memcontrol.c revision f780bdb7c1c73009cb57adcf99ef50027d80bf3c
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account		(0)
74#endif
75
76
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81	/*
82	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83	 */
84	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90	MEM_CGROUP_STAT_NSTATS,
91};
92
93enum mem_cgroup_events_index {
94	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
95	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
96	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
97	MEM_CGROUP_EVENTS_NSTATS,
98};
99/*
100 * Per memcg event counter is incremented at every pagein/pageout. With THP,
101 * it will be incremated by the number of pages. This counter is used for
102 * for trigger some periodic events. This is straightforward and better
103 * than using jiffies etc. to handle periodic memcg event.
104 */
105enum mem_cgroup_events_target {
106	MEM_CGROUP_TARGET_THRESH,
107	MEM_CGROUP_TARGET_SOFTLIMIT,
108	MEM_CGROUP_NTARGETS,
109};
110#define THRESHOLDS_EVENTS_TARGET (128)
111#define SOFTLIMIT_EVENTS_TARGET (1024)
112
113struct mem_cgroup_stat_cpu {
114	long count[MEM_CGROUP_STAT_NSTATS];
115	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
116	unsigned long targets[MEM_CGROUP_NTARGETS];
117};
118
119/*
120 * per-zone information in memory controller.
121 */
122struct mem_cgroup_per_zone {
123	/*
124	 * spin_lock to protect the per cgroup LRU
125	 */
126	struct list_head	lists[NR_LRU_LISTS];
127	unsigned long		count[NR_LRU_LISTS];
128
129	struct zone_reclaim_stat reclaim_stat;
130	struct rb_node		tree_node;	/* RB tree node */
131	unsigned long long	usage_in_excess;/* Set to the value by which */
132						/* the soft limit is exceeded*/
133	bool			on_tree;
134	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
135						/* use container_of	   */
136};
137/* Macro for accessing counter */
138#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
139
140struct mem_cgroup_per_node {
141	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_lru_info {
145	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
146};
147
148/*
149 * Cgroups above their limits are maintained in a RB-Tree, independent of
150 * their hierarchy representation
151 */
152
153struct mem_cgroup_tree_per_zone {
154	struct rb_root rb_root;
155	spinlock_t lock;
156};
157
158struct mem_cgroup_tree_per_node {
159	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
160};
161
162struct mem_cgroup_tree {
163	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
164};
165
166static struct mem_cgroup_tree soft_limit_tree __read_mostly;
167
168struct mem_cgroup_threshold {
169	struct eventfd_ctx *eventfd;
170	u64 threshold;
171};
172
173/* For threshold */
174struct mem_cgroup_threshold_ary {
175	/* An array index points to threshold just below usage. */
176	int current_threshold;
177	/* Size of entries[] */
178	unsigned int size;
179	/* Array of thresholds */
180	struct mem_cgroup_threshold entries[0];
181};
182
183struct mem_cgroup_thresholds {
184	/* Primary thresholds array */
185	struct mem_cgroup_threshold_ary *primary;
186	/*
187	 * Spare threshold array.
188	 * This is needed to make mem_cgroup_unregister_event() "never fail".
189	 * It must be able to store at least primary->size - 1 entries.
190	 */
191	struct mem_cgroup_threshold_ary *spare;
192};
193
194/* for OOM */
195struct mem_cgroup_eventfd_list {
196	struct list_head list;
197	struct eventfd_ctx *eventfd;
198};
199
200static void mem_cgroup_threshold(struct mem_cgroup *mem);
201static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
202
203/*
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
208 *
209 * TODO: Add a water mark for the memory controller. Reclaim will begin when
210 * we hit the water mark. May be even add a low water mark, such that
211 * no reclaim occurs from a cgroup at it's low water mark, this is
212 * a feature that will be implemented much later in the future.
213 */
214struct mem_cgroup {
215	struct cgroup_subsys_state css;
216	/*
217	 * the counter to account for memory usage
218	 */
219	struct res_counter res;
220	/*
221	 * the counter to account for mem+swap usage.
222	 */
223	struct res_counter memsw;
224	/*
225	 * Per cgroup active and inactive list, similar to the
226	 * per zone LRU lists.
227	 */
228	struct mem_cgroup_lru_info info;
229	/*
230	 * While reclaiming in a hierarchy, we cache the last child we
231	 * reclaimed from.
232	 */
233	int last_scanned_child;
234	/*
235	 * Should the accounting and control be hierarchical, per subtree?
236	 */
237	bool use_hierarchy;
238	atomic_t	oom_lock;
239	atomic_t	refcnt;
240
241	unsigned int	swappiness;
242	/* OOM-Killer disable */
243	int		oom_kill_disable;
244
245	/* set when res.limit == memsw.limit */
246	bool		memsw_is_minimum;
247
248	/* protect arrays of thresholds */
249	struct mutex thresholds_lock;
250
251	/* thresholds for memory usage. RCU-protected */
252	struct mem_cgroup_thresholds thresholds;
253
254	/* thresholds for mem+swap usage. RCU-protected */
255	struct mem_cgroup_thresholds memsw_thresholds;
256
257	/* For oom notifier event fd */
258	struct list_head oom_notify;
259
260	/*
261	 * Should we move charges of a task when a task is moved into this
262	 * mem_cgroup ? And what type of charges should we move ?
263	 */
264	unsigned long 	move_charge_at_immigrate;
265	/*
266	 * percpu counter.
267	 */
268	struct mem_cgroup_stat_cpu *stat;
269	/*
270	 * used when a cpu is offlined or other synchronizations
271	 * See mem_cgroup_read_stat().
272	 */
273	struct mem_cgroup_stat_cpu nocpu_base;
274	spinlock_t pcp_counter_lock;
275};
276
277/* Stuffs for move charges at task migration. */
278/*
279 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
280 * left-shifted bitmap of these types.
281 */
282enum move_type {
283	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
284	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
285	NR_MOVE_TYPE,
286};
287
288/* "mc" and its members are protected by cgroup_mutex */
289static struct move_charge_struct {
290	spinlock_t	  lock; /* for from, to */
291	struct mem_cgroup *from;
292	struct mem_cgroup *to;
293	unsigned long precharge;
294	unsigned long moved_charge;
295	unsigned long moved_swap;
296	struct task_struct *moving_task;	/* a task moving charges */
297	wait_queue_head_t waitq;		/* a waitq for other context */
298} mc = {
299	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
300	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
301};
302
303static bool move_anon(void)
304{
305	return test_bit(MOVE_CHARGE_TYPE_ANON,
306					&mc.to->move_charge_at_immigrate);
307}
308
309static bool move_file(void)
310{
311	return test_bit(MOVE_CHARGE_TYPE_FILE,
312					&mc.to->move_charge_at_immigrate);
313}
314
315/*
316 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
317 * limit reclaim to prevent infinite loops, if they ever occur.
318 */
319#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
320#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
321
322enum charge_type {
323	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
324	MEM_CGROUP_CHARGE_TYPE_MAPPED,
325	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
326	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
327	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
328	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
329	NR_CHARGE_TYPE,
330};
331
332/* for encoding cft->private value on file */
333#define _MEM			(0)
334#define _MEMSWAP		(1)
335#define _OOM_TYPE		(2)
336#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
337#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
338#define MEMFILE_ATTR(val)	((val) & 0xffff)
339/* Used for OOM nofiier */
340#define OOM_CONTROL		(0)
341
342/*
343 * Reclaim flags for mem_cgroup_hierarchical_reclaim
344 */
345#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
346#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
347#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
348#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
349#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
350#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
351
352static void mem_cgroup_get(struct mem_cgroup *mem);
353static void mem_cgroup_put(struct mem_cgroup *mem);
354static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
355static void drain_all_stock_async(void);
356
357static struct mem_cgroup_per_zone *
358mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
359{
360	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
361}
362
363struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
364{
365	return &mem->css;
366}
367
368static struct mem_cgroup_per_zone *
369page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
370{
371	int nid = page_to_nid(page);
372	int zid = page_zonenum(page);
373
374	return mem_cgroup_zoneinfo(mem, nid, zid);
375}
376
377static struct mem_cgroup_tree_per_zone *
378soft_limit_tree_node_zone(int nid, int zid)
379{
380	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
381}
382
383static struct mem_cgroup_tree_per_zone *
384soft_limit_tree_from_page(struct page *page)
385{
386	int nid = page_to_nid(page);
387	int zid = page_zonenum(page);
388
389	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static void
393__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
394				struct mem_cgroup_per_zone *mz,
395				struct mem_cgroup_tree_per_zone *mctz,
396				unsigned long long new_usage_in_excess)
397{
398	struct rb_node **p = &mctz->rb_root.rb_node;
399	struct rb_node *parent = NULL;
400	struct mem_cgroup_per_zone *mz_node;
401
402	if (mz->on_tree)
403		return;
404
405	mz->usage_in_excess = new_usage_in_excess;
406	if (!mz->usage_in_excess)
407		return;
408	while (*p) {
409		parent = *p;
410		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
411					tree_node);
412		if (mz->usage_in_excess < mz_node->usage_in_excess)
413			p = &(*p)->rb_left;
414		/*
415		 * We can't avoid mem cgroups that are over their soft
416		 * limit by the same amount
417		 */
418		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
419			p = &(*p)->rb_right;
420	}
421	rb_link_node(&mz->tree_node, parent, p);
422	rb_insert_color(&mz->tree_node, &mctz->rb_root);
423	mz->on_tree = true;
424}
425
426static void
427__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
428				struct mem_cgroup_per_zone *mz,
429				struct mem_cgroup_tree_per_zone *mctz)
430{
431	if (!mz->on_tree)
432		return;
433	rb_erase(&mz->tree_node, &mctz->rb_root);
434	mz->on_tree = false;
435}
436
437static void
438mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
439				struct mem_cgroup_per_zone *mz,
440				struct mem_cgroup_tree_per_zone *mctz)
441{
442	spin_lock(&mctz->lock);
443	__mem_cgroup_remove_exceeded(mem, mz, mctz);
444	spin_unlock(&mctz->lock);
445}
446
447
448static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
449{
450	unsigned long long excess;
451	struct mem_cgroup_per_zone *mz;
452	struct mem_cgroup_tree_per_zone *mctz;
453	int nid = page_to_nid(page);
454	int zid = page_zonenum(page);
455	mctz = soft_limit_tree_from_page(page);
456
457	/*
458	 * Necessary to update all ancestors when hierarchy is used.
459	 * because their event counter is not touched.
460	 */
461	for (; mem; mem = parent_mem_cgroup(mem)) {
462		mz = mem_cgroup_zoneinfo(mem, nid, zid);
463		excess = res_counter_soft_limit_excess(&mem->res);
464		/*
465		 * We have to update the tree if mz is on RB-tree or
466		 * mem is over its softlimit.
467		 */
468		if (excess || mz->on_tree) {
469			spin_lock(&mctz->lock);
470			/* if on-tree, remove it */
471			if (mz->on_tree)
472				__mem_cgroup_remove_exceeded(mem, mz, mctz);
473			/*
474			 * Insert again. mz->usage_in_excess will be updated.
475			 * If excess is 0, no tree ops.
476			 */
477			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
478			spin_unlock(&mctz->lock);
479		}
480	}
481}
482
483static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
484{
485	int node, zone;
486	struct mem_cgroup_per_zone *mz;
487	struct mem_cgroup_tree_per_zone *mctz;
488
489	for_each_node_state(node, N_POSSIBLE) {
490		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
491			mz = mem_cgroup_zoneinfo(mem, node, zone);
492			mctz = soft_limit_tree_node_zone(node, zone);
493			mem_cgroup_remove_exceeded(mem, mz, mctz);
494		}
495	}
496}
497
498static struct mem_cgroup_per_zone *
499__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
500{
501	struct rb_node *rightmost = NULL;
502	struct mem_cgroup_per_zone *mz;
503
504retry:
505	mz = NULL;
506	rightmost = rb_last(&mctz->rb_root);
507	if (!rightmost)
508		goto done;		/* Nothing to reclaim from */
509
510	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
511	/*
512	 * Remove the node now but someone else can add it back,
513	 * we will to add it back at the end of reclaim to its correct
514	 * position in the tree.
515	 */
516	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
517	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
518		!css_tryget(&mz->mem->css))
519		goto retry;
520done:
521	return mz;
522}
523
524static struct mem_cgroup_per_zone *
525mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
526{
527	struct mem_cgroup_per_zone *mz;
528
529	spin_lock(&mctz->lock);
530	mz = __mem_cgroup_largest_soft_limit_node(mctz);
531	spin_unlock(&mctz->lock);
532	return mz;
533}
534
535/*
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronizion of counter in memcg's counter.
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threashold and synchonization as vmstat[] should be
552 * implemented.
553 */
554static long mem_cgroup_read_stat(struct mem_cgroup *mem,
555				 enum mem_cgroup_stat_index idx)
556{
557	long val = 0;
558	int cpu;
559
560	get_online_cpus();
561	for_each_online_cpu(cpu)
562		val += per_cpu(mem->stat->count[idx], cpu);
563#ifdef CONFIG_HOTPLUG_CPU
564	spin_lock(&mem->pcp_counter_lock);
565	val += mem->nocpu_base.count[idx];
566	spin_unlock(&mem->pcp_counter_lock);
567#endif
568	put_online_cpus();
569	return val;
570}
571
572static long mem_cgroup_local_usage(struct mem_cgroup *mem)
573{
574	long ret;
575
576	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
577	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
578	return ret;
579}
580
581static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
582					 bool charge)
583{
584	int val = (charge) ? 1 : -1;
585	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
586}
587
588static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
589					    enum mem_cgroup_events_index idx)
590{
591	unsigned long val = 0;
592	int cpu;
593
594	for_each_online_cpu(cpu)
595		val += per_cpu(mem->stat->events[idx], cpu);
596#ifdef CONFIG_HOTPLUG_CPU
597	spin_lock(&mem->pcp_counter_lock);
598	val += mem->nocpu_base.events[idx];
599	spin_unlock(&mem->pcp_counter_lock);
600#endif
601	return val;
602}
603
604static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
605					 bool file, int nr_pages)
606{
607	preempt_disable();
608
609	if (file)
610		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
611	else
612		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
613
614	/* pagein of a big page is an event. So, ignore page size */
615	if (nr_pages > 0)
616		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617	else {
618		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619		nr_pages = -nr_pages; /* for event */
620	}
621
622	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
623
624	preempt_enable();
625}
626
627static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
628					enum lru_list idx)
629{
630	int nid, zid;
631	struct mem_cgroup_per_zone *mz;
632	u64 total = 0;
633
634	for_each_online_node(nid)
635		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
636			mz = mem_cgroup_zoneinfo(mem, nid, zid);
637			total += MEM_CGROUP_ZSTAT(mz, idx);
638		}
639	return total;
640}
641
642static bool __memcg_event_check(struct mem_cgroup *mem, int target)
643{
644	unsigned long val, next;
645
646	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
647	next = this_cpu_read(mem->stat->targets[target]);
648	/* from time_after() in jiffies.h */
649	return ((long)next - (long)val < 0);
650}
651
652static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
653{
654	unsigned long val, next;
655
656	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
657
658	switch (target) {
659	case MEM_CGROUP_TARGET_THRESH:
660		next = val + THRESHOLDS_EVENTS_TARGET;
661		break;
662	case MEM_CGROUP_TARGET_SOFTLIMIT:
663		next = val + SOFTLIMIT_EVENTS_TARGET;
664		break;
665	default:
666		return;
667	}
668
669	this_cpu_write(mem->stat->targets[target], next);
670}
671
672/*
673 * Check events in order.
674 *
675 */
676static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
677{
678	/* threshold event is triggered in finer grain than soft limit */
679	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
680		mem_cgroup_threshold(mem);
681		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
682		if (unlikely(__memcg_event_check(mem,
683			MEM_CGROUP_TARGET_SOFTLIMIT))){
684			mem_cgroup_update_tree(mem, page);
685			__mem_cgroup_target_update(mem,
686				MEM_CGROUP_TARGET_SOFTLIMIT);
687		}
688	}
689}
690
691static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
692{
693	return container_of(cgroup_subsys_state(cont,
694				mem_cgroup_subsys_id), struct mem_cgroup,
695				css);
696}
697
698struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
699{
700	/*
701	 * mm_update_next_owner() may clear mm->owner to NULL
702	 * if it races with swapoff, page migration, etc.
703	 * So this can be called with p == NULL.
704	 */
705	if (unlikely(!p))
706		return NULL;
707
708	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
709				struct mem_cgroup, css);
710}
711
712static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
713{
714	struct mem_cgroup *mem = NULL;
715
716	if (!mm)
717		return NULL;
718	/*
719	 * Because we have no locks, mm->owner's may be being moved to other
720	 * cgroup. We use css_tryget() here even if this looks
721	 * pessimistic (rather than adding locks here).
722	 */
723	rcu_read_lock();
724	do {
725		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
726		if (unlikely(!mem))
727			break;
728	} while (!css_tryget(&mem->css));
729	rcu_read_unlock();
730	return mem;
731}
732
733/* The caller has to guarantee "mem" exists before calling this */
734static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
735{
736	struct cgroup_subsys_state *css;
737	int found;
738
739	if (!mem) /* ROOT cgroup has the smallest ID */
740		return root_mem_cgroup; /*css_put/get against root is ignored*/
741	if (!mem->use_hierarchy) {
742		if (css_tryget(&mem->css))
743			return mem;
744		return NULL;
745	}
746	rcu_read_lock();
747	/*
748	 * searching a memory cgroup which has the smallest ID under given
749	 * ROOT cgroup. (ID >= 1)
750	 */
751	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
752	if (css && css_tryget(css))
753		mem = container_of(css, struct mem_cgroup, css);
754	else
755		mem = NULL;
756	rcu_read_unlock();
757	return mem;
758}
759
760static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
761					struct mem_cgroup *root,
762					bool cond)
763{
764	int nextid = css_id(&iter->css) + 1;
765	int found;
766	int hierarchy_used;
767	struct cgroup_subsys_state *css;
768
769	hierarchy_used = iter->use_hierarchy;
770
771	css_put(&iter->css);
772	/* If no ROOT, walk all, ignore hierarchy */
773	if (!cond || (root && !hierarchy_used))
774		return NULL;
775
776	if (!root)
777		root = root_mem_cgroup;
778
779	do {
780		iter = NULL;
781		rcu_read_lock();
782
783		css = css_get_next(&mem_cgroup_subsys, nextid,
784				&root->css, &found);
785		if (css && css_tryget(css))
786			iter = container_of(css, struct mem_cgroup, css);
787		rcu_read_unlock();
788		/* If css is NULL, no more cgroups will be found */
789		nextid = found + 1;
790	} while (css && !iter);
791
792	return iter;
793}
794/*
795 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
796 * be careful that "break" loop is not allowed. We have reference count.
