memory-failure.c revision 8c6c2ecb44667f7204e9d2b89c4c1f42edc5a196
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
12 *
13 * Handles page cache pages in various states.	The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
20 *
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
25 */
26
27/*
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
32 */
33#define DEBUG 1		/* remove me in 2.6.34 */
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/page-flags.h>
37#include <linux/kernel-page-flags.h>
38#include <linux/sched.h>
39#include <linux/ksm.h>
40#include <linux/rmap.h>
41#include <linux/pagemap.h>
42#include <linux/swap.h>
43#include <linux/backing-dev.h>
44#include <linux/migrate.h>
45#include <linux/page-isolation.h>
46#include <linux/suspend.h>
47#include <linux/slab.h>
48#include <linux/swapops.h>
49#include <linux/hugetlb.h>
50#include "internal.h"
51
52int sysctl_memory_failure_early_kill __read_mostly = 0;
53
54int sysctl_memory_failure_recovery __read_mostly = 1;
55
56atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
57
58#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
59
60u32 hwpoison_filter_enable = 0;
61u32 hwpoison_filter_dev_major = ~0U;
62u32 hwpoison_filter_dev_minor = ~0U;
63u64 hwpoison_filter_flags_mask;
64u64 hwpoison_filter_flags_value;
65EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
66EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
67EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
68EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
69EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
70
71static int hwpoison_filter_dev(struct page *p)
72{
73	struct address_space *mapping;
74	dev_t dev;
75
76	if (hwpoison_filter_dev_major == ~0U &&
77	    hwpoison_filter_dev_minor == ~0U)
78		return 0;
79
80	/*
81	 * page_mapping() does not accept slab page
82	 */
83	if (PageSlab(p))
84		return -EINVAL;
85
86	mapping = page_mapping(p);
87	if (mapping == NULL || mapping->host == NULL)
88		return -EINVAL;
89
90	dev = mapping->host->i_sb->s_dev;
91	if (hwpoison_filter_dev_major != ~0U &&
92	    hwpoison_filter_dev_major != MAJOR(dev))
93		return -EINVAL;
94	if (hwpoison_filter_dev_minor != ~0U &&
95	    hwpoison_filter_dev_minor != MINOR(dev))
96		return -EINVAL;
97
98	return 0;
99}
100
101static int hwpoison_filter_flags(struct page *p)
102{
103	if (!hwpoison_filter_flags_mask)
104		return 0;
105
106	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
107				    hwpoison_filter_flags_value)
108		return 0;
109	else
110		return -EINVAL;
111}
112
113/*
114 * This allows stress tests to limit test scope to a collection of tasks
115 * by putting them under some memcg. This prevents killing unrelated/important
116 * processes such as /sbin/init. Note that the target task may share clean
117 * pages with init (eg. libc text), which is harmless. If the target task
118 * share _dirty_ pages with another task B, the test scheme must make sure B
119 * is also included in the memcg. At last, due to race conditions this filter
120 * can only guarantee that the page either belongs to the memcg tasks, or is
121 * a freed page.
122 */
123#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
124u64 hwpoison_filter_memcg;
125EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
126static int hwpoison_filter_task(struct page *p)
127{
128	struct mem_cgroup *mem;
129	struct cgroup_subsys_state *css;
130	unsigned long ino;
131
132	if (!hwpoison_filter_memcg)
133		return 0;
134
135	mem = try_get_mem_cgroup_from_page(p);
136	if (!mem)
137		return -EINVAL;
138
139	css = mem_cgroup_css(mem);
140	/* root_mem_cgroup has NULL dentries */
141	if (!css->cgroup->dentry)
142		return -EINVAL;
143
144	ino = css->cgroup->dentry->d_inode->i_ino;
145	css_put(css);
146
147	if (ino != hwpoison_filter_memcg)
148		return -EINVAL;
149
150	return 0;
151}
152#else
153static int hwpoison_filter_task(struct page *p) { return 0; }
154#endif
155
156int hwpoison_filter(struct page *p)
157{
158	if (!hwpoison_filter_enable)
159		return 0;
160
161	if (hwpoison_filter_dev(p))
162		return -EINVAL;
163
164	if (hwpoison_filter_flags(p))
165		return -EINVAL;
166
167	if (hwpoison_filter_task(p))
168		return -EINVAL;
169
170	return 0;
171}
172#else
173int hwpoison_filter(struct page *p)
174{
175	return 0;
176}
177#endif
178
179EXPORT_SYMBOL_GPL(hwpoison_filter);
180
181/*
182 * Send all the processes who have the page mapped an ``action optional''
183 * signal.
184 */
185static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
186			unsigned long pfn, struct page *page)
187{
188	struct siginfo si;
189	int ret;
190
191	printk(KERN_ERR
192		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
193		pfn, t->comm, t->pid);
194	si.si_signo = SIGBUS;
195	si.si_errno = 0;
196	si.si_code = BUS_MCEERR_AO;
197	si.si_addr = (void *)addr;
198#ifdef __ARCH_SI_TRAPNO
199	si.si_trapno = trapno;
200#endif
201	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
202	/*
203	 * Don't use force here, it's convenient if the signal
204	 * can be temporarily blocked.
205	 * This could cause a loop when the user sets SIGBUS
206	 * to SIG_IGN, but hopefully noone will do that?
