memory-failure.c revision 3f04f62f90d46a82dd73027c5fd7a15daed5c33d
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states.	The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/page-isolation.h>
50#include <linux/suspend.h>
51#include <linux/slab.h>
52#include <linux/swapops.h>
53#include <linux/hugetlb.h>
54#include <linux/memory_hotplug.h>
55#include "internal.h"
56
57int sysctl_memory_failure_early_kill __read_mostly = 0;
58
59int sysctl_memory_failure_recovery __read_mostly = 1;
60
61atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62
63#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64
65u32 hwpoison_filter_enable = 0;
66u32 hwpoison_filter_dev_major = ~0U;
67u32 hwpoison_filter_dev_minor = ~0U;
68u64 hwpoison_filter_flags_mask;
69u64 hwpoison_filter_flags_value;
70EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
71EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
73EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
75
76static int hwpoison_filter_dev(struct page *p)
77{
78	struct address_space *mapping;
79	dev_t dev;
80
81	if (hwpoison_filter_dev_major == ~0U &&
82	    hwpoison_filter_dev_minor == ~0U)
83		return 0;
84
85	/*
86	 * page_mapping() does not accept slab pages.
87	 */
88	if (PageSlab(p))
89		return -EINVAL;
90
91	mapping = page_mapping(p);
92	if (mapping == NULL || mapping->host == NULL)
93		return -EINVAL;
94
95	dev = mapping->host->i_sb->s_dev;
96	if (hwpoison_filter_dev_major != ~0U &&
97	    hwpoison_filter_dev_major != MAJOR(dev))
98		return -EINVAL;
99	if (hwpoison_filter_dev_minor != ~0U &&
100	    hwpoison_filter_dev_minor != MINOR(dev))
101		return -EINVAL;
102
103	return 0;
104}
105
106static int hwpoison_filter_flags(struct page *p)
107{
108	if (!hwpoison_filter_flags_mask)
109		return 0;
110
111	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112				    hwpoison_filter_flags_value)
113		return 0;
114	else
115		return -EINVAL;
116}
117
118/*
119 * This allows stress tests to limit test scope to a collection of tasks
120 * by putting them under some memcg. This prevents killing unrelated/important
121 * processes such as /sbin/init. Note that the target task may share clean
122 * pages with init (eg. libc text), which is harmless. If the target task
123 * share _dirty_ pages with another task B, the test scheme must make sure B
124 * is also included in the memcg. At last, due to race conditions this filter
125 * can only guarantee that the page either belongs to the memcg tasks, or is
126 * a freed page.
127 */
128#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129u64 hwpoison_filter_memcg;
130EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131static int hwpoison_filter_task(struct page *p)
132{
133	struct mem_cgroup *mem;
134	struct cgroup_subsys_state *css;
135	unsigned long ino;
136
137	if (!hwpoison_filter_memcg)
138		return 0;
139
140	mem = try_get_mem_cgroup_from_page(p);
141	if (!mem)
142		return -EINVAL;
143
144	css = mem_cgroup_css(mem);
145	/* root_mem_cgroup has NULL dentries */
146	if (!css->cgroup->dentry)
147		return -EINVAL;
148
149	ino = css->cgroup->dentry->d_inode->i_ino;
150	css_put(css);
151
152	if (ino != hwpoison_filter_memcg)
153		return -EINVAL;
154
155	return 0;
156}
157#else
158static int hwpoison_filter_task(struct page *p) { return 0; }
159#endif
160
161int hwpoison_filter(struct page *p)
162{
163	if (!hwpoison_filter_enable)
164		return 0;
165
166	if (hwpoison_filter_dev(p))
167		return -EINVAL;
168
169	if (hwpoison_filter_flags(p))
170		return -EINVAL;
171
172	if (hwpoison_filter_task(p))
173		return -EINVAL;
174
175	return 0;
176}
177#else
178int hwpoison_filter(struct page *p)
179{
180	return 0;
181}
182#endif
183
184EXPORT_SYMBOL_GPL(hwpoison_filter);
185
186/*
187 * Send all the processes who have the page mapped an ``action optional''
188 * signal.
189 */
190static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
191			unsigned long pfn, struct page *page)
192{
193	struct siginfo si;
194	int ret;
195
196	printk(KERN_ERR
197		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198		pfn, t->comm, t->pid);
199	si.si_signo = SIGBUS;
200	si.si_errno = 0;
201	si.si_code = BUS_MCEERR_AO;
202	si.si_addr = (void *)addr;
203#ifdef __ARCH_SI_TRAPNO
204	si.si_trapno = trapno;
205#endif
206	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
207	/*
208	 * Don't use force here, it's convenient if the signal
209	 * can be temporarily blocked.
210	 * This could cause a loop when the user sets SIGBUS
211	 * to SIG_IGN, but hopefully noone will do that?
212	 */
213	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
214	if (ret < 0)
215		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216		       t->comm, t->pid, ret);
217	return ret;
218}
219
220/*
221 * When a unknown page type is encountered drain as many buffers as possible
222 * in the hope to turn the page into a LRU or free page, which we can handle.
223 */
224void shake_page(struct page *p, int access)
225{
226	if (!PageSlab(p)) {
227		lru_add_drain_all();
228		if (PageLRU(p))
229			return;
230		drain_all_pages();
231		if (PageLRU(p) || is_free_buddy_page(p))
232			return;
233	}
234
235	/*
236	 * Only all shrink_slab here (which would also
237	 * shrink other caches) if access is not potentially fatal.