797 * Instead of that modify "cond" to be false and "continue" to exit the loop.
798 */
799#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
800	for (iter = mem_cgroup_start_loop(root);\
801	     iter != NULL;\
802	     iter = mem_cgroup_get_next(iter, root, cond))
803
804#define for_each_mem_cgroup_tree(iter, root) \
805	for_each_mem_cgroup_tree_cond(iter, root, true)
806
807#define for_each_mem_cgroup_all(iter) \
808	for_each_mem_cgroup_tree_cond(iter, NULL, true)
809
810
811static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
812{
813	return (mem == root_mem_cgroup);
814}
815
816/*
817 * Following LRU functions are allowed to be used without PCG_LOCK.
818 * Operations are called by routine of global LRU independently from memcg.
819 * What we have to take care of here is validness of pc->mem_cgroup.
820 *
821 * Changes to pc->mem_cgroup happens when
822 * 1. charge
823 * 2. moving account
824 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
825 * It is added to LRU before charge.
826 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
827 * When moving account, the page is not on LRU. It's isolated.
828 */
829
830void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
831{
832	struct page_cgroup *pc;
833	struct mem_cgroup_per_zone *mz;
834
835	if (mem_cgroup_disabled())
836		return;
837	pc = lookup_page_cgroup(page);
838	/* can happen while we handle swapcache. */
839	if (!TestClearPageCgroupAcctLRU(pc))
840		return;
841	VM_BUG_ON(!pc->mem_cgroup);
842	/*
843	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
844	 * removed from global LRU.
845	 */
846	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
847	/* huge page split is done under lru_lock. so, we have no races. */
848	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
849	if (mem_cgroup_is_root(pc->mem_cgroup))
850		return;
851	VM_BUG_ON(list_empty(&pc->lru));
852	list_del_init(&pc->lru);
853}
854
855void mem_cgroup_del_lru(struct page *page)
856{
857	mem_cgroup_del_lru_list(page, page_lru(page));
858}
859
860/*
861 * Writeback is about to end against a page which has been marked for immediate
862 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
863 * inactive list.
864 */
865void mem_cgroup_rotate_reclaimable_page(struct page *page)
866{
867	struct mem_cgroup_per_zone *mz;
868	struct page_cgroup *pc;
869	enum lru_list lru = page_lru(page);
870
871	if (mem_cgroup_disabled())
872		return;
873
874	pc = lookup_page_cgroup(page);
875	/* unused or root page is not rotated. */
876	if (!PageCgroupUsed(pc))
877		return;
878	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
879	smp_rmb();
880	if (mem_cgroup_is_root(pc->mem_cgroup))
881		return;
882	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
883	list_move_tail(&pc->lru, &mz->lists[lru]);
884}
885
886void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
887{
888	struct mem_cgroup_per_zone *mz;
889	struct page_cgroup *pc;
890
891	if (mem_cgroup_disabled())
892		return;
893
894	pc = lookup_page_cgroup(page);
895	/* unused or root page is not rotated. */
896	if (!PageCgroupUsed(pc))
897		return;
898	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
899	smp_rmb();
900	if (mem_cgroup_is_root(pc->mem_cgroup))
901		return;
902	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
903	list_move(&pc->lru, &mz->lists[lru]);
904}
905
906void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
907{
908	struct page_cgroup *pc;
909	struct mem_cgroup_per_zone *mz;
910
911	if (mem_cgroup_disabled())
912		return;
913	pc = lookup_page_cgroup(page);
914	VM_BUG_ON(PageCgroupAcctLRU(pc));
915	if (!PageCgroupUsed(pc))
916		return;
917	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
918	smp_rmb();
919	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
920	/* huge page split is done under lru_lock. so, we have no races. */
921	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
922	SetPageCgroupAcctLRU(pc);
923	if (mem_cgroup_is_root(pc->mem_cgroup))
924		return;
925	list_add(&pc->lru, &mz->lists[lru]);
926}
927
928/*
929 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
930 * while it's linked to lru because the page may be reused after it's fully
931 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
932 * It's done under lock_page and expected that zone->lru_lock isnever held.
933 */
934static void mem_cgroup_lru_del_before_commit(struct page *page)
935{
936	unsigned long flags;
937	struct zone *zone = page_zone(page);
938	struct page_cgroup *pc = lookup_page_cgroup(page);
939
940	/*
941	 * Doing this check without taking ->lru_lock seems wrong but this
942	 * is safe. Because if page_cgroup's USED bit is unset, the page
943	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
944	 * set, the commit after this will fail, anyway.
945	 * This all charge/uncharge is done under some mutual execustion.
946	 * So, we don't need to taking care of changes in USED bit.
947	 */
948	if (likely(!PageLRU(page)))
949		return;
950
951	spin_lock_irqsave(&zone->lru_lock, flags);
952	/*
953	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
954	 * is guarded by lock_page() because the page is SwapCache.
955	 */
956	if (!PageCgroupUsed(pc))
957		mem_cgroup_del_lru_list(page, page_lru(page));
958	spin_unlock_irqrestore(&zone->lru_lock, flags);
959}
960
961static void mem_cgroup_lru_add_after_commit(struct page *page)
962{
963	unsigned long flags;
964	struct zone *zone = page_zone(page);
965	struct page_cgroup *pc = lookup_page_cgroup(page);
966
967	/* taking care of that the page is added to LRU while we commit it */
968	if (likely(!PageLRU(page)))
969		return;
970	spin_lock_irqsave(&zone->lru_lock, flags);
971	/* link when the page is linked to LRU but page_cgroup isn't */
972	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
973		mem_cgroup_add_lru_list(page, page_lru(page));
974	spin_unlock_irqrestore(&zone->lru_lock, flags);
975}
976
977
978void mem_cgroup_move_lists(struct page *page,
979			   enum lru_list from, enum lru_list to)
980{
981	if (mem_cgroup_disabled())
982		return;
983	mem_cgroup_del_lru_list(page, from);
984	mem_cgroup_add_lru_list(page, to);
985}
986
987int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
988{
989	int ret;
990	struct mem_cgroup *curr = NULL;
991	struct task_struct *p;
992
993	p = find_lock_task_mm(task);
994	if (!p)
995		return 0;
996	curr = try_get_mem_cgroup_from_mm(p->mm);
997	task_unlock(p);
998	if (!curr)
999		return 0;
1000	/*
1001	 * We should check use_hierarchy of "mem" not "curr". Because checking
1002	 * use_hierarchy of "curr" here make this function true if hierarchy is
1003	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1004	 * hierarchy(even if use_hierarchy is disabled in "mem").
1005	 */
1006	if (mem->use_hierarchy)
1007		ret = css_is_ancestor(&curr->css, &mem->css);
1008	else
1009		ret = (curr == mem);
1010	css_put(&curr->css);
1011	return ret;
1012}
1013
1014static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1015{
1016	unsigned long active;
1017	unsigned long inactive;
1018	unsigned long gb;
1019	unsigned long inactive_ratio;
1020
1021	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1022	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1023
1024	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1025	if (gb)
1026		inactive_ratio = int_sqrt(10 * gb);
1027	else
1028		inactive_ratio = 1;
1029
1030	if (present_pages) {
1031		present_pages[0] = inactive;
1032		present_pages[1] = active;
1033	}
1034
1035	return inactive_ratio;
1036}
1037
1038int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1039{
1040	unsigned long active;
1041	unsigned long inactive;
1042	unsigned long present_pages[2];
1043	unsigned long inactive_ratio;
1044
1045	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1046
1047	inactive = present_pages[0];
1048	active = present_pages[1];
1049
1050	if (inactive * inactive_ratio < active)
1051		return 1;
1052
1053	return 0;
1054}
1055
1056int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1057{
1058	unsigned long active;
1059	unsigned long inactive;
1060
1061	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1062	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1063
1064	return (active > inactive);
1065}
1066
1067unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1068				       struct zone *zone,
1069				       enum lru_list lru)
1070{
1071	int nid = zone_to_nid(zone);
1072	int zid = zone_idx(zone);
1073	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1074
1075	return MEM_CGROUP_ZSTAT(mz, lru);
1076}
1077
1078struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1079						      struct zone *zone)
1080{
1081	int nid = zone_to_nid(zone);
1082	int zid = zone_idx(zone);
1083	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1084
1085	return &mz->reclaim_stat;
1086}
1087
1088struct zone_reclaim_stat *
1089mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1090{
1091	struct page_cgroup *pc;
1092	struct mem_cgroup_per_zone *mz;
1093
1094	if (mem_cgroup_disabled())
1095		return NULL;
1096
1097	pc = lookup_page_cgroup(page);
1098	if (!PageCgroupUsed(pc))
1099		return NULL;
1100	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1101	smp_rmb();
1102	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1103	return &mz->reclaim_stat;
1104}
1105
1106unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1107					struct list_head *dst,
1108					unsigned long *scanned, int order,
1109					int mode, struct zone *z,
1110					struct mem_cgroup *mem_cont,
1111					int active, int file)
1112{
1113	unsigned long nr_taken = 0;
1114	struct page *page;
1115	unsigned long scan;
1116	LIST_HEAD(pc_list);
1117	struct list_head *src;
1118	struct page_cgroup *pc, *tmp;
1119	int nid = zone_to_nid(z);
1120	int zid = zone_idx(z);
1121	struct mem_cgroup_per_zone *mz;
1122	int lru = LRU_FILE * file + active;
1123	int ret;
1124
1125	BUG_ON(!mem_cont);
1126	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1127	src = &mz->lists[lru];
1128
1129	scan = 0;
1130	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1131		if (scan >= nr_to_scan)
1132			break;
1133
1134		if (unlikely(!PageCgroupUsed(pc)))
1135			continue;
1136
1137		page = lookup_cgroup_page(pc);
1138
1139		if (unlikely(!PageLRU(page)))
1140			continue;
1141
1142		scan++;
1143		ret = __isolate_lru_page(page, mode, file);
1144		switch (ret) {
1145		case 0:
1146			list_move(&page->lru, dst);
1147			mem_cgroup_del_lru(page);
1148			nr_taken += hpage_nr_pages(page);
1149			break;
1150		case -EBUSY:
1151			/* we don't affect global LRU but rotate in our LRU */
1152			mem_cgroup_rotate_lru_list(page, page_lru(page));
1153			break;
1154		default:
1155			break;
1156		}
1157	}
1158
1159	*scanned = scan;
1160
1161	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1162				      0, 0, 0, mode);
1163
1164	return nr_taken;
1165}
1166
1167#define mem_cgroup_from_res_counter(counter, member)	\
1168	container_of(counter, struct mem_cgroup, member)
1169
1170/**
1171 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1172 * @mem: the memory cgroup
1173 *
1174 * Returns the maximum amount of memory @mem can be charged with, in
1175 * pages.
1176 */
1177static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1178{
1179	unsigned long long margin;
1180
1181	margin = res_counter_margin(&mem->res);
1182	if (do_swap_account)
1183		margin = min(margin, res_counter_margin(&mem->memsw));
1184	return margin >> PAGE_SHIFT;
1185}
1186
1187static unsigned int get_swappiness(struct mem_cgroup *memcg)
1188{
1189	struct cgroup *cgrp = memcg->css.cgroup;
1190
1191	/* root ? */
1192	if (cgrp->parent == NULL)
1193		return vm_swappiness;
1194
1195	return memcg->swappiness;
1196}
1197
1198static void mem_cgroup_start_move(struct mem_cgroup *mem)
1199{
1200	int cpu;
1201
1202	get_online_cpus();
1203	spin_lock(&mem->pcp_counter_lock);
1204	for_each_online_cpu(cpu)
1205		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1206	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1207	spin_unlock(&mem->pcp_counter_lock);
1208	put_online_cpus();
1209
1210	synchronize_rcu();
1211}
1212
1213static void mem_cgroup_end_move(struct mem_cgroup *mem)
1214{
1215	int cpu;
1216
1217	if (!mem)
1218		return;
1219	get_online_cpus();
1220	spin_lock(&mem->pcp_counter_lock);
1221	for_each_online_cpu(cpu)
1222		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1223	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1224	spin_unlock(&mem->pcp_counter_lock);
1225	put_online_cpus();
1226}
1227/*
1228 * 2 routines for checking "mem" is under move_account() or not.
1229 *
1230 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1231 *			  for avoiding race in accounting. If true,
1232 *			  pc->mem_cgroup may be overwritten.
1233 *
1234 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1235 *			  under hierarchy of moving cgroups. This is for
1236 *			  waiting at hith-memory prressure caused by "move".
1237 */
1238
1239static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1240{
1241	VM_BUG_ON(!rcu_read_lock_held());
1242	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1243}
1244
1245static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1246{
1247	struct mem_cgroup *from;
1248	struct mem_cgroup *to;
1249	bool ret = false;
1250	/*
1251	 * Unlike task_move routines, we access mc.to, mc.from not under
1252	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1253	 */
1254	spin_lock(&mc.lock);
1255	from = mc.from;
1256	to = mc.to;
1257	if (!from)
1258		goto unlock;
1259	if (from == mem || to == mem
1260	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1261	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1262		ret = true;
1263unlock:
1264	spin_unlock(&mc.lock);
1265	return ret;
1266}
1267
1268static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1269{
1270	if (mc.moving_task && current != mc.moving_task) {
1271		if (mem_cgroup_under_move(mem)) {
1272			DEFINE_WAIT(wait);
1273			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1274			/* moving charge context might have finished. */
1275			if (mc.moving_task)
1276				schedule();
1277			finish_wait(&mc.waitq, &wait);
1278			return true;
1279		}
1280	}
1281	return false;
1282}
1283
1284/**
1285 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1286 * @memcg: The memory cgroup that went over limit
1287 * @p: Task that is going to be killed
1288 *
1289 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1290 * enabled
1291 */
1292void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1293{
1294	struct cgroup *task_cgrp;
1295	struct cgroup *mem_cgrp;
1296	/*
1297	 * Need a buffer in BSS, can't rely on allocations. The code relies
1298	 * on the assumption that OOM is serialized for memory controller.
1299	 * If this assumption is broken, revisit this code.
1300	 */
1301	static char memcg_name[PATH_MAX];
1302	int ret;
1303
1304	if (!memcg || !p)
1305		return;
1306
1307
1308	rcu_read_lock();
1309
1310	mem_cgrp = memcg->css.cgroup;
1311	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1312
1313	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1314	if (ret < 0) {
1315		/*
1316		 * Unfortunately, we are unable to convert to a useful name
1317		 * But we'll still print out the usage information
1318		 */
1319		rcu_read_unlock();
1320		goto done;
1321	}
1322	rcu_read_unlock();
1323
1324	printk(KERN_INFO "Task in %s killed", memcg_name);
1325
1326	rcu_read_lock();
1327	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1328	if (ret < 0) {
1329		rcu_read_unlock();
1330		goto done;
1331	}
1332	rcu_read_unlock();
1333
1334	/*
1335	 * Continues from above, so we don't need an KERN_ level
1336	 */
1337	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1338done:
1339
1340	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1341		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1342		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1343		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1344	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1345		"failcnt %llu\n",
1346		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1347		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1348		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1349}
1350
1351/*
1352 * This function returns the number of memcg under hierarchy tree. Returns
1353 * 1(self count) if no children.
1354 */
1355static int mem_cgroup_count_children(struct mem_cgroup *mem)
1356{
1357	int num = 0;
1358	struct mem_cgroup *iter;
1359
1360	for_each_mem_cgroup_tree(iter, mem)
1361		num++;
1362	return num;
1363}
1364
1365/*
1366 * Return the memory (and swap, if configured) limit for a memcg.
1367 */
1368u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1369{
1370	u64 limit;
1371	u64 memsw;
1372
1373	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1374	limit += total_swap_pages << PAGE_SHIFT;
1375
1376	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1377	/*
1378	 * If memsw is finite and limits the amount of swap space available
1379	 * to this memcg, return that limit.
1380	 */
1381	return min(limit, memsw);
1382}
1383
1384/*
1385 * Visit the first child (need not be the first child as per the ordering
1386 * of the cgroup list, since we track last_scanned_child) of @mem and use
1387 * that to reclaim free pages from.
1388 */
1389static struct mem_cgroup *
1390mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1391{
1392	struct mem_cgroup *ret = NULL;
1393	struct cgroup_subsys_state *css;
1394	int nextid, found;
1395
1396	if (!root_mem->use_hierarchy) {
1397		css_get(&root_mem->css);
1398		ret = root_mem;
1399	}
1400
1401	while (!ret) {
1402		rcu_read_lock();
1403		nextid = root_mem->last_scanned_child + 1;
1404		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1405				   &found);
1406		if (css && css_tryget(css))
1407			ret = container_of(css, struct mem_cgroup, css);
1408
1409		rcu_read_unlock();
1410		/* Updates scanning parameter */
1411		if (!css) {
1412			/* this means start scan from ID:1 */
1413			root_mem->last_scanned_child = 0;
1414		} else
1415			root_mem->last_scanned_child = found;
1416	}
1417
1418	return ret;
1419}
1420
1421/*
1422 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1423 * we reclaimed from, so that we don't end up penalizing one child extensively
1424 * based on its position in the children list.
1425 *
1426 * root_mem is the original ancestor that we've been reclaim from.
1427 *
1428 * We give up and return to the caller when we visit root_mem twice.
1429 * (other groups can be removed while we're walking....)
1430 *
1431 * If shrink==true, for avoiding to free too much, this returns immedieately.
1432 */
1433static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1434						struct zone *zone,
1435						gfp_t gfp_mask,
1436						unsigned long reclaim_options)
1437{
1438	struct mem_cgroup *victim;
1439	int ret, total = 0;
1440	int loop = 0;
1441	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1442	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1443	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1444	unsigned long excess;
1445
1446	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1447
1448	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1449	if (root_mem->memsw_is_minimum)
1450		noswap = true;
1451
1452	while (1) {
1453		victim = mem_cgroup_select_victim(root_mem);
1454		if (victim == root_mem) {
1455			loop++;
1456			if (loop >= 1)
1457				drain_all_stock_async();
1458			if (loop >= 2) {
1459				/*
1460				 * If we have not been able to reclaim
1461				 * anything, it might because there are
1462				 * no reclaimable pages under this hierarchy
1463				 */
1464				if (!check_soft || !total) {
1465					css_put(&victim->css);
1466					break;
1467				}
1468				/*
1469				 * We want to do more targeted reclaim.
