memcontrol.c revision f3e8eb70b1807d1b30aa6972af0cf30077c40112
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account		(0)
74#endif
75
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90	/*
91	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92	 */
93	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100	/* incremented at every  pagein/pageout */
101	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103
104	MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108	s64 count[MEM_CGROUP_STAT_NSTATS];
109};
110
111/*
112 * per-zone information in memory controller.
113 */
114struct mem_cgroup_per_zone {
115	/*
116	 * spin_lock to protect the per cgroup LRU
117	 */
118	struct list_head	lists[NR_LRU_LISTS];
119	unsigned long		count[NR_LRU_LISTS];
120
121	struct zone_reclaim_stat reclaim_stat;
122	struct rb_node		tree_node;	/* RB tree node */
123	unsigned long long	usage_in_excess;/* Set to the value by which */
124						/* the soft limit is exceeded*/
125	bool			on_tree;
126	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127						/* use container_of	   */
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146	struct rb_root rb_root;
147	spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160struct mem_cgroup_threshold {
161	struct eventfd_ctx *eventfd;
162	u64 threshold;
163};
164
165/* For threshold */
166struct mem_cgroup_threshold_ary {
167	/* An array index points to threshold just below usage. */
168	int current_threshold;
169	/* Size of entries[] */
170	unsigned int size;
171	/* Array of thresholds */
172	struct mem_cgroup_threshold entries[0];
173};
174
175struct mem_cgroup_thresholds {
176	/* Primary thresholds array */
177	struct mem_cgroup_threshold_ary *primary;
178	/*
179	 * Spare threshold array.
180	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181	 * It must be able to store at least primary->size - 1 entries.
182	 */
183	struct mem_cgroup_threshold_ary *spare;
184};
185
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188	struct list_head list;
189	struct eventfd_ctx *eventfd;
190};
191
192static void mem_cgroup_threshold(struct mem_cgroup *mem);
193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206struct mem_cgroup {
207	struct cgroup_subsys_state css;
208	/*
209	 * the counter to account for memory usage
210	 */
211	struct res_counter res;
212	/*
213	 * the counter to account for mem+swap usage.
214	 */
215	struct res_counter memsw;
216	/*
217	 * Per cgroup active and inactive list, similar to the
218	 * per zone LRU lists.
219	 */
220	struct mem_cgroup_lru_info info;
221
222	/*
223	  protect against reclaim related member.
224	*/
225	spinlock_t reclaim_param_lock;
226
227	/*
228	 * While reclaiming in a hierarchy, we cache the last child we
229	 * reclaimed from.
230	 */
231	int last_scanned_child;
232	/*
233	 * Should the accounting and control be hierarchical, per subtree?
234	 */
235	bool use_hierarchy;
236	atomic_t	oom_lock;
237	atomic_t	refcnt;
238
239	unsigned int	swappiness;
240	/* OOM-Killer disable */
241	int		oom_kill_disable;
242
243	/* set when res.limit == memsw.limit */
244	bool		memsw_is_minimum;
245
246	/* protect arrays of thresholds */
247	struct mutex thresholds_lock;
248
249	/* thresholds for memory usage. RCU-protected */
250	struct mem_cgroup_thresholds thresholds;
251
252	/* thresholds for mem+swap usage. RCU-protected */
253	struct mem_cgroup_thresholds memsw_thresholds;
254
255	/* For oom notifier event fd */
256	struct list_head oom_notify;
257
258	/*
259	 * Should we move charges of a task when a task is moved into this
260	 * mem_cgroup ? And what type of charges should we move ?
261	 */
262	unsigned long 	move_charge_at_immigrate;
263	/*
264	 * percpu counter.
265	 */
266	struct mem_cgroup_stat_cpu *stat;
267	/*
268	 * used when a cpu is offlined or other synchronizations
269	 * See mem_cgroup_read_stat().
270	 */
271	struct mem_cgroup_stat_cpu nocpu_base;
272	spinlock_t pcp_counter_lock;
273};
274
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
281	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283	NR_MOVE_TYPE,
284};
285
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
288	spinlock_t	  lock; /* for from, to */
289	struct mem_cgroup *from;
290	struct mem_cgroup *to;
291	unsigned long precharge;
292	unsigned long moved_charge;
293	unsigned long moved_swap;
294	struct task_struct *moving_task;	/* a task moving charges */
295	struct mm_struct *mm;
296	wait_queue_head_t waitq;		/* a waitq for other context */
297} mc = {
298	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
299	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
300};
301
302static bool move_anon(void)
303{
304	return test_bit(MOVE_CHARGE_TYPE_ANON,
305					&mc.to->move_charge_at_immigrate);
306}
307
308static bool move_file(void)
309{
310	return test_bit(MOVE_CHARGE_TYPE_FILE,
311					&mc.to->move_charge_at_immigrate);
312}
313
314/*
315 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316 * limit reclaim to prevent infinite loops, if they ever occur.
317 */
318#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
319#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
320
321enum charge_type {
322	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
323	MEM_CGROUP_CHARGE_TYPE_MAPPED,
324	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
325	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
326	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
327	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
328	NR_CHARGE_TYPE,
329};
330
331/* only for here (for easy reading.) */
332#define PCGF_CACHE	(1UL << PCG_CACHE)
333#define PCGF_USED	(1UL << PCG_USED)
334#define PCGF_LOCK	(1UL << PCG_LOCK)
335/* Not used, but added here for completeness */
336#define PCGF_ACCT	(1UL << PCG_ACCT)
337
338/* for encoding cft->private value on file */
339#define _MEM			(0)
340#define _MEMSWAP		(1)
341#define _OOM_TYPE		(2)
342#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
343#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
344#define MEMFILE_ATTR(val)	((val) & 0xffff)
345/* Used for OOM nofiier */
346#define OOM_CONTROL		(0)
347
348/*
349 * Reclaim flags for mem_cgroup_hierarchical_reclaim
350 */
351#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
352#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
354#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
356#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357
358static void mem_cgroup_get(struct mem_cgroup *mem);
359static void mem_cgroup_put(struct mem_cgroup *mem);
360static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
361static void drain_all_stock_async(void);
362
363static struct mem_cgroup_per_zone *
364mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365{
366	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
367}
368
369struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370{
371	return &mem->css;
372}
373
374static struct mem_cgroup_per_zone *
375page_cgroup_zoneinfo(struct page_cgroup *pc)
376{
377	struct mem_cgroup *mem = pc->mem_cgroup;
378	int nid = page_cgroup_nid(pc);
379	int zid = page_cgroup_zid(pc);
380
381	if (!mem)
382		return NULL;
383
384	return mem_cgroup_zoneinfo(mem, nid, zid);
385}
386
387static struct mem_cgroup_tree_per_zone *
388soft_limit_tree_node_zone(int nid, int zid)
389{
390	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
391}
392
393static struct mem_cgroup_tree_per_zone *
394soft_limit_tree_from_page(struct page *page)
395{
396	int nid = page_to_nid(page);
397	int zid = page_zonenum(page);
398
399	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
400}
401
402static void
403__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
404				struct mem_cgroup_per_zone *mz,
405				struct mem_cgroup_tree_per_zone *mctz,
406				unsigned long long new_usage_in_excess)
407{
408	struct rb_node **p = &mctz->rb_root.rb_node;
409	struct rb_node *parent = NULL;
410	struct mem_cgroup_per_zone *mz_node;
411
412	if (mz->on_tree)
413		return;
414
415	mz->usage_in_excess = new_usage_in_excess;
416	if (!mz->usage_in_excess)
417		return;
418	while (*p) {
419		parent = *p;
420		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
421					tree_node);
422		if (mz->usage_in_excess < mz_node->usage_in_excess)
423			p = &(*p)->rb_left;
424		/*
425		 * We can't avoid mem cgroups that are over their soft
426		 * limit by the same amount
427		 */
428		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
429			p = &(*p)->rb_right;
430	}
431	rb_link_node(&mz->tree_node, parent, p);
432	rb_insert_color(&mz->tree_node, &mctz->rb_root);
433	mz->on_tree = true;
434}
435
436static void
437__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438				struct mem_cgroup_per_zone *mz,
439				struct mem_cgroup_tree_per_zone *mctz)
440{
441	if (!mz->on_tree)
442		return;
443	rb_erase(&mz->tree_node, &mctz->rb_root);
444	mz->on_tree = false;
445}
446
447static void
448mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
449				struct mem_cgroup_per_zone *mz,
450				struct mem_cgroup_tree_per_zone *mctz)
451{
452	spin_lock(&mctz->lock);
453	__mem_cgroup_remove_exceeded(mem, mz, mctz);
454	spin_unlock(&mctz->lock);
455}
456
457
458static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
459{
460	unsigned long long excess;
461	struct mem_cgroup_per_zone *mz;
462	struct mem_cgroup_tree_per_zone *mctz;
463	int nid = page_to_nid(page);
464	int zid = page_zonenum(page);
465	mctz = soft_limit_tree_from_page(page);
466
467	/*
468	 * Necessary to update all ancestors when hierarchy is used.
469	 * because their event counter is not touched.
470	 */
471	for (; mem; mem = parent_mem_cgroup(mem)) {
472		mz = mem_cgroup_zoneinfo(mem, nid, zid);
473		excess = res_counter_soft_limit_excess(&mem->res);
474		/*
475		 * We have to update the tree if mz is on RB-tree or
476		 * mem is over its softlimit.
477		 */
478		if (excess || mz->on_tree) {
479			spin_lock(&mctz->lock);
480			/* if on-tree, remove it */
481			if (mz->on_tree)
482				__mem_cgroup_remove_exceeded(mem, mz, mctz);
483			/*
484			 * Insert again. mz->usage_in_excess will be updated.
485			 * If excess is 0, no tree ops.
486			 */
487			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
488			spin_unlock(&mctz->lock);
489		}
490	}
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
494{
495	int node, zone;
496	struct mem_cgroup_per_zone *mz;
497	struct mem_cgroup_tree_per_zone *mctz;
498
499	for_each_node_state(node, N_POSSIBLE) {
500		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
501			mz = mem_cgroup_zoneinfo(mem, node, zone);
502			mctz = soft_limit_tree_node_zone(node, zone);
503			mem_cgroup_remove_exceeded(mem, mz, mctz);
504		}
505	}
506}
507
508static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
509{
510	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
511}
512
513static struct mem_cgroup_per_zone *
514__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
515{
516	struct rb_node *rightmost = NULL;
517	struct mem_cgroup_per_zone *mz;
518
519retry:
520	mz = NULL;
521	rightmost = rb_last(&mctz->rb_root);
522	if (!rightmost)
523		goto done;		/* Nothing to reclaim from */
524
525	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
526	/*
527	 * Remove the node now but someone else can add it back,
528	 * we will to add it back at the end of reclaim to its correct
529	 * position in the tree.
530	 */
531	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
532	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
533		!css_tryget(&mz->mem->css))
534		goto retry;
535done:
536	return mz;
537}
538
539static struct mem_cgroup_per_zone *
540mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
541{
542	struct mem_cgroup_per_zone *mz;
543
544	spin_lock(&mctz->lock);
545	mz = __mem_cgroup_largest_soft_limit_node(mctz);
546	spin_unlock(&mctz->lock);
547	return mz;
548}
549
550/*
551 * Implementation Note: reading percpu statistics for memcg.
552 *
553 * Both of vmstat[] and percpu_counter has threshold and do periodic
554 * synchronization to implement "quick" read. There are trade-off between
555 * reading cost and precision of value. Then, we may have a chance to implement
556 * a periodic synchronizion of counter in memcg's counter.
557 *
558 * But this _read() function is used for user interface now. The user accounts
559 * memory usage by memory cgroup and he _always_ requires exact value because
560 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561 * have to visit all online cpus and make sum. So, for now, unnecessary
562 * synchronization is not implemented. (just implemented for cpu hotplug)
563 *
564 * If there are kernel internal actions which can make use of some not-exact
565 * value, and reading all cpu value can be performance bottleneck in some
566 * common workload, threashold and synchonization as vmstat[] should be
567 * implemented.
568 */
569static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
570		enum mem_cgroup_stat_index idx)
571{
572	int cpu;
573	s64 val = 0;
574
575	get_online_cpus();
576	for_each_online_cpu(cpu)
577		val += per_cpu(mem->stat->count[idx], cpu);
578#ifdef CONFIG_HOTPLUG_CPU
579	spin_lock(&mem->pcp_counter_lock);
580	val += mem->nocpu_base.count[idx];
581	spin_unlock(&mem->pcp_counter_lock);
582#endif
583	put_online_cpus();
584	return val;
585}
586
587static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
588{
589	s64 ret;
590
591	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
592	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
593	return ret;
594}
595
596static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
597					 bool charge)
598{
599	int val = (charge) ? 1 : -1;
600	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
601}
602
603static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
604					 struct page_cgroup *pc,
605					 bool charge)
606{
607	int val = (charge) ? 1 : -1;
608
609	preempt_disable();
610
611	if (PageCgroupCache(pc))
612		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
613	else
614		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
615
616	if (charge)
617		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
618	else
619		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
620	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
621
622	preempt_enable();
623}
624
625static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626					enum lru_list idx)
627{
628	int nid, zid;
629	struct mem_cgroup_per_zone *mz;
630	u64 total = 0;
631
632	for_each_online_node(nid)
633		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634			mz = mem_cgroup_zoneinfo(mem, nid, zid);
635			total += MEM_CGROUP_ZSTAT(mz, idx);
636		}
637	return total;
638}
639
640static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641{
642	s64 val;
643
644	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645
646	return !(val & ((1 << event_mask_shift) - 1));
647}
648
649/*
650 * Check events in order.
651 *
652 */
653static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654{
655	/* threshold event is triggered in finer grain than soft limit */
656	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657		mem_cgroup_threshold(mem);
658		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659			mem_cgroup_update_tree(mem, page);
660	}
661}
662
663static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
664{
665	return container_of(cgroup_subsys_state(cont,
666				mem_cgroup_subsys_id), struct mem_cgroup,
667				css);
668}
669
670struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671{
672	/*
673	 * mm_update_next_owner() may clear mm->owner to NULL
674	 * if it races with swapoff, page migration, etc.
675	 * So this can be called with p == NULL.
676	 */
677	if (unlikely(!p))
678		return NULL;
679
680	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681				struct mem_cgroup, css);
682}
683
684static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685{
686	struct mem_cgroup *mem = NULL;
687
688	if (!mm)
689		return NULL;
690	/*
691	 * Because we have no locks, mm->owner's may be being moved to other
692	 * cgroup. We use css_tryget() here even if this looks
693	 * pessimistic (rather than adding locks here).
694	 */
695	rcu_read_lock();
696	do {
697		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698		if (unlikely(!mem))
699			break;
700	} while (!css_tryget(&mem->css));
701	rcu_read_unlock();
702	return mem;
703}
704
705/* The caller has to guarantee "mem" exists before calling this */
706static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
707{
708	struct cgroup_subsys_state *css;
709	int found;
710
711	if (!mem) /* ROOT cgroup has the smallest ID */
712		return root_mem_cgroup; /*css_put/get against root is ignored*/
713	if (!mem->use_hierarchy) {
714		if (css_tryget(&mem->css))
715			return mem;
716		return NULL;
717	}
718	rcu_read_lock();
719	/*
720	 * searching a memory cgroup which has the smallest ID under given
721	 * ROOT cgroup. (ID >= 1)
722	 */
723	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724	if (css && css_tryget(css))
725		mem = container_of(css, struct mem_cgroup, css);
726	else
727		mem = NULL;
728	rcu_read_unlock();
729	return mem;
730}
731
732static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733					struct mem_cgroup *root,
734					bool cond)
735{
736	int nextid = css_id(&iter->css) + 1;
737	int found;
738	int hierarchy_used;
739	struct cgroup_subsys_state *css;
740
741	hierarchy_used = iter->use_hierarchy;
742
743	css_put(&iter->css);
744	/* If no ROOT, walk all, ignore hierarchy */
745	if (!cond || (root && !hierarchy_used))
746		return NULL;
747
748	if (!root)
749		root = root_mem_cgroup;
750
751	do {
752		iter = NULL;
753		rcu_read_lock();
754
755		css = css_get_next(&mem_cgroup_subsys, nextid,
756				&root->css, &found);
757		if (css && css_tryget(css))
758			iter = container_of(css, struct mem_cgroup, css);
759		rcu_read_unlock();
760		/* If css is NULL, no more cgroups will be found */
761		nextid = found + 1;
762	} while (css && !iter);
763
764	return iter;
765}
766/*
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
770 */
771#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
772	for (iter = mem_cgroup_start_loop(root);\
773	     iter != NULL;\
774	     iter = mem_cgroup_get_next(iter, root, cond))
775
776#define for_each_mem_cgroup_tree(iter, root) \
777	for_each_mem_cgroup_tree_cond(iter, root, true)
778
779#define for_each_mem_cgroup_all(iter) \
780	for_each_mem_cgroup_tree_cond(iter, NULL, true)
781
782
783static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784{
785	return (mem == root_mem_cgroup);
786}
787
788/*
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
792 *
793 * Changes to pc->mem_cgroup happens when
794 * 1. charge
795 * 2. moving account
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
800 */
801
802void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803{
804	struct page_cgroup *pc;
805	struct mem_cgroup_per_zone *mz;
806
807	if (mem_cgroup_disabled())
808		return;
809	pc = lookup_page_cgroup(page);
810	/* can happen while we handle swapcache. */
811	if (!TestClearPageCgroupAcctLRU(pc))
812		return;
813	VM_BUG_ON(!pc->mem_cgroup);
814	/*
815	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816	 * removed from global LRU.
