memory-failure.c revision a09ed5e00084448453c8bada4dcd31e5fbfc2f21
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states.	The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/page-isolation.h>
50#include <linux/suspend.h>
51#include <linux/slab.h>
52#include <linux/swapops.h>
53#include <linux/hugetlb.h>
54#include <linux/memory_hotplug.h>
55#include "internal.h"
56
57int sysctl_memory_failure_early_kill __read_mostly = 0;
58
59int sysctl_memory_failure_recovery __read_mostly = 1;
60
61atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62
63#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64
65u32 hwpoison_filter_enable = 0;
66u32 hwpoison_filter_dev_major = ~0U;
67u32 hwpoison_filter_dev_minor = ~0U;
68u64 hwpoison_filter_flags_mask;
69u64 hwpoison_filter_flags_value;
70EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
71EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
73EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
75
76static int hwpoison_filter_dev(struct page *p)
77{
78	struct address_space *mapping;
79	dev_t dev;
80
81	if (hwpoison_filter_dev_major == ~0U &&
82	    hwpoison_filter_dev_minor == ~0U)
83		return 0;
84
85	/*
86	 * page_mapping() does not accept slab pages.
87	 */
88	if (PageSlab(p))
89		return -EINVAL;
90
91	mapping = page_mapping(p);
92	if (mapping == NULL || mapping->host == NULL)
93		return -EINVAL;
94
95	dev = mapping->host->i_sb->s_dev;
96	if (hwpoison_filter_dev_major != ~0U &&
97	    hwpoison_filter_dev_major != MAJOR(dev))
98		return -EINVAL;
99	if (hwpoison_filter_dev_minor != ~0U &&
100	    hwpoison_filter_dev_minor != MINOR(dev))
101		return -EINVAL;
102
103	return 0;
104}
105
106static int hwpoison_filter_flags(struct page *p)
107{
108	if (!hwpoison_filter_flags_mask)
109		return 0;
110
111	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112				    hwpoison_filter_flags_value)
113		return 0;
114	else
115		return -EINVAL;
116}
117
118/*
119 * This allows stress tests to limit test scope to a collection of tasks
120 * by putting them under some memcg. This prevents killing unrelated/important
121 * processes such as /sbin/init. Note that the target task may share clean
122 * pages with init (eg. libc text), which is harmless. If the target task
123 * share _dirty_ pages with another task B, the test scheme must make sure B
124 * is also included in the memcg. At last, due to race conditions this filter
125 * can only guarantee that the page either belongs to the memcg tasks, or is
126 * a freed page.
127 */
128#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129u64 hwpoison_filter_memcg;
130EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131static int hwpoison_filter_task(struct page *p)
132{
133	struct mem_cgroup *mem;
134	struct cgroup_subsys_state *css;
135	unsigned long ino;
136
137	if (!hwpoison_filter_memcg)
138		return 0;
139
140	mem = try_get_mem_cgroup_from_page(p);
141	if (!mem)
142		return -EINVAL;
143
144	css = mem_cgroup_css(mem);
145	/* root_mem_cgroup has NULL dentries */
146	if (!css->cgroup->dentry)
147		return -EINVAL;
148
149	ino = css->cgroup->dentry->d_inode->i_ino;
150	css_put(css);
151
152	if (ino != hwpoison_filter_memcg)
153		return -EINVAL;
154
155	return 0;
156}
157#else
158static int hwpoison_filter_task(struct page *p) { return 0; }
159#endif
160
161int hwpoison_filter(struct page *p)
162{
163	if (!hwpoison_filter_enable)
164		return 0;
165
166	if (hwpoison_filter_dev(p))
167		return -EINVAL;
168
169	if (hwpoison_filter_flags(p))
170		return -EINVAL;
171
172	if (hwpoison_filter_task(p))
173		return -EINVAL;
174
175	return 0;
176}
177#else
178int hwpoison_filter(struct page *p)
179{
180	return 0;
181}
182#endif
183
184EXPORT_SYMBOL_GPL(hwpoison_filter);
185
186/*
187 * Send all the processes who have the page mapped an ``action optional''
188 * signal.