207	 */
208	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209	if (ret < 0)
210		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
211		       t->comm, t->pid, ret);
212	return ret;
213}
214
215/*
216 * When a unknown page type is encountered drain as many buffers as possible
217 * in the hope to turn the page into a LRU or free page, which we can handle.
218 */
219void shake_page(struct page *p, int access)
220{
221	if (!PageSlab(p)) {
222		lru_add_drain_all();
223		if (PageLRU(p))
224			return;
225		drain_all_pages();
226		if (PageLRU(p) || is_free_buddy_page(p))
227			return;
228	}
229
230	/*
231	 * Only all shrink_slab here (which would also
232	 * shrink other caches) if access is not potentially fatal.
233	 */
234	if (access) {
235		int nr;
236		do {
237			nr = shrink_slab(1000, GFP_KERNEL, 1000);
238			if (page_count(p) == 1)
239				break;
240		} while (nr > 10);
241	}
242}
243EXPORT_SYMBOL_GPL(shake_page);
244
245/*
246 * Kill all processes that have a poisoned page mapped and then isolate
247 * the page.
248 *
249 * General strategy:
250 * Find all processes having the page mapped and kill them.
251 * But we keep a page reference around so that the page is not
252 * actually freed yet.
253 * Then stash the page away
254 *
255 * There's no convenient way to get back to mapped processes
256 * from the VMAs. So do a brute-force search over all
257 * running processes.
258 *
259 * Remember that machine checks are not common (or rather
260 * if they are common you have other problems), so this shouldn't
261 * be a performance issue.
262 *
263 * Also there are some races possible while we get from the
264 * error detection to actually handle it.
265 */
266
267struct to_kill {
268	struct list_head nd;
269	struct task_struct *tsk;
270	unsigned long addr;
271	unsigned addr_valid:1;
272};
273
274/*
275 * Failure handling: if we can't find or can't kill a process there's
276 * not much we can do.	We just print a message and ignore otherwise.
277 */
278
279/*
280 * Schedule a process for later kill.
281 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
282 * TBD would GFP_NOIO be enough?
283 */
284static void add_to_kill(struct task_struct *tsk, struct page *p,
285		       struct vm_area_struct *vma,
286		       struct list_head *to_kill,
287		       struct to_kill **tkc)
288{
289	struct to_kill *tk;
290
291	if (*tkc) {
292		tk = *tkc;
293		*tkc = NULL;
294	} else {
295		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
296		if (!tk) {
297			printk(KERN_ERR
298		"MCE: Out of memory while machine check handling\n");
299			return;
300		}
301	}
302	tk->addr = page_address_in_vma(p, vma);
303	tk->addr_valid = 1;
304
305	/*
306	 * In theory we don't have to kill when the page was
307	 * munmaped. But it could be also a mremap. Since that's
308	 * likely very rare kill anyways just out of paranoia, but use
309	 * a SIGKILL because the error is not contained anymore.
310	 */
311	if (tk->addr == -EFAULT) {
312		pr_debug("MCE: Unable to find user space address %lx in %s\n",
313			page_to_pfn(p), tsk->comm);
314		tk->addr_valid = 0;
315	}
316	get_task_struct(tsk);
317	tk->tsk = tsk;
318	list_add_tail(&tk->nd, to_kill);
319}
320
321/*
322 * Kill the processes that have been collected earlier.
323 *
324 * Only do anything when DOIT is set, otherwise just free the list
325 * (this is used for clean pages which do not need killing)
326 * Also when FAIL is set do a force kill because something went
327 * wrong earlier.
328 */
329static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
330			  int fail, struct page *page, unsigned long pfn)
331{
332	struct to_kill *tk, *next;
333
334	list_for_each_entry_safe (tk, next, to_kill, nd) {
335		if (doit) {
336			/*
337			 * In case something went wrong with munmapping
338			 * make sure the process doesn't catch the
339			 * signal and then access the memory. Just kill it.
340			 */
341			if (fail || tk->addr_valid == 0) {
342				printk(KERN_ERR
343		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
344					pfn, tk->tsk->comm, tk->tsk->pid);
345				force_sig(SIGKILL, tk->tsk);
346			}
347
348			/*
349			 * In theory the process could have mapped
350			 * something else on the address in-between. We could
351			 * check for that, but we need to tell the
352			 * process anyways.
353			 */
354			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
355					      pfn, page) < 0)
356				printk(KERN_ERR
357		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
358					pfn, tk->tsk->comm, tk->tsk->pid);
359		}
360		put_task_struct(tk->tsk);
361		kfree(tk);
362	}
363}
364
365static int task_early_kill(struct task_struct *tsk)
366{
367	if (!tsk->mm)
368		return 0;
369	if (tsk->flags & PF_MCE_PROCESS)
370		return !!(tsk->flags & PF_MCE_EARLY);
371	return sysctl_memory_failure_early_kill;
372}
373
374/*
375 * Collect processes when the error hit an anonymous page.
376 */
377static void collect_procs_anon(struct page *page, struct list_head *to_kill,
378			      struct to_kill **tkc)
379{
380	struct vm_area_struct *vma;
381	struct task_struct *tsk;
382	struct anon_vma *av;
383
384	read_lock(&tasklist_lock);
385	av = page_lock_anon_vma(page);
386	if (av == NULL)	/* Not actually mapped anymore */
387		goto out;
388	for_each_process (tsk) {
389		struct anon_vma_chain *vmac;
390
391		if (!task_early_kill(tsk))
392			continue;
393		list_for_each_entry(vmac, &av->head, same_anon_vma) {
394			vma = vmac->vma;
395			if (!page_mapped_in_vma(page, vma))
396				continue;
397			if (vma->vm_mm == tsk->mm)
398				add_to_kill(tsk, page, vma, to_kill, tkc);
399		}
400	}
401	page_unlock_anon_vma(av);
402out:
403	read_unlock(&tasklist_lock);
404}
405
406/*
407 * Collect processes when the error hit a file mapped page.