817	 */
818	mz = page_cgroup_zoneinfo(pc);
819	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
820	if (mem_cgroup_is_root(pc->mem_cgroup))
821		return;
822	VM_BUG_ON(list_empty(&pc->lru));
823	list_del_init(&pc->lru);
824	return;
825}
826
827void mem_cgroup_del_lru(struct page *page)
828{
829	mem_cgroup_del_lru_list(page, page_lru(page));
830}
831
832void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
833{
834	struct mem_cgroup_per_zone *mz;
835	struct page_cgroup *pc;
836
837	if (mem_cgroup_disabled())
838		return;
839
840	pc = lookup_page_cgroup(page);
841	/*
842	 * Used bit is set without atomic ops but after smp_wmb().
843	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
844	 */
845	smp_rmb();
846	/* unused or root page is not rotated. */
847	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
848		return;
849	mz = page_cgroup_zoneinfo(pc);
850	list_move(&pc->lru, &mz->lists[lru]);
851}
852
853void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
854{
855	struct page_cgroup *pc;
856	struct mem_cgroup_per_zone *mz;
857
858	if (mem_cgroup_disabled())
859		return;
860	pc = lookup_page_cgroup(page);
861	VM_BUG_ON(PageCgroupAcctLRU(pc));
862	/*
863	 * Used bit is set without atomic ops but after smp_wmb().
864	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
865	 */
866	smp_rmb();
867	if (!PageCgroupUsed(pc))
868		return;
869
870	mz = page_cgroup_zoneinfo(pc);
871	MEM_CGROUP_ZSTAT(mz, lru) += 1;
872	SetPageCgroupAcctLRU(pc);
873	if (mem_cgroup_is_root(pc->mem_cgroup))
874		return;
875	list_add(&pc->lru, &mz->lists[lru]);
876}
877
878/*
879 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880 * lru because the page may.be reused after it's fully uncharged (because of
881 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882 * it again. This function is only used to charge SwapCache. It's done under
883 * lock_page and expected that zone->lru_lock is never held.
884 */
885static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
886{
887	unsigned long flags;
888	struct zone *zone = page_zone(page);
889	struct page_cgroup *pc = lookup_page_cgroup(page);
890
891	spin_lock_irqsave(&zone->lru_lock, flags);
892	/*
893	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
894	 * is guarded by lock_page() because the page is SwapCache.
895	 */
896	if (!PageCgroupUsed(pc))
897		mem_cgroup_del_lru_list(page, page_lru(page));
898	spin_unlock_irqrestore(&zone->lru_lock, flags);
899}
900
901static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902{
903	unsigned long flags;
904	struct zone *zone = page_zone(page);
905	struct page_cgroup *pc = lookup_page_cgroup(page);
906
907	spin_lock_irqsave(&zone->lru_lock, flags);
908	/* link when the page is linked to LRU but page_cgroup isn't */
909	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910		mem_cgroup_add_lru_list(page, page_lru(page));
911	spin_unlock_irqrestore(&zone->lru_lock, flags);
912}
913
914
915void mem_cgroup_move_lists(struct page *page,
916			   enum lru_list from, enum lru_list to)
917{
918	if (mem_cgroup_disabled())
919		return;
920	mem_cgroup_del_lru_list(page, from);
921	mem_cgroup_add_lru_list(page, to);
922}
923
924int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925{
926	int ret;
927	struct mem_cgroup *curr = NULL;
928	struct task_struct *p;
929
930	p = find_lock_task_mm(task);
931	if (!p)
932		return 0;
933	curr = try_get_mem_cgroup_from_mm(p->mm);
934	task_unlock(p);
935	if (!curr)
936		return 0;
937	/*
938	 * We should check use_hierarchy of "mem" not "curr". Because checking
939	 * use_hierarchy of "curr" here make this function true if hierarchy is
940	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941	 * hierarchy(even if use_hierarchy is disabled in "mem").
942	 */
943	if (mem->use_hierarchy)
944		ret = css_is_ancestor(&curr->css, &mem->css);
945	else
946		ret = (curr == mem);
947	css_put(&curr->css);
948	return ret;
949}
950
951static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
952{
953	unsigned long active;
954	unsigned long inactive;
955	unsigned long gb;
956	unsigned long inactive_ratio;
957
958	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
960
961	gb = (inactive + active) >> (30 - PAGE_SHIFT);
962	if (gb)
963		inactive_ratio = int_sqrt(10 * gb);
964	else
965		inactive_ratio = 1;
966
967	if (present_pages) {
968		present_pages[0] = inactive;
969		present_pages[1] = active;
970	}
971
972	return inactive_ratio;
973}
974
975int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976{
977	unsigned long active;
978	unsigned long inactive;
979	unsigned long present_pages[2];
980	unsigned long inactive_ratio;
981
982	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983
984	inactive = present_pages[0];
985	active = present_pages[1];
986
987	if (inactive * inactive_ratio < active)
988		return 1;
989
990	return 0;
991}
992
993int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994{
995	unsigned long active;
996	unsigned long inactive;
997
998	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000
1001	return (active > inactive);
1002}
1003
1004unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005				       struct zone *zone,
1006				       enum lru_list lru)
1007{
1008	int nid = zone_to_nid(zone);
1009	int zid = zone_idx(zone);
1010	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011
1012	return MEM_CGROUP_ZSTAT(mz, lru);
1013}
1014
1015struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016						      struct zone *zone)
1017{
1018	int nid = zone_to_nid(zone);
1019	int zid = zone_idx(zone);
1020	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022	return &mz->reclaim_stat;
1023}
1024
1025struct zone_reclaim_stat *
1026mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027{
1028	struct page_cgroup *pc;
1029	struct mem_cgroup_per_zone *mz;
1030
1031	if (mem_cgroup_disabled())
1032		return NULL;
1033
1034	pc = lookup_page_cgroup(page);
1035	/*
1036	 * Used bit is set without atomic ops but after smp_wmb().
1037	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1038	 */
1039	smp_rmb();
1040	if (!PageCgroupUsed(pc))
1041		return NULL;
1042
1043	mz = page_cgroup_zoneinfo(pc);
1044	if (!mz)
1045		return NULL;
1046
1047	return &mz->reclaim_stat;
1048}
1049
1050unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1051					struct list_head *dst,
1052					unsigned long *scanned, int order,
1053					int mode, struct zone *z,
1054					struct mem_cgroup *mem_cont,
1055					int active, int file)
1056{
1057	unsigned long nr_taken = 0;
1058	struct page *page;
1059	unsigned long scan;
1060	LIST_HEAD(pc_list);
1061	struct list_head *src;
1062	struct page_cgroup *pc, *tmp;
1063	int nid = zone_to_nid(z);
1064	int zid = zone_idx(z);
1065	struct mem_cgroup_per_zone *mz;
1066	int lru = LRU_FILE * file + active;
1067	int ret;
1068
1069	BUG_ON(!mem_cont);
1070	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1071	src = &mz->lists[lru];
1072
1073	scan = 0;
1074	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1075		if (scan >= nr_to_scan)
1076			break;
1077
1078		page = pc->page;
1079		if (unlikely(!PageCgroupUsed(pc)))
1080			continue;
1081		if (unlikely(!PageLRU(page)))
1082			continue;
1083
1084		scan++;
1085		ret = __isolate_lru_page(page, mode, file);
1086		switch (ret) {
1087		case 0:
1088			list_move(&page->lru, dst);
1089			mem_cgroup_del_lru(page);
1090			nr_taken += hpage_nr_pages(page);
1091			break;
1092		case -EBUSY:
1093			/* we don't affect global LRU but rotate in our LRU */
1094			mem_cgroup_rotate_lru_list(page, page_lru(page));
1095			break;
1096		default:
1097			break;
1098		}
1099	}
1100
1101	*scanned = scan;
1102
1103	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1104				      0, 0, 0, mode);
1105
1106	return nr_taken;
1107}
1108
1109#define mem_cgroup_from_res_counter(counter, member)	\
1110	container_of(counter, struct mem_cgroup, member)
1111
1112static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1113{
1114	if (do_swap_account) {
1115		if (res_counter_check_under_limit(&mem->res) &&
1116			res_counter_check_under_limit(&mem->memsw))
1117			return true;
1118	} else
1119		if (res_counter_check_under_limit(&mem->res))
1120			return true;
1121	return false;
1122}
1123
1124static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125{
1126	struct cgroup *cgrp = memcg->css.cgroup;
1127	unsigned int swappiness;
1128
1129	/* root ? */
1130	if (cgrp->parent == NULL)
1131		return vm_swappiness;
1132
1133	spin_lock(&memcg->reclaim_param_lock);
1134	swappiness = memcg->swappiness;
1135	spin_unlock(&memcg->reclaim_param_lock);
1136
1137	return swappiness;
1138}
1139
1140static void mem_cgroup_start_move(struct mem_cgroup *mem)
1141{
1142	int cpu;
1143
1144	get_online_cpus();
1145	spin_lock(&mem->pcp_counter_lock);
1146	for_each_online_cpu(cpu)
1147		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1148	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1149	spin_unlock(&mem->pcp_counter_lock);
1150	put_online_cpus();
1151
1152	synchronize_rcu();
1153}
1154
1155static void mem_cgroup_end_move(struct mem_cgroup *mem)
1156{
1157	int cpu;
1158
1159	if (!mem)
1160		return;
1161	get_online_cpus();
1162	spin_lock(&mem->pcp_counter_lock);
1163	for_each_online_cpu(cpu)
1164		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1165	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1166	spin_unlock(&mem->pcp_counter_lock);
1167	put_online_cpus();
1168}
1169/*
1170 * 2 routines for checking "mem" is under move_account() or not.
1171 *
1172 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1173 *			  for avoiding race in accounting. If true,
1174 *			  pc->mem_cgroup may be overwritten.
1175 *
1176 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1177 *			  under hierarchy of moving cgroups. This is for
1178 *			  waiting at hith-memory prressure caused by "move".
1179 */
1180
1181static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1182{
1183	VM_BUG_ON(!rcu_read_lock_held());
1184	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1185}
1186
1187static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1188{
1189	struct mem_cgroup *from;
1190	struct mem_cgroup *to;
1191	bool ret = false;
1192	/*
1193	 * Unlike task_move routines, we access mc.to, mc.from not under
1194	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1195	 */
1196	spin_lock(&mc.lock);
1197	from = mc.from;
1198	to = mc.to;
1199	if (!from)
1200		goto unlock;
1201	if (from == mem || to == mem
1202	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1203	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1204		ret = true;
1205unlock:
1206	spin_unlock(&mc.lock);
1207	return ret;
1208}
1209
1210static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1211{
1212	if (mc.moving_task && current != mc.moving_task) {
1213		if (mem_cgroup_under_move(mem)) {
1214			DEFINE_WAIT(wait);
1215			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1216			/* moving charge context might have finished. */
1217			if (mc.moving_task)
1218				schedule();
1219			finish_wait(&mc.waitq, &wait);
1220			return true;
1221		}
1222	}
1223	return false;
1224}
1225
1226/**
1227 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1228 * @memcg: The memory cgroup that went over limit
1229 * @p: Task that is going to be killed
1230 *
1231 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1232 * enabled
1233 */
1234void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1235{
1236	struct cgroup *task_cgrp;
1237	struct cgroup *mem_cgrp;
1238	/*
1239	 * Need a buffer in BSS, can't rely on allocations. The code relies
1240	 * on the assumption that OOM is serialized for memory controller.
1241	 * If this assumption is broken, revisit this code.
1242	 */
1243	static char memcg_name[PATH_MAX];
1244	int ret;
1245
1246	if (!memcg || !p)
1247		return;
1248
1249
1250	rcu_read_lock();
1251
1252	mem_cgrp = memcg->css.cgroup;
1253	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1254
1255	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1256	if (ret < 0) {
1257		/*
1258		 * Unfortunately, we are unable to convert to a useful name
1259		 * But we'll still print out the usage information
1260		 */
1261		rcu_read_unlock();
1262		goto done;
1263	}
1264	rcu_read_unlock();
1265
1266	printk(KERN_INFO "Task in %s killed", memcg_name);
1267
1268	rcu_read_lock();
1269	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1270	if (ret < 0) {
1271		rcu_read_unlock();
1272		goto done;
1273	}
1274	rcu_read_unlock();
1275
1276	/*
1277	 * Continues from above, so we don't need an KERN_ level
1278	 */
1279	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1280done:
1281
1282	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1283		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1284		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1285		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1286	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1287		"failcnt %llu\n",
1288		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1289		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1290		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1291}
1292
1293/*
1294 * This function returns the number of memcg under hierarchy tree. Returns
1295 * 1(self count) if no children.
1296 */
1297static int mem_cgroup_count_children(struct mem_cgroup *mem)
1298{
1299	int num = 0;
1300	struct mem_cgroup *iter;
1301
1302	for_each_mem_cgroup_tree(iter, mem)
1303		num++;
1304	return num;
1305}
1306
1307/*
1308 * Return the memory (and swap, if configured) limit for a memcg.
1309 */
1310u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1311{
1312	u64 limit;
1313	u64 memsw;
1314
1315	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1316	limit += total_swap_pages << PAGE_SHIFT;
1317
1318	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1319	/*
1320	 * If memsw is finite and limits the amount of swap space available
1321	 * to this memcg, return that limit.
1322	 */
1323	return min(limit, memsw);
1324}
1325
1326/*
1327 * Visit the first child (need not be the first child as per the ordering
1328 * of the cgroup list, since we track last_scanned_child) of @mem and use
1329 * that to reclaim free pages from.
1330 */
1331static struct mem_cgroup *
1332mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1333{
1334	struct mem_cgroup *ret = NULL;
1335	struct cgroup_subsys_state *css;
1336	int nextid, found;
1337
1338	if (!root_mem->use_hierarchy) {
1339		css_get(&root_mem->css);
1340		ret = root_mem;
1341	}
1342
1343	while (!ret) {
1344		rcu_read_lock();
1345		nextid = root_mem->last_scanned_child + 1;
1346		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1347				   &found);
1348		if (css && css_tryget(css))
1349			ret = container_of(css, struct mem_cgroup, css);
1350
1351		rcu_read_unlock();
1352		/* Updates scanning parameter */
1353		spin_lock(&root_mem->reclaim_param_lock);
1354		if (!css) {
1355			/* this means start scan from ID:1 */
1356			root_mem->last_scanned_child = 0;
1357		} else
1358			root_mem->last_scanned_child = found;
1359		spin_unlock(&root_mem->reclaim_param_lock);
1360	}
1361
1362	return ret;
1363}
1364
1365/*
1366 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1367 * we reclaimed from, so that we don't end up penalizing one child extensively
1368 * based on its position in the children list.
1369 *
1370 * root_mem is the original ancestor that we've been reclaim from.
1371 *
1372 * We give up and return to the caller when we visit root_mem twice.
1373 * (other groups can be removed while we're walking....)
1374 *
1375 * If shrink==true, for avoiding to free too much, this returns immedieately.
1376 */
1377static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1378						struct zone *zone,
1379						gfp_t gfp_mask,
1380						unsigned long reclaim_options)
1381{
1382	struct mem_cgroup *victim;
1383	int ret, total = 0;
1384	int loop = 0;
1385	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1386	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1387	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1388	unsigned long excess = mem_cgroup_get_excess(root_mem);
1389
1390	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1391	if (root_mem->memsw_is_minimum)
1392		noswap = true;
1393
1394	while (1) {
1395		victim = mem_cgroup_select_victim(root_mem);
1396		if (victim == root_mem) {
1397			loop++;
1398			if (loop >= 1)
1399				drain_all_stock_async();
1400			if (loop >= 2) {
1401				/*
1402				 * If we have not been able to reclaim
1403				 * anything, it might because there are
1404				 * no reclaimable pages under this hierarchy
1405				 */
1406				if (!check_soft || !total) {
1407					css_put(&victim->css);
1408					break;
1409				}
1410				/*
1411				 * We want to do more targetted reclaim.
1412				 * excess >> 2 is not to excessive so as to
1413				 * reclaim too much, nor too less that we keep
1414				 * coming back to reclaim from this cgroup
1415				 */
1416				if (total >= (excess >> 2) ||
1417					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1418					css_put(&victim->css);
1419					break;
1420				}
1421			}
1422		}
1423		if (!mem_cgroup_local_usage(victim)) {
1424			/* this cgroup's local usage == 0 */
1425			css_put(&victim->css);
1426			continue;
1427		}
1428		/* we use swappiness of local cgroup */
1429		if (check_soft)
1430			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1431				noswap, get_swappiness(victim), zone);
1432		else
1433			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1434						noswap, get_swappiness(victim));
1435		css_put(&victim->css);
1436		/*
1437		 * At shrinking usage, we can't check we should stop here or
1438		 * reclaim more. It's depends on callers. last_scanned_child
1439		 * will work enough for keeping fairness under tree.
1440		 */
1441		if (shrink)
1442			return ret;
1443		total += ret;
1444		if (check_soft) {
1445			if (res_counter_check_under_soft_limit(&root_mem->res))
1446				return total;
1447		} else if (mem_cgroup_check_under_limit(root_mem))
1448			return 1 + total;
1449	}
1450	return total;
1451}
1452
1453/*
1454 * Check OOM-Killer is already running under our hierarchy.
1455 * If someone is running, return false.
