memory-failure.c revision 9b679320a5fbf46454011e5c62e0b8991b0956d1
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states.	The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/page-isolation.h>
50#include <linux/suspend.h>
51#include <linux/slab.h>
52#include <linux/swapops.h>
53#include <linux/hugetlb.h>
54#include <linux/memory_hotplug.h>
55#include <linux/mm_inline.h>
56#include "internal.h"
57
58int sysctl_memory_failure_early_kill __read_mostly = 0;
59
60int sysctl_memory_failure_recovery __read_mostly = 1;
61
62atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
63
64#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
65
66u32 hwpoison_filter_enable = 0;
67u32 hwpoison_filter_dev_major = ~0U;
68u32 hwpoison_filter_dev_minor = ~0U;
69u64 hwpoison_filter_flags_mask;
70u64 hwpoison_filter_flags_value;
71EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
72EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
73EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
74EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
75EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
76
77static int hwpoison_filter_dev(struct page *p)
78{
79	struct address_space *mapping;
80	dev_t dev;
81
82	if (hwpoison_filter_dev_major == ~0U &&
83	    hwpoison_filter_dev_minor == ~0U)
84		return 0;
85
86	/*
87	 * page_mapping() does not accept slab pages.
88	 */
89	if (PageSlab(p))
90		return -EINVAL;
91
92	mapping = page_mapping(p);
93	if (mapping == NULL || mapping->host == NULL)
94		return -EINVAL;
95
96	dev = mapping->host->i_sb->s_dev;
97	if (hwpoison_filter_dev_major != ~0U &&
98	    hwpoison_filter_dev_major != MAJOR(dev))
99		return -EINVAL;
100	if (hwpoison_filter_dev_minor != ~0U &&
101	    hwpoison_filter_dev_minor != MINOR(dev))
102		return -EINVAL;
103
104	return 0;
105}
106
107static int hwpoison_filter_flags(struct page *p)
108{
109	if (!hwpoison_filter_flags_mask)
110		return 0;
111
112	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
113				    hwpoison_filter_flags_value)
114		return 0;
115	else
116		return -EINVAL;
117}
118
119/*
120 * This allows stress tests to limit test scope to a collection of tasks
121 * by putting them under some memcg. This prevents killing unrelated/important
122 * processes such as /sbin/init. Note that the target task may share clean
123 * pages with init (eg. libc text), which is harmless. If the target task
124 * share _dirty_ pages with another task B, the test scheme must make sure B
125 * is also included in the memcg. At last, due to race conditions this filter
126 * can only guarantee that the page either belongs to the memcg tasks, or is
127 * a freed page.
128 */
129#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
130u64 hwpoison_filter_memcg;
131EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
132static int hwpoison_filter_task(struct page *p)
133{
134	struct mem_cgroup *mem;
135	struct cgroup_subsys_state *css;
136	unsigned long ino;
137
138	if (!hwpoison_filter_memcg)
139		return 0;
140
141	mem = try_get_mem_cgroup_from_page(p);
142	if (!mem)
143		return -EINVAL;
144
145	css = mem_cgroup_css(mem);
146	/* root_mem_cgroup has NULL dentries */
147	if (!css->cgroup->dentry)
148		return -EINVAL;
149
150	ino = css->cgroup->dentry->d_inode->i_ino;
151	css_put(css);
152
153	if (ino != hwpoison_filter_memcg)
154		return -EINVAL;
155
156	return 0;
157}
158#else
159static int hwpoison_filter_task(struct page *p) { return 0; }
160#endif
161
162int hwpoison_filter(struct page *p)
163{
164	if (!hwpoison_filter_enable)
165		return 0;
166
167	if (hwpoison_filter_dev(p))
168		return -EINVAL;
169
170	if (hwpoison_filter_flags(p))
171		return -EINVAL;
172
173	if (hwpoison_filter_task(p))
174		return -EINVAL;
175
176	return 0;
177}
178#else
179int hwpoison_filter(struct page *p)
180{
181	return 0;
182}
183#endif
184
185EXPORT_SYMBOL_GPL(hwpoison_filter);
186
187/*
188 * Send all the processes who have the page mapped an ``action optional''
189 * signal.
190 */
191static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
192			unsigned long pfn, struct page *page)
193{
194	struct siginfo si;
195	int ret;
196
197	printk(KERN_ERR
198		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
199		pfn, t->comm, t->pid);
200	si.si_signo = SIGBUS;
201	si.si_errno = 0;
202	si.si_code = BUS_MCEERR_AO;
203	si.si_addr = (void *)addr;
204#ifdef __ARCH_SI_TRAPNO
205	si.si_trapno = trapno;
206#endif
207	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
208	/*
209	 * Don't use force here, it's convenient if the signal
210	 * can be temporarily blocked.
211	 * This could cause a loop when the user sets SIGBUS
212	 * to SIG_IGN, but hopefully no one will do that?
213	 */
214	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
215	if (ret < 0)
216		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
217		       t->comm, t->pid, ret);
218	return ret;
219}
220
221/*
222 * When a unknown page type is encountered drain as many buffers as possible
223 * in the hope to turn the page into a LRU or free page, which we can handle.
224 */
225void shake_page(struct page *p, int access)
226{
227	if (!PageSlab(p)) {
228		lru_add_drain_all();
229		if (PageLRU(p))
230			return;
231		drain_all_pages();
232		if (PageLRU(p) || is_free_buddy_page(p))
233			return;
234	}
235
236	/*
237	 * Only call shrink_slab here (which would also shrink other caches) if
238	 * access is not potentially fatal.