238	 */
239	if (access) {
240		int nr;
241		do {
242			nr = shrink_slab(1000, GFP_KERNEL, 1000);
243			if (page_count(p) == 1)
244				break;
245		} while (nr > 10);
246	}
247}
248EXPORT_SYMBOL_GPL(shake_page);
249
250/*
251 * Kill all processes that have a poisoned page mapped and then isolate
252 * the page.
253 *
254 * General strategy:
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
259 *
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
262 * running processes.
263 *
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
267 *
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
270 */
271
272struct to_kill {
273	struct list_head nd;
274	struct task_struct *tsk;
275	unsigned long addr;
276	char addr_valid;
277};
278
279/*
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do.	We just print a message and ignore otherwise.
282 */
283
284/*
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
288 */
289static void add_to_kill(struct task_struct *tsk, struct page *p,
290		       struct vm_area_struct *vma,
291		       struct list_head *to_kill,
292		       struct to_kill **tkc)
293{
294	struct to_kill *tk;
295
296	if (*tkc) {
297		tk = *tkc;
298		*tkc = NULL;
299	} else {
300		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301		if (!tk) {
302			printk(KERN_ERR
303		"MCE: Out of memory while machine check handling\n");
304			return;
305		}
306	}
307	tk->addr = page_address_in_vma(p, vma);
308	tk->addr_valid = 1;
309
310	/*
311	 * In theory we don't have to kill when the page was
312	 * munmaped. But it could be also a mremap. Since that's
313	 * likely very rare kill anyways just out of paranoia, but use
314	 * a SIGKILL because the error is not contained anymore.
315	 */
316	if (tk->addr == -EFAULT) {
317		pr_info("MCE: Unable to find user space address %lx in %s\n",
318			page_to_pfn(p), tsk->comm);
319		tk->addr_valid = 0;
320	}
321	get_task_struct(tsk);
322	tk->tsk = tsk;
323	list_add_tail(&tk->nd, to_kill);
324}
325
326/*
327 * Kill the processes that have been collected earlier.
328 *
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
332 * wrong earlier.
333 */
334static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
335			  int fail, struct page *page, unsigned long pfn)
336{
337	struct to_kill *tk, *next;
338
339	list_for_each_entry_safe (tk, next, to_kill, nd) {
340		if (doit) {
341			/*
342			 * In case something went wrong with munmapping
343			 * make sure the process doesn't catch the
344			 * signal and then access the memory. Just kill it.
345			 */
346			if (fail || tk->addr_valid == 0) {
347				printk(KERN_ERR
348		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
349					pfn, tk->tsk->comm, tk->tsk->pid);
350				force_sig(SIGKILL, tk->tsk);
351			}
352
353			/*
354			 * In theory the process could have mapped
355			 * something else on the address in-between. We could
356			 * check for that, but we need to tell the
357			 * process anyways.
358			 */
359			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
360					      pfn, page) < 0)
361				printk(KERN_ERR
362		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
363					pfn, tk->tsk->comm, tk->tsk->pid);
364		}
365		put_task_struct(tk->tsk);
366		kfree(tk);
367	}
368}
369
370static int task_early_kill(struct task_struct *tsk)
371{
372	if (!tsk->mm)
373		return 0;
374	if (tsk->flags & PF_MCE_PROCESS)
375		return !!(tsk->flags & PF_MCE_EARLY);
376	return sysctl_memory_failure_early_kill;
377}
378
379/*
380 * Collect processes when the error hit an anonymous page.
381 */
382static void collect_procs_anon(struct page *page, struct list_head *to_kill,
383			      struct to_kill **tkc)
384{
385	struct vm_area_struct *vma;
386	struct task_struct *tsk;
387	struct anon_vma *av;
388
389	if (unlikely(split_huge_page(page)))
390		return;
391	read_lock(&tasklist_lock);
392	av = page_lock_anon_vma(page);
393	if (av == NULL)	/* Not actually mapped anymore */
394		goto out;
395	for_each_process (tsk) {
396		struct anon_vma_chain *vmac;
397
398		if (!task_early_kill(tsk))
399			continue;
400		list_for_each_entry(vmac, &av->head, same_anon_vma) {
401			vma = vmac->vma;
402			if (!page_mapped_in_vma(page, vma))
403				continue;
404			if (vma->vm_mm == tsk->mm)
405				add_to_kill(tsk, page, vma, to_kill, tkc);
406		}
407	}
408	page_unlock_anon_vma(av);
409out:
410	read_unlock(&tasklist_lock);
411}
412
413/*
414 * Collect processes when the error hit a file mapped page.
415 */
416static void collect_procs_file(struct page *page, struct list_head *to_kill,
417			      struct to_kill **tkc)
418{
419	struct vm_area_struct *vma;
420	struct task_struct *tsk;
421	struct prio_tree_iter iter;
422	struct address_space *mapping = page->mapping;
423
424	/*
425	 * A note on the locking order between the two locks.
426	 * We don't rely on this particular order.
427	 * If you have some other code that needs a different order
428	 * feel free to switch them around. Or add a reverse link
429	 * from mm_struct to task_struct, then this could be all
430	 * done without taking tasklist_lock and looping over all tasks.