1456 */
1457static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1458{
1459	int x, lock_count = 0;
1460	struct mem_cgroup *iter;
1461
1462	for_each_mem_cgroup_tree(iter, mem) {
1463		x = atomic_inc_return(&iter->oom_lock);
1464		lock_count = max(x, lock_count);
1465	}
1466
1467	if (lock_count == 1)
1468		return true;
1469	return false;
1470}
1471
1472static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1473{
1474	struct mem_cgroup *iter;
1475
1476	/*
1477	 * When a new child is created while the hierarchy is under oom,
1478	 * mem_cgroup_oom_lock() may not be called. We have to use
1479	 * atomic_add_unless() here.
1480	 */
1481	for_each_mem_cgroup_tree(iter, mem)
1482		atomic_add_unless(&iter->oom_lock, -1, 0);
1483	return 0;
1484}
1485
1486
1487static DEFINE_MUTEX(memcg_oom_mutex);
1488static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1489
1490struct oom_wait_info {
1491	struct mem_cgroup *mem;
1492	wait_queue_t	wait;
1493};
1494
1495static int memcg_oom_wake_function(wait_queue_t *wait,
1496	unsigned mode, int sync, void *arg)
1497{
1498	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1499	struct oom_wait_info *oom_wait_info;
1500
1501	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1502
1503	if (oom_wait_info->mem == wake_mem)
1504		goto wakeup;
1505	/* if no hierarchy, no match */
1506	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1507		return 0;
1508	/*
1509	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1510	 * Then we can use css_is_ancestor without taking care of RCU.
1511	 */
1512	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1513	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1514		return 0;
1515
1516wakeup:
1517	return autoremove_wake_function(wait, mode, sync, arg);
1518}
1519
1520static void memcg_wakeup_oom(struct mem_cgroup *mem)
1521{
1522	/* for filtering, pass "mem" as argument. */
1523	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1524}
1525
1526static void memcg_oom_recover(struct mem_cgroup *mem)
1527{
1528	if (mem && atomic_read(&mem->oom_lock))
1529		memcg_wakeup_oom(mem);
1530}
1531
1532/*
1533 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1534 */
1535bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1536{
1537	struct oom_wait_info owait;
1538	bool locked, need_to_kill;
1539
1540	owait.mem = mem;
1541	owait.wait.flags = 0;
1542	owait.wait.func = memcg_oom_wake_function;
1543	owait.wait.private = current;
1544	INIT_LIST_HEAD(&owait.wait.task_list);
1545	need_to_kill = true;
1546	/* At first, try to OOM lock hierarchy under mem.*/
1547	mutex_lock(&memcg_oom_mutex);
1548	locked = mem_cgroup_oom_lock(mem);
1549	/*
1550	 * Even if signal_pending(), we can't quit charge() loop without
1551	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1552	 * under OOM is always welcomed, use TASK_KILLABLE here.
1553	 */
1554	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1555	if (!locked || mem->oom_kill_disable)
1556		need_to_kill = false;
1557	if (locked)
1558		mem_cgroup_oom_notify(mem);
1559	mutex_unlock(&memcg_oom_mutex);
1560
1561	if (need_to_kill) {
1562		finish_wait(&memcg_oom_waitq, &owait.wait);
1563		mem_cgroup_out_of_memory(mem, mask);
1564	} else {
1565		schedule();
1566		finish_wait(&memcg_oom_waitq, &owait.wait);
1567	}
1568	mutex_lock(&memcg_oom_mutex);
1569	mem_cgroup_oom_unlock(mem);
1570	memcg_wakeup_oom(mem);
1571	mutex_unlock(&memcg_oom_mutex);
1572
1573	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1574		return false;
1575	/* Give chance to dying process */
1576	schedule_timeout(1);
1577	return true;
1578}
1579
1580/*
1581 * Currently used to update mapped file statistics, but the routine can be
1582 * generalized to update other statistics as well.
1583 *
1584 * Notes: Race condition
1585 *
1586 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1587 * it tends to be costly. But considering some conditions, we doesn't need
1588 * to do so _always_.
1589 *
1590 * Considering "charge", lock_page_cgroup() is not required because all
1591 * file-stat operations happen after a page is attached to radix-tree. There
1592 * are no race with "charge".
1593 *
1594 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1595 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1596 * if there are race with "uncharge". Statistics itself is properly handled
1597 * by flags.
1598 *
1599 * Considering "move", this is an only case we see a race. To make the race
1600 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1601 * possibility of race condition. If there is, we take a lock.
1602 */
1603
1604void mem_cgroup_update_page_stat(struct page *page,
1605				 enum mem_cgroup_page_stat_item idx, int val)
1606{
1607	struct mem_cgroup *mem;
1608	struct page_cgroup *pc = lookup_page_cgroup(page);
1609	bool need_unlock = false;
1610	unsigned long uninitialized_var(flags);
1611
1612	if (unlikely(!pc))
1613		return;
1614
1615	rcu_read_lock();
1616	mem = pc->mem_cgroup;
1617	if (unlikely(!mem || !PageCgroupUsed(pc)))
1618		goto out;
1619	/* pc->mem_cgroup is unstable ? */
1620	if (unlikely(mem_cgroup_stealed(mem))) {
1621		/* take a lock against to access pc->mem_cgroup */
1622		move_lock_page_cgroup(pc, &flags);
1623		need_unlock = true;
1624		mem = pc->mem_cgroup;
1625		if (!mem || !PageCgroupUsed(pc))
1626			goto out;
1627	}
1628
1629	switch (idx) {
1630	case MEMCG_NR_FILE_MAPPED:
1631		if (val > 0)
1632			SetPageCgroupFileMapped(pc);
1633		else if (!page_mapped(page))
1634			ClearPageCgroupFileMapped(pc);
1635		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1636		break;
1637	default:
1638		BUG();
1639	}
1640
1641	this_cpu_add(mem->stat->count[idx], val);
1642
1643out:
1644	if (unlikely(need_unlock))
1645		move_unlock_page_cgroup(pc, &flags);
1646	rcu_read_unlock();
1647	return;
1648}
1649EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1650
1651/*
1652 * size of first charge trial. "32" comes from vmscan.c's magic value.
1653 * TODO: maybe necessary to use big numbers in big irons.
1654 */
1655#define CHARGE_SIZE	(32 * PAGE_SIZE)
1656struct memcg_stock_pcp {
1657	struct mem_cgroup *cached; /* this never be root cgroup */
1658	int charge;
1659	struct work_struct work;
1660};
1661static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1662static atomic_t memcg_drain_count;
1663
1664/*
1665 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1666 * from local stock and true is returned. If the stock is 0 or charges from a
1667 * cgroup which is not current target, returns false. This stock will be
1668 * refilled.
1669 */
1670static bool consume_stock(struct mem_cgroup *mem)
1671{
1672	struct memcg_stock_pcp *stock;
1673	bool ret = true;
1674
1675	stock = &get_cpu_var(memcg_stock);
1676	if (mem == stock->cached && stock->charge)
1677		stock->charge -= PAGE_SIZE;
1678	else /* need to call res_counter_charge */
1679		ret = false;
1680	put_cpu_var(memcg_stock);
1681	return ret;
1682}
1683
1684/*
1685 * Returns stocks cached in percpu to res_counter and reset cached information.
1686 */
1687static void drain_stock(struct memcg_stock_pcp *stock)
1688{
1689	struct mem_cgroup *old = stock->cached;
1690
1691	if (stock->charge) {
1692		res_counter_uncharge(&old->res, stock->charge);
1693		if (do_swap_account)
1694			res_counter_uncharge(&old->memsw, stock->charge);
1695	}
1696	stock->cached = NULL;
1697	stock->charge = 0;
1698}
1699
1700/*
1701 * This must be called under preempt disabled or must be called by
1702 * a thread which is pinned to local cpu.
1703 */
1704static void drain_local_stock(struct work_struct *dummy)
1705{
1706	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1707	drain_stock(stock);
1708}
1709
1710/*
1711 * Cache charges(val) which is from res_counter, to local per_cpu area.
1712 * This will be consumed by consume_stock() function, later.
1713 */
1714static void refill_stock(struct mem_cgroup *mem, int val)
1715{
1716	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1717
1718	if (stock->cached != mem) { /* reset if necessary */
1719		drain_stock(stock);
1720		stock->cached = mem;
1721	}
1722	stock->charge += val;
1723	put_cpu_var(memcg_stock);
1724}
1725
1726/*
1727 * Tries to drain stocked charges in other cpus. This function is asynchronous
1728 * and just put a work per cpu for draining localy on each cpu. Caller can
1729 * expects some charges will be back to res_counter later but cannot wait for
1730 * it.
1731 */
1732static void drain_all_stock_async(void)
1733{
1734	int cpu;
1735	/* This function is for scheduling "drain" in asynchronous way.
1736	 * The result of "drain" is not directly handled by callers. Then,
1737	 * if someone is calling drain, we don't have to call drain more.
1738	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1739	 * there is a race. We just do loose check here.
1740	 */
1741	if (atomic_read(&memcg_drain_count))
1742		return;
1743	/* Notify other cpus that system-wide "drain" is running */
1744	atomic_inc(&memcg_drain_count);
1745	get_online_cpus();
1746	for_each_online_cpu(cpu) {
1747		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1748		schedule_work_on(cpu, &stock->work);
1749	}
1750 	put_online_cpus();
1751	atomic_dec(&memcg_drain_count);
1752	/* We don't wait for flush_work */
1753}
1754
1755/* This is a synchronous drain interface. */
1756static void drain_all_stock_sync(void)
1757{
1758	/* called when force_empty is called */
1759	atomic_inc(&memcg_drain_count);
1760	schedule_on_each_cpu(drain_local_stock);
1761	atomic_dec(&memcg_drain_count);
1762}
1763
1764/*
1765 * This function drains percpu counter value from DEAD cpu and
1766 * move it to local cpu. Note that this function can be preempted.
1767 */
1768static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1769{
1770	int i;
1771
1772	spin_lock(&mem->pcp_counter_lock);
1773	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1774		s64 x = per_cpu(mem->stat->count[i], cpu);
1775
1776		per_cpu(mem->stat->count[i], cpu) = 0;
1777		mem->nocpu_base.count[i] += x;
1778	}
1779	/* need to clear ON_MOVE value, works as a kind of lock. */
1780	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1781	spin_unlock(&mem->pcp_counter_lock);
1782}
1783
1784static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1785{
1786	int idx = MEM_CGROUP_ON_MOVE;
1787
1788	spin_lock(&mem->pcp_counter_lock);
1789	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1790	spin_unlock(&mem->pcp_counter_lock);
1791}
1792
1793static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1794					unsigned long action,
1795					void *hcpu)
1796{
1797	int cpu = (unsigned long)hcpu;
1798	struct memcg_stock_pcp *stock;
1799	struct mem_cgroup *iter;
1800
1801	if ((action == CPU_ONLINE)) {
1802		for_each_mem_cgroup_all(iter)
1803			synchronize_mem_cgroup_on_move(iter, cpu);
1804		return NOTIFY_OK;
1805	}
1806
1807	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1808		return NOTIFY_OK;
1809
1810	for_each_mem_cgroup_all(iter)
1811		mem_cgroup_drain_pcp_counter(iter, cpu);
1812
1813	stock = &per_cpu(memcg_stock, cpu);
1814	drain_stock(stock);
1815	return NOTIFY_OK;
1816}
1817
1818
1819/* See __mem_cgroup_try_charge() for details */
1820enum {
1821	CHARGE_OK,		/* success */
1822	CHARGE_RETRY,		/* need to retry but retry is not bad */
1823	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1824	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1825	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1826};
1827
1828static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1829				int csize, bool oom_check)
1830{
1831	struct mem_cgroup *mem_over_limit;
1832	struct res_counter *fail_res;
1833	unsigned long flags = 0;
1834	int ret;
1835
1836	ret = res_counter_charge(&mem->res, csize, &fail_res);
1837
1838	if (likely(!ret)) {
1839		if (!do_swap_account)
1840			return CHARGE_OK;
1841		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1842		if (likely(!ret))
1843			return CHARGE_OK;
1844
1845		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1846		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1847	} else
1848		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1849
1850	if (csize > PAGE_SIZE) /* change csize and retry */
1851		return CHARGE_RETRY;
1852
1853	if (!(gfp_mask & __GFP_WAIT))
1854		return CHARGE_WOULDBLOCK;
1855
1856	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1857					gfp_mask, flags);
1858	/*
1859	 * try_to_free_mem_cgroup_pages() might not give us a full
1860	 * picture of reclaim. Some pages are reclaimed and might be
1861	 * moved to swap cache or just unmapped from the cgroup.
1862	 * Check the limit again to see if the reclaim reduced the
1863	 * current usage of the cgroup before giving up
1864	 */
1865	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1866		return CHARGE_RETRY;
1867
1868	/*
1869	 * At task move, charge accounts can be doubly counted. So, it's
1870	 * better to wait until the end of task_move if something is going on.
1871	 */
1872	if (mem_cgroup_wait_acct_move(mem_over_limit))
1873		return CHARGE_RETRY;
1874
1875	/* If we don't need to call oom-killer at el, return immediately */
1876	if (!oom_check)
1877		return CHARGE_NOMEM;
1878	/* check OOM */
1879	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1880		return CHARGE_OOM_DIE;
1881
1882	return CHARGE_RETRY;
1883}
1884
1885/*
1886 * Unlike exported interface, "oom" parameter is added. if oom==true,
1887 * oom-killer can be invoked.
1888 */
1889static int __mem_cgroup_try_charge(struct mm_struct *mm,
1890				   gfp_t gfp_mask,
1891				   struct mem_cgroup **memcg, bool oom,
1892				   int page_size)
1893{
1894	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1895	struct mem_cgroup *mem = NULL;
1896	int ret;
1897	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1898
1899	/*
1900	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1901	 * in system level. So, allow to go ahead dying process in addition to
1902	 * MEMDIE process.
1903	 */
1904	if (unlikely(test_thread_flag(TIF_MEMDIE)
1905		     || fatal_signal_pending(current)))
1906		goto bypass;
1907
1908	/*
1909	 * We always charge the cgroup the mm_struct belongs to.
1910	 * The mm_struct's mem_cgroup changes on task migration if the
1911	 * thread group leader migrates. It's possible that mm is not
1912	 * set, if so charge the init_mm (happens for pagecache usage).
1913	 */
1914	if (!*memcg && !mm)
1915		goto bypass;
1916again:
1917	if (*memcg) { /* css should be a valid one */
1918		mem = *memcg;
1919		VM_BUG_ON(css_is_removed(&mem->css));
1920		if (mem_cgroup_is_root(mem))
1921			goto done;
1922		if (page_size == PAGE_SIZE && consume_stock(mem))
1923			goto done;
1924		css_get(&mem->css);
1925	} else {
1926		struct task_struct *p;
1927
1928		rcu_read_lock();
1929		p = rcu_dereference(mm->owner);
1930		/*
1931		 * Because we don't have task_lock(), "p" can exit.
1932		 * In that case, "mem" can point to root or p can be NULL with
1933		 * race with swapoff. Then, we have small risk of mis-accouning.
1934		 * But such kind of mis-account by race always happens because
1935		 * we don't have cgroup_mutex(). It's overkill and we allo that
1936		 * small race, here.
1937		 * (*) swapoff at el will charge against mm-struct not against
1938		 * task-struct. So, mm->owner can be NULL.
1939		 */
1940		mem = mem_cgroup_from_task(p);
1941		if (!mem || mem_cgroup_is_root(mem)) {
1942			rcu_read_unlock();
1943			goto done;
1944		}
1945		if (page_size == PAGE_SIZE && consume_stock(mem)) {
1946			/*
1947			 * It seems dagerous to access memcg without css_get().
1948			 * But considering how consume_stok works, it's not
1949			 * necessary. If consume_stock success, some charges
1950			 * from this memcg are cached on this cpu. So, we
1951			 * don't need to call css_get()/css_tryget() before
1952			 * calling consume_stock().
1953			 */
1954			rcu_read_unlock();
1955			goto done;
1956		}
1957		/* after here, we may be blocked. we need to get refcnt */
1958		if (!css_tryget(&mem->css)) {
1959			rcu_read_unlock();
1960			goto again;
1961		}
1962		rcu_read_unlock();
1963	}
1964
1965	do {
1966		bool oom_check;
1967
1968		/* If killed, bypass charge */
1969		if (fatal_signal_pending(current)) {
1970			css_put(&mem->css);
1971			goto bypass;
1972		}
1973
1974		oom_check = false;
1975		if (oom && !nr_oom_retries) {
1976			oom_check = true;
1977			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1978		}
1979
1980		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1981
1982		switch (ret) {
1983		case CHARGE_OK:
1984			break;
1985		case CHARGE_RETRY: /* not in OOM situation but retry */
1986			csize = page_size;
1987			css_put(&mem->css);
1988			mem = NULL;
1989			goto again;
1990		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1991			css_put(&mem->css);
1992			goto nomem;
1993		case CHARGE_NOMEM: /* OOM routine works */
1994			if (!oom) {
1995				css_put(&mem->css);
1996				goto nomem;
1997			}
1998			/* If oom, we never return -ENOMEM */
1999			nr_oom_retries--;
2000			break;
2001		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2002			css_put(&mem->css);
2003			goto bypass;
2004		}
2005	} while (ret != CHARGE_OK);
2006
2007	if (csize > page_size)
2008		refill_stock(mem, csize - page_size);
2009	css_put(&mem->css);
2010done:
2011	*memcg = mem;
2012	return 0;
2013nomem:
2014	*memcg = NULL;
2015	return -ENOMEM;
2016bypass:
2017	*memcg = NULL;
2018	return 0;
2019}
2020
2021/*
2022 * Somemtimes we have to undo a charge we got by try_charge().
2023 * This function is for that and do uncharge, put css's refcnt.
2024 * gotten by try_charge().
