memcontrol.c revision fceda1bf498677501befc7da72fd2e4de7f18466
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
27#include <linux/mm.h>
28#include <linux/hugetlb.h>
29#include <linux/pagemap.h>
30#include <linux/smp.h>
31#include <linux/page-flags.h>
32#include <linux/backing-dev.h>
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
35#include <linux/limits.h>
36#include <linux/mutex.h>
37#include <linux/rbtree.h>
38#include <linux/slab.h>
39#include <linux/swap.h>
40#include <linux/swapops.h>
41#include <linux/spinlock.h>
42#include <linux/eventfd.h>
43#include <linux/sort.h>
44#include <linux/fs.h>
45#include <linux/seq_file.h>
46#include <linux/vmalloc.h>
47#include <linux/mm_inline.h>
48#include <linux/page_cgroup.h>
49#include <linux/cpu.h>
50#include <linux/oom.h>
51#include "internal.h"
52
53#include <asm/uaccess.h>
54
55#include <trace/events/vmscan.h>
56
57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58#define MEM_CGROUP_RECLAIM_RETRIES	5
59struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63int do_swap_account __read_mostly;
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
72#else
73#define do_swap_account		(0)
74#endif
75
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90	/*
91	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92	 */
93	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100	/* incremented at every  pagein/pageout */
101	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103
104	MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108	s64 count[MEM_CGROUP_STAT_NSTATS];
109};
110
111/*
112 * per-zone information in memory controller.
113 */
114struct mem_cgroup_per_zone {
115	/*
116	 * spin_lock to protect the per cgroup LRU
117	 */
118	struct list_head	lists[NR_LRU_LISTS];
119	unsigned long		count[NR_LRU_LISTS];
120
121	struct zone_reclaim_stat reclaim_stat;
122	struct rb_node		tree_node;	/* RB tree node */
123	unsigned long long	usage_in_excess;/* Set to the value by which */
124						/* the soft limit is exceeded*/
125	bool			on_tree;
126	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127						/* use container_of	   */
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146	struct rb_root rb_root;
147	spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160struct mem_cgroup_threshold {
161	struct eventfd_ctx *eventfd;
162	u64 threshold;
163};
164
165/* For threshold */
166struct mem_cgroup_threshold_ary {
167	/* An array index points to threshold just below usage. */
168	int current_threshold;
169	/* Size of entries[] */
170	unsigned int size;
171	/* Array of thresholds */
172	struct mem_cgroup_threshold entries[0];
173};
174
175struct mem_cgroup_thresholds {
176	/* Primary thresholds array */
177	struct mem_cgroup_threshold_ary *primary;
178	/*
179	 * Spare threshold array.
180	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181	 * It must be able to store at least primary->size - 1 entries.
182	 */
183	struct mem_cgroup_threshold_ary *spare;
184};
185
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188	struct list_head list;
189	struct eventfd_ctx *eventfd;
190};
191
192static void mem_cgroup_threshold(struct mem_cgroup *mem);
193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206struct mem_cgroup {
207	struct cgroup_subsys_state css;
208	/*
209	 * the counter to account for memory usage
210	 */
211	struct res_counter res;
212	/*
213	 * the counter to account for mem+swap usage.
214	 */
215	struct res_counter memsw;
216	/*
217	 * Per cgroup active and inactive list, similar to the
218	 * per zone LRU lists.
219	 */
220	struct mem_cgroup_lru_info info;
221
222	/*
223	  protect against reclaim related member.
224	*/
225	spinlock_t reclaim_param_lock;
226
227	/*
228	 * While reclaiming in a hierarchy, we cache the last child we
229	 * reclaimed from.
230	 */
231	int last_scanned_child;
232	/*
233	 * Should the accounting and control be hierarchical, per subtree?
234	 */
235	bool use_hierarchy;
236	atomic_t	oom_lock;
237	atomic_t	refcnt;
238
239	unsigned int	swappiness;
240	/* OOM-Killer disable */
241	int		oom_kill_disable;
242
243	/* set when res.limit == memsw.limit */
244	bool		memsw_is_minimum;
245
246	/* protect arrays of thresholds */
247	struct mutex thresholds_lock;
248
249	/* thresholds for memory usage. RCU-protected */
250	struct mem_cgroup_thresholds thresholds;
251
252	/* thresholds for mem+swap usage. RCU-protected */
253	struct mem_cgroup_thresholds memsw_thresholds;
254
255	/* For oom notifier event fd */
256	struct list_head oom_notify;
257
258	/*
259	 * Should we move charges of a task when a task is moved into this
260	 * mem_cgroup ? And what type of charges should we move ?
261	 */
262	unsigned long 	move_charge_at_immigrate;
263	/*
264	 * percpu counter.
265	 */
266	struct mem_cgroup_stat_cpu *stat;
267	/*
268	 * used when a cpu is offlined or other synchronizations
269	 * See mem_cgroup_read_stat().
270	 */
271	struct mem_cgroup_stat_cpu nocpu_base;
272	spinlock_t pcp_counter_lock;
273};
274
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
281	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283	NR_MOVE_TYPE,
284};
285
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
288	spinlock_t	  lock; /* for from, to */
289	struct mem_cgroup *from;
290	struct mem_cgroup *to;
291	unsigned long precharge;
292	unsigned long moved_charge;
293	unsigned long moved_swap;
294	struct task_struct *moving_task;	/* a task moving charges */
295	wait_queue_head_t waitq;		/* a waitq for other context */
296} mc = {
297	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
300
301static bool move_anon(void)
302{
303	return test_bit(MOVE_CHARGE_TYPE_ANON,
304					&mc.to->move_charge_at_immigrate);
305}
306
307static bool move_file(void)
308{
309	return test_bit(MOVE_CHARGE_TYPE_FILE,
310					&mc.to->move_charge_at_immigrate);
311}
312
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
318#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
319
320enum charge_type {
321	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
325	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
326	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327	NR_CHARGE_TYPE,
328};
329
330/* only for here (for easy reading.) */
331#define PCGF_CACHE	(1UL << PCG_CACHE)
332#define PCGF_USED	(1UL << PCG_USED)
333#define PCGF_LOCK	(1UL << PCG_LOCK)
334/* Not used, but added here for completeness */
335#define PCGF_ACCT	(1UL << PCG_ACCT)
336
337/* for encoding cft->private value on file */
338#define _MEM			(0)
339#define _MEMSWAP		(1)
340#define _OOM_TYPE		(2)
341#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
342#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
343#define MEMFILE_ATTR(val)	((val) & 0xffff)
344/* Used for OOM nofiier */
345#define OOM_CONTROL		(0)
346
347/*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
351#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
353#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
355#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356
357static void mem_cgroup_get(struct mem_cgroup *mem);
358static void mem_cgroup_put(struct mem_cgroup *mem);
359static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360static void drain_all_stock_async(void);
361
362static struct mem_cgroup_per_zone *
363mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364{
365	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366}
367
368struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369{
370	return &mem->css;
371}
372
373static struct mem_cgroup_per_zone *
374page_cgroup_zoneinfo(struct page_cgroup *pc)
375{
376	struct mem_cgroup *mem = pc->mem_cgroup;
377	int nid = page_cgroup_nid(pc);
378	int zid = page_cgroup_zid(pc);
379
380	if (!mem)
381		return NULL;
382
383	return mem_cgroup_zoneinfo(mem, nid, zid);
384}
385
386static struct mem_cgroup_tree_per_zone *
387soft_limit_tree_node_zone(int nid, int zid)
388{
389	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static struct mem_cgroup_tree_per_zone *
393soft_limit_tree_from_page(struct page *page)
394{
395	int nid = page_to_nid(page);
396	int zid = page_zonenum(page);
397
398	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static void
402__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403				struct mem_cgroup_per_zone *mz,
404				struct mem_cgroup_tree_per_zone *mctz,
405				unsigned long long new_usage_in_excess)
406{
407	struct rb_node **p = &mctz->rb_root.rb_node;
408	struct rb_node *parent = NULL;
409	struct mem_cgroup_per_zone *mz_node;
410
411	if (mz->on_tree)
412		return;
413
414	mz->usage_in_excess = new_usage_in_excess;
415	if (!mz->usage_in_excess)
416		return;
417	while (*p) {
418		parent = *p;
419		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420					tree_node);
421		if (mz->usage_in_excess < mz_node->usage_in_excess)
422			p = &(*p)->rb_left;
423		/*
424		 * We can't avoid mem cgroups that are over their soft
425		 * limit by the same amount
426		 */
427		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428			p = &(*p)->rb_right;
429	}
430	rb_link_node(&mz->tree_node, parent, p);
431	rb_insert_color(&mz->tree_node, &mctz->rb_root);
432	mz->on_tree = true;
433}
434
435static void
436__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437				struct mem_cgroup_per_zone *mz,
438				struct mem_cgroup_tree_per_zone *mctz)
439{
440	if (!mz->on_tree)
441		return;
442	rb_erase(&mz->tree_node, &mctz->rb_root);
443	mz->on_tree = false;
444}
445
446static void
447mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448				struct mem_cgroup_per_zone *mz,
449				struct mem_cgroup_tree_per_zone *mctz)
450{
451	spin_lock(&mctz->lock);
452	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453	spin_unlock(&mctz->lock);
454}
455
456
457static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458{
459	unsigned long long excess;
460	struct mem_cgroup_per_zone *mz;
461	struct mem_cgroup_tree_per_zone *mctz;
462	int nid = page_to_nid(page);
463	int zid = page_zonenum(page);
464	mctz = soft_limit_tree_from_page(page);
465
466	/*
467	 * Necessary to update all ancestors when hierarchy is used.
468	 * because their event counter is not touched.
469	 */
470	for (; mem; mem = parent_mem_cgroup(mem)) {
471		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472		excess = res_counter_soft_limit_excess(&mem->res);
473		/*
474		 * We have to update the tree if mz is on RB-tree or
475		 * mem is over its softlimit.
476		 */
477		if (excess || mz->on_tree) {
478			spin_lock(&mctz->lock);
479			/* if on-tree, remove it */
480			if (mz->on_tree)
481				__mem_cgroup_remove_exceeded(mem, mz, mctz);
482			/*
483			 * Insert again. mz->usage_in_excess will be updated.
484			 * If excess is 0, no tree ops.
485			 */
486			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487			spin_unlock(&mctz->lock);
488		}
489	}
490}
491
492static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493{
494	int node, zone;
495	struct mem_cgroup_per_zone *mz;
496	struct mem_cgroup_tree_per_zone *mctz;
497
498	for_each_node_state(node, N_POSSIBLE) {
499		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500			mz = mem_cgroup_zoneinfo(mem, node, zone);
501			mctz = soft_limit_tree_node_zone(node, zone);
502			mem_cgroup_remove_exceeded(mem, mz, mctz);
503		}
504	}
505}
506
507static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508{
509	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510}
511
512static struct mem_cgroup_per_zone *
513__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514{
515	struct rb_node *rightmost = NULL;
516	struct mem_cgroup_per_zone *mz;
517
518retry:
519	mz = NULL;
520	rightmost = rb_last(&mctz->rb_root);
521	if (!rightmost)
522		goto done;		/* Nothing to reclaim from */
523
524	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525	/*
526	 * Remove the node now but someone else can add it back,
527	 * we will to add it back at the end of reclaim to its correct
528	 * position in the tree.
529	 */
530	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532		!css_tryget(&mz->mem->css))
533		goto retry;
534done:
535	return mz;
536}
537
538static struct mem_cgroup_per_zone *
539mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540{
541	struct mem_cgroup_per_zone *mz;
542
543	spin_lock(&mctz->lock);
544	mz = __mem_cgroup_largest_soft_limit_node(mctz);
545	spin_unlock(&mctz->lock);
546	return mz;
547}
548
549/*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
568static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569		enum mem_cgroup_stat_index idx)
570{
571	int cpu;
572	s64 val = 0;
573
574	get_online_cpus();
575	for_each_online_cpu(cpu)
576		val += per_cpu(mem->stat->count[idx], cpu);
577#ifdef CONFIG_HOTPLUG_CPU
578	spin_lock(&mem->pcp_counter_lock);
579	val += mem->nocpu_base.count[idx];
580	spin_unlock(&mem->pcp_counter_lock);
581#endif
582	put_online_cpus();
583	return val;
584}
585
586static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587{
588	s64 ret;
589
590	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592	return ret;
593}
594
595static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596					 bool charge)
597{
598	int val = (charge) ? 1 : -1;
599	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600}
601
602static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603					 bool file, int nr_pages)
604{
605	preempt_disable();
606
607	if (file)
608		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609	else
610		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611
612	/* pagein of a big page is an event. So, ignore page size */
613	if (nr_pages > 0)
614		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615	else
616		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617
618	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619
620	preempt_enable();
621}
622
623static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624					enum lru_list idx)
625{
626	int nid, zid;
627	struct mem_cgroup_per_zone *mz;
628	u64 total = 0;
629
630	for_each_online_node(nid)
631		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632			mz = mem_cgroup_zoneinfo(mem, nid, zid);
633			total += MEM_CGROUP_ZSTAT(mz, idx);
634		}
635	return total;
636}
637
638static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
639{
640	s64 val;
641
642	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
643
644	return !(val & ((1 << event_mask_shift) - 1));
645}
646
647/*
648 * Check events in order.
649 *
650 */
651static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
652{
653	/* threshold event is triggered in finer grain than soft limit */
654	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655		mem_cgroup_threshold(mem);
656		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657			mem_cgroup_update_tree(mem, page);
658	}
659}
660
661static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
662{
663	return container_of(cgroup_subsys_state(cont,
664				mem_cgroup_subsys_id), struct mem_cgroup,
665				css);
666}
667
668struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669{
670	/*
671	 * mm_update_next_owner() may clear mm->owner to NULL
672	 * if it races with swapoff, page migration, etc.
673	 * So this can be called with p == NULL.
674	 */
675	if (unlikely(!p))
676		return NULL;
677
678	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679				struct mem_cgroup, css);
680}
681
682static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
683{
684	struct mem_cgroup *mem = NULL;
685
686	if (!mm)
687		return NULL;
688	/*
689	 * Because we have no locks, mm->owner's may be being moved to other
690	 * cgroup. We use css_tryget() here even if this looks
691	 * pessimistic (rather than adding locks here).
692	 */
693	rcu_read_lock();
694	do {
695		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696		if (unlikely(!mem))
697			break;
698	} while (!css_tryget(&mem->css));
699	rcu_read_unlock();
700	return mem;
701}
702
703/* The caller has to guarantee "mem" exists before calling this */
704static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
705{
706	struct cgroup_subsys_state *css;
707	int found;
708
709	if (!mem) /* ROOT cgroup has the smallest ID */
710		return root_mem_cgroup; /*css_put/get against root is ignored*/
711	if (!mem->use_hierarchy) {
712		if (css_tryget(&mem->css))
713			return mem;
714		return NULL;
715	}
716	rcu_read_lock();
717	/*
718	 * searching a memory cgroup which has the smallest ID under given
719	 * ROOT cgroup. (ID >= 1)
720	 */
721	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722	if (css && css_tryget(css))
723		mem = container_of(css, struct mem_cgroup, css);
724	else
725		mem = NULL;
726	rcu_read_unlock();
727	return mem;
728}
729
730static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731					struct mem_cgroup *root,
732					bool cond)
733{
734	int nextid = css_id(&iter->css) + 1;
735	int found;
736	int hierarchy_used;
737	struct cgroup_subsys_state *css;
738
739	hierarchy_used = iter->use_hierarchy;
740
741	css_put(&iter->css);
742	/* If no ROOT, walk all, ignore hierarchy */
743	if (!cond || (root && !hierarchy_used))
744		return NULL;
745
746	if (!root)
747		root = root_mem_cgroup;
748
749	do {
750		iter = NULL;
751		rcu_read_lock();
752
753		css = css_get_next(&mem_cgroup_subsys, nextid,
754				&root->css, &found);
755		if (css && css_tryget(css))
756			iter = container_of(css, struct mem_cgroup, css);
757		rcu_read_unlock();
758		/* If css is NULL, no more cgroups will be found */
759		nextid = found + 1;
760	} while (css && !iter);
761
762	return iter;
763}
764/*
765 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766 * be careful that "break" loop is not allowed. We have reference count.
767 * Instead of that modify "cond" to be false and "continue" to exit the loop.
768 */
769#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
770	for (iter = mem_cgroup_start_loop(root);\
771	     iter != NULL;\
772	     iter = mem_cgroup_get_next(iter, root, cond))
773
774#define for_each_mem_cgroup_tree(iter, root) \
775	for_each_mem_cgroup_tree_cond(iter, root, true)
776
777#define for_each_mem_cgroup_all(iter) \
778	for_each_mem_cgroup_tree_cond(iter, NULL, true)
779
780
781static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
782{
783	return (mem == root_mem_cgroup);
784}
785
786/*
787 * Following LRU functions are allowed to be used without PCG_LOCK.
788 * Operations are called by routine of global LRU independently from memcg.
789 * What we have to take care of here is validness of pc->mem_cgroup.
790 *
791 * Changes to pc->mem_cgroup happens when
792 * 1. charge
793 * 2. moving account
794 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795 * It is added to LRU before charge.
796 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797 * When moving account, the page is not on LRU. It's isolated.
798 */
799
800void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
801{
802	struct page_cgroup *pc;
803	struct mem_cgroup_per_zone *mz;
804
805	if (mem_cgroup_disabled())
806		return;
807	pc = lookup_page_cgroup(page);
808	/* can happen while we handle swapcache. */
809	if (!TestClearPageCgroupAcctLRU(pc))
810		return;
811	VM_BUG_ON(!pc->mem_cgroup);
812	/*
813	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
814	 * removed from global LRU.