431	 */
432
433	read_lock(&tasklist_lock);
434	spin_lock(&mapping->i_mmap_lock);
435	for_each_process(tsk) {
436		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
437
438		if (!task_early_kill(tsk))
439			continue;
440
441		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
442				      pgoff) {
443			/*
444			 * Send early kill signal to tasks where a vma covers
445			 * the page but the corrupted page is not necessarily
446			 * mapped it in its pte.
447			 * Assume applications who requested early kill want
448			 * to be informed of all such data corruptions.
449			 */
450			if (vma->vm_mm == tsk->mm)
451				add_to_kill(tsk, page, vma, to_kill, tkc);
452		}
453	}
454	spin_unlock(&mapping->i_mmap_lock);
455	read_unlock(&tasklist_lock);
456}
457
458/*
459 * Collect the processes who have the corrupted page mapped to kill.
460 * This is done in two steps for locking reasons.
461 * First preallocate one tokill structure outside the spin locks,
462 * so that we can kill at least one process reasonably reliable.
463 */
464static void collect_procs(struct page *page, struct list_head *tokill)
465{
466	struct to_kill *tk;
467
468	if (!page->mapping)
469		return;
470
471	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
472	if (!tk)
473		return;
474	if (PageAnon(page))
475		collect_procs_anon(page, tokill, &tk);
476	else
477		collect_procs_file(page, tokill, &tk);
478	kfree(tk);
479}
480
481/*
482 * Error handlers for various types of pages.
483 */
484
485enum outcome {
486	IGNORED,	/* Error: cannot be handled */
487	FAILED,		/* Error: handling failed */
488	DELAYED,	/* Will be handled later */
489	RECOVERED,	/* Successfully recovered */
490};
491
492static const char *action_name[] = {
493	[IGNORED] = "Ignored",
494	[FAILED] = "Failed",
495	[DELAYED] = "Delayed",
496	[RECOVERED] = "Recovered",
497};
498
499/*
500 * XXX: It is possible that a page is isolated from LRU cache,
501 * and then kept in swap cache or failed to remove from page cache.
502 * The page count will stop it from being freed by unpoison.
503 * Stress tests should be aware of this memory leak problem.
504 */
505static int delete_from_lru_cache(struct page *p)
506{
507	if (!isolate_lru_page(p)) {
508		/*
509		 * Clear sensible page flags, so that the buddy system won't
510		 * complain when the page is unpoison-and-freed.
511		 */
512		ClearPageActive(p);
513		ClearPageUnevictable(p);
514		/*
515		 * drop the page count elevated by isolate_lru_page()
516		 */
517		page_cache_release(p);
518		return 0;
519	}
520	return -EIO;
521}
522
523/*
524 * Error hit kernel page.
525 * Do nothing, try to be lucky and not touch this instead. For a few cases we
526 * could be more sophisticated.
527 */
528static int me_kernel(struct page *p, unsigned long pfn)
529{
530	return IGNORED;
531}
532
533/*
534 * Page in unknown state. Do nothing.
535 */
536static int me_unknown(struct page *p, unsigned long pfn)
537{
538	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
539	return FAILED;
540}
541
542/*
543 * Clean (or cleaned) page cache page.
544 */
545static int me_pagecache_clean(struct page *p, unsigned long pfn)
546{
547	int err;
548	int ret = FAILED;
549	struct address_space *mapping;
550
551	delete_from_lru_cache(p);
552
553	/*
554	 * For anonymous pages we're done the only reference left
555	 * should be the one m_f() holds.
556	 */
557	if (PageAnon(p))
558		return RECOVERED;
559
560	/*
561	 * Now truncate the page in the page cache. This is really
562	 * more like a "temporary hole punch"
563	 * Don't do this for block devices when someone else
564	 * has a reference, because it could be file system metadata
565	 * and that's not safe to truncate.
566	 */
567	mapping = page_mapping(p);
568	if (!mapping) {
569		/*
570		 * Page has been teared down in the meanwhile
571		 */
572		return FAILED;
573	}
574
575	/*
576	 * Truncation is a bit tricky. Enable it per file system for now.
577	 *
578	 * Open: to take i_mutex or not for this? Right now we don't.
579	 */
580	if (mapping->a_ops->error_remove_page) {
581		err = mapping->a_ops->error_remove_page(mapping, p);
582		if (err != 0) {
583			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
584					pfn, err);
585		} else if (page_has_private(p) &&
586				!try_to_release_page(p, GFP_NOIO)) {
587			pr_info("MCE %#lx: failed to release buffers\n", pfn);
588		} else {
589			ret = RECOVERED;
590		}
591	} else {
592		/*
593		 * If the file system doesn't support it just invalidate
594		 * This fails on dirty or anything with private pages
595		 */
596		if (invalidate_inode_page(p))
597			ret = RECOVERED;
598		else
599			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
600				pfn);
601	}
602	return ret;
603}
604
605/*
606 * Dirty cache page page
607 * Issues: when the error hit a hole page the error is not properly
608 * propagated.
609 */
610static int me_pagecache_dirty(struct page *p, unsigned long pfn)
611{
612	struct address_space *mapping = page_mapping(p);
613
614	SetPageError(p);
615	/* TBD: print more information about the file. */
616	if (mapping) {
617		/*
618		 * IO error will be reported by write(), fsync(), etc.
619		 * who check the mapping.
620		 * This way the application knows that something went
621		 * wrong with its dirty file data.
622		 *
623		 * There's one open issue:
624		 *
625		 * The EIO will be only reported on the next IO
626		 * operation and then cleared through the IO map.