408 */
409static void collect_procs_file(struct page *page, struct list_head *to_kill,
410			      struct to_kill **tkc)
411{
412	struct vm_area_struct *vma;
413	struct task_struct *tsk;
414	struct prio_tree_iter iter;
415	struct address_space *mapping = page->mapping;
416
417	/*
418	 * A note on the locking order between the two locks.
419	 * We don't rely on this particular order.
420	 * If you have some other code that needs a different order
421	 * feel free to switch them around. Or add a reverse link
422	 * from mm_struct to task_struct, then this could be all
423	 * done without taking tasklist_lock and looping over all tasks.
424	 */
425
426	read_lock(&tasklist_lock);
427	spin_lock(&mapping->i_mmap_lock);
428	for_each_process(tsk) {
429		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
430
431		if (!task_early_kill(tsk))
432			continue;
433
434		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
435				      pgoff) {
436			/*
437			 * Send early kill signal to tasks where a vma covers
438			 * the page but the corrupted page is not necessarily
439			 * mapped it in its pte.
440			 * Assume applications who requested early kill want
441			 * to be informed of all such data corruptions.
442			 */
443			if (vma->vm_mm == tsk->mm)
444				add_to_kill(tsk, page, vma, to_kill, tkc);
445		}
446	}
447	spin_unlock(&mapping->i_mmap_lock);
448	read_unlock(&tasklist_lock);
449}
450
451/*
452 * Collect the processes who have the corrupted page mapped to kill.
453 * This is done in two steps for locking reasons.
454 * First preallocate one tokill structure outside the spin locks,
455 * so that we can kill at least one process reasonably reliable.
456 */
457static void collect_procs(struct page *page, struct list_head *tokill)
458{
459	struct to_kill *tk;
460
461	if (!page->mapping)
462		return;
463
464	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
465	if (!tk)
466		return;
467	if (PageAnon(page))
468		collect_procs_anon(page, tokill, &tk);
469	else
470		collect_procs_file(page, tokill, &tk);
471	kfree(tk);
472}
473
474/*
475 * Error handlers for various types of pages.
476 */
477
478enum outcome {
479	IGNORED,	/* Error: cannot be handled */
480	FAILED,		/* Error: handling failed */
481	DELAYED,	/* Will be handled later */
482	RECOVERED,	/* Successfully recovered */
483};
484
485static const char *action_name[] = {
486	[IGNORED] = "Ignored",
487	[FAILED] = "Failed",
488	[DELAYED] = "Delayed",
489	[RECOVERED] = "Recovered",
490};
491
492/*
493 * XXX: It is possible that a page is isolated from LRU cache,
494 * and then kept in swap cache or failed to remove from page cache.
495 * The page count will stop it from being freed by unpoison.
496 * Stress tests should be aware of this memory leak problem.
497 */
498static int delete_from_lru_cache(struct page *p)
499{
500	if (!isolate_lru_page(p)) {
501		/*
502		 * Clear sensible page flags, so that the buddy system won't
503		 * complain when the page is unpoison-and-freed.
504		 */
505		ClearPageActive(p);
506		ClearPageUnevictable(p);
507		/*
508		 * drop the page count elevated by isolate_lru_page()
509		 */
510		page_cache_release(p);
511		return 0;
512	}
513	return -EIO;
514}
515
516/*
517 * Error hit kernel page.
518 * Do nothing, try to be lucky and not touch this instead. For a few cases we
519 * could be more sophisticated.
520 */
521static int me_kernel(struct page *p, unsigned long pfn)
522{
523	return IGNORED;
524}
525
526/*
527 * Page in unknown state. Do nothing.
528 */
529static int me_unknown(struct page *p, unsigned long pfn)
530{
531	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
532	return FAILED;
533}
534
535/*
536 * Clean (or cleaned) page cache page.
537 */
538static int me_pagecache_clean(struct page *p, unsigned long pfn)
539{
540	int err;
541	int ret = FAILED;
542	struct address_space *mapping;
543
544	delete_from_lru_cache(p);
545
546	/*
547	 * For anonymous pages we're done the only reference left
548	 * should be the one m_f() holds.
549	 */
550	if (PageAnon(p))
551		return RECOVERED;
552
553	/*
554	 * Now truncate the page in the page cache. This is really
555	 * more like a "temporary hole punch"
556	 * Don't do this for block devices when someone else
557	 * has a reference, because it could be file system metadata
558	 * and that's not safe to truncate.
559	 */
560	mapping = page_mapping(p);
561	if (!mapping) {
562		/*
563		 * Page has been teared down in the meanwhile
564		 */
565		return FAILED;
566	}
567
568	/*
569	 * Truncation is a bit tricky. Enable it per file system for now.
570	 *
571	 * Open: to take i_mutex or not for this? Right now we don't.