815	 */
816	mz = page_cgroup_zoneinfo(pc);
817	/* huge page split is done under lru_lock. so, we have no races. */
818	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819	if (mem_cgroup_is_root(pc->mem_cgroup))
820		return;
821	VM_BUG_ON(list_empty(&pc->lru));
822	list_del_init(&pc->lru);
823}
824
825void mem_cgroup_del_lru(struct page *page)
826{
827	mem_cgroup_del_lru_list(page, page_lru(page));
828}
829
830void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831{
832	struct mem_cgroup_per_zone *mz;
833	struct page_cgroup *pc;
834
835	if (mem_cgroup_disabled())
836		return;
837
838	pc = lookup_page_cgroup(page);
839	/* unused or root page is not rotated. */
840	if (!PageCgroupUsed(pc))
841		return;
842	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
843	smp_rmb();
844	if (mem_cgroup_is_root(pc->mem_cgroup))
845		return;
846	mz = page_cgroup_zoneinfo(pc);
847	list_move(&pc->lru, &mz->lists[lru]);
848}
849
850void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851{
852	struct page_cgroup *pc;
853	struct mem_cgroup_per_zone *mz;
854
855	if (mem_cgroup_disabled())
856		return;
857	pc = lookup_page_cgroup(page);
858	VM_BUG_ON(PageCgroupAcctLRU(pc));
859	if (!PageCgroupUsed(pc))
860		return;
861	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
862	smp_rmb();
863	mz = page_cgroup_zoneinfo(pc);
864	/* huge page split is done under lru_lock. so, we have no races. */
865	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
866	SetPageCgroupAcctLRU(pc);
867	if (mem_cgroup_is_root(pc->mem_cgroup))
868		return;
869	list_add(&pc->lru, &mz->lists[lru]);
870}
871
872/*
873 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
874 * lru because the page may.be reused after it's fully uncharged (because of
875 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
876 * it again. This function is only used to charge SwapCache. It's done under
877 * lock_page and expected that zone->lru_lock is never held.
878 */
879static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
880{
881	unsigned long flags;
882	struct zone *zone = page_zone(page);
883	struct page_cgroup *pc = lookup_page_cgroup(page);
884
885	spin_lock_irqsave(&zone->lru_lock, flags);
886	/*
887	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
888	 * is guarded by lock_page() because the page is SwapCache.
889	 */
890	if (!PageCgroupUsed(pc))
891		mem_cgroup_del_lru_list(page, page_lru(page));
892	spin_unlock_irqrestore(&zone->lru_lock, flags);
893}
894
895static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
896{
897	unsigned long flags;
898	struct zone *zone = page_zone(page);
899	struct page_cgroup *pc = lookup_page_cgroup(page);
900
901	spin_lock_irqsave(&zone->lru_lock, flags);
902	/* link when the page is linked to LRU but page_cgroup isn't */
903	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
904		mem_cgroup_add_lru_list(page, page_lru(page));
905	spin_unlock_irqrestore(&zone->lru_lock, flags);
906}
907
908
909void mem_cgroup_move_lists(struct page *page,
910			   enum lru_list from, enum lru_list to)
911{
912	if (mem_cgroup_disabled())
913		return;
914	mem_cgroup_del_lru_list(page, from);
915	mem_cgroup_add_lru_list(page, to);
916}
917
918int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
919{
920	int ret;
921	struct mem_cgroup *curr = NULL;
922	struct task_struct *p;
923
924	p = find_lock_task_mm(task);
925	if (!p)
926		return 0;
927	curr = try_get_mem_cgroup_from_mm(p->mm);
928	task_unlock(p);
929	if (!curr)
930		return 0;
931	/*
932	 * We should check use_hierarchy of "mem" not "curr". Because checking
933	 * use_hierarchy of "curr" here make this function true if hierarchy is
934	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
935	 * hierarchy(even if use_hierarchy is disabled in "mem").
936	 */
937	if (mem->use_hierarchy)
938		ret = css_is_ancestor(&curr->css, &mem->css);
939	else
940		ret = (curr == mem);
941	css_put(&curr->css);
942	return ret;
943}
944
945static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
946{
947	unsigned long active;
948	unsigned long inactive;
949	unsigned long gb;
950	unsigned long inactive_ratio;
951
952	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
953	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
954
955	gb = (inactive + active) >> (30 - PAGE_SHIFT);
956	if (gb)
957		inactive_ratio = int_sqrt(10 * gb);
958	else
959		inactive_ratio = 1;
960
961	if (present_pages) {
962		present_pages[0] = inactive;
963		present_pages[1] = active;
964	}
965
966	return inactive_ratio;
967}
968
969int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
970{
971	unsigned long active;
972	unsigned long inactive;
973	unsigned long present_pages[2];
974	unsigned long inactive_ratio;
975
976	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
977
978	inactive = present_pages[0];
979	active = present_pages[1];
980
981	if (inactive * inactive_ratio < active)
982		return 1;
983
984	return 0;
985}
986
987int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
988{
989	unsigned long active;
990	unsigned long inactive;
991
992	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
993	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
994
995	return (active > inactive);
996}
997
998unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
999				       struct zone *zone,
1000				       enum lru_list lru)
1001{
1002	int nid = zone_to_nid(zone);
1003	int zid = zone_idx(zone);
1004	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1005
1006	return MEM_CGROUP_ZSTAT(mz, lru);
1007}
1008
1009struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1010						      struct zone *zone)
1011{
1012	int nid = zone_to_nid(zone);
1013	int zid = zone_idx(zone);
1014	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1015
1016	return &mz->reclaim_stat;
1017}
1018
1019struct zone_reclaim_stat *
1020mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1021{
1022	struct page_cgroup *pc;
1023	struct mem_cgroup_per_zone *mz;
1024
1025	if (mem_cgroup_disabled())
1026		return NULL;
1027
1028	pc = lookup_page_cgroup(page);
1029	if (!PageCgroupUsed(pc))
1030		return NULL;
1031	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1032	smp_rmb();
1033	mz = page_cgroup_zoneinfo(pc);
1034	if (!mz)
1035		return NULL;
1036
1037	return &mz->reclaim_stat;
1038}
1039
1040unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1041					struct list_head *dst,
1042					unsigned long *scanned, int order,
1043					int mode, struct zone *z,
1044					struct mem_cgroup *mem_cont,
1045					int active, int file)
1046{
1047	unsigned long nr_taken = 0;
1048	struct page *page;
1049	unsigned long scan;
1050	LIST_HEAD(pc_list);
1051	struct list_head *src;
1052	struct page_cgroup *pc, *tmp;
1053	int nid = zone_to_nid(z);
1054	int zid = zone_idx(z);
1055	struct mem_cgroup_per_zone *mz;
1056	int lru = LRU_FILE * file + active;
1057	int ret;
1058
1059	BUG_ON(!mem_cont);
1060	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1061	src = &mz->lists[lru];
1062
1063	scan = 0;
1064	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1065		if (scan >= nr_to_scan)
1066			break;
1067
1068		page = pc->page;
1069		if (unlikely(!PageCgroupUsed(pc)))
1070			continue;
1071		if (unlikely(!PageLRU(page)))
1072			continue;
1073
1074		scan++;
1075		ret = __isolate_lru_page(page, mode, file);
1076		switch (ret) {
1077		case 0:
1078			list_move(&page->lru, dst);
1079			mem_cgroup_del_lru(page);
1080			nr_taken += hpage_nr_pages(page);
1081			break;
1082		case -EBUSY:
1083			/* we don't affect global LRU but rotate in our LRU */
1084			mem_cgroup_rotate_lru_list(page, page_lru(page));
1085			break;
1086		default:
1087			break;
1088		}
1089	}
1090
1091	*scanned = scan;
1092
1093	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1094				      0, 0, 0, mode);
1095
1096	return nr_taken;
1097}
1098
1099#define mem_cgroup_from_res_counter(counter, member)	\
1100	container_of(counter, struct mem_cgroup, member)
1101
1102static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1103{
1104	if (do_swap_account) {
1105		if (res_counter_check_under_limit(&mem->res) &&
1106			res_counter_check_under_limit(&mem->memsw))
1107			return true;
1108	} else
1109		if (res_counter_check_under_limit(&mem->res))
1110			return true;
1111	return false;
1112}
1113
1114static unsigned int get_swappiness(struct mem_cgroup *memcg)
1115{
1116	struct cgroup *cgrp = memcg->css.cgroup;
1117	unsigned int swappiness;
1118
1119	/* root ? */
1120	if (cgrp->parent == NULL)
1121		return vm_swappiness;
1122
1123	spin_lock(&memcg->reclaim_param_lock);
1124	swappiness = memcg->swappiness;
1125	spin_unlock(&memcg->reclaim_param_lock);
1126
1127	return swappiness;
1128}
1129
1130static void mem_cgroup_start_move(struct mem_cgroup *mem)
1131{
1132	int cpu;
1133
1134	get_online_cpus();
1135	spin_lock(&mem->pcp_counter_lock);
1136	for_each_online_cpu(cpu)
1137		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1138	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1139	spin_unlock(&mem->pcp_counter_lock);
1140	put_online_cpus();
1141
1142	synchronize_rcu();
1143}
1144
1145static void mem_cgroup_end_move(struct mem_cgroup *mem)
1146{
1147	int cpu;
1148
1149	if (!mem)
1150		return;
1151	get_online_cpus();
1152	spin_lock(&mem->pcp_counter_lock);
1153	for_each_online_cpu(cpu)
1154		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1155	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1156	spin_unlock(&mem->pcp_counter_lock);
1157	put_online_cpus();
1158}
1159/*
1160 * 2 routines for checking "mem" is under move_account() or not.
1161 *
1162 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1163 *			  for avoiding race in accounting. If true,
1164 *			  pc->mem_cgroup may be overwritten.
1165 *
1166 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1167 *			  under hierarchy of moving cgroups. This is for
1168 *			  waiting at hith-memory prressure caused by "move".
1169 */
1170
1171static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1172{
1173	VM_BUG_ON(!rcu_read_lock_held());
1174	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1175}
1176
1177static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1178{
1179	struct mem_cgroup *from;
1180	struct mem_cgroup *to;
1181	bool ret = false;
1182	/*
1183	 * Unlike task_move routines, we access mc.to, mc.from not under
1184	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1185	 */
1186	spin_lock(&mc.lock);
1187	from = mc.from;
1188	to = mc.to;
1189	if (!from)
1190		goto unlock;
1191	if (from == mem || to == mem
1192	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1193	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1194		ret = true;
1195unlock:
1196	spin_unlock(&mc.lock);
1197	return ret;
1198}
1199
1200static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1201{
1202	if (mc.moving_task && current != mc.moving_task) {
1203		if (mem_cgroup_under_move(mem)) {
1204			DEFINE_WAIT(wait);
1205			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1206			/* moving charge context might have finished. */
1207			if (mc.moving_task)
1208				schedule();
1209			finish_wait(&mc.waitq, &wait);
1210			return true;
1211		}
1212	}
1213	return false;
1214}
1215
1216/**
1217 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1218 * @memcg: The memory cgroup that went over limit
1219 * @p: Task that is going to be killed
1220 *
1221 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1222 * enabled
1223 */
1224void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1225{
1226	struct cgroup *task_cgrp;
1227	struct cgroup *mem_cgrp;
1228	/*
1229	 * Need a buffer in BSS, can't rely on allocations. The code relies
1230	 * on the assumption that OOM is serialized for memory controller.
1231	 * If this assumption is broken, revisit this code.
1232	 */
1233	static char memcg_name[PATH_MAX];
1234	int ret;
1235
1236	if (!memcg || !p)
1237		return;
1238
1239
1240	rcu_read_lock();
1241
1242	mem_cgrp = memcg->css.cgroup;
1243	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1244
1245	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1246	if (ret < 0) {
1247		/*
1248		 * Unfortunately, we are unable to convert to a useful name
1249		 * But we'll still print out the usage information
1250		 */
1251		rcu_read_unlock();
1252		goto done;
1253	}
1254	rcu_read_unlock();
1255
1256	printk(KERN_INFO "Task in %s killed", memcg_name);
1257
1258	rcu_read_lock();
1259	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1260	if (ret < 0) {
1261		rcu_read_unlock();
1262		goto done;
1263	}
1264	rcu_read_unlock();
1265
1266	/*
1267	 * Continues from above, so we don't need an KERN_ level
1268	 */
1269	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1270done:
1271
1272	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1273		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1274		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1275		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1276	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1277		"failcnt %llu\n",
1278		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1279		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1280		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1281}
1282
1283/*
1284 * This function returns the number of memcg under hierarchy tree. Returns
1285 * 1(self count) if no children.
1286 */
1287static int mem_cgroup_count_children(struct mem_cgroup *mem)
1288{
1289	int num = 0;
1290	struct mem_cgroup *iter;
1291
1292	for_each_mem_cgroup_tree(iter, mem)
1293		num++;
1294	return num;
1295}
1296
1297/*
1298 * Return the memory (and swap, if configured) limit for a memcg.
1299 */
1300u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1301{
1302	u64 limit;
1303	u64 memsw;
1304
1305	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1306	limit += total_swap_pages << PAGE_SHIFT;
1307
1308	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1309	/*
1310	 * If memsw is finite and limits the amount of swap space available
1311	 * to this memcg, return that limit.
1312	 */
1313	return min(limit, memsw);
1314}
1315
1316/*
1317 * Visit the first child (need not be the first child as per the ordering
1318 * of the cgroup list, since we track last_scanned_child) of @mem and use
1319 * that to reclaim free pages from.
1320 */
1321static struct mem_cgroup *
1322mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1323{
1324	struct mem_cgroup *ret = NULL;
1325	struct cgroup_subsys_state *css;
1326	int nextid, found;
1327
1328	if (!root_mem->use_hierarchy) {
1329		css_get(&root_mem->css);
1330		ret = root_mem;
1331	}
1332
1333	while (!ret) {
1334		rcu_read_lock();
1335		nextid = root_mem->last_scanned_child + 1;
1336		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1337				   &found);
1338		if (css && css_tryget(css))
1339			ret = container_of(css, struct mem_cgroup, css);
1340
1341		rcu_read_unlock();
1342		/* Updates scanning parameter */
1343		spin_lock(&root_mem->reclaim_param_lock);
1344		if (!css) {
1345			/* this means start scan from ID:1 */
1346			root_mem->last_scanned_child = 0;
1347		} else
1348			root_mem->last_scanned_child = found;
1349		spin_unlock(&root_mem->reclaim_param_lock);
1350	}
1351
1352	return ret;
1353}
1354
1355/*
1356 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1357 * we reclaimed from, so that we don't end up penalizing one child extensively
1358 * based on its position in the children list.
1359 *
1360 * root_mem is the original ancestor that we've been reclaim from.
1361 *
1362 * We give up and return to the caller when we visit root_mem twice.
1363 * (other groups can be removed while we're walking....)
1364 *
1365 * If shrink==true, for avoiding to free too much, this returns immedieately.
1366 */
1367static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1368						struct zone *zone,
1369						gfp_t gfp_mask,
1370						unsigned long reclaim_options)
1371{
1372	struct mem_cgroup *victim;
1373	int ret, total = 0;
1374	int loop = 0;
1375	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1376	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1377	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1378	unsigned long excess = mem_cgroup_get_excess(root_mem);
1379
1380	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1381	if (root_mem->memsw_is_minimum)
1382		noswap = true;
1383
1384	while (1) {
1385		victim = mem_cgroup_select_victim(root_mem);
1386		if (victim == root_mem) {
1387			loop++;
1388			if (loop >= 1)
1389				drain_all_stock_async();
1390			if (loop >= 2) {
1391				/*
1392				 * If we have not been able to reclaim
1393				 * anything, it might because there are
1394				 * no reclaimable pages under this hierarchy
1395				 */
1396				if (!check_soft || !total) {
1397					css_put(&victim->css);
1398					break;
1399				}
1400				/*
1401				 * We want to do more targetted reclaim.
1402				 * excess >> 2 is not to excessive so as to
1403				 * reclaim too much, nor too less that we keep
1404				 * coming back to reclaim from this cgroup
1405				 */
1406				if (total >= (excess >> 2) ||
1407					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1408					css_put(&victim->css);
1409					break;
1410				}
1411			}
1412		}
1413		if (!mem_cgroup_local_usage(victim)) {
1414			/* this cgroup's local usage == 0 */
1415			css_put(&victim->css);
1416			continue;
1417		}
1418		/* we use swappiness of local cgroup */
1419		if (check_soft)
1420			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1421				noswap, get_swappiness(victim), zone);
1422		else
1423			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1424						noswap, get_swappiness(victim));
1425		css_put(&victim->css);
1426		/*
1427		 * At shrinking usage, we can't check we should stop here or
1428		 * reclaim more. It's depends on callers. last_scanned_child
1429		 * will work enough for keeping fairness under tree.
1430		 */
1431		if (shrink)
1432			return ret;
1433		total += ret;
1434		if (check_soft) {
1435			if (res_counter_check_under_soft_limit(&root_mem->res))
1436				return total;
1437		} else if (mem_cgroup_check_under_limit(root_mem))
1438			return 1 + total;
1439	}
1440	return total;
1441}
1442
1443/*
1444 * Check OOM-Killer is already running under our hierarchy.
1445 * If someone is running, return false.
1446 */
1447static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1448{
1449	int x, lock_count = 0;
1450	struct mem_cgroup *iter;
1451
1452	for_each_mem_cgroup_tree(iter, mem) {
1453		x = atomic_inc_return(&iter->oom_lock);
1454		lock_count = max(x, lock_count);
1455	}
1456
1457	if (lock_count == 1)
1458		return true;
1459	return false;
1460}
1461
1462static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1463{
1464	struct mem_cgroup *iter;
1465
1466	/*
1467	 * When a new child is created while the hierarchy is under oom,
1468	 * mem_cgroup_oom_lock() may not be called. We have to use
1469	 * atomic_add_unless() here.