627		 * Normally Linux has two mechanisms to pass IO error
628		 * first through the AS_EIO flag in the address space
629		 * and then through the PageError flag in the page.
630		 * Since we drop pages on memory failure handling the
631		 * only mechanism open to use is through AS_AIO.
632		 *
633		 * This has the disadvantage that it gets cleared on
634		 * the first operation that returns an error, while
635		 * the PageError bit is more sticky and only cleared
636		 * when the page is reread or dropped.  If an
637		 * application assumes it will always get error on
638		 * fsync, but does other operations on the fd before
639		 * and the page is dropped inbetween then the error
640		 * will not be properly reported.
641		 *
642		 * This can already happen even without hwpoisoned
643		 * pages: first on metadata IO errors (which only
644		 * report through AS_EIO) or when the page is dropped
645		 * at the wrong time.
646		 *
647		 * So right now we assume that the application DTRT on
648		 * the first EIO, but we're not worse than other parts
649		 * of the kernel.
650		 */
651		mapping_set_error(mapping, EIO);
652	}
653
654	return me_pagecache_clean(p, pfn);
655}
656
657/*
658 * Clean and dirty swap cache.
659 *
660 * Dirty swap cache page is tricky to handle. The page could live both in page
661 * cache and swap cache(ie. page is freshly swapped in). So it could be
662 * referenced concurrently by 2 types of PTEs:
663 * normal PTEs and swap PTEs. We try to handle them consistently by calling
664 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
665 * and then
666 *      - clear dirty bit to prevent IO
667 *      - remove from LRU
668 *      - but keep in the swap cache, so that when we return to it on
669 *        a later page fault, we know the application is accessing
670 *        corrupted data and shall be killed (we installed simple
671 *        interception code in do_swap_page to catch it).
672 *
673 * Clean swap cache pages can be directly isolated. A later page fault will
674 * bring in the known good data from disk.
675 */
676static int me_swapcache_dirty(struct page *p, unsigned long pfn)
677{
678	ClearPageDirty(p);
679	/* Trigger EIO in shmem: */
680	ClearPageUptodate(p);
681
682	if (!delete_from_lru_cache(p))
683		return DELAYED;
684	else
685		return FAILED;
686}
687
688static int me_swapcache_clean(struct page *p, unsigned long pfn)
689{
690	delete_from_swap_cache(p);
691
692	if (!delete_from_lru_cache(p))
693		return RECOVERED;
694	else
695		return FAILED;
696}
697
698/*
699 * Huge pages. Needs work.
700 * Issues:
701 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
702 *   To narrow down kill region to one page, we need to break up pmd.
703 */
704static int me_huge_page(struct page *p, unsigned long pfn)
705{
706	int res = 0;
707	struct page *hpage = compound_head(p);
708	/*
709	 * We can safely recover from error on free or reserved (i.e.
710	 * not in-use) hugepage by dequeuing it from freelist.
711	 * To check whether a hugepage is in-use or not, we can't use
712	 * page->lru because it can be used in other hugepage operations,
713	 * such as __unmap_hugepage_range() and gather_surplus_pages().
714	 * So instead we use page_mapping() and PageAnon().
715	 * We assume that this function is called with page lock held,
716	 * so there is no race between isolation and mapping/unmapping.
717	 */
718	if (!(page_mapping(hpage) || PageAnon(hpage))) {
719		res = dequeue_hwpoisoned_huge_page(hpage);
720		if (!res)
721			return RECOVERED;
722	}
723	return DELAYED;
724}
725
726/*
727 * Various page states we can handle.
728 *
729 * A page state is defined by its current page->flags bits.
730 * The table matches them in order and calls the right handler.
731 *
732 * This is quite tricky because we can access page at any time
733 * in its live cycle, so all accesses have to be extremly careful.
734 *
735 * This is not complete. More states could be added.
736 * For any missing state don't attempt recovery.
737 */
738
739#define dirty		(1UL << PG_dirty)
740#define sc		(1UL << PG_swapcache)
741#define unevict		(1UL << PG_unevictable)
742#define mlock		(1UL << PG_mlocked)
743#define writeback	(1UL << PG_writeback)
744#define lru		(1UL << PG_lru)
745#define swapbacked	(1UL << PG_swapbacked)
746#define head		(1UL << PG_head)
747#define tail		(1UL << PG_tail)
748#define compound	(1UL << PG_compound)
749#define slab		(1UL << PG_slab)
750#define reserved	(1UL << PG_reserved)
751
752static struct page_state {
753	unsigned long mask;
754	unsigned long res;
755	char *msg;
756	int (*action)(struct page *p, unsigned long pfn);
757} error_states[] = {
758	{ reserved,	reserved,	"reserved kernel",	me_kernel },
759	/*
760	 * free pages are specially detected outside this table:
761	 * PG_buddy pages only make a small fraction of all free pages.
762	 */
763
764	/*
765	 * Could in theory check if slab page is free or if we can drop
766	 * currently unused objects without touching them. But just
767	 * treat it as standard kernel for now.
768	 */
769	{ slab,		slab,		"kernel slab",	me_kernel },
770
771#ifdef CONFIG_PAGEFLAGS_EXTENDED
772	{ head,		head,		"huge",		me_huge_page },
773	{ tail,		tail,		"huge",		me_huge_page },
774#else
775	{ compound,	compound,	"huge",		me_huge_page },
776#endif
777
778	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
779	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
780
781	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
782	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
783
784	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
785	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
786
787	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
788	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
789
790	/*
791	 * Catchall entry: must be at end.
