memory-failure.c revision 7eaceaccab5f40bbfda044629a6298616aeaed50
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states.	The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/page-isolation.h>
50#include <linux/suspend.h>
51#include <linux/slab.h>
52#include <linux/swapops.h>
53#include <linux/hugetlb.h>
54#include <linux/memory_hotplug.h>
55#include "internal.h"
56
57int sysctl_memory_failure_early_kill __read_mostly = 0;
58
59int sysctl_memory_failure_recovery __read_mostly = 1;
60
61atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62
63#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64
65u32 hwpoison_filter_enable = 0;
66u32 hwpoison_filter_dev_major = ~0U;
67u32 hwpoison_filter_dev_minor = ~0U;
68u64 hwpoison_filter_flags_mask;
69u64 hwpoison_filter_flags_value;
70EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
71EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
73EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
75
76static int hwpoison_filter_dev(struct page *p)
77{
78	struct address_space *mapping;
79	dev_t dev;
80
81	if (hwpoison_filter_dev_major == ~0U &&
82	    hwpoison_filter_dev_minor == ~0U)
83		return 0;
84
85	/*
86	 * page_mapping() does not accept slab pages.
87	 */
88	if (PageSlab(p))
89		return -EINVAL;
90
91	mapping = page_mapping(p);
92	if (mapping == NULL || mapping->host == NULL)
93		return -EINVAL;
94
95	dev = mapping->host->i_sb->s_dev;
96	if (hwpoison_filter_dev_major != ~0U &&
97	    hwpoison_filter_dev_major != MAJOR(dev))
98		return -EINVAL;
99	if (hwpoison_filter_dev_minor != ~0U &&
100	    hwpoison_filter_dev_minor != MINOR(dev))
101		return -EINVAL;
102
103	return 0;
104}
105
106static int hwpoison_filter_flags(struct page *p)
107{
108	if (!hwpoison_filter_flags_mask)
109		return 0;
110
111	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112				    hwpoison_filter_flags_value)
113		return 0;
114	else
115		return -EINVAL;
116}
117
118/*
119 * This allows stress tests to limit test scope to a collection of tasks
120 * by putting them under some memcg. This prevents killing unrelated/important
121 * processes such as /sbin/init. Note that the target task may share clean
122 * pages with init (eg. libc text), which is harmless. If the target task
123 * share _dirty_ pages with another task B, the test scheme must make sure B
124 * is also included in the memcg. At last, due to race conditions this filter
125 * can only guarantee that the page either belongs to the memcg tasks, or is
126 * a freed page.
127 */
128#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129u64 hwpoison_filter_memcg;
130EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131static int hwpoison_filter_task(struct page *p)
132{
133	struct mem_cgroup *mem;
134	struct cgroup_subsys_state *css;
135	unsigned long ino;
136
137	if (!hwpoison_filter_memcg)
138		return 0;
139
140	mem = try_get_mem_cgroup_from_page(p);
141	if (!mem)
142		return -EINVAL;
143
144	css = mem_cgroup_css(mem);
145	/* root_mem_cgroup has NULL dentries */
146	if (!css->cgroup->dentry)
147		return -EINVAL;
148
149	ino = css->cgroup->dentry->d_inode->i_ino;
150	css_put(css);
151
152	if (ino != hwpoison_filter_memcg)
153		return -EINVAL;
154
155	return 0;
156}
157#else
158static int hwpoison_filter_task(struct page *p) { return 0; }
159#endif
160
161int hwpoison_filter(struct page *p)
162{
163	if (!hwpoison_filter_enable)
164		return 0;
165
166	if (hwpoison_filter_dev(p))
167		return -EINVAL;
168
169	if (hwpoison_filter_flags(p))
170		return -EINVAL;
171
172	if (hwpoison_filter_task(p))
173		return -EINVAL;
174
175	return 0;
176}
177#else
178int hwpoison_filter(struct page *p)
179{
180	return 0;
181}
182#endif
183
184EXPORT_SYMBOL_GPL(hwpoison_filter);
185
186/*
187 * Send all the processes who have the page mapped an ``action optional''
188 * signal.
189 */
190static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
191			unsigned long pfn, struct page *page)
192{
193	struct siginfo si;
194	int ret;
195
196	printk(KERN_ERR
197		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198		pfn, t->comm, t->pid);
199	si.si_signo = SIGBUS;
200	si.si_errno = 0;
201	si.si_code = BUS_MCEERR_AO;
202	si.si_addr = (void *)addr;
203#ifdef __ARCH_SI_TRAPNO
204	si.si_trapno = trapno;
205#endif
206	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
207	/*
208	 * Don't use force here, it's convenient if the signal
209	 * can be temporarily blocked.
210	 * This could cause a loop when the user sets SIGBUS
211	 * to SIG_IGN, but hopefully noone will do that?
212	 */
213	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
214	if (ret < 0)
215		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216		       t->comm, t->pid, ret);
217	return ret;
218}
219
220/*
221 * When a unknown page type is encountered drain as many buffers as possible
222 * in the hope to turn the page into a LRU or free page, which we can handle.
223 */
224void shake_page(struct page *p, int access)
225{
226	if (!PageSlab(p)) {
227		lru_add_drain_all();
228		if (PageLRU(p))
229			return;
230		drain_all_pages();
231		if (PageLRU(p) || is_free_buddy_page(p))
232			return;
233	}
234
235	/*
236	 * Only call shrink_slab here (which would also shrink other caches) if
237	 * access is not potentially fatal.