189 */
190static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
191			unsigned long pfn, struct page *page)
192{
193	struct siginfo si;
194	int ret;
195
196	printk(KERN_ERR
197		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198		pfn, t->comm, t->pid);
199	si.si_signo = SIGBUS;
200	si.si_errno = 0;
201	si.si_code = BUS_MCEERR_AO;
202	si.si_addr = (void *)addr;
203#ifdef __ARCH_SI_TRAPNO
204	si.si_trapno = trapno;
205#endif
206	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
207	/*
208	 * Don't use force here, it's convenient if the signal
209	 * can be temporarily blocked.
210	 * This could cause a loop when the user sets SIGBUS
211	 * to SIG_IGN, but hopefully no one will do that?
212	 */
213	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
214	if (ret < 0)
215		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216		       t->comm, t->pid, ret);
217	return ret;
218}
219
220/*
221 * When a unknown page type is encountered drain as many buffers as possible
222 * in the hope to turn the page into a LRU or free page, which we can handle.
223 */
224void shake_page(struct page *p, int access)
225{
226	if (!PageSlab(p)) {
227		lru_add_drain_all();
228		if (PageLRU(p))
229			return;
230		drain_all_pages();
231		if (PageLRU(p) || is_free_buddy_page(p))
232			return;
233	}
234
235	/*
236	 * Only call shrink_slab here (which would also shrink other caches) if
237	 * access is not potentially fatal.
238	 */
239	if (access) {
240		int nr;
241		do {
242			struct shrink_control shrink = {
243				.gfp_mask = GFP_KERNEL,
244				.nr_scanned = 1000,
245			};
246
247			nr = shrink_slab(&shrink, 1000);
248			if (page_count(p) == 1)
249				break;
250		} while (nr > 10);
251	}
252}
253EXPORT_SYMBOL_GPL(shake_page);
254
255/*
256 * Kill all processes that have a poisoned page mapped and then isolate
257 * the page.
258 *
259 * General strategy:
260 * Find all processes having the page mapped and kill them.
261 * But we keep a page reference around so that the page is not
262 * actually freed yet.
263 * Then stash the page away
264 *
265 * There's no convenient way to get back to mapped processes
266 * from the VMAs. So do a brute-force search over all
267 * running processes.
268 *
269 * Remember that machine checks are not common (or rather
270 * if they are common you have other problems), so this shouldn't
271 * be a performance issue.
272 *
273 * Also there are some races possible while we get from the
274 * error detection to actually handle it.
275 */
276
277struct to_kill {
278	struct list_head nd;
279	struct task_struct *tsk;
280	unsigned long addr;
281	char addr_valid;
282};
283
284/*
285 * Failure handling: if we can't find or can't kill a process there's
286 * not much we can do.	We just print a message and ignore otherwise.
287 */
288
289/*
290 * Schedule a process for later kill.
291 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
292 * TBD would GFP_NOIO be enough?
293 */
294static void add_to_kill(struct task_struct *tsk, struct page *p,
295		       struct vm_area_struct *vma,
296		       struct list_head *to_kill,
297		       struct to_kill **tkc)
298{
299	struct to_kill *tk;
300
301	if (*tkc) {
302		tk = *tkc;
303		*tkc = NULL;
304	} else {
305		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
306		if (!tk) {
307			printk(KERN_ERR
308		"MCE: Out of memory while machine check handling\n");
309			return;
310		}
311	}
312	tk->addr = page_address_in_vma(p, vma);
313	tk->addr_valid = 1;
314
315	/*
316	 * In theory we don't have to kill when the page was
317	 * munmaped. But it could be also a mremap. Since that's
318	 * likely very rare kill anyways just out of paranoia, but use
319	 * a SIGKILL because the error is not contained anymore.
320	 */
321	if (tk->addr == -EFAULT) {
322		pr_info("MCE: Unable to find user space address %lx in %s\n",
323			page_to_pfn(p), tsk->comm);
324		tk->addr_valid = 0;
325	}
326	get_task_struct(tsk);
327	tk->tsk = tsk;
328	list_add_tail(&tk->nd, to_kill);
329}
330
331/*
332 * Kill the processes that have been collected earlier.
333 *
334 * Only do anything when DOIT is set, otherwise just free the list
335 * (this is used for clean pages which do not need killing)
336 * Also when FAIL is set do a force kill because something went
337 * wrong earlier.