792	 */
793	{ 0,		0,		"unknown page state",	me_unknown },
794};
795
796#undef dirty
797#undef sc
798#undef unevict
799#undef mlock
800#undef writeback
801#undef lru
802#undef swapbacked
803#undef head
804#undef tail
805#undef compound
806#undef slab
807#undef reserved
808
809static void action_result(unsigned long pfn, char *msg, int result)
810{
811	struct page *page = pfn_to_page(pfn);
812
813	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
814		pfn,
815		PageDirty(page) ? "dirty " : "",
816		msg, action_name[result]);
817}
818
819static int page_action(struct page_state *ps, struct page *p,
820			unsigned long pfn)
821{
822	int result;
823	int count;
824
825	result = ps->action(p, pfn);
826	action_result(pfn, ps->msg, result);
827
828	count = page_count(p) - 1;
829	if (ps->action == me_swapcache_dirty && result == DELAYED)
830		count--;
831	if (count != 0) {
832		printk(KERN_ERR
833		       "MCE %#lx: %s page still referenced by %d users\n",
834		       pfn, ps->msg, count);
835		result = FAILED;
836	}
837
838	/* Could do more checks here if page looks ok */
839	/*
840	 * Could adjust zone counters here to correct for the missing page.
841	 */
842
843	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
844}
845
846/*
847 * Do all that is necessary to remove user space mappings. Unmap
848 * the pages and send SIGBUS to the processes if the data was dirty.
849 */
850static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
851				  int trapno)
852{
853	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
854	struct address_space *mapping;
855	LIST_HEAD(tokill);
856	int ret;
857	int kill = 1;
858	struct page *hpage = compound_head(p);
859
860	if (PageReserved(p) || PageSlab(p))
861		return SWAP_SUCCESS;
862
863	/*
864	 * This check implies we don't kill processes if their pages
865	 * are in the swap cache early. Those are always late kills.
866	 */
867	if (!page_mapped(hpage))
868		return SWAP_SUCCESS;
869
870	if (PageKsm(p))
871		return SWAP_FAIL;
872
873	if (PageSwapCache(p)) {
874		printk(KERN_ERR
875		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
876		ttu |= TTU_IGNORE_HWPOISON;
877	}
878
879	/*
880	 * Propagate the dirty bit from PTEs to struct page first, because we
881	 * need this to decide if we should kill or just drop the page.
882	 * XXX: the dirty test could be racy: set_page_dirty() may not always
883	 * be called inside page lock (it's recommended but not enforced).
884	 */
885	mapping = page_mapping(hpage);
886	if (!PageDirty(hpage) && mapping &&
887	    mapping_cap_writeback_dirty(mapping)) {
888		if (page_mkclean(hpage)) {
889			SetPageDirty(hpage);
890		} else {
891			kill = 0;
892			ttu |= TTU_IGNORE_HWPOISON;
893			printk(KERN_INFO
894	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
895				pfn);
896		}
897	}
898
899	/*
900	 * First collect all the processes that have the page
901	 * mapped in dirty form.  This has to be done before try_to_unmap,
902	 * because ttu takes the rmap data structures down.
903	 *
904	 * Error handling: We ignore errors here because
905	 * there's nothing that can be done.
906	 */
907	if (kill)
908		collect_procs(hpage, &tokill);
909
910	ret = try_to_unmap(hpage, ttu);
911	if (ret != SWAP_SUCCESS)
912		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
913				pfn, page_mapcount(hpage));
914
915	/*
916	 * Now that the dirty bit has been propagated to the
917	 * struct page and all unmaps done we can decide if
918	 * killing is needed or not.  Only kill when the page
919	 * was dirty, otherwise the tokill list is merely
920	 * freed.  When there was a problem unmapping earlier
921	 * use a more force-full uncatchable kill to prevent
922	 * any accesses to the poisoned memory.
923	 */
924	kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
925		      ret != SWAP_SUCCESS, p, pfn);
926
927	return ret;
928}
929
930static void set_page_hwpoison_huge_page(struct page *hpage)
931{
932	int i;
933	int nr_pages = 1 << compound_order(hpage);
934	for (i = 0; i < nr_pages; i++)
935		SetPageHWPoison(hpage + i);
936}
937
938static void clear_page_hwpoison_huge_page(struct page *hpage)
939{
940	int i;
941	int nr_pages = 1 << compound_order(hpage);
942	for (i = 0; i < nr_pages; i++)
943		ClearPageHWPoison(hpage + i);
944}
945
946int __memory_failure(unsigned long pfn, int trapno, int flags)
947{
948	struct page_state *ps;
949	struct page *p;
950	struct page *hpage;
951	int res;
952	unsigned int nr_pages;
953
954	if (!sysctl_memory_failure_recovery)
955		panic("Memory failure from trap %d on page %lx", trapno, pfn);
956
957	if (!pfn_valid(pfn)) {
958		printk(KERN_ERR
959		       "MCE %#lx: memory outside kernel control\n",
960		       pfn);
961		return -ENXIO;
962	}
963
964	p = pfn_to_page(pfn);
965	hpage = compound_head(p);
966	if (TestSetPageHWPoison(p)) {
967		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
968		return 0;
969	}
970
971	nr_pages = 1 << compound_order(hpage);
972	atomic_long_add(nr_pages, &mce_bad_pages);
973
974	/*
975	 * We need/can do nothing about count=0 pages.