572	 */
573	if (mapping->a_ops->error_remove_page) {
574		err = mapping->a_ops->error_remove_page(mapping, p);
575		if (err != 0) {
576			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
577					pfn, err);
578		} else if (page_has_private(p) &&
579				!try_to_release_page(p, GFP_NOIO)) {
580			pr_debug("MCE %#lx: failed to release buffers\n", pfn);
581		} else {
582			ret = RECOVERED;
583		}
584	} else {
585		/*
586		 * If the file system doesn't support it just invalidate
587		 * This fails on dirty or anything with private pages
588		 */
589		if (invalidate_inode_page(p))
590			ret = RECOVERED;
591		else
592			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
593				pfn);
594	}
595	return ret;
596}
597
598/*
599 * Dirty cache page page
600 * Issues: when the error hit a hole page the error is not properly
601 * propagated.
602 */
603static int me_pagecache_dirty(struct page *p, unsigned long pfn)
604{
605	struct address_space *mapping = page_mapping(p);
606
607	SetPageError(p);
608	/* TBD: print more information about the file. */
609	if (mapping) {
610		/*
611		 * IO error will be reported by write(), fsync(), etc.
612		 * who check the mapping.
613		 * This way the application knows that something went
614		 * wrong with its dirty file data.
615		 *
616		 * There's one open issue:
617		 *
618		 * The EIO will be only reported on the next IO
619		 * operation and then cleared through the IO map.
620		 * Normally Linux has two mechanisms to pass IO error
621		 * first through the AS_EIO flag in the address space
622		 * and then through the PageError flag in the page.
623		 * Since we drop pages on memory failure handling the
624		 * only mechanism open to use is through AS_AIO.
625		 *
626		 * This has the disadvantage that it gets cleared on
627		 * the first operation that returns an error, while
628		 * the PageError bit is more sticky and only cleared
629		 * when the page is reread or dropped.  If an
630		 * application assumes it will always get error on
631		 * fsync, but does other operations on the fd before
632		 * and the page is dropped inbetween then the error
633		 * will not be properly reported.
634		 *
635		 * This can already happen even without hwpoisoned
636		 * pages: first on metadata IO errors (which only
637		 * report through AS_EIO) or when the page is dropped
638		 * at the wrong time.
639		 *
640		 * So right now we assume that the application DTRT on
641		 * the first EIO, but we're not worse than other parts
642		 * of the kernel.
643		 */
644		mapping_set_error(mapping, EIO);
645	}
646
647	return me_pagecache_clean(p, pfn);
648}
649
650/*
651 * Clean and dirty swap cache.
652 *
653 * Dirty swap cache page is tricky to handle. The page could live both in page
654 * cache and swap cache(ie. page is freshly swapped in). So it could be
655 * referenced concurrently by 2 types of PTEs:
656 * normal PTEs and swap PTEs. We try to handle them consistently by calling
657 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
658 * and then
659 *      - clear dirty bit to prevent IO
660 *      - remove from LRU
661 *      - but keep in the swap cache, so that when we return to it on
662 *        a later page fault, we know the application is accessing
663 *        corrupted data and shall be killed (we installed simple
664 *        interception code in do_swap_page to catch it).
665 *
666 * Clean swap cache pages can be directly isolated. A later page fault will
667 * bring in the known good data from disk.
668 */
669static int me_swapcache_dirty(struct page *p, unsigned long pfn)
670{
671	ClearPageDirty(p);
672	/* Trigger EIO in shmem: */
673	ClearPageUptodate(p);
674
675	if (!delete_from_lru_cache(p))
676		return DELAYED;
677	else
678		return FAILED;
679}
680
681static int me_swapcache_clean(struct page *p, unsigned long pfn)
682{
683	delete_from_swap_cache(p);
684
685	if (!delete_from_lru_cache(p))
686		return RECOVERED;
687	else
688		return FAILED;
689}
690
691/*
692 * Huge pages. Needs work.
693 * Issues:
694 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
695 *   To narrow down kill region to one page, we need to break up pmd.
696 * - To support soft-offlining for hugepage, we need to support hugepage
697 *   migration.
698 */
699static int me_huge_page(struct page *p, unsigned long pfn)
700{
701	int res = 0;
702	struct page *hpage = compound_head(p);
703	/*
704	 * We can safely recover from error on free or reserved (i.e.
705	 * not in-use) hugepage by dequeuing it from freelist.
706	 * To check whether a hugepage is in-use or not, we can't use
707	 * page->lru because it can be used in other hugepage operations,
708	 * such as __unmap_hugepage_range() and gather_surplus_pages().
709	 * So instead we use page_mapping() and PageAnon().
710	 * We assume that this function is called with page lock held,
711	 * so there is no race between isolation and mapping/unmapping.
712	 */
713	if (!(page_mapping(hpage) || PageAnon(hpage))) {
714		res = dequeue_hwpoisoned_huge_page(hpage);
715		if (!res)
716			return RECOVERED;
717	}
718	return DELAYED;
719}
720
721/*
722 * Various page states we can handle.
723 *
724 * A page state is defined by its current page->flags bits.
725 * The table matches them in order and calls the right handler.
726 *
727 * This is quite tricky because we can access page at any time
728 * in its live cycle, so all accesses have to be extremly careful.
729 *
730 * This is not complete. More states could be added.
731 * For any missing state don't attempt recovery.