239	 */
240	if (access) {
241		int nr;
242		do {
243			struct shrink_control shrink = {
244				.gfp_mask = GFP_KERNEL,
245			};
246
247			nr = shrink_slab(&shrink, 1000, 1000);
248			if (page_count(p) == 1)
249				break;
250		} while (nr > 10);
251	}
252}
253EXPORT_SYMBOL_GPL(shake_page);
254
255/*
256 * Kill all processes that have a poisoned page mapped and then isolate
257 * the page.
258 *
259 * General strategy:
260 * Find all processes having the page mapped and kill them.
261 * But we keep a page reference around so that the page is not
262 * actually freed yet.
263 * Then stash the page away
264 *
265 * There's no convenient way to get back to mapped processes
266 * from the VMAs. So do a brute-force search over all
267 * running processes.
268 *
269 * Remember that machine checks are not common (or rather
270 * if they are common you have other problems), so this shouldn't
271 * be a performance issue.
272 *
273 * Also there are some races possible while we get from the
274 * error detection to actually handle it.
275 */
276
277struct to_kill {
278	struct list_head nd;
279	struct task_struct *tsk;
280	unsigned long addr;
281	char addr_valid;
282};
283
284/*
285 * Failure handling: if we can't find or can't kill a process there's
286 * not much we can do.	We just print a message and ignore otherwise.
287 */
288
289/*
290 * Schedule a process for later kill.
291 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
292 * TBD would GFP_NOIO be enough?
293 */
294static void add_to_kill(struct task_struct *tsk, struct page *p,
295		       struct vm_area_struct *vma,
296		       struct list_head *to_kill,
297		       struct to_kill **tkc)
298{
299	struct to_kill *tk;
300
301	if (*tkc) {
302		tk = *tkc;
303		*tkc = NULL;
304	} else {
305		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
306		if (!tk) {
307			printk(KERN_ERR
308		"MCE: Out of memory while machine check handling\n");
309			return;
310		}
311	}
312	tk->addr = page_address_in_vma(p, vma);
313	tk->addr_valid = 1;
314
315	/*
316	 * In theory we don't have to kill when the page was
317	 * munmaped. But it could be also a mremap. Since that's
318	 * likely very rare kill anyways just out of paranoia, but use
319	 * a SIGKILL because the error is not contained anymore.
320	 */
321	if (tk->addr == -EFAULT) {
322		pr_info("MCE: Unable to find user space address %lx in %s\n",
323			page_to_pfn(p), tsk->comm);
324		tk->addr_valid = 0;
325	}
326	get_task_struct(tsk);
327	tk->tsk = tsk;
328	list_add_tail(&tk->nd, to_kill);
329}
330
331/*
332 * Kill the processes that have been collected earlier.
333 *
334 * Only do anything when DOIT is set, otherwise just free the list
335 * (this is used for clean pages which do not need killing)
336 * Also when FAIL is set do a force kill because something went
337 * wrong earlier.
338 */
339static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
340			  int fail, struct page *page, unsigned long pfn)
341{
342	struct to_kill *tk, *next;
343
344	list_for_each_entry_safe (tk, next, to_kill, nd) {
345		if (doit) {
346			/*
347			 * In case something went wrong with munmapping
348			 * make sure the process doesn't catch the
349			 * signal and then access the memory. Just kill it.
350			 */
351			if (fail || tk->addr_valid == 0) {
352				printk(KERN_ERR
353		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
354					pfn, tk->tsk->comm, tk->tsk->pid);
355				force_sig(SIGKILL, tk->tsk);
356			}
357
358			/*
359			 * In theory the process could have mapped
360			 * something else on the address in-between. We could
361			 * check for that, but we need to tell the
362			 * process anyways.
363			 */
364			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
365					      pfn, page) < 0)
366				printk(KERN_ERR
367		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
368					pfn, tk->tsk->comm, tk->tsk->pid);
369		}
370		put_task_struct(tk->tsk);
371		kfree(tk);
372	}
373}
374
375static int task_early_kill(struct task_struct *tsk)
376{
377	if (!tsk->mm)
378		return 0;
379	if (tsk->flags & PF_MCE_PROCESS)
380		return !!(tsk->flags & PF_MCE_EARLY);
381	return sysctl_memory_failure_early_kill;
382}
383
384/*
385 * Collect processes when the error hit an anonymous page.
386 */
387static void collect_procs_anon(struct page *page, struct list_head *to_kill,
388			      struct to_kill **tkc)
389{
390	struct vm_area_struct *vma;
391	struct task_struct *tsk;
392	struct anon_vma *av;
393
394	av = page_lock_anon_vma(page);
395	if (av == NULL)	/* Not actually mapped anymore */
396		return;
397
398	read_lock(&tasklist_lock);
399	for_each_process (tsk) {
400		struct anon_vma_chain *vmac;
401
402		if (!task_early_kill(tsk))
403			continue;
404		list_for_each_entry(vmac, &av->head, same_anon_vma) {
405			vma = vmac->vma;
406			if (!page_mapped_in_vma(page, vma))
407				continue;
408			if (vma->vm_mm == tsk->mm)
409				add_to_kill(tsk, page, vma, to_kill, tkc);
410		}
411	}
412	read_unlock(&tasklist_lock);
413	page_unlock_anon_vma(av);
414}
415
416/*
417 * Collect processes when the error hit a file mapped page.