1470	 */
1471	for_each_mem_cgroup_tree(iter, mem)
1472		atomic_add_unless(&iter->oom_lock, -1, 0);
1473	return 0;
1474}
1475
1476
1477static DEFINE_MUTEX(memcg_oom_mutex);
1478static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
1480struct oom_wait_info {
1481	struct mem_cgroup *mem;
1482	wait_queue_t	wait;
1483};
1484
1485static int memcg_oom_wake_function(wait_queue_t *wait,
1486	unsigned mode, int sync, void *arg)
1487{
1488	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1489	struct oom_wait_info *oom_wait_info;
1490
1491	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1492
1493	if (oom_wait_info->mem == wake_mem)
1494		goto wakeup;
1495	/* if no hierarchy, no match */
1496	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1497		return 0;
1498	/*
1499	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1500	 * Then we can use css_is_ancestor without taking care of RCU.
1501	 */
1502	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1503	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1504		return 0;
1505
1506wakeup:
1507	return autoremove_wake_function(wait, mode, sync, arg);
1508}
1509
1510static void memcg_wakeup_oom(struct mem_cgroup *mem)
1511{
1512	/* for filtering, pass "mem" as argument. */
1513	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1514}
1515
1516static void memcg_oom_recover(struct mem_cgroup *mem)
1517{
1518	if (mem && atomic_read(&mem->oom_lock))
1519		memcg_wakeup_oom(mem);
1520}
1521
1522/*
1523 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1524 */
1525bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1526{
1527	struct oom_wait_info owait;
1528	bool locked, need_to_kill;
1529
1530	owait.mem = mem;
1531	owait.wait.flags = 0;
1532	owait.wait.func = memcg_oom_wake_function;
1533	owait.wait.private = current;
1534	INIT_LIST_HEAD(&owait.wait.task_list);
1535	need_to_kill = true;
1536	/* At first, try to OOM lock hierarchy under mem.*/
1537	mutex_lock(&memcg_oom_mutex);
1538	locked = mem_cgroup_oom_lock(mem);
1539	/*
1540	 * Even if signal_pending(), we can't quit charge() loop without
1541	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1542	 * under OOM is always welcomed, use TASK_KILLABLE here.
1543	 */
1544	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1545	if (!locked || mem->oom_kill_disable)
1546		need_to_kill = false;
1547	if (locked)
1548		mem_cgroup_oom_notify(mem);
1549	mutex_unlock(&memcg_oom_mutex);
1550
1551	if (need_to_kill) {
1552		finish_wait(&memcg_oom_waitq, &owait.wait);
1553		mem_cgroup_out_of_memory(mem, mask);
1554	} else {
1555		schedule();
1556		finish_wait(&memcg_oom_waitq, &owait.wait);
1557	}
1558	mutex_lock(&memcg_oom_mutex);
1559	mem_cgroup_oom_unlock(mem);
1560	memcg_wakeup_oom(mem);
1561	mutex_unlock(&memcg_oom_mutex);
1562
1563	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1564		return false;
1565	/* Give chance to dying process */
1566	schedule_timeout(1);
1567	return true;
1568}
1569
1570/*
1571 * Currently used to update mapped file statistics, but the routine can be
1572 * generalized to update other statistics as well.
1573 *
1574 * Notes: Race condition
1575 *
1576 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1577 * it tends to be costly. But considering some conditions, we doesn't need
1578 * to do so _always_.
1579 *
1580 * Considering "charge", lock_page_cgroup() is not required because all
1581 * file-stat operations happen after a page is attached to radix-tree. There
1582 * are no race with "charge".
1583 *
1584 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1585 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1586 * if there are race with "uncharge". Statistics itself is properly handled
1587 * by flags.
1588 *
1589 * Considering "move", this is an only case we see a race. To make the race
1590 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1591 * possibility of race condition. If there is, we take a lock.
1592 */
1593
1594void mem_cgroup_update_page_stat(struct page *page,
1595				 enum mem_cgroup_page_stat_item idx, int val)
1596{
1597	struct mem_cgroup *mem;
1598	struct page_cgroup *pc = lookup_page_cgroup(page);
1599	bool need_unlock = false;
1600	unsigned long uninitialized_var(flags);
1601
1602	if (unlikely(!pc))
1603		return;
1604
1605	rcu_read_lock();
1606	mem = pc->mem_cgroup;
1607	if (unlikely(!mem || !PageCgroupUsed(pc)))
1608		goto out;
1609	/* pc->mem_cgroup is unstable ? */
1610	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1611		/* take a lock against to access pc->mem_cgroup */
1612		move_lock_page_cgroup(pc, &flags);
1613		need_unlock = true;
1614		mem = pc->mem_cgroup;
1615		if (!mem || !PageCgroupUsed(pc))
1616			goto out;
1617	}
1618
1619	switch (idx) {
1620	case MEMCG_NR_FILE_MAPPED:
1621		if (val > 0)
1622			SetPageCgroupFileMapped(pc);
1623		else if (!page_mapped(page))
1624			ClearPageCgroupFileMapped(pc);
1625		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1626		break;
1627	default:
1628		BUG();
1629	}
1630
1631	this_cpu_add(mem->stat->count[idx], val);
1632
1633out:
1634	if (unlikely(need_unlock))
1635		move_unlock_page_cgroup(pc, &flags);
1636	rcu_read_unlock();
1637	return;
1638}
1639EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1640
1641/*
1642 * size of first charge trial. "32" comes from vmscan.c's magic value.
1643 * TODO: maybe necessary to use big numbers in big irons.
1644 */
1645#define CHARGE_SIZE	(32 * PAGE_SIZE)
1646struct memcg_stock_pcp {
1647	struct mem_cgroup *cached; /* this never be root cgroup */
1648	int charge;
1649	struct work_struct work;
1650};
1651static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1652static atomic_t memcg_drain_count;
1653
1654/*
1655 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1656 * from local stock and true is returned. If the stock is 0 or charges from a
1657 * cgroup which is not current target, returns false. This stock will be
1658 * refilled.
1659 */
1660static bool consume_stock(struct mem_cgroup *mem)
1661{
1662	struct memcg_stock_pcp *stock;
1663	bool ret = true;
1664
1665	stock = &get_cpu_var(memcg_stock);
1666	if (mem == stock->cached && stock->charge)
1667		stock->charge -= PAGE_SIZE;
1668	else /* need to call res_counter_charge */
1669		ret = false;
1670	put_cpu_var(memcg_stock);
1671	return ret;
1672}
1673
1674/*
1675 * Returns stocks cached in percpu to res_counter and reset cached information.
1676 */
1677static void drain_stock(struct memcg_stock_pcp *stock)
1678{
1679	struct mem_cgroup *old = stock->cached;
1680
1681	if (stock->charge) {
1682		res_counter_uncharge(&old->res, stock->charge);
1683		if (do_swap_account)
1684			res_counter_uncharge(&old->memsw, stock->charge);
1685	}
1686	stock->cached = NULL;
1687	stock->charge = 0;
1688}
1689
1690/*
1691 * This must be called under preempt disabled or must be called by
1692 * a thread which is pinned to local cpu.
1693 */
1694static void drain_local_stock(struct work_struct *dummy)
1695{
1696	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1697	drain_stock(stock);
1698}
1699
1700/*
1701 * Cache charges(val) which is from res_counter, to local per_cpu area.
1702 * This will be consumed by consume_stock() function, later.
1703 */
1704static void refill_stock(struct mem_cgroup *mem, int val)
1705{
1706	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1707
1708	if (stock->cached != mem) { /* reset if necessary */
1709		drain_stock(stock);
1710		stock->cached = mem;
1711	}
1712	stock->charge += val;
1713	put_cpu_var(memcg_stock);
1714}
1715
1716/*
1717 * Tries to drain stocked charges in other cpus. This function is asynchronous
1718 * and just put a work per cpu for draining localy on each cpu. Caller can
1719 * expects some charges will be back to res_counter later but cannot wait for
1720 * it.
1721 */
1722static void drain_all_stock_async(void)
1723{
1724	int cpu;
1725	/* This function is for scheduling "drain" in asynchronous way.
1726	 * The result of "drain" is not directly handled by callers. Then,
1727	 * if someone is calling drain, we don't have to call drain more.
1728	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1729	 * there is a race. We just do loose check here.
1730	 */
1731	if (atomic_read(&memcg_drain_count))
1732		return;
1733	/* Notify other cpus that system-wide "drain" is running */
1734	atomic_inc(&memcg_drain_count);
1735	get_online_cpus();
1736	for_each_online_cpu(cpu) {
1737		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1738		schedule_work_on(cpu, &stock->work);
1739	}
1740 	put_online_cpus();
1741	atomic_dec(&memcg_drain_count);
1742	/* We don't wait for flush_work */
1743}
1744
1745/* This is a synchronous drain interface. */
1746static void drain_all_stock_sync(void)
1747{
1748	/* called when force_empty is called */
1749	atomic_inc(&memcg_drain_count);
1750	schedule_on_each_cpu(drain_local_stock);
1751	atomic_dec(&memcg_drain_count);
1752}
1753
1754/*
1755 * This function drains percpu counter value from DEAD cpu and
1756 * move it to local cpu. Note that this function can be preempted.
1757 */
1758static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1759{
1760	int i;
1761
1762	spin_lock(&mem->pcp_counter_lock);
1763	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1764		s64 x = per_cpu(mem->stat->count[i], cpu);
1765
1766		per_cpu(mem->stat->count[i], cpu) = 0;
1767		mem->nocpu_base.count[i] += x;
1768	}
1769	/* need to clear ON_MOVE value, works as a kind of lock. */
1770	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1771	spin_unlock(&mem->pcp_counter_lock);
1772}
1773
1774static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1775{
1776	int idx = MEM_CGROUP_ON_MOVE;
1777
1778	spin_lock(&mem->pcp_counter_lock);
1779	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1780	spin_unlock(&mem->pcp_counter_lock);
1781}
1782
1783static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1784					unsigned long action,
1785					void *hcpu)
1786{
1787	int cpu = (unsigned long)hcpu;
1788	struct memcg_stock_pcp *stock;
1789	struct mem_cgroup *iter;
1790
1791	if ((action == CPU_ONLINE)) {
1792		for_each_mem_cgroup_all(iter)
1793			synchronize_mem_cgroup_on_move(iter, cpu);
1794		return NOTIFY_OK;
1795	}
1796
1797	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1798		return NOTIFY_OK;
1799
1800	for_each_mem_cgroup_all(iter)
1801		mem_cgroup_drain_pcp_counter(iter, cpu);
1802
1803	stock = &per_cpu(memcg_stock, cpu);
1804	drain_stock(stock);
1805	return NOTIFY_OK;
1806}
1807
1808
1809/* See __mem_cgroup_try_charge() for details */
1810enum {
1811	CHARGE_OK,		/* success */
1812	CHARGE_RETRY,		/* need to retry but retry is not bad */
1813	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1814	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1815	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1816};
1817
1818static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1819				int csize, bool oom_check)
1820{
1821	struct mem_cgroup *mem_over_limit;
1822	struct res_counter *fail_res;
1823	unsigned long flags = 0;
1824	int ret;
1825
1826	ret = res_counter_charge(&mem->res, csize, &fail_res);
1827
1828	if (likely(!ret)) {
1829		if (!do_swap_account)
1830			return CHARGE_OK;
1831		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1832		if (likely(!ret))
1833			return CHARGE_OK;
1834
1835		res_counter_uncharge(&mem->res, csize);
1836		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1837		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1838	} else
1839		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1840
1841	if (csize > PAGE_SIZE) /* change csize and retry */
1842		return CHARGE_RETRY;
1843
1844	if (!(gfp_mask & __GFP_WAIT))
1845		return CHARGE_WOULDBLOCK;
1846
1847	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1848					gfp_mask, flags);
1849	/*
1850	 * try_to_free_mem_cgroup_pages() might not give us a full
1851	 * picture of reclaim. Some pages are reclaimed and might be
1852	 * moved to swap cache or just unmapped from the cgroup.
1853	 * Check the limit again to see if the reclaim reduced the
1854	 * current usage of the cgroup before giving up
1855	 */
1856	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1857		return CHARGE_RETRY;
1858
1859	/*
1860	 * At task move, charge accounts can be doubly counted. So, it's
1861	 * better to wait until the end of task_move if something is going on.
1862	 */
1863	if (mem_cgroup_wait_acct_move(mem_over_limit))
1864		return CHARGE_RETRY;
1865
1866	/* If we don't need to call oom-killer at el, return immediately */
1867	if (!oom_check)
1868		return CHARGE_NOMEM;
1869	/* check OOM */
1870	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1871		return CHARGE_OOM_DIE;
1872
1873	return CHARGE_RETRY;
1874}
1875
1876/*
1877 * Unlike exported interface, "oom" parameter is added. if oom==true,
1878 * oom-killer can be invoked.
1879 */
1880static int __mem_cgroup_try_charge(struct mm_struct *mm,
1881				   gfp_t gfp_mask,
1882				   struct mem_cgroup **memcg, bool oom,
1883				   int page_size)
1884{
1885	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1886	struct mem_cgroup *mem = NULL;
1887	int ret;
1888	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1889
1890	/*
1891	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1892	 * in system level. So, allow to go ahead dying process in addition to
1893	 * MEMDIE process.
1894	 */
1895	if (unlikely(test_thread_flag(TIF_MEMDIE)
1896		     || fatal_signal_pending(current)))
1897		goto bypass;
1898
1899	/*
1900	 * We always charge the cgroup the mm_struct belongs to.
1901	 * The mm_struct's mem_cgroup changes on task migration if the
1902	 * thread group leader migrates. It's possible that mm is not
1903	 * set, if so charge the init_mm (happens for pagecache usage).
1904	 */
1905	if (!*memcg && !mm)
1906		goto bypass;
1907again:
1908	if (*memcg) { /* css should be a valid one */
1909		mem = *memcg;
1910		VM_BUG_ON(css_is_removed(&mem->css));
1911		if (mem_cgroup_is_root(mem))
1912			goto done;
1913		if (page_size == PAGE_SIZE && consume_stock(mem))
1914			goto done;
1915		css_get(&mem->css);
1916	} else {
1917		struct task_struct *p;
1918
1919		rcu_read_lock();
1920		p = rcu_dereference(mm->owner);
1921		/*
1922		 * Because we don't have task_lock(), "p" can exit.
1923		 * In that case, "mem" can point to root or p can be NULL with
1924		 * race with swapoff. Then, we have small risk of mis-accouning.
1925		 * But such kind of mis-account by race always happens because
1926		 * we don't have cgroup_mutex(). It's overkill and we allo that
1927		 * small race, here.
1928		 * (*) swapoff at el will charge against mm-struct not against
1929		 * task-struct. So, mm->owner can be NULL.
1930		 */
1931		mem = mem_cgroup_from_task(p);
1932		if (!mem || mem_cgroup_is_root(mem)) {
1933			rcu_read_unlock();
1934			goto done;
1935		}
1936		if (page_size == PAGE_SIZE && consume_stock(mem)) {
1937			/*
1938			 * It seems dagerous to access memcg without css_get().
1939			 * But considering how consume_stok works, it's not
1940			 * necessary. If consume_stock success, some charges
1941			 * from this memcg are cached on this cpu. So, we
1942			 * don't need to call css_get()/css_tryget() before
1943			 * calling consume_stock().
1944			 */
1945			rcu_read_unlock();
1946			goto done;
1947		}
1948		/* after here, we may be blocked. we need to get refcnt */
1949		if (!css_tryget(&mem->css)) {
1950			rcu_read_unlock();
1951			goto again;
1952		}
1953		rcu_read_unlock();
1954	}
1955
1956	do {
1957		bool oom_check;
1958
1959		/* If killed, bypass charge */
1960		if (fatal_signal_pending(current)) {
1961			css_put(&mem->css);
1962			goto bypass;
1963		}
1964
1965		oom_check = false;
1966		if (oom && !nr_oom_retries) {
1967			oom_check = true;
1968			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1969		}
1970
1971		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1972
1973		switch (ret) {
1974		case CHARGE_OK:
1975			break;
1976		case CHARGE_RETRY: /* not in OOM situation but retry */
1977			csize = page_size;
1978			css_put(&mem->css);
1979			mem = NULL;
1980			goto again;
1981		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1982			css_put(&mem->css);
1983			goto nomem;
1984		case CHARGE_NOMEM: /* OOM routine works */
1985			if (!oom) {
1986				css_put(&mem->css);
1987				goto nomem;
1988			}
1989			/* If oom, we never return -ENOMEM */
1990			nr_oom_retries--;
1991			break;
1992		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1993			css_put(&mem->css);
1994			goto bypass;
1995		}
1996	} while (ret != CHARGE_OK);
1997
1998	if (csize > page_size)
1999		refill_stock(mem, csize - page_size);
2000	css_put(&mem->css);
2001done:
2002	*memcg = mem;
2003	return 0;
2004nomem:
2005	*memcg = NULL;
2006	return -ENOMEM;
2007bypass:
2008	*memcg = NULL;
2009	return 0;
2010}
2011
2012/*
2013 * Somemtimes we have to undo a charge we got by try_charge().
2014 * This function is for that and do uncharge, put css's refcnt.
2015 * gotten by try_charge().
2016 */
2017static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2018							unsigned long count)
2019{
2020	if (!mem_cgroup_is_root(mem)) {
2021		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2022		if (do_swap_account)
2023			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2024	}
2025}
2026
2027static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2028				     int page_size)
2029{
2030	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2031}
2032
2033/*
2034 * A helper function to get mem_cgroup from ID. must be called under
2035 * rcu_read_lock(). The caller must check css_is_removed() or some if
2036 * it's concern. (dropping refcnt from swap can be called against removed
2037 * memcg.)