338 */
339static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
340			  int fail, struct page *page, unsigned long pfn)
341{
342	struct to_kill *tk, *next;
343
344	list_for_each_entry_safe (tk, next, to_kill, nd) {
345		if (doit) {
346			/*
347			 * In case something went wrong with munmapping
348			 * make sure the process doesn't catch the
349			 * signal and then access the memory. Just kill it.
350			 */
351			if (fail || tk->addr_valid == 0) {
352				printk(KERN_ERR
353		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
354					pfn, tk->tsk->comm, tk->tsk->pid);
355				force_sig(SIGKILL, tk->tsk);
356			}
357
358			/*
359			 * In theory the process could have mapped
360			 * something else on the address in-between. We could
361			 * check for that, but we need to tell the
362			 * process anyways.
363			 */
364			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
365					      pfn, page) < 0)
366				printk(KERN_ERR
367		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
368					pfn, tk->tsk->comm, tk->tsk->pid);
369		}
370		put_task_struct(tk->tsk);
371		kfree(tk);
372	}
373}
374
375static int task_early_kill(struct task_struct *tsk)
376{
377	if (!tsk->mm)
378		return 0;
379	if (tsk->flags & PF_MCE_PROCESS)
380		return !!(tsk->flags & PF_MCE_EARLY);
381	return sysctl_memory_failure_early_kill;
382}
383
384/*
385 * Collect processes when the error hit an anonymous page.
386 */
387static void collect_procs_anon(struct page *page, struct list_head *to_kill,
388			      struct to_kill **tkc)
389{
390	struct vm_area_struct *vma;
391	struct task_struct *tsk;
392	struct anon_vma *av;
393
394	read_lock(&tasklist_lock);
395	av = page_lock_anon_vma(page);
396	if (av == NULL)	/* Not actually mapped anymore */
397		goto out;
398	for_each_process (tsk) {
399		struct anon_vma_chain *vmac;
400
401		if (!task_early_kill(tsk))
402			continue;
403		list_for_each_entry(vmac, &av->head, same_anon_vma) {
404			vma = vmac->vma;
405			if (!page_mapped_in_vma(page, vma))
406				continue;
407			if (vma->vm_mm == tsk->mm)
408				add_to_kill(tsk, page, vma, to_kill, tkc);
409		}
410	}
411	page_unlock_anon_vma(av);
412out:
413	read_unlock(&tasklist_lock);
414}
415
416/*
417 * Collect processes when the error hit a file mapped page.
418 */
419static void collect_procs_file(struct page *page, struct list_head *to_kill,
420			      struct to_kill **tkc)
421{
422	struct vm_area_struct *vma;
423	struct task_struct *tsk;
424	struct prio_tree_iter iter;
425	struct address_space *mapping = page->mapping;
426
427	/*
428	 * A note on the locking order between the two locks.
429	 * We don't rely on this particular order.
430	 * If you have some other code that needs a different order
431	 * feel free to switch them around. Or add a reverse link
432	 * from mm_struct to task_struct, then this could be all
433	 * done without taking tasklist_lock and looping over all tasks.
434	 */
435
436	read_lock(&tasklist_lock);
437	mutex_lock(&mapping->i_mmap_mutex);
438	for_each_process(tsk) {
439		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
440
441		if (!task_early_kill(tsk))
442			continue;
443
444		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
445				      pgoff) {
446			/*
447			 * Send early kill signal to tasks where a vma covers
448			 * the page but the corrupted page is not necessarily
449			 * mapped it in its pte.
450			 * Assume applications who requested early kill want
451			 * to be informed of all such data corruptions.
452			 */
453			if (vma->vm_mm == tsk->mm)
454				add_to_kill(tsk, page, vma, to_kill, tkc);
455		}
456	}
457	mutex_unlock(&mapping->i_mmap_mutex);
458	read_unlock(&tasklist_lock);
459}
460
461/*
462 * Collect the processes who have the corrupted page mapped to kill.
463 * This is done in two steps for locking reasons.
464 * First preallocate one tokill structure outside the spin locks,
465 * so that we can kill at least one process reasonably reliable.
466 */
467static void collect_procs(struct page *page, struct list_head *tokill)
468{
469	struct to_kill *tk;
470
471	if (!page->mapping)
472		return;
473
474	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
475	if (!tk)
476		return;
477	if (PageAnon(page))
478		collect_procs_anon(page, tokill, &tk);
479	else
480		collect_procs_file(page, tokill, &tk);
481	kfree(tk);
482}
483
484/*
485 * Error handlers for various types of pages.