1470				 * excess >> 2 is not to excessive so as to
1471				 * reclaim too much, nor too less that we keep
1472				 * coming back to reclaim from this cgroup
1473				 */
1474				if (total >= (excess >> 2) ||
1475					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1476					css_put(&victim->css);
1477					break;
1478				}
1479			}
1480		}
1481		if (!mem_cgroup_local_usage(victim)) {
1482			/* this cgroup's local usage == 0 */
1483			css_put(&victim->css);
1484			continue;
1485		}
1486		/* we use swappiness of local cgroup */
1487		if (check_soft)
1488			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1489				noswap, get_swappiness(victim), zone);
1490		else
1491			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1492						noswap, get_swappiness(victim));
1493		css_put(&victim->css);
1494		/*
1495		 * At shrinking usage, we can't check we should stop here or
1496		 * reclaim more. It's depends on callers. last_scanned_child
1497		 * will work enough for keeping fairness under tree.
1498		 */
1499		if (shrink)
1500			return ret;
1501		total += ret;
1502		if (check_soft) {
1503			if (!res_counter_soft_limit_excess(&root_mem->res))
1504				return total;
1505		} else if (mem_cgroup_margin(root_mem))
1506			return 1 + total;
1507	}
1508	return total;
1509}
1510
1511/*
1512 * Check OOM-Killer is already running under our hierarchy.
1513 * If someone is running, return false.
1514 */
1515static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1516{
1517	int x, lock_count = 0;
1518	struct mem_cgroup *iter;
1519
1520	for_each_mem_cgroup_tree(iter, mem) {
1521		x = atomic_inc_return(&iter->oom_lock);
1522		lock_count = max(x, lock_count);
1523	}
1524
1525	if (lock_count == 1)
1526		return true;
1527	return false;
1528}
1529
1530static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1531{
1532	struct mem_cgroup *iter;
1533
1534	/*
1535	 * When a new child is created while the hierarchy is under oom,
1536	 * mem_cgroup_oom_lock() may not be called. We have to use
1537	 * atomic_add_unless() here.
1538	 */
1539	for_each_mem_cgroup_tree(iter, mem)
1540		atomic_add_unless(&iter->oom_lock, -1, 0);
1541	return 0;
1542}
1543
1544
1545static DEFINE_MUTEX(memcg_oom_mutex);
1546static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1547
1548struct oom_wait_info {
1549	struct mem_cgroup *mem;
1550	wait_queue_t	wait;
1551};
1552
1553static int memcg_oom_wake_function(wait_queue_t *wait,
1554	unsigned mode, int sync, void *arg)
1555{
1556	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1557	struct oom_wait_info *oom_wait_info;
1558
1559	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1560
1561	if (oom_wait_info->mem == wake_mem)
1562		goto wakeup;
1563	/* if no hierarchy, no match */
1564	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1565		return 0;
1566	/*
1567	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1568	 * Then we can use css_is_ancestor without taking care of RCU.
1569	 */
1570	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1571	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1572		return 0;
1573
1574wakeup:
1575	return autoremove_wake_function(wait, mode, sync, arg);
1576}
1577
1578static void memcg_wakeup_oom(struct mem_cgroup *mem)
1579{
1580	/* for filtering, pass "mem" as argument. */
1581	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1582}
1583
1584static void memcg_oom_recover(struct mem_cgroup *mem)
1585{
1586	if (mem && atomic_read(&mem->oom_lock))
1587		memcg_wakeup_oom(mem);
1588}
1589
1590/*
1591 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1592 */
1593bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1594{
1595	struct oom_wait_info owait;
1596	bool locked, need_to_kill;
1597
1598	owait.mem = mem;
1599	owait.wait.flags = 0;
1600	owait.wait.func = memcg_oom_wake_function;
1601	owait.wait.private = current;
1602	INIT_LIST_HEAD(&owait.wait.task_list);
1603	need_to_kill = true;
1604	/* At first, try to OOM lock hierarchy under mem.*/
1605	mutex_lock(&memcg_oom_mutex);
1606	locked = mem_cgroup_oom_lock(mem);
1607	/*
1608	 * Even if signal_pending(), we can't quit charge() loop without
1609	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1610	 * under OOM is always welcomed, use TASK_KILLABLE here.
1611	 */
1612	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613	if (!locked || mem->oom_kill_disable)
1614		need_to_kill = false;
1615	if (locked)
1616		mem_cgroup_oom_notify(mem);
1617	mutex_unlock(&memcg_oom_mutex);
1618
1619	if (need_to_kill) {
1620		finish_wait(&memcg_oom_waitq, &owait.wait);
1621		mem_cgroup_out_of_memory(mem, mask);
1622	} else {
1623		schedule();
1624		finish_wait(&memcg_oom_waitq, &owait.wait);
1625	}
1626	mutex_lock(&memcg_oom_mutex);
1627	mem_cgroup_oom_unlock(mem);
1628	memcg_wakeup_oom(mem);
1629	mutex_unlock(&memcg_oom_mutex);
1630
1631	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1632		return false;
1633	/* Give chance to dying process */
1634	schedule_timeout(1);
1635	return true;
1636}
1637
1638/*
1639 * Currently used to update mapped file statistics, but the routine can be
1640 * generalized to update other statistics as well.
1641 *
1642 * Notes: Race condition
1643 *
1644 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1645 * it tends to be costly. But considering some conditions, we doesn't need
1646 * to do so _always_.
1647 *
1648 * Considering "charge", lock_page_cgroup() is not required because all
1649 * file-stat operations happen after a page is attached to radix-tree. There
1650 * are no race with "charge".
1651 *
1652 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1653 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1654 * if there are race with "uncharge". Statistics itself is properly handled
1655 * by flags.
1656 *
1657 * Considering "move", this is an only case we see a race. To make the race
1658 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1659 * possibility of race condition. If there is, we take a lock.
1660 */
1661
1662void mem_cgroup_update_page_stat(struct page *page,
1663				 enum mem_cgroup_page_stat_item idx, int val)
1664{
1665	struct mem_cgroup *mem;
1666	struct page_cgroup *pc = lookup_page_cgroup(page);
1667	bool need_unlock = false;
1668	unsigned long uninitialized_var(flags);
1669
1670	if (unlikely(!pc))
1671		return;
1672
1673	rcu_read_lock();
1674	mem = pc->mem_cgroup;
1675	if (unlikely(!mem || !PageCgroupUsed(pc)))
1676		goto out;
1677	/* pc->mem_cgroup is unstable ? */
1678	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1679		/* take a lock against to access pc->mem_cgroup */
1680		move_lock_page_cgroup(pc, &flags);
1681		need_unlock = true;
1682		mem = pc->mem_cgroup;
1683		if (!mem || !PageCgroupUsed(pc))
1684			goto out;
1685	}
1686
1687	switch (idx) {
1688	case MEMCG_NR_FILE_MAPPED:
1689		if (val > 0)
1690			SetPageCgroupFileMapped(pc);
1691		else if (!page_mapped(page))
1692			ClearPageCgroupFileMapped(pc);
1693		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1694		break;
1695	default:
1696		BUG();
1697	}
1698
1699	this_cpu_add(mem->stat->count[idx], val);
1700
1701out:
1702	if (unlikely(need_unlock))
1703		move_unlock_page_cgroup(pc, &flags);
1704	rcu_read_unlock();
1705	return;
1706}
1707EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1708
1709/*
1710 * size of first charge trial. "32" comes from vmscan.c's magic value.
1711 * TODO: maybe necessary to use big numbers in big irons.
1712 */
1713#define CHARGE_BATCH	32U
1714struct memcg_stock_pcp {
1715	struct mem_cgroup *cached; /* this never be root cgroup */
1716	unsigned int nr_pages;
1717	struct work_struct work;
1718};
1719static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1720static atomic_t memcg_drain_count;
1721
1722/*
1723 * Try to consume stocked charge on this cpu. If success, one page is consumed
1724 * from local stock and true is returned. If the stock is 0 or charges from a
1725 * cgroup which is not current target, returns false. This stock will be
1726 * refilled.
1727 */
1728static bool consume_stock(struct mem_cgroup *mem)
1729{
1730	struct memcg_stock_pcp *stock;
1731	bool ret = true;
1732
1733	stock = &get_cpu_var(memcg_stock);
1734	if (mem == stock->cached && stock->nr_pages)
1735		stock->nr_pages--;
1736	else /* need to call res_counter_charge */
1737		ret = false;
1738	put_cpu_var(memcg_stock);
1739	return ret;
1740}
1741
1742/*
1743 * Returns stocks cached in percpu to res_counter and reset cached information.
1744 */
1745static void drain_stock(struct memcg_stock_pcp *stock)
1746{
1747	struct mem_cgroup *old = stock->cached;
1748
1749	if (stock->nr_pages) {
1750		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1751
1752		res_counter_uncharge(&old->res, bytes);
1753		if (do_swap_account)
1754			res_counter_uncharge(&old->memsw, bytes);
1755		stock->nr_pages = 0;
1756	}
1757	stock->cached = NULL;
1758}
1759
1760/*
1761 * This must be called under preempt disabled or must be called by
1762 * a thread which is pinned to local cpu.
1763 */
1764static void drain_local_stock(struct work_struct *dummy)
1765{
1766	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1767	drain_stock(stock);
1768}
1769
1770/*
1771 * Cache charges(val) which is from res_counter, to local per_cpu area.
1772 * This will be consumed by consume_stock() function, later.
1773 */
1774static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1775{
1776	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1777
1778	if (stock->cached != mem) { /* reset if necessary */
1779		drain_stock(stock);
1780		stock->cached = mem;
1781	}
1782	stock->nr_pages += nr_pages;
1783	put_cpu_var(memcg_stock);
1784}
1785
1786/*
1787 * Tries to drain stocked charges in other cpus. This function is asynchronous
1788 * and just put a work per cpu for draining localy on each cpu. Caller can
1789 * expects some charges will be back to res_counter later but cannot wait for
1790 * it.
1791 */
1792static void drain_all_stock_async(void)
1793{
1794	int cpu;
1795	/* This function is for scheduling "drain" in asynchronous way.
1796	 * The result of "drain" is not directly handled by callers. Then,
1797	 * if someone is calling drain, we don't have to call drain more.
1798	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1799	 * there is a race. We just do loose check here.
1800	 */
1801	if (atomic_read(&memcg_drain_count))
1802		return;
1803	/* Notify other cpus that system-wide "drain" is running */
1804	atomic_inc(&memcg_drain_count);
1805	get_online_cpus();
1806	for_each_online_cpu(cpu) {
1807		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1808		schedule_work_on(cpu, &stock->work);
1809	}
1810 	put_online_cpus();
1811	atomic_dec(&memcg_drain_count);
1812	/* We don't wait for flush_work */
1813}
1814
1815/* This is a synchronous drain interface. */
1816static void drain_all_stock_sync(void)
1817{
1818	/* called when force_empty is called */
1819	atomic_inc(&memcg_drain_count);
1820	schedule_on_each_cpu(drain_local_stock);
1821	atomic_dec(&memcg_drain_count);
1822}
1823
1824/*
1825 * This function drains percpu counter value from DEAD cpu and
1826 * move it to local cpu. Note that this function can be preempted.
1827 */
1828static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1829{
1830	int i;
1831
1832	spin_lock(&mem->pcp_counter_lock);
1833	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1834		long x = per_cpu(mem->stat->count[i], cpu);
1835
1836		per_cpu(mem->stat->count[i], cpu) = 0;
1837		mem->nocpu_base.count[i] += x;
1838	}
1839	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
1840		unsigned long x = per_cpu(mem->stat->events[i], cpu);
1841
1842		per_cpu(mem->stat->events[i], cpu) = 0;
1843		mem->nocpu_base.events[i] += x;
1844	}
1845	/* need to clear ON_MOVE value, works as a kind of lock. */
1846	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1847	spin_unlock(&mem->pcp_counter_lock);
1848}
1849
1850static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1851{
1852	int idx = MEM_CGROUP_ON_MOVE;
1853
1854	spin_lock(&mem->pcp_counter_lock);
1855	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1856	spin_unlock(&mem->pcp_counter_lock);
1857}
1858
1859static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1860					unsigned long action,
1861					void *hcpu)
1862{
1863	int cpu = (unsigned long)hcpu;
1864	struct memcg_stock_pcp *stock;
1865	struct mem_cgroup *iter;
1866
1867	if ((action == CPU_ONLINE)) {
1868		for_each_mem_cgroup_all(iter)
1869			synchronize_mem_cgroup_on_move(iter, cpu);
1870		return NOTIFY_OK;
1871	}
1872
1873	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1874		return NOTIFY_OK;
1875
1876	for_each_mem_cgroup_all(iter)
1877		mem_cgroup_drain_pcp_counter(iter, cpu);
1878
1879	stock = &per_cpu(memcg_stock, cpu);
1880	drain_stock(stock);
1881	return NOTIFY_OK;
1882}
1883
1884
1885/* See __mem_cgroup_try_charge() for details */
1886enum {
1887	CHARGE_OK,		/* success */
1888	CHARGE_RETRY,		/* need to retry but retry is not bad */
1889	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1890	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1891	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1892};
1893
1894static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1895				unsigned int nr_pages, bool oom_check)
1896{
1897	unsigned long csize = nr_pages * PAGE_SIZE;
1898	struct mem_cgroup *mem_over_limit;
1899	struct res_counter *fail_res;
1900	unsigned long flags = 0;
1901	int ret;
1902
1903	ret = res_counter_charge(&mem->res, csize, &fail_res);
1904
1905	if (likely(!ret)) {
1906		if (!do_swap_account)
1907			return CHARGE_OK;
1908		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1909		if (likely(!ret))
1910			return CHARGE_OK;
1911
1912		res_counter_uncharge(&mem->res, csize);
1913		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1914		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1915	} else
1916		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1917	/*
1918	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
1919	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
1920	 *
1921	 * Never reclaim on behalf of optional batching, retry with a
1922	 * single page instead.
1923	 */
1924	if (nr_pages == CHARGE_BATCH)
1925		return CHARGE_RETRY;
1926
1927	if (!(gfp_mask & __GFP_WAIT))
1928		return CHARGE_WOULDBLOCK;
1929
1930	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1931					      gfp_mask, flags);
1932	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1933		return CHARGE_RETRY;
1934	/*
1935	 * Even though the limit is exceeded at this point, reclaim
1936	 * may have been able to free some pages.  Retry the charge
1937	 * before killing the task.
1938	 *
1939	 * Only for regular pages, though: huge pages are rather
1940	 * unlikely to succeed so close to the limit, and we fall back
1941	 * to regular pages anyway in case of failure.
1942	 */
1943	if (nr_pages == 1 && ret)
1944		return CHARGE_RETRY;
1945
1946	/*
1947	 * At task move, charge accounts can be doubly counted. So, it's
1948	 * better to wait until the end of task_move if something is going on.
1949	 */
1950	if (mem_cgroup_wait_acct_move(mem_over_limit))
1951		return CHARGE_RETRY;
1952
1953	/* If we don't need to call oom-killer at el, return immediately */
1954	if (!oom_check)
1955		return CHARGE_NOMEM;
1956	/* check OOM */
1957	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1958		return CHARGE_OOM_DIE;
1959
1960	return CHARGE_RETRY;
1961}
1962
1963/*
1964 * Unlike exported interface, "oom" parameter is added. if oom==true,
1965 * oom-killer can be invoked.
1966 */
1967static int __mem_cgroup_try_charge(struct mm_struct *mm,
1968				   gfp_t gfp_mask,
1969				   unsigned int nr_pages,
1970				   struct mem_cgroup **memcg,
1971				   bool oom)
1972{
1973	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1974	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1975	struct mem_cgroup *mem = NULL;
1976	int ret;
1977
1978	/*
1979	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1980	 * in system level. So, allow to go ahead dying process in addition to
1981	 * MEMDIE process.
1982	 */
1983	if (unlikely(test_thread_flag(TIF_MEMDIE)
1984		     || fatal_signal_pending(current)))
1985		goto bypass;
1986
1987	/*
1988	 * We always charge the cgroup the mm_struct belongs to.
1989	 * The mm_struct's mem_cgroup changes on task migration if the
1990	 * thread group leader migrates. It's possible that mm is not
1991	 * set, if so charge the init_mm (happens for pagecache usage).
1992	 */
1993	if (!*memcg && !mm)
1994		goto bypass;
1995again:
1996	if (*memcg) { /* css should be a valid one */
1997		mem = *memcg;
1998		VM_BUG_ON(css_is_removed(&mem->css));
1999		if (mem_cgroup_is_root(mem))
2000			goto done;
2001		if (nr_pages == 1 && consume_stock(mem))
2002			goto done;
2003		css_get(&mem->css);
2004	} else {
2005		struct task_struct *p;
2006
2007		rcu_read_lock();
2008		p = rcu_dereference(mm->owner);
2009		/*
2010		 * Because we don't have task_lock(), "p" can exit.
2011		 * In that case, "mem" can point to root or p can be NULL with
2012		 * race with swapoff. Then, we have small risk of mis-accouning.
2013		 * But such kind of mis-account by race always happens because
2014		 * we don't have cgroup_mutex(). It's overkill and we allo that
2015		 * small race, here.
2016		 * (*) swapoff at el will charge against mm-struct not against
2017		 * task-struct. So, mm->owner can be NULL.
2018		 */
2019		mem = mem_cgroup_from_task(p);
2020		if (!mem || mem_cgroup_is_root(mem)) {
2021			rcu_read_unlock();
2022			goto done;
2023		}
2024		if (nr_pages == 1 && consume_stock(mem)) {
2025			/*
2026			 * It seems dagerous to access memcg without css_get().
2027			 * But considering how consume_stok works, it's not
2028			 * necessary. If consume_stock success, some charges
2029			 * from this memcg are cached on this cpu. So, we
2030			 * don't need to call css_get()/css_tryget() before
2031			 * calling consume_stock().