2025 */
2026static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2027							unsigned long count)
2028{
2029	if (!mem_cgroup_is_root(mem)) {
2030		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2031		if (do_swap_account)
2032			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2033	}
2034}
2035
2036static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2037				     int page_size)
2038{
2039	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2040}
2041
2042/*
2043 * A helper function to get mem_cgroup from ID. must be called under
2044 * rcu_read_lock(). The caller must check css_is_removed() or some if
2045 * it's concern. (dropping refcnt from swap can be called against removed
2046 * memcg.)
2047 */
2048static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2049{
2050	struct cgroup_subsys_state *css;
2051
2052	/* ID 0 is unused ID */
2053	if (!id)
2054		return NULL;
2055	css = css_lookup(&mem_cgroup_subsys, id);
2056	if (!css)
2057		return NULL;
2058	return container_of(css, struct mem_cgroup, css);
2059}
2060
2061struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2062{
2063	struct mem_cgroup *mem = NULL;
2064	struct page_cgroup *pc;
2065	unsigned short id;
2066	swp_entry_t ent;
2067
2068	VM_BUG_ON(!PageLocked(page));
2069
2070	pc = lookup_page_cgroup(page);
2071	lock_page_cgroup(pc);
2072	if (PageCgroupUsed(pc)) {
2073		mem = pc->mem_cgroup;
2074		if (mem && !css_tryget(&mem->css))
2075			mem = NULL;
2076	} else if (PageSwapCache(page)) {
2077		ent.val = page_private(page);
2078		id = lookup_swap_cgroup(ent);
2079		rcu_read_lock();
2080		mem = mem_cgroup_lookup(id);
2081		if (mem && !css_tryget(&mem->css))
2082			mem = NULL;
2083		rcu_read_unlock();
2084	}
2085	unlock_page_cgroup(pc);
2086	return mem;
2087}
2088
2089/*
2090 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2091 * USED state. If already USED, uncharge and return.
2092 */
2093static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2094					 struct page_cgroup *pc,
2095					 enum charge_type ctype)
2096{
2097	pc->mem_cgroup = mem;
2098	/*
2099	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2100	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2101	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2102	 * before USED bit, we need memory barrier here.
2103	 * See mem_cgroup_add_lru_list(), etc.
2104 	 */
2105	smp_wmb();
2106	switch (ctype) {
2107	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2108	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2109		SetPageCgroupCache(pc);
2110		SetPageCgroupUsed(pc);
2111		break;
2112	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2113		ClearPageCgroupCache(pc);
2114		SetPageCgroupUsed(pc);
2115		break;
2116	default:
2117		break;
2118	}
2119
2120	mem_cgroup_charge_statistics(mem, pc, true);
2121}
2122
2123static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2124				       struct page_cgroup *pc,
2125				       enum charge_type ctype,
2126				       int page_size)
2127{
2128	int i;
2129	int count = page_size >> PAGE_SHIFT;
2130
2131	/* try_charge() can return NULL to *memcg, taking care of it. */
2132	if (!mem)
2133		return;
2134
2135	lock_page_cgroup(pc);
2136	if (unlikely(PageCgroupUsed(pc))) {
2137		unlock_page_cgroup(pc);
2138		mem_cgroup_cancel_charge(mem, page_size);
2139		return;
2140	}
2141
2142	/*
2143	 * we don't need page_cgroup_lock about tail pages, becase they are not
2144	 * accessed by any other context at this point.
2145	 */
2146	for (i = 0; i < count; i++)
2147		____mem_cgroup_commit_charge(mem, pc + i, ctype);
2148
2149	unlock_page_cgroup(pc);
2150	/*
2151	 * "charge_statistics" updated event counter. Then, check it.
2152	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2153	 * if they exceeds softlimit.
2154	 */
2155	memcg_check_events(mem, pc->page);
2156}
2157
2158/**
2159 * __mem_cgroup_move_account - move account of the page
2160 * @pc:	page_cgroup of the page.
2161 * @from: mem_cgroup which the page is moved from.
2162 * @to:	mem_cgroup which the page is moved to. @from != @to.
2163 * @uncharge: whether we should call uncharge and css_put against @from.
2164 *
2165 * The caller must confirm following.
2166 * - page is not on LRU (isolate_page() is useful.)
2167 * - the pc is locked, used, and ->mem_cgroup points to @from.
2168 *
2169 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2170 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2171 * true, this function does "uncharge" from old cgroup, but it doesn't if
2172 * @uncharge is false, so a caller should do "uncharge".
2173 */
2174
2175static void __mem_cgroup_move_account(struct page_cgroup *pc,
2176	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2177{
2178	VM_BUG_ON(from == to);
2179	VM_BUG_ON(PageLRU(pc->page));
2180	VM_BUG_ON(!page_is_cgroup_locked(pc));
2181	VM_BUG_ON(!PageCgroupUsed(pc));
2182	VM_BUG_ON(pc->mem_cgroup != from);
2183
2184	if (PageCgroupFileMapped(pc)) {
2185		/* Update mapped_file data for mem_cgroup */
2186		preempt_disable();
2187		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2188		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2189		preempt_enable();
2190	}
2191	mem_cgroup_charge_statistics(from, pc, false);
2192	if (uncharge)
2193		/* This is not "cancel", but cancel_charge does all we need. */
2194		mem_cgroup_cancel_charge(from, PAGE_SIZE);
2195
2196	/* caller should have done css_get */
2197	pc->mem_cgroup = to;
2198	mem_cgroup_charge_statistics(to, pc, true);
2199	/*
2200	 * We charges against "to" which may not have any tasks. Then, "to"
2201	 * can be under rmdir(). But in current implementation, caller of
2202	 * this function is just force_empty() and move charge, so it's
2203	 * garanteed that "to" is never removed. So, we don't check rmdir
2204	 * status here.
2205	 */
2206}
2207
2208/*
2209 * check whether the @pc is valid for moving account and call
2210 * __mem_cgroup_move_account()
2211 */
2212static int mem_cgroup_move_account(struct page_cgroup *pc,
2213		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2214{
2215	int ret = -EINVAL;
2216	unsigned long flags;
2217
2218	lock_page_cgroup(pc);
2219	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2220		move_lock_page_cgroup(pc, &flags);
2221		__mem_cgroup_move_account(pc, from, to, uncharge);
2222		move_unlock_page_cgroup(pc, &flags);
2223		ret = 0;
2224	}
2225	unlock_page_cgroup(pc);
2226	/*
2227	 * check events
2228	 */
2229	memcg_check_events(to, pc->page);
2230	memcg_check_events(from, pc->page);
2231	return ret;
2232}
2233
2234/*
2235 * move charges to its parent.
2236 */
2237
2238static int mem_cgroup_move_parent(struct page_cgroup *pc,
2239				  struct mem_cgroup *child,
2240				  gfp_t gfp_mask)
2241{
2242	struct page *page = pc->page;
2243	struct cgroup *cg = child->css.cgroup;
2244	struct cgroup *pcg = cg->parent;
2245	struct mem_cgroup *parent;
2246	int ret;
2247
2248	/* Is ROOT ? */
2249	if (!pcg)
2250		return -EINVAL;
2251
2252	ret = -EBUSY;
2253	if (!get_page_unless_zero(page))
2254		goto out;
2255	if (isolate_lru_page(page))
2256		goto put;
2257
2258	parent = mem_cgroup_from_cont(pcg);
2259	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2260				      PAGE_SIZE);
2261	if (ret || !parent)
2262		goto put_back;
2263
2264	ret = mem_cgroup_move_account(pc, child, parent, true);
2265	if (ret)
2266		mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2267put_back:
2268	putback_lru_page(page);
2269put:
2270	put_page(page);
2271out:
2272	return ret;
2273}
2274
2275/*
2276 * Charge the memory controller for page usage.
2277 * Return
2278 * 0 if the charge was successful
2279 * < 0 if the cgroup is over its limit
2280 */
2281static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2282				gfp_t gfp_mask, enum charge_type ctype)
2283{
2284	struct mem_cgroup *mem = NULL;
2285	struct page_cgroup *pc;
2286	int ret;
2287	int page_size = PAGE_SIZE;
2288
2289	if (PageTransHuge(page)) {
2290		page_size <<= compound_order(page);
2291		VM_BUG_ON(!PageTransHuge(page));
2292	}
2293
2294	pc = lookup_page_cgroup(page);
2295	/* can happen at boot */
2296	if (unlikely(!pc))
2297		return 0;
2298	prefetchw(pc);
2299
2300	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2301	if (ret || !mem)
2302		return ret;
2303
2304	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2305	return 0;
2306}
2307
2308int mem_cgroup_newpage_charge(struct page *page,
2309			      struct mm_struct *mm, gfp_t gfp_mask)
2310{
2311	if (mem_cgroup_disabled())
2312		return 0;
2313	/*
2314	 * If already mapped, we don't have to account.
2315	 * If page cache, page->mapping has address_space.
2316	 * But page->mapping may have out-of-use anon_vma pointer,
2317	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2318	 * is NULL.
2319  	 */
2320	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2321		return 0;
2322	if (unlikely(!mm))
2323		mm = &init_mm;
2324	return mem_cgroup_charge_common(page, mm, gfp_mask,
2325				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2326}
2327
2328static void
2329__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2330					enum charge_type ctype);
2331
2332int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2333				gfp_t gfp_mask)
2334{
2335	int ret;
2336
2337	if (mem_cgroup_disabled())
2338		return 0;
2339	if (PageCompound(page))
2340		return 0;
2341	/*
2342	 * Corner case handling. This is called from add_to_page_cache()
2343	 * in usual. But some FS (shmem) precharges this page before calling it
2344	 * and call add_to_page_cache() with GFP_NOWAIT.
2345	 *
2346	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2347	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2348	 * charge twice. (It works but has to pay a bit larger cost.)
2349	 * And when the page is SwapCache, it should take swap information
2350	 * into account. This is under lock_page() now.
2351	 */
2352	if (!(gfp_mask & __GFP_WAIT)) {
2353		struct page_cgroup *pc;
2354
2355		pc = lookup_page_cgroup(page);
2356		if (!pc)
2357			return 0;
2358		lock_page_cgroup(pc);
2359		if (PageCgroupUsed(pc)) {
2360			unlock_page_cgroup(pc);
2361			return 0;
2362		}
2363		unlock_page_cgroup(pc);
2364	}
2365
2366	if (unlikely(!mm))
2367		mm = &init_mm;
2368
2369	if (page_is_file_cache(page))
2370		return mem_cgroup_charge_common(page, mm, gfp_mask,
2371				MEM_CGROUP_CHARGE_TYPE_CACHE);
2372
2373	/* shmem */
2374	if (PageSwapCache(page)) {
2375		struct mem_cgroup *mem = NULL;
2376
2377		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2378		if (!ret)
2379			__mem_cgroup_commit_charge_swapin(page, mem,
2380					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2381	} else
2382		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2383					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2384
2385	return ret;
2386}
2387
2388/*
2389 * While swap-in, try_charge -> commit or cancel, the page is locked.
2390 * And when try_charge() successfully returns, one refcnt to memcg without
2391 * struct page_cgroup is acquired. This refcnt will be consumed by
2392 * "commit()" or removed by "cancel()"
2393 */
2394int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2395				 struct page *page,
2396				 gfp_t mask, struct mem_cgroup **ptr)
2397{
2398	struct mem_cgroup *mem;
2399	int ret;
2400
2401	if (mem_cgroup_disabled())
2402		return 0;
2403
2404	if (!do_swap_account)
2405		goto charge_cur_mm;
2406	/*
2407	 * A racing thread's fault, or swapoff, may have already updated
2408	 * the pte, and even removed page from swap cache: in those cases
2409	 * do_swap_page()'s pte_same() test will fail; but there's also a
2410	 * KSM case which does need to charge the page.
2411	 */
2412	if (!PageSwapCache(page))
2413		goto charge_cur_mm;
2414	mem = try_get_mem_cgroup_from_page(page);
2415	if (!mem)
2416		goto charge_cur_mm;
2417	*ptr = mem;
2418	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2419	css_put(&mem->css);
2420	return ret;
2421charge_cur_mm:
2422	if (unlikely(!mm))
2423		mm = &init_mm;
2424	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2425}
2426
2427static void
2428__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2429					enum charge_type ctype)
2430{
2431	struct page_cgroup *pc;
2432
2433	if (mem_cgroup_disabled())
2434		return;
2435	if (!ptr)
2436		return;
2437	cgroup_exclude_rmdir(&ptr->css);
2438	pc = lookup_page_cgroup(page);
2439	mem_cgroup_lru_del_before_commit_swapcache(page);
2440	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2441	mem_cgroup_lru_add_after_commit_swapcache(page);
2442	/*
2443	 * Now swap is on-memory. This means this page may be
2444	 * counted both as mem and swap....double count.
2445	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2446	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2447	 * may call delete_from_swap_cache() before reach here.
2448	 */
2449	if (do_swap_account && PageSwapCache(page)) {
2450		swp_entry_t ent = {.val = page_private(page)};
2451		unsigned short id;
2452		struct mem_cgroup *memcg;
2453
2454		id = swap_cgroup_record(ent, 0);
2455		rcu_read_lock();
2456		memcg = mem_cgroup_lookup(id);
2457		if (memcg) {
2458			/*
2459			 * This recorded memcg can be obsolete one. So, avoid
2460			 * calling css_tryget
2461			 */
2462			if (!mem_cgroup_is_root(memcg))
2463				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2464			mem_cgroup_swap_statistics(memcg, false);
2465			mem_cgroup_put(memcg);
2466		}
2467		rcu_read_unlock();
2468	}
2469	/*
2470	 * At swapin, we may charge account against cgroup which has no tasks.
2471	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2472	 * In that case, we need to call pre_destroy() again. check it here.
2473	 */
2474	cgroup_release_and_wakeup_rmdir(&ptr->css);
2475}
2476
2477void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2478{
2479	__mem_cgroup_commit_charge_swapin(page, ptr,
2480					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2481}
2482
2483void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2484{
2485	if (mem_cgroup_disabled())
2486		return;
2487	if (!mem)
2488		return;
2489	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2490}
2491
2492static void
2493__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2494	      int page_size)
2495{
2496	struct memcg_batch_info *batch = NULL;
2497	bool uncharge_memsw = true;
2498	/* If swapout, usage of swap doesn't decrease */
2499	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2500		uncharge_memsw = false;
2501
2502	batch = &current->memcg_batch;
2503	/*
2504	 * In usual, we do css_get() when we remember memcg pointer.
2505	 * But in this case, we keep res->usage until end of a series of
2506	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2507	 */
2508	if (!batch->memcg)
2509		batch->memcg = mem;
2510	/*
2511	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2512	 * In those cases, all pages freed continously can be expected to be in
2513	 * the same cgroup and we have chance to coalesce uncharges.
2514	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2515	 * because we want to do uncharge as soon as possible.
2516	 */
2517
2518	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2519		goto direct_uncharge;
2520
2521	if (page_size != PAGE_SIZE)
2522		goto direct_uncharge;
2523
2524	/*
2525	 * In typical case, batch->memcg == mem. This means we can
2526	 * merge a series of uncharges to an uncharge of res_counter.
2527	 * If not, we uncharge res_counter ony by one.
2528	 */
2529	if (batch->memcg != mem)
2530		goto direct_uncharge;
2531	/* remember freed charge and uncharge it later */
2532	batch->bytes += PAGE_SIZE;
2533	if (uncharge_memsw)
2534		batch->memsw_bytes += PAGE_SIZE;
2535	return;
2536direct_uncharge:
2537	res_counter_uncharge(&mem->res, page_size);
2538	if (uncharge_memsw)
2539		res_counter_uncharge(&mem->memsw, page_size);
2540	if (unlikely(batch->memcg != mem))
2541		memcg_oom_recover(mem);
2542	return;
2543}
2544
2545/*
2546 * uncharge if !page_mapped(page)
2547 */
2548static struct mem_cgroup *
2549__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2550{
2551	int i;
2552	int count;
2553	struct page_cgroup *pc;
2554	struct mem_cgroup *mem = NULL;
2555	int page_size = PAGE_SIZE;
2556
2557	if (mem_cgroup_disabled())
2558		return NULL;
2559
2560	if (PageSwapCache(page))
2561		return NULL;
2562
2563	if (PageTransHuge(page)) {
2564		page_size <<= compound_order(page);
2565		VM_BUG_ON(!PageTransHuge(page));
2566	}
2567
2568	count = page_size >> PAGE_SHIFT;
2569	/*
2570	 * Check if our page_cgroup is valid
2571	 */
2572	pc = lookup_page_cgroup(page);
2573	if (unlikely(!pc || !PageCgroupUsed(pc)))
2574		return NULL;
2575
2576	lock_page_cgroup(pc);
2577
2578	mem = pc->mem_cgroup;
2579
2580	if (!PageCgroupUsed(pc))
2581		goto unlock_out;
2582
2583	switch (ctype) {
2584	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2585	case MEM_CGROUP_CHARGE_TYPE_DROP:
2586		/* See mem_cgroup_prepare_migration() */
2587		if (page_mapped(page) || PageCgroupMigration(pc))
2588			goto unlock_out;
2589		break;
2590	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2591		if (!PageAnon(page)) {	/* Shared memory */
2592			if (page->mapping && !page_is_file_cache(page))
2593				goto unlock_out;
2594		} else if (page_mapped(page)) /* Anon */
2595				goto unlock_out;
2596		break;
2597	default:
2598		break;
2599	}
2600
2601	for (i = 0; i < count; i++)
2602		mem_cgroup_charge_statistics(mem, pc + i, false);
2603
2604	ClearPageCgroupUsed(pc);
2605	/*
2606	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2607	 * freed from LRU. This is safe because uncharged page is expected not
2608	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2609	 * special functions.
