_write,
2890	},
2891};
2892
2893#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2894static struct cftype memsw_cgroup_files[] = {
2895	{
2896		.name = "memsw.usage_in_bytes",
2897		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2898		.read_u64 = mem_cgroup_read,
2899	},
2900	{
2901		.name = "memsw.max_usage_in_bytes",
2902		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2903		.trigger = mem_cgroup_reset,
2904		.read_u64 = mem_cgroup_read,
2905	},
2906	{
2907		.name = "memsw.limit_in_bytes",
2908		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2909		.write_string = mem_cgroup_write,
2910		.read_u64 = mem_cgroup_read,
2911	},
2912	{
2913		.name = "memsw.failcnt",
2914		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2915		.trigger = mem_cgroup_reset,
2916		.read_u64 = mem_cgroup_read,
2917	},
2918};
2919
2920static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2921{
2922	if (!do_swap_account)
2923		return 0;
2924	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2925				ARRAY_SIZE(memsw_cgroup_files));
2926};
2927#else
2928static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2929{
2930	return 0;
2931}
2932#endif
2933
2934static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2935{
2936	struct mem_cgroup_per_node *pn;
2937	struct mem_cgroup_per_zone *mz;
2938	enum lru_list l;
2939	int zone, tmp = node;
2940	/*
2941	 * This routine is called against possible nodes.
2942	 * But it's BUG to call kmalloc() against offline node.
2943	 *
2944	 * TODO: this routine can waste much memory for nodes which will
2945	 *       never be onlined. It's better to use memory hotplug callback
2946	 *       function.
2947	 */
2948	if (!node_state(node, N_NORMAL_MEMORY))
2949		tmp = -1;
2950	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2951	if (!pn)
2952		return 1;
2953
2954	mem->info.nodeinfo[node] = pn;
2955	memset(pn, 0, sizeof(*pn));
2956
2957	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2958		mz = &pn->zoneinfo[zone];
2959		for_each_lru(l)
2960			INIT_LIST_HEAD(&mz->lists[l]);
2961		mz->usage_in_excess = 0;
2962		mz->on_tree = false;
2963		mz->mem = mem;
2964	}
2965	return 0;
2966}
2967
2968static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2969{
2970	kfree(mem->info.nodeinfo[node]);
2971}
2972
2973static int mem_cgroup_size(void)
2974{
2975	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2976	return sizeof(struct mem_cgroup) + cpustat_size;
2977}
2978
2979static struct mem_cgroup *mem_cgroup_alloc(void)
2980{
2981	struct mem_cgroup *mem;
2982	int size = mem_cgroup_size();
2983
2984	if (size < PAGE_SIZE)
2985		mem = kmalloc(size, GFP_KERNEL);
2986	else
2987		mem = vmalloc(size);
2988
2989	if (mem)
2990		memset(mem, 0, size);
2991	return mem;
2992}
2993
2994/*
2995 * At destroying mem_cgroup, references from swap_cgroup can remain.
2996 * (scanning all at force_empty is too costly...)
2997 *
2998 * Instead of clearing all references at force_empty, we remember
2999 * the number of reference from swap_cgroup and free mem_cgroup when
3000 * it goes down to 0.
3001 *
3002 * Removal of cgroup itself succeeds regardless of refs from swap.
3003 */
3004
3005static void __mem_cgroup_free(struct mem_cgroup *mem)
3006{
3007	int node;
3008
3009	mem_cgroup_remove_from_trees(mem);
3010	free_css_id(&mem_cgroup_subsys, &mem->css);
3011
3012	for_each_node_state(node, N_POSSIBLE)
3013		free_mem_cgroup_per_zone_info(mem, node);
3014
3015	if (mem_cgroup_size() < PAGE_SIZE)
3016		kfree(mem);
3017	else
3018		vfree(mem);
3019}
3020
3021static void mem_cgroup_get(struct mem_cgroup *mem)
3022{
3023	atomic_inc(&mem->refcnt);
3024}
3025
3026static void mem_cgroup_put(struct mem_cgroup *mem)
3027{
3028	if (atomic_dec_and_test(&mem->refcnt)) {
3029		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3030		__mem_cgroup_free(mem);
3031		if (parent)
3032			mem_cgroup_put(parent);
3033	}
3034}
3035
3036/*
3037 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3038 */
3039static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3040{
3041	if (!mem->res.parent)
3042		return NULL;
3043	return mem_cgroup_from_res_counter(mem->res.parent, res);
3044}
3045