238	 */
239	if (access) {
240		int nr;
241		do {
242			nr = shrink_slab(1000, GFP_KERNEL, 1000);
243			if (page_count(p) == 1)
244				break;
245		} while (nr > 10);
246	}
247}
248EXPORT_SYMBOL_GPL(shake_page);
249
250/*
251 * Kill all processes that have a poisoned page mapped and then isolate
252 * the page.
253 *
254 * General strategy:
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
259 *
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
262 * running processes.
263 *
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
267 *
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
270 */
271
272struct to_kill {
273	struct list_head nd;
274	struct task_struct *tsk;
275	unsigned long addr;
276	char addr_valid;
277};
278
279/*
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do.	We just print a message and ignore otherwise.
282 */
283
284/*
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
288 */
289static void add_to_kill(struct task_struct *tsk, struct page *p,
290		       struct vm_area_struct *vma,
291		       struct list_head *to_kill,
292		       struct to_kill **tkc)
293{
294	struct to_kill *tk;
295
296	if (*tkc) {
297		tk = *tkc;
298		*tkc = NULL;
299	} else {
300		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301		if (!tk) {
302			printk(KERN_ERR
303		"MCE: Out of memory while machine check handling\n");
304			return;
305		}
306	}
307	tk->addr = page_address_in_vma(p, vma);
308	tk->addr_valid = 1;
309
310	/*
311	 * In theory we don't have to kill when the page was
312	 * munmaped. But it could be also a mremap. Since that's
313	 * likely very rare kill anyways just out of paranoia, but use
314	 * a SIGKILL because the error is not contained anymore.
315	 */
316	if (tk->addr == -EFAULT) {
317		pr_info("MCE: Unable to find user space address %lx in %s\n",
318			page_to_pfn(p), tsk->comm);
319		tk->addr_valid = 0;
320	}
321	get_task_struct(tsk);
322	tk->tsk = tsk;
323	list_add_tail(&tk->nd, to_kill);
324}
325
326/*
327 * Kill the processes that have been collected earlier.
328 *
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
332 * wrong earlier.
333 */
334static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
335			  int fail, struct page *page, unsigned long pfn)
336{
337	struct to_kill *tk, *next;
338
339	list_for_each_entry_safe (tk, next, to_kill, nd) {
340		if (doit) {
341			/*
342			 * In case something went wrong with munmapping
343			 * make sure the process doesn't catch the
344			 * signal and then access the memory. Just kill it.
345			 */
346			if (fail || tk->addr_valid == 0) {
347				printk(KERN_ERR
348		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
349					pfn, tk->tsk->comm, tk->tsk->pid);
350				force_sig(SIGKILL, tk->tsk);
351			}
352
353			/*
354			 * In theory the process could have mapped
355			 * something else on the address in-between. We could
356			 * check for that, but we need to tell the
357			 * process anyways.
358			 */
359			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
360					      pfn, page) < 0)
361				printk(KERN_ERR
362		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
363					pfn, tk->tsk->comm, tk->tsk->pid);
364		}
365		put_task_struct(tk->tsk);
366		kfree(tk);
367	}
368}
369
370static int task_early_kill(struct task_struct *tsk)
371{
372	if (!tsk->mm)
373		return 0;
374	if (tsk->flags & PF_MCE_PROCESS)
375		return !!(tsk->flags & PF_MCE_EARLY);
376	return sysctl_memory_failure_early_kill;
377}
378
379/*
380 * Collect processes when the error hit an anonymous page.
381 */
382static void collect_procs_anon(struct page *page, struct list_head *to_kill,
383			      struct to_kill **tkc)
384{
385	struct vm_area_struct *vma;
386	struct task_struct *tsk;
387	struct anon_vma *av;
388
389	read_lock(&tasklist_lock);
390	av = page_lock_anon_vma(page);
391	if (av == NULL)	/* Not actually mapped anymore */
392		goto out;
393	for_each_process (tsk) {
394		struct anon_vma_chain *vmac;
395
396		if (!task_early_kill(tsk))
397			continue;
398		list_for_each_entry(vmac, &av->head, same_anon_vma) {
399			vma = vmac->vma;
400			if (!page_mapped_in_vma(page, vma))
401				continue;
402			if (vma->vm_mm == tsk->mm)
403				add_to_kill(tsk, page, vma, to_kill, tkc);
404		}
405	}
406	page_unlock_anon_vma(av);
407out:
408	read_unlock(&tasklist_lock);
409}
410
411/*
412 * Collect processes when the error hit a file mapped page.
413 */
414static void collect_procs_file(struct page *page, struct list_head *to_kill,
415			      struct to_kill **tkc)
416{
417	struct vm_area_struct *vma;
418	struct task_struct *tsk;
419	struct prio_tree_iter iter;
420	struct address_space *mapping = page->mapping;
421
422	/*
423	 * A note on the locking order between the two locks.
424	 * We don't rely on this particular order.
425	 * If you have some other code that needs a different order
426	 * feel free to switch them around. Or add a reverse link
427	 * from mm_struct to task_struct, then this could be all
428	 * done without taking tasklist_lock and looping over all tasks.
429	 */
430
431	read_lock(&tasklist_lock);
432	spin_lock(&mapping->i_mmap_lock);
433	for_each_process(tsk) {
434		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
435
436		if (!task_early_kill(tsk))
437			continue;
438
439		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
440				      pgoff) {
441			/*
442			 * Send early kill signal to tasks where a vma covers
443			 * the page but the corrupted page is not necessarily
444			 * mapped it in its pte.
445			 * Assume applications who requested early kill want
446			 * to be informed of all such data corruptions.