2610	 */
2611
2612	unlock_page_cgroup(pc);
2613	/*
2614	 * even after unlock, we have mem->res.usage here and this memcg
2615	 * will never be freed.
2616	 */
2617	memcg_check_events(mem, page);
2618	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2619		mem_cgroup_swap_statistics(mem, true);
2620		mem_cgroup_get(mem);
2621	}
2622	if (!mem_cgroup_is_root(mem))
2623		__do_uncharge(mem, ctype, page_size);
2624
2625	return mem;
2626
2627unlock_out:
2628	unlock_page_cgroup(pc);
2629	return NULL;
2630}
2631
2632void mem_cgroup_uncharge_page(struct page *page)
2633{
2634	/* early check. */
2635	if (page_mapped(page))
2636		return;
2637	if (page->mapping && !PageAnon(page))
2638		return;
2639	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2640}
2641
2642void mem_cgroup_uncharge_cache_page(struct page *page)
2643{
2644	VM_BUG_ON(page_mapped(page));
2645	VM_BUG_ON(page->mapping);
2646	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2647}
2648
2649/*
2650 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2651 * In that cases, pages are freed continuously and we can expect pages
2652 * are in the same memcg. All these calls itself limits the number of
2653 * pages freed at once, then uncharge_start/end() is called properly.
2654 * This may be called prural(2) times in a context,
2655 */
2656
2657void mem_cgroup_uncharge_start(void)
2658{
2659	current->memcg_batch.do_batch++;
2660	/* We can do nest. */
2661	if (current->memcg_batch.do_batch == 1) {
2662		current->memcg_batch.memcg = NULL;
2663		current->memcg_batch.bytes = 0;
2664		current->memcg_batch.memsw_bytes = 0;
2665	}
2666}
2667
2668void mem_cgroup_uncharge_end(void)
2669{
2670	struct memcg_batch_info *batch = &current->memcg_batch;
2671
2672	if (!batch->do_batch)
2673		return;
2674
2675	batch->do_batch--;
2676	if (batch->do_batch) /* If stacked, do nothing. */
2677		return;
2678
2679	if (!batch->memcg)
2680		return;
2681	/*
2682	 * This "batch->memcg" is valid without any css_get/put etc...
2683	 * bacause we hide charges behind us.
2684	 */
2685	if (batch->bytes)
2686		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2687	if (batch->memsw_bytes)
2688		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2689	memcg_oom_recover(batch->memcg);
2690	/* forget this pointer (for sanity check) */
2691	batch->memcg = NULL;
2692}
2693
2694#ifdef CONFIG_SWAP
2695/*
2696 * called after __delete_from_swap_cache() and drop "page" account.
2697 * memcg information is recorded to swap_cgroup of "ent"
2698 */
2699void
2700mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2701{
2702	struct mem_cgroup *memcg;
2703	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2704
2705	if (!swapout) /* this was a swap cache but the swap is unused ! */
2706		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2707
2708	memcg = __mem_cgroup_uncharge_common(page, ctype);
2709
2710	/*
2711	 * record memcg information,  if swapout && memcg != NULL,
2712	 * mem_cgroup_get() was called in uncharge().
2713	 */
2714	if (do_swap_account && swapout && memcg)
2715		swap_cgroup_record(ent, css_id(&memcg->css));
2716}
2717#endif
2718
2719#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2720/*
2721 * called from swap_entry_free(). remove record in swap_cgroup and
2722 * uncharge "memsw" account.
2723 */
2724void mem_cgroup_uncharge_swap(swp_entry_t ent)
2725{
2726	struct mem_cgroup *memcg;
2727	unsigned short id;
2728
2729	if (!do_swap_account)
2730		return;
2731
2732	id = swap_cgroup_record(ent, 0);
2733	rcu_read_lock();
2734	memcg = mem_cgroup_lookup(id);
2735	if (memcg) {
2736		/*
2737		 * We uncharge this because swap is freed.
2738		 * This memcg can be obsolete one. We avoid calling css_tryget
2739		 */
2740		if (!mem_cgroup_is_root(memcg))
2741			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2742		mem_cgroup_swap_statistics(memcg, false);
2743		mem_cgroup_put(memcg);
2744	}
2745	rcu_read_unlock();
2746}
2747
2748/**
2749 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2750 * @entry: swap entry to be moved
2751 * @from:  mem_cgroup which the entry is moved from
2752 * @to:  mem_cgroup which the entry is moved to
2753 * @need_fixup: whether we should fixup res_counters and refcounts.
2754 *
2755 * It succeeds only when the swap_cgroup's record for this entry is the same
2756 * as the mem_cgroup's id of @from.
2757 *
2758 * Returns 0 on success, -EINVAL on failure.
2759 *
2760 * The caller must have charged to @to, IOW, called res_counter_charge() about
2761 * both res and memsw, and called css_get().
2762 */
2763static int mem_cgroup_move_swap_account(swp_entry_t entry,
2764		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2765{
2766	unsigned short old_id, new_id;
2767
2768	old_id = css_id(&from->css);
2769	new_id = css_id(&to->css);
2770
2771	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2772		mem_cgroup_swap_statistics(from, false);
2773		mem_cgroup_swap_statistics(to, true);
2774		/*
2775		 * This function is only called from task migration context now.
2776		 * It postpones res_counter and refcount handling till the end
2777		 * of task migration(mem_cgroup_clear_mc()) for performance
2778		 * improvement. But we cannot postpone mem_cgroup_get(to)
2779		 * because if the process that has been moved to @to does
2780		 * swap-in, the refcount of @to might be decreased to 0.
2781		 */
2782		mem_cgroup_get(to);
2783		if (need_fixup) {
2784			if (!mem_cgroup_is_root(from))
2785				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2786			mem_cgroup_put(from);
2787			/*
2788			 * we charged both to->res and to->memsw, so we should
2789			 * uncharge to->res.
2790			 */
2791			if (!mem_cgroup_is_root(to))
2792				res_counter_uncharge(&to->res, PAGE_SIZE);
2793		}
2794		return 0;
2795	}
2796	return -EINVAL;
2797}
2798#else
2799static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2800		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2801{
2802	return -EINVAL;
2803}
2804#endif
2805
2806/*
2807 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2808 * page belongs to.
2809 */
2810int mem_cgroup_prepare_migration(struct page *page,
2811	struct page *newpage, struct mem_cgroup **ptr)
2812{
2813	struct page_cgroup *pc;
2814	struct mem_cgroup *mem = NULL;
2815	enum charge_type ctype;
2816	int ret = 0;
2817
2818	VM_BUG_ON(PageTransHuge(page));
2819	if (mem_cgroup_disabled())
2820		return 0;
2821
2822	pc = lookup_page_cgroup(page);
2823	lock_page_cgroup(pc);
2824	if (PageCgroupUsed(pc)) {
2825		mem = pc->mem_cgroup;
2826		css_get(&mem->css);
2827		/*
2828		 * At migrating an anonymous page, its mapcount goes down
2829		 * to 0 and uncharge() will be called. But, even if it's fully
2830		 * unmapped, migration may fail and this page has to be
2831		 * charged again. We set MIGRATION flag here and delay uncharge
2832		 * until end_migration() is called
2833		 *
2834		 * Corner Case Thinking
2835		 * A)
2836		 * When the old page was mapped as Anon and it's unmap-and-freed
2837		 * while migration was ongoing.
2838		 * If unmap finds the old page, uncharge() of it will be delayed
2839		 * until end_migration(). If unmap finds a new page, it's
2840		 * uncharged when it make mapcount to be 1->0. If unmap code
2841		 * finds swap_migration_entry, the new page will not be mapped
2842		 * and end_migration() will find it(mapcount==0).
2843		 *
2844		 * B)
2845		 * When the old page was mapped but migraion fails, the kernel
2846		 * remaps it. A charge for it is kept by MIGRATION flag even
2847		 * if mapcount goes down to 0. We can do remap successfully
2848		 * without charging it again.
2849		 *
2850		 * C)
2851		 * The "old" page is under lock_page() until the end of
2852		 * migration, so, the old page itself will not be swapped-out.
2853		 * If the new page is swapped out before end_migraton, our
2854		 * hook to usual swap-out path will catch the event.
2855		 */
2856		if (PageAnon(page))
2857			SetPageCgroupMigration(pc);
2858	}
2859	unlock_page_cgroup(pc);
2860	/*
2861	 * If the page is not charged at this point,
2862	 * we return here.
2863	 */
2864	if (!mem)
2865		return 0;
2866
2867	*ptr = mem;
2868	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2869	css_put(&mem->css);/* drop extra refcnt */
2870	if (ret || *ptr == NULL) {
2871		if (PageAnon(page)) {
2872			lock_page_cgroup(pc);
2873			ClearPageCgroupMigration(pc);
2874			unlock_page_cgroup(pc);
2875			/*
2876			 * The old page may be fully unmapped while we kept it.
2877			 */
2878			mem_cgroup_uncharge_page(page);
2879		}
2880		return -ENOMEM;
2881	}
2882	/*
2883	 * We charge new page before it's used/mapped. So, even if unlock_page()
2884	 * is called before end_migration, we can catch all events on this new
2885	 * page. In the case new page is migrated but not remapped, new page's
2886	 * mapcount will be finally 0 and we call uncharge in end_migration().
2887	 */
2888	pc = lookup_page_cgroup(newpage);
2889	if (PageAnon(page))
2890		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2891	else if (page_is_file_cache(page))
2892		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2893	else
2894		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2895	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2896	return ret;
2897}
2898
2899/* remove redundant charge if migration failed*/
2900void mem_cgroup_end_migration(struct mem_cgroup *mem,
2901	struct page *oldpage, struct page *newpage)
2902{
2903	struct page *used, *unused;
2904	struct page_cgroup *pc;
2905
2906	if (!mem)
2907		return;
2908	/* blocks rmdir() */
2909	cgroup_exclude_rmdir(&mem->css);
2910	/* at migration success, oldpage->mapping is NULL. */
2911	if (oldpage->mapping) {
2912		used = oldpage;
2913		unused = newpage;
2914	} else {
2915		used = newpage;
2916		unused = oldpage;
2917	}
2918	/*
2919	 * We disallowed uncharge of pages under migration because mapcount
2920	 * of the page goes down to zero, temporarly.
2921	 * Clear the flag and check the page should be charged.
2922	 */
2923	pc = lookup_page_cgroup(oldpage);
2924	lock_page_cgroup(pc);
2925	ClearPageCgroupMigration(pc);
2926	unlock_page_cgroup(pc);
2927
2928	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2929
2930	/*
2931	 * If a page is a file cache, radix-tree replacement is very atomic
2932	 * and we can skip this check. When it was an Anon page, its mapcount
2933	 * goes down to 0. But because we added MIGRATION flage, it's not
2934	 * uncharged yet. There are several case but page->mapcount check
2935	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2936	 * check. (see prepare_charge() also)
2937	 */
2938	if (PageAnon(used))
2939		mem_cgroup_uncharge_page(used);
2940	/*
2941	 * At migration, we may charge account against cgroup which has no
2942	 * tasks.
2943	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2944	 * In that case, we need to call pre_destroy() again. check it here.
2945	 */
2946	cgroup_release_and_wakeup_rmdir(&mem->css);
2947}
2948
2949/*
2950 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2951 * Calling hierarchical_reclaim is not enough because we should update
2952 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2953 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2954 * not from the memcg which this page would be charged to.
2955 * try_charge_swapin does all of these works properly.
2956 */
2957int mem_cgroup_shmem_charge_fallback(struct page *page,
2958			    struct mm_struct *mm,
2959			    gfp_t gfp_mask)
2960{
2961	struct mem_cgroup *mem = NULL;
2962	int ret;
2963
2964	if (mem_cgroup_disabled())
2965		return 0;
2966
2967	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2968	if (!ret)
2969		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2970
2971	return ret;
2972}
2973
2974static DEFINE_MUTEX(set_limit_mutex);
2975
2976static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2977				unsigned long long val)
2978{
2979	int retry_count;
2980	u64 memswlimit, memlimit;
2981	int ret = 0;
2982	int children = mem_cgroup_count_children(memcg);
2983	u64 curusage, oldusage;
2984	int enlarge;
2985
2986	/*
2987	 * For keeping hierarchical_reclaim simple, how long we should retry
2988	 * is depends on callers. We set our retry-count to be function
2989	 * of # of children which we should visit in this loop.
2990	 */
2991	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2992
2993	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2994
2995	enlarge = 0;
2996	while (retry_count) {
2997		if (signal_pending(current)) {
2998			ret = -EINTR;
2999			break;
3000		}
3001		/*
3002		 * Rather than hide all in some function, I do this in
3003		 * open coded manner. You see what this really does.
3004		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3005		 */
3006		mutex_lock(&set_limit_mutex);
3007		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3008		if (memswlimit < val) {
3009			ret = -EINVAL;
3010			mutex_unlock(&set_limit_mutex);
3011			break;
3012		}
3013
3014		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3015		if (memlimit < val)
3016			enlarge = 1;
3017
3018		ret = res_counter_set_limit(&memcg->res, val);
3019		if (!ret) {
3020			if (memswlimit == val)
3021				memcg->memsw_is_minimum = true;
3022			else
3023				memcg->memsw_is_minimum = false;
3024		}
3025		mutex_unlock(&set_limit_mutex);
3026
3027		if (!ret)
3028			break;
3029
3030		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3031						MEM_CGROUP_RECLAIM_SHRINK);
3032		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3033		/* Usage is reduced ? */
3034  		if (curusage >= oldusage)
3035			retry_count--;
3036		else
3037			oldusage = curusage;
3038	}
3039	if (!ret && enlarge)
3040		memcg_oom_recover(memcg);
3041
3042	return ret;
3043}
3044
3045static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3046					unsigned long long val)
3047{
3048	int retry_count;
3049	u64 memlimit, memswlimit, oldusage, curusage;
3050	int children = mem_cgroup_count_children(memcg);
3051	int ret = -EBUSY;
3052	int enlarge = 0;
3053
3054	/* see mem_cgroup_resize_res_limit */
3055 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3056	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3057	while (retry_count) {
3058		if (signal_pending(current)) {
3059			ret = -EINTR;
3060			break;
3061		}
3062		/*
3063		 * Rather than hide all in some function, I do this in
3064		 * open coded manner. You see what this really does.
3065		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3066		 */
3067		mutex_lock(&set_limit_mutex);
3068		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3069		if (memlimit > val) {
3070			ret = -EINVAL;
3071			mutex_unlock(&set_limit_mutex);
3072			break;
3073		}
3074		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3075		if (memswlimit < val)
3076			enlarge = 1;
3077		ret = res_counter_set_limit(&memcg->memsw, val);
3078		if (!ret) {
3079			if (memlimit == val)
3080				memcg->memsw_is_minimum = true;
3081			else
3082				memcg->memsw_is_minimum = false;
3083		}
3084		mutex_unlock(&set_limit_mutex);
3085
3086		if (!ret)
3087			break;
3088
3089		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3090						MEM_CGROUP_RECLAIM_NOSWAP |
3091						MEM_CGROUP_RECLAIM_SHRINK);
3092		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3093		/* Usage is reduced ? */
3094		if (curusage >= oldusage)
3095			retry_count--;
3096		else
3097			oldusage = curusage;
3098	}
3099	if (!ret && enlarge)
3100		memcg_oom_recover(memcg);
3101	return ret;
3102}
3103
3104unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3105					    gfp_t gfp_mask)
3106{
3107	unsigned long nr_reclaimed = 0;
3108	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3109	unsigned long reclaimed;
3110	int loop = 0;
3111	struct mem_cgroup_tree_per_zone *mctz;
3112	unsigned long long excess;
3113
3114	if (order > 0)
3115		return 0;
3116
3117	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3118	/*
3119	 * This loop can run a while, specially if mem_cgroup's continuously
3120	 * keep exceeding their soft limit and putting the system under
3121	 * pressure
3122	 */
3123	do {
3124		if (next_mz)
3125			mz = next_mz;
3126		else
3127			mz = mem_cgroup_largest_soft_limit_node(mctz);
3128		if (!mz)
3129			break;
3130
3131		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3132						gfp_mask,
3133						MEM_CGROUP_RECLAIM_SOFT);
3134		nr_reclaimed += reclaimed;
3135		spin_lock(&mctz->lock);
3136
3137		/*
3138		 * If we failed to reclaim anything from this memory cgroup
3139		 * it is time to move on to the next cgroup
3140		 */
3141		next_mz = NULL;
3142		if (!reclaimed) {
3143			do {
3144				/*
3145				 * Loop until we find yet another one.
3146				 *
3147				 * By the time we get the soft_limit lock
3148				 * again, someone might have aded the
3149				 * group back on the RB tree. Iterate to
3150				 * make sure we get a different mem.
3151				 * mem_cgroup_largest_soft_limit_node returns
3152				 * NULL if no other cgroup is present on
3153				 * the tree
3154				 */
3155				next_mz =
3156				__mem_cgroup_largest_soft_limit_node(mctz);
3157				if (next_mz == mz) {
3158					css_put(&next_mz->mem->css);
3159					next_mz = NULL;
3160				} else /* next_mz == NULL or other memcg */
3161					break;
3162			} while (1);
3163		}
3164		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3165		excess = res_counter_soft_limit_excess(&mz->mem->res);
3166		/*
3167		 * One school of thought says that we should not add
3168		 * back the node to the tree if reclaim returns 0.
3169		 * But our reclaim could return 0, simply because due
3170		 * to priority we are exposing a smaller subset of
3171		 * memory to reclaim from. Consider this as a longer
3172		 * term TODO.