732 */
733
734#define dirty		(1UL << PG_dirty)
735#define sc		(1UL << PG_swapcache)
736#define unevict		(1UL << PG_unevictable)
737#define mlock		(1UL << PG_mlocked)
738#define writeback	(1UL << PG_writeback)
739#define lru		(1UL << PG_lru)
740#define swapbacked	(1UL << PG_swapbacked)
741#define head		(1UL << PG_head)
742#define tail		(1UL << PG_tail)
743#define compound	(1UL << PG_compound)
744#define slab		(1UL << PG_slab)
745#define reserved	(1UL << PG_reserved)
746
747static struct page_state {
748	unsigned long mask;
749	unsigned long res;
750	char *msg;
751	int (*action)(struct page *p, unsigned long pfn);
752} error_states[] = {
753	{ reserved,	reserved,	"reserved kernel",	me_kernel },
754	/*
755	 * free pages are specially detected outside this table:
756	 * PG_buddy pages only make a small fraction of all free pages.
757	 */
758
759	/*
760	 * Could in theory check if slab page is free or if we can drop
761	 * currently unused objects without touching them. But just
762	 * treat it as standard kernel for now.
763	 */
764	{ slab,		slab,		"kernel slab",	me_kernel },
765
766#ifdef CONFIG_PAGEFLAGS_EXTENDED
767	{ head,		head,		"huge",		me_huge_page },
768	{ tail,		tail,		"huge",		me_huge_page },
769#else
770	{ compound,	compound,	"huge",		me_huge_page },
771#endif
772
773	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
774	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
775
776	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
777	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
778
779	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
780	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
781
782	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
783	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
784
785	/*
786	 * Catchall entry: must be at end.
787	 */
788	{ 0,		0,		"unknown page state",	me_unknown },
789};
790
791#undef dirty
792#undef sc
793#undef unevict
794#undef mlock
795#undef writeback
796#undef lru
797#undef swapbacked
798#undef head
799#undef tail
800#undef compound
801#undef slab
802#undef reserved
803
804static void action_result(unsigned long pfn, char *msg, int result)
805{
806	struct page *page = pfn_to_page(pfn);
807
808	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
809		pfn,
810		PageDirty(page) ? "dirty " : "",
811		msg, action_name[result]);
812}
813
814static int page_action(struct page_state *ps, struct page *p,
815			unsigned long pfn)
816{
817	int result;
818	int count;
819
820	result = ps->action(p, pfn);
821	action_result(pfn, ps->msg, result);
822
823	count = page_count(p) - 1;
824	if (ps->action == me_swapcache_dirty && result == DELAYED)
825		count--;
826	if (count != 0) {
827		printk(KERN_ERR
828		       "MCE %#lx: %s page still referenced by %d users\n",
829		       pfn, ps->msg, count);
830		result = FAILED;
831	}
832
833	/* Could do more checks here if page looks ok */
834	/*
835	 * Could adjust zone counters here to correct for the missing page.
836	 */
837
838	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
839}
840
841#define N_UNMAP_TRIES 5
842
843/*
844 * Do all that is necessary to remove user space mappings. Unmap
845 * the pages and send SIGBUS to the processes if the data was dirty.
846 */
847static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
848				  int trapno)
849{
850	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
851	struct address_space *mapping;
852	LIST_HEAD(tokill);
853	int ret;
854	int i;
855	int kill = 1;
856	struct page *hpage = compound_head(p);
857
858	if (PageReserved(p) || PageSlab(p))
859		return SWAP_SUCCESS;
860
861	/*
862	 * This check implies we don't kill processes if their pages
863	 * are in the swap cache early. Those are always late kills.
864	 */
865	if (!page_mapped(hpage))
866		return SWAP_SUCCESS;
867
868	if (PageKsm(p))
869		return SWAP_FAIL;
870
871	if (PageSwapCache(p)) {
872		printk(KERN_ERR
873		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
874		ttu |= TTU_IGNORE_HWPOISON;
875	}
876
877	/*
878	 * Propagate the dirty bit from PTEs to struct page first, because we
879	 * need this to decide if we should kill or just drop the page.
880	 * XXX: the dirty test could be racy: set_page_dirty() may not always
881	 * be called inside page lock (it's recommended but not enforced).
882	 */
883	mapping = page_mapping(hpage);
884	if (!PageDirty(hpage) && mapping &&
885	    mapping_cap_writeback_dirty(mapping)) {
886		if (page_mkclean(hpage)) {
887			SetPageDirty(hpage);
888		} else {
889			kill = 0;
890			ttu |= TTU_IGNORE_HWPOISON;
891			printk(KERN_INFO
892	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
893				pfn);
894		}
895	}
896
897	/*
898	 * First collect all the processes that have the page
899	 * mapped in dirty form.  This has to be done before try_to_unmap,
900	 * because ttu takes the rmap data structures down.
901	 *
902	 * Error handling: We ignore errors here because
903	 * there's nothing that can be done.
904	 */
905	if (kill)
906		collect_procs(hpage, &tokill);
907
908	/*
909	 * try_to_unmap can fail temporarily due to races.
910	 * Try a few times (RED-PEN better strategy?)
911	 */
912	for (i = 0; i < N_UNMAP_TRIES; i++) {
913		ret = try_to_unmap(hpage, ttu);
914		if (ret == SWAP_SUCCESS)
915			break;
916		pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret);
917	}
918
919	if (ret != SWAP_SUCCESS)
920		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
921				pfn, page_mapcount(hpage));
922
923	/*
924	 * Now that the dirty bit has been propagated to the
925	 * struct page and all unmaps done we can decide if
926	 * killing is needed or not.  Only kill when the page
927	 * was dirty, otherwise the tokill list is merely
928	 * freed.  When there was a problem unmapping earlier
929	 * use a more force-full uncatchable kill to prevent
930	 * any accesses to the poisoned memory.