2032			 */
2033			rcu_read_unlock();
2034			goto done;
2035		}
2036		/* after here, we may be blocked. we need to get refcnt */
2037		if (!css_tryget(&mem->css)) {
2038			rcu_read_unlock();
2039			goto again;
2040		}
2041		rcu_read_unlock();
2042	}
2043
2044	do {
2045		bool oom_check;
2046
2047		/* If killed, bypass charge */
2048		if (fatal_signal_pending(current)) {
2049			css_put(&mem->css);
2050			goto bypass;
2051		}
2052
2053		oom_check = false;
2054		if (oom && !nr_oom_retries) {
2055			oom_check = true;
2056			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2057		}
2058
2059		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2060		switch (ret) {
2061		case CHARGE_OK:
2062			break;
2063		case CHARGE_RETRY: /* not in OOM situation but retry */
2064			batch = nr_pages;
2065			css_put(&mem->css);
2066			mem = NULL;
2067			goto again;
2068		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2069			css_put(&mem->css);
2070			goto nomem;
2071		case CHARGE_NOMEM: /* OOM routine works */
2072			if (!oom) {
2073				css_put(&mem->css);
2074				goto nomem;
2075			}
2076			/* If oom, we never return -ENOMEM */
2077			nr_oom_retries--;
2078			break;
2079		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2080			css_put(&mem->css);
2081			goto bypass;
2082		}
2083	} while (ret != CHARGE_OK);
2084
2085	if (batch > nr_pages)
2086		refill_stock(mem, batch - nr_pages);
2087	css_put(&mem->css);
2088done:
2089	*memcg = mem;
2090	return 0;
2091nomem:
2092	*memcg = NULL;
2093	return -ENOMEM;
2094bypass:
2095	*memcg = NULL;
2096	return 0;
2097}
2098
2099/*
2100 * Somemtimes we have to undo a charge we got by try_charge().
2101 * This function is for that and do uncharge, put css's refcnt.
2102 * gotten by try_charge().
2103 */
2104static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2105				       unsigned int nr_pages)
2106{
2107	if (!mem_cgroup_is_root(mem)) {
2108		unsigned long bytes = nr_pages * PAGE_SIZE;
2109
2110		res_counter_uncharge(&mem->res, bytes);
2111		if (do_swap_account)
2112			res_counter_uncharge(&mem->memsw, bytes);
2113	}
2114}
2115
2116/*
2117 * A helper function to get mem_cgroup from ID. must be called under
2118 * rcu_read_lock(). The caller must check css_is_removed() or some if
2119 * it's concern. (dropping refcnt from swap can be called against removed
2120 * memcg.)
2121 */
2122static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2123{
2124	struct cgroup_subsys_state *css;
2125
2126	/* ID 0 is unused ID */
2127	if (!id)
2128		return NULL;
2129	css = css_lookup(&mem_cgroup_subsys, id);
2130	if (!css)
2131		return NULL;
2132	return container_of(css, struct mem_cgroup, css);
2133}
2134
2135struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2136{
2137	struct mem_cgroup *mem = NULL;
2138	struct page_cgroup *pc;
2139	unsigned short id;
2140	swp_entry_t ent;
2141
2142	VM_BUG_ON(!PageLocked(page));
2143
2144	pc = lookup_page_cgroup(page);
2145	lock_page_cgroup(pc);
2146	if (PageCgroupUsed(pc)) {
2147		mem = pc->mem_cgroup;
2148		if (mem && !css_tryget(&mem->css))
2149			mem = NULL;
2150	} else if (PageSwapCache(page)) {
2151		ent.val = page_private(page);
2152		id = lookup_swap_cgroup(ent);
2153		rcu_read_lock();
2154		mem = mem_cgroup_lookup(id);
2155		if (mem && !css_tryget(&mem->css))
2156			mem = NULL;
2157		rcu_read_unlock();
2158	}
2159	unlock_page_cgroup(pc);
2160	return mem;
2161}
2162
2163static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2164				       struct page *page,
2165				       unsigned int nr_pages,
2166				       struct page_cgroup *pc,
2167				       enum charge_type ctype)
2168{
2169	lock_page_cgroup(pc);
2170	if (unlikely(PageCgroupUsed(pc))) {
2171		unlock_page_cgroup(pc);
2172		__mem_cgroup_cancel_charge(mem, nr_pages);
2173		return;
2174	}
2175	/*
2176	 * we don't need page_cgroup_lock about tail pages, becase they are not
2177	 * accessed by any other context at this point.
2178	 */
2179	pc->mem_cgroup = mem;
2180	/*
2181	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2182	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2183	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2184	 * before USED bit, we need memory barrier here.
2185	 * See mem_cgroup_add_lru_list(), etc.
2186 	 */
2187	smp_wmb();
2188	switch (ctype) {
2189	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2190	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2191		SetPageCgroupCache(pc);
2192		SetPageCgroupUsed(pc);
2193		break;
2194	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2195		ClearPageCgroupCache(pc);
2196		SetPageCgroupUsed(pc);
2197		break;
2198	default:
2199		break;
2200	}
2201
2202	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2203	unlock_page_cgroup(pc);
2204	/*
2205	 * "charge_statistics" updated event counter. Then, check it.
2206	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2207	 * if they exceeds softlimit.
2208	 */
2209	memcg_check_events(mem, page);
2210}
2211
2212#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2213
2214#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2215			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2216/*
2217 * Because tail pages are not marked as "used", set it. We're under
2218 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2219 */
2220void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2221{
2222	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2223	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2224	unsigned long flags;
2225
2226	if (mem_cgroup_disabled())
2227		return;
2228	/*
2229	 * We have no races with charge/uncharge but will have races with
2230	 * page state accounting.
2231	 */
2232	move_lock_page_cgroup(head_pc, &flags);
2233
2234	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2235	smp_wmb(); /* see __commit_charge() */
2236	if (PageCgroupAcctLRU(head_pc)) {
2237		enum lru_list lru;
2238		struct mem_cgroup_per_zone *mz;
2239
2240		/*
2241		 * LRU flags cannot be copied because we need to add tail
2242		 *.page to LRU by generic call and our hook will be called.
2243		 * We hold lru_lock, then, reduce counter directly.
2244		 */
2245		lru = page_lru(head);
2246		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2247		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2248	}
2249	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2250	move_unlock_page_cgroup(head_pc, &flags);
2251}
2252#endif
2253
2254/**
2255 * mem_cgroup_move_account - move account of the page
2256 * @page: the page
2257 * @nr_pages: number of regular pages (>1 for huge pages)
2258 * @pc:	page_cgroup of the page.
2259 * @from: mem_cgroup which the page is moved from.
2260 * @to:	mem_cgroup which the page is moved to. @from != @to.
2261 * @uncharge: whether we should call uncharge and css_put against @from.
2262 *
2263 * The caller must confirm following.
2264 * - page is not on LRU (isolate_page() is useful.)
2265 * - compound_lock is held when nr_pages > 1
2266 *
2267 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2268 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2269 * true, this function does "uncharge" from old cgroup, but it doesn't if
2270 * @uncharge is false, so a caller should do "uncharge".
2271 */
2272static int mem_cgroup_move_account(struct page *page,
2273				   unsigned int nr_pages,
2274				   struct page_cgroup *pc,
2275				   struct mem_cgroup *from,
2276				   struct mem_cgroup *to,
2277				   bool uncharge)
2278{
2279	unsigned long flags;
2280	int ret;
2281
2282	VM_BUG_ON(from == to);
2283	VM_BUG_ON(PageLRU(page));
2284	/*
2285	 * The page is isolated from LRU. So, collapse function
2286	 * will not handle this page. But page splitting can happen.
2287	 * Do this check under compound_page_lock(). The caller should
2288	 * hold it.
2289	 */
2290	ret = -EBUSY;
2291	if (nr_pages > 1 && !PageTransHuge(page))
2292		goto out;
2293
2294	lock_page_cgroup(pc);
2295
2296	ret = -EINVAL;
2297	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2298		goto unlock;
2299
2300	move_lock_page_cgroup(pc, &flags);
2301
2302	if (PageCgroupFileMapped(pc)) {
2303		/* Update mapped_file data for mem_cgroup */
2304		preempt_disable();
2305		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2306		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2307		preempt_enable();
2308	}
2309	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2310	if (uncharge)
2311		/* This is not "cancel", but cancel_charge does all we need. */
2312		__mem_cgroup_cancel_charge(from, nr_pages);
2313
2314	/* caller should have done css_get */
2315	pc->mem_cgroup = to;
2316	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2317	/*
2318	 * We charges against "to" which may not have any tasks. Then, "to"
2319	 * can be under rmdir(). But in current implementation, caller of
2320	 * this function is just force_empty() and move charge, so it's
2321	 * guaranteed that "to" is never removed. So, we don't check rmdir
2322	 * status here.
2323	 */
2324	move_unlock_page_cgroup(pc, &flags);
2325	ret = 0;
2326unlock:
2327	unlock_page_cgroup(pc);
2328	/*
2329	 * check events
2330	 */
2331	memcg_check_events(to, page);
2332	memcg_check_events(from, page);
2333out:
2334	return ret;
2335}
2336
2337/*
2338 * move charges to its parent.
2339 */
2340
2341static int mem_cgroup_move_parent(struct page *page,
2342				  struct page_cgroup *pc,
2343				  struct mem_cgroup *child,
2344				  gfp_t gfp_mask)
2345{
2346	struct cgroup *cg = child->css.cgroup;
2347	struct cgroup *pcg = cg->parent;
2348	struct mem_cgroup *parent;
2349	unsigned int nr_pages;
2350	unsigned long uninitialized_var(flags);
2351	int ret;
2352
2353	/* Is ROOT ? */
2354	if (!pcg)
2355		return -EINVAL;
2356
2357	ret = -EBUSY;
2358	if (!get_page_unless_zero(page))
2359		goto out;
2360	if (isolate_lru_page(page))
2361		goto put;
2362
2363	nr_pages = hpage_nr_pages(page);
2364
2365	parent = mem_cgroup_from_cont(pcg);
2366	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2367	if (ret || !parent)
2368		goto put_back;
2369
2370	if (nr_pages > 1)
2371		flags = compound_lock_irqsave(page);
2372
2373	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2374	if (ret)
2375		__mem_cgroup_cancel_charge(parent, nr_pages);
2376
2377	if (nr_pages > 1)
2378		compound_unlock_irqrestore(page, flags);
2379put_back:
2380	putback_lru_page(page);
2381put:
2382	put_page(page);
2383out:
2384	return ret;
2385}
2386
2387/*
2388 * Charge the memory controller for page usage.
2389 * Return
2390 * 0 if the charge was successful
2391 * < 0 if the cgroup is over its limit
2392 */
2393static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2394				gfp_t gfp_mask, enum charge_type ctype)
2395{
2396	struct mem_cgroup *mem = NULL;
2397	unsigned int nr_pages = 1;
2398	struct page_cgroup *pc;
2399	bool oom = true;
2400	int ret;
2401
2402	if (PageTransHuge(page)) {
2403		nr_pages <<= compound_order(page);
2404		VM_BUG_ON(!PageTransHuge(page));
2405		/*
2406		 * Never OOM-kill a process for a huge page.  The
2407		 * fault handler will fall back to regular pages.
2408		 */
2409		oom = false;
2410	}
2411
2412	pc = lookup_page_cgroup(page);
2413	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2414
2415	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2416	if (ret || !mem)
2417		return ret;
2418
2419	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2420	return 0;
2421}
2422
2423int mem_cgroup_newpage_charge(struct page *page,
2424			      struct mm_struct *mm, gfp_t gfp_mask)
2425{
2426	if (mem_cgroup_disabled())
2427		return 0;
2428	/*
2429	 * If already mapped, we don't have to account.
2430	 * If page cache, page->mapping has address_space.
2431	 * But page->mapping may have out-of-use anon_vma pointer,
2432	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2433	 * is NULL.
2434  	 */
2435	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2436		return 0;
2437	if (unlikely(!mm))
2438		mm = &init_mm;
2439	return mem_cgroup_charge_common(page, mm, gfp_mask,
2440				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2441}
2442
2443static void
2444__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2445					enum charge_type ctype);
2446
2447static void
2448__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2449					enum charge_type ctype)
2450{
2451	struct page_cgroup *pc = lookup_page_cgroup(page);
2452	/*
2453	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2454	 * is already on LRU. It means the page may on some other page_cgroup's
2455	 * LRU. Take care of it.
2456	 */
2457	mem_cgroup_lru_del_before_commit(page);
2458	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2459	mem_cgroup_lru_add_after_commit(page);
2460	return;
2461}
2462
2463int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2464				gfp_t gfp_mask)
2465{
2466	struct mem_cgroup *mem = NULL;
2467	int ret;
2468
2469	if (mem_cgroup_disabled())
2470		return 0;
2471	if (PageCompound(page))
2472		return 0;
2473	/*
2474	 * Corner case handling. This is called from add_to_page_cache()
2475	 * in usual. But some FS (shmem) precharges this page before calling it
2476	 * and call add_to_page_cache() with GFP_NOWAIT.
2477	 *
2478	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2479	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2480	 * charge twice. (It works but has to pay a bit larger cost.)
2481	 * And when the page is SwapCache, it should take swap information
2482	 * into account. This is under lock_page() now.
2483	 */
2484	if (!(gfp_mask & __GFP_WAIT)) {
2485		struct page_cgroup *pc;
2486
2487		pc = lookup_page_cgroup(page);
2488		if (!pc)
2489			return 0;
2490		lock_page_cgroup(pc);
2491		if (PageCgroupUsed(pc)) {
2492			unlock_page_cgroup(pc);
2493			return 0;
2494		}
2495		unlock_page_cgroup(pc);
2496	}
2497
2498	if (unlikely(!mm))
2499		mm = &init_mm;
2500
2501	if (page_is_file_cache(page)) {
2502		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2503		if (ret || !mem)
2504			return ret;
2505
2506		/*
2507		 * FUSE reuses pages without going through the final
2508		 * put that would remove them from the LRU list, make
2509		 * sure that they get relinked properly.
2510		 */
2511		__mem_cgroup_commit_charge_lrucare(page, mem,
2512					MEM_CGROUP_CHARGE_TYPE_CACHE);
2513		return ret;
2514	}
2515	/* shmem */
2516	if (PageSwapCache(page)) {
2517		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2518		if (!ret)
2519			__mem_cgroup_commit_charge_swapin(page, mem,
2520					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2521	} else
2522		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2523					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2524
2525	return ret;
2526}
2527
2528/*
2529 * While swap-in, try_charge -> commit or cancel, the page is locked.
2530 * And when try_charge() successfully returns, one refcnt to memcg without
2531 * struct page_cgroup is acquired. This refcnt will be consumed by
2532 * "commit()" or removed by "cancel()"
2533 */
2534int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2535				 struct page *page,
2536				 gfp_t mask, struct mem_cgroup **ptr)
2537{
2538	struct mem_cgroup *mem;
2539	int ret;
2540
2541	*ptr = NULL;
2542
2543	if (mem_cgroup_disabled())
2544		return 0;
2545
2546	if (!do_swap_account)
2547		goto charge_cur_mm;
2548	/*
2549	 * A racing thread's fault, or swapoff, may have already updated
2550	 * the pte, and even removed page from swap cache: in those cases
2551	 * do_swap_page()'s pte_same() test will fail; but there's also a
2552	 * KSM case which does need to charge the page.
2553	 */
2554	if (!PageSwapCache(page))
2555		goto charge_cur_mm;
2556	mem = try_get_mem_cgroup_from_page(page);
2557	if (!mem)
2558		goto charge_cur_mm;
2559	*ptr = mem;
2560	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2561	css_put(&mem->css);
2562	return ret;
2563charge_cur_mm:
2564	if (unlikely(!mm))
2565		mm = &init_mm;
2566	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2567}
2568
2569static void
2570__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2571					enum charge_type ctype)
2572{
2573	if (mem_cgroup_disabled())
2574		return;
2575	if (!ptr)
2576		return;
2577	cgroup_exclude_rmdir(&ptr->css);
2578
2579	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2580	/*
2581	 * Now swap is on-memory. This means this page may be
2582	 * counted both as mem and swap....double count.
2583	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2584	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2585	 * may call delete_from_swap_cache() before reach here.
2586	 */
2587	if (do_swap_account && PageSwapCache(page)) {
2588		swp_entry_t ent = {.val = page_private(page)};
2589		unsigned short id;
2590		struct mem_cgroup *memcg;
2591
2592		id = swap_cgroup_record(ent, 0);
2593		rcu_read_lock();
2594		memcg = mem_cgroup_lookup(id);
2595		if (memcg) {
2596			/*
2597			 * This recorded memcg can be obsolete one. So, avoid
2598			 * calling css_tryget
2599			 */
2600			if (!mem_cgroup_is_root(memcg))
2601				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2602			mem_cgroup_swap_statistics(memcg, false);
2603			mem_cgroup_put(memcg);
2604		}
2605		rcu_read_unlock();
2606	}
2607	/*
2608	 * At swapin, we may charge account against cgroup which has no tasks.
2609	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2610	 * In that case, we need to call pre_destroy() again. check it here.
2611	 */
2612	cgroup_release_and_wakeup_rmdir(&ptr->css);
2613}
2614
2615void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2616{
2617	__mem_cgroup_commit_charge_swapin(page, ptr,
2618					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2619}
2620
2621void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2622{
2623	if (mem_cgroup_disabled())
2624		return;
2625	if (!mem)
2626		return;
2627	__mem_cgroup_cancel_charge(mem, 1);
2628}
2629
2630static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2631				   unsigned int nr_pages,
2632				   const enum charge_type ctype)
2633{
2634	struct memcg_batch_info *batch = NULL;
2635	bool uncharge_memsw = true;
2636
2637	/* If swapout, usage of swap doesn't decrease */
2638	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2639		uncharge_memsw = false;
2640
2641	batch = &current->memcg_batch;
2642	/*
2643	 * In usual, we do css_get() when we remember memcg pointer.
2644	 * But in this case, we keep res->usage until end of a series of
2645	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2646	 */
2647	if (!batch->memcg)
2648		batch->memcg = mem;
2649	/*
2650	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2651	 * In those cases, all pages freed continuously can be expected to be in
2652	 * the same cgroup and we have chance to coalesce uncharges.
2653	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2654	 * because we want to do uncharge as soon as possible.
2655	 */
2656
2657	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2658		goto direct_uncharge;
2659
2660	if (nr_pages > 1)
2661		goto direct_uncharge;
2662
2663	/*
2664	 * In typical case, batch->memcg == mem. This means we can
2665	 * merge a series of uncharges to an uncharge of res_counter.