976	 * 1) it's a free page, and therefore in safe hand:
977	 *    prep_new_page() will be the gate keeper.
978	 * 2) it's a free hugepage, which is also safe:
979	 *    an affected hugepage will be dequeued from hugepage freelist,
980	 *    so there's no concern about reusing it ever after.
981	 * 3) it's part of a non-compound high order page.
982	 *    Implies some kernel user: cannot stop them from
983	 *    R/W the page; let's pray that the page has been
984	 *    used and will be freed some time later.
985	 * In fact it's dangerous to directly bump up page count from 0,
986	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
987	 */
988	if (!(flags & MF_COUNT_INCREASED) &&
989		!get_page_unless_zero(hpage)) {
990		if (is_free_buddy_page(p)) {
991			action_result(pfn, "free buddy", DELAYED);
992			return 0;
993		} else if (PageHuge(hpage)) {
994			/*
995			 * Check "just unpoisoned", "filter hit", and
996			 * "race with other subpage."
997			 */
998			lock_page_nosync(hpage);
999			if (!PageHWPoison(hpage)
1000			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1001			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1002				atomic_long_sub(nr_pages, &mce_bad_pages);
1003				return 0;
1004			}
1005			set_page_hwpoison_huge_page(hpage);
1006			res = dequeue_hwpoisoned_huge_page(hpage);
1007			action_result(pfn, "free huge",
1008				      res ? IGNORED : DELAYED);
1009			unlock_page(hpage);
1010			return res;
1011		} else {
1012			action_result(pfn, "high order kernel", IGNORED);
1013			return -EBUSY;
1014		}
1015	}
1016
1017	/*
1018	 * We ignore non-LRU pages for good reasons.
1019	 * - PG_locked is only well defined for LRU pages and a few others
1020	 * - to avoid races with __set_page_locked()
1021	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1022	 * The check (unnecessarily) ignores LRU pages being isolated and
1023	 * walked by the page reclaim code, however that's not a big loss.
1024	 */
1025	if (!PageLRU(p) && !PageHuge(p))
1026		shake_page(p, 0);
1027	if (!PageLRU(p) && !PageHuge(p)) {
1028		/*
1029		 * shake_page could have turned it free.
1030		 */
1031		if (is_free_buddy_page(p)) {
1032			action_result(pfn, "free buddy, 2nd try", DELAYED);
1033			return 0;
1034		}
1035		action_result(pfn, "non LRU", IGNORED);
1036		put_page(p);
1037		return -EBUSY;
1038	}
1039
1040	/*
1041	 * Lock the page and wait for writeback to finish.
1042	 * It's very difficult to mess with pages currently under IO
1043	 * and in many cases impossible, so we just avoid it here.
1044	 */
1045	lock_page_nosync(hpage);
1046
1047	/*
1048	 * unpoison always clear PG_hwpoison inside page lock
1049	 */
1050	if (!PageHWPoison(p)) {
1051		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1052		res = 0;
1053		goto out;
1054	}
1055	if (hwpoison_filter(p)) {
1056		if (TestClearPageHWPoison(p))
1057			atomic_long_sub(nr_pages, &mce_bad_pages);
1058		unlock_page(hpage);
1059		put_page(hpage);
1060		return 0;
1061	}
1062
1063	/*
1064	 * For error on the tail page, we should set PG_hwpoison
1065	 * on the head page to show that the hugepage is hwpoisoned
1066	 */
1067	if (PageTail(p) && TestSetPageHWPoison(hpage)) {
1068		action_result(pfn, "hugepage already hardware poisoned",
1069				IGNORED);
1070		unlock_page(hpage);
1071		put_page(hpage);
1072		return 0;
1073	}
1074	/*
1075	 * Set PG_hwpoison on all pages in an error hugepage,
1076	 * because containment is done in hugepage unit for now.
1077	 * Since we have done TestSetPageHWPoison() for the head page with
1078	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1079	 */
1080	if (PageHuge(p))
1081		set_page_hwpoison_huge_page(hpage);
1082
1083	wait_on_page_writeback(p);
1084
1085	/*
1086	 * Now take care of user space mappings.
1087	 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1088	 */
1089	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1090		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1091		res = -EBUSY;
1092		goto out;
1093	}
1094
1095	/*
1096	 * Torn down by someone else?
1097	 */
1098	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1099		action_result(pfn, "already truncated LRU", IGNORED);
1100		res = -EBUSY;
1101		goto out;
1102	}
1103
1104	res = -EBUSY;
1105	for (ps = error_states;; ps++) {
1106		if ((p->flags & ps->mask) == ps->res) {
1107			res = page_action(ps, p, pfn);
1108			break;
1109		}
1110	}
1111out:
1112	unlock_page(hpage);
1113	return res;
1114}
1115EXPORT_SYMBOL_GPL(__memory_failure);
1116
1117/**
1118 * memory_failure - Handle memory failure of a page.
1119 * @pfn: Page Number of the corrupted page
1120 * @trapno: Trap number reported in the signal to user space.
1121 *
1122 * This function is called by the low level machine check code
1123 * of an architecture when it detects hardware memory corruption
1124 * of a page. It tries its best to recover, which includes
1125 * dropping pages, killing processes etc.