931	 */
932	kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
933		      ret != SWAP_SUCCESS, p, pfn);
934
935	return ret;
936}
937
938static void set_page_hwpoison_huge_page(struct page *hpage)
939{
940	int i;
941	int nr_pages = 1 << compound_order(hpage);
942	for (i = 0; i < nr_pages; i++)
943		SetPageHWPoison(hpage + i);
944}
945
946static void clear_page_hwpoison_huge_page(struct page *hpage)
947{
948	int i;
949	int nr_pages = 1 << compound_order(hpage);
950	for (i = 0; i < nr_pages; i++)
951		ClearPageHWPoison(hpage + i);
952}
953
954int __memory_failure(unsigned long pfn, int trapno, int flags)
955{
956	struct page_state *ps;
957	struct page *p;
958	struct page *hpage;
959	int res;
960	unsigned int nr_pages;
961
962	if (!sysctl_memory_failure_recovery)
963		panic("Memory failure from trap %d on page %lx", trapno, pfn);
964
965	if (!pfn_valid(pfn)) {
966		printk(KERN_ERR
967		       "MCE %#lx: memory outside kernel control\n",
968		       pfn);
969		return -ENXIO;
970	}
971
972	p = pfn_to_page(pfn);
973	hpage = compound_head(p);
974	if (TestSetPageHWPoison(p)) {
975		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
976		return 0;
977	}
978
979	nr_pages = 1 << compound_order(hpage);
980	atomic_long_add(nr_pages, &mce_bad_pages);
981
982	/*
983	 * We need/can do nothing about count=0 pages.
984	 * 1) it's a free page, and therefore in safe hand:
985	 *    prep_new_page() will be the gate keeper.
986	 * 2) it's a free hugepage, which is also safe:
987	 *    an affected hugepage will be dequeued from hugepage freelist,
988	 *    so there's no concern about reusing it ever after.
989	 * 3) it's part of a non-compound high order page.
990	 *    Implies some kernel user: cannot stop them from
991	 *    R/W the page; let's pray that the page has been
992	 *    used and will be freed some time later.
993	 * In fact it's dangerous to directly bump up page count from 0,
994	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
995	 */
996	if (!(flags & MF_COUNT_INCREASED) &&
997		!get_page_unless_zero(hpage)) {
998		if (is_free_buddy_page(p)) {
999			action_result(pfn, "free buddy", DELAYED);
1000			return 0;
1001		} else if (PageHuge(hpage)) {
1002			/*
1003			 * Check "just unpoisoned", "filter hit", and
1004			 * "race with other subpage."
1005			 */
1006			lock_page_nosync(hpage);
1007			if (!PageHWPoison(hpage)
1008			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1009			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1010				atomic_long_sub(nr_pages, &mce_bad_pages);
1011				return 0;
1012			}
1013			set_page_hwpoison_huge_page(hpage);
1014			res = dequeue_hwpoisoned_huge_page(hpage);
1015			action_result(pfn, "free huge",
1016				      res ? IGNORED : DELAYED);
1017			unlock_page(hpage);
1018			return res;
1019		} else {
1020			action_result(pfn, "high order kernel", IGNORED);
1021			return -EBUSY;
1022		}
1023	}
1024
1025	/*
1026	 * We ignore non-LRU pages for good reasons.
1027	 * - PG_locked is only well defined for LRU pages and a few others
1028	 * - to avoid races with __set_page_locked()
1029	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1030	 * The check (unnecessarily) ignores LRU pages being isolated and
1031	 * walked by the page reclaim code, however that's not a big loss.
1032	 */
1033	if (!PageLRU(p) && !PageHuge(p))
1034		shake_page(p, 0);
1035	if (!PageLRU(p) && !PageHuge(p)) {
1036		/*
1037		 * shake_page could have turned it free.
1038		 */
1039		if (is_free_buddy_page(p)) {
1040			action_result(pfn, "free buddy, 2nd try", DELAYED);
1041			return 0;
1042		}
1043		action_result(pfn, "non LRU", IGNORED);
1044		put_page(p);
1045		return -EBUSY;
1046	}
1047
1048	/*
1049	 * Lock the page and wait for writeback to finish.
1050	 * It's very difficult to mess with pages currently under IO
1051	 * and in many cases impossible, so we just avoid it here.
1052	 */
1053	lock_page_nosync(hpage);
1054
1055	/*
1056	 * unpoison always clear PG_hwpoison inside page lock
1057	 */
1058	if (!PageHWPoison(p)) {
1059		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1060		res = 0;
1061		goto out;
1062	}
1063	if (hwpoison_filter(p)) {
1064		if (TestClearPageHWPoison(p))
1065			atomic_long_sub(nr_pages, &mce_bad_pages);
1066		unlock_page(hpage);
1067		put_page(hpage);
1068		return 0;
1069	}
1070
1071	/*
1072	 * For error on the tail page, we should set PG_hwpoison
1073	 * on the head page to show that the hugepage is hwpoisoned
1074	 */
1075	if (PageTail(p) && TestSetPageHWPoison(hpage)) {
1076		action_result(pfn, "hugepage already hardware poisoned",
1077				IGNORED);
1078		unlock_page(hpage);
1079		put_page(hpage);
1080		return 0;
1081	}
1082	/*
1083	 * Set PG_hwpoison on all pages in an error hugepage,
1084	 * because containment is done in hugepage unit for now.