418 */
419static void collect_procs_file(struct page *page, struct list_head *to_kill,
420			      struct to_kill **tkc)
421{
422	struct vm_area_struct *vma;
423	struct task_struct *tsk;
424	struct prio_tree_iter iter;
425	struct address_space *mapping = page->mapping;
426
427	mutex_lock(&mapping->i_mmap_mutex);
428	read_lock(&tasklist_lock);
429	for_each_process(tsk) {
430		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
431
432		if (!task_early_kill(tsk))
433			continue;
434
435		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
436				      pgoff) {
437			/*
438			 * Send early kill signal to tasks where a vma covers
439			 * the page but the corrupted page is not necessarily
440			 * mapped it in its pte.
441			 * Assume applications who requested early kill want
442			 * to be informed of all such data corruptions.
443			 */
444			if (vma->vm_mm == tsk->mm)
445				add_to_kill(tsk, page, vma, to_kill, tkc);
446		}
447	}
448	read_unlock(&tasklist_lock);
449	mutex_unlock(&mapping->i_mmap_mutex);
450}
451
452/*
453 * Collect the processes who have the corrupted page mapped to kill.
454 * This is done in two steps for locking reasons.
455 * First preallocate one tokill structure outside the spin locks,
456 * so that we can kill at least one process reasonably reliable.
457 */
458static void collect_procs(struct page *page, struct list_head *tokill)
459{
460	struct to_kill *tk;
461
462	if (!page->mapping)
463		return;
464
465	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
466	if (!tk)
467		return;
468	if (PageAnon(page))
469		collect_procs_anon(page, tokill, &tk);
470	else
471		collect_procs_file(page, tokill, &tk);
472	kfree(tk);
473}
474
475/*
476 * Error handlers for various types of pages.
477 */
478
479enum outcome {
480	IGNORED,	/* Error: cannot be handled */
481	FAILED,		/* Error: handling failed */
482	DELAYED,	/* Will be handled later */
483	RECOVERED,	/* Successfully recovered */
484};
485
486static const char *action_name[] = {
487	[IGNORED] = "Ignored",
488	[FAILED] = "Failed",
489	[DELAYED] = "Delayed",
490	[RECOVERED] = "Recovered",
491};
492
493/*
494 * XXX: It is possible that a page is isolated from LRU cache,
495 * and then kept in swap cache or failed to remove from page cache.
496 * The page count will stop it from being freed by unpoison.
497 * Stress tests should be aware of this memory leak problem.
498 */
499static int delete_from_lru_cache(struct page *p)
500{
501	if (!isolate_lru_page(p)) {
502		/*
503		 * Clear sensible page flags, so that the buddy system won't
504		 * complain when the page is unpoison-and-freed.
505		 */
506		ClearPageActive(p);
507		ClearPageUnevictable(p);
508		/*
509		 * drop the page count elevated by isolate_lru_page()
510		 */
511		page_cache_release(p);
512		return 0;
513	}
514	return -EIO;
515}
516
517/*
518 * Error hit kernel page.
519 * Do nothing, try to be lucky and not touch this instead. For a few cases we
520 * could be more sophisticated.
521 */
522static int me_kernel(struct page *p, unsigned long pfn)
523{
524	return IGNORED;
525}
526
527/*
528 * Page in unknown state. Do nothing.
529 */
530static int me_unknown(struct page *p, unsigned long pfn)
531{
532	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
533	return FAILED;
534}
535
536/*
537 * Clean (or cleaned) page cache page.
538 */
539static int me_pagecache_clean(struct page *p, unsigned long pfn)
540{
541	int err;
542	int ret = FAILED;
543	struct address_space *mapping;
544
545	delete_from_lru_cache(p);
546
547	/*
548	 * For anonymous pages we're done the only reference left
549	 * should be the one m_f() holds.
550	 */
551	if (PageAnon(p))
552		return RECOVERED;
553
554	/*
555	 * Now truncate the page in the page cache. This is really
556	 * more like a "temporary hole punch"
557	 * Don't do this for block devices when someone else
558	 * has a reference, because it could be file system metadata
559	 * and that's not safe to truncate.
560	 */
561	mapping = page_mapping(p);
562	if (!mapping) {
563		/*
564		 * Page has been teared down in the meanwhile
565		 */
566		return FAILED;
567	}
568
569	/*
570	 * Truncation is a bit tricky. Enable it per file system for now.
571	 *
572	 * Open: to take i_mutex or not for this? Right now we don't.
573	 */
574	if (mapping->a_ops->error_remove_page) {
575		err = mapping->a_ops->error_remove_page(mapping, p);
576		if (err != 0) {
577			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
578					pfn, err);
579		} else if (page_has_private(p) &&
580				!try_to_release_page(p, GFP_NOIO)) {
581			pr_info("MCE %#lx: failed to release buffers\n", pfn);
582		} else {
583			ret = RECOVERED;
584		}
585	} else {
586		/*
587		 * If the file system doesn't support it just invalidate
588		 * This fails on dirty or anything with private pages
589		 */
590		if (invalidate_inode_page(p))
591			ret = RECOVERED;
592		else
593			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
594				pfn);
595	}
596	return ret;
597}
598
599/*
600 * Dirty cache page page
601 * Issues: when the error hit a hole page the error is not properly
602 * propagated.
603 */
604static int me_pagecache_dirty(struct page *p, unsigned long pfn)
605{
606	struct address_space *mapping = page_mapping(p);
607
608	SetPageError(p);
609	/* TBD: print more information about the file. */
610	if (mapping) {
611		/*
612		 * IO error will be reported by write(), fsync(), etc.
613		 * who check the mapping.