486 */
487
488enum outcome {
489	IGNORED,	/* Error: cannot be handled */
490	FAILED,		/* Error: handling failed */
491	DELAYED,	/* Will be handled later */
492	RECOVERED,	/* Successfully recovered */
493};
494
495static const char *action_name[] = {
496	[IGNORED] = "Ignored",
497	[FAILED] = "Failed",
498	[DELAYED] = "Delayed",
499	[RECOVERED] = "Recovered",
500};
501
502/*
503 * XXX: It is possible that a page is isolated from LRU cache,
504 * and then kept in swap cache or failed to remove from page cache.
505 * The page count will stop it from being freed by unpoison.
506 * Stress tests should be aware of this memory leak problem.
507 */
508static int delete_from_lru_cache(struct page *p)
509{
510	if (!isolate_lru_page(p)) {
511		/*
512		 * Clear sensible page flags, so that the buddy system won't
513		 * complain when the page is unpoison-and-freed.
514		 */
515		ClearPageActive(p);
516		ClearPageUnevictable(p);
517		/*
518		 * drop the page count elevated by isolate_lru_page()
519		 */
520		page_cache_release(p);
521		return 0;
522	}
523	return -EIO;
524}
525
526/*
527 * Error hit kernel page.
528 * Do nothing, try to be lucky and not touch this instead. For a few cases we
529 * could be more sophisticated.
530 */
531static int me_kernel(struct page *p, unsigned long pfn)
532{
533	return IGNORED;
534}
535
536/*
537 * Page in unknown state. Do nothing.
538 */
539static int me_unknown(struct page *p, unsigned long pfn)
540{
541	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
542	return FAILED;
543}
544
545/*
546 * Clean (or cleaned) page cache page.
547 */
548static int me_pagecache_clean(struct page *p, unsigned long pfn)
549{
550	int err;
551	int ret = FAILED;
552	struct address_space *mapping;
553
554	delete_from_lru_cache(p);
555
556	/*
557	 * For anonymous pages we're done the only reference left
558	 * should be the one m_f() holds.
559	 */
560	if (PageAnon(p))
561		return RECOVERED;
562
563	/*
564	 * Now truncate the page in the page cache. This is really
565	 * more like a "temporary hole punch"
566	 * Don't do this for block devices when someone else
567	 * has a reference, because it could be file system metadata
568	 * and that's not safe to truncate.
569	 */
570	mapping = page_mapping(p);
571	if (!mapping) {
572		/*
573		 * Page has been teared down in the meanwhile
574		 */
575		return FAILED;
576	}
577
578	/*
579	 * Truncation is a bit tricky. Enable it per file system for now.
580	 *
581	 * Open: to take i_mutex or not for this? Right now we don't.
582	 */
583	if (mapping->a_ops->error_remove_page) {
584		err = mapping->a_ops->error_remove_page(mapping, p);
585		if (err != 0) {
586			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
587					pfn, err);
588		} else if (page_has_private(p) &&
589				!try_to_release_page(p, GFP_NOIO)) {
590			pr_info("MCE %#lx: failed to release buffers\n", pfn);
591		} else {
592			ret = RECOVERED;
593		}
594	} else {
595		/*
596		 * If the file system doesn't support it just invalidate
597		 * This fails on dirty or anything with private pages
598		 */
599		if (invalidate_inode_page(p))
600			ret = RECOVERED;
601		else
602			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
603				pfn);
604	}
605	return ret;
606}
607
608/*
609 * Dirty cache page page
610 * Issues: when the error hit a hole page the error is not properly
611 * propagated.
612 */
613static int me_pagecache_dirty(struct page *p, unsigned long pfn)
614{
615	struct address_space *mapping = page_mapping(p);
616
617	SetPageError(p);
618	/* TBD: print more information about the file. */
619	if (mapping) {
620		/*
621		 * IO error will be reported by write(), fsync(), etc.
622		 * who check the mapping.
623		 * This way the application knows that something went
624		 * wrong with its dirty file data.
625		 *
626		 * There's one open issue:
627		 *
628		 * The EIO will be only reported on the next IO
629		 * operation and then cleared through the IO map.