447			 */
448			if (vma->vm_mm == tsk->mm)
449				add_to_kill(tsk, page, vma, to_kill, tkc);
450		}
451	}
452	spin_unlock(&mapping->i_mmap_lock);
453	read_unlock(&tasklist_lock);
454}
455
456/*
457 * Collect the processes who have the corrupted page mapped to kill.
458 * This is done in two steps for locking reasons.
459 * First preallocate one tokill structure outside the spin locks,
460 * so that we can kill at least one process reasonably reliable.
461 */
462static void collect_procs(struct page *page, struct list_head *tokill)
463{
464	struct to_kill *tk;
465
466	if (!page->mapping)
467		return;
468
469	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
470	if (!tk)
471		return;
472	if (PageAnon(page))
473		collect_procs_anon(page, tokill, &tk);
474	else
475		collect_procs_file(page, tokill, &tk);
476	kfree(tk);
477}
478
479/*
480 * Error handlers for various types of pages.
481 */
482
483enum outcome {
484	IGNORED,	/* Error: cannot be handled */
485	FAILED,		/* Error: handling failed */
486	DELAYED,	/* Will be handled later */
487	RECOVERED,	/* Successfully recovered */
488};
489
490static const char *action_name[] = {
491	[IGNORED] = "Ignored",
492	[FAILED] = "Failed",
493	[DELAYED] = "Delayed",
494	[RECOVERED] = "Recovered",
495};
496
497/*
498 * XXX: It is possible that a page is isolated from LRU cache,
499 * and then kept in swap cache or failed to remove from page cache.
500 * The page count will stop it from being freed by unpoison.
501 * Stress tests should be aware of this memory leak problem.
502 */
503static int delete_from_lru_cache(struct page *p)
504{
505	if (!isolate_lru_page(p)) {
506		/*
507		 * Clear sensible page flags, so that the buddy system won't
508		 * complain when the page is unpoison-and-freed.
509		 */
510		ClearPageActive(p);
511		ClearPageUnevictable(p);
512		/*
513		 * drop the page count elevated by isolate_lru_page()
514		 */
515		page_cache_release(p);
516		return 0;
517	}
518	return -EIO;
519}
520
521/*
522 * Error hit kernel page.
523 * Do nothing, try to be lucky and not touch this instead. For a few cases we
524 * could be more sophisticated.
525 */
526static int me_kernel(struct page *p, unsigned long pfn)
527{
528	return IGNORED;
529}
530
531/*
532 * Page in unknown state. Do nothing.
533 */
534static int me_unknown(struct page *p, unsigned long pfn)
535{
536	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
537	return FAILED;
538}
539
540/*
541 * Clean (or cleaned) page cache page.
542 */
543static int me_pagecache_clean(struct page *p, unsigned long pfn)
544{
545	int err;
546	int ret = FAILED;
547	struct address_space *mapping;
548
549	delete_from_lru_cache(p);
550
551	/*
552	 * For anonymous pages we're done the only reference left
553	 * should be the one m_f() holds.
554	 */
555	if (PageAnon(p))
556		return RECOVERED;
557
558	/*
559	 * Now truncate the page in the page cache. This is really
560	 * more like a "temporary hole punch"
561	 * Don't do this for block devices when someone else
562	 * has a reference, because it could be file system metadata
563	 * and that's not safe to truncate.
564	 */
565	mapping = page_mapping(p);
566	if (!mapping) {
567		/*
568		 * Page has been teared down in the meanwhile
569		 */
570		return FAILED;
571	}
572
573	/*
574	 * Truncation is a bit tricky. Enable it per file system for now.
575	 *
576	 * Open: to take i_mutex or not for this? Right now we don't.
577	 */
578	if (mapping->a_ops->error_remove_page) {
579		err = mapping->a_ops->error_remove_page(mapping, p);
580		if (err != 0) {
581			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
582					pfn, err);
583		} else if (page_has_private(p) &&
584				!try_to_release_page(p, GFP_NOIO)) {
585			pr_info("MCE %#lx: failed to release buffers\n", pfn);
586		} else {
587			ret = RECOVERED;
588		}
589	} else {
590		/*
591		 * If the file system doesn't support it just invalidate
592		 * This fails on dirty or anything with private pages
593		 */
594		if (invalidate_inode_page(p))
595			ret = RECOVERED;
596		else
597			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
598				pfn);
599	}
600	return ret;
601}
602
603/*
604 * Dirty cache page page
605 * Issues: when the error hit a hole page the error is not properly
606 * propagated.
607 */
608static int me_pagecache_dirty(struct page *p, unsigned long pfn)
609{
610	struct address_space *mapping = page_mapping(p);
611
612	SetPageError(p);
613	/* TBD: print more information about the file. */
614	if (mapping) {
615		/*
616		 * IO error will be reported by write(), fsync(), etc.
617		 * who check the mapping.
618		 * This way the application knows that something went
619		 * wrong with its dirty file data.
620		 *
621		 * There's one open issue:
622		 *
623		 * The EIO will be only reported on the next IO
624		 * operation and then cleared through the IO map.
625		 * Normally Linux has two mechanisms to pass IO error
626		 * first through the AS_EIO flag in the address space
627		 * and then through the PageError flag in the page.
628		 * Since we drop pages on memory failure handling the
629		 * only mechanism open to use is through AS_AIO.
630		 *
631		 * This has the disadvantage that it gets cleared on
632		 * the first operation that returns an error, while
633		 * the PageError bit is more sticky and only cleared
634		 * when the page is reread or dropped.  If an
635		 * application assumes it will always get error on
636		 * fsync, but does other operations on the fd before
637		 * and the page is dropped inbetween then the error
638		 * will not be properly reported.