614		 * This way the application knows that something went
615		 * wrong with its dirty file data.
616		 *
617		 * There's one open issue:
618		 *
619		 * The EIO will be only reported on the next IO
620		 * operation and then cleared through the IO map.
621		 * Normally Linux has two mechanisms to pass IO error
622		 * first through the AS_EIO flag in the address space
623		 * and then through the PageError flag in the page.
624		 * Since we drop pages on memory failure handling the
625		 * only mechanism open to use is through AS_AIO.
626		 *
627		 * This has the disadvantage that it gets cleared on
628		 * the first operation that returns an error, while
629		 * the PageError bit is more sticky and only cleared
630		 * when the page is reread or dropped.  If an
631		 * application assumes it will always get error on
632		 * fsync, but does other operations on the fd before
633		 * and the page is dropped between then the error
634		 * will not be properly reported.
635		 *
636		 * This can already happen even without hwpoisoned
637		 * pages: first on metadata IO errors (which only
638		 * report through AS_EIO) or when the page is dropped
639		 * at the wrong time.
640		 *
641		 * So right now we assume that the application DTRT on
642		 * the first EIO, but we're not worse than other parts
643		 * of the kernel.
644		 */
645		mapping_set_error(mapping, EIO);
646	}
647
648	return me_pagecache_clean(p, pfn);
649}
650
651/*
652 * Clean and dirty swap cache.
653 *
654 * Dirty swap cache page is tricky to handle. The page could live both in page
655 * cache and swap cache(ie. page is freshly swapped in). So it could be
656 * referenced concurrently by 2 types of PTEs:
657 * normal PTEs and swap PTEs. We try to handle them consistently by calling
658 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
659 * and then
660 *      - clear dirty bit to prevent IO
661 *      - remove from LRU
662 *      - but keep in the swap cache, so that when we return to it on
663 *        a later page fault, we know the application is accessing
664 *        corrupted data and shall be killed (we installed simple
665 *        interception code in do_swap_page to catch it).
666 *
667 * Clean swap cache pages can be directly isolated. A later page fault will
668 * bring in the known good data from disk.
669 */
670static int me_swapcache_dirty(struct page *p, unsigned long pfn)
671{
672	ClearPageDirty(p);
673	/* Trigger EIO in shmem: */
674	ClearPageUptodate(p);
675
676	if (!delete_from_lru_cache(p))
677		return DELAYED;
678	else
679		return FAILED;
680}
681
682static int me_swapcache_clean(struct page *p, unsigned long pfn)
683{
684	delete_from_swap_cache(p);
685
686	if (!delete_from_lru_cache(p))
687		return RECOVERED;
688	else
689		return FAILED;
690}
691
692/*
693 * Huge pages. Needs work.
694 * Issues:
695 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
696 *   To narrow down kill region to one page, we need to break up pmd.
697 */
698static int me_huge_page(struct page *p, unsigned long pfn)
699{
700	int res = 0;
701	struct page *hpage = compound_head(p);
702	/*
703	 * We can safely recover from error on free or reserved (i.e.
704	 * not in-use) hugepage by dequeuing it from freelist.
705	 * To check whether a hugepage is in-use or not, we can't use
706	 * page->lru because it can be used in other hugepage operations,
707	 * such as __unmap_hugepage_range() and gather_surplus_pages().
708	 * So instead we use page_mapping() and PageAnon().
709	 * We assume that this function is called with page lock held,
710	 * so there is no race between isolation and mapping/unmapping.
711	 */
712	if (!(page_mapping(hpage) || PageAnon(hpage))) {
713		res = dequeue_hwpoisoned_huge_page(hpage);
714		if (!res)
715			return RECOVERED;
716	}
717	return DELAYED;
718}
719
720/*
721 * Various page states we can handle.
722 *
723 * A page state is defined by its current page->flags bits.
724 * The table matches them in order and calls the right handler.
725 *
726 * This is quite tricky because we can access page at any time
727 * in its live cycle, so all accesses have to be extremely careful.
728 *
729 * This is not complete. More states could be added.
730 * For any missing state don't attempt recovery.
731 */
732
733#define dirty		(1UL << PG_dirty)
734#define sc		(1UL << PG_swapcache)
735#define unevict		(1UL << PG_unevictable)
736#define mlock		(1UL << PG_mlocked)
737#define writeback	(1UL << PG_writeback)
738#define lru		(1UL << PG_lru)
739#define swapbacked	(1UL << PG_swapbacked)
740#define head		(1UL << PG_head)
741#define tail		(1UL << PG_tail)
742#define compound	(1UL << PG_compound)
743#define slab		(1UL << PG_slab)
744#define reserved	(1UL << PG_reserved)
745
746static struct page_state {
747	unsigned long mask;
748	unsigned long res;
749	char *msg;
750	int (*action)(struct page *p, unsigned long pfn);
751} error_states[] = {
752	{ reserved,	reserved,	"reserved kernel",	me_kernel },
753	/*
754	 * free pages are specially detected outside this table:
755	 * PG_buddy pages only make a small fraction of all free pages.
756	 */
757
758	/*
759	 * Could in theory check if slab page is free or if we can drop
760	 * currently unused objects without touching them. But just
761	 * treat it as standard kernel for now.
762	 */
763	{ slab,		slab,		"kernel slab",	me_kernel },
764
765#ifdef CONFIG_PAGEFLAGS_EXTENDED
766	{ head,		head,		"huge",		me_huge_page },
767	{ tail,		tail,		"huge",		me_huge_page },
768#else
769	{ compound,	compound,	"huge",		me_huge_page },
770#endif
771
772	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
773	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
774
775	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
776	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
777
778	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
779	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
780
781	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
782	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
783
784	/*
785	 * Catchall entry: must be at end.