630		 * Normally Linux has two mechanisms to pass IO error
631		 * first through the AS_EIO flag in the address space
632		 * and then through the PageError flag in the page.
633		 * Since we drop pages on memory failure handling the
634		 * only mechanism open to use is through AS_AIO.
635		 *
636		 * This has the disadvantage that it gets cleared on
637		 * the first operation that returns an error, while
638		 * the PageError bit is more sticky and only cleared
639		 * when the page is reread or dropped.  If an
640		 * application assumes it will always get error on
641		 * fsync, but does other operations on the fd before
642		 * and the page is dropped between then the error
643		 * will not be properly reported.
644		 *
645		 * This can already happen even without hwpoisoned
646		 * pages: first on metadata IO errors (which only
647		 * report through AS_EIO) or when the page is dropped
648		 * at the wrong time.
649		 *
650		 * So right now we assume that the application DTRT on
651		 * the first EIO, but we're not worse than other parts
652		 * of the kernel.
653		 */
654		mapping_set_error(mapping, EIO);
655	}
656
657	return me_pagecache_clean(p, pfn);
658}
659
660/*
661 * Clean and dirty swap cache.
662 *
663 * Dirty swap cache page is tricky to handle. The page could live both in page
664 * cache and swap cache(ie. page is freshly swapped in). So it could be
665 * referenced concurrently by 2 types of PTEs:
666 * normal PTEs and swap PTEs. We try to handle them consistently by calling
667 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
668 * and then
669 *      - clear dirty bit to prevent IO
670 *      - remove from LRU
671 *      - but keep in the swap cache, so that when we return to it on
672 *        a later page fault, we know the application is accessing
673 *        corrupted data and shall be killed (we installed simple
674 *        interception code in do_swap_page to catch it).
675 *
676 * Clean swap cache pages can be directly isolated. A later page fault will
677 * bring in the known good data from disk.
678 */
679static int me_swapcache_dirty(struct page *p, unsigned long pfn)
680{
681	ClearPageDirty(p);
682	/* Trigger EIO in shmem: */
683	ClearPageUptodate(p);
684
685	if (!delete_from_lru_cache(p))
686		return DELAYED;
687	else
688		return FAILED;
689}
690
691static int me_swapcache_clean(struct page *p, unsigned long pfn)
692{
693	delete_from_swap_cache(p);
694
695	if (!delete_from_lru_cache(p))
696		return RECOVERED;
697	else
698		return FAILED;
699}
700
701/*
702 * Huge pages. Needs work.
703 * Issues:
704 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
705 *   To narrow down kill region to one page, we need to break up pmd.
706 */
707static int me_huge_page(struct page *p, unsigned long pfn)
708{
709	int res = 0;
710	struct page *hpage = compound_head(p);
711	/*
712	 * We can safely recover from error on free or reserved (i.e.
713	 * not in-use) hugepage by dequeuing it from freelist.
714	 * To check whether a hugepage is in-use or not, we can't use
715	 * page->lru because it can be used in other hugepage operations,
716	 * such as __unmap_hugepage_range() and gather_surplus_pages().
717	 * So instead we use page_mapping() and PageAnon().
718	 * We assume that this function is called with page lock held,
719	 * so there is no race between isolation and mapping/unmapping.
720	 */
721	if (!(page_mapping(hpage) || PageAnon(hpage))) {
722		res = dequeue_hwpoisoned_huge_page(hpage);
723		if (!res)
724			return RECOVERED;
725	}
726	return DELAYED;
727}
728
729/*
730 * Various page states we can handle.
731 *
732 * A page state is defined by its current page->flags bits.
733 * The table matches them in order and calls the right handler.
734 *
735 * This is quite tricky because we can access page at any time
736 * in its live cycle, so all accesses have to be extremely careful.
737 *
738 * This is not complete. More states could be added.
739 * For any missing state don't attempt recovery.