3173		 */
3174		/* If excess == 0, no tree ops */
3175		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3176		spin_unlock(&mctz->lock);
3177		css_put(&mz->mem->css);
3178		loop++;
3179		/*
3180		 * Could not reclaim anything and there are no more
3181		 * mem cgroups to try or we seem to be looping without
3182		 * reclaiming anything.
3183		 */
3184		if (!nr_reclaimed &&
3185			(next_mz == NULL ||
3186			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3187			break;
3188	} while (!nr_reclaimed);
3189	if (next_mz)
3190		css_put(&next_mz->mem->css);
3191	return nr_reclaimed;
3192}
3193
3194/*
3195 * This routine traverse page_cgroup in given list and drop them all.
3196 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3197 */
3198static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3199				int node, int zid, enum lru_list lru)
3200{
3201	struct zone *zone;
3202	struct mem_cgroup_per_zone *mz;
3203	struct page_cgroup *pc, *busy;
3204	unsigned long flags, loop;
3205	struct list_head *list;
3206	int ret = 0;
3207
3208	zone = &NODE_DATA(node)->node_zones[zid];
3209	mz = mem_cgroup_zoneinfo(mem, node, zid);
3210	list = &mz->lists[lru];
3211
3212	loop = MEM_CGROUP_ZSTAT(mz, lru);
3213	/* give some margin against EBUSY etc...*/
3214	loop += 256;
3215	busy = NULL;
3216	while (loop--) {
3217		ret = 0;
3218		spin_lock_irqsave(&zone->lru_lock, flags);
3219		if (list_empty(list)) {
3220			spin_unlock_irqrestore(&zone->lru_lock, flags);
3221			break;
3222		}
3223		pc = list_entry(list->prev, struct page_cgroup, lru);
3224		if (busy == pc) {
3225			list_move(&pc->lru, list);
3226			busy = NULL;
3227			spin_unlock_irqrestore(&zone->lru_lock, flags);
3228			continue;
3229		}
3230		spin_unlock_irqrestore(&zone->lru_lock, flags);
3231
3232		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3233		if (ret == -ENOMEM)
3234			break;
3235
3236		if (ret == -EBUSY || ret == -EINVAL) {
3237			/* found lock contention or "pc" is obsolete. */
3238			busy = pc;
3239			cond_resched();
3240		} else
3241			busy = NULL;
3242	}
3243
3244	if (!ret && !list_empty(list))
3245		return -EBUSY;
3246	return ret;
3247}
3248
3249/*
3250 * make mem_cgroup's charge to be 0 if there is no task.
3251 * This enables deleting this mem_cgroup.
3252 */
3253static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3254{
3255	int ret;
3256	int node, zid, shrink;
3257	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3258	struct cgroup *cgrp = mem->css.cgroup;
3259
3260	css_get(&mem->css);
3261
3262	shrink = 0;
3263	/* should free all ? */
3264	if (free_all)
3265		goto try_to_free;
3266move_account:
3267	do {
3268		ret = -EBUSY;
3269		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3270			goto out;
3271		ret = -EINTR;
3272		if (signal_pending(current))
3273			goto out;
3274		/* This is for making all *used* pages to be on LRU. */
3275		lru_add_drain_all();
3276		drain_all_stock_sync();
3277		ret = 0;
3278		mem_cgroup_start_move(mem);
3279		for_each_node_state(node, N_HIGH_MEMORY) {
3280			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3281				enum lru_list l;
3282				for_each_lru(l) {
3283					ret = mem_cgroup_force_empty_list(mem,
3284							node, zid, l);
3285					if (ret)
3286						break;
3287				}
3288			}
3289			if (ret)
3290				break;
3291		}
3292		mem_cgroup_end_move(mem);
3293		memcg_oom_recover(mem);
3294		/* it seems parent cgroup doesn't have enough mem */
3295		if (ret == -ENOMEM)
3296			goto try_to_free;
3297		cond_resched();
3298	/* "ret" should also be checked to ensure all lists are empty. */
3299	} while (mem->res.usage > 0 || ret);
3300out:
3301	css_put(&mem->css);
3302	return ret;
3303
3304try_to_free:
3305	/* returns EBUSY if there is a task or if we come here twice. */
3306	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3307		ret = -EBUSY;
3308		goto out;
3309	}
3310	/* we call try-to-free pages for make this cgroup empty */
3311	lru_add_drain_all();
3312	/* try to free all pages in this cgroup */
3313	shrink = 1;
3314	while (nr_retries && mem->res.usage > 0) {
3315		int progress;
3316
3317		if (signal_pending(current)) {
3318			ret = -EINTR;
3319			goto out;
3320		}
3321		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3322						false, get_swappiness(mem));
3323		if (!progress) {
3324			nr_retries--;
3325			/* maybe some writeback is necessary */
3326			congestion_wait(BLK_RW_ASYNC, HZ/10);
3327		}
3328
3329	}
3330	lru_add_drain();
3331	/* try move_account...there may be some *locked* pages. */
3332	goto move_account;
3333}
3334
3335int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3336{
3337	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3338}
3339
3340
3341static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3342{
3343	return mem_cgroup_from_cont(cont)->use_hierarchy;
3344}
3345
3346static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3347					u64 val)
3348{
3349	int retval = 0;
3350	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3351	struct cgroup *parent = cont->parent;
3352	struct mem_cgroup *parent_mem = NULL;
3353
3354	if (parent)
3355		parent_mem = mem_cgroup_from_cont(parent);
3356
3357	cgroup_lock();
3358	/*
3359	 * If parent's use_hierarchy is set, we can't make any modifications
3360	 * in the child subtrees. If it is unset, then the change can
3361	 * occur, provided the current cgroup has no children.
3362	 *
3363	 * For the root cgroup, parent_mem is NULL, we allow value to be
3364	 * set if there are no children.
3365	 */
3366	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3367				(val == 1 || val == 0)) {
3368		if (list_empty(&cont->children))
3369			mem->use_hierarchy = val;
3370		else
3371			retval = -EBUSY;
3372	} else
3373		retval = -EINVAL;
3374	cgroup_unlock();
3375
3376	return retval;
3377}
3378
3379
3380static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3381				enum mem_cgroup_stat_index idx)
3382{
3383	struct mem_cgroup *iter;
3384	s64 val = 0;
3385
3386	/* each per cpu's value can be minus.Then, use s64 */
3387	for_each_mem_cgroup_tree(iter, mem)
3388		val += mem_cgroup_read_stat(iter, idx);
3389
3390	if (val < 0) /* race ? */
3391		val = 0;
3392	return val;
3393}
3394
3395static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3396{
3397	u64 val;
3398
3399	if (!mem_cgroup_is_root(mem)) {
3400		if (!swap)
3401			return res_counter_read_u64(&mem->res, RES_USAGE);
3402		else
3403			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3404	}
3405
3406	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3407	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3408
3409	if (swap)
3410		val += mem_cgroup_get_recursive_idx_stat(mem,
3411				MEM_CGROUP_STAT_SWAPOUT);
3412
3413	return val << PAGE_SHIFT;
3414}
3415
3416static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3417{
3418	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3419	u64 val;
3420	int type, name;
3421
3422	type = MEMFILE_TYPE(cft->private);
3423	name = MEMFILE_ATTR(cft->private);
3424	switch (type) {
3425	case _MEM:
3426		if (name == RES_USAGE)
3427			val = mem_cgroup_usage(mem, false);
3428		else
3429			val = res_counter_read_u64(&mem->res, name);
3430		break;
3431	case _MEMSWAP:
3432		if (name == RES_USAGE)
3433			val = mem_cgroup_usage(mem, true);
3434		else
3435			val = res_counter_read_u64(&mem->memsw, name);
3436		break;
3437	default:
3438		BUG();
3439		break;
3440	}
3441	return val;
3442}
3443/*
3444 * The user of this function is...
3445 * RES_LIMIT.
3446 */
3447static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3448			    const char *buffer)
3449{
3450	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3451	int type, name;
3452	unsigned long long val;
3453	int ret;
3454
3455	type = MEMFILE_TYPE(cft->private);
3456	name = MEMFILE_ATTR(cft->private);
3457	switch (name) {
3458	case RES_LIMIT:
3459		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3460			ret = -EINVAL;
3461			break;
3462		}
3463		/* This function does all necessary parse...reuse it */
3464		ret = res_counter_memparse_write_strategy(buffer, &val);
3465		if (ret)
3466			break;
3467		if (type == _MEM)
3468			ret = mem_cgroup_resize_limit(memcg, val);
3469		else
3470			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3471		break;
3472	case RES_SOFT_LIMIT:
3473		ret = res_counter_memparse_write_strategy(buffer, &val);
3474		if (ret)
3475			break;
3476		/*
3477		 * For memsw, soft limits are hard to implement in terms
3478		 * of semantics, for now, we support soft limits for
3479		 * control without swap
3480		 */
3481		if (type == _MEM)
3482			ret = res_counter_set_soft_limit(&memcg->res, val);
3483		else
3484			ret = -EINVAL;
3485		break;
3486	default:
3487		ret = -EINVAL; /* should be BUG() ? */
3488		break;
3489	}
3490	return ret;
3491}
3492
3493static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3494		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3495{
3496	struct cgroup *cgroup;
3497	unsigned long long min_limit, min_memsw_limit, tmp;
3498
3499	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3501	cgroup = memcg->css.cgroup;
3502	if (!memcg->use_hierarchy)
3503		goto out;
3504
3505	while (cgroup->parent) {
3506		cgroup = cgroup->parent;
3507		memcg = mem_cgroup_from_cont(cgroup);
3508		if (!memcg->use_hierarchy)
3509			break;
3510		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3511		min_limit = min(min_limit, tmp);
3512		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3513		min_memsw_limit = min(min_memsw_limit, tmp);
3514	}
3515out:
3516	*mem_limit = min_limit;
3517	*memsw_limit = min_memsw_limit;
3518	return;
3519}
3520
3521static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3522{
3523	struct mem_cgroup *mem;
3524	int type, name;
3525
3526	mem = mem_cgroup_from_cont(cont);
3527	type = MEMFILE_TYPE(event);
3528	name = MEMFILE_ATTR(event);
3529	switch (name) {
3530	case RES_MAX_USAGE:
3531		if (type == _MEM)
3532			res_counter_reset_max(&mem->res);
3533		else
3534			res_counter_reset_max(&mem->memsw);
3535		break;
3536	case RES_FAILCNT:
3537		if (type == _MEM)
3538			res_counter_reset_failcnt(&mem->res);
3539		else
3540			res_counter_reset_failcnt(&mem->memsw);
3541		break;
3542	}
3543
3544	return 0;
3545}
3546
3547static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3548					struct cftype *cft)
3549{
3550	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3551}
3552
3553#ifdef CONFIG_MMU
3554static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3555					struct cftype *cft, u64 val)
3556{
3557	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3558
3559	if (val >= (1 << NR_MOVE_TYPE))
3560		return -EINVAL;
3561	/*
3562	 * We check this value several times in both in can_attach() and
3563	 * attach(), so we need cgroup lock to prevent this value from being
3564	 * inconsistent.
3565	 */
3566	cgroup_lock();
3567	mem->move_charge_at_immigrate = val;
3568	cgroup_unlock();
3569
3570	return 0;
3571}
3572#else
3573static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3574					struct cftype *cft, u64 val)
3575{
3576	return -ENOSYS;
3577}
3578#endif
3579
3580
3581/* For read statistics */
3582enum {
3583	MCS_CACHE,
3584	MCS_RSS,
3585	MCS_FILE_MAPPED,
3586	MCS_PGPGIN,
3587	MCS_PGPGOUT,
3588	MCS_SWAP,
3589	MCS_INACTIVE_ANON,
3590	MCS_ACTIVE_ANON,
3591	MCS_INACTIVE_FILE,
3592	MCS_ACTIVE_FILE,
3593	MCS_UNEVICTABLE,
3594	NR_MCS_STAT,
3595};
3596
3597struct mcs_total_stat {
3598	s64 stat[NR_MCS_STAT];
3599};
3600
3601struct {
3602	char *local_name;
3603	char *total_name;
3604} memcg_stat_strings[NR_MCS_STAT] = {
3605	{"cache", "total_cache"},
3606	{"rss", "total_rss"},
3607	{"mapped_file", "total_mapped_file"},
3608	{"pgpgin", "total_pgpgin"},
3609	{"pgpgout", "total_pgpgout"},
3610	{"swap", "total_swap"},
3611	{"inactive_anon", "total_inactive_anon"},
3612	{"active_anon", "total_active_anon"},
3613	{"inactive_file", "total_inactive_file"},
3614	{"active_file", "total_active_file"},
3615	{"unevictable", "total_unevictable"}
3616};
3617
3618
3619static void
3620mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3621{
3622	s64 val;
3623
3624	/* per cpu stat */
3625	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3626	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3627	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3628	s->stat[MCS_RSS] += val * PAGE_SIZE;
3629	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3630	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3631	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3632	s->stat[MCS_PGPGIN] += val;
3633	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3634	s->stat[MCS_PGPGOUT] += val;
3635	if (do_swap_account) {
3636		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3637		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3638	}
3639
3640	/* per zone stat */
3641	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3642	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3643	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3644	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3645	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3646	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3647	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3648	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3649	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3650	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3651}
3652
3653static void
3654mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3655{
3656	struct mem_cgroup *iter;
3657
3658	for_each_mem_cgroup_tree(iter, mem)
3659		mem_cgroup_get_local_stat(iter, s);
3660}
3661
3662static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3663				 struct cgroup_map_cb *cb)
3664{
3665	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3666	struct mcs_total_stat mystat;
3667	int i;
3668
3669	memset(&mystat, 0, sizeof(mystat));
3670	mem_cgroup_get_local_stat(mem_cont, &mystat);
3671
3672	for (i = 0; i < NR_MCS_STAT; i++) {
3673		if (i == MCS_SWAP && !do_swap_account)
3674			continue;
3675		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3676	}
3677
3678	/* Hierarchical information */
3679	{
3680		unsigned long long limit, memsw_limit;
3681		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3682		cb->fill(cb, "hierarchical_memory_limit", limit);
3683		if (do_swap_account)
3684			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3685	}
3686
3687	memset(&mystat, 0, sizeof(mystat));
3688	mem_cgroup_get_total_stat(mem_cont, &mystat);
3689	for (i = 0; i < NR_MCS_STAT; i++) {
3690		if (i == MCS_SWAP && !do_swap_account)
3691			continue;
3692		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3693	}
3694
3695#ifdef CONFIG_DEBUG_VM
3696	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3697
3698	{
3699		int nid, zid;
3700		struct mem_cgroup_per_zone *mz;
3701		unsigned long recent_rotated[2] = {0, 0};
3702		unsigned long recent_scanned[2] = {0, 0};
3703
3704		for_each_online_node(nid)
3705			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3706				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3707
3708				recent_rotated[0] +=
3709					mz->reclaim_stat.recent_rotated[0];
3710				recent_rotated[1] +=
3711					mz->reclaim_stat.recent_rotated[1];
3712				recent_scanned[0] +=
3713					mz->reclaim_stat.recent_scanned[0];
3714				recent_scanned[1] +=
3715					mz->reclaim_stat.recent_scanned[1];
3716			}
3717		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3718		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3719		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3720		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3721	}
3722#endif
3723
3724	return 0;
3725}
3726
3727static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3728{
3729	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3730
3731	return get_swappiness(memcg);
3732}
3733
3734static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3735				       u64 val)
3736{
3737	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3738	struct mem_cgroup *parent;
3739
3740	if (val > 100)
3741		return -EINVAL;
3742
3743	if (cgrp->parent == NULL)
3744		return -EINVAL;
3745
3746	parent = mem_cgroup_from_cont(cgrp->parent);
3747
3748	cgroup_lock();
3749
3750	/* If under hierarchy, only empty-root can set this value */
3751	if ((parent->use_hierarchy) ||
3752	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3753		cgroup_unlock();
3754		return -EINVAL;
3755	}
3756
3757	spin_lock(&memcg->reclaim_param_lock);
3758	memcg->swappiness = val;
3759	spin_unlock(&memcg->reclaim_param_lock);
3760
3761	cgroup_unlock();
3762
3763	return 0;
3764}
3765
3766static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3767{
3768	struct mem_cgroup_threshold_ary *t;
3769	u64 usage;
3770	int i;
3771
3772	rcu_read_lock();
3773	if (!swap)
3774		t = rcu_dereference(memcg->thresholds.primary);
3775	else
3776		t = rcu_dereference(memcg->memsw_thresholds.primary);
3777
3778	if (!t)
3779		goto unlock;
3780
3781	usage = mem_cgroup_usage(memcg, swap);
3782
3783	/*
3784	 * current_threshold points to threshold just below usage.
3785	 * If it's not true, a threshold was crossed after last
3786	 * call of __mem_cgroup_threshold().
3787	 */
3788	i = t->current_threshold;
3789
3790	/*
3791	 * Iterate backward over array of thresholds starting from
3792	 * current_threshold and check if a threshold is crossed.
3793	 * If none of thresholds below usage is crossed, we read
3794	 * only one element of the array here.
3795	 */
3796	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3797		eventfd_signal(t->entries[i].eventfd, 1);
3798
3799	/* i = current_threshold + 1 */
3800	i++;
3801
3802	/*
3803	 * Iterate forward over array of thresholds starting from
3804	 * current_threshold+1 and check if a threshold is crossed.
3805	 * If none of thresholds above usage is crossed, we read
3806	 * only one element of the array here.