786	 */
787	{ 0,		0,		"unknown page state",	me_unknown },
788};
789
790#undef dirty
791#undef sc
792#undef unevict
793#undef mlock
794#undef writeback
795#undef lru
796#undef swapbacked
797#undef head
798#undef tail
799#undef compound
800#undef slab
801#undef reserved
802
803static void action_result(unsigned long pfn, char *msg, int result)
804{
805	struct page *page = pfn_to_page(pfn);
806
807	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
808		pfn,
809		PageDirty(page) ? "dirty " : "",
810		msg, action_name[result]);
811}
812
813static int page_action(struct page_state *ps, struct page *p,
814			unsigned long pfn)
815{
816	int result;
817	int count;
818
819	result = ps->action(p, pfn);
820	action_result(pfn, ps->msg, result);
821
822	count = page_count(p) - 1;
823	if (ps->action == me_swapcache_dirty && result == DELAYED)
824		count--;
825	if (count != 0) {
826		printk(KERN_ERR
827		       "MCE %#lx: %s page still referenced by %d users\n",
828		       pfn, ps->msg, count);
829		result = FAILED;
830	}
831
832	/* Could do more checks here if page looks ok */
833	/*
834	 * Could adjust zone counters here to correct for the missing page.
835	 */
836
837	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
838}
839
840/*
841 * Do all that is necessary to remove user space mappings. Unmap
842 * the pages and send SIGBUS to the processes if the data was dirty.
843 */
844static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
845				  int trapno)
846{
847	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
848	struct address_space *mapping;
849	LIST_HEAD(tokill);
850	int ret;
851	int kill = 1;
852	struct page *hpage = compound_head(p);
853	struct page *ppage;
854
855	if (PageReserved(p) || PageSlab(p))
856		return SWAP_SUCCESS;
857
858	/*
859	 * This check implies we don't kill processes if their pages
860	 * are in the swap cache early. Those are always late kills.
861	 */
862	if (!page_mapped(hpage))
863		return SWAP_SUCCESS;
864
865	if (PageKsm(p))
866		return SWAP_FAIL;
867
868	if (PageSwapCache(p)) {
869		printk(KERN_ERR
870		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
871		ttu |= TTU_IGNORE_HWPOISON;
872	}
873
874	/*
875	 * Propagate the dirty bit from PTEs to struct page first, because we
876	 * need this to decide if we should kill or just drop the page.
877	 * XXX: the dirty test could be racy: set_page_dirty() may not always
878	 * be called inside page lock (it's recommended but not enforced).
879	 */
880	mapping = page_mapping(hpage);
881	if (!PageDirty(hpage) && mapping &&
882	    mapping_cap_writeback_dirty(mapping)) {
883		if (page_mkclean(hpage)) {
884			SetPageDirty(hpage);
885		} else {
886			kill = 0;
887			ttu |= TTU_IGNORE_HWPOISON;
888			printk(KERN_INFO
889	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
890				pfn);
891		}
892	}
893
894	/*
895	 * ppage: poisoned page
896	 *   if p is regular page(4k page)
897	 *        ppage == real poisoned page;
898	 *   else p is hugetlb or THP, ppage == head page.
899	 */
900	ppage = hpage;
901
902	if (PageTransHuge(hpage)) {
903		/*
904		 * Verify that this isn't a hugetlbfs head page, the check for
905		 * PageAnon is just for avoid tripping a split_huge_page
906		 * internal debug check, as split_huge_page refuses to deal with
907		 * anything that isn't an anon page. PageAnon can't go away fro
908		 * under us because we hold a refcount on the hpage, without a
909		 * refcount on the hpage. split_huge_page can't be safely called
910		 * in the first place, having a refcount on the tail isn't
911		 * enough * to be safe.
912		 */
913		if (!PageHuge(hpage) && PageAnon(hpage)) {
914			if (unlikely(split_huge_page(hpage))) {
915				/*
916				 * FIXME: if splitting THP is failed, it is
917				 * better to stop the following operation rather
918				 * than causing panic by unmapping. System might
919				 * survive if the page is freed later.
920				 */
921				printk(KERN_INFO
922					"MCE %#lx: failed to split THP\n", pfn);
923
924				BUG_ON(!PageHWPoison(p));
925				return SWAP_FAIL;
926			}
927			/* THP is split, so ppage should be the real poisoned page. */
928			ppage = p;
929		}
930	}
931
932	/*
933	 * First collect all the processes that have the page
934	 * mapped in dirty form.  This has to be done before try_to_unmap,
935	 * because ttu takes the rmap data structures down.
936	 *
937	 * Error handling: We ignore errors here because
938	 * there's nothing that can be done.
939	 */
940	if (kill)
941		collect_procs(ppage, &tokill);
942
943	if (hpage != ppage)
944		lock_page(ppage);
945
946	ret = try_to_unmap(ppage, ttu);
947	if (ret != SWAP_SUCCESS)
948		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
949				pfn, page_mapcount(ppage));
950
951	if (hpage != ppage)
952		unlock_page(ppage);
953
954	/*
955	 * Now that the dirty bit has been propagated to the
956	 * struct page and all unmaps done we can decide if
957	 * killing is needed or not.  Only kill when the page
958	 * was dirty, otherwise the tokill list is merely
959	 * freed.  When there was a problem unmapping earlier
960	 * use a more force-full uncatchable kill to prevent
961	 * any accesses to the poisoned memory.