1126 *
1127 * The function is primarily of use for corruptions that
1128 * happen outside the current execution context (e.g. when
1129 * detected by a background scrubber)
1130 *
1131 * Must run in process context (e.g. a work queue) with interrupts
1132 * enabled and no spinlocks hold.
1133 */
1134void memory_failure(unsigned long pfn, int trapno)
1135{
1136	__memory_failure(pfn, trapno, 0);
1137}
1138
1139/**
1140 * unpoison_memory - Unpoison a previously poisoned page
1141 * @pfn: Page number of the to be unpoisoned page
1142 *
1143 * Software-unpoison a page that has been poisoned by
1144 * memory_failure() earlier.
1145 *
1146 * This is only done on the software-level, so it only works
1147 * for linux injected failures, not real hardware failures
1148 *
1149 * Returns 0 for success, otherwise -errno.
1150 */
1151int unpoison_memory(unsigned long pfn)
1152{
1153	struct page *page;
1154	struct page *p;
1155	int freeit = 0;
1156	unsigned int nr_pages;
1157
1158	if (!pfn_valid(pfn))
1159		return -ENXIO;
1160
1161	p = pfn_to_page(pfn);
1162	page = compound_head(p);
1163
1164	if (!PageHWPoison(p)) {
1165		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1166		return 0;
1167	}
1168
1169	nr_pages = 1 << compound_order(page);
1170
1171	if (!get_page_unless_zero(page)) {
1172		/*
1173		 * Since HWPoisoned hugepage should have non-zero refcount,
1174		 * race between memory failure and unpoison seems to happen.
1175		 * In such case unpoison fails and memory failure runs
1176		 * to the end.
1177		 */
1178		if (PageHuge(page)) {
1179			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1180			return 0;
1181		}
1182		if (TestClearPageHWPoison(p))
1183			atomic_long_sub(nr_pages, &mce_bad_pages);
1184		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1185		return 0;
1186	}
1187
1188	lock_page_nosync(page);
1189	/*
1190	 * This test is racy because PG_hwpoison is set outside of page lock.
1191	 * That's acceptable because that won't trigger kernel panic. Instead,
1192	 * the PG_hwpoison page will be caught and isolated on the entrance to
1193	 * the free buddy page pool.
1194	 */
1195	if (TestClearPageHWPoison(page)) {
1196		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1197		atomic_long_sub(nr_pages, &mce_bad_pages);
1198		freeit = 1;
1199		if (PageHuge(page))
1200			clear_page_hwpoison_huge_page(page);
1201	}
1202	unlock_page(page);
1203
1204	put_page(page);
1205	if (freeit)
1206		put_page(page);
1207
1208	return 0;
1209}
1210EXPORT_SYMBOL(unpoison_memory);
1211
1212static struct page *new_page(struct page *p, unsigned long private, int **x)
1213{
1214	int nid = page_to_nid(p);
1215	if (PageHuge(p))
1216		return alloc_huge_page_node(page_hstate(compound_head(p)),
1217						   nid);
1218	else
1219		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1220}
1221
1222/*
1223 * Safely get reference count of an arbitrary page.
1224 * Returns 0 for a free page, -EIO for a zero refcount page
1225 * that is not free, and 1 for any other page type.
1226 * For 1 the page is returned with increased page count, otherwise not.
1227 */
1228static int get_any_page(struct page *p, unsigned long pfn, int flags)
1229{
1230	int ret;
1231
1232	if (flags & MF_COUNT_INCREASED)
1233		return 1;
1234
1235	/*
1236	 * The lock_memory_hotplug prevents a race with memory hotplug.
1237	 * This is a big hammer, a better would be nicer.
1238	 */
1239	lock_memory_hotplug();
1240
1241	/*
1242	 * Isolate the page, so that it doesn't get reallocated if it
1243	 * was free.
1244	 */
1245	set_migratetype_isolate(p);
1246	/*
1247	 * When the target page is a free hugepage, just remove it
1248	 * from free hugepage list.
1249	 */
1250	if (!get_page_unless_zero(compound_head(p))) {
1251		if (PageHuge(p)) {
1252			pr_info("get_any_page: %#lx free huge page\n", pfn);
1253			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1254		} else if (is_free_buddy_page(p)) {
1255			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1256			/* Set hwpoison bit while page is still isolated */
1257			SetPageHWPoison(p);
1258			ret = 0;
1259		} else {
1260			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1261				pfn, p->flags);
1262			ret = -EIO;
1263		}
1264	} else {
1265		/* Not a free page */
1266		ret = 1;
1267	}
1268	unset_migratetype_isolate(p);
1269	unlock_memory_hotplug();
1270	return ret;
1271}
1272
1273static int soft_offline_huge_page(struct page *page, int flags)
1274{
1275	int ret;
1276	unsigned long pfn = page_to_pfn(page);
1277	struct page *hpage = compound_head(page);
1278	LIST_HEAD(pagelist);
1279
1280	ret = get_any_page(page, pfn, flags);
1281	if (ret < 0)
1282		return ret;
1283	if (ret == 0)
1284		goto done;
1285
1286	if (PageHWPoison(hpage)) {
1287		put_page(hpage);
1288		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1289		return -EBUSY;
1290	}
1291
1292	/* Keep page count to indicate a given hugepage is isolated. */
1293
1294	list_add(&hpage->lru, &pagelist);
1295	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1296				true);
1297	if (ret) {
1298		putback_lru_pages(&pagelist);
1299		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1300			 pfn, ret, page->flags);
1301		if (ret > 0)
1302			ret = -EIO;
1303		return ret;
1304	}
1305done:
1306	if (!PageHWPoison(hpage))
1307		atomic_long_add(1 << compound_order(hpage), &mce_bad_pages);
1308	set_page_hwpoison_huge_page(hpage);
1309	dequeue_hwpoisoned_huge_page(hpage);
1310	/* keep elevated page count for bad page */
1311	return ret;
1312}
1313
1314/**
1315 * soft_offline_page - Soft offline a page.