2666	 * If not, we uncharge res_counter ony by one.
2667	 */
2668	if (batch->memcg != mem)
2669		goto direct_uncharge;
2670	/* remember freed charge and uncharge it later */
2671	batch->nr_pages++;
2672	if (uncharge_memsw)
2673		batch->memsw_nr_pages++;
2674	return;
2675direct_uncharge:
2676	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2677	if (uncharge_memsw)
2678		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2679	if (unlikely(batch->memcg != mem))
2680		memcg_oom_recover(mem);
2681	return;
2682}
2683
2684/*
2685 * uncharge if !page_mapped(page)
2686 */
2687static struct mem_cgroup *
2688__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2689{
2690	struct mem_cgroup *mem = NULL;
2691	unsigned int nr_pages = 1;
2692	struct page_cgroup *pc;
2693
2694	if (mem_cgroup_disabled())
2695		return NULL;
2696
2697	if (PageSwapCache(page))
2698		return NULL;
2699
2700	if (PageTransHuge(page)) {
2701		nr_pages <<= compound_order(page);
2702		VM_BUG_ON(!PageTransHuge(page));
2703	}
2704	/*
2705	 * Check if our page_cgroup is valid
2706	 */
2707	pc = lookup_page_cgroup(page);
2708	if (unlikely(!pc || !PageCgroupUsed(pc)))
2709		return NULL;
2710
2711	lock_page_cgroup(pc);
2712
2713	mem = pc->mem_cgroup;
2714
2715	if (!PageCgroupUsed(pc))
2716		goto unlock_out;
2717
2718	switch (ctype) {
2719	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2720	case MEM_CGROUP_CHARGE_TYPE_DROP:
2721		/* See mem_cgroup_prepare_migration() */
2722		if (page_mapped(page) || PageCgroupMigration(pc))
2723			goto unlock_out;
2724		break;
2725	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2726		if (!PageAnon(page)) {	/* Shared memory */
2727			if (page->mapping && !page_is_file_cache(page))
2728				goto unlock_out;
2729		} else if (page_mapped(page)) /* Anon */
2730				goto unlock_out;
2731		break;
2732	default:
2733		break;
2734	}
2735
2736	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2737
2738	ClearPageCgroupUsed(pc);
2739	/*
2740	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2741	 * freed from LRU. This is safe because uncharged page is expected not
2742	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2743	 * special functions.
2744	 */
2745
2746	unlock_page_cgroup(pc);
2747	/*
2748	 * even after unlock, we have mem->res.usage here and this memcg
2749	 * will never be freed.
2750	 */
2751	memcg_check_events(mem, page);
2752	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2753		mem_cgroup_swap_statistics(mem, true);
2754		mem_cgroup_get(mem);
2755	}
2756	if (!mem_cgroup_is_root(mem))
2757		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2758
2759	return mem;
2760
2761unlock_out:
2762	unlock_page_cgroup(pc);
2763	return NULL;
2764}
2765
2766void mem_cgroup_uncharge_page(struct page *page)
2767{
2768	/* early check. */
2769	if (page_mapped(page))
2770		return;
2771	if (page->mapping && !PageAnon(page))
2772		return;
2773	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2774}
2775
2776void mem_cgroup_uncharge_cache_page(struct page *page)
2777{
2778	VM_BUG_ON(page_mapped(page));
2779	VM_BUG_ON(page->mapping);
2780	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2781}
2782
2783/*
2784 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2785 * In that cases, pages are freed continuously and we can expect pages
2786 * are in the same memcg. All these calls itself limits the number of
2787 * pages freed at once, then uncharge_start/end() is called properly.
2788 * This may be called prural(2) times in a context,
2789 */
2790
2791void mem_cgroup_uncharge_start(void)
2792{
2793	current->memcg_batch.do_batch++;
2794	/* We can do nest. */
2795	if (current->memcg_batch.do_batch == 1) {
2796		current->memcg_batch.memcg = NULL;
2797		current->memcg_batch.nr_pages = 0;
2798		current->memcg_batch.memsw_nr_pages = 0;
2799	}
2800}
2801
2802void mem_cgroup_uncharge_end(void)
2803{
2804	struct memcg_batch_info *batch = &current->memcg_batch;
2805
2806	if (!batch->do_batch)
2807		return;
2808
2809	batch->do_batch--;
2810	if (batch->do_batch) /* If stacked, do nothing. */
2811		return;
2812
2813	if (!batch->memcg)
2814		return;
2815	/*
2816	 * This "batch->memcg" is valid without any css_get/put etc...
2817	 * bacause we hide charges behind us.
2818	 */
2819	if (batch->nr_pages)
2820		res_counter_uncharge(&batch->memcg->res,
2821				     batch->nr_pages * PAGE_SIZE);
2822	if (batch->memsw_nr_pages)
2823		res_counter_uncharge(&batch->memcg->memsw,
2824				     batch->memsw_nr_pages * PAGE_SIZE);
2825	memcg_oom_recover(batch->memcg);
2826	/* forget this pointer (for sanity check) */
2827	batch->memcg = NULL;
2828}
2829
2830#ifdef CONFIG_SWAP
2831/*
2832 * called after __delete_from_swap_cache() and drop "page" account.
2833 * memcg information is recorded to swap_cgroup of "ent"
2834 */
2835void
2836mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2837{
2838	struct mem_cgroup *memcg;
2839	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2840
2841	if (!swapout) /* this was a swap cache but the swap is unused ! */
2842		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2843
2844	memcg = __mem_cgroup_uncharge_common(page, ctype);
2845
2846	/*
2847	 * record memcg information,  if swapout && memcg != NULL,
2848	 * mem_cgroup_get() was called in uncharge().
2849	 */
2850	if (do_swap_account && swapout && memcg)
2851		swap_cgroup_record(ent, css_id(&memcg->css));
2852}
2853#endif
2854
2855#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2856/*
2857 * called from swap_entry_free(). remove record in swap_cgroup and
2858 * uncharge "memsw" account.
2859 */
2860void mem_cgroup_uncharge_swap(swp_entry_t ent)
2861{
2862	struct mem_cgroup *memcg;
2863	unsigned short id;
2864
2865	if (!do_swap_account)
2866		return;
2867
2868	id = swap_cgroup_record(ent, 0);
2869	rcu_read_lock();
2870	memcg = mem_cgroup_lookup(id);
2871	if (memcg) {
2872		/*
2873		 * We uncharge this because swap is freed.
2874		 * This memcg can be obsolete one. We avoid calling css_tryget
2875		 */
2876		if (!mem_cgroup_is_root(memcg))
2877			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2878		mem_cgroup_swap_statistics(memcg, false);
2879		mem_cgroup_put(memcg);
2880	}
2881	rcu_read_unlock();
2882}
2883
2884/**
2885 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2886 * @entry: swap entry to be moved
2887 * @from:  mem_cgroup which the entry is moved from
2888 * @to:  mem_cgroup which the entry is moved to
2889 * @need_fixup: whether we should fixup res_counters and refcounts.
2890 *
2891 * It succeeds only when the swap_cgroup's record for this entry is the same
2892 * as the mem_cgroup's id of @from.
2893 *
2894 * Returns 0 on success, -EINVAL on failure.
2895 *
2896 * The caller must have charged to @to, IOW, called res_counter_charge() about
2897 * both res and memsw, and called css_get().
2898 */
2899static int mem_cgroup_move_swap_account(swp_entry_t entry,
2900		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2901{
2902	unsigned short old_id, new_id;
2903
2904	old_id = css_id(&from->css);
2905	new_id = css_id(&to->css);
2906
2907	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2908		mem_cgroup_swap_statistics(from, false);
2909		mem_cgroup_swap_statistics(to, true);
2910		/*
2911		 * This function is only called from task migration context now.
2912		 * It postpones res_counter and refcount handling till the end
2913		 * of task migration(mem_cgroup_clear_mc()) for performance
2914		 * improvement. But we cannot postpone mem_cgroup_get(to)
2915		 * because if the process that has been moved to @to does
2916		 * swap-in, the refcount of @to might be decreased to 0.
2917		 */
2918		mem_cgroup_get(to);
2919		if (need_fixup) {
2920			if (!mem_cgroup_is_root(from))
2921				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2922			mem_cgroup_put(from);
2923			/*
2924			 * we charged both to->res and to->memsw, so we should
2925			 * uncharge to->res.
2926			 */
2927			if (!mem_cgroup_is_root(to))
2928				res_counter_uncharge(&to->res, PAGE_SIZE);
2929		}
2930		return 0;
2931	}
2932	return -EINVAL;
2933}
2934#else
2935static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2936		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2937{
2938	return -EINVAL;
2939}
2940#endif
2941
2942/*
2943 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2944 * page belongs to.
2945 */
2946int mem_cgroup_prepare_migration(struct page *page,
2947	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2948{
2949	struct mem_cgroup *mem = NULL;
2950	struct page_cgroup *pc;
2951	enum charge_type ctype;
2952	int ret = 0;
2953
2954	*ptr = NULL;
2955
2956	VM_BUG_ON(PageTransHuge(page));
2957	if (mem_cgroup_disabled())
2958		return 0;
2959
2960	pc = lookup_page_cgroup(page);
2961	lock_page_cgroup(pc);
2962	if (PageCgroupUsed(pc)) {
2963		mem = pc->mem_cgroup;
2964		css_get(&mem->css);
2965		/*
2966		 * At migrating an anonymous page, its mapcount goes down
2967		 * to 0 and uncharge() will be called. But, even if it's fully
2968		 * unmapped, migration may fail and this page has to be
2969		 * charged again. We set MIGRATION flag here and delay uncharge
2970		 * until end_migration() is called
2971		 *
2972		 * Corner Case Thinking
2973		 * A)
2974		 * When the old page was mapped as Anon and it's unmap-and-freed
2975		 * while migration was ongoing.
2976		 * If unmap finds the old page, uncharge() of it will be delayed
2977		 * until end_migration(). If unmap finds a new page, it's
2978		 * uncharged when it make mapcount to be 1->0. If unmap code
2979		 * finds swap_migration_entry, the new page will not be mapped
2980		 * and end_migration() will find it(mapcount==0).
2981		 *
2982		 * B)
2983		 * When the old page was mapped but migraion fails, the kernel
2984		 * remaps it. A charge for it is kept by MIGRATION flag even
2985		 * if mapcount goes down to 0. We can do remap successfully
2986		 * without charging it again.
2987		 *
2988		 * C)
2989		 * The "old" page is under lock_page() until the end of
2990		 * migration, so, the old page itself will not be swapped-out.
2991		 * If the new page is swapped out before end_migraton, our
2992		 * hook to usual swap-out path will catch the event.
2993		 */
2994		if (PageAnon(page))
2995			SetPageCgroupMigration(pc);
2996	}
2997	unlock_page_cgroup(pc);
2998	/*
2999	 * If the page is not charged at this point,
3000	 * we return here.
3001	 */
3002	if (!mem)
3003		return 0;
3004
3005	*ptr = mem;
3006	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3007	css_put(&mem->css);/* drop extra refcnt */
3008	if (ret || *ptr == NULL) {
3009		if (PageAnon(page)) {
3010			lock_page_cgroup(pc);
3011			ClearPageCgroupMigration(pc);
3012			unlock_page_cgroup(pc);
3013			/*
3014			 * The old page may be fully unmapped while we kept it.
3015			 */
3016			mem_cgroup_uncharge_page(page);
3017		}
3018		return -ENOMEM;
3019	}
3020	/*
3021	 * We charge new page before it's used/mapped. So, even if unlock_page()
3022	 * is called before end_migration, we can catch all events on this new
3023	 * page. In the case new page is migrated but not remapped, new page's
3024	 * mapcount will be finally 0 and we call uncharge in end_migration().
3025	 */
3026	pc = lookup_page_cgroup(newpage);
3027	if (PageAnon(page))
3028		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3029	else if (page_is_file_cache(page))
3030		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3031	else
3032		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3033	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3034	return ret;
3035}
3036
3037/* remove redundant charge if migration failed*/
3038void mem_cgroup_end_migration(struct mem_cgroup *mem,
3039	struct page *oldpage, struct page *newpage, bool migration_ok)
3040{
3041	struct page *used, *unused;
3042	struct page_cgroup *pc;
3043
3044	if (!mem)
3045		return;
3046	/* blocks rmdir() */
3047	cgroup_exclude_rmdir(&mem->css);
3048	if (!migration_ok) {
3049		used = oldpage;
3050		unused = newpage;
3051	} else {
3052		used = newpage;
3053		unused = oldpage;
3054	}
3055	/*
3056	 * We disallowed uncharge of pages under migration because mapcount
3057	 * of the page goes down to zero, temporarly.
3058	 * Clear the flag and check the page should be charged.
3059	 */
3060	pc = lookup_page_cgroup(oldpage);
3061	lock_page_cgroup(pc);
3062	ClearPageCgroupMigration(pc);
3063	unlock_page_cgroup(pc);
3064
3065	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3066
3067	/*
3068	 * If a page is a file cache, radix-tree replacement is very atomic
3069	 * and we can skip this check. When it was an Anon page, its mapcount
3070	 * goes down to 0. But because we added MIGRATION flage, it's not
3071	 * uncharged yet. There are several case but page->mapcount check
3072	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3073	 * check. (see prepare_charge() also)
3074	 */
3075	if (PageAnon(used))
3076		mem_cgroup_uncharge_page(used);
3077	/*
3078	 * At migration, we may charge account against cgroup which has no
3079	 * tasks.
3080	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3081	 * In that case, we need to call pre_destroy() again. check it here.
3082	 */
3083	cgroup_release_and_wakeup_rmdir(&mem->css);
3084}
3085
3086/*
3087 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3088 * Calling hierarchical_reclaim is not enough because we should update
3089 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3090 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3091 * not from the memcg which this page would be charged to.
3092 * try_charge_swapin does all of these works properly.
3093 */
3094int mem_cgroup_shmem_charge_fallback(struct page *page,
3095			    struct mm_struct *mm,
3096			    gfp_t gfp_mask)
3097{
3098	struct mem_cgroup *mem;
3099	int ret;
3100
3101	if (mem_cgroup_disabled())
3102		return 0;
3103
3104	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3105	if (!ret)
3106		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3107
3108	return ret;
3109}
3110
3111#ifdef CONFIG_DEBUG_VM
3112static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3113{
3114	struct page_cgroup *pc;
3115
3116	pc = lookup_page_cgroup(page);
3117	if (likely(pc) && PageCgroupUsed(pc))
3118		return pc;
3119	return NULL;
3120}
3121
3122bool mem_cgroup_bad_page_check(struct page *page)
3123{
3124	if (mem_cgroup_disabled())
3125		return false;
3126
3127	return lookup_page_cgroup_used(page) != NULL;
3128}
3129
3130void mem_cgroup_print_bad_page(struct page *page)
3131{
3132	struct page_cgroup *pc;
3133
3134	pc = lookup_page_cgroup_used(page);
3135	if (pc) {
3136		int ret = -1;
3137		char *path;
3138
3139		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3140		       pc, pc->flags, pc->mem_cgroup);
3141
3142		path = kmalloc(PATH_MAX, GFP_KERNEL);
3143		if (path) {
3144			rcu_read_lock();
3145			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3146							path, PATH_MAX);
3147			rcu_read_unlock();
3148		}
3149
3150		printk(KERN_CONT "(%s)\n",
3151				(ret < 0) ? "cannot get the path" : path);
3152		kfree(path);
3153	}
3154}
3155#endif
3156
3157static DEFINE_MUTEX(set_limit_mutex);
3158
3159static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3160				unsigned long long val)
3161{
3162	int retry_count;
3163	u64 memswlimit, memlimit;
3164	int ret = 0;
3165	int children = mem_cgroup_count_children(memcg);
3166	u64 curusage, oldusage;
3167	int enlarge;
3168
3169	/*
3170	 * For keeping hierarchical_reclaim simple, how long we should retry
3171	 * is depends on callers. We set our retry-count to be function
3172	 * of # of children which we should visit in this loop.
3173	 */
3174	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3175
3176	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3177
3178	enlarge = 0;
3179	while (retry_count) {
3180		if (signal_pending(current)) {
3181			ret = -EINTR;
3182			break;
3183		}
3184		/*
3185		 * Rather than hide all in some function, I do this in
3186		 * open coded manner. You see what this really does.
3187		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3188		 */
3189		mutex_lock(&set_limit_mutex);
3190		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3191		if (memswlimit < val) {
3192			ret = -EINVAL;
3193			mutex_unlock(&set_limit_mutex);
3194			break;
3195		}
3196
3197		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3198		if (memlimit < val)
3199			enlarge = 1;
3200
3201		ret = res_counter_set_limit(&memcg->res, val);
3202		if (!ret) {
3203			if (memswlimit == val)
3204				memcg->memsw_is_minimum = true;
3205			else
3206				memcg->memsw_is_minimum = false;
3207		}
3208		mutex_unlock(&set_limit_mutex);
3209
3210		if (!ret)
3211			break;
3212
3213		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3214						MEM_CGROUP_RECLAIM_SHRINK);
3215		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3216		/* Usage is reduced ? */
3217  		if (curusage >= oldusage)
3218			retry_count--;
3219		else
3220			oldusage = curusage;
3221	}
3222	if (!ret && enlarge)
3223		memcg_oom_recover(memcg);
3224
3225	return ret;
3226}
3227
3228static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3229					unsigned long long val)
3230{
3231	int retry_count;
3232	u64 memlimit, memswlimit, oldusage, curusage;
3233	int children = mem_cgroup_count_children(memcg);
3234	int ret = -EBUSY;
3235	int enlarge = 0;
3236
3237	/* see mem_cgroup_resize_res_limit */
3238 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3239	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3240	while (retry_count) {
3241		if (signal_pending(current)) {
3242			ret = -EINTR;
3243			break;
3244		}
3245		/*
3246		 * Rather than hide all in some function, I do this in
3247		 * open coded manner. You see what this really does.