3807	 */
3808	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3809		eventfd_signal(t->entries[i].eventfd, 1);
3810
3811	/* Update current_threshold */
3812	t->current_threshold = i - 1;
3813unlock:
3814	rcu_read_unlock();
3815}
3816
3817static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3818{
3819	while (memcg) {
3820		__mem_cgroup_threshold(memcg, false);
3821		if (do_swap_account)
3822			__mem_cgroup_threshold(memcg, true);
3823
3824		memcg = parent_mem_cgroup(memcg);
3825	}
3826}
3827
3828static int compare_thresholds(const void *a, const void *b)
3829{
3830	const struct mem_cgroup_threshold *_a = a;
3831	const struct mem_cgroup_threshold *_b = b;
3832
3833	return _a->threshold - _b->threshold;
3834}
3835
3836static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3837{
3838	struct mem_cgroup_eventfd_list *ev;
3839
3840	list_for_each_entry(ev, &mem->oom_notify, list)
3841		eventfd_signal(ev->eventfd, 1);
3842	return 0;
3843}
3844
3845static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3846{
3847	struct mem_cgroup *iter;
3848
3849	for_each_mem_cgroup_tree(iter, mem)
3850		mem_cgroup_oom_notify_cb(iter);
3851}
3852
3853static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3854	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3855{
3856	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3857	struct mem_cgroup_thresholds *thresholds;
3858	struct mem_cgroup_threshold_ary *new;
3859	int type = MEMFILE_TYPE(cft->private);
3860	u64 threshold, usage;
3861	int i, size, ret;
3862
3863	ret = res_counter_memparse_write_strategy(args, &threshold);
3864	if (ret)
3865		return ret;
3866
3867	mutex_lock(&memcg->thresholds_lock);
3868
3869	if (type == _MEM)
3870		thresholds = &memcg->thresholds;
3871	else if (type == _MEMSWAP)
3872		thresholds = &memcg->memsw_thresholds;
3873	else
3874		BUG();
3875
3876	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3877
3878	/* Check if a threshold crossed before adding a new one */
3879	if (thresholds->primary)
3880		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3881
3882	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3883
3884	/* Allocate memory for new array of thresholds */
3885	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3886			GFP_KERNEL);
3887	if (!new) {
3888		ret = -ENOMEM;
3889		goto unlock;
3890	}
3891	new->size = size;
3892
3893	/* Copy thresholds (if any) to new array */
3894	if (thresholds->primary) {
3895		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3896				sizeof(struct mem_cgroup_threshold));
3897	}
3898
3899	/* Add new threshold */
3900	new->entries[size - 1].eventfd = eventfd;
3901	new->entries[size - 1].threshold = threshold;
3902
3903	/* Sort thresholds. Registering of new threshold isn't time-critical */
3904	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3905			compare_thresholds, NULL);
3906
3907	/* Find current threshold */
3908	new->current_threshold = -1;
3909	for (i = 0; i < size; i++) {
3910		if (new->entries[i].threshold < usage) {
3911			/*
3912			 * new->current_threshold will not be used until
3913			 * rcu_assign_pointer(), so it's safe to increment
3914			 * it here.
3915			 */
3916			++new->current_threshold;
3917		}
3918	}
3919
3920	/* Free old spare buffer and save old primary buffer as spare */
3921	kfree(thresholds->spare);
3922	thresholds->spare = thresholds->primary;
3923
3924	rcu_assign_pointer(thresholds->primary, new);
3925
3926	/* To be sure that nobody uses thresholds */
3927	synchronize_rcu();
3928
3929unlock:
3930	mutex_unlock(&memcg->thresholds_lock);
3931
3932	return ret;
3933}
3934
3935static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3936	struct cftype *cft, struct eventfd_ctx *eventfd)
3937{
3938	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3939	struct mem_cgroup_thresholds *thresholds;
3940	struct mem_cgroup_threshold_ary *new;
3941	int type = MEMFILE_TYPE(cft->private);
3942	u64 usage;
3943	int i, j, size;
3944
3945	mutex_lock(&memcg->thresholds_lock);
3946	if (type == _MEM)
3947		thresholds = &memcg->thresholds;
3948	else if (type == _MEMSWAP)
3949		thresholds = &memcg->memsw_thresholds;
3950	else
3951		BUG();
3952
3953	/*
3954	 * Something went wrong if we trying to unregister a threshold
3955	 * if we don't have thresholds
3956	 */
3957	BUG_ON(!thresholds);
3958
3959	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3960
3961	/* Check if a threshold crossed before removing */
3962	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3963
3964	/* Calculate new number of threshold */
3965	size = 0;
3966	for (i = 0; i < thresholds->primary->size; i++) {
3967		if (thresholds->primary->entries[i].eventfd != eventfd)
3968			size++;
3969	}
3970
3971	new = thresholds->spare;
3972
3973	/* Set thresholds array to NULL if we don't have thresholds */
3974	if (!size) {
3975		kfree(new);
3976		new = NULL;
3977		goto swap_buffers;
3978	}
3979
3980	new->size = size;
3981
3982	/* Copy thresholds and find current threshold */
3983	new->current_threshold = -1;
3984	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3985		if (thresholds->primary->entries[i].eventfd == eventfd)
3986			continue;
3987
3988		new->entries[j] = thresholds->primary->entries[i];
3989		if (new->entries[j].threshold < usage) {
3990			/*
3991			 * new->current_threshold will not be used
3992			 * until rcu_assign_pointer(), so it's safe to increment
3993			 * it here.
3994			 */
3995			++new->current_threshold;
3996		}
3997		j++;
3998	}
3999
4000swap_buffers:
4001	/* Swap primary and spare array */
4002	thresholds->spare = thresholds->primary;
4003	rcu_assign_pointer(thresholds->primary, new);
4004
4005	/* To be sure that nobody uses thresholds */
4006	synchronize_rcu();
4007
4008	mutex_unlock(&memcg->thresholds_lock);
4009}
4010
4011static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4012	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4013{
4014	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4015	struct mem_cgroup_eventfd_list *event;
4016	int type = MEMFILE_TYPE(cft->private);
4017
4018	BUG_ON(type != _OOM_TYPE);
4019	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4020	if (!event)
4021		return -ENOMEM;
4022
4023	mutex_lock(&memcg_oom_mutex);
4024
4025	event->eventfd = eventfd;
4026	list_add(&event->list, &memcg->oom_notify);
4027
4028	/* already in OOM ? */
4029	if (atomic_read(&memcg->oom_lock))
4030		eventfd_signal(eventfd, 1);
4031	mutex_unlock(&memcg_oom_mutex);
4032
4033	return 0;
4034}
4035
4036static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4037	struct cftype *cft, struct eventfd_ctx *eventfd)
4038{
4039	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4040	struct mem_cgroup_eventfd_list *ev, *tmp;
4041	int type = MEMFILE_TYPE(cft->private);
4042
4043	BUG_ON(type != _OOM_TYPE);
4044
4045	mutex_lock(&memcg_oom_mutex);
4046
4047	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4048		if (ev->eventfd == eventfd) {
4049			list_del(&ev->list);
4050			kfree(ev);
4051		}
4052	}
4053
4054	mutex_unlock(&memcg_oom_mutex);
4055}
4056
4057static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4058	struct cftype *cft,  struct cgroup_map_cb *cb)
4059{
4060	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4061
4062	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4063
4064	if (atomic_read(&mem->oom_lock))
4065		cb->fill(cb, "under_oom", 1);
4066	else
4067		cb->fill(cb, "under_oom", 0);
4068	return 0;
4069}
4070
4071static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4072	struct cftype *cft, u64 val)
4073{
4074	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4075	struct mem_cgroup *parent;
4076
4077	/* cannot set to root cgroup and only 0 and 1 are allowed */
4078	if (!cgrp->parent || !((val == 0) || (val == 1)))
4079		return -EINVAL;
4080
4081	parent = mem_cgroup_from_cont(cgrp->parent);
4082
4083	cgroup_lock();
4084	/* oom-kill-disable is a flag for subhierarchy. */
4085	if ((parent->use_hierarchy) ||
4086	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4087		cgroup_unlock();
4088		return -EINVAL;
4089	}
4090	mem->oom_kill_disable = val;
4091	if (!val)
4092		memcg_oom_recover(mem);
4093	cgroup_unlock();
4094	return 0;
4095}
4096
4097static struct cftype mem_cgroup_files[] = {
4098	{
4099		.name = "usage_in_bytes",
4100		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4101		.read_u64 = mem_cgroup_read,
4102		.register_event = mem_cgroup_usage_register_event,
4103		.unregister_event = mem_cgroup_usage_unregister_event,
4104	},
4105	{
4106		.name = "max_usage_in_bytes",
4107		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4108		.trigger = mem_cgroup_reset,
4109		.read_u64 = mem_cgroup_read,
4110	},
4111	{
4112		.name = "limit_in_bytes",
4113		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4114		.write_string = mem_cgroup_write,
4115		.read_u64 = mem_cgroup_read,
4116	},
4117	{
4118		.name = "soft_limit_in_bytes",
4119		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4120		.write_string = mem_cgroup_write,
4121		.read_u64 = mem_cgroup_read,
4122	},
4123	{
4124		.name = "failcnt",
4125		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4126		.trigger = mem_cgroup_reset,
4127		.read_u64 = mem_cgroup_read,
4128	},
4129	{
4130		.name = "stat",
4131		.read_map = mem_control_stat_show,
4132	},
4133	{
4134		.name = "force_empty",
4135		.trigger = mem_cgroup_force_empty_write,
4136	},
4137	{
4138		.name = "use_hierarchy",
4139		.write_u64 = mem_cgroup_hierarchy_write,
4140		.read_u64 = mem_cgroup_hierarchy_read,
4141	},
4142	{
4143		.name = "swappiness",
4144		.read_u64 = mem_cgroup_swappiness_read,
4145		.write_u64 = mem_cgroup_swappiness_write,
4146	},
4147	{
4148		.name = "move_charge_at_immigrate",
4149		.read_u64 = mem_cgroup_move_charge_read,
4150		.write_u64 = mem_cgroup_move_charge_write,
4151	},
4152	{
4153		.name = "oom_control",
4154		.read_map = mem_cgroup_oom_control_read,
4155		.write_u64 = mem_cgroup_oom_control_write,
4156		.register_event = mem_cgroup_oom_register_event,
4157		.unregister_event = mem_cgroup_oom_unregister_event,
4158		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4159	},
4160};
4161
4162#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4163static struct cftype memsw_cgroup_files[] = {
4164	{
4165		.name = "memsw.usage_in_bytes",
4166		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4167		.read_u64 = mem_cgroup_read,
4168		.register_event = mem_cgroup_usage_register_event,
4169		.unregister_event = mem_cgroup_usage_unregister_event,
4170	},
4171	{
4172		.name = "memsw.max_usage_in_bytes",
4173		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4174		.trigger = mem_cgroup_reset,
4175		.read_u64 = mem_cgroup_read,
4176	},
4177	{
4178		.name = "memsw.limit_in_bytes",
4179		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4180		.write_string = mem_cgroup_write,
4181		.read_u64 = mem_cgroup_read,
4182	},
4183	{
4184		.name = "memsw.failcnt",
4185		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4186		.trigger = mem_cgroup_reset,
4187		.read_u64 = mem_cgroup_read,
4188	},
4189};
4190
4191static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4192{
4193	if (!do_swap_account)
4194		return 0;
4195	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4196				ARRAY_SIZE(memsw_cgroup_files));
4197};
4198#else
4199static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4200{
4201	return 0;
4202}
4203#endif
4204
4205static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4206{
4207	struct mem_cgroup_per_node *pn;
4208	struct mem_cgroup_per_zone *mz;
4209	enum lru_list l;
4210	int zone, tmp = node;
4211	/*
4212	 * This routine is called against possible nodes.
4213	 * But it's BUG to call kmalloc() against offline node.
4214	 *
4215	 * TODO: this routine can waste much memory for nodes which will
4216	 *       never be onlined. It's better to use memory hotplug callback
4217	 *       function.
4218	 */
4219	if (!node_state(node, N_NORMAL_MEMORY))
4220		tmp = -1;
4221	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4222	if (!pn)
4223		return 1;
4224
4225	mem->info.nodeinfo[node] = pn;
4226	memset(pn, 0, sizeof(*pn));
4227
4228	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4229		mz = &pn->zoneinfo[zone];
4230		for_each_lru(l)
4231			INIT_LIST_HEAD(&mz->lists[l]);
4232		mz->usage_in_excess = 0;
4233		mz->on_tree = false;
4234		mz->mem = mem;
4235	}
4236	return 0;
4237}
4238
4239static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4240{
4241	kfree(mem->info.nodeinfo[node]);
4242}
4243
4244static struct mem_cgroup *mem_cgroup_alloc(void)
4245{
4246	struct mem_cgroup *mem;
4247	int size = sizeof(struct mem_cgroup);
4248
4249	/* Can be very big if MAX_NUMNODES is very big */
4250	if (size < PAGE_SIZE)
4251		mem = kmalloc(size, GFP_KERNEL);
4252	else
4253		mem = vmalloc(size);
4254
4255	if (!mem)
4256		return NULL;
4257
4258	memset(mem, 0, size);
4259	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4260	if (!mem->stat)
4261		goto out_free;
4262	spin_lock_init(&mem->pcp_counter_lock);
4263	return mem;
4264
4265out_free:
4266	if (size < PAGE_SIZE)
4267		kfree(mem);
4268	else
4269		vfree(mem);
4270	return NULL;
4271}
4272
4273/*
4274 * At destroying mem_cgroup, references from swap_cgroup can remain.
4275 * (scanning all at force_empty is too costly...)
4276 *
4277 * Instead of clearing all references at force_empty, we remember
4278 * the number of reference from swap_cgroup and free mem_cgroup when
4279 * it goes down to 0.
4280 *
4281 * Removal of cgroup itself succeeds regardless of refs from swap.
4282 */
4283
4284static void __mem_cgroup_free(struct mem_cgroup *mem)
4285{
4286	int node;
4287
4288	mem_cgroup_remove_from_trees(mem);
4289	free_css_id(&mem_cgroup_subsys, &mem->css);
4290
4291	for_each_node_state(node, N_POSSIBLE)
4292		free_mem_cgroup_per_zone_info(mem, node);
4293
4294	free_percpu(mem->stat);
4295	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4296		kfree(mem);
4297	else
4298		vfree(mem);
4299}
4300
4301static void mem_cgroup_get(struct mem_cgroup *mem)
4302{
4303	atomic_inc(&mem->refcnt);
4304}
4305
4306static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4307{
4308	if (atomic_sub_and_test(count, &mem->refcnt)) {
4309		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4310		__mem_cgroup_free(mem);
4311		if (parent)
4312			mem_cgroup_put(parent);
4313	}
4314}
4315
4316static void mem_cgroup_put(struct mem_cgroup *mem)
4317{
4318	__mem_cgroup_put(mem, 1);
4319}
4320
4321/*
4322 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4323 */
4324static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4325{
4326	if (!mem->res.parent)
4327		return NULL;
4328	return mem_cgroup_from_res_counter(mem->res.parent, res);
4329}
4330
4331#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4332static void __init enable_swap_cgroup(void)
4333{
4334	if (!mem_cgroup_disabled() && really_do_swap_account)
4335		do_swap_account = 1;
4336}
4337#else
4338static void __init enable_swap_cgroup(void)
4339{
4340}
4341#endif
4342
4343static int mem_cgroup_soft_limit_tree_init(void)
4344{
4345	struct mem_cgroup_tree_per_node *rtpn;
4346	struct mem_cgroup_tree_per_zone *rtpz;
4347	int tmp, node, zone;
4348
4349	for_each_node_state(node, N_POSSIBLE) {
4350		tmp = node;
4351		if (!node_state(node, N_NORMAL_MEMORY))
4352			tmp = -1;
4353		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4354		if (!rtpn)
4355			return 1;
4356
4357		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4358
4359		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4360			rtpz = &rtpn->rb_tree_per_zone[zone];
4361			rtpz->rb_root = RB_ROOT;
4362			spin_lock_init(&rtpz->lock);
4363		}
4364	}
4365	return 0;
4366}
4367
4368static struct cgroup_subsys_state * __ref
4369mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4370{
4371	struct mem_cgroup *mem, *parent;
4372	long error = -ENOMEM;
4373	int node;
4374
4375	mem = mem_cgroup_alloc();
4376	if (!mem)
4377		return ERR_PTR(error);
4378
4379	for_each_node_state(node, N_POSSIBLE)
4380		if (alloc_mem_cgroup_per_zone_info(mem, node))
4381			goto free_out;
4382
4383	/* root ? */
4384	if (cont->parent == NULL) {
4385		int cpu;
4386		enable_swap_cgroup();
4387		parent = NULL;
4388		root_mem_cgroup = mem;
4389		if (mem_cgroup_soft_limit_tree_init())
4390			goto free_out;
4391		for_each_possible_cpu(cpu) {
4392			struct memcg_stock_pcp *stock =
4393						&per_cpu(memcg_stock, cpu);
4394			INIT_WORK(&stock->work, drain_local_stock);
4395		}
4396		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4397	} else {
4398		parent = mem_cgroup_from_cont(cont->parent);
4399		mem->use_hierarchy = parent->use_hierarchy;
4400		mem->oom_kill_disable = parent->oom_kill_disable;
4401	}
4402
4403	if (parent && parent->use_hierarchy) {
4404		res_counter_init(&mem->res, &parent->res);
4405		res_counter_init(&mem->memsw, &parent->memsw);
4406		/*
4407		 * We increment refcnt of the parent to ensure that we can
4408		 * safely access it on res_counter_charge/uncharge.