1085	 * Since we have done TestSetPageHWPoison() for the head page with
1086	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1087	 */
1088	if (PageHuge(p))
1089		set_page_hwpoison_huge_page(hpage);
1090
1091	wait_on_page_writeback(p);
1092
1093	/*
1094	 * Now take care of user space mappings.
1095	 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1096	 */
1097	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1098		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1099		res = -EBUSY;
1100		goto out;
1101	}
1102
1103	/*
1104	 * Torn down by someone else?
1105	 */
1106	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1107		action_result(pfn, "already truncated LRU", IGNORED);
1108		res = -EBUSY;
1109		goto out;
1110	}
1111
1112	res = -EBUSY;
1113	for (ps = error_states;; ps++) {
1114		if ((p->flags & ps->mask) == ps->res) {
1115			res = page_action(ps, p, pfn);
1116			break;
1117		}
1118	}
1119out:
1120	unlock_page(hpage);
1121	return res;
1122}
1123EXPORT_SYMBOL_GPL(__memory_failure);
1124
1125/**
1126 * memory_failure - Handle memory failure of a page.
1127 * @pfn: Page Number of the corrupted page
1128 * @trapno: Trap number reported in the signal to user space.
1129 *
1130 * This function is called by the low level machine check code
1131 * of an architecture when it detects hardware memory corruption
1132 * of a page. It tries its best to recover, which includes
1133 * dropping pages, killing processes etc.
1134 *
1135 * The function is primarily of use for corruptions that
1136 * happen outside the current execution context (e.g. when
1137 * detected by a background scrubber)
1138 *
1139 * Must run in process context (e.g. a work queue) with interrupts
1140 * enabled and no spinlocks hold.
1141 */
1142void memory_failure(unsigned long pfn, int trapno)
1143{
1144	__memory_failure(pfn, trapno, 0);
1145}
1146
1147/**
1148 * unpoison_memory - Unpoison a previously poisoned page
1149 * @pfn: Page number of the to be unpoisoned page
1150 *
1151 * Software-unpoison a page that has been poisoned by
1152 * memory_failure() earlier.
1153 *
1154 * This is only done on the software-level, so it only works
1155 * for linux injected failures, not real hardware failures
1156 *
1157 * Returns 0 for success, otherwise -errno.
1158 */
1159int unpoison_memory(unsigned long pfn)
1160{
1161	struct page *page;
1162	struct page *p;
1163	int freeit = 0;
1164	unsigned int nr_pages;
1165
1166	if (!pfn_valid(pfn))
1167		return -ENXIO;
1168
1169	p = pfn_to_page(pfn);
1170	page = compound_head(p);
1171
1172	if (!PageHWPoison(p)) {
1173		pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1174		return 0;
1175	}
1176
1177	nr_pages = 1 << compound_order(page);
1178
1179	if (!get_page_unless_zero(page)) {
1180		/*
1181		 * Since HWPoisoned hugepage should have non-zero refcount,
1182		 * race between memory failure and unpoison seems to happen.
1183		 * In such case unpoison fails and memory failure runs
1184		 * to the end.
1185		 */
1186		if (PageHuge(page)) {
1187			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1188			return 0;
1189		}
1190		if (TestClearPageHWPoison(p))
1191			atomic_long_sub(nr_pages, &mce_bad_pages);
1192		pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1193		return 0;
1194	}
1195
1196	lock_page_nosync(page);
1197	/*
1198	 * This test is racy because PG_hwpoison is set outside of page lock.
1199	 * That's acceptable because that won't trigger kernel panic. Instead,
1200	 * the PG_hwpoison page will be caught and isolated on the entrance to
1201	 * the free buddy page pool.
1202	 */
1203	if (TestClearPageHWPoison(page)) {
1204		pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1205		atomic_long_sub(nr_pages, &mce_bad_pages);
1206		freeit = 1;
1207	}
1208	if (PageHuge(p))
1209		clear_page_hwpoison_huge_page(page);
1210	unlock_page(page);
1211
1212	put_page(page);
1213	if (freeit)
1214		put_page(page);
1215
1216	return 0;
1217}
1218EXPORT_SYMBOL(unpoison_memory);
1219
1220static struct page *new_page(struct page *p, unsigned long private, int **x)
1221{
1222	int nid = page_to_nid(p);
1223	return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1224}
1225
1226/*
1227 * Safely get reference count of an arbitrary page.
1228 * Returns 0 for a free page, -EIO for a zero refcount page
1229 * that is not free, and 1 for any other page type.
1230 * For 1 the page is returned with increased page count, otherwise not.
1231 */
1232static int get_any_page(struct page *p, unsigned long pfn, int flags)
1233{
1234	int ret;
1235
1236	if (flags & MF_COUNT_INCREASED)
1237		return 1;
1238
1239	/*
1240	 * The lock_system_sleep prevents a race with memory hotplug,
1241	 * because the isolation assumes there's only a single user.
1242	 * This is a big hammer, a better would be nicer.
1243	 */
1244	lock_system_sleep();
1245
1246	/*
1247	 * Isolate the page, so that it doesn't get reallocated if it
1248	 * was free.