962	 */
963	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
964		      ret != SWAP_SUCCESS, p, pfn);
965
966	return ret;
967}
968
969static void set_page_hwpoison_huge_page(struct page *hpage)
970{
971	int i;
972	int nr_pages = 1 << compound_trans_order(hpage);
973	for (i = 0; i < nr_pages; i++)
974		SetPageHWPoison(hpage + i);
975}
976
977static void clear_page_hwpoison_huge_page(struct page *hpage)
978{
979	int i;
980	int nr_pages = 1 << compound_trans_order(hpage);
981	for (i = 0; i < nr_pages; i++)
982		ClearPageHWPoison(hpage + i);
983}
984
985int __memory_failure(unsigned long pfn, int trapno, int flags)
986{
987	struct page_state *ps;
988	struct page *p;
989	struct page *hpage;
990	int res;
991	unsigned int nr_pages;
992
993	if (!sysctl_memory_failure_recovery)
994		panic("Memory failure from trap %d on page %lx", trapno, pfn);
995
996	if (!pfn_valid(pfn)) {
997		printk(KERN_ERR
998		       "MCE %#lx: memory outside kernel control\n",
999		       pfn);
1000		return -ENXIO;
1001	}
1002
1003	p = pfn_to_page(pfn);
1004	hpage = compound_head(p);
1005	if (TestSetPageHWPoison(p)) {
1006		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1007		return 0;
1008	}
1009
1010	nr_pages = 1 << compound_trans_order(hpage);
1011	atomic_long_add(nr_pages, &mce_bad_pages);
1012
1013	/*
1014	 * We need/can do nothing about count=0 pages.
1015	 * 1) it's a free page, and therefore in safe hand:
1016	 *    prep_new_page() will be the gate keeper.
1017	 * 2) it's a free hugepage, which is also safe:
1018	 *    an affected hugepage will be dequeued from hugepage freelist,
1019	 *    so there's no concern about reusing it ever after.
1020	 * 3) it's part of a non-compound high order page.
1021	 *    Implies some kernel user: cannot stop them from
1022	 *    R/W the page; let's pray that the page has been
1023	 *    used and will be freed some time later.
1024	 * In fact it's dangerous to directly bump up page count from 0,
1025	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1026	 */
1027	if (!(flags & MF_COUNT_INCREASED) &&
1028		!get_page_unless_zero(hpage)) {
1029		if (is_free_buddy_page(p)) {
1030			action_result(pfn, "free buddy", DELAYED);
1031			return 0;
1032		} else if (PageHuge(hpage)) {
1033			/*
1034			 * Check "just unpoisoned", "filter hit", and
1035			 * "race with other subpage."
1036			 */
1037			lock_page(hpage);
1038			if (!PageHWPoison(hpage)
1039			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1040			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1041				atomic_long_sub(nr_pages, &mce_bad_pages);
1042				return 0;
1043			}
1044			set_page_hwpoison_huge_page(hpage);
1045			res = dequeue_hwpoisoned_huge_page(hpage);
1046			action_result(pfn, "free huge",
1047				      res ? IGNORED : DELAYED);
1048			unlock_page(hpage);
1049			return res;
1050		} else {
1051			action_result(pfn, "high order kernel", IGNORED);
1052			return -EBUSY;
1053		}
1054	}
1055
1056	/*
1057	 * We ignore non-LRU pages for good reasons.
1058	 * - PG_locked is only well defined for LRU pages and a few others
1059	 * - to avoid races with __set_page_locked()
1060	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1061	 * The check (unnecessarily) ignores LRU pages being isolated and
1062	 * walked by the page reclaim code, however that's not a big loss.
1063	 */
1064	if (!PageHuge(p) && !PageTransCompound(p)) {
1065		if (!PageLRU(p))
1066			shake_page(p, 0);
1067		if (!PageLRU(p)) {
1068			/*
1069			 * shake_page could have turned it free.
1070			 */
1071			if (is_free_buddy_page(p)) {
1072				action_result(pfn, "free buddy, 2nd try",
1073						DELAYED);
1074				return 0;
1075			}
1076			action_result(pfn, "non LRU", IGNORED);
1077			put_page(p);
1078			return -EBUSY;
1079		}
1080	}
1081
1082	/*
1083	 * Lock the page and wait for writeback to finish.
1084	 * It's very difficult to mess with pages currently under IO
1085	 * and in many cases impossible, so we just avoid it here.
1086	 */
1087	lock_page(hpage);
1088
1089	/*
1090	 * unpoison always clear PG_hwpoison inside page lock
1091	 */
1092	if (!PageHWPoison(p)) {
1093		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1094		res = 0;
1095		goto out;
1096	}
1097	if (hwpoison_filter(p)) {
1098		if (TestClearPageHWPoison(p))
1099			atomic_long_sub(nr_pages, &mce_bad_pages);
1100		unlock_page(hpage);
1101		put_page(hpage);
1102		return 0;
1103	}
1104
1105	/*
1106	 * For error on the tail page, we should set PG_hwpoison
1107	 * on the head page to show that the hugepage is hwpoisoned
1108	 */
1109	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1110		action_result(pfn, "hugepage already hardware poisoned",
1111				IGNORED);
1112		unlock_page(hpage);
1113		put_page(hpage);
1114		return 0;
1115	}
1116	/*
1117	 * Set PG_hwpoison on all pages in an error hugepage,
1118	 * because containment is done in hugepage unit for now.