3248		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3249		 */
3250		mutex_lock(&set_limit_mutex);
3251		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3252		if (memlimit > val) {
3253			ret = -EINVAL;
3254			mutex_unlock(&set_limit_mutex);
3255			break;
3256		}
3257		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3258		if (memswlimit < val)
3259			enlarge = 1;
3260		ret = res_counter_set_limit(&memcg->memsw, val);
3261		if (!ret) {
3262			if (memlimit == val)
3263				memcg->memsw_is_minimum = true;
3264			else
3265				memcg->memsw_is_minimum = false;
3266		}
3267		mutex_unlock(&set_limit_mutex);
3268
3269		if (!ret)
3270			break;
3271
3272		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3273						MEM_CGROUP_RECLAIM_NOSWAP |
3274						MEM_CGROUP_RECLAIM_SHRINK);
3275		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3276		/* Usage is reduced ? */
3277		if (curusage >= oldusage)
3278			retry_count--;
3279		else
3280			oldusage = curusage;
3281	}
3282	if (!ret && enlarge)
3283		memcg_oom_recover(memcg);
3284	return ret;
3285}
3286
3287unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3288					    gfp_t gfp_mask)
3289{
3290	unsigned long nr_reclaimed = 0;
3291	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3292	unsigned long reclaimed;
3293	int loop = 0;
3294	struct mem_cgroup_tree_per_zone *mctz;
3295	unsigned long long excess;
3296
3297	if (order > 0)
3298		return 0;
3299
3300	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3301	/*
3302	 * This loop can run a while, specially if mem_cgroup's continuously
3303	 * keep exceeding their soft limit and putting the system under
3304	 * pressure
3305	 */
3306	do {
3307		if (next_mz)
3308			mz = next_mz;
3309		else
3310			mz = mem_cgroup_largest_soft_limit_node(mctz);
3311		if (!mz)
3312			break;
3313
3314		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3315						gfp_mask,
3316						MEM_CGROUP_RECLAIM_SOFT);
3317		nr_reclaimed += reclaimed;
3318		spin_lock(&mctz->lock);
3319
3320		/*
3321		 * If we failed to reclaim anything from this memory cgroup
3322		 * it is time to move on to the next cgroup
3323		 */
3324		next_mz = NULL;
3325		if (!reclaimed) {
3326			do {
3327				/*
3328				 * Loop until we find yet another one.
3329				 *
3330				 * By the time we get the soft_limit lock
3331				 * again, someone might have aded the
3332				 * group back on the RB tree. Iterate to
3333				 * make sure we get a different mem.
3334				 * mem_cgroup_largest_soft_limit_node returns
3335				 * NULL if no other cgroup is present on
3336				 * the tree
3337				 */
3338				next_mz =
3339				__mem_cgroup_largest_soft_limit_node(mctz);
3340				if (next_mz == mz) {
3341					css_put(&next_mz->mem->css);
3342					next_mz = NULL;
3343				} else /* next_mz == NULL or other memcg */
3344					break;
3345			} while (1);
3346		}
3347		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3348		excess = res_counter_soft_limit_excess(&mz->mem->res);
3349		/*
3350		 * One school of thought says that we should not add
3351		 * back the node to the tree if reclaim returns 0.
3352		 * But our reclaim could return 0, simply because due
3353		 * to priority we are exposing a smaller subset of
3354		 * memory to reclaim from. Consider this as a longer
3355		 * term TODO.
3356		 */
3357		/* If excess == 0, no tree ops */
3358		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3359		spin_unlock(&mctz->lock);
3360		css_put(&mz->mem->css);
3361		loop++;
3362		/*
3363		 * Could not reclaim anything and there are no more
3364		 * mem cgroups to try or we seem to be looping without
3365		 * reclaiming anything.
3366		 */
3367		if (!nr_reclaimed &&
3368			(next_mz == NULL ||
3369			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3370			break;
3371	} while (!nr_reclaimed);
3372	if (next_mz)
3373		css_put(&next_mz->mem->css);
3374	return nr_reclaimed;
3375}
3376
3377/*
3378 * This routine traverse page_cgroup in given list and drop them all.
3379 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3380 */
3381static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3382				int node, int zid, enum lru_list lru)
3383{
3384	struct zone *zone;
3385	struct mem_cgroup_per_zone *mz;
3386	struct page_cgroup *pc, *busy;
3387	unsigned long flags, loop;
3388	struct list_head *list;
3389	int ret = 0;
3390
3391	zone = &NODE_DATA(node)->node_zones[zid];
3392	mz = mem_cgroup_zoneinfo(mem, node, zid);
3393	list = &mz->lists[lru];
3394
3395	loop = MEM_CGROUP_ZSTAT(mz, lru);
3396	/* give some margin against EBUSY etc...*/
3397	loop += 256;
3398	busy = NULL;
3399	while (loop--) {
3400		struct page *page;
3401
3402		ret = 0;
3403		spin_lock_irqsave(&zone->lru_lock, flags);
3404		if (list_empty(list)) {
3405			spin_unlock_irqrestore(&zone->lru_lock, flags);
3406			break;
3407		}
3408		pc = list_entry(list->prev, struct page_cgroup, lru);
3409		if (busy == pc) {
3410			list_move(&pc->lru, list);
3411			busy = NULL;
3412			spin_unlock_irqrestore(&zone->lru_lock, flags);
3413			continue;
3414		}
3415		spin_unlock_irqrestore(&zone->lru_lock, flags);
3416
3417		page = lookup_cgroup_page(pc);
3418
3419		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3420		if (ret == -ENOMEM)
3421			break;
3422
3423		if (ret == -EBUSY || ret == -EINVAL) {
3424			/* found lock contention or "pc" is obsolete. */
3425			busy = pc;
3426			cond_resched();
3427		} else
3428			busy = NULL;
3429	}
3430
3431	if (!ret && !list_empty(list))
3432		return -EBUSY;
3433	return ret;
3434}
3435
3436/*
3437 * make mem_cgroup's charge to be 0 if there is no task.
3438 * This enables deleting this mem_cgroup.
3439 */
3440static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3441{
3442	int ret;
3443	int node, zid, shrink;
3444	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3445	struct cgroup *cgrp = mem->css.cgroup;
3446
3447	css_get(&mem->css);
3448
3449	shrink = 0;
3450	/* should free all ? */
3451	if (free_all)
3452		goto try_to_free;
3453move_account:
3454	do {
3455		ret = -EBUSY;
3456		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3457			goto out;
3458		ret = -EINTR;
3459		if (signal_pending(current))
3460			goto out;
3461		/* This is for making all *used* pages to be on LRU. */
3462		lru_add_drain_all();
3463		drain_all_stock_sync();
3464		ret = 0;
3465		mem_cgroup_start_move(mem);
3466		for_each_node_state(node, N_HIGH_MEMORY) {
3467			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3468				enum lru_list l;
3469				for_each_lru(l) {
3470					ret = mem_cgroup_force_empty_list(mem,
3471							node, zid, l);
3472					if (ret)
3473						break;
3474				}
3475			}
3476			if (ret)
3477				break;
3478		}
3479		mem_cgroup_end_move(mem);
3480		memcg_oom_recover(mem);
3481		/* it seems parent cgroup doesn't have enough mem */
3482		if (ret == -ENOMEM)
3483			goto try_to_free;
3484		cond_resched();
3485	/* "ret" should also be checked to ensure all lists are empty. */
3486	} while (mem->res.usage > 0 || ret);
3487out:
3488	css_put(&mem->css);
3489	return ret;
3490
3491try_to_free:
3492	/* returns EBUSY if there is a task or if we come here twice. */
3493	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3494		ret = -EBUSY;
3495		goto out;
3496	}
3497	/* we call try-to-free pages for make this cgroup empty */
3498	lru_add_drain_all();
3499	/* try to free all pages in this cgroup */
3500	shrink = 1;
3501	while (nr_retries && mem->res.usage > 0) {
3502		int progress;
3503
3504		if (signal_pending(current)) {
3505			ret = -EINTR;
3506			goto out;
3507		}
3508		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3509						false, get_swappiness(mem));
3510		if (!progress) {
3511			nr_retries--;
3512			/* maybe some writeback is necessary */
3513			congestion_wait(BLK_RW_ASYNC, HZ/10);
3514		}
3515
3516	}
3517	lru_add_drain();
3518	/* try move_account...there may be some *locked* pages. */
3519	goto move_account;
3520}
3521
3522int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3523{
3524	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3525}
3526
3527
3528static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3529{
3530	return mem_cgroup_from_cont(cont)->use_hierarchy;
3531}
3532
3533static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3534					u64 val)
3535{
3536	int retval = 0;
3537	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3538	struct cgroup *parent = cont->parent;
3539	struct mem_cgroup *parent_mem = NULL;
3540
3541	if (parent)
3542		parent_mem = mem_cgroup_from_cont(parent);
3543
3544	cgroup_lock();
3545	/*
3546	 * If parent's use_hierarchy is set, we can't make any modifications
3547	 * in the child subtrees. If it is unset, then the change can
3548	 * occur, provided the current cgroup has no children.
3549	 *
3550	 * For the root cgroup, parent_mem is NULL, we allow value to be
3551	 * set if there are no children.
3552	 */
3553	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3554				(val == 1 || val == 0)) {
3555		if (list_empty(&cont->children))
3556			mem->use_hierarchy = val;
3557		else
3558			retval = -EBUSY;
3559	} else
3560		retval = -EINVAL;
3561	cgroup_unlock();
3562
3563	return retval;
3564}
3565
3566
3567static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3568					       enum mem_cgroup_stat_index idx)
3569{
3570	struct mem_cgroup *iter;
3571	long val = 0;
3572
3573	/* Per-cpu values can be negative, use a signed accumulator */
3574	for_each_mem_cgroup_tree(iter, mem)
3575		val += mem_cgroup_read_stat(iter, idx);
3576
3577	if (val < 0) /* race ? */
3578		val = 0;
3579	return val;
3580}
3581
3582static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3583{
3584	u64 val;
3585
3586	if (!mem_cgroup_is_root(mem)) {
3587		if (!swap)
3588			return res_counter_read_u64(&mem->res, RES_USAGE);
3589		else
3590			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3591	}
3592
3593	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3594	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3595
3596	if (swap)
3597		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3598
3599	return val << PAGE_SHIFT;
3600}
3601
3602static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3603{
3604	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3605	u64 val;
3606	int type, name;
3607
3608	type = MEMFILE_TYPE(cft->private);
3609	name = MEMFILE_ATTR(cft->private);
3610	switch (type) {
3611	case _MEM:
3612		if (name == RES_USAGE)
3613			val = mem_cgroup_usage(mem, false);
3614		else
3615			val = res_counter_read_u64(&mem->res, name);
3616		break;
3617	case _MEMSWAP:
3618		if (name == RES_USAGE)
3619			val = mem_cgroup_usage(mem, true);
3620		else
3621			val = res_counter_read_u64(&mem->memsw, name);
3622		break;
3623	default:
3624		BUG();
3625		break;
3626	}
3627	return val;
3628}
3629/*
3630 * The user of this function is...
3631 * RES_LIMIT.
3632 */
3633static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3634			    const char *buffer)
3635{
3636	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3637	int type, name;
3638	unsigned long long val;
3639	int ret;
3640
3641	type = MEMFILE_TYPE(cft->private);
3642	name = MEMFILE_ATTR(cft->private);
3643	switch (name) {
3644	case RES_LIMIT:
3645		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3646			ret = -EINVAL;
3647			break;
3648		}
3649		/* This function does all necessary parse...reuse it */
3650		ret = res_counter_memparse_write_strategy(buffer, &val);
3651		if (ret)
3652			break;
3653		if (type == _MEM)
3654			ret = mem_cgroup_resize_limit(memcg, val);
3655		else
3656			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3657		break;
3658	case RES_SOFT_LIMIT:
3659		ret = res_counter_memparse_write_strategy(buffer, &val);
3660		if (ret)
3661			break;
3662		/*
3663		 * For memsw, soft limits are hard to implement in terms
3664		 * of semantics, for now, we support soft limits for
3665		 * control without swap
3666		 */
3667		if (type == _MEM)
3668			ret = res_counter_set_soft_limit(&memcg->res, val);
3669		else
3670			ret = -EINVAL;
3671		break;
3672	default:
3673		ret = -EINVAL; /* should be BUG() ? */
3674		break;
3675	}
3676	return ret;
3677}
3678
3679static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3680		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3681{
3682	struct cgroup *cgroup;
3683	unsigned long long min_limit, min_memsw_limit, tmp;
3684
3685	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3686	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3687	cgroup = memcg->css.cgroup;
3688	if (!memcg->use_hierarchy)
3689		goto out;
3690
3691	while (cgroup->parent) {
3692		cgroup = cgroup->parent;
3693		memcg = mem_cgroup_from_cont(cgroup);
3694		if (!memcg->use_hierarchy)
3695			break;
3696		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3697		min_limit = min(min_limit, tmp);
3698		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3699		min_memsw_limit = min(min_memsw_limit, tmp);
3700	}
3701out:
3702	*mem_limit = min_limit;
3703	*memsw_limit = min_memsw_limit;
3704	return;
3705}
3706
3707static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3708{
3709	struct mem_cgroup *mem;
3710	int type, name;
3711
3712	mem = mem_cgroup_from_cont(cont);
3713	type = MEMFILE_TYPE(event);
3714	name = MEMFILE_ATTR(event);
3715	switch (name) {
3716	case RES_MAX_USAGE:
3717		if (type == _MEM)
3718			res_counter_reset_max(&mem->res);
3719		else
3720			res_counter_reset_max(&mem->memsw);
3721		break;
3722	case RES_FAILCNT:
3723		if (type == _MEM)
3724			res_counter_reset_failcnt(&mem->res);
3725		else
3726			res_counter_reset_failcnt(&mem->memsw);
3727		break;
3728	}
3729
3730	return 0;
3731}
3732
3733static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3734					struct cftype *cft)
3735{
3736	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3737}
3738
3739#ifdef CONFIG_MMU
3740static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3741					struct cftype *cft, u64 val)
3742{
3743	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3744
3745	if (val >= (1 << NR_MOVE_TYPE))
3746		return -EINVAL;
3747	/*
3748	 * We check this value several times in both in can_attach() and
3749	 * attach(), so we need cgroup lock to prevent this value from being
3750	 * inconsistent.
3751	 */
3752	cgroup_lock();
3753	mem->move_charge_at_immigrate = val;
3754	cgroup_unlock();
3755
3756	return 0;
3757}
3758#else
3759static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3760					struct cftype *cft, u64 val)
3761{
3762	return -ENOSYS;
3763}
3764#endif
3765
3766
3767/* For read statistics */
3768enum {
3769	MCS_CACHE,
3770	MCS_RSS,
3771	MCS_FILE_MAPPED,
3772	MCS_PGPGIN,
3773	MCS_PGPGOUT,
3774	MCS_SWAP,
3775	MCS_INACTIVE_ANON,
3776	MCS_ACTIVE_ANON,
3777	MCS_INACTIVE_FILE,
3778	MCS_ACTIVE_FILE,
3779	MCS_UNEVICTABLE,
3780	NR_MCS_STAT,
3781};
3782
3783struct mcs_total_stat {
3784	s64 stat[NR_MCS_STAT];
3785};
3786
3787struct {
3788	char *local_name;
3789	char *total_name;
3790} memcg_stat_strings[NR_MCS_STAT] = {
3791	{"cache", "total_cache"},
3792	{"rss", "total_rss"},
3793	{"mapped_file", "total_mapped_file"},
3794	{"pgpgin", "total_pgpgin"},
3795	{"pgpgout", "total_pgpgout"},
3796	{"swap", "total_swap"},
3797	{"inactive_anon", "total_inactive_anon"},
3798	{"active_anon", "total_active_anon"},
3799	{"inactive_file", "total_inactive_file"},
3800	{"active_file", "total_active_file"},
3801	{"unevictable", "total_unevictable"}
3802};
3803
3804
3805static void
3806mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3807{
3808	s64 val;
3809
3810	/* per cpu stat */
3811	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3812	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3813	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3814	s->stat[MCS_RSS] += val * PAGE_SIZE;
3815	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3816	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3817	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
3818	s->stat[MCS_PGPGIN] += val;
3819	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
3820	s->stat[MCS_PGPGOUT] += val;
3821	if (do_swap_account) {
3822		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3823		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3824	}
3825
3826	/* per zone stat */
3827	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3828	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3829	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3830	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3831	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3832	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3833	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3834	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3835	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3836	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3837}
3838
3839static void
3840mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3841{
3842	struct mem_cgroup *iter;
3843
3844	for_each_mem_cgroup_tree(iter, mem)
3845		mem_cgroup_get_local_stat(iter, s);
3846}
3847
3848static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3849				 struct cgroup_map_cb *cb)
3850{
3851	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3852	struct mcs_total_stat mystat;
3853	int i;
3854
3855	memset(&mystat, 0, sizeof(mystat));
3856	mem_cgroup_get_local_stat(mem_cont, &mystat);
3857
3858	for (i = 0; i < NR_MCS_STAT; i++) {
3859		if (i == MCS_SWAP && !do_swap_account)
3860			continue;
3861		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3862	}
3863
3864	/* Hierarchical information */
3865	{
3866		unsigned long long limit, memsw_limit;
3867		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3868		cb->fill(cb, "hierarchical_memory_limit", limit);
3869		if (do_swap_account)
3870			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3871	}
3872
3873	memset(&mystat, 0, sizeof(mystat));
3874	mem_cgroup_get_total_stat(mem_cont, &mystat);
3875	for (i = 0; i < NR_MCS_STAT; i++) {
3876		if (i == MCS_SWAP && !do_swap_account)
3877			continue;
3878		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3879	}
3880
3881#ifdef CONFIG_DEBUG_VM
3882	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3883
3884	{
3885		int nid, zid;
3886		struct mem_cgroup_per_zone *mz;
3887		unsigned long recent_rotated[2] = {0, 0};
3888		unsigned long recent_scanned[2] = {0, 0};
3889
3890		for_each_online_node(nid)
3891			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3892				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3893
3894				recent_rotated[0] +=
3895					mz->reclaim_stat.recent_rotated[0];
3896				recent_rotated[1] +=
3897					mz->reclaim_stat.recent_rotated[1];
3898				recent_scanned[0] +=
3899					mz->reclaim_stat.recent_scanned[0];
3900				recent_scanned[1] +=
3901					mz->reclaim_stat.recent_scanned[1];
3902			}
3903		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3904		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3905		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3906		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3907	}
3908#endif
3909
3910	return 0;
3911}
3912
3913static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3914{
3915	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3916
3917	return get_swappiness(memcg);
3918}
3919
3920static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3921				       u64 val)
3922{
3923	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3924	struct mem_cgroup *parent;
3925
3926	if (val > 100)
3927		return -EINVAL;
3928
3929	if (cgrp->parent == NULL)
3930		return -EINVAL;
3931
3932	parent = mem_cgroup_from_cont(cgrp->parent);
3933
3934	cgroup_lock();
3935
3936	/* If under hierarchy, only empty-root can set this value */
3937	if ((parent->use_hierarchy) ||
3938	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3939		cgroup_unlock();
3940		return -EINVAL;
3941	}
3942
3943	memcg->swappiness = val;
3944
3945	cgroup_unlock();
3946
3947	return 0;
3948}
3949
3950static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3951{
3952	struct mem_cgroup_threshold_ary *t;
3953	u64 usage;
3954	int i;
3955
3956	rcu_read_lock();
3957	if (!swap)
3958		t = rcu_dereference(memcg->thresholds.primary);
3959	else
3960		t = rcu_dereference(memcg->memsw_thresholds.primary);
3961
3962	if (!t)
3963		goto unlock;
3964
3965	usage = mem_cgroup_usage(memcg, swap);
3966
3967	/*
3968	 * current_threshold points to threshold just below usage.