639		 *
640		 * This can already happen even without hwpoisoned
641		 * pages: first on metadata IO errors (which only
642		 * report through AS_EIO) or when the page is dropped
643		 * at the wrong time.
644		 *
645		 * So right now we assume that the application DTRT on
646		 * the first EIO, but we're not worse than other parts
647		 * of the kernel.
648		 */
649		mapping_set_error(mapping, EIO);
650	}
651
652	return me_pagecache_clean(p, pfn);
653}
654
655/*
656 * Clean and dirty swap cache.
657 *
658 * Dirty swap cache page is tricky to handle. The page could live both in page
659 * cache and swap cache(ie. page is freshly swapped in). So it could be
660 * referenced concurrently by 2 types of PTEs:
661 * normal PTEs and swap PTEs. We try to handle them consistently by calling
662 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
663 * and then
664 *      - clear dirty bit to prevent IO
665 *      - remove from LRU
666 *      - but keep in the swap cache, so that when we return to it on
667 *        a later page fault, we know the application is accessing
668 *        corrupted data and shall be killed (we installed simple
669 *        interception code in do_swap_page to catch it).
670 *
671 * Clean swap cache pages can be directly isolated. A later page fault will
672 * bring in the known good data from disk.
673 */
674static int me_swapcache_dirty(struct page *p, unsigned long pfn)
675{
676	ClearPageDirty(p);
677	/* Trigger EIO in shmem: */
678	ClearPageUptodate(p);
679
680	if (!delete_from_lru_cache(p))
681		return DELAYED;
682	else
683		return FAILED;
684}
685
686static int me_swapcache_clean(struct page *p, unsigned long pfn)
687{
688	delete_from_swap_cache(p);
689
690	if (!delete_from_lru_cache(p))
691		return RECOVERED;
692	else
693		return FAILED;
694}
695
696/*
697 * Huge pages. Needs work.
698 * Issues:
699 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
700 *   To narrow down kill region to one page, we need to break up pmd.
701 */
702static int me_huge_page(struct page *p, unsigned long pfn)
703{
704	int res = 0;
705	struct page *hpage = compound_head(p);
706	/*
707	 * We can safely recover from error on free or reserved (i.e.
708	 * not in-use) hugepage by dequeuing it from freelist.
709	 * To check whether a hugepage is in-use or not, we can't use
710	 * page->lru because it can be used in other hugepage operations,
711	 * such as __unmap_hugepage_range() and gather_surplus_pages().
712	 * So instead we use page_mapping() and PageAnon().
713	 * We assume that this function is called with page lock held,
714	 * so there is no race between isolation and mapping/unmapping.
715	 */
716	if (!(page_mapping(hpage) || PageAnon(hpage))) {
717		res = dequeue_hwpoisoned_huge_page(hpage);
718		if (!res)
719			return RECOVERED;
720	}
721	return DELAYED;
722}
723
724/*
725 * Various page states we can handle.
726 *
727 * A page state is defined by its current page->flags bits.
728 * The table matches them in order and calls the right handler.
729 *
730 * This is quite tricky because we can access page at any time
731 * in its live cycle, so all accesses have to be extremly careful.
732 *
733 * This is not complete. More states could be added.
734 * For any missing state don't attempt recovery.
735 */
736
737#define dirty		(1UL << PG_dirty)
738#define sc		(1UL << PG_swapcache)
739#define unevict		(1UL << PG_unevictable)
740#define mlock		(1UL << PG_mlocked)
741#define writeback	(1UL << PG_writeback)
742#define lru		(1UL << PG_lru)
743#define swapbacked	(1UL << PG_swapbacked)
744#define head		(1UL << PG_head)
745#define tail		(1UL << PG_tail)
746#define compound	(1UL << PG_compound)
747#define slab		(1UL << PG_slab)
748#define reserved	(1UL << PG_reserved)
749
750static struct page_state {
751	unsigned long mask;
752	unsigned long res;
753	char *msg;
754	int (*action)(struct page *p, unsigned long pfn);
755} error_states[] = {
756	{ reserved,	reserved,	"reserved kernel",	me_kernel },
757	/*
758	 * free pages are specially detected outside this table:
759	 * PG_buddy pages only make a small fraction of all free pages.
760	 */
761
762	/*
763	 * Could in theory check if slab page is free or if we can drop
764	 * currently unused objects without touching them. But just
765	 * treat it as standard kernel for now.
766	 */
767	{ slab,		slab,		"kernel slab",	me_kernel },
768
769#ifdef CONFIG_PAGEFLAGS_EXTENDED
770	{ head,		head,		"huge",		me_huge_page },
771	{ tail,		tail,		"huge",		me_huge_page },
772#else
773	{ compound,	compound,	"huge",		me_huge_page },
774#endif
775
776	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
777	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
778
779	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
780	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
781
782	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
783	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
784
785	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
786	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
787
788	/*
789	 * Catchall entry: must be at end.
790	 */
791	{ 0,		0,		"unknown page state",	me_unknown },
792};
793
794#undef dirty
795#undef sc
796#undef unevict
797#undef mlock
798#undef writeback
799#undef lru
800#undef swapbacked
801#undef head
802#undef tail
803#undef compound
804#undef slab
805#undef reserved
806
807static void action_result(unsigned long pfn, char *msg, int result)
808{
809	struct page *page = pfn_to_page(pfn);
810
811	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
812		pfn,
813		PageDirty(page) ? "dirty " : "",
814		msg, action_name[result]);
815}
816
817static int page_action(struct page_state *ps, struct page *p,
818			unsigned long pfn)
819{
820	int result;
821	int count;
822
823	result = ps->action(p, pfn);
824	action_result(pfn, ps->msg, result);
825
826	count = page_count(p) - 1;
827	if (ps->action == me_swapcache_dirty && result == DELAYED)
828		count--;
829	if (count != 0) {
830		printk(KERN_ERR
831		       "MCE %#lx: %s page still referenced by %d users\n",
832		       pfn, ps->msg, count);
833		result = FAILED;
834	}
835
836	/* Could do more checks here if page looks ok */
837	/*
838	 * Could adjust zone counters here to correct for the missing page.