1249	 */
1250	set_migratetype_isolate(p);
1251	if (!get_page_unless_zero(compound_head(p))) {
1252		if (is_free_buddy_page(p)) {
1253			pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1254			/* Set hwpoison bit while page is still isolated */
1255			SetPageHWPoison(p);
1256			ret = 0;
1257		} else {
1258			pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1259				pfn, p->flags);
1260			ret = -EIO;
1261		}
1262	} else {
1263		/* Not a free page */
1264		ret = 1;
1265	}
1266	unset_migratetype_isolate(p);
1267	unlock_system_sleep();
1268	return ret;
1269}
1270
1271/**
1272 * soft_offline_page - Soft offline a page.
1273 * @page: page to offline
1274 * @flags: flags. Same as memory_failure().
1275 *
1276 * Returns 0 on success, otherwise negated errno.
1277 *
1278 * Soft offline a page, by migration or invalidation,
1279 * without killing anything. This is for the case when
1280 * a page is not corrupted yet (so it's still valid to access),
1281 * but has had a number of corrected errors and is better taken
1282 * out.
1283 *
1284 * The actual policy on when to do that is maintained by
1285 * user space.
1286 *
1287 * This should never impact any application or cause data loss,
1288 * however it might take some time.
1289 *
1290 * This is not a 100% solution for all memory, but tries to be
1291 * ``good enough'' for the majority of memory.
1292 */
1293int soft_offline_page(struct page *page, int flags)
1294{
1295	int ret;
1296	unsigned long pfn = page_to_pfn(page);
1297
1298	ret = get_any_page(page, pfn, flags);
1299	if (ret < 0)
1300		return ret;
1301	if (ret == 0)
1302		goto done;
1303
1304	/*
1305	 * Page cache page we can handle?
1306	 */
1307	if (!PageLRU(page)) {
1308		/*
1309		 * Try to free it.
1310		 */
1311		put_page(page);
1312		shake_page(page, 1);
1313
1314		/*
1315		 * Did it turn free?
1316		 */
1317		ret = get_any_page(page, pfn, 0);
1318		if (ret < 0)
1319			return ret;
1320		if (ret == 0)
1321			goto done;
1322	}
1323	if (!PageLRU(page)) {
1324		pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1325				pfn, page->flags);
1326		return -EIO;
1327	}
1328
1329	lock_page(page);
1330	wait_on_page_writeback(page);
1331
1332	/*
1333	 * Synchronized using the page lock with memory_failure()
1334	 */
1335	if (PageHWPoison(page)) {
1336		unlock_page(page);
1337		put_page(page);
1338		pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1339		return -EBUSY;
1340	}
1341
1342	/*
1343	 * Try to invalidate first. This should work for
1344	 * non dirty unmapped page cache pages.
1345	 */
1346	ret = invalidate_inode_page(page);
1347	unlock_page(page);
1348
1349	/*
1350	 * Drop count because page migration doesn't like raised
1351	 * counts. The page could get re-allocated, but if it becomes
1352	 * LRU the isolation will just fail.
1353	 * RED-PEN would be better to keep it isolated here, but we
1354	 * would need to fix isolation locking first.
1355	 */
1356	put_page(page);
1357	if (ret == 1) {
1358		ret = 0;
1359		pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1360		goto done;
1361	}
1362
1363	/*
1364	 * Simple invalidation didn't work.
1365	 * Try to migrate to a new page instead. migrate.c
1366	 * handles a large number of cases for us.
1367	 */
1368	ret = isolate_lru_page(page);
1369	if (!ret) {
1370		LIST_HEAD(pagelist);
1371
1372		list_add(&page->lru, &pagelist);
1373		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1374		if (ret) {
1375			pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1376				pfn, ret, page->flags);
1377			if (ret > 0)
1378				ret = -EIO;
1379		}
1380	} else {
1381		pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1382				pfn, ret, page_count(page), page->flags);
1383	}
1384	if (ret)
1385		return ret;
1386
1387done:
1388	atomic_long_add(1, &mce_bad_pages);
1389	SetPageHWPoison(page);
1390	/* keep elevated page count for bad page */
1391	return ret;
1392}
1393
1394/*
1395 * The caller must hold current->mm->mmap_sem in read mode.
1396 */
1397int is_hwpoison_address(unsigned long addr)
1398{
1399	pgd_t *pgdp;
1400	pud_t pud, *pudp;
1401	pmd_t pmd, *pmdp;
1402	pte_t pte, *ptep;
1403	swp_entry_t entry;
1404
1405	pgdp = pgd_offset(current->mm, addr);
1406	if (!pgd_present(*pgdp))
1407		return 0;
1408	pudp = pud_offset(pgdp, addr);
1409	pud = *pudp;
1410	if (!pud_present(pud) || pud_large(pud))
1411		return 0;
1412	pmdp = pmd_offset(pudp, addr);
1413	pmd = *pmdp;
1414	if (!pmd_present(pmd) || pmd_large(pmd))
1415		return 0;
1416	ptep = pte_offset_map(pmdp, addr);
1417	pte = *ptep;
1418	pte_unmap(ptep);
1419	if (!is_swap_pte(pte))
1420		return 0;
1421	entry = pte_to_swp_entry(pte);
1422	return is_hwpoison_entry(entry);
1423}
1424EXPORT_SYMBOL_GPL(is_hwpoison_address);
1425