2038 */
2039static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2040{
2041	struct cgroup_subsys_state *css;
2042
2043	/* ID 0 is unused ID */
2044	if (!id)
2045		return NULL;
2046	css = css_lookup(&mem_cgroup_subsys, id);
2047	if (!css)
2048		return NULL;
2049	return container_of(css, struct mem_cgroup, css);
2050}
2051
2052struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2053{
2054	struct mem_cgroup *mem = NULL;
2055	struct page_cgroup *pc;
2056	unsigned short id;
2057	swp_entry_t ent;
2058
2059	VM_BUG_ON(!PageLocked(page));
2060
2061	pc = lookup_page_cgroup(page);
2062	lock_page_cgroup(pc);
2063	if (PageCgroupUsed(pc)) {
2064		mem = pc->mem_cgroup;
2065		if (mem && !css_tryget(&mem->css))
2066			mem = NULL;
2067	} else if (PageSwapCache(page)) {
2068		ent.val = page_private(page);
2069		id = lookup_swap_cgroup(ent);
2070		rcu_read_lock();
2071		mem = mem_cgroup_lookup(id);
2072		if (mem && !css_tryget(&mem->css))
2073			mem = NULL;
2074		rcu_read_unlock();
2075	}
2076	unlock_page_cgroup(pc);
2077	return mem;
2078}
2079
2080static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2081				       struct page_cgroup *pc,
2082				       enum charge_type ctype,
2083				       int page_size)
2084{
2085	int nr_pages = page_size >> PAGE_SHIFT;
2086
2087	/* try_charge() can return NULL to *memcg, taking care of it. */
2088	if (!mem)
2089		return;
2090
2091	lock_page_cgroup(pc);
2092	if (unlikely(PageCgroupUsed(pc))) {
2093		unlock_page_cgroup(pc);
2094		mem_cgroup_cancel_charge(mem, page_size);
2095		return;
2096	}
2097	/*
2098	 * we don't need page_cgroup_lock about tail pages, becase they are not
2099	 * accessed by any other context at this point.
2100	 */
2101	pc->mem_cgroup = mem;
2102	/*
2103	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2104	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2105	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2106	 * before USED bit, we need memory barrier here.
2107	 * See mem_cgroup_add_lru_list(), etc.
2108 	 */
2109	smp_wmb();
2110	switch (ctype) {
2111	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2112	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2113		SetPageCgroupCache(pc);
2114		SetPageCgroupUsed(pc);
2115		break;
2116	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2117		ClearPageCgroupCache(pc);
2118		SetPageCgroupUsed(pc);
2119		break;
2120	default:
2121		break;
2122	}
2123
2124	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2125	unlock_page_cgroup(pc);
2126	/*
2127	 * "charge_statistics" updated event counter. Then, check it.
2128	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2129	 * if they exceeds softlimit.
2130	 */
2131	memcg_check_events(mem, pc->page);
2132}
2133
2134#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2135
2136#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2137			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2138/*
2139 * Because tail pages are not marked as "used", set it. We're under
2140 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2141 */
2142void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2143{
2144	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2145	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2146	unsigned long flags;
2147
2148	if (mem_cgroup_disabled())
2149		return;
2150	/*
2151	 * We have no races with charge/uncharge but will have races with
2152	 * page state accounting.
2153	 */
2154	move_lock_page_cgroup(head_pc, &flags);
2155
2156	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2157	smp_wmb(); /* see __commit_charge() */
2158	if (PageCgroupAcctLRU(head_pc)) {
2159		enum lru_list lru;
2160		struct mem_cgroup_per_zone *mz;
2161
2162		/*
2163		 * LRU flags cannot be copied because we need to add tail
2164		 *.page to LRU by generic call and our hook will be called.
2165		 * We hold lru_lock, then, reduce counter directly.
2166		 */
2167		lru = page_lru(head);
2168		mz = page_cgroup_zoneinfo(head_pc);
2169		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2170	}
2171	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2172	move_unlock_page_cgroup(head_pc, &flags);
2173}
2174#endif
2175
2176/**
2177 * __mem_cgroup_move_account - move account of the page
2178 * @pc:	page_cgroup of the page.
2179 * @from: mem_cgroup which the page is moved from.
2180 * @to:	mem_cgroup which the page is moved to. @from != @to.
2181 * @uncharge: whether we should call uncharge and css_put against @from.
2182 *
2183 * The caller must confirm following.
2184 * - page is not on LRU (isolate_page() is useful.)
2185 * - the pc is locked, used, and ->mem_cgroup points to @from.
2186 *
2187 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2188 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2189 * true, this function does "uncharge" from old cgroup, but it doesn't if
2190 * @uncharge is false, so a caller should do "uncharge".
2191 */
2192
2193static void __mem_cgroup_move_account(struct page_cgroup *pc,
2194	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2195	int charge_size)
2196{
2197	int nr_pages = charge_size >> PAGE_SHIFT;
2198
2199	VM_BUG_ON(from == to);
2200	VM_BUG_ON(PageLRU(pc->page));
2201	VM_BUG_ON(!page_is_cgroup_locked(pc));
2202	VM_BUG_ON(!PageCgroupUsed(pc));
2203	VM_BUG_ON(pc->mem_cgroup != from);
2204
2205	if (PageCgroupFileMapped(pc)) {
2206		/* Update mapped_file data for mem_cgroup */
2207		preempt_disable();
2208		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2209		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2210		preempt_enable();
2211	}
2212	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2213	if (uncharge)
2214		/* This is not "cancel", but cancel_charge does all we need. */
2215		mem_cgroup_cancel_charge(from, charge_size);
2216
2217	/* caller should have done css_get */
2218	pc->mem_cgroup = to;
2219	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2220	/*
2221	 * We charges against "to" which may not have any tasks. Then, "to"
2222	 * can be under rmdir(). But in current implementation, caller of
2223	 * this function is just force_empty() and move charge, so it's
2224	 * garanteed that "to" is never removed. So, we don't check rmdir
2225	 * status here.
2226	 */
2227}
2228
2229/*
2230 * check whether the @pc is valid for moving account and call
2231 * __mem_cgroup_move_account()
2232 */
2233static int mem_cgroup_move_account(struct page_cgroup *pc,
2234		struct mem_cgroup *from, struct mem_cgroup *to,
2235		bool uncharge, int charge_size)
2236{
2237	int ret = -EINVAL;
2238	unsigned long flags;
2239	/*
2240	 * The page is isolated from LRU. So, collapse function
2241	 * will not handle this page. But page splitting can happen.
2242	 * Do this check under compound_page_lock(). The caller should
2243	 * hold it.
2244	 */
2245	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2246		return -EBUSY;
2247
2248	lock_page_cgroup(pc);
2249	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2250		move_lock_page_cgroup(pc, &flags);
2251		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2252		move_unlock_page_cgroup(pc, &flags);
2253		ret = 0;
2254	}
2255	unlock_page_cgroup(pc);
2256	/*
2257	 * check events
2258	 */
2259	memcg_check_events(to, pc->page);
2260	memcg_check_events(from, pc->page);
2261	return ret;
2262}
2263
2264/*
2265 * move charges to its parent.
2266 */
2267
2268static int mem_cgroup_move_parent(struct page_cgroup *pc,
2269				  struct mem_cgroup *child,
2270				  gfp_t gfp_mask)
2271{
2272	struct page *page = pc->page;
2273	struct cgroup *cg = child->css.cgroup;
2274	struct cgroup *pcg = cg->parent;
2275	struct mem_cgroup *parent;
2276	int page_size = PAGE_SIZE;
2277	unsigned long flags;
2278	int ret;
2279
2280	/* Is ROOT ? */
2281	if (!pcg)
2282		return -EINVAL;
2283
2284	ret = -EBUSY;
2285	if (!get_page_unless_zero(page))
2286		goto out;
2287	if (isolate_lru_page(page))
2288		goto put;
2289
2290	if (PageTransHuge(page))
2291		page_size = HPAGE_SIZE;
2292
2293	parent = mem_cgroup_from_cont(pcg);
2294	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2295				&parent, false, page_size);
2296	if (ret || !parent)
2297		goto put_back;
2298
2299	if (page_size > PAGE_SIZE)
2300		flags = compound_lock_irqsave(page);
2301
2302	ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2303	if (ret)
2304		mem_cgroup_cancel_charge(parent, page_size);
2305
2306	if (page_size > PAGE_SIZE)
2307		compound_unlock_irqrestore(page, flags);
2308put_back:
2309	putback_lru_page(page);
2310put:
2311	put_page(page);
2312out:
2313	return ret;
2314}
2315
2316/*
2317 * Charge the memory controller for page usage.
2318 * Return
2319 * 0 if the charge was successful
2320 * < 0 if the cgroup is over its limit
2321 */
2322static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2323				gfp_t gfp_mask, enum charge_type ctype)
2324{
2325	struct mem_cgroup *mem = NULL;
2326	struct page_cgroup *pc;
2327	int ret;
2328	int page_size = PAGE_SIZE;
2329
2330	if (PageTransHuge(page)) {
2331		page_size <<= compound_order(page);
2332		VM_BUG_ON(!PageTransHuge(page));
2333	}
2334
2335	pc = lookup_page_cgroup(page);
2336	/* can happen at boot */
2337	if (unlikely(!pc))
2338		return 0;
2339	prefetchw(pc);
2340
2341	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2342	if (ret || !mem)
2343		return ret;
2344
2345	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2346	return 0;
2347}
2348
2349int mem_cgroup_newpage_charge(struct page *page,
2350			      struct mm_struct *mm, gfp_t gfp_mask)
2351{
2352	if (mem_cgroup_disabled())
2353		return 0;
2354	/*
2355	 * If already mapped, we don't have to account.
2356	 * If page cache, page->mapping has address_space.
2357	 * But page->mapping may have out-of-use anon_vma pointer,
2358	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2359	 * is NULL.
2360  	 */
2361	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2362		return 0;
2363	if (unlikely(!mm))
2364		mm = &init_mm;
2365	return mem_cgroup_charge_common(page, mm, gfp_mask,
2366				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2367}
2368
2369static void
2370__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2371					enum charge_type ctype);
2372
2373int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2374				gfp_t gfp_mask)
2375{
2376	int ret;
2377
2378	if (mem_cgroup_disabled())
2379		return 0;
2380	if (PageCompound(page))
2381		return 0;
2382	/*
2383	 * Corner case handling. This is called from add_to_page_cache()
2384	 * in usual. But some FS (shmem) precharges this page before calling it
2385	 * and call add_to_page_cache() with GFP_NOWAIT.
2386	 *
2387	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2388	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2389	 * charge twice. (It works but has to pay a bit larger cost.)
2390	 * And when the page is SwapCache, it should take swap information
2391	 * into account. This is under lock_page() now.
2392	 */
2393	if (!(gfp_mask & __GFP_WAIT)) {
2394		struct page_cgroup *pc;
2395
2396		pc = lookup_page_cgroup(page);
2397		if (!pc)
2398			return 0;
2399		lock_page_cgroup(pc);
2400		if (PageCgroupUsed(pc)) {
2401			unlock_page_cgroup(pc);
2402			return 0;
2403		}
2404		unlock_page_cgroup(pc);
2405	}
2406
2407	if (unlikely(!mm))
2408		mm = &init_mm;
2409
2410	if (page_is_file_cache(page))
2411		return mem_cgroup_charge_common(page, mm, gfp_mask,
2412				MEM_CGROUP_CHARGE_TYPE_CACHE);
2413
2414	/* shmem */
2415	if (PageSwapCache(page)) {
2416		struct mem_cgroup *mem = NULL;
2417
2418		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2419		if (!ret)
2420			__mem_cgroup_commit_charge_swapin(page, mem,
2421					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2422	} else
2423		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2424					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2425
2426	return ret;
2427}
2428
2429/*
2430 * While swap-in, try_charge -> commit or cancel, the page is locked.
2431 * And when try_charge() successfully returns, one refcnt to memcg without
2432 * struct page_cgroup is acquired. This refcnt will be consumed by
2433 * "commit()" or removed by "cancel()"
2434 */
2435int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2436				 struct page *page,
2437				 gfp_t mask, struct mem_cgroup **ptr)
2438{
2439	struct mem_cgroup *mem;
2440	int ret;
2441
2442	if (mem_cgroup_disabled())
2443		return 0;
2444
2445	if (!do_swap_account)
2446		goto charge_cur_mm;
2447	/*
2448	 * A racing thread's fault, or swapoff, may have already updated
2449	 * the pte, and even removed page from swap cache: in those cases
2450	 * do_swap_page()'s pte_same() test will fail; but there's also a
2451	 * KSM case which does need to charge the page.
2452	 */
2453	if (!PageSwapCache(page))
2454		goto charge_cur_mm;
2455	mem = try_get_mem_cgroup_from_page(page);
2456	if (!mem)
2457		goto charge_cur_mm;
2458	*ptr = mem;
2459	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2460	css_put(&mem->css);
2461	return ret;
2462charge_cur_mm:
2463	if (unlikely(!mm))
2464		mm = &init_mm;
2465	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2466}
2467
2468static void
2469__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2470					enum charge_type ctype)
2471{
2472	struct page_cgroup *pc;
2473
2474	if (mem_cgroup_disabled())
2475		return;
2476	if (!ptr)
2477		return;
2478	cgroup_exclude_rmdir(&ptr->css);
2479	pc = lookup_page_cgroup(page);
2480	mem_cgroup_lru_del_before_commit_swapcache(page);
2481	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2482	mem_cgroup_lru_add_after_commit_swapcache(page);
2483	/*
2484	 * Now swap is on-memory. This means this page may be
2485	 * counted both as mem and swap....double count.
2486	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2487	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2488	 * may call delete_from_swap_cache() before reach here.
2489	 */
2490	if (do_swap_account && PageSwapCache(page)) {
2491		swp_entry_t ent = {.val = page_private(page)};
2492		unsigned short id;
2493		struct mem_cgroup *memcg;
2494
2495		id = swap_cgroup_record(ent, 0);
2496		rcu_read_lock();
2497		memcg = mem_cgroup_lookup(id);
2498		if (memcg) {
2499			/*
2500			 * This recorded memcg can be obsolete one. So, avoid
2501			 * calling css_tryget
2502			 */
2503			if (!mem_cgroup_is_root(memcg))
2504				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2505			mem_cgroup_swap_statistics(memcg, false);
2506			mem_cgroup_put(memcg);
2507		}
2508		rcu_read_unlock();
2509	}
2510	/*
2511	 * At swapin, we may charge account against cgroup which has no tasks.
2512	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2513	 * In that case, we need to call pre_destroy() again. check it here.
2514	 */
2515	cgroup_release_and_wakeup_rmdir(&ptr->css);
2516}
2517
2518void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2519{
2520	__mem_cgroup_commit_charge_swapin(page, ptr,
2521					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2522}
2523
2524void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2525{
2526	if (mem_cgroup_disabled())
2527		return;
2528	if (!mem)
2529		return;
2530	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2531}
2532
2533static void
2534__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2535	      int page_size)
2536{
2537	struct memcg_batch_info *batch = NULL;
2538	bool uncharge_memsw = true;
2539	/* If swapout, usage of swap doesn't decrease */
2540	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2541		uncharge_memsw = false;
2542
2543	batch = &current->memcg_batch;
2544	/*
2545	 * In usual, we do css_get() when we remember memcg pointer.
2546	 * But in this case, we keep res->usage until end of a series of
2547	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2548	 */
2549	if (!batch->memcg)
2550		batch->memcg = mem;
2551	/*
2552	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2553	 * In those cases, all pages freed continously can be expected to be in
2554	 * the same cgroup and we have chance to coalesce uncharges.
2555	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2556	 * because we want to do uncharge as soon as possible.
2557	 */
2558
2559	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2560		goto direct_uncharge;
2561
2562	if (page_size != PAGE_SIZE)
2563		goto direct_uncharge;
2564
2565	/*
2566	 * In typical case, batch->memcg == mem. This means we can
2567	 * merge a series of uncharges to an uncharge of res_counter.
2568	 * If not, we uncharge res_counter ony by one.
2569	 */
2570	if (batch->memcg != mem)
2571		goto direct_uncharge;
2572	/* remember freed charge and uncharge it later */
2573	batch->bytes += PAGE_SIZE;
2574	if (uncharge_memsw)
2575		batch->memsw_bytes += PAGE_SIZE;
2576	return;
2577direct_uncharge:
2578	res_counter_uncharge(&mem->res, page_size);
2579	if (uncharge_memsw)
2580		res_counter_uncharge(&mem->memsw, page_size);
2581	if (unlikely(batch->memcg != mem))
2582		memcg_oom_recover(mem);
2583	return;
2584}
2585
2586/*
2587 * uncharge if !page_mapped(page)
2588 */
2589static struct mem_cgroup *
2590__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2591{
2592	int count;
2593	struct page_cgroup *pc;
2594	struct mem_cgroup *mem = NULL;
2595	int page_size = PAGE_SIZE;
2596
2597	if (mem_cgroup_disabled())
2598		return NULL;
2599
2600	if (PageSwapCache(page))
2601		return NULL;
2602
2603	if (PageTransHuge(page)) {
2604		page_size <<= compound_order(page);
2605		VM_BUG_ON(!PageTransHuge(page));
2606	}
2607
2608	count = page_size >> PAGE_SHIFT;
2609	/*
2610	 * Check if our page_cgroup is valid
2611	 */
2612	pc = lookup_page_cgroup(page);
2613	if (unlikely(!pc || !PageCgroupUsed(pc)))
2614		return NULL;
2615
2616	lock_page_cgroup(pc);
2617
2618	mem = pc->mem_cgroup;
2619
2620	if (!PageCgroupUsed(pc))
2621		goto unlock_out;
2622
2623	switch (ctype) {
2624	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2625	case MEM_CGROUP_CHARGE_TYPE_DROP:
2626		/* See mem_cgroup_prepare_migration() */
2627		if (page_mapped(page) || PageCgroupMigration(pc))
2628			goto unlock_out;
2629		break;
2630	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2631		if (!PageAnon(page)) {	/* Shared memory */
2632			if (page->mapping && !page_is_file_cache(page))
2633				goto unlock_out;
2634		} else if (page_mapped(page)) /* Anon */
2635				goto unlock_out;
2636		break;
2637	default:
2638		break;
2639	}
2640
2641	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2642
2643	ClearPageCgroupUsed(pc);
2644	/*
2645	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2646	 * freed from LRU. This is safe because uncharged page is expected not
2647	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2648	 * special functions.