839	 */
840
841	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
842}
843
844/*
845 * Do all that is necessary to remove user space mappings. Unmap
846 * the pages and send SIGBUS to the processes if the data was dirty.
847 */
848static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
849				  int trapno)
850{
851	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
852	struct address_space *mapping;
853	LIST_HEAD(tokill);
854	int ret;
855	int kill = 1;
856	struct page *hpage = compound_head(p);
857	struct page *ppage;
858
859	if (PageReserved(p) || PageSlab(p))
860		return SWAP_SUCCESS;
861
862	/*
863	 * This check implies we don't kill processes if their pages
864	 * are in the swap cache early. Those are always late kills.
865	 */
866	if (!page_mapped(hpage))
867		return SWAP_SUCCESS;
868
869	if (PageKsm(p))
870		return SWAP_FAIL;
871
872	if (PageSwapCache(p)) {
873		printk(KERN_ERR
874		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
875		ttu |= TTU_IGNORE_HWPOISON;
876	}
877
878	/*
879	 * Propagate the dirty bit from PTEs to struct page first, because we
880	 * need this to decide if we should kill or just drop the page.
881	 * XXX: the dirty test could be racy: set_page_dirty() may not always
882	 * be called inside page lock (it's recommended but not enforced).
883	 */
884	mapping = page_mapping(hpage);
885	if (!PageDirty(hpage) && mapping &&
886	    mapping_cap_writeback_dirty(mapping)) {
887		if (page_mkclean(hpage)) {
888			SetPageDirty(hpage);
889		} else {
890			kill = 0;
891			ttu |= TTU_IGNORE_HWPOISON;
892			printk(KERN_INFO
893	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
894				pfn);
895		}
896	}
897
898	/*
899	 * ppage: poisoned page
900	 *   if p is regular page(4k page)
901	 *        ppage == real poisoned page;
902	 *   else p is hugetlb or THP, ppage == head page.
903	 */
904	ppage = hpage;
905
906	if (PageTransHuge(hpage)) {
907		/*
908		 * Verify that this isn't a hugetlbfs head page, the check for
909		 * PageAnon is just for avoid tripping a split_huge_page
910		 * internal debug check, as split_huge_page refuses to deal with
911		 * anything that isn't an anon page. PageAnon can't go away fro
912		 * under us because we hold a refcount on the hpage, without a
913		 * refcount on the hpage. split_huge_page can't be safely called
914		 * in the first place, having a refcount on the tail isn't
915		 * enough * to be safe.
916		 */
917		if (!PageHuge(hpage) && PageAnon(hpage)) {
918			if (unlikely(split_huge_page(hpage))) {
919				/*
920				 * FIXME: if splitting THP is failed, it is
921				 * better to stop the following operation rather
922				 * than causing panic by unmapping. System might
923				 * survive if the page is freed later.
924				 */
925				printk(KERN_INFO
926					"MCE %#lx: failed to split THP\n", pfn);
927
928				BUG_ON(!PageHWPoison(p));
929				return SWAP_FAIL;
930			}
931			/* THP is split, so ppage should be the real poisoned page. */
932			ppage = p;
933		}
934	}
935
936	/*
937	 * First collect all the processes that have the page
938	 * mapped in dirty form.  This has to be done before try_to_unmap,
939	 * because ttu takes the rmap data structures down.
940	 *
941	 * Error handling: We ignore errors here because
942	 * there's nothing that can be done.
943	 */
944	if (kill)
945		collect_procs(ppage, &tokill);
946
947	if (hpage != ppage)
948		lock_page(ppage);
949
950	ret = try_to_unmap(ppage, ttu);
951	if (ret != SWAP_SUCCESS)
952		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
953				pfn, page_mapcount(ppage));
954
955	if (hpage != ppage)
956		unlock_page(ppage);
957
958	/*
959	 * Now that the dirty bit has been propagated to the
960	 * struct page and all unmaps done we can decide if
961	 * killing is needed or not.  Only kill when the page
962	 * was dirty, otherwise the tokill list is merely
963	 * freed.  When there was a problem unmapping earlier
964	 * use a more force-full uncatchable kill to prevent
965	 * any accesses to the poisoned memory.
966	 */
967	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
968		      ret != SWAP_SUCCESS, p, pfn);
969
970	return ret;
971}
972
973static void set_page_hwpoison_huge_page(struct page *hpage)
974{
975	int i;
976	int nr_pages = 1 << compound_trans_order(hpage);
977	for (i = 0; i < nr_pages; i++)
978		SetPageHWPoison(hpage + i);
979}
980
981static void clear_page_hwpoison_huge_page(struct page *hpage)
982{
983	int i;
984	int nr_pages = 1 << compound_trans_order(hpage);
985	for (i = 0; i < nr_pages; i++)
986		ClearPageHWPoison(hpage + i);
987}
988
989int __memory_failure(unsigned long pfn, int trapno, int flags)
990{
991	struct page_state *ps;
992	struct page *p;
993	struct page *hpage;
994	int res;
995	unsigned int nr_pages;
996
997	if (!sysctl_memory_failure_recovery)
998		panic("Memory failure from trap %d on page %lx", trapno, pfn);
999
1000	if (!pfn_valid(pfn)) {
1001		printk(KERN_ERR
1002		       "MCE %#lx: memory outside kernel control\n",
1003		       pfn);
1004		return -ENXIO;
1005	}
1006
1007	p = pfn_to_page(pfn);
1008	hpage = compound_head(p);
1009	if (TestSetPageHWPoison(p)) {
1010		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1011		return 0;
1012	}
1013
1014	nr_pages = 1 << compound_trans_order(hpage);
1015	atomic_long_add(nr_pages, &mce_bad_pages);
1016
1017	/*
1018	 * We need/can do nothing about count=0 pages.