3969	 * If it's not true, a threshold was crossed after last
3970	 * call of __mem_cgroup_threshold().
3971	 */
3972	i = t->current_threshold;
3973
3974	/*
3975	 * Iterate backward over array of thresholds starting from
3976	 * current_threshold and check if a threshold is crossed.
3977	 * If none of thresholds below usage is crossed, we read
3978	 * only one element of the array here.
3979	 */
3980	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3981		eventfd_signal(t->entries[i].eventfd, 1);
3982
3983	/* i = current_threshold + 1 */
3984	i++;
3985
3986	/*
3987	 * Iterate forward over array of thresholds starting from
3988	 * current_threshold+1 and check if a threshold is crossed.
3989	 * If none of thresholds above usage is crossed, we read
3990	 * only one element of the array here.
3991	 */
3992	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3993		eventfd_signal(t->entries[i].eventfd, 1);
3994
3995	/* Update current_threshold */
3996	t->current_threshold = i - 1;
3997unlock:
3998	rcu_read_unlock();
3999}
4000
4001static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4002{
4003	while (memcg) {
4004		__mem_cgroup_threshold(memcg, false);
4005		if (do_swap_account)
4006			__mem_cgroup_threshold(memcg, true);
4007
4008		memcg = parent_mem_cgroup(memcg);
4009	}
4010}
4011
4012static int compare_thresholds(const void *a, const void *b)
4013{
4014	const struct mem_cgroup_threshold *_a = a;
4015	const struct mem_cgroup_threshold *_b = b;
4016
4017	return _a->threshold - _b->threshold;
4018}
4019
4020static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4021{
4022	struct mem_cgroup_eventfd_list *ev;
4023
4024	list_for_each_entry(ev, &mem->oom_notify, list)
4025		eventfd_signal(ev->eventfd, 1);
4026	return 0;
4027}
4028
4029static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4030{
4031	struct mem_cgroup *iter;
4032
4033	for_each_mem_cgroup_tree(iter, mem)
4034		mem_cgroup_oom_notify_cb(iter);
4035}
4036
4037static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4038	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4039{
4040	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4041	struct mem_cgroup_thresholds *thresholds;
4042	struct mem_cgroup_threshold_ary *new;
4043	int type = MEMFILE_TYPE(cft->private);
4044	u64 threshold, usage;
4045	int i, size, ret;
4046
4047	ret = res_counter_memparse_write_strategy(args, &threshold);
4048	if (ret)
4049		return ret;
4050
4051	mutex_lock(&memcg->thresholds_lock);
4052
4053	if (type == _MEM)
4054		thresholds = &memcg->thresholds;
4055	else if (type == _MEMSWAP)
4056		thresholds = &memcg->memsw_thresholds;
4057	else
4058		BUG();
4059
4060	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4061
4062	/* Check if a threshold crossed before adding a new one */
4063	if (thresholds->primary)
4064		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4065
4066	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4067
4068	/* Allocate memory for new array of thresholds */
4069	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4070			GFP_KERNEL);
4071	if (!new) {
4072		ret = -ENOMEM;
4073		goto unlock;
4074	}
4075	new->size = size;
4076
4077	/* Copy thresholds (if any) to new array */
4078	if (thresholds->primary) {
4079		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4080				sizeof(struct mem_cgroup_threshold));
4081	}
4082
4083	/* Add new threshold */
4084	new->entries[size - 1].eventfd = eventfd;
4085	new->entries[size - 1].threshold = threshold;
4086
4087	/* Sort thresholds. Registering of new threshold isn't time-critical */
4088	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4089			compare_thresholds, NULL);
4090
4091	/* Find current threshold */
4092	new->current_threshold = -1;
4093	for (i = 0; i < size; i++) {
4094		if (new->entries[i].threshold < usage) {
4095			/*
4096			 * new->current_threshold will not be used until
4097			 * rcu_assign_pointer(), so it's safe to increment
4098			 * it here.
4099			 */
4100			++new->current_threshold;
4101		}
4102	}
4103
4104	/* Free old spare buffer and save old primary buffer as spare */
4105	kfree(thresholds->spare);
4106	thresholds->spare = thresholds->primary;
4107
4108	rcu_assign_pointer(thresholds->primary, new);
4109
4110	/* To be sure that nobody uses thresholds */
4111	synchronize_rcu();
4112
4113unlock:
4114	mutex_unlock(&memcg->thresholds_lock);
4115
4116	return ret;
4117}
4118
4119static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4120	struct cftype *cft, struct eventfd_ctx *eventfd)
4121{
4122	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4123	struct mem_cgroup_thresholds *thresholds;
4124	struct mem_cgroup_threshold_ary *new;
4125	int type = MEMFILE_TYPE(cft->private);
4126	u64 usage;
4127	int i, j, size;
4128
4129	mutex_lock(&memcg->thresholds_lock);
4130	if (type == _MEM)
4131		thresholds = &memcg->thresholds;
4132	else if (type == _MEMSWAP)
4133		thresholds = &memcg->memsw_thresholds;
4134	else
4135		BUG();
4136
4137	/*
4138	 * Something went wrong if we trying to unregister a threshold
4139	 * if we don't have thresholds
4140	 */
4141	BUG_ON(!thresholds);
4142
4143	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4144
4145	/* Check if a threshold crossed before removing */
4146	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4147
4148	/* Calculate new number of threshold */
4149	size = 0;
4150	for (i = 0; i < thresholds->primary->size; i++) {
4151		if (thresholds->primary->entries[i].eventfd != eventfd)
4152			size++;
4153	}
4154
4155	new = thresholds->spare;
4156
4157	/* Set thresholds array to NULL if we don't have thresholds */
4158	if (!size) {
4159		kfree(new);
4160		new = NULL;
4161		goto swap_buffers;
4162	}
4163
4164	new->size = size;
4165
4166	/* Copy thresholds and find current threshold */
4167	new->current_threshold = -1;
4168	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4169		if (thresholds->primary->entries[i].eventfd == eventfd)
4170			continue;
4171
4172		new->entries[j] = thresholds->primary->entries[i];
4173		if (new->entries[j].threshold < usage) {
4174			/*
4175			 * new->current_threshold will not be used
4176			 * until rcu_assign_pointer(), so it's safe to increment
4177			 * it here.
4178			 */
4179			++new->current_threshold;
4180		}
4181		j++;
4182	}
4183
4184swap_buffers:
4185	/* Swap primary and spare array */
4186	thresholds->spare = thresholds->primary;
4187	rcu_assign_pointer(thresholds->primary, new);
4188
4189	/* To be sure that nobody uses thresholds */
4190	synchronize_rcu();
4191
4192	mutex_unlock(&memcg->thresholds_lock);
4193}
4194
4195static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4196	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4197{
4198	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4199	struct mem_cgroup_eventfd_list *event;
4200	int type = MEMFILE_TYPE(cft->private);
4201
4202	BUG_ON(type != _OOM_TYPE);
4203	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4204	if (!event)
4205		return -ENOMEM;
4206
4207	mutex_lock(&memcg_oom_mutex);
4208
4209	event->eventfd = eventfd;
4210	list_add(&event->list, &memcg->oom_notify);
4211
4212	/* already in OOM ? */
4213	if (atomic_read(&memcg->oom_lock))
4214		eventfd_signal(eventfd, 1);
4215	mutex_unlock(&memcg_oom_mutex);
4216
4217	return 0;
4218}
4219
4220static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4221	struct cftype *cft, struct eventfd_ctx *eventfd)
4222{
4223	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4224	struct mem_cgroup_eventfd_list *ev, *tmp;
4225	int type = MEMFILE_TYPE(cft->private);
4226
4227	BUG_ON(type != _OOM_TYPE);
4228
4229	mutex_lock(&memcg_oom_mutex);
4230
4231	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4232		if (ev->eventfd == eventfd) {
4233			list_del(&ev->list);
4234			kfree(ev);
4235		}
4236	}
4237
4238	mutex_unlock(&memcg_oom_mutex);
4239}
4240
4241static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4242	struct cftype *cft,  struct cgroup_map_cb *cb)
4243{
4244	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4245
4246	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4247
4248	if (atomic_read(&mem->oom_lock))
4249		cb->fill(cb, "under_oom", 1);
4250	else
4251		cb->fill(cb, "under_oom", 0);
4252	return 0;
4253}
4254
4255static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4256	struct cftype *cft, u64 val)
4257{
4258	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4259	struct mem_cgroup *parent;
4260
4261	/* cannot set to root cgroup and only 0 and 1 are allowed */
4262	if (!cgrp->parent || !((val == 0) || (val == 1)))
4263		return -EINVAL;
4264
4265	parent = mem_cgroup_from_cont(cgrp->parent);
4266
4267	cgroup_lock();
4268	/* oom-kill-disable is a flag for subhierarchy. */
4269	if ((parent->use_hierarchy) ||
4270	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4271		cgroup_unlock();
4272		return -EINVAL;
4273	}
4274	mem->oom_kill_disable = val;
4275	if (!val)
4276		memcg_oom_recover(mem);
4277	cgroup_unlock();
4278	return 0;
4279}
4280
4281static struct cftype mem_cgroup_files[] = {
4282	{
4283		.name = "usage_in_bytes",
4284		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4285		.read_u64 = mem_cgroup_read,
4286		.register_event = mem_cgroup_usage_register_event,
4287		.unregister_event = mem_cgroup_usage_unregister_event,
4288	},
4289	{
4290		.name = "max_usage_in_bytes",
4291		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4292		.trigger = mem_cgroup_reset,
4293		.read_u64 = mem_cgroup_read,
4294	},
4295	{
4296		.name = "limit_in_bytes",
4297		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4298		.write_string = mem_cgroup_write,
4299		.read_u64 = mem_cgroup_read,
4300	},
4301	{
4302		.name = "soft_limit_in_bytes",
4303		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4304		.write_string = mem_cgroup_write,
4305		.read_u64 = mem_cgroup_read,
4306	},
4307	{
4308		.name = "failcnt",
4309		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4310		.trigger = mem_cgroup_reset,
4311		.read_u64 = mem_cgroup_read,
4312	},
4313	{
4314		.name = "stat",
4315		.read_map = mem_control_stat_show,
4316	},
4317	{
4318		.name = "force_empty",
4319		.trigger = mem_cgroup_force_empty_write,
4320	},
4321	{
4322		.name = "use_hierarchy",
4323		.write_u64 = mem_cgroup_hierarchy_write,
4324		.read_u64 = mem_cgroup_hierarchy_read,
4325	},
4326	{
4327		.name = "swappiness",
4328		.read_u64 = mem_cgroup_swappiness_read,
4329		.write_u64 = mem_cgroup_swappiness_write,
4330	},
4331	{
4332		.name = "move_charge_at_immigrate",
4333		.read_u64 = mem_cgroup_move_charge_read,
4334		.write_u64 = mem_cgroup_move_charge_write,
4335	},
4336	{
4337		.name = "oom_control",
4338		.read_map = mem_cgroup_oom_control_read,
4339		.write_u64 = mem_cgroup_oom_control_write,
4340		.register_event = mem_cgroup_oom_register_event,
4341		.unregister_event = mem_cgroup_oom_unregister_event,
4342		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4343	},
4344};
4345
4346#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4347static struct cftype memsw_cgroup_files[] = {
4348	{
4349		.name = "memsw.usage_in_bytes",
4350		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4351		.read_u64 = mem_cgroup_read,
4352		.register_event = mem_cgroup_usage_register_event,
4353		.unregister_event = mem_cgroup_usage_unregister_event,
4354	},
4355	{
4356		.name = "memsw.max_usage_in_bytes",
4357		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4358		.trigger = mem_cgroup_reset,
4359		.read_u64 = mem_cgroup_read,
4360	},
4361	{
4362		.name = "memsw.limit_in_bytes",
4363		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4364		.write_string = mem_cgroup_write,
4365		.read_u64 = mem_cgroup_read,
4366	},
4367	{
4368		.name = "memsw.failcnt",
4369		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4370		.trigger = mem_cgroup_reset,
4371		.read_u64 = mem_cgroup_read,
4372	},
4373};
4374
4375static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4376{
4377	if (!do_swap_account)
4378		return 0;
4379	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4380				ARRAY_SIZE(memsw_cgroup_files));
4381};
4382#else
4383static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4384{
4385	return 0;
4386}
4387#endif
4388
4389static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4390{
4391	struct mem_cgroup_per_node *pn;
4392	struct mem_cgroup_per_zone *mz;
4393	enum lru_list l;
4394	int zone, tmp = node;
4395	/*
4396	 * This routine is called against possible nodes.
4397	 * But it's BUG to call kmalloc() against offline node.
4398	 *
4399	 * TODO: this routine can waste much memory for nodes which will
4400	 *       never be onlined. It's better to use memory hotplug callback
4401	 *       function.
4402	 */
4403	if (!node_state(node, N_NORMAL_MEMORY))
4404		tmp = -1;
4405	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4406	if (!pn)
4407		return 1;
4408
4409	mem->info.nodeinfo[node] = pn;
4410	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4411		mz = &pn->zoneinfo[zone];
4412		for_each_lru(l)
4413			INIT_LIST_HEAD(&mz->lists[l]);
4414		mz->usage_in_excess = 0;
4415		mz->on_tree = false;
4416		mz->mem = mem;
4417	}
4418	return 0;
4419}
4420
4421static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4422{
4423	kfree(mem->info.nodeinfo[node]);
4424}
4425
4426static struct mem_cgroup *mem_cgroup_alloc(void)
4427{
4428	struct mem_cgroup *mem;
4429	int size = sizeof(struct mem_cgroup);
4430
4431	/* Can be very big if MAX_NUMNODES is very big */
4432	if (size < PAGE_SIZE)
4433		mem = kzalloc(size, GFP_KERNEL);
4434	else
4435		mem = vzalloc(size);
4436
4437	if (!mem)
4438		return NULL;
4439
4440	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4441	if (!mem->stat)
4442		goto out_free;
4443	spin_lock_init(&mem->pcp_counter_lock);
4444	return mem;
4445
4446out_free:
4447	if (size < PAGE_SIZE)
4448		kfree(mem);
4449	else
4450		vfree(mem);
4451	return NULL;
4452}
4453
4454/*
4455 * At destroying mem_cgroup, references from swap_cgroup can remain.
4456 * (scanning all at force_empty is too costly...)
4457 *
4458 * Instead of clearing all references at force_empty, we remember
4459 * the number of reference from swap_cgroup and free mem_cgroup when
4460 * it goes down to 0.
4461 *
4462 * Removal of cgroup itself succeeds regardless of refs from swap.
4463 */
4464
4465static void __mem_cgroup_free(struct mem_cgroup *mem)
4466{
4467	int node;
4468
4469	mem_cgroup_remove_from_trees(mem);
4470	free_css_id(&mem_cgroup_subsys, &mem->css);
4471
4472	for_each_node_state(node, N_POSSIBLE)
4473		free_mem_cgroup_per_zone_info(mem, node);
4474
4475	free_percpu(mem->stat);
4476	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4477		kfree(mem);
4478	else
4479		vfree(mem);
4480}
4481
4482static void mem_cgroup_get(struct mem_cgroup *mem)
4483{
4484	atomic_inc(&mem->refcnt);
4485}
4486
4487static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4488{
4489	if (atomic_sub_and_test(count, &mem->refcnt)) {
4490		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4491		__mem_cgroup_free(mem);
4492		if (parent)
4493			mem_cgroup_put(parent);
4494	}
4495}
4496
4497static void mem_cgroup_put(struct mem_cgroup *mem)
4498{
4499	__mem_cgroup_put(mem, 1);
4500}
4501
4502/*
4503 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4504 */
4505static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4506{
4507	if (!mem->res.parent)
4508		return NULL;
4509	return mem_cgroup_from_res_counter(mem->res.parent, res);
4510}
4511
4512#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4513static void __init enable_swap_cgroup(void)
4514{
4515	if (!mem_cgroup_disabled() && really_do_swap_account)
4516		do_swap_account = 1;
4517}
4518#else
4519static void __init enable_swap_cgroup(void)
4520{
4521}
4522#endif
4523
4524static int mem_cgroup_soft_limit_tree_init(void)
4525{
4526	struct mem_cgroup_tree_per_node *rtpn;
4527	struct mem_cgroup_tree_per_zone *rtpz;
4528	int tmp, node, zone;
4529
4530	for_each_node_state(node, N_POSSIBLE) {
4531		tmp = node;
4532		if (!node_state(node, N_NORMAL_MEMORY))
4533			tmp = -1;
4534		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4535		if (!rtpn)
4536			return 1;
4537
4538		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4539
4540		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4541			rtpz = &rtpn->rb_tree_per_zone[zone];
4542			rtpz->rb_root = RB_ROOT;
4543			spin_lock_init(&rtpz->lock);
4544		}
4545	}
4546	return 0;
4547}
4548
4549static struct cgroup_subsys_state * __ref
4550mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4551{
4552	struct mem_cgroup *mem, *parent;
4553	long error = -ENOMEM;
4554	int node;
4555
4556	mem = mem_cgroup_alloc();
4557	if (!mem)
4558		return ERR_PTR(error);
4559
4560	for_each_node_state(node, N_POSSIBLE)
4561		if (alloc_mem_cgroup_per_zone_info(mem, node))
4562			goto free_out;
4563
4564	/* root ? */
4565	if (cont->parent == NULL) {
4566		int cpu;
4567		enable_swap_cgroup();
4568		parent = NULL;
4569		root_mem_cgroup = mem;
4570		if (mem_cgroup_soft_limit_tree_init())
4571			goto free_out;
4572		for_each_possible_cpu(cpu) {
4573			struct memcg_stock_pcp *stock =
4574						&per_cpu(memcg_stock, cpu);
4575			INIT_WORK(&stock->work, drain_local_stock);
4576		}
4577		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4578	} else {
4579		parent = mem_cgroup_from_cont(cont->parent);
4580		mem->use_hierarchy = parent->use_hierarchy;
4581		mem->oom_kill_disable = parent->oom_kill_disable;
4582	}
4583
4584	if (parent && parent->use_hierarchy) {
4585		res_counter_init(&mem->res, &parent->res);
4586		res_counter_init(&mem->memsw, &parent->memsw);
4587		/*
4588		 * We increment refcnt of the parent to ensure that we can
4589		 * safely access it on res_counter_charge/uncharge.