1119	 * Since we have done TestSetPageHWPoison() for the head page with
1120	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1121	 */
1122	if (PageHuge(p))
1123		set_page_hwpoison_huge_page(hpage);
1124
1125	wait_on_page_writeback(p);
1126
1127	/*
1128	 * Now take care of user space mappings.
1129	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1130	 */
1131	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1132		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1133		res = -EBUSY;
1134		goto out;
1135	}
1136
1137	/*
1138	 * Torn down by someone else?
1139	 */
1140	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1141		action_result(pfn, "already truncated LRU", IGNORED);
1142		res = -EBUSY;
1143		goto out;
1144	}
1145
1146	res = -EBUSY;
1147	for (ps = error_states;; ps++) {
1148		if ((p->flags & ps->mask) == ps->res) {
1149			res = page_action(ps, p, pfn);
1150			break;
1151		}
1152	}
1153out:
1154	unlock_page(hpage);
1155	return res;
1156}
1157EXPORT_SYMBOL_GPL(__memory_failure);
1158
1159/**
1160 * memory_failure - Handle memory failure of a page.
1161 * @pfn: Page Number of the corrupted page
1162 * @trapno: Trap number reported in the signal to user space.
1163 *
1164 * This function is called by the low level machine check code
1165 * of an architecture when it detects hardware memory corruption
1166 * of a page. It tries its best to recover, which includes
1167 * dropping pages, killing processes etc.
1168 *
1169 * The function is primarily of use for corruptions that
1170 * happen outside the current execution context (e.g. when
1171 * detected by a background scrubber)
1172 *
1173 * Must run in process context (e.g. a work queue) with interrupts
1174 * enabled and no spinlocks hold.
1175 */
1176void memory_failure(unsigned long pfn, int trapno)
1177{
1178	__memory_failure(pfn, trapno, 0);
1179}
1180
1181/**
1182 * unpoison_memory - Unpoison a previously poisoned page
1183 * @pfn: Page number of the to be unpoisoned page
1184 *
1185 * Software-unpoison a page that has been poisoned by
1186 * memory_failure() earlier.
1187 *
1188 * This is only done on the software-level, so it only works
1189 * for linux injected failures, not real hardware failures
1190 *
1191 * Returns 0 for success, otherwise -errno.
1192 */
1193int unpoison_memory(unsigned long pfn)
1194{
1195	struct page *page;
1196	struct page *p;
1197	int freeit = 0;
1198	unsigned int nr_pages;
1199
1200	if (!pfn_valid(pfn))
1201		return -ENXIO;
1202
1203	p = pfn_to_page(pfn);
1204	page = compound_head(p);
1205
1206	if (!PageHWPoison(p)) {
1207		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1208		return 0;
1209	}
1210
1211	nr_pages = 1 << compound_trans_order(page);
1212
1213	if (!get_page_unless_zero(page)) {
1214		/*
1215		 * Since HWPoisoned hugepage should have non-zero refcount,
1216		 * race between memory failure and unpoison seems to happen.
1217		 * In such case unpoison fails and memory failure runs
1218		 * to the end.
1219		 */
1220		if (PageHuge(page)) {
1221			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1222			return 0;
1223		}
1224		if (TestClearPageHWPoison(p))
1225			atomic_long_sub(nr_pages, &mce_bad_pages);
1226		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1227		return 0;
1228	}
1229
1230	lock_page(page);
1231	/*
1232	 * This test is racy because PG_hwpoison is set outside of page lock.
1233	 * That's acceptable because that won't trigger kernel panic. Instead,
1234	 * the PG_hwpoison page will be caught and isolated on the entrance to
1235	 * the free buddy page pool.
1236	 */
1237	if (TestClearPageHWPoison(page)) {
1238		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1239		atomic_long_sub(nr_pages, &mce_bad_pages);
1240		freeit = 1;
1241		if (PageHuge(page))
1242			clear_page_hwpoison_huge_page(page);
1243	}
1244	unlock_page(page);
1245
1246	put_page(page);
1247	if (freeit)
1248		put_page(page);
1249
1250	return 0;
1251}
1252EXPORT_SYMBOL(unpoison_memory);
1253
1254static struct page *new_page(struct page *p, unsigned long private, int **x)
1255{
1256	int nid = page_to_nid(p);
1257	if (PageHuge(p))
1258		return alloc_huge_page_node(page_hstate(compound_head(p)),
1259						   nid);
1260	else
1261		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1262}
1263
1264/*
1265 * Safely get reference count of an arbitrary page.
1266 * Returns 0 for a free page, -EIO for a zero refcount page
1267 * that is not free, and 1 for any other page type.
1268 * For 1 the page is returned with increased page count, otherwise not.
1269 */
1270static int get_any_page(struct page *p, unsigned long pfn, int flags)
1271{
1272	int ret;
1273
1274	if (flags & MF_COUNT_INCREASED)
1275		return 1;
1276
1277	/*
1278	 * The lock_memory_hotplug prevents a race with memory hotplug.
1279	 * This is a big hammer, a better would be nicer.
1280	 */
1281	lock_memory_hotplug();
1282
1283	/*
1284	 * Isolate the page, so that it doesn't get reallocated if it
1285	 * was free.
1286	 */
1287	set_migratetype_isolate(p);
1288	/*
1289	 * When the target page is a free hugepage, just remove it
1290	 * from free hugepage list.