4409		 * This refcnt will be decremented when freeing this
4410		 * mem_cgroup(see mem_cgroup_put).
4411		 */
4412		mem_cgroup_get(parent);
4413	} else {
4414		res_counter_init(&mem->res, NULL);
4415		res_counter_init(&mem->memsw, NULL);
4416	}
4417	mem->last_scanned_child = 0;
4418	spin_lock_init(&mem->reclaim_param_lock);
4419	INIT_LIST_HEAD(&mem->oom_notify);
4420
4421	if (parent)
4422		mem->swappiness = get_swappiness(parent);
4423	atomic_set(&mem->refcnt, 1);
4424	mem->move_charge_at_immigrate = 0;
4425	mutex_init(&mem->thresholds_lock);
4426	return &mem->css;
4427free_out:
4428	__mem_cgroup_free(mem);
4429	root_mem_cgroup = NULL;
4430	return ERR_PTR(error);
4431}
4432
4433static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4434					struct cgroup *cont)
4435{
4436	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4437
4438	return mem_cgroup_force_empty(mem, false);
4439}
4440
4441static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4442				struct cgroup *cont)
4443{
4444	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4445
4446	mem_cgroup_put(mem);
4447}
4448
4449static int mem_cgroup_populate(struct cgroup_subsys *ss,
4450				struct cgroup *cont)
4451{
4452	int ret;
4453
4454	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4455				ARRAY_SIZE(mem_cgroup_files));
4456
4457	if (!ret)
4458		ret = register_memsw_files(cont, ss);
4459	return ret;
4460}
4461
4462#ifdef CONFIG_MMU
4463/* Handlers for move charge at task migration. */
4464#define PRECHARGE_COUNT_AT_ONCE	256
4465static int mem_cgroup_do_precharge(unsigned long count)
4466{
4467	int ret = 0;
4468	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4469	struct mem_cgroup *mem = mc.to;
4470
4471	if (mem_cgroup_is_root(mem)) {
4472		mc.precharge += count;
4473		/* we don't need css_get for root */
4474		return ret;
4475	}
4476	/* try to charge at once */
4477	if (count > 1) {
4478		struct res_counter *dummy;
4479		/*
4480		 * "mem" cannot be under rmdir() because we've already checked
4481		 * by cgroup_lock_live_cgroup() that it is not removed and we
4482		 * are still under the same cgroup_mutex. So we can postpone
4483		 * css_get().
4484		 */
4485		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4486			goto one_by_one;
4487		if (do_swap_account && res_counter_charge(&mem->memsw,
4488						PAGE_SIZE * count, &dummy)) {
4489			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4490			goto one_by_one;
4491		}
4492		mc.precharge += count;
4493		return ret;
4494	}
4495one_by_one:
4496	/* fall back to one by one charge */
4497	while (count--) {
4498		if (signal_pending(current)) {
4499			ret = -EINTR;
4500			break;
4501		}
4502		if (!batch_count--) {
4503			batch_count = PRECHARGE_COUNT_AT_ONCE;
4504			cond_resched();
4505		}
4506		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4507					      PAGE_SIZE);
4508		if (ret || !mem)
4509			/* mem_cgroup_clear_mc() will do uncharge later */
4510			return -ENOMEM;
4511		mc.precharge++;
4512	}
4513	return ret;
4514}
4515
4516/**
4517 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4518 * @vma: the vma the pte to be checked belongs
4519 * @addr: the address corresponding to the pte to be checked
4520 * @ptent: the pte to be checked
4521 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4522 *
4523 * Returns
4524 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4525 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4526 *     move charge. if @target is not NULL, the page is stored in target->page
4527 *     with extra refcnt got(Callers should handle it).
4528 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4529 *     target for charge migration. if @target is not NULL, the entry is stored
4530 *     in target->ent.
4531 *
4532 * Called with pte lock held.
4533 */
4534union mc_target {
4535	struct page	*page;
4536	swp_entry_t	ent;
4537};
4538
4539enum mc_target_type {
4540	MC_TARGET_NONE,	/* not used */
4541	MC_TARGET_PAGE,
4542	MC_TARGET_SWAP,
4543};
4544
4545static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4546						unsigned long addr, pte_t ptent)
4547{
4548	struct page *page = vm_normal_page(vma, addr, ptent);
4549
4550	if (!page || !page_mapped(page))
4551		return NULL;
4552	if (PageAnon(page)) {
4553		/* we don't move shared anon */
4554		if (!move_anon() || page_mapcount(page) > 2)
4555			return NULL;
4556	} else if (!move_file())
4557		/* we ignore mapcount for file pages */
4558		return NULL;
4559	if (!get_page_unless_zero(page))
4560		return NULL;
4561
4562	return page;
4563}
4564
4565static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4566			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4567{
4568	int usage_count;
4569	struct page *page = NULL;
4570	swp_entry_t ent = pte_to_swp_entry(ptent);
4571
4572	if (!move_anon() || non_swap_entry(ent))
4573		return NULL;
4574	usage_count = mem_cgroup_count_swap_user(ent, &page);
4575	if (usage_count > 1) { /* we don't move shared anon */
4576		if (page)
4577			put_page(page);
4578		return NULL;
4579	}
4580	if (do_swap_account)
4581		entry->val = ent.val;
4582
4583	return page;
4584}
4585
4586static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4587			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4588{
4589	struct page *page = NULL;
4590	struct inode *inode;
4591	struct address_space *mapping;
4592	pgoff_t pgoff;
4593
4594	if (!vma->vm_file) /* anonymous vma */
4595		return NULL;
4596	if (!move_file())
4597		return NULL;
4598
4599	inode = vma->vm_file->f_path.dentry->d_inode;
4600	mapping = vma->vm_file->f_mapping;
4601	if (pte_none(ptent))
4602		pgoff = linear_page_index(vma, addr);
4603	else /* pte_file(ptent) is true */
4604		pgoff = pte_to_pgoff(ptent);
4605
4606	/* page is moved even if it's not RSS of this task(page-faulted). */
4607	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4608		page = find_get_page(mapping, pgoff);
4609	} else { /* shmem/tmpfs file. we should take account of swap too. */
4610		swp_entry_t ent;
4611		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4612		if (do_swap_account)
4613			entry->val = ent.val;
4614	}
4615
4616	return page;
4617}
4618
4619static int is_target_pte_for_mc(struct vm_area_struct *vma,
4620		unsigned long addr, pte_t ptent, union mc_target *target)
4621{
4622	struct page *page = NULL;
4623	struct page_cgroup *pc;
4624	int ret = 0;
4625	swp_entry_t ent = { .val = 0 };
4626
4627	if (pte_present(ptent))
4628		page = mc_handle_present_pte(vma, addr, ptent);
4629	else if (is_swap_pte(ptent))
4630		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4631	else if (pte_none(ptent) || pte_file(ptent))
4632		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4633
4634	if (!page && !ent.val)
4635		return 0;
4636	if (page) {
4637		pc = lookup_page_cgroup(page);
4638		/*
4639		 * Do only loose check w/o page_cgroup lock.
4640		 * mem_cgroup_move_account() checks the pc is valid or not under
4641		 * the lock.
4642		 */
4643		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4644			ret = MC_TARGET_PAGE;
4645			if (target)
4646				target->page = page;
4647		}
4648		if (!ret || !target)
4649			put_page(page);
4650	}
4651	/* There is a swap entry and a page doesn't exist or isn't charged */
4652	if (ent.val && !ret &&
4653			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4654		ret = MC_TARGET_SWAP;
4655		if (target)
4656			target->ent = ent;
4657	}
4658	return ret;
4659}
4660
4661static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4662					unsigned long addr, unsigned long end,
4663					struct mm_walk *walk)
4664{
4665	struct vm_area_struct *vma = walk->private;
4666	pte_t *pte;
4667	spinlock_t *ptl;
4668
4669	VM_BUG_ON(pmd_trans_huge(*pmd));
4670	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4671	for (; addr != end; pte++, addr += PAGE_SIZE)
4672		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4673			mc.precharge++;	/* increment precharge temporarily */
4674	pte_unmap_unlock(pte - 1, ptl);
4675	cond_resched();
4676
4677	return 0;
4678}
4679
4680static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4681{
4682	unsigned long precharge;
4683	struct vm_area_struct *vma;
4684
4685	/* We've already held the mmap_sem */
4686	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4687		struct mm_walk mem_cgroup_count_precharge_walk = {
4688			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4689			.mm = mm,
4690			.private = vma,
4691		};
4692		if (is_vm_hugetlb_page(vma))
4693			continue;
4694		walk_page_range(vma->vm_start, vma->vm_end,
4695					&mem_cgroup_count_precharge_walk);
4696	}
4697
4698	precharge = mc.precharge;
4699	mc.precharge = 0;
4700
4701	return precharge;
4702}
4703
4704static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4705{
4706	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4707}
4708
4709static void mem_cgroup_clear_mc(void)
4710{
4711	struct mem_cgroup *from = mc.from;
4712	struct mem_cgroup *to = mc.to;
4713
4714	/* we must uncharge all the leftover precharges from mc.to */
4715	if (mc.precharge) {
4716		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4717		mc.precharge = 0;
4718	}
4719	/*
4720	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4721	 * we must uncharge here.
4722	 */
4723	if (mc.moved_charge) {
4724		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4725		mc.moved_charge = 0;
4726	}
4727	/* we must fixup refcnts and charges */
4728	if (mc.moved_swap) {
4729		/* uncharge swap account from the old cgroup */
4730		if (!mem_cgroup_is_root(mc.from))
4731			res_counter_uncharge(&mc.from->memsw,
4732						PAGE_SIZE * mc.moved_swap);
4733		__mem_cgroup_put(mc.from, mc.moved_swap);
4734
4735		if (!mem_cgroup_is_root(mc.to)) {
4736			/*
4737			 * we charged both to->res and to->memsw, so we should
4738			 * uncharge to->res.
4739			 */
4740			res_counter_uncharge(&mc.to->res,
4741						PAGE_SIZE * mc.moved_swap);
4742		}
4743		/* we've already done mem_cgroup_get(mc.to) */
4744
4745		mc.moved_swap = 0;
4746	}
4747	if (mc.mm) {
4748		up_read(&mc.mm->mmap_sem);
4749		mmput(mc.mm);
4750	}
4751	spin_lock(&mc.lock);
4752	mc.from = NULL;
4753	mc.to = NULL;
4754	spin_unlock(&mc.lock);
4755	mc.moving_task = NULL;
4756	mc.mm = NULL;
4757	mem_cgroup_end_move(from);
4758	memcg_oom_recover(from);
4759	memcg_oom_recover(to);
4760	wake_up_all(&mc.waitq);
4761}
4762
4763static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4764				struct cgroup *cgroup,
4765				struct task_struct *p,
4766				bool threadgroup)
4767{
4768	int ret = 0;
4769	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4770
4771	if (mem->move_charge_at_immigrate) {
4772		struct mm_struct *mm;
4773		struct mem_cgroup *from = mem_cgroup_from_task(p);
4774
4775		VM_BUG_ON(from == mem);
4776
4777		mm = get_task_mm(p);
4778		if (!mm)
4779			return 0;
4780		/* We move charges only when we move a owner of the mm */
4781		if (mm->owner == p) {
4782			/*
4783			 * We do all the move charge works under one mmap_sem to
4784			 * avoid deadlock with down_write(&mmap_sem)
4785			 * -> try_charge() -> if (mc.moving_task) -> sleep.
4786			 */
4787			down_read(&mm->mmap_sem);
4788
4789			VM_BUG_ON(mc.from);
4790			VM_BUG_ON(mc.to);
4791			VM_BUG_ON(mc.precharge);
4792			VM_BUG_ON(mc.moved_charge);
4793			VM_BUG_ON(mc.moved_swap);
4794			VM_BUG_ON(mc.moving_task);
4795			VM_BUG_ON(mc.mm);
4796
4797			mem_cgroup_start_move(from);
4798			spin_lock(&mc.lock);
4799			mc.from = from;
4800			mc.to = mem;
4801			mc.precharge = 0;
4802			mc.moved_charge = 0;
4803			mc.moved_swap = 0;
4804			spin_unlock(&mc.lock);
4805			mc.moving_task = current;
4806			mc.mm = mm;
4807
4808			ret = mem_cgroup_precharge_mc(mm);
4809			if (ret)
4810				mem_cgroup_clear_mc();
4811			/* We call up_read() and mmput() in clear_mc(). */
4812		} else
4813			mmput(mm);
4814	}
4815	return ret;
4816}
4817
4818static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4819				struct cgroup *cgroup,
4820				struct task_struct *p,
4821				bool threadgroup)
4822{
4823	mem_cgroup_clear_mc();
4824}
4825
4826static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4827				unsigned long addr, unsigned long end,
4828				struct mm_walk *walk)
4829{
4830	int ret = 0;
4831	struct vm_area_struct *vma = walk->private;
4832	pte_t *pte;
4833	spinlock_t *ptl;
4834
4835retry:
4836	VM_BUG_ON(pmd_trans_huge(*pmd));
4837	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4838	for (; addr != end; addr += PAGE_SIZE) {
4839		pte_t ptent = *(pte++);
4840		union mc_target target;
4841		int type;
4842		struct page *page;
4843		struct page_cgroup *pc;
4844		swp_entry_t ent;
4845
4846		if (!mc.precharge)
4847			break;
4848
4849		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4850		switch (type) {
4851		case MC_TARGET_PAGE:
4852			page = target.page;
4853			if (isolate_lru_page(page))
4854				goto put;
4855			pc = lookup_page_cgroup(page);
4856			if (!mem_cgroup_move_account(pc,
4857						mc.from, mc.to, false)) {
4858				mc.precharge--;
4859				/* we uncharge from mc.from later. */
4860				mc.moved_charge++;
4861			}
4862			putback_lru_page(page);
4863put:			/* is_target_pte_for_mc() gets the page */
4864			put_page(page);
4865			break;
4866		case MC_TARGET_SWAP:
4867			ent = target.ent;
4868			if (!mem_cgroup_move_swap_account(ent,
4869						mc.from, mc.to, false)) {
4870				mc.precharge--;
4871				/* we fixup refcnts and charges later. */
4872				mc.moved_swap++;
4873			}
4874			break;
4875		default:
4876			break;
4877		}
4878	}
4879	pte_unmap_unlock(pte - 1, ptl);
4880	cond_resched();
4881
4882	if (addr != end) {
4883		/*
4884		 * We have consumed all precharges we got in can_attach().
4885		 * We try charge one by one, but don't do any additional
4886		 * charges to mc.to if we have failed in charge once in attach()
4887		 * phase.
4888		 */
4889		ret = mem_cgroup_do_precharge(1);
4890		if (!ret)
4891			goto retry;
4892	}
4893
4894	return ret;
4895}
4896
4897static void mem_cgroup_move_charge(struct mm_struct *mm)
4898{
4899	struct vm_area_struct *vma;
4900
4901	lru_add_drain_all();
4902	/* We've already held the mmap_sem */
4903	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4904		int ret;
4905		struct mm_walk mem_cgroup_move_charge_walk = {
4906			.pmd_entry = mem_cgroup_move_charge_pte_range,
4907			.mm = mm,
4908			.private = vma,
4909		};
4910		if (is_vm_hugetlb_page(vma))
4911			continue;
4912		ret = walk_page_range(vma->vm_start, vma->vm_end,
4913						&mem_cgroup_move_charge_walk);
4914		if (ret)
4915			/*
4916			 * means we have consumed all precharges and failed in
4917			 * doing additional charge. Just abandon here.
4918			 */
4919			break;
4920	}
4921}
4922
4923static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4924				struct cgroup *cont,
4925				struct cgroup *old_cont,
4926				struct task_struct *p,
4927				bool threadgroup)
4928{
4929	if (!mc.mm)
4930		/* no need to move charge */
4931		return;
4932
4933	mem_cgroup_move_charge(mc.mm);
4934	mem_cgroup_clear_mc();
4935}
4936#else	/* !CONFIG_MMU */
4937static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4938				struct cgroup *cgroup,
4939				struct task_struct *p,
4940				bool threadgroup)
4941{
4942	return 0;
4943}
4944static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4945				struct cgroup *cgroup,
4946				struct task_struct *p,
4947				bool threadgroup)
4948{
4949}
4950static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4951				struct cgroup *cont,
4952				struct cgroup *old_cont,
4953				struct task_struct *p,
4954				bool threadgroup)
4955{
4956}
4957#endif
4958
4959struct cgroup_subsys mem_cgroup_subsys = {
4960	.name = "memory",
4961	.subsys_id = mem_cgroup_subsys_id,
4962	.create = mem_cgroup_create,
4963	.pre_destroy = mem_cgroup_pre_destroy,
4964	.destroy = mem_cgroup_destroy,
4965	.populate = mem_cgroup_populate,
4966	.can_attach = mem_cgroup_can_attach,
4967	.cancel_attach = mem_cgroup_cancel_attach,
4968	.attach = mem_cgroup_move_task,
4969	.early_init = 0,
4970	.use_id = 1,
4971};
4972
4973#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4974static int __init enable_swap_account(char *s)
4975{
4976	/* consider enabled if no parameter or 1 is given */
4977	if (!s || !strcmp(s, "1"))
4978		really_do_swap_account = 1;
4979	else if (!strcmp(s, "0"))
4980		really_do_swap_account = 0;
4981	return 1;
4982}
4983__setup("swapaccount", enable_swap_account);
4984
4985static int __init disable_swap_account(char *s)
4986{
4987	enable_swap_account("0");
4988	return 1;
4989}
4990__setup("noswapaccount", disable_swap_account);
4991#endif
4992