2649	 */
2650
2651	unlock_page_cgroup(pc);
2652	/*
2653	 * even after unlock, we have mem->res.usage here and this memcg
2654	 * will never be freed.
2655	 */
2656	memcg_check_events(mem, page);
2657	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2658		mem_cgroup_swap_statistics(mem, true);
2659		mem_cgroup_get(mem);
2660	}
2661	if (!mem_cgroup_is_root(mem))
2662		__do_uncharge(mem, ctype, page_size);
2663
2664	return mem;
2665
2666unlock_out:
2667	unlock_page_cgroup(pc);
2668	return NULL;
2669}
2670
2671void mem_cgroup_uncharge_page(struct page *page)
2672{
2673	/* early check. */
2674	if (page_mapped(page))
2675		return;
2676	if (page->mapping && !PageAnon(page))
2677		return;
2678	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2679}
2680
2681void mem_cgroup_uncharge_cache_page(struct page *page)
2682{
2683	VM_BUG_ON(page_mapped(page));
2684	VM_BUG_ON(page->mapping);
2685	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2686}
2687
2688/*
2689 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2690 * In that cases, pages are freed continuously and we can expect pages
2691 * are in the same memcg. All these calls itself limits the number of
2692 * pages freed at once, then uncharge_start/end() is called properly.
2693 * This may be called prural(2) times in a context,
2694 */
2695
2696void mem_cgroup_uncharge_start(void)
2697{
2698	current->memcg_batch.do_batch++;
2699	/* We can do nest. */
2700	if (current->memcg_batch.do_batch == 1) {
2701		current->memcg_batch.memcg = NULL;
2702		current->memcg_batch.bytes = 0;
2703		current->memcg_batch.memsw_bytes = 0;
2704	}
2705}
2706
2707void mem_cgroup_uncharge_end(void)
2708{
2709	struct memcg_batch_info *batch = &current->memcg_batch;
2710
2711	if (!batch->do_batch)
2712		return;
2713
2714	batch->do_batch--;
2715	if (batch->do_batch) /* If stacked, do nothing. */
2716		return;
2717
2718	if (!batch->memcg)
2719		return;
2720	/*
2721	 * This "batch->memcg" is valid without any css_get/put etc...
2722	 * bacause we hide charges behind us.
2723	 */
2724	if (batch->bytes)
2725		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2726	if (batch->memsw_bytes)
2727		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2728	memcg_oom_recover(batch->memcg);
2729	/* forget this pointer (for sanity check) */
2730	batch->memcg = NULL;
2731}
2732
2733#ifdef CONFIG_SWAP
2734/*
2735 * called after __delete_from_swap_cache() and drop "page" account.
2736 * memcg information is recorded to swap_cgroup of "ent"
2737 */
2738void
2739mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2740{
2741	struct mem_cgroup *memcg;
2742	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2743
2744	if (!swapout) /* this was a swap cache but the swap is unused ! */
2745		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2746
2747	memcg = __mem_cgroup_uncharge_common(page, ctype);
2748
2749	/*
2750	 * record memcg information,  if swapout && memcg != NULL,
2751	 * mem_cgroup_get() was called in uncharge().
2752	 */
2753	if (do_swap_account && swapout && memcg)
2754		swap_cgroup_record(ent, css_id(&memcg->css));
2755}
2756#endif
2757
2758#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2759/*
2760 * called from swap_entry_free(). remove record in swap_cgroup and
2761 * uncharge "memsw" account.
2762 */
2763void mem_cgroup_uncharge_swap(swp_entry_t ent)
2764{
2765	struct mem_cgroup *memcg;
2766	unsigned short id;
2767
2768	if (!do_swap_account)
2769		return;
2770
2771	id = swap_cgroup_record(ent, 0);
2772	rcu_read_lock();
2773	memcg = mem_cgroup_lookup(id);
2774	if (memcg) {
2775		/*
2776		 * We uncharge this because swap is freed.
2777		 * This memcg can be obsolete one. We avoid calling css_tryget
2778		 */
2779		if (!mem_cgroup_is_root(memcg))
2780			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2781		mem_cgroup_swap_statistics(memcg, false);
2782		mem_cgroup_put(memcg);
2783	}
2784	rcu_read_unlock();
2785}
2786
2787/**
2788 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2789 * @entry: swap entry to be moved
2790 * @from:  mem_cgroup which the entry is moved from
2791 * @to:  mem_cgroup which the entry is moved to
2792 * @need_fixup: whether we should fixup res_counters and refcounts.
2793 *
2794 * It succeeds only when the swap_cgroup's record for this entry is the same
2795 * as the mem_cgroup's id of @from.
2796 *
2797 * Returns 0 on success, -EINVAL on failure.
2798 *
2799 * The caller must have charged to @to, IOW, called res_counter_charge() about
2800 * both res and memsw, and called css_get().
2801 */
2802static int mem_cgroup_move_swap_account(swp_entry_t entry,
2803		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2804{
2805	unsigned short old_id, new_id;
2806
2807	old_id = css_id(&from->css);
2808	new_id = css_id(&to->css);
2809
2810	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2811		mem_cgroup_swap_statistics(from, false);
2812		mem_cgroup_swap_statistics(to, true);
2813		/*
2814		 * This function is only called from task migration context now.
2815		 * It postpones res_counter and refcount handling till the end
2816		 * of task migration(mem_cgroup_clear_mc()) for performance
2817		 * improvement. But we cannot postpone mem_cgroup_get(to)
2818		 * because if the process that has been moved to @to does
2819		 * swap-in, the refcount of @to might be decreased to 0.
2820		 */
2821		mem_cgroup_get(to);
2822		if (need_fixup) {
2823			if (!mem_cgroup_is_root(from))
2824				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2825			mem_cgroup_put(from);
2826			/*
2827			 * we charged both to->res and to->memsw, so we should
2828			 * uncharge to->res.
2829			 */
2830			if (!mem_cgroup_is_root(to))
2831				res_counter_uncharge(&to->res, PAGE_SIZE);
2832		}
2833		return 0;
2834	}
2835	return -EINVAL;
2836}
2837#else
2838static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2839		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2840{
2841	return -EINVAL;
2842}
2843#endif
2844
2845/*
2846 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2847 * page belongs to.
2848 */
2849int mem_cgroup_prepare_migration(struct page *page,
2850	struct page *newpage, struct mem_cgroup **ptr)
2851{
2852	struct page_cgroup *pc;
2853	struct mem_cgroup *mem = NULL;
2854	enum charge_type ctype;
2855	int ret = 0;
2856
2857	VM_BUG_ON(PageTransHuge(page));
2858	if (mem_cgroup_disabled())
2859		return 0;
2860
2861	pc = lookup_page_cgroup(page);
2862	lock_page_cgroup(pc);
2863	if (PageCgroupUsed(pc)) {
2864		mem = pc->mem_cgroup;
2865		css_get(&mem->css);
2866		/*
2867		 * At migrating an anonymous page, its mapcount goes down
2868		 * to 0 and uncharge() will be called. But, even if it's fully
2869		 * unmapped, migration may fail and this page has to be
2870		 * charged again. We set MIGRATION flag here and delay uncharge
2871		 * until end_migration() is called
2872		 *
2873		 * Corner Case Thinking
2874		 * A)
2875		 * When the old page was mapped as Anon and it's unmap-and-freed
2876		 * while migration was ongoing.
2877		 * If unmap finds the old page, uncharge() of it will be delayed
2878		 * until end_migration(). If unmap finds a new page, it's
2879		 * uncharged when it make mapcount to be 1->0. If unmap code
2880		 * finds swap_migration_entry, the new page will not be mapped
2881		 * and end_migration() will find it(mapcount==0).
2882		 *
2883		 * B)
2884		 * When the old page was mapped but migraion fails, the kernel
2885		 * remaps it. A charge for it is kept by MIGRATION flag even
2886		 * if mapcount goes down to 0. We can do remap successfully
2887		 * without charging it again.
2888		 *
2889		 * C)
2890		 * The "old" page is under lock_page() until the end of
2891		 * migration, so, the old page itself will not be swapped-out.
2892		 * If the new page is swapped out before end_migraton, our
2893		 * hook to usual swap-out path will catch the event.
2894		 */
2895		if (PageAnon(page))
2896			SetPageCgroupMigration(pc);
2897	}
2898	unlock_page_cgroup(pc);
2899	/*
2900	 * If the page is not charged at this point,
2901	 * we return here.
2902	 */
2903	if (!mem)
2904		return 0;
2905
2906	*ptr = mem;
2907	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2908	css_put(&mem->css);/* drop extra refcnt */
2909	if (ret || *ptr == NULL) {
2910		if (PageAnon(page)) {
2911			lock_page_cgroup(pc);
2912			ClearPageCgroupMigration(pc);
2913			unlock_page_cgroup(pc);
2914			/*
2915			 * The old page may be fully unmapped while we kept it.
2916			 */
2917			mem_cgroup_uncharge_page(page);
2918		}
2919		return -ENOMEM;
2920	}
2921	/*
2922	 * We charge new page before it's used/mapped. So, even if unlock_page()
2923	 * is called before end_migration, we can catch all events on this new
2924	 * page. In the case new page is migrated but not remapped, new page's
2925	 * mapcount will be finally 0 and we call uncharge in end_migration().
2926	 */
2927	pc = lookup_page_cgroup(newpage);
2928	if (PageAnon(page))
2929		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2930	else if (page_is_file_cache(page))
2931		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2932	else
2933		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2934	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2935	return ret;
2936}
2937
2938/* remove redundant charge if migration failed*/
2939void mem_cgroup_end_migration(struct mem_cgroup *mem,
2940	struct page *oldpage, struct page *newpage, bool migration_ok)
2941{
2942	struct page *used, *unused;
2943	struct page_cgroup *pc;
2944
2945	if (!mem)
2946		return;
2947	/* blocks rmdir() */
2948	cgroup_exclude_rmdir(&mem->css);
2949	if (!migration_ok) {
2950		used = oldpage;
2951		unused = newpage;
2952	} else {
2953		used = newpage;
2954		unused = oldpage;
2955	}
2956	/*
2957	 * We disallowed uncharge of pages under migration because mapcount
2958	 * of the page goes down to zero, temporarly.
2959	 * Clear the flag and check the page should be charged.
2960	 */
2961	pc = lookup_page_cgroup(oldpage);
2962	lock_page_cgroup(pc);
2963	ClearPageCgroupMigration(pc);
2964	unlock_page_cgroup(pc);
2965
2966	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2967
2968	/*
2969	 * If a page is a file cache, radix-tree replacement is very atomic
2970	 * and we can skip this check. When it was an Anon page, its mapcount
2971	 * goes down to 0. But because we added MIGRATION flage, it's not
2972	 * uncharged yet. There are several case but page->mapcount check
2973	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2974	 * check. (see prepare_charge() also)
2975	 */
2976	if (PageAnon(used))
2977		mem_cgroup_uncharge_page(used);
2978	/*
2979	 * At migration, we may charge account against cgroup which has no
2980	 * tasks.
2981	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2982	 * In that case, we need to call pre_destroy() again. check it here.
2983	 */
2984	cgroup_release_and_wakeup_rmdir(&mem->css);
2985}
2986
2987/*
2988 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2989 * Calling hierarchical_reclaim is not enough because we should update
2990 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2991 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2992 * not from the memcg which this page would be charged to.
2993 * try_charge_swapin does all of these works properly.
2994 */
2995int mem_cgroup_shmem_charge_fallback(struct page *page,
2996			    struct mm_struct *mm,
2997			    gfp_t gfp_mask)
2998{
2999	struct mem_cgroup *mem = NULL;
3000	int ret;
3001
3002	if (mem_cgroup_disabled())
3003		return 0;
3004
3005	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3006	if (!ret)
3007		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3008
3009	return ret;
3010}
3011
3012static DEFINE_MUTEX(set_limit_mutex);
3013
3014static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3015				unsigned long long val)
3016{
3017	int retry_count;
3018	u64 memswlimit, memlimit;
3019	int ret = 0;
3020	int children = mem_cgroup_count_children(memcg);
3021	u64 curusage, oldusage;
3022	int enlarge;
3023
3024	/*
3025	 * For keeping hierarchical_reclaim simple, how long we should retry
3026	 * is depends on callers. We set our retry-count to be function
3027	 * of # of children which we should visit in this loop.
3028	 */
3029	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3030
3031	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3032
3033	enlarge = 0;
3034	while (retry_count) {
3035		if (signal_pending(current)) {
3036			ret = -EINTR;
3037			break;
3038		}
3039		/*
3040		 * Rather than hide all in some function, I do this in
3041		 * open coded manner. You see what this really does.
3042		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3043		 */
3044		mutex_lock(&set_limit_mutex);
3045		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3046		if (memswlimit < val) {
3047			ret = -EINVAL;
3048			mutex_unlock(&set_limit_mutex);
3049			break;
3050		}
3051
3052		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3053		if (memlimit < val)
3054			enlarge = 1;
3055
3056		ret = res_counter_set_limit(&memcg->res, val);
3057		if (!ret) {
3058			if (memswlimit == val)
3059				memcg->memsw_is_minimum = true;
3060			else
3061				memcg->memsw_is_minimum = false;
3062		}
3063		mutex_unlock(&set_limit_mutex);
3064
3065		if (!ret)
3066			break;
3067
3068		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3069						MEM_CGROUP_RECLAIM_SHRINK);
3070		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3071		/* Usage is reduced ? */
3072  		if (curusage >= oldusage)
3073			retry_count--;
3074		else
3075			oldusage = curusage;
3076	}
3077	if (!ret && enlarge)
3078		memcg_oom_recover(memcg);
3079
3080	return ret;
3081}
3082
3083static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3084					unsigned long long val)
3085{
3086	int retry_count;
3087	u64 memlimit, memswlimit, oldusage, curusage;
3088	int children = mem_cgroup_count_children(memcg);
3089	int ret = -EBUSY;
3090	int enlarge = 0;
3091
3092	/* see mem_cgroup_resize_res_limit */
3093 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3094	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3095	while (retry_count) {
3096		if (signal_pending(current)) {
3097			ret = -EINTR;
3098			break;
3099		}
3100		/*
3101		 * Rather than hide all in some function, I do this in
3102		 * open coded manner. You see what this really does.
3103		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3104		 */
3105		mutex_lock(&set_limit_mutex);
3106		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3107		if (memlimit > val) {
3108			ret = -EINVAL;
3109			mutex_unlock(&set_limit_mutex);
3110			break;
3111		}
3112		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3113		if (memswlimit < val)
3114			enlarge = 1;
3115		ret = res_counter_set_limit(&memcg->memsw, val);
3116		if (!ret) {
3117			if (memlimit == val)
3118				memcg->memsw_is_minimum = true;
3119			else
3120				memcg->memsw_is_minimum = false;
3121		}
3122		mutex_unlock(&set_limit_mutex);
3123
3124		if (!ret)
3125			break;
3126
3127		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3128						MEM_CGROUP_RECLAIM_NOSWAP |
3129						MEM_CGROUP_RECLAIM_SHRINK);
3130		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3131		/* Usage is reduced ? */
3132		if (curusage >= oldusage)
3133			retry_count--;
3134		else
3135			oldusage = curusage;
3136	}
3137	if (!ret && enlarge)
3138		memcg_oom_recover(memcg);
3139	return ret;
3140}
3141
3142unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3143					    gfp_t gfp_mask)
3144{
3145	unsigned long nr_reclaimed = 0;
3146	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3147	unsigned long reclaimed;
3148	int loop = 0;
3149	struct mem_cgroup_tree_per_zone *mctz;
3150	unsigned long long excess;
3151
3152	if (order > 0)
3153		return 0;
3154
3155	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3156	/*
3157	 * This loop can run a while, specially if mem_cgroup's continuously
3158	 * keep exceeding their soft limit and putting the system under
3159	 * pressure
3160	 */
3161	do {
3162		if (next_mz)
3163			mz = next_mz;
3164		else
3165			mz = mem_cgroup_largest_soft_limit_node(mctz);
3166		if (!mz)
3167			break;
3168
3169		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3170						gfp_mask,
3171						MEM_CGROUP_RECLAIM_SOFT);
3172		nr_reclaimed += reclaimed;
3173		spin_lock(&mctz->lock);
3174
3175		/*
3176		 * If we failed to reclaim anything from this memory cgroup
3177		 * it is time to move on to the next cgroup
3178		 */
3179		next_mz = NULL;
3180		if (!reclaimed) {
3181			do {
3182				/*
3183				 * Loop until we find yet another one.
3184				 *
3185				 * By the time we get the soft_limit lock
3186				 * again, someone might have aded the
3187				 * group back on the RB tree. Iterate to
3188				 * make sure we get a different mem.
3189				 * mem_cgroup_largest_soft_limit_node returns
3190				 * NULL if no other cgroup is present on
3191				 * the tree
3192				 */
3193				next_mz =
3194				__mem_cgroup_largest_soft_limit_node(mctz);
3195				if (next_mz == mz) {
3196					css_put(&next_mz->mem->css);
3197					next_mz = NULL;
3198				} else /* next_mz == NULL or other memcg */
3199					break;
3200			} while (1);
3201		}
3202		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3203		excess = res_counter_soft_limit_excess(&mz->mem->res);
3204		/*
3205		 * One school of thought says that we should not add
3206		 * back the node to the tree if reclaim returns 0.