740 */
741
742#define dirty		(1UL << PG_dirty)
743#define sc		(1UL << PG_swapcache)
744#define unevict		(1UL << PG_unevictable)
745#define mlock		(1UL << PG_mlocked)
746#define writeback	(1UL << PG_writeback)
747#define lru		(1UL << PG_lru)
748#define swapbacked	(1UL << PG_swapbacked)
749#define head		(1UL << PG_head)
750#define tail		(1UL << PG_tail)
751#define compound	(1UL << PG_compound)
752#define slab		(1UL << PG_slab)
753#define reserved	(1UL << PG_reserved)
754
755static struct page_state {
756	unsigned long mask;
757	unsigned long res;
758	char *msg;
759	int (*action)(struct page *p, unsigned long pfn);
760} error_states[] = {
761	{ reserved,	reserved,	"reserved kernel",	me_kernel },
762	/*
763	 * free pages are specially detected outside this table:
764	 * PG_buddy pages only make a small fraction of all free pages.
765	 */
766
767	/*
768	 * Could in theory check if slab page is free or if we can drop
769	 * currently unused objects without touching them. But just
770	 * treat it as standard kernel for now.
771	 */
772	{ slab,		slab,		"kernel slab",	me_kernel },
773
774#ifdef CONFIG_PAGEFLAGS_EXTENDED
775	{ head,		head,		"huge",		me_huge_page },
776	{ tail,		tail,		"huge",		me_huge_page },
777#else
778	{ compound,	compound,	"huge",		me_huge_page },
779#endif
780
781	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
782	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
783
784	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
785	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
786
787	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
788	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
789
790	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
791	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
792
793	/*
794	 * Catchall entry: must be at end.
795	 */
796	{ 0,		0,		"unknown page state",	me_unknown },
797};
798
799#undef dirty
800#undef sc
801#undef unevict
802#undef mlock
803#undef writeback
804#undef lru
805#undef swapbacked
806#undef head
807#undef tail
808#undef compound
809#undef slab
810#undef reserved
811
812static void action_result(unsigned long pfn, char *msg, int result)
813{
814	struct page *page = pfn_to_page(pfn);
815
816	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
817		pfn,
818		PageDirty(page) ? "dirty " : "",
819		msg, action_name[result]);
820}
821
822static int page_action(struct page_state *ps, struct page *p,
823			unsigned long pfn)
824{
825	int result;
826	int count;
827
828	result = ps->action(p, pfn);
829	action_result(pfn, ps->msg, result);
830
831	count = page_count(p) - 1;
832	if (ps->action == me_swapcache_dirty && result == DELAYED)
833		count--;
834	if (count != 0) {
835		printk(KERN_ERR
836		       "MCE %#lx: %s page still referenced by %d users\n",
837		       pfn, ps->msg, count);
838		result = FAILED;
839	}
840
841	/* Could do more checks here if page looks ok */
842	/*
843	 * Could adjust zone counters here to correct for the missing page.
844	 */
845
846	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
847}
848
849/*
850 * Do all that is necessary to remove user space mappings. Unmap
851 * the pages and send SIGBUS to the processes if the data was dirty.
852 */
853static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
854				  int trapno)
855{
856	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
857	struct address_space *mapping;
858	LIST_HEAD(tokill);
859	int ret;
860	int kill = 1;
861	struct page *hpage = compound_head(p);
862	struct page *ppage;
863
864	if (PageReserved(p) || PageSlab(p))
865		return SWAP_SUCCESS;
866
867	/*
868	 * This check implies we don't kill processes if their pages
869	 * are in the swap cache early. Those are always late kills.
870	 */
871	if (!page_mapped(hpage))
872		return SWAP_SUCCESS;
873
874	if (PageKsm(p))
875		return SWAP_FAIL;
876
877	if (PageSwapCache(p)) {
878		printk(KERN_ERR
879		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
880		ttu |= TTU_IGNORE_HWPOISON;
881	}
882
883	/*
884	 * Propagate the dirty bit from PTEs to struct page first, because we
885	 * need this to decide if we should kill or just drop the page.
886	 * XXX: the dirty test could be racy: set_page_dirty() may not always
887	 * be called inside page lock (it's recommended but not enforced).
888	 */
889	mapping = page_mapping(hpage);
890	if (!PageDirty(hpage) && mapping &&
891	    mapping_cap_writeback_dirty(mapping)) {
892		if (page_mkclean(hpage)) {
893			SetPageDirty(hpage);
894		} else {
895			kill = 0;
896			ttu |= TTU_IGNORE_HWPOISON;
897			printk(KERN_INFO
898	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
899				pfn);
900		}
901	}
902
903	/*
904	 * ppage: poisoned page
905	 *   if p is regular page(4k page)
906	 *        ppage == real poisoned page;
907	 *   else p is hugetlb or THP, ppage == head page.