1019	 * 1) it's a free page, and therefore in safe hand:
1020	 *    prep_new_page() will be the gate keeper.
1021	 * 2) it's a free hugepage, which is also safe:
1022	 *    an affected hugepage will be dequeued from hugepage freelist,
1023	 *    so there's no concern about reusing it ever after.
1024	 * 3) it's part of a non-compound high order page.
1025	 *    Implies some kernel user: cannot stop them from
1026	 *    R/W the page; let's pray that the page has been
1027	 *    used and will be freed some time later.
1028	 * In fact it's dangerous to directly bump up page count from 0,
1029	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1030	 */
1031	if (!(flags & MF_COUNT_INCREASED) &&
1032		!get_page_unless_zero(hpage)) {
1033		if (is_free_buddy_page(p)) {
1034			action_result(pfn, "free buddy", DELAYED);
1035			return 0;
1036		} else if (PageHuge(hpage)) {
1037			/*
1038			 * Check "just unpoisoned", "filter hit", and
1039			 * "race with other subpage."
1040			 */
1041			lock_page(hpage);
1042			if (!PageHWPoison(hpage)
1043			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1044			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1045				atomic_long_sub(nr_pages, &mce_bad_pages);
1046				return 0;
1047			}
1048			set_page_hwpoison_huge_page(hpage);
1049			res = dequeue_hwpoisoned_huge_page(hpage);
1050			action_result(pfn, "free huge",
1051				      res ? IGNORED : DELAYED);
1052			unlock_page(hpage);
1053			return res;
1054		} else {
1055			action_result(pfn, "high order kernel", IGNORED);
1056			return -EBUSY;
1057		}
1058	}
1059
1060	/*
1061	 * We ignore non-LRU pages for good reasons.
1062	 * - PG_locked is only well defined for LRU pages and a few others
1063	 * - to avoid races with __set_page_locked()
1064	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1065	 * The check (unnecessarily) ignores LRU pages being isolated and
1066	 * walked by the page reclaim code, however that's not a big loss.
1067	 */
1068	if (!PageHuge(p) && !PageTransCompound(p)) {
1069		if (!PageLRU(p))
1070			shake_page(p, 0);
1071		if (!PageLRU(p)) {
1072			/*
1073			 * shake_page could have turned it free.
1074			 */
1075			if (is_free_buddy_page(p)) {
1076				action_result(pfn, "free buddy, 2nd try",
1077						DELAYED);
1078				return 0;
1079			}
1080			action_result(pfn, "non LRU", IGNORED);
1081			put_page(p);
1082			return -EBUSY;
1083		}
1084	}
1085
1086	/*
1087	 * Lock the page and wait for writeback to finish.
1088	 * It's very difficult to mess with pages currently under IO
1089	 * and in many cases impossible, so we just avoid it here.
1090	 */
1091	lock_page(hpage);
1092
1093	/*
1094	 * unpoison always clear PG_hwpoison inside page lock
1095	 */
1096	if (!PageHWPoison(p)) {
1097		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1098		res = 0;
1099		goto out;
1100	}
1101	if (hwpoison_filter(p)) {
1102		if (TestClearPageHWPoison(p))
1103			atomic_long_sub(nr_pages, &mce_bad_pages);
1104		unlock_page(hpage);
1105		put_page(hpage);
1106		return 0;
1107	}
1108
1109	/*
1110	 * For error on the tail page, we should set PG_hwpoison
1111	 * on the head page to show that the hugepage is hwpoisoned
1112	 */
1113	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1114		action_result(pfn, "hugepage already hardware poisoned",
1115				IGNORED);
1116		unlock_page(hpage);
1117		put_page(hpage);
1118		return 0;
1119	}
1120	/*
1121	 * Set PG_hwpoison on all pages in an error hugepage,
1122	 * because containment is done in hugepage unit for now.
1123	 * Since we have done TestSetPageHWPoison() for the head page with
1124	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1125	 */
1126	if (PageHuge(p))
1127		set_page_hwpoison_huge_page(hpage);
1128
1129	wait_on_page_writeback(p);
1130
1131	/*
1132	 * Now take care of user space mappings.
1133	 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1134	 */
1135	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1136		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1137		res = -EBUSY;
1138		goto out;
1139	}
1140
1141	/*
1142	 * Torn down by someone else?
1143	 */
1144	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1145		action_result(pfn, "already truncated LRU", IGNORED);
1146		res = -EBUSY;
1147		goto out;
1148	}
1149
1150	res = -EBUSY;
1151	for (ps = error_states;; ps++) {
1152		if ((p->flags & ps->mask) == ps->res) {
1153			res = page_action(ps, p, pfn);
1154			break;
1155		}
1156	}
1157out:
1158	unlock_page(hpage);
1159	return res;
1160}
1161EXPORT_SYMBOL_GPL(__memory_failure);
1162
1163/**
1164 * memory_failure - Handle memory failure of a page.