3207		 * But our reclaim could return 0, simply because due
3208		 * to priority we are exposing a smaller subset of
3209		 * memory to reclaim from. Consider this as a longer
3210		 * term TODO.
3211		 */
3212		/* If excess == 0, no tree ops */
3213		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3214		spin_unlock(&mctz->lock);
3215		css_put(&mz->mem->css);
3216		loop++;
3217		/*
3218		 * Could not reclaim anything and there are no more
3219		 * mem cgroups to try or we seem to be looping without
3220		 * reclaiming anything.
3221		 */
3222		if (!nr_reclaimed &&
3223			(next_mz == NULL ||
3224			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3225			break;
3226	} while (!nr_reclaimed);
3227	if (next_mz)
3228		css_put(&next_mz->mem->css);
3229	return nr_reclaimed;
3230}
3231
3232/*
3233 * This routine traverse page_cgroup in given list and drop them all.
3234 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3235 */
3236static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3237				int node, int zid, enum lru_list lru)
3238{
3239	struct zone *zone;
3240	struct mem_cgroup_per_zone *mz;
3241	struct page_cgroup *pc, *busy;
3242	unsigned long flags, loop;
3243	struct list_head *list;
3244	int ret = 0;
3245
3246	zone = &NODE_DATA(node)->node_zones[zid];
3247	mz = mem_cgroup_zoneinfo(mem, node, zid);
3248	list = &mz->lists[lru];
3249
3250	loop = MEM_CGROUP_ZSTAT(mz, lru);
3251	/* give some margin against EBUSY etc...*/
3252	loop += 256;
3253	busy = NULL;
3254	while (loop--) {
3255		ret = 0;
3256		spin_lock_irqsave(&zone->lru_lock, flags);
3257		if (list_empty(list)) {
3258			spin_unlock_irqrestore(&zone->lru_lock, flags);
3259			break;
3260		}
3261		pc = list_entry(list->prev, struct page_cgroup, lru);
3262		if (busy == pc) {
3263			list_move(&pc->lru, list);
3264			busy = NULL;
3265			spin_unlock_irqrestore(&zone->lru_lock, flags);
3266			continue;
3267		}
3268		spin_unlock_irqrestore(&zone->lru_lock, flags);
3269
3270		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3271		if (ret == -ENOMEM)
3272			break;
3273
3274		if (ret == -EBUSY || ret == -EINVAL) {
3275			/* found lock contention or "pc" is obsolete. */
3276			busy = pc;
3277			cond_resched();
3278		} else
3279			busy = NULL;
3280	}
3281
3282	if (!ret && !list_empty(list))
3283		return -EBUSY;
3284	return ret;
3285}
3286
3287/*
3288 * make mem_cgroup's charge to be 0 if there is no task.
3289 * This enables deleting this mem_cgroup.
3290 */
3291static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3292{
3293	int ret;
3294	int node, zid, shrink;
3295	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3296	struct cgroup *cgrp = mem->css.cgroup;
3297
3298	css_get(&mem->css);
3299
3300	shrink = 0;
3301	/* should free all ? */
3302	if (free_all)
3303		goto try_to_free;
3304move_account:
3305	do {
3306		ret = -EBUSY;
3307		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3308			goto out;
3309		ret = -EINTR;
3310		if (signal_pending(current))
3311			goto out;
3312		/* This is for making all *used* pages to be on LRU. */
3313		lru_add_drain_all();
3314		drain_all_stock_sync();
3315		ret = 0;
3316		mem_cgroup_start_move(mem);
3317		for_each_node_state(node, N_HIGH_MEMORY) {
3318			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3319				enum lru_list l;
3320				for_each_lru(l) {
3321					ret = mem_cgroup_force_empty_list(mem,
3322							node, zid, l);
3323					if (ret)
3324						break;
3325				}
3326			}
3327			if (ret)
3328				break;
3329		}
3330		mem_cgroup_end_move(mem);
3331		memcg_oom_recover(mem);
3332		/* it seems parent cgroup doesn't have enough mem */
3333		if (ret == -ENOMEM)
3334			goto try_to_free;
3335		cond_resched();
3336	/* "ret" should also be checked to ensure all lists are empty. */
3337	} while (mem->res.usage > 0 || ret);
3338out:
3339	css_put(&mem->css);
3340	return ret;
3341
3342try_to_free:
3343	/* returns EBUSY if there is a task or if we come here twice. */
3344	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3345		ret = -EBUSY;
3346		goto out;
3347	}
3348	/* we call try-to-free pages for make this cgroup empty */
3349	lru_add_drain_all();
3350	/* try to free all pages in this cgroup */
3351	shrink = 1;
3352	while (nr_retries && mem->res.usage > 0) {
3353		int progress;
3354
3355		if (signal_pending(current)) {
3356			ret = -EINTR;
3357			goto out;
3358		}
3359		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3360						false, get_swappiness(mem));
3361		if (!progress) {
3362			nr_retries--;
3363			/* maybe some writeback is necessary */
3364			congestion_wait(BLK_RW_ASYNC, HZ/10);
3365		}
3366
3367	}
3368	lru_add_drain();
3369	/* try move_account...there may be some *locked* pages. */
3370	goto move_account;
3371}
3372
3373int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3374{
3375	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3376}
3377
3378
3379static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3380{
3381	return mem_cgroup_from_cont(cont)->use_hierarchy;
3382}
3383
3384static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3385					u64 val)
3386{
3387	int retval = 0;
3388	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3389	struct cgroup *parent = cont->parent;
3390	struct mem_cgroup *parent_mem = NULL;
3391
3392	if (parent)
3393		parent_mem = mem_cgroup_from_cont(parent);
3394
3395	cgroup_lock();
3396	/*
3397	 * If parent's use_hierarchy is set, we can't make any modifications
3398	 * in the child subtrees. If it is unset, then the change can
3399	 * occur, provided the current cgroup has no children.
3400	 *
3401	 * For the root cgroup, parent_mem is NULL, we allow value to be
3402	 * set if there are no children.
3403	 */
3404	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3405				(val == 1 || val == 0)) {
3406		if (list_empty(&cont->children))
3407			mem->use_hierarchy = val;
3408		else
3409			retval = -EBUSY;
3410	} else
3411		retval = -EINVAL;
3412	cgroup_unlock();
3413
3414	return retval;
3415}
3416
3417
3418static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3419				enum mem_cgroup_stat_index idx)
3420{
3421	struct mem_cgroup *iter;
3422	s64 val = 0;
3423
3424	/* each per cpu's value can be minus.Then, use s64 */
3425	for_each_mem_cgroup_tree(iter, mem)
3426		val += mem_cgroup_read_stat(iter, idx);
3427
3428	if (val < 0) /* race ? */
3429		val = 0;
3430	return val;
3431}
3432
3433static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3434{
3435	u64 val;
3436
3437	if (!mem_cgroup_is_root(mem)) {
3438		if (!swap)
3439			return res_counter_read_u64(&mem->res, RES_USAGE);
3440		else
3441			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3442	}
3443
3444	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3445	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3446
3447	if (swap)
3448		val += mem_cgroup_get_recursive_idx_stat(mem,
3449				MEM_CGROUP_STAT_SWAPOUT);
3450
3451	return val << PAGE_SHIFT;
3452}
3453
3454static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3455{
3456	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3457	u64 val;
3458	int type, name;
3459
3460	type = MEMFILE_TYPE(cft->private);
3461	name = MEMFILE_ATTR(cft->private);
3462	switch (type) {
3463	case _MEM:
3464		if (name == RES_USAGE)
3465			val = mem_cgroup_usage(mem, false);
3466		else
3467			val = res_counter_read_u64(&mem->res, name);
3468		break;
3469	case _MEMSWAP:
3470		if (name == RES_USAGE)
3471			val = mem_cgroup_usage(mem, true);
3472		else
3473			val = res_counter_read_u64(&mem->memsw, name);
3474		break;
3475	default:
3476		BUG();
3477		break;
3478	}
3479	return val;
3480}
3481/*
3482 * The user of this function is...
3483 * RES_LIMIT.
3484 */
3485static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3486			    const char *buffer)
3487{
3488	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3489	int type, name;
3490	unsigned long long val;
3491	int ret;
3492
3493	type = MEMFILE_TYPE(cft->private);
3494	name = MEMFILE_ATTR(cft->private);
3495	switch (name) {
3496	case RES_LIMIT:
3497		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3498			ret = -EINVAL;
3499			break;
3500		}
3501		/* This function does all necessary parse...reuse it */
3502		ret = res_counter_memparse_write_strategy(buffer, &val);
3503		if (ret)
3504			break;
3505		if (type == _MEM)
3506			ret = mem_cgroup_resize_limit(memcg, val);
3507		else
3508			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3509		break;
3510	case RES_SOFT_LIMIT:
3511		ret = res_counter_memparse_write_strategy(buffer, &val);
3512		if (ret)
3513			break;
3514		/*
3515		 * For memsw, soft limits are hard to implement in terms
3516		 * of semantics, for now, we support soft limits for
3517		 * control without swap
3518		 */
3519		if (type == _MEM)
3520			ret = res_counter_set_soft_limit(&memcg->res, val);
3521		else
3522			ret = -EINVAL;
3523		break;
3524	default:
3525		ret = -EINVAL; /* should be BUG() ? */
3526		break;
3527	}
3528	return ret;
3529}
3530
3531static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3532		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3533{
3534	struct cgroup *cgroup;
3535	unsigned long long min_limit, min_memsw_limit, tmp;
3536
3537	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3538	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3539	cgroup = memcg->css.cgroup;
3540	if (!memcg->use_hierarchy)
3541		goto out;
3542
3543	while (cgroup->parent) {
3544		cgroup = cgroup->parent;
3545		memcg = mem_cgroup_from_cont(cgroup);
3546		if (!memcg->use_hierarchy)
3547			break;
3548		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3549		min_limit = min(min_limit, tmp);
3550		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3551		min_memsw_limit = min(min_memsw_limit, tmp);
3552	}
3553out:
3554	*mem_limit = min_limit;
3555	*memsw_limit = min_memsw_limit;
3556	return;
3557}
3558
3559static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3560{
3561	struct mem_cgroup *mem;
3562	int type, name;
3563
3564	mem = mem_cgroup_from_cont(cont);
3565	type = MEMFILE_TYPE(event);
3566	name = MEMFILE_ATTR(event);
3567	switch (name) {
3568	case RES_MAX_USAGE:
3569		if (type == _MEM)
3570			res_counter_reset_max(&mem->res);
3571		else
3572			res_counter_reset_max(&mem->memsw);
3573		break;
3574	case RES_FAILCNT:
3575		if (type == _MEM)
3576			res_counter_reset_failcnt(&mem->res);
3577		else
3578			res_counter_reset_failcnt(&mem->memsw);
3579		break;
3580	}
3581
3582	return 0;
3583}
3584
3585static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3586					struct cftype *cft)
3587{
3588	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3589}
3590
3591#ifdef CONFIG_MMU
3592static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3593					struct cftype *cft, u64 val)
3594{
3595	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3596
3597	if (val >= (1 << NR_MOVE_TYPE))
3598		return -EINVAL;
3599	/*
3600	 * We check this value several times in both in can_attach() and
3601	 * attach(), so we need cgroup lock to prevent this value from being
3602	 * inconsistent.
3603	 */
3604	cgroup_lock();
3605	mem->move_charge_at_immigrate = val;
3606	cgroup_unlock();
3607
3608	return 0;
3609}
3610#else
3611static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3612					struct cftype *cft, u64 val)
3613{
3614	return -ENOSYS;
3615}
3616#endif
3617
3618
3619/* For read statistics */
3620enum {
3621	MCS_CACHE,
3622	MCS_RSS,
3623	MCS_FILE_MAPPED,
3624	MCS_PGPGIN,
3625	MCS_PGPGOUT,
3626	MCS_SWAP,
3627	MCS_INACTIVE_ANON,
3628	MCS_ACTIVE_ANON,
3629	MCS_INACTIVE_FILE,
3630	MCS_ACTIVE_FILE,
3631	MCS_UNEVICTABLE,
3632	NR_MCS_STAT,
3633};
3634
3635struct mcs_total_stat {
3636	s64 stat[NR_MCS_STAT];
3637};
3638
3639struct {
3640	char *local_name;
3641	char *total_name;
3642} memcg_stat_strings[NR_MCS_STAT] = {
3643	{"cache", "total_cache"},
3644	{"rss", "total_rss"},
3645	{"mapped_file", "total_mapped_file"},
3646	{"pgpgin", "total_pgpgin"},
3647	{"pgpgout", "total_pgpgout"},
3648	{"swap", "total_swap"},
3649	{"inactive_anon", "total_inactive_anon"},
3650	{"active_anon", "total_active_anon"},
3651	{"inactive_file", "total_inactive_file"},
3652	{"active_file", "total_active_file"},
3653	{"unevictable", "total_unevictable"}
3654};
3655
3656
3657static void
3658mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3659{
3660	s64 val;
3661
3662	/* per cpu stat */
3663	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3664	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3665	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3666	s->stat[MCS_RSS] += val * PAGE_SIZE;
3667	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3668	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3669	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3670	s->stat[MCS_PGPGIN] += val;
3671	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3672	s->stat[MCS_PGPGOUT] += val;
3673	if (do_swap_account) {
3674		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3675		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3676	}
3677
3678	/* per zone stat */
3679	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3680	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3681	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3682	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3683	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3684	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3685	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3686	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3687	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3688	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3689}
3690
3691static void
3692mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3693{
3694	struct mem_cgroup *iter;
3695
3696	for_each_mem_cgroup_tree(iter, mem)
3697		mem_cgroup_get_local_stat(iter, s);
3698}
3699
3700static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3701				 struct cgroup_map_cb *cb)
3702{
3703	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3704	struct mcs_total_stat mystat;
3705	int i;
3706
3707	memset(&mystat, 0, sizeof(mystat));
3708	mem_cgroup_get_local_stat(mem_cont, &mystat);
3709
3710	for (i = 0; i < NR_MCS_STAT; i++) {
3711		if (i == MCS_SWAP && !do_swap_account)
3712			continue;
3713		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3714	}
3715
3716	/* Hierarchical information */
3717	{
3718		unsigned long long limit, memsw_limit;
3719		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3720		cb->fill(cb, "hierarchical_memory_limit", limit);
3721		if (do_swap_account)
3722			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3723	}
3724
3725	memset(&mystat, 0, sizeof(mystat));
3726	mem_cgroup_get_total_stat(mem_cont, &mystat);
3727	for (i = 0; i < NR_MCS_STAT; i++) {
3728		if (i == MCS_SWAP && !do_swap_account)
3729			continue;
3730		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3731	}
3732
3733#ifdef CONFIG_DEBUG_VM
3734	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3735
3736	{
3737		int nid, zid;
3738		struct mem_cgroup_per_zone *mz;
3739		unsigned long recent_rotated[2] = {0, 0};
3740		unsigned long recent_scanned[2] = {0, 0};
3741
3742		for_each_online_node(nid)
3743			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3744				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3745
3746				recent_rotated[0] +=
3747					mz->reclaim_stat.recent_rotated[0];
3748				recent_rotated[1] +=
3749					mz->reclaim_stat.recent_rotated[1];
3750				recent_scanned[0] +=
3751					mz->reclaim_stat.recent_scanned[0];
3752				recent_scanned[1] +=
3753					mz->reclaim_stat.recent_scanned[1];
3754			}
3755		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3756		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3757		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3758		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3759	}
3760#endif
3761
3762	return 0;
3763}
3764
3765static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3766{
3767	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3768
3769	return get_swappiness(memcg);
3770}
3771
3772static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3773				       u64 val)
3774{
3775	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3776	struct mem_cgroup *parent;
3777
3778	if (val > 100)
3779		return -EINVAL;
3780
3781	if (cgrp->parent == NULL)
3782		return -EINVAL;
3783
3784	parent = mem_cgroup_from_cont(cgrp->parent);
3785
3786	cgroup_lock();
3787
3788	/* If under hierarchy, only empty-root can set this value */
3789	if ((parent->use_hierarchy) ||
3790	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3791		cgroup_unlock();
3792		return -EINVAL;
3793	}
3794
3795	spin_lock(&memcg->reclaim_param_lock);
3796	memcg->swappiness = val;
3797	spin_unlock(&memcg->reclaim_param_lock);
3798
3799	cgroup_unlock();
3800
3801	return 0;
3802}
3803
3804static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3805{
3806	struct mem_cgroup_threshold_ary *t;
3807	u64 usage;
3808	int i;
3809
3810	rcu_read_lock();
3811	if (!swap)
3812		t = rcu_dereference(memcg->thresholds.primary);
3813	else
3814		t = rcu_dereference(memcg->memsw_thresholds.primary);
3815
3816	if (!t)
3817		goto unlock;
3818
3819	usage = mem_cgroup_usage(memcg, swap);
3820
3821	/*
3822	 * current_threshold points to threshold just below usage.
3823	 * If it's not true, a threshold was crossed after last
3824	 * call of __mem_cgroup_threshold().
3825	 */
3826	i = t->current_threshold;
3827
3828	/*
3829	 * Iterate backward over array of thresholds starting from
3830	 * current_threshold and check if a threshold is crossed.
3831	 * If none of thresholds below usage is crossed, we read
3832	 * only one element of the array here.
3833	 */
3834	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3835		eventfd_signal(t->entries[i].eventfd, 1);
3836
3837	/* i = current_threshold + 1 */
3838	i++;
3839
3840	/*
3841	 * Iterate forward over array of thresholds starting from
3842	 * current_threshold+1 and check if a threshold is crossed.
3843	 * If none of thresholds above usage is crossed, we read
3844	 * only one element of the array here.