4590		 * This refcnt will be decremented when freeing this
4591		 * mem_cgroup(see mem_cgroup_put).
4592		 */
4593		mem_cgroup_get(parent);
4594	} else {
4595		res_counter_init(&mem->res, NULL);
4596		res_counter_init(&mem->memsw, NULL);
4597	}
4598	mem->last_scanned_child = 0;
4599	INIT_LIST_HEAD(&mem->oom_notify);
4600
4601	if (parent)
4602		mem->swappiness = get_swappiness(parent);
4603	atomic_set(&mem->refcnt, 1);
4604	mem->move_charge_at_immigrate = 0;
4605	mutex_init(&mem->thresholds_lock);
4606	return &mem->css;
4607free_out:
4608	__mem_cgroup_free(mem);
4609	root_mem_cgroup = NULL;
4610	return ERR_PTR(error);
4611}
4612
4613static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4614					struct cgroup *cont)
4615{
4616	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4617
4618	return mem_cgroup_force_empty(mem, false);
4619}
4620
4621static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4622				struct cgroup *cont)
4623{
4624	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4625
4626	mem_cgroup_put(mem);
4627}
4628
4629static int mem_cgroup_populate(struct cgroup_subsys *ss,
4630				struct cgroup *cont)
4631{
4632	int ret;
4633
4634	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4635				ARRAY_SIZE(mem_cgroup_files));
4636
4637	if (!ret)
4638		ret = register_memsw_files(cont, ss);
4639	return ret;
4640}
4641
4642#ifdef CONFIG_MMU
4643/* Handlers for move charge at task migration. */
4644#define PRECHARGE_COUNT_AT_ONCE	256
4645static int mem_cgroup_do_precharge(unsigned long count)
4646{
4647	int ret = 0;
4648	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4649	struct mem_cgroup *mem = mc.to;
4650
4651	if (mem_cgroup_is_root(mem)) {
4652		mc.precharge += count;
4653		/* we don't need css_get for root */
4654		return ret;
4655	}
4656	/* try to charge at once */
4657	if (count > 1) {
4658		struct res_counter *dummy;
4659		/*
4660		 * "mem" cannot be under rmdir() because we've already checked
4661		 * by cgroup_lock_live_cgroup() that it is not removed and we
4662		 * are still under the same cgroup_mutex. So we can postpone
4663		 * css_get().
4664		 */
4665		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4666			goto one_by_one;
4667		if (do_swap_account && res_counter_charge(&mem->memsw,
4668						PAGE_SIZE * count, &dummy)) {
4669			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4670			goto one_by_one;
4671		}
4672		mc.precharge += count;
4673		return ret;
4674	}
4675one_by_one:
4676	/* fall back to one by one charge */
4677	while (count--) {
4678		if (signal_pending(current)) {
4679			ret = -EINTR;
4680			break;
4681		}
4682		if (!batch_count--) {
4683			batch_count = PRECHARGE_COUNT_AT_ONCE;
4684			cond_resched();
4685		}
4686		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4687		if (ret || !mem)
4688			/* mem_cgroup_clear_mc() will do uncharge later */
4689			return -ENOMEM;
4690		mc.precharge++;
4691	}
4692	return ret;
4693}
4694
4695/**
4696 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4697 * @vma: the vma the pte to be checked belongs
4698 * @addr: the address corresponding to the pte to be checked
4699 * @ptent: the pte to be checked
4700 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4701 *
4702 * Returns
4703 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4704 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4705 *     move charge. if @target is not NULL, the page is stored in target->page
4706 *     with extra refcnt got(Callers should handle it).
4707 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4708 *     target for charge migration. if @target is not NULL, the entry is stored
4709 *     in target->ent.
4710 *
4711 * Called with pte lock held.
4712 */
4713union mc_target {
4714	struct page	*page;
4715	swp_entry_t	ent;
4716};
4717
4718enum mc_target_type {
4719	MC_TARGET_NONE,	/* not used */
4720	MC_TARGET_PAGE,
4721	MC_TARGET_SWAP,
4722};
4723
4724static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4725						unsigned long addr, pte_t ptent)
4726{
4727	struct page *page = vm_normal_page(vma, addr, ptent);
4728
4729	if (!page || !page_mapped(page))
4730		return NULL;
4731	if (PageAnon(page)) {
4732		/* we don't move shared anon */
4733		if (!move_anon() || page_mapcount(page) > 2)
4734			return NULL;
4735	} else if (!move_file())
4736		/* we ignore mapcount for file pages */
4737		return NULL;
4738	if (!get_page_unless_zero(page))
4739		return NULL;
4740
4741	return page;
4742}
4743
4744static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4745			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4746{
4747	int usage_count;
4748	struct page *page = NULL;
4749	swp_entry_t ent = pte_to_swp_entry(ptent);
4750
4751	if (!move_anon() || non_swap_entry(ent))
4752		return NULL;
4753	usage_count = mem_cgroup_count_swap_user(ent, &page);
4754	if (usage_count > 1) { /* we don't move shared anon */
4755		if (page)
4756			put_page(page);
4757		return NULL;
4758	}
4759	if (do_swap_account)
4760		entry->val = ent.val;
4761
4762	return page;
4763}
4764
4765static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4766			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4767{
4768	struct page *page = NULL;
4769	struct inode *inode;
4770	struct address_space *mapping;
4771	pgoff_t pgoff;
4772
4773	if (!vma->vm_file) /* anonymous vma */
4774		return NULL;
4775	if (!move_file())
4776		return NULL;
4777
4778	inode = vma->vm_file->f_path.dentry->d_inode;
4779	mapping = vma->vm_file->f_mapping;
4780	if (pte_none(ptent))
4781		pgoff = linear_page_index(vma, addr);
4782	else /* pte_file(ptent) is true */
4783		pgoff = pte_to_pgoff(ptent);
4784
4785	/* page is moved even if it's not RSS of this task(page-faulted). */
4786	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4787		page = find_get_page(mapping, pgoff);
4788	} else { /* shmem/tmpfs file. we should take account of swap too. */
4789		swp_entry_t ent;
4790		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4791		if (do_swap_account)
4792			entry->val = ent.val;
4793	}
4794
4795	return page;
4796}
4797
4798static int is_target_pte_for_mc(struct vm_area_struct *vma,
4799		unsigned long addr, pte_t ptent, union mc_target *target)
4800{
4801	struct page *page = NULL;
4802	struct page_cgroup *pc;
4803	int ret = 0;
4804	swp_entry_t ent = { .val = 0 };
4805
4806	if (pte_present(ptent))
4807		page = mc_handle_present_pte(vma, addr, ptent);
4808	else if (is_swap_pte(ptent))
4809		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4810	else if (pte_none(ptent) || pte_file(ptent))
4811		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4812
4813	if (!page && !ent.val)
4814		return 0;
4815	if (page) {
4816		pc = lookup_page_cgroup(page);
4817		/*
4818		 * Do only loose check w/o page_cgroup lock.
4819		 * mem_cgroup_move_account() checks the pc is valid or not under
4820		 * the lock.
4821		 */
4822		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4823			ret = MC_TARGET_PAGE;
4824			if (target)
4825				target->page = page;
4826		}
4827		if (!ret || !target)
4828			put_page(page);
4829	}
4830	/* There is a swap entry and a page doesn't exist or isn't charged */
4831	if (ent.val && !ret &&
4832			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4833		ret = MC_TARGET_SWAP;
4834		if (target)
4835			target->ent = ent;
4836	}
4837	return ret;
4838}
4839
4840static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4841					unsigned long addr, unsigned long end,
4842					struct mm_walk *walk)
4843{
4844	struct vm_area_struct *vma = walk->private;
4845	pte_t *pte;
4846	spinlock_t *ptl;
4847
4848	split_huge_page_pmd(walk->mm, pmd);
4849
4850	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4851	for (; addr != end; pte++, addr += PAGE_SIZE)
4852		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4853			mc.precharge++;	/* increment precharge temporarily */
4854	pte_unmap_unlock(pte - 1, ptl);
4855	cond_resched();
4856
4857	return 0;
4858}
4859
4860static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4861{
4862	unsigned long precharge;
4863	struct vm_area_struct *vma;
4864
4865	down_read(&mm->mmap_sem);
4866	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4867		struct mm_walk mem_cgroup_count_precharge_walk = {
4868			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4869			.mm = mm,
4870			.private = vma,
4871		};
4872		if (is_vm_hugetlb_page(vma))
4873			continue;
4874		walk_page_range(vma->vm_start, vma->vm_end,
4875					&mem_cgroup_count_precharge_walk);
4876	}
4877	up_read(&mm->mmap_sem);
4878
4879	precharge = mc.precharge;
4880	mc.precharge = 0;
4881
4882	return precharge;
4883}
4884
4885static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4886{
4887	unsigned long precharge = mem_cgroup_count_precharge(mm);
4888
4889	VM_BUG_ON(mc.moving_task);
4890	mc.moving_task = current;
4891	return mem_cgroup_do_precharge(precharge);
4892}
4893
4894/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4895static void __mem_cgroup_clear_mc(void)
4896{
4897	struct mem_cgroup *from = mc.from;
4898	struct mem_cgroup *to = mc.to;
4899
4900	/* we must uncharge all the leftover precharges from mc.to */
4901	if (mc.precharge) {
4902		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4903		mc.precharge = 0;
4904	}
4905	/*
4906	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4907	 * we must uncharge here.
4908	 */
4909	if (mc.moved_charge) {
4910		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4911		mc.moved_charge = 0;
4912	}
4913	/* we must fixup refcnts and charges */
4914	if (mc.moved_swap) {
4915		/* uncharge swap account from the old cgroup */
4916		if (!mem_cgroup_is_root(mc.from))
4917			res_counter_uncharge(&mc.from->memsw,
4918						PAGE_SIZE * mc.moved_swap);
4919		__mem_cgroup_put(mc.from, mc.moved_swap);
4920
4921		if (!mem_cgroup_is_root(mc.to)) {
4922			/*
4923			 * we charged both to->res and to->memsw, so we should
4924			 * uncharge to->res.
4925			 */
4926			res_counter_uncharge(&mc.to->res,
4927						PAGE_SIZE * mc.moved_swap);
4928		}
4929		/* we've already done mem_cgroup_get(mc.to) */
4930		mc.moved_swap = 0;
4931	}
4932	memcg_oom_recover(from);
4933	memcg_oom_recover(to);
4934	wake_up_all(&mc.waitq);
4935}
4936
4937static void mem_cgroup_clear_mc(void)
4938{
4939	struct mem_cgroup *from = mc.from;
4940
4941	/*
4942	 * we must clear moving_task before waking up waiters at the end of
4943	 * task migration.
4944	 */
4945	mc.moving_task = NULL;
4946	__mem_cgroup_clear_mc();
4947	spin_lock(&mc.lock);
4948	mc.from = NULL;
4949	mc.to = NULL;
4950	spin_unlock(&mc.lock);
4951	mem_cgroup_end_move(from);
4952}
4953
4954static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4955				struct cgroup *cgroup,
4956				struct task_struct *p)
4957{
4958	int ret = 0;
4959	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4960
4961	if (mem->move_charge_at_immigrate) {
4962		struct mm_struct *mm;
4963		struct mem_cgroup *from = mem_cgroup_from_task(p);
4964
4965		VM_BUG_ON(from == mem);
4966
4967		mm = get_task_mm(p);
4968		if (!mm)
4969			return 0;
4970		/* We move charges only when we move a owner of the mm */
4971		if (mm->owner == p) {
4972			VM_BUG_ON(mc.from);
4973			VM_BUG_ON(mc.to);
4974			VM_BUG_ON(mc.precharge);
4975			VM_BUG_ON(mc.moved_charge);
4976			VM_BUG_ON(mc.moved_swap);
4977			mem_cgroup_start_move(from);
4978			spin_lock(&mc.lock);
4979			mc.from = from;
4980			mc.to = mem;
4981			spin_unlock(&mc.lock);
4982			/* We set mc.moving_task later */
4983
4984			ret = mem_cgroup_precharge_mc(mm);
4985			if (ret)
4986				mem_cgroup_clear_mc();
4987		}
4988		mmput(mm);
4989	}
4990	return ret;
4991}
4992
4993static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4994				struct cgroup *cgroup,
4995				struct task_struct *p)
4996{
4997	mem_cgroup_clear_mc();
4998}
4999
5000static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5001				unsigned long addr, unsigned long end,
5002				struct mm_walk *walk)
5003{
5004	int ret = 0;
5005	struct vm_area_struct *vma = walk->private;
5006	pte_t *pte;
5007	spinlock_t *ptl;
5008
5009	split_huge_page_pmd(walk->mm, pmd);
5010retry:
5011	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5012	for (; addr != end; addr += PAGE_SIZE) {
5013		pte_t ptent = *(pte++);
5014		union mc_target target;
5015		int type;
5016		struct page *page;
5017		struct page_cgroup *pc;
5018		swp_entry_t ent;
5019
5020		if (!mc.precharge)
5021			break;
5022
5023		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5024		switch (type) {
5025		case MC_TARGET_PAGE:
5026			page = target.page;
5027			if (isolate_lru_page(page))
5028				goto put;
5029			pc = lookup_page_cgroup(page);
5030			if (!mem_cgroup_move_account(page, 1, pc,
5031						     mc.from, mc.to, false)) {
5032				mc.precharge--;
5033				/* we uncharge from mc.from later. */
5034				mc.moved_charge++;
5035			}
5036			putback_lru_page(page);
5037put:			/* is_target_pte_for_mc() gets the page */
5038			put_page(page);
5039			break;
5040		case MC_TARGET_SWAP:
5041			ent = target.ent;
5042			if (!mem_cgroup_move_swap_account(ent,
5043						mc.from, mc.to, false)) {
5044				mc.precharge--;
5045				/* we fixup refcnts and charges later. */
5046				mc.moved_swap++;
5047			}
5048			break;
5049		default:
5050			break;
5051		}
5052	}
5053	pte_unmap_unlock(pte - 1, ptl);
5054	cond_resched();
5055
5056	if (addr != end) {
5057		/*
5058		 * We have consumed all precharges we got in can_attach().
5059		 * We try charge one by one, but don't do any additional
5060		 * charges to mc.to if we have failed in charge once in attach()
5061		 * phase.
5062		 */
5063		ret = mem_cgroup_do_precharge(1);
5064		if (!ret)
5065			goto retry;
5066	}
5067
5068	return ret;
5069}
5070
5071static void mem_cgroup_move_charge(struct mm_struct *mm)
5072{
5073	struct vm_area_struct *vma;
5074
5075	lru_add_drain_all();
5076retry:
5077	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5078		/*
5079		 * Someone who are holding the mmap_sem might be waiting in
5080		 * waitq. So we cancel all extra charges, wake up all waiters,
5081		 * and retry. Because we cancel precharges, we might not be able
5082		 * to move enough charges, but moving charge is a best-effort
5083		 * feature anyway, so it wouldn't be a big problem.
5084		 */
5085		__mem_cgroup_clear_mc();
5086		cond_resched();
5087		goto retry;
5088	}
5089	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5090		int ret;
5091		struct mm_walk mem_cgroup_move_charge_walk = {
5092			.pmd_entry = mem_cgroup_move_charge_pte_range,
5093			.mm = mm,
5094			.private = vma,
5095		};
5096		if (is_vm_hugetlb_page(vma))
5097			continue;
5098		ret = walk_page_range(vma->vm_start, vma->vm_end,
5099						&mem_cgroup_move_charge_walk);
5100		if (ret)
5101			/*
5102			 * means we have consumed all precharges and failed in
5103			 * doing additional charge. Just abandon here.
5104			 */
5105			break;
5106	}
5107	up_read(&mm->mmap_sem);
5108}
5109
5110static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5111				struct cgroup *cont,
5112				struct cgroup *old_cont,
5113				struct task_struct *p)
5114{
5115	struct mm_struct *mm;
5116
5117	if (!mc.to)
5118		/* no need to move charge */
5119		return;
5120
5121	mm = get_task_mm(p);
5122	if (mm) {
5123		mem_cgroup_move_charge(mm);
5124		mmput(mm);
5125	}
5126	mem_cgroup_clear_mc();
5127}
5128#else	/* !CONFIG_MMU */
5129static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5130				struct cgroup *cgroup,
5131				struct task_struct *p)
5132{
5133	return 0;
5134}
5135static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5136				struct cgroup *cgroup,
5137				struct task_struct *p)
5138{
5139}
5140static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5141				struct cgroup *cont,
5142				struct cgroup *old_cont,
5143				struct task_struct *p)
5144{
5145}
5146#endif
5147
5148struct cgroup_subsys mem_cgroup_subsys = {
5149	.name = "memory",
5150	.subsys_id = mem_cgroup_subsys_id,
5151	.create = mem_cgroup_create,
5152	.pre_destroy = mem_cgroup_pre_destroy,
5153	.destroy = mem_cgroup_destroy,
5154	.populate = mem_cgroup_populate,
5155	.can_attach = mem_cgroup_can_attach,
5156	.cancel_attach = mem_cgroup_cancel_attach,
5157	.attach = mem_cgroup_move_task,
5158	.early_init = 0,
5159	.use_id = 1,
5160};
5161
5162#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5163static int __init enable_swap_account(char *s)
5164{
5165	/* consider enabled if no parameter or 1 is given */
5166	if (!strcmp(s, "1"))
5167		really_do_swap_account = 1;
5168	else if (!strcmp(s, "0"))
5169		really_do_swap_account = 0;
5170	return 1;
5171}
5172__setup("swapaccount=", enable_swap_account);
5173
5174#endif
5175