1291	 */
1292	if (!get_page_unless_zero(compound_head(p))) {
1293		if (PageHuge(p)) {
1294			pr_info("get_any_page: %#lx free huge page\n", pfn);
1295			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1296		} else if (is_free_buddy_page(p)) {
1297			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1298			/* Set hwpoison bit while page is still isolated */
1299			SetPageHWPoison(p);
1300			ret = 0;
1301		} else {
1302			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1303				pfn, p->flags);
1304			ret = -EIO;
1305		}
1306	} else {
1307		/* Not a free page */
1308		ret = 1;
1309	}
1310	unset_migratetype_isolate(p);
1311	unlock_memory_hotplug();
1312	return ret;
1313}
1314
1315static int soft_offline_huge_page(struct page *page, int flags)
1316{
1317	int ret;
1318	unsigned long pfn = page_to_pfn(page);
1319	struct page *hpage = compound_head(page);
1320	LIST_HEAD(pagelist);
1321
1322	ret = get_any_page(page, pfn, flags);
1323	if (ret < 0)
1324		return ret;
1325	if (ret == 0)
1326		goto done;
1327
1328	if (PageHWPoison(hpage)) {
1329		put_page(hpage);
1330		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1331		return -EBUSY;
1332	}
1333
1334	/* Keep page count to indicate a given hugepage is isolated. */
1335
1336	list_add(&hpage->lru, &pagelist);
1337	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1338				true);
1339	if (ret) {
1340		struct page *page1, *page2;
1341		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1342			put_page(page1);
1343
1344		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1345			 pfn, ret, page->flags);
1346		if (ret > 0)
1347			ret = -EIO;
1348		return ret;
1349	}
1350done:
1351	if (!PageHWPoison(hpage))
1352		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1353	set_page_hwpoison_huge_page(hpage);
1354	dequeue_hwpoisoned_huge_page(hpage);
1355	/* keep elevated page count for bad page */
1356	return ret;
1357}
1358
1359/**
1360 * soft_offline_page - Soft offline a page.
1361 * @page: page to offline
1362 * @flags: flags. Same as memory_failure().
1363 *
1364 * Returns 0 on success, otherwise negated errno.
1365 *
1366 * Soft offline a page, by migration or invalidation,
1367 * without killing anything. This is for the case when
1368 * a page is not corrupted yet (so it's still valid to access),
1369 * but has had a number of corrected errors and is better taken
1370 * out.
1371 *
1372 * The actual policy on when to do that is maintained by
1373 * user space.
1374 *
1375 * This should never impact any application or cause data loss,
1376 * however it might take some time.
1377 *
1378 * This is not a 100% solution for all memory, but tries to be
1379 * ``good enough'' for the majority of memory.
1380 */
1381int soft_offline_page(struct page *page, int flags)
1382{
1383	int ret;
1384	unsigned long pfn = page_to_pfn(page);
1385
1386	if (PageHuge(page))
1387		return soft_offline_huge_page(page, flags);
1388
1389	ret = get_any_page(page, pfn, flags);
1390	if (ret < 0)
1391		return ret;
1392	if (ret == 0)
1393		goto done;
1394
1395	/*
1396	 * Page cache page we can handle?
1397	 */
1398	if (!PageLRU(page)) {
1399		/*
1400		 * Try to free it.
1401		 */
1402		put_page(page);
1403		shake_page(page, 1);
1404
1405		/*
1406		 * Did it turn free?
1407		 */
1408		ret = get_any_page(page, pfn, 0);
1409		if (ret < 0)
1410			return ret;
1411		if (ret == 0)
1412			goto done;
1413	}
1414	if (!PageLRU(page)) {
1415		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1416				pfn, page->flags);
1417		return -EIO;
1418	}
1419
1420	lock_page(page);
1421	wait_on_page_writeback(page);
1422
1423	/*
1424	 * Synchronized using the page lock with memory_failure()
1425	 */
1426	if (PageHWPoison(page)) {
1427		unlock_page(page);
1428		put_page(page);
1429		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1430		return -EBUSY;
1431	}
1432
1433	/*
1434	 * Try to invalidate first. This should work for
1435	 * non dirty unmapped page cache pages.
1436	 */
1437	ret = invalidate_inode_page(page);
1438	unlock_page(page);
1439	/*
1440	 * RED-PEN would be better to keep it isolated here, but we
1441	 * would need to fix isolation locking first.
1442	 */
1443	if (ret == 1) {
1444		put_page(page);
1445		ret = 0;
1446		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1447		goto done;
1448	}
1449
1450	/*
1451	 * Simple invalidation didn't work.
1452	 * Try to migrate to a new page instead. migrate.c
1453	 * handles a large number of cases for us.
1454	 */
1455	ret = isolate_lru_page(page);
1456	/*
1457	 * Drop page reference which is came from get_any_page()
1458	 * successful isolate_lru_page() already took another one.
1459	 */
1460	put_page(page);
1461	if (!ret) {
1462		LIST_HEAD(pagelist);
1463		inc_zone_page_state(page, NR_ISOLATED_ANON +
1464					    page_is_file_cache(page));
1465		list_add(&page->lru, &pagelist);
1466		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1467								0, true);
1468		if (ret) {
1469			putback_lru_pages(&pagelist);
1470			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1471				pfn, ret, page->flags);
1472			if (ret > 0)
1473				ret = -EIO;
1474		}
1475	} else {
1476		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1477				pfn, ret, page_count(page), page->flags);
1478	}
1479	if (ret)
1480		return ret;
1481
1482done:
1483	atomic_long_add(1, &mce_bad_pages);
1484	SetPageHWPoison(page);
1485	/* keep elevated page count for bad page */
1486	return ret;
1487}
1488