3845	 */
3846	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3847		eventfd_signal(t->entries[i].eventfd, 1);
3848
3849	/* Update current_threshold */
3850	t->current_threshold = i - 1;
3851unlock:
3852	rcu_read_unlock();
3853}
3854
3855static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3856{
3857	while (memcg) {
3858		__mem_cgroup_threshold(memcg, false);
3859		if (do_swap_account)
3860			__mem_cgroup_threshold(memcg, true);
3861
3862		memcg = parent_mem_cgroup(memcg);
3863	}
3864}
3865
3866static int compare_thresholds(const void *a, const void *b)
3867{
3868	const struct mem_cgroup_threshold *_a = a;
3869	const struct mem_cgroup_threshold *_b = b;
3870
3871	return _a->threshold - _b->threshold;
3872}
3873
3874static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3875{
3876	struct mem_cgroup_eventfd_list *ev;
3877
3878	list_for_each_entry(ev, &mem->oom_notify, list)
3879		eventfd_signal(ev->eventfd, 1);
3880	return 0;
3881}
3882
3883static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3884{
3885	struct mem_cgroup *iter;
3886
3887	for_each_mem_cgroup_tree(iter, mem)
3888		mem_cgroup_oom_notify_cb(iter);
3889}
3890
3891static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3892	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3893{
3894	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3895	struct mem_cgroup_thresholds *thresholds;
3896	struct mem_cgroup_threshold_ary *new;
3897	int type = MEMFILE_TYPE(cft->private);
3898	u64 threshold, usage;
3899	int i, size, ret;
3900
3901	ret = res_counter_memparse_write_strategy(args, &threshold);
3902	if (ret)
3903		return ret;
3904
3905	mutex_lock(&memcg->thresholds_lock);
3906
3907	if (type == _MEM)
3908		thresholds = &memcg->thresholds;
3909	else if (type == _MEMSWAP)
3910		thresholds = &memcg->memsw_thresholds;
3911	else
3912		BUG();
3913
3914	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3915
3916	/* Check if a threshold crossed before adding a new one */
3917	if (thresholds->primary)
3918		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3919
3920	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3921
3922	/* Allocate memory for new array of thresholds */
3923	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3924			GFP_KERNEL);
3925	if (!new) {
3926		ret = -ENOMEM;
3927		goto unlock;
3928	}
3929	new->size = size;
3930
3931	/* Copy thresholds (if any) to new array */
3932	if (thresholds->primary) {
3933		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3934				sizeof(struct mem_cgroup_threshold));
3935	}
3936
3937	/* Add new threshold */
3938	new->entries[size - 1].eventfd = eventfd;
3939	new->entries[size - 1].threshold = threshold;
3940
3941	/* Sort thresholds. Registering of new threshold isn't time-critical */
3942	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3943			compare_thresholds, NULL);
3944
3945	/* Find current threshold */
3946	new->current_threshold = -1;
3947	for (i = 0; i < size; i++) {
3948		if (new->entries[i].threshold < usage) {
3949			/*
3950			 * new->current_threshold will not be used until
3951			 * rcu_assign_pointer(), so it's safe to increment
3952			 * it here.
3953			 */
3954			++new->current_threshold;
3955		}
3956	}
3957
3958	/* Free old spare buffer and save old primary buffer as spare */
3959	kfree(thresholds->spare);
3960	thresholds->spare = thresholds->primary;
3961
3962	rcu_assign_pointer(thresholds->primary, new);
3963
3964	/* To be sure that nobody uses thresholds */
3965	synchronize_rcu();
3966
3967unlock:
3968	mutex_unlock(&memcg->thresholds_lock);
3969
3970	return ret;
3971}
3972
3973static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3974	struct cftype *cft, struct eventfd_ctx *eventfd)
3975{
3976	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3977	struct mem_cgroup_thresholds *thresholds;
3978	struct mem_cgroup_threshold_ary *new;
3979	int type = MEMFILE_TYPE(cft->private);
3980	u64 usage;
3981	int i, j, size;
3982
3983	mutex_lock(&memcg->thresholds_lock);
3984	if (type == _MEM)
3985		thresholds = &memcg->thresholds;
3986	else if (type == _MEMSWAP)
3987		thresholds = &memcg->memsw_thresholds;
3988	else
3989		BUG();
3990
3991	/*
3992	 * Something went wrong if we trying to unregister a threshold
3993	 * if we don't have thresholds
3994	 */
3995	BUG_ON(!thresholds);
3996
3997	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3998
3999	/* Check if a threshold crossed before removing */
4000	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4001
4002	/* Calculate new number of threshold */
4003	size = 0;
4004	for (i = 0; i < thresholds->primary->size; i++) {
4005		if (thresholds->primary->entries[i].eventfd != eventfd)
4006			size++;
4007	}
4008
4009	new = thresholds->spare;
4010
4011	/* Set thresholds array to NULL if we don't have thresholds */
4012	if (!size) {
4013		kfree(new);
4014		new = NULL;
4015		goto swap_buffers;
4016	}
4017
4018	new->size = size;
4019
4020	/* Copy thresholds and find current threshold */
4021	new->current_threshold = -1;
4022	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4023		if (thresholds->primary->entries[i].eventfd == eventfd)
4024			continue;
4025
4026		new->entries[j] = thresholds->primary->entries[i];
4027		if (new->entries[j].threshold < usage) {
4028			/*
4029			 * new->current_threshold will not be used
4030			 * until rcu_assign_pointer(), so it's safe to increment
4031			 * it here.
4032			 */
4033			++new->current_threshold;
4034		}
4035		j++;
4036	}
4037
4038swap_buffers:
4039	/* Swap primary and spare array */
4040	thresholds->spare = thresholds->primary;
4041	rcu_assign_pointer(thresholds->primary, new);
4042
4043	/* To be sure that nobody uses thresholds */
4044	synchronize_rcu();
4045
4046	mutex_unlock(&memcg->thresholds_lock);
4047}
4048
4049static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4050	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4051{
4052	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4053	struct mem_cgroup_eventfd_list *event;
4054	int type = MEMFILE_TYPE(cft->private);
4055
4056	BUG_ON(type != _OOM_TYPE);
4057	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4058	if (!event)
4059		return -ENOMEM;
4060
4061	mutex_lock(&memcg_oom_mutex);
4062
4063	event->eventfd = eventfd;
4064	list_add(&event->list, &memcg->oom_notify);
4065
4066	/* already in OOM ? */
4067	if (atomic_read(&memcg->oom_lock))
4068		eventfd_signal(eventfd, 1);
4069	mutex_unlock(&memcg_oom_mutex);
4070
4071	return 0;
4072}
4073
4074static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4075	struct cftype *cft, struct eventfd_ctx *eventfd)
4076{
4077	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4078	struct mem_cgroup_eventfd_list *ev, *tmp;
4079	int type = MEMFILE_TYPE(cft->private);
4080
4081	BUG_ON(type != _OOM_TYPE);
4082
4083	mutex_lock(&memcg_oom_mutex);
4084
4085	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4086		if (ev->eventfd == eventfd) {
4087			list_del(&ev->list);
4088			kfree(ev);
4089		}
4090	}
4091
4092	mutex_unlock(&memcg_oom_mutex);
4093}
4094
4095static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4096	struct cftype *cft,  struct cgroup_map_cb *cb)
4097{
4098	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4099
4100	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4101
4102	if (atomic_read(&mem->oom_lock))
4103		cb->fill(cb, "under_oom", 1);
4104	else
4105		cb->fill(cb, "under_oom", 0);
4106	return 0;
4107}
4108
4109static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4110	struct cftype *cft, u64 val)
4111{
4112	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4113	struct mem_cgroup *parent;
4114
4115	/* cannot set to root cgroup and only 0 and 1 are allowed */
4116	if (!cgrp->parent || !((val == 0) || (val == 1)))
4117		return -EINVAL;
4118
4119	parent = mem_cgroup_from_cont(cgrp->parent);
4120
4121	cgroup_lock();
4122	/* oom-kill-disable is a flag for subhierarchy. */
4123	if ((parent->use_hierarchy) ||
4124	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4125		cgroup_unlock();
4126		return -EINVAL;
4127	}
4128	mem->oom_kill_disable = val;
4129	if (!val)
4130		memcg_oom_recover(mem);
4131	cgroup_unlock();
4132	return 0;
4133}
4134
4135static struct cftype mem_cgroup_files[] = {
4136	{
4137		.name = "usage_in_bytes",
4138		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4139		.read_u64 = mem_cgroup_read,
4140		.register_event = mem_cgroup_usage_register_event,
4141		.unregister_event = mem_cgroup_usage_unregister_event,
4142	},
4143	{
4144		.name = "max_usage_in_bytes",
4145		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4146		.trigger = mem_cgroup_reset,
4147		.read_u64 = mem_cgroup_read,
4148	},
4149	{
4150		.name = "limit_in_bytes",
4151		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4152		.write_string = mem_cgroup_write,
4153		.read_u64 = mem_cgroup_read,
4154	},
4155	{
4156		.name = "soft_limit_in_bytes",
4157		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4158		.write_string = mem_cgroup_write,
4159		.read_u64 = mem_cgroup_read,
4160	},
4161	{
4162		.name = "failcnt",
4163		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4164		.trigger = mem_cgroup_reset,
4165		.read_u64 = mem_cgroup_read,
4166	},
4167	{
4168		.name = "stat",
4169		.read_map = mem_control_stat_show,
4170	},
4171	{
4172		.name = "force_empty",
4173		.trigger = mem_cgroup_force_empty_write,
4174	},
4175	{
4176		.name = "use_hierarchy",
4177		.write_u64 = mem_cgroup_hierarchy_write,
4178		.read_u64 = mem_cgroup_hierarchy_read,
4179	},
4180	{
4181		.name = "swappiness",
4182		.read_u64 = mem_cgroup_swappiness_read,
4183		.write_u64 = mem_cgroup_swappiness_write,
4184	},
4185	{
4186		.name = "move_charge_at_immigrate",
4187		.read_u64 = mem_cgroup_move_charge_read,
4188		.write_u64 = mem_cgroup_move_charge_write,
4189	},
4190	{
4191		.name = "oom_control",
4192		.read_map = mem_cgroup_oom_control_read,
4193		.write_u64 = mem_cgroup_oom_control_write,
4194		.register_event = mem_cgroup_oom_register_event,
4195		.unregister_event = mem_cgroup_oom_unregister_event,
4196		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4197	},
4198};
4199
4200#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4201static struct cftype memsw_cgroup_files[] = {
4202	{
4203		.name = "memsw.usage_in_bytes",
4204		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4205		.read_u64 = mem_cgroup_read,
4206		.register_event = mem_cgroup_usage_register_event,
4207		.unregister_event = mem_cgroup_usage_unregister_event,
4208	},
4209	{
4210		.name = "memsw.max_usage_in_bytes",
4211		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4212		.trigger = mem_cgroup_reset,
4213		.read_u64 = mem_cgroup_read,
4214	},
4215	{
4216		.name = "memsw.limit_in_bytes",
4217		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4218		.write_string = mem_cgroup_write,
4219		.read_u64 = mem_cgroup_read,
4220	},
4221	{
4222		.name = "memsw.failcnt",
4223		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4224		.trigger = mem_cgroup_reset,
4225		.read_u64 = mem_cgroup_read,
4226	},
4227};
4228
4229static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4230{
4231	if (!do_swap_account)
4232		return 0;
4233	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4234				ARRAY_SIZE(memsw_cgroup_files));
4235};
4236#else
4237static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4238{
4239	return 0;
4240}
4241#endif
4242
4243static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4244{
4245	struct mem_cgroup_per_node *pn;
4246	struct mem_cgroup_per_zone *mz;
4247	enum lru_list l;
4248	int zone, tmp = node;
4249	/*
4250	 * This routine is called against possible nodes.
4251	 * But it's BUG to call kmalloc() against offline node.
4252	 *
4253	 * TODO: this routine can waste much memory for nodes which will
4254	 *       never be onlined. It's better to use memory hotplug callback
4255	 *       function.
4256	 */
4257	if (!node_state(node, N_NORMAL_MEMORY))
4258		tmp = -1;
4259	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4260	if (!pn)
4261		return 1;
4262
4263	mem->info.nodeinfo[node] = pn;
4264	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4265		mz = &pn->zoneinfo[zone];
4266		for_each_lru(l)
4267			INIT_LIST_HEAD(&mz->lists[l]);
4268		mz->usage_in_excess = 0;
4269		mz->on_tree = false;
4270		mz->mem = mem;
4271	}
4272	return 0;
4273}
4274
4275static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4276{
4277	kfree(mem->info.nodeinfo[node]);
4278}
4279
4280static struct mem_cgroup *mem_cgroup_alloc(void)
4281{
4282	struct mem_cgroup *mem;
4283	int size = sizeof(struct mem_cgroup);
4284
4285	/* Can be very big if MAX_NUMNODES is very big */
4286	if (size < PAGE_SIZE)
4287		mem = kzalloc(size, GFP_KERNEL);
4288	else
4289		mem = vzalloc(size);
4290
4291	if (!mem)
4292		return NULL;
4293
4294	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4295	if (!mem->stat)
4296		goto out_free;
4297	spin_lock_init(&mem->pcp_counter_lock);
4298	return mem;
4299
4300out_free:
4301	if (size < PAGE_SIZE)
4302		kfree(mem);
4303	else
4304		vfree(mem);
4305	return NULL;
4306}
4307
4308/*
4309 * At destroying mem_cgroup, references from swap_cgroup can remain.
4310 * (scanning all at force_empty is too costly...)
4311 *
4312 * Instead of clearing all references at force_empty, we remember
4313 * the number of reference from swap_cgroup and free mem_cgroup when
4314 * it goes down to 0.
4315 *
4316 * Removal of cgroup itself succeeds regardless of refs from swap.
4317 */
4318
4319static void __mem_cgroup_free(struct mem_cgroup *mem)
4320{
4321	int node;
4322
4323	mem_cgroup_remove_from_trees(mem);
4324	free_css_id(&mem_cgroup_subsys, &mem->css);
4325
4326	for_each_node_state(node, N_POSSIBLE)
4327		free_mem_cgroup_per_zone_info(mem, node);
4328
4329	free_percpu(mem->stat);
4330	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4331		kfree(mem);
4332	else
4333		vfree(mem);
4334}
4335
4336static void mem_cgroup_get(struct mem_cgroup *mem)
4337{
4338	atomic_inc(&mem->refcnt);
4339}
4340
4341static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4342{
4343	if (atomic_sub_and_test(count, &mem->refcnt)) {
4344		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4345		__mem_cgroup_free(mem);
4346		if (parent)
4347			mem_cgroup_put(parent);
4348	}
4349}
4350
4351static void mem_cgroup_put(struct mem_cgroup *mem)
4352{
4353	__mem_cgroup_put(mem, 1);
4354}
4355
4356/*
4357 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4358 */
4359static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4360{
4361	if (!mem->res.parent)
4362		return NULL;
4363	return mem_cgroup_from_res_counter(mem->res.parent, res);
4364}
4365
4366#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4367static void __init enable_swap_cgroup(void)
4368{
4369	if (!mem_cgroup_disabled() && really_do_swap_account)
4370		do_swap_account = 1;
4371}
4372#else
4373static void __init enable_swap_cgroup(void)
4374{
4375}
4376#endif
4377
4378static int mem_cgroup_soft_limit_tree_init(void)
4379{
4380	struct mem_cgroup_tree_per_node *rtpn;
4381	struct mem_cgroup_tree_per_zone *rtpz;
4382	int tmp, node, zone;
4383
4384	for_each_node_state(node, N_POSSIBLE) {
4385		tmp = node;
4386		if (!node_state(node, N_NORMAL_MEMORY))
4387			tmp = -1;
4388		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4389		if (!rtpn)
4390			return 1;
4391
4392		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4393
4394		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4395			rtpz = &rtpn->rb_tree_per_zone[zone];
4396			rtpz->rb_root = RB_ROOT;
4397			spin_lock_init(&rtpz->lock);
4398		}
4399	}
4400	return 0;
4401}
4402
4403static struct cgroup_subsys_state * __ref
4404mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4405{
4406	struct mem_cgroup *mem, *parent;
4407	long error = -ENOMEM;
4408	int node;
4409
4410	mem = mem_cgroup_alloc();
4411	if (!mem)
4412		return ERR_PTR(error);
4413
4414	for_each_node_state(node, N_POSSIBLE)
4415		if (alloc_mem_cgroup_per_zone_info(mem, node))
4416			goto free_out;
4417
4418	/* root ? */
4419	if (cont->parent == NULL) {
4420		int cpu;
4421		enable_swap_cgroup();
4422		parent = NULL;
4423		root_mem_cgroup = mem;
4424		if (mem_cgroup_soft_limit_tree_init())
4425			goto free_out;
4426		for_each_possible_cpu(cpu) {
4427			struct memcg_stock_pcp *stock =
4428						&per_cpu(memcg_stock, cpu);
4429			INIT_WORK(&stock->work, drain_local_stock);
4430		}
4431		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4432	} else {
4433		parent = mem_cgroup_from_cont(cont->parent);
4434		mem->use_hierarchy = parent->use_hierarchy;
4435		mem->oom_kill_disable = parent->oom_kill_disable;
4436	}
4437
4438	if (parent && parent->use_hierarchy) {
4439		res_counter_init(&mem->res, &parent->res);
4440		res_counter_init(&mem->memsw, &parent->memsw);
4441		/*
4442		 * We increment refcnt of the parent to ensure that we can
4443		 * safely access it on res_counter_charge/uncharge.
4444		 * This refcnt will be decremented when freeing this
4445		 * mem_cgroup(see mem_cgroup_put).