1165 * @pfn: Page Number of the corrupted page
1166 * @trapno: Trap number reported in the signal to user space.
1167 *
1168 * This function is called by the low level machine check code
1169 * of an architecture when it detects hardware memory corruption
1170 * of a page. It tries its best to recover, which includes
1171 * dropping pages, killing processes etc.
1172 *
1173 * The function is primarily of use for corruptions that
1174 * happen outside the current execution context (e.g. when
1175 * detected by a background scrubber)
1176 *
1177 * Must run in process context (e.g. a work queue) with interrupts
1178 * enabled and no spinlocks hold.
1179 */
1180void memory_failure(unsigned long pfn, int trapno)
1181{
1182	__memory_failure(pfn, trapno, 0);
1183}
1184
1185/**
1186 * unpoison_memory - Unpoison a previously poisoned page
1187 * @pfn: Page number of the to be unpoisoned page
1188 *
1189 * Software-unpoison a page that has been poisoned by
1190 * memory_failure() earlier.
1191 *
1192 * This is only done on the software-level, so it only works
1193 * for linux injected failures, not real hardware failures
1194 *
1195 * Returns 0 for success, otherwise -errno.
1196 */
1197int unpoison_memory(unsigned long pfn)
1198{
1199	struct page *page;
1200	struct page *p;
1201	int freeit = 0;
1202	unsigned int nr_pages;
1203
1204	if (!pfn_valid(pfn))
1205		return -ENXIO;
1206
1207	p = pfn_to_page(pfn);
1208	page = compound_head(p);
1209
1210	if (!PageHWPoison(p)) {
1211		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1212		return 0;
1213	}
1214
1215	nr_pages = 1 << compound_trans_order(page);
1216
1217	if (!get_page_unless_zero(page)) {
1218		/*
1219		 * Since HWPoisoned hugepage should have non-zero refcount,
1220		 * race between memory failure and unpoison seems to happen.
1221		 * In such case unpoison fails and memory failure runs
1222		 * to the end.
1223		 */
1224		if (PageHuge(page)) {
1225			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1226			return 0;
1227		}
1228		if (TestClearPageHWPoison(p))
1229			atomic_long_sub(nr_pages, &mce_bad_pages);
1230		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1231		return 0;
1232	}
1233
1234	lock_page(page);
1235	/*
1236	 * This test is racy because PG_hwpoison is set outside of page lock.
1237	 * That's acceptable because that won't trigger kernel panic. Instead,
1238	 * the PG_hwpoison page will be caught and isolated on the entrance to
1239	 * the free buddy page pool.
1240	 */
1241	if (TestClearPageHWPoison(page)) {
1242		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1243		atomic_long_sub(nr_pages, &mce_bad_pages);
1244		freeit = 1;
1245		if (PageHuge(page))
1246			clear_page_hwpoison_huge_page(page);
1247	}
1248	unlock_page(page);
1249
1250	put_page(page);
1251	if (freeit)
1252		put_page(page);
1253
1254	return 0;
1255}
1256EXPORT_SYMBOL(unpoison_memory);
1257
1258static struct page *new_page(struct page *p, unsigned long private, int **x)
1259{
1260	int nid = page_to_nid(p);
1261	if (PageHuge(p))
1262		return alloc_huge_page_node(page_hstate(compound_head(p)),
1263						   nid);
1264	else
1265		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1266}
1267
1268/*
1269 * Safely get reference count of an arbitrary page.
1270 * Returns 0 for a free page, -EIO for a zero refcount page
1271 * that is not free, and 1 for any other page type.
1272 * For 1 the page is returned with increased page count, otherwise not.
1273 */
1274static int get_any_page(struct page *p, unsigned long pfn, int flags)
1275{
1276	int ret;
1277
1278	if (flags & MF_COUNT_INCREASED)
1279		return 1;
1280
1281	/*
1282	 * The lock_memory_hotplug prevents a race with memory hotplug.
1283	 * This is a big hammer, a better would be nicer.
1284	 */
1285	lock_memory_hotplug();
1286
1287	/*
1288	 * Isolate the page, so that it doesn't get reallocated if it
1289	 * was free.
1290	 */
1291	set_migratetype_isolate(p);
1292	/*
1293	 * When the target page is a free hugepage, just remove it
1294	 * from free hugepage list.
1295	 */
1296	if (!get_page_unless_zero(compound_head(p))) {
1297		if (PageHuge(p)) {
1298			pr_info("get_any_page: %#lx free huge page\n", pfn);
1299			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1300		} else if (is_free_buddy_page(p)) {
1301			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1302			/* Set hwpoison bit while page is still isolated */
1303			SetPageHWPoison(p);
1304			ret = 0;
1305		} else {
1306			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1307				pfn, p->flags);
1308			ret = -EIO;
1309		}
1310	} else {
1311		/* Not a free page */
1312		ret = 1;
1313	}
1314	unset_migratetype_isolate(p);
1315	unlock_memory_hotplug();
1316	return ret;
1317}
1318
1319static int soft_offline_huge_page(struct page *page, int flags)
1320{
1321	int ret;
1322	unsigned long pfn = page_to_pfn(page);
1323	struct page *hpage = compound_head(page);
1324	LIST_HEAD(pagelist);
1325
1326	ret = get_any_page(page, pfn, flags);
1327	if (ret < 0)
1328		return ret;
1329	if (ret == 0)
1330		goto done;
1331
1332	if (PageHWPoison(hpage)) {
1333		put_page(hpage);
1334		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1335		return -EBUSY;
1336	}
1337
1338	/* Keep page count to indicate a given hugepage is isolated. */
1339
1340	list_add(&hpage->lru, &pagelist);
1341	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1342				true);
1343	if (ret) {
1344		struct page *page1, *page2;
1345		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1346			put_page(page1);
1347
1348		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1349			 pfn, ret, page->flags);
1350		if (ret > 0)
1351			ret = -EIO;
1352		return ret;
1353	}
1354done:
1355	if (!PageHWPoison(hpage))
1356		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1357	set_page_hwpoison_huge_page(hpage);
1358	dequeue_hwpoisoned_huge_page(hpage);
1359	/* keep elevated page count for bad page */
1360	return ret;
1361}
1362
1363/**
1364 * soft_offline_page - Soft offline a page.