3046#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3047static void __init enable_swap_cgroup(void)
3048{
3049	if (!mem_cgroup_disabled() && really_do_swap_account)
3050		do_swap_account = 1;
3051}
3052#else
3053static void __init enable_swap_cgroup(void)
3054{
3055}
3056#endif
3057
3058static int mem_cgroup_soft_limit_tree_init(void)
3059{
3060	struct mem_cgroup_tree_per_node *rtpn;
3061	struct mem_cgroup_tree_per_zone *rtpz;
3062	int tmp, node, zone;
3063
3064	for_each_node_state(node, N_POSSIBLE) {
3065		tmp = node;
3066		if (!node_state(node, N_NORMAL_MEMORY))
3067			tmp = -1;
3068		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3069		if (!rtpn)
3070			return 1;
3071
3072		soft_limit_tree.rb_tree_per_node[node] = rtpn;
3073
3074		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3075			rtpz = &rtpn->rb_tree_per_zone[zone];
3076			rtpz->rb_root = RB_ROOT;
3077			spin_lock_init(&rtpz->lock);
3078		}
3079	}
3080	return 0;
3081}
3082
3083static struct cgroup_subsys_state * __ref
3084mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3085{
3086	struct mem_cgroup *mem, *parent;
3087	long error = -ENOMEM;
3088	int node;
3089
3090	mem = mem_cgroup_alloc();
3091	if (!mem)
3092		return ERR_PTR(error);
3093
3094	for_each_node_state(node, N_POSSIBLE)
3095		if (alloc_mem_cgroup_per_zone_info(mem, node))
3096			goto free_out;
3097
3098	/* root ? */
3099	if (cont->parent == NULL) {
3100		enable_swap_cgroup();
3101		parent = NULL;
3102		root_mem_cgroup = mem;
3103		if (mem_cgroup_soft_limit_tree_init())
3104			goto free_out;
3105
3106	} else {
3107		parent = mem_cgroup_from_cont(cont->parent);
3108		mem->use_hierarchy = parent->use_hierarchy;
3109	}
3110
3111	if (parent && parent->use_hierarchy) {
3112		res_counter_init(&mem->res, &parent->res);
3113		res_counter_init(&mem->memsw, &parent->memsw);
3114		/*
3115		 * We increment refcnt of the parent to ensure that we can
3116		 * safely access it on res_counter_charge/uncharge.
3117		 * This refcnt will be decremented when freeing this
3118		 * mem_cgroup(see mem_cgroup_put).
3119		 */
3120		mem_cgroup_get(parent);
3121	} else {
3122		res_counter_init(&mem->res, NULL);
3123		res_counter_init(&mem->memsw, NULL);
3124	}
3125	mem->last_scanned_child = 0;
3126	spin_lock_init(&mem->reclaim_param_lock);
3127
3128	if (parent)
3129		mem->swappiness = get_swappiness(parent);
3130	atomic_set(&mem->refcnt, 1);
3131	return &mem->css;
3132free_out:
3133	__mem_cgroup_free(mem);
3134	root_mem_cgroup = NULL;
3135	return ERR_PTR(error);
3136}
3137
3138static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3139					struct cgroup *cont)
3140{
3141	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3142
3143	return mem_cgroup_force_empty(mem, false);
3144}
3145
3146static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3147				struct cgroup *cont)
3148{
3149	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3150
3151	mem_cgroup_put(mem);
3152}
3153
3154static int mem_cgroup_populate(struct cgroup_subsys *ss,
3155				struct cgroup *cont)
3156{
3157	int ret;
3158
3159	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3160				ARRAY_SIZE(mem_cgroup_files));
3161
3162	if (!ret)
3163		ret = register_memsw_files(cont, ss);
3164	return ret;
3165}
3166
3167static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3168				struct cgroup *cont,
3169				struct cgroup *old_cont,
3170				struct task_struct *p,
3171				bool threadgroup)
3172{
3173	mutex_lock(&memcg_tasklist);
3174	/*
3175	 * FIXME: It's better to move charges of this process from old
3176	 * memcg to new memcg. But it's just on TODO-List now.
3177	 */
3178	mutex_unlock(&memcg_tasklist);
3179}
3180
3181struct cgroup_subsys mem_cgroup_subsys = {
3182	.name = "memory",
3183	.subsys_id = mem_cgroup_subsys_id,
3184	.create = mem_cgroup_create,
3185	.pre_destroy = mem_cgroup_pre_destroy,
3186	.destroy = mem_cgroup_destroy,
3187	.populate = mem_cgroup_populate,
3188	.attach = mem_cgroup_move_task,
3189	.early_init = 0,
3190	.use_id = 1,
3191};
3192
3193#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3194
3195static int __init disable_swap_account(char *s)
3196{
3197	really_do_swap_account = 0;
3198	return 1;
3199}
3200__setup("noswapaccount", disable_swap_account);
3201#endif
3202