4446		 */
4447		mem_cgroup_get(parent);
4448	} else {
4449		res_counter_init(&mem->res, NULL);
4450		res_counter_init(&mem->memsw, NULL);
4451	}
4452	mem->last_scanned_child = 0;
4453	spin_lock_init(&mem->reclaim_param_lock);
4454	INIT_LIST_HEAD(&mem->oom_notify);
4455
4456	if (parent)
4457		mem->swappiness = get_swappiness(parent);
4458	atomic_set(&mem->refcnt, 1);
4459	mem->move_charge_at_immigrate = 0;
4460	mutex_init(&mem->thresholds_lock);
4461	return &mem->css;
4462free_out:
4463	__mem_cgroup_free(mem);
4464	root_mem_cgroup = NULL;
4465	return ERR_PTR(error);
4466}
4467
4468static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4469					struct cgroup *cont)
4470{
4471	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4472
4473	return mem_cgroup_force_empty(mem, false);
4474}
4475
4476static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4477				struct cgroup *cont)
4478{
4479	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4480
4481	mem_cgroup_put(mem);
4482}
4483
4484static int mem_cgroup_populate(struct cgroup_subsys *ss,
4485				struct cgroup *cont)
4486{
4487	int ret;
4488
4489	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4490				ARRAY_SIZE(mem_cgroup_files));
4491
4492	if (!ret)
4493		ret = register_memsw_files(cont, ss);
4494	return ret;
4495}
4496
4497#ifdef CONFIG_MMU
4498/* Handlers for move charge at task migration. */
4499#define PRECHARGE_COUNT_AT_ONCE	256
4500static int mem_cgroup_do_precharge(unsigned long count)
4501{
4502	int ret = 0;
4503	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4504	struct mem_cgroup *mem = mc.to;
4505
4506	if (mem_cgroup_is_root(mem)) {
4507		mc.precharge += count;
4508		/* we don't need css_get for root */
4509		return ret;
4510	}
4511	/* try to charge at once */
4512	if (count > 1) {
4513		struct res_counter *dummy;
4514		/*
4515		 * "mem" cannot be under rmdir() because we've already checked
4516		 * by cgroup_lock_live_cgroup() that it is not removed and we
4517		 * are still under the same cgroup_mutex. So we can postpone
4518		 * css_get().
4519		 */
4520		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4521			goto one_by_one;
4522		if (do_swap_account && res_counter_charge(&mem->memsw,
4523						PAGE_SIZE * count, &dummy)) {
4524			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4525			goto one_by_one;
4526		}
4527		mc.precharge += count;
4528		return ret;
4529	}
4530one_by_one:
4531	/* fall back to one by one charge */
4532	while (count--) {
4533		if (signal_pending(current)) {
4534			ret = -EINTR;
4535			break;
4536		}
4537		if (!batch_count--) {
4538			batch_count = PRECHARGE_COUNT_AT_ONCE;
4539			cond_resched();
4540		}
4541		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4542					      PAGE_SIZE);
4543		if (ret || !mem)
4544			/* mem_cgroup_clear_mc() will do uncharge later */
4545			return -ENOMEM;
4546		mc.precharge++;
4547	}
4548	return ret;
4549}
4550
4551/**
4552 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4553 * @vma: the vma the pte to be checked belongs
4554 * @addr: the address corresponding to the pte to be checked
4555 * @ptent: the pte to be checked
4556 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4557 *
4558 * Returns
4559 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4560 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4561 *     move charge. if @target is not NULL, the page is stored in target->page
4562 *     with extra refcnt got(Callers should handle it).
4563 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4564 *     target for charge migration. if @target is not NULL, the entry is stored
4565 *     in target->ent.
4566 *
4567 * Called with pte lock held.
4568 */
4569union mc_target {
4570	struct page	*page;
4571	swp_entry_t	ent;
4572};
4573
4574enum mc_target_type {
4575	MC_TARGET_NONE,	/* not used */
4576	MC_TARGET_PAGE,
4577	MC_TARGET_SWAP,
4578};
4579
4580static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4581						unsigned long addr, pte_t ptent)
4582{
4583	struct page *page = vm_normal_page(vma, addr, ptent);
4584
4585	if (!page || !page_mapped(page))
4586		return NULL;
4587	if (PageAnon(page)) {
4588		/* we don't move shared anon */
4589		if (!move_anon() || page_mapcount(page) > 2)
4590			return NULL;
4591	} else if (!move_file())
4592		/* we ignore mapcount for file pages */
4593		return NULL;
4594	if (!get_page_unless_zero(page))
4595		return NULL;
4596
4597	return page;
4598}
4599
4600static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4601			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4602{
4603	int usage_count;
4604	struct page *page = NULL;
4605	swp_entry_t ent = pte_to_swp_entry(ptent);
4606
4607	if (!move_anon() || non_swap_entry(ent))
4608		return NULL;
4609	usage_count = mem_cgroup_count_swap_user(ent, &page);
4610	if (usage_count > 1) { /* we don't move shared anon */
4611		if (page)
4612			put_page(page);
4613		return NULL;
4614	}
4615	if (do_swap_account)
4616		entry->val = ent.val;
4617
4618	return page;
4619}
4620
4621static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4622			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4623{
4624	struct page *page = NULL;
4625	struct inode *inode;
4626	struct address_space *mapping;
4627	pgoff_t pgoff;
4628
4629	if (!vma->vm_file) /* anonymous vma */
4630		return NULL;
4631	if (!move_file())
4632		return NULL;
4633
4634	inode = vma->vm_file->f_path.dentry->d_inode;
4635	mapping = vma->vm_file->f_mapping;
4636	if (pte_none(ptent))
4637		pgoff = linear_page_index(vma, addr);
4638	else /* pte_file(ptent) is true */
4639		pgoff = pte_to_pgoff(ptent);
4640
4641	/* page is moved even if it's not RSS of this task(page-faulted). */
4642	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4643		page = find_get_page(mapping, pgoff);
4644	} else { /* shmem/tmpfs file. we should take account of swap too. */
4645		swp_entry_t ent;
4646		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4647		if (do_swap_account)
4648			entry->val = ent.val;
4649	}
4650
4651	return page;
4652}
4653
4654static int is_target_pte_for_mc(struct vm_area_struct *vma,
4655		unsigned long addr, pte_t ptent, union mc_target *target)
4656{
4657	struct page *page = NULL;
4658	struct page_cgroup *pc;
4659	int ret = 0;
4660	swp_entry_t ent = { .val = 0 };
4661
4662	if (pte_present(ptent))
4663		page = mc_handle_present_pte(vma, addr, ptent);
4664	else if (is_swap_pte(ptent))
4665		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4666	else if (pte_none(ptent) || pte_file(ptent))
4667		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4668
4669	if (!page && !ent.val)
4670		return 0;
4671	if (page) {
4672		pc = lookup_page_cgroup(page);
4673		/*
4674		 * Do only loose check w/o page_cgroup lock.
4675		 * mem_cgroup_move_account() checks the pc is valid or not under
4676		 * the lock.
4677		 */
4678		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4679			ret = MC_TARGET_PAGE;
4680			if (target)
4681				target->page = page;
4682		}
4683		if (!ret || !target)
4684			put_page(page);
4685	}
4686	/* There is a swap entry and a page doesn't exist or isn't charged */
4687	if (ent.val && !ret &&
4688			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4689		ret = MC_TARGET_SWAP;
4690		if (target)
4691			target->ent = ent;
4692	}
4693	return ret;
4694}
4695
4696static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4697					unsigned long addr, unsigned long end,
4698					struct mm_walk *walk)
4699{
4700	struct vm_area_struct *vma = walk->private;
4701	pte_t *pte;
4702	spinlock_t *ptl;
4703
4704	VM_BUG_ON(pmd_trans_huge(*pmd));
4705	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4706	for (; addr != end; pte++, addr += PAGE_SIZE)
4707		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4708			mc.precharge++;	/* increment precharge temporarily */
4709	pte_unmap_unlock(pte - 1, ptl);
4710	cond_resched();
4711
4712	return 0;
4713}
4714
4715static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4716{
4717	unsigned long precharge;
4718	struct vm_area_struct *vma;
4719
4720	down_read(&mm->mmap_sem);
4721	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4722		struct mm_walk mem_cgroup_count_precharge_walk = {
4723			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4724			.mm = mm,
4725			.private = vma,
4726		};
4727		if (is_vm_hugetlb_page(vma))
4728			continue;
4729		walk_page_range(vma->vm_start, vma->vm_end,
4730					&mem_cgroup_count_precharge_walk);
4731	}
4732	up_read(&mm->mmap_sem);
4733
4734	precharge = mc.precharge;
4735	mc.precharge = 0;
4736
4737	return precharge;
4738}
4739
4740static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4741{
4742	unsigned long precharge = mem_cgroup_count_precharge(mm);
4743
4744	VM_BUG_ON(mc.moving_task);
4745	mc.moving_task = current;
4746	return mem_cgroup_do_precharge(precharge);
4747}
4748
4749/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4750static void __mem_cgroup_clear_mc(void)
4751{
4752	struct mem_cgroup *from = mc.from;
4753	struct mem_cgroup *to = mc.to;
4754
4755	/* we must uncharge all the leftover precharges from mc.to */
4756	if (mc.precharge) {
4757		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4758		mc.precharge = 0;
4759	}
4760	/*
4761	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4762	 * we must uncharge here.
4763	 */
4764	if (mc.moved_charge) {
4765		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4766		mc.moved_charge = 0;
4767	}
4768	/* we must fixup refcnts and charges */
4769	if (mc.moved_swap) {
4770		/* uncharge swap account from the old cgroup */
4771		if (!mem_cgroup_is_root(mc.from))
4772			res_counter_uncharge(&mc.from->memsw,
4773						PAGE_SIZE * mc.moved_swap);
4774		__mem_cgroup_put(mc.from, mc.moved_swap);
4775
4776		if (!mem_cgroup_is_root(mc.to)) {
4777			/*
4778			 * we charged both to->res and to->memsw, so we should
4779			 * uncharge to->res.
4780			 */
4781			res_counter_uncharge(&mc.to->res,
4782						PAGE_SIZE * mc.moved_swap);
4783		}
4784		/* we've already done mem_cgroup_get(mc.to) */
4785		mc.moved_swap = 0;
4786	}
4787	memcg_oom_recover(from);
4788	memcg_oom_recover(to);
4789	wake_up_all(&mc.waitq);
4790}
4791
4792static void mem_cgroup_clear_mc(void)
4793{
4794	struct mem_cgroup *from = mc.from;
4795
4796	/*
4797	 * we must clear moving_task before waking up waiters at the end of
4798	 * task migration.
4799	 */
4800	mc.moving_task = NULL;
4801	__mem_cgroup_clear_mc();
4802	spin_lock(&mc.lock);
4803	mc.from = NULL;
4804	mc.to = NULL;
4805	spin_unlock(&mc.lock);
4806	mem_cgroup_end_move(from);
4807}
4808
4809static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4810				struct cgroup *cgroup,
4811				struct task_struct *p,
4812				bool threadgroup)
4813{
4814	int ret = 0;
4815	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4816
4817	if (mem->move_charge_at_immigrate) {
4818		struct mm_struct *mm;
4819		struct mem_cgroup *from = mem_cgroup_from_task(p);
4820
4821		VM_BUG_ON(from == mem);
4822
4823		mm = get_task_mm(p);
4824		if (!mm)
4825			return 0;
4826		/* We move charges only when we move a owner of the mm */
4827		if (mm->owner == p) {
4828			VM_BUG_ON(mc.from);
4829			VM_BUG_ON(mc.to);
4830			VM_BUG_ON(mc.precharge);
4831			VM_BUG_ON(mc.moved_charge);
4832			VM_BUG_ON(mc.moved_swap);
4833			mem_cgroup_start_move(from);
4834			spin_lock(&mc.lock);
4835			mc.from = from;
4836			mc.to = mem;
4837			spin_unlock(&mc.lock);
4838			/* We set mc.moving_task later */
4839
4840			ret = mem_cgroup_precharge_mc(mm);
4841			if (ret)
4842				mem_cgroup_clear_mc();
4843		}
4844		mmput(mm);
4845	}
4846	return ret;
4847}
4848
4849static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4850				struct cgroup *cgroup,
4851				struct task_struct *p,
4852				bool threadgroup)
4853{
4854	mem_cgroup_clear_mc();
4855}
4856
4857static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4858				unsigned long addr, unsigned long end,
4859				struct mm_walk *walk)
4860{
4861	int ret = 0;
4862	struct vm_area_struct *vma = walk->private;
4863	pte_t *pte;
4864	spinlock_t *ptl;
4865
4866retry:
4867	VM_BUG_ON(pmd_trans_huge(*pmd));
4868	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4869	for (; addr != end; addr += PAGE_SIZE) {
4870		pte_t ptent = *(pte++);
4871		union mc_target target;
4872		int type;
4873		struct page *page;
4874		struct page_cgroup *pc;
4875		swp_entry_t ent;
4876
4877		if (!mc.precharge)
4878			break;
4879
4880		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4881		switch (type) {
4882		case MC_TARGET_PAGE:
4883			page = target.page;
4884			if (isolate_lru_page(page))
4885				goto put;
4886			pc = lookup_page_cgroup(page);
4887			if (!mem_cgroup_move_account(pc,
4888					mc.from, mc.to, false, PAGE_SIZE)) {
4889				mc.precharge--;
4890				/* we uncharge from mc.from later. */
4891				mc.moved_charge++;
4892			}
4893			putback_lru_page(page);
4894put:			/* is_target_pte_for_mc() gets the page */
4895			put_page(page);
4896			break;
4897		case MC_TARGET_SWAP:
4898			ent = target.ent;
4899			if (!mem_cgroup_move_swap_account(ent,
4900						mc.from, mc.to, false)) {
4901				mc.precharge--;
4902				/* we fixup refcnts and charges later. */
4903				mc.moved_swap++;
4904			}
4905			break;
4906		default:
4907			break;
4908		}
4909	}
4910	pte_unmap_unlock(pte - 1, ptl);
4911	cond_resched();
4912
4913	if (addr != end) {
4914		/*
4915		 * We have consumed all precharges we got in can_attach().
4916		 * We try charge one by one, but don't do any additional
4917		 * charges to mc.to if we have failed in charge once in attach()
4918		 * phase.
4919		 */
4920		ret = mem_cgroup_do_precharge(1);
4921		if (!ret)
4922			goto retry;
4923	}
4924
4925	return ret;
4926}
4927
4928static void mem_cgroup_move_charge(struct mm_struct *mm)
4929{
4930	struct vm_area_struct *vma;
4931
4932	lru_add_drain_all();
4933retry:
4934	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4935		/*
4936		 * Someone who are holding the mmap_sem might be waiting in
4937		 * waitq. So we cancel all extra charges, wake up all waiters,
4938		 * and retry. Because we cancel precharges, we might not be able
4939		 * to move enough charges, but moving charge is a best-effort
4940		 * feature anyway, so it wouldn't be a big problem.
4941		 */
4942		__mem_cgroup_clear_mc();
4943		cond_resched();
4944		goto retry;
4945	}
4946	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4947		int ret;
4948		struct mm_walk mem_cgroup_move_charge_walk = {
4949			.pmd_entry = mem_cgroup_move_charge_pte_range,
4950			.mm = mm,
4951			.private = vma,
4952		};
4953		if (is_vm_hugetlb_page(vma))
4954			continue;
4955		ret = walk_page_range(vma->vm_start, vma->vm_end,
4956						&mem_cgroup_move_charge_walk);
4957		if (ret)
4958			/*
4959			 * means we have consumed all precharges and failed in
4960			 * doing additional charge. Just abandon here.
4961			 */
4962			break;
4963	}
4964	up_read(&mm->mmap_sem);
4965}
4966
4967static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4968				struct cgroup *cont,
4969				struct cgroup *old_cont,
4970				struct task_struct *p,
4971				bool threadgroup)
4972{
4973	struct mm_struct *mm;
4974
4975	if (!mc.to)
4976		/* no need to move charge */
4977		return;
4978
4979	mm = get_task_mm(p);
4980	if (mm) {
4981		mem_cgroup_move_charge(mm);
4982		mmput(mm);
4983	}
4984	mem_cgroup_clear_mc();
4985}
4986#else	/* !CONFIG_MMU */
4987static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4988				struct cgroup *cgroup,
4989				struct task_struct *p,
4990				bool threadgroup)
4991{
4992	return 0;
4993}
4994static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4995				struct cgroup *cgroup,
4996				struct task_struct *p,
4997				bool threadgroup)
4998{
4999}
5000static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5001				struct cgroup *cont,
5002				struct cgroup *old_cont,
5003				struct task_struct *p,
5004				bool threadgroup)
5005{
5006}
5007#endif
5008
5009struct cgroup_subsys mem_cgroup_subsys = {
5010	.name = "memory",
5011	.subsys_id = mem_cgroup_subsys_id,
5012	.create = mem_cgroup_create,
5013	.pre_destroy = mem_cgroup_pre_destroy,
5014	.destroy = mem_cgroup_destroy,
5015	.populate = mem_cgroup_populate,
5016	.can_attach = mem_cgroup_can_attach,
5017	.cancel_attach = mem_cgroup_cancel_attach,
5018	.attach = mem_cgroup_move_task,
5019	.early_init = 0,
5020	.use_id = 1,
5021};
5022
5023#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5024static int __init enable_swap_account(char *s)
5025{
5026	/* consider enabled if no parameter or 1 is given */
5027	if (!(*s) || !strcmp(s, "=1"))
5028		really_do_swap_account = 1;
5029	else if (!strcmp(s, "=0"))
5030		really_do_swap_account = 0;
5031	return 1;
5032}
5033__setup("swapaccount", enable_swap_account);
5034
5035static int __init disable_swap_account(char *s)
5036{
5037	enable_swap_account("=0");
5038	return 1;
5039}
5040__setup("noswapaccount", disable_swap_account);
5041#endif
5042