1365 * @page: page to offline
1366 * @flags: flags. Same as memory_failure().
1367 *
1368 * Returns 0 on success, otherwise negated errno.
1369 *
1370 * Soft offline a page, by migration or invalidation,
1371 * without killing anything. This is for the case when
1372 * a page is not corrupted yet (so it's still valid to access),
1373 * but has had a number of corrected errors and is better taken
1374 * out.
1375 *
1376 * The actual policy on when to do that is maintained by
1377 * user space.
1378 *
1379 * This should never impact any application or cause data loss,
1380 * however it might take some time.
1381 *
1382 * This is not a 100% solution for all memory, but tries to be
1383 * ``good enough'' for the majority of memory.
1384 */
1385int soft_offline_page(struct page *page, int flags)
1386{
1387	int ret;
1388	unsigned long pfn = page_to_pfn(page);
1389
1390	if (PageHuge(page))
1391		return soft_offline_huge_page(page, flags);
1392
1393	ret = get_any_page(page, pfn, flags);
1394	if (ret < 0)
1395		return ret;
1396	if (ret == 0)
1397		goto done;
1398
1399	/*
1400	 * Page cache page we can handle?
1401	 */
1402	if (!PageLRU(page)) {
1403		/*
1404		 * Try to free it.
1405		 */
1406		put_page(page);
1407		shake_page(page, 1);
1408
1409		/*
1410		 * Did it turn free?
1411		 */
1412		ret = get_any_page(page, pfn, 0);
1413		if (ret < 0)
1414			return ret;
1415		if (ret == 0)
1416			goto done;
1417	}
1418	if (!PageLRU(page)) {
1419		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1420				pfn, page->flags);
1421		return -EIO;
1422	}
1423
1424	lock_page(page);
1425	wait_on_page_writeback(page);
1426
1427	/*
1428	 * Synchronized using the page lock with memory_failure()
1429	 */
1430	if (PageHWPoison(page)) {
1431		unlock_page(page);
1432		put_page(page);
1433		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1434		return -EBUSY;
1435	}
1436
1437	/*
1438	 * Try to invalidate first. This should work for
1439	 * non dirty unmapped page cache pages.
1440	 */
1441	ret = invalidate_inode_page(page);
1442	unlock_page(page);
1443
1444	/*
1445	 * Drop count because page migration doesn't like raised
1446	 * counts. The page could get re-allocated, but if it becomes
1447	 * LRU the isolation will just fail.
1448	 * RED-PEN would be better to keep it isolated here, but we
1449	 * would need to fix isolation locking first.
1450	 */
1451	put_page(page);
1452	if (ret == 1) {
1453		ret = 0;
1454		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1455		goto done;
1456	}
1457
1458	/*
1459	 * Simple invalidation didn't work.
1460	 * Try to migrate to a new page instead. migrate.c
1461	 * handles a large number of cases for us.
1462	 */
1463	ret = isolate_lru_page(page);
1464	if (!ret) {
1465		LIST_HEAD(pagelist);
1466
1467		list_add(&page->lru, &pagelist);
1468		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1469								0, true);
1470		if (ret) {
1471			putback_lru_pages(&pagelist);
1472			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1473				pfn, ret, page->flags);
1474			if (ret > 0)
1475				ret = -EIO;
1476		}
1477	} else {
1478		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1479				pfn, ret, page_count(page), page->flags);
1480	}
1481	if (ret)
1482		return ret;
1483
1484done:
1485	atomic_long_add(1, &mce_bad_pages);
1486	SetPageHWPoison(page);
1487	/* keep elevated page count for bad page */
1488	return ret;
1489}
1490
1491/*
1492 * The caller must hold current->mm->mmap_sem in read mode.
1493 */
1494int is_hwpoison_address(unsigned long addr)
1495{
1496	pgd_t *pgdp;
1497	pud_t pud, *pudp;
1498	pmd_t pmd, *pmdp;
1499	pte_t pte, *ptep;
1500	swp_entry_t entry;
1501
1502	pgdp = pgd_offset(current->mm, addr);
1503	if (!pgd_present(*pgdp))
1504		return 0;
1505	pudp = pud_offset(pgdp, addr);
1506	pud = *pudp;
1507	if (!pud_present(pud) || pud_large(pud))
1508		return 0;
1509	pmdp = pmd_offset(pudp, addr);
1510	pmd = *pmdp;
1511	if (!pmd_present(pmd) || pmd_large(pmd))
1512		return 0;
1513	ptep = pte_offset_map(pmdp, addr);
1514	pte = *ptep;
1515	pte_unmap(ptep);
1516	if (!is_swap_pte(pte))
1517		return 0;
1518	entry = pte_to_swp_entry(pte);
1519	return is_hwpoison_entry(entry);
1520}
1521EXPORT_SYMBOL_GPL(is_hwpoison_address);
1522