1316 * @page: page to offline
1317 * @flags: flags. Same as memory_failure().
1318 *
1319 * Returns 0 on success, otherwise negated errno.
1320 *
1321 * Soft offline a page, by migration or invalidation,
1322 * without killing anything. This is for the case when
1323 * a page is not corrupted yet (so it's still valid to access),
1324 * but has had a number of corrected errors and is better taken
1325 * out.
1326 *
1327 * The actual policy on when to do that is maintained by
1328 * user space.
1329 *
1330 * This should never impact any application or cause data loss,
1331 * however it might take some time.
1332 *
1333 * This is not a 100% solution for all memory, but tries to be
1334 * ``good enough'' for the majority of memory.
1335 */
1336int soft_offline_page(struct page *page, int flags)
1337{
1338	int ret;
1339	unsigned long pfn = page_to_pfn(page);
1340
1341	if (PageHuge(page))
1342		return soft_offline_huge_page(page, flags);
1343
1344	ret = get_any_page(page, pfn, flags);
1345	if (ret < 0)
1346		return ret;
1347	if (ret == 0)
1348		goto done;
1349
1350	/*
1351	 * Page cache page we can handle?
1352	 */
1353	if (!PageLRU(page)) {
1354		/*
1355		 * Try to free it.
1356		 */
1357		put_page(page);
1358		shake_page(page, 1);
1359
1360		/*
1361		 * Did it turn free?
1362		 */
1363		ret = get_any_page(page, pfn, 0);
1364		if (ret < 0)
1365			return ret;
1366		if (ret == 0)
1367			goto done;
1368	}
1369	if (!PageLRU(page)) {
1370		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1371				pfn, page->flags);
1372		return -EIO;
1373	}
1374
1375	lock_page(page);
1376	wait_on_page_writeback(page);
1377
1378	/*
1379	 * Synchronized using the page lock with memory_failure()
1380	 */
1381	if (PageHWPoison(page)) {
1382		unlock_page(page);
1383		put_page(page);
1384		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1385		return -EBUSY;
1386	}
1387
1388	/*
1389	 * Try to invalidate first. This should work for
1390	 * non dirty unmapped page cache pages.
1391	 */
1392	ret = invalidate_inode_page(page);
1393	unlock_page(page);
1394
1395	/*
1396	 * Drop count because page migration doesn't like raised
1397	 * counts. The page could get re-allocated, but if it becomes
1398	 * LRU the isolation will just fail.
1399	 * RED-PEN would be better to keep it isolated here, but we
1400	 * would need to fix isolation locking first.
1401	 */
1402	put_page(page);
1403	if (ret == 1) {
1404		ret = 0;
1405		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1406		goto done;
1407	}
1408
1409	/*
1410	 * Simple invalidation didn't work.
1411	 * Try to migrate to a new page instead. migrate.c
1412	 * handles a large number of cases for us.
1413	 */
1414	ret = isolate_lru_page(page);
1415	if (!ret) {
1416		LIST_HEAD(pagelist);
1417
1418		list_add(&page->lru, &pagelist);
1419		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1420								0, true);
1421		if (ret) {
1422			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1423				pfn, ret, page->flags);
1424			if (ret > 0)
1425				ret = -EIO;
1426		}
1427	} else {
1428		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1429				pfn, ret, page_count(page), page->flags);
1430	}
1431	if (ret)
1432		return ret;
1433
1434done:
1435	atomic_long_add(1, &mce_bad_pages);
1436	SetPageHWPoison(page);
1437	/* keep elevated page count for bad page */
1438	return ret;
1439}
1440
1441/*
1442 * The caller must hold current->mm->mmap_sem in read mode.
1443 */
1444int is_hwpoison_address(unsigned long addr)
1445{
1446	pgd_t *pgdp;
1447	pud_t pud, *pudp;
1448	pmd_t pmd, *pmdp;
1449	pte_t pte, *ptep;
1450	swp_entry_t entry;
1451
1452	pgdp = pgd_offset(current->mm, addr);
1453	if (!pgd_present(*pgdp))
1454		return 0;
1455	pudp = pud_offset(pgdp, addr);
1456	pud = *pudp;
1457	if (!pud_present(pud) || pud_large(pud))
1458		return 0;
1459	pmdp = pmd_offset(pudp, addr);
1460	pmd = *pmdp;
1461	if (!pmd_present(pmd) || pmd_large(pmd))
1462		return 0;
1463	ptep = pte_offset_map(pmdp, addr);
1464	pte = *ptep;
1465	pte_unmap(ptep);
1466	if (!is_swap_pte(pte))
1467		return 0;
1468	entry = pte_to_swp_entry(pte);
1469	return is_hwpoison_entry(entry);
1470}
1471EXPORT_SYMBOL_GPL(is_hwpoison_address);
1472