908	 */
909	ppage = hpage;
910
911	if (PageTransHuge(hpage)) {
912		/*
913		 * Verify that this isn't a hugetlbfs head page, the check for
914		 * PageAnon is just for avoid tripping a split_huge_page
915		 * internal debug check, as split_huge_page refuses to deal with
916		 * anything that isn't an anon page. PageAnon can't go away fro
917		 * under us because we hold a refcount on the hpage, without a
918		 * refcount on the hpage. split_huge_page can't be safely called
919		 * in the first place, having a refcount on the tail isn't
920		 * enough * to be safe.
921		 */
922		if (!PageHuge(hpage) && PageAnon(hpage)) {
923			if (unlikely(split_huge_page(hpage))) {
924				/*
925				 * FIXME: if splitting THP is failed, it is
926				 * better to stop the following operation rather
927				 * than causing panic by unmapping. System might
928				 * survive if the page is freed later.
929				 */
930				printk(KERN_INFO
931					"MCE %#lx: failed to split THP\n", pfn);
932
933				BUG_ON(!PageHWPoison(p));
934				return SWAP_FAIL;
935			}
936			/* THP is split, so ppage should be the real poisoned page. */
937			ppage = p;
938		}
939	}
940
941	/*
942	 * First collect all the processes that have the page
943	 * mapped in dirty form.  This has to be done before try_to_unmap,
944	 * because ttu takes the rmap data structures down.
945	 *
946	 * Error handling: We ignore errors here because
947	 * there's nothing that can be done.
948	 */
949	if (kill)
950		collect_procs(ppage, &tokill);
951
952	if (hpage != ppage)
953		lock_page(ppage);
954
955	ret = try_to_unmap(ppage, ttu);
956	if (ret != SWAP_SUCCESS)
957		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
958				pfn, page_mapcount(ppage));
959
960	if (hpage != ppage)
961		unlock_page(ppage);
962
963	/*
964	 * Now that the dirty bit has been propagated to the
965	 * struct page and all unmaps done we can decide if
966	 * killing is needed or not.  Only kill when the page
967	 * was dirty, otherwise the tokill list is merely
968	 * freed.  When there was a problem unmapping earlier
969	 * use a more force-full uncatchable kill to prevent
970	 * any accesses to the poisoned memory.
971	 */
972	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
973		      ret != SWAP_SUCCESS, p, pfn);
974
975	return ret;
976}
977
978static void set_page_hwpoison_huge_page(struct page *hpage)
979{
980	int i;
981	int nr_pages = 1 << compound_trans_order(hpage);
982	for (i = 0; i < nr_pages; i++)
983		SetPageHWPoison(hpage + i);
984}
985
986static void clear_page_hwpoison_huge_page(struct page *hpage)
987{
988	int i;
989	int nr_pages = 1 << compound_trans_order(hpage);
990	for (i = 0; i < nr_pages; i++)
991		ClearPageHWPoison(hpage + i);
992}
993
994int __memory_failure(unsigned long pfn, int trapno, int flags)
995{
996	struct page_state *ps;
997	struct page *p;
998	struct page *hpage;
999	int res;
1000	unsigned int nr_pages;
1001
1002	if (!sysctl_memory_failure_recovery)
1003		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1004
1005	if (!pfn_valid(pfn)) {
1006		printk(KERN_ERR
1007		       "MCE %#lx: memory outside kernel control\n",
1008		       pfn);
1009		return -ENXIO;
1010	}
1011
1012	p = pfn_to_page(pfn);
1013	hpage = compound_head(p);
1014	if (TestSetPageHWPoison(p)) {
1015		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1016		return 0;
1017	}
1018
1019	nr_pages = 1 << compound_trans_order(hpage);
1020	atomic_long_add(nr_pages, &mce_bad_pages);
1021
1022	/*
1023	 * We need/can do nothing about count=0 pages.
1024	 * 1) it's a free page, and therefore in safe hand:
1025	 *    prep_new_page() will be the gate keeper.
1026	 * 2) it's a free hugepage, which is also safe:
1027	 *    an affected hugepage will be dequeued from hugepage freelist,
1028	 *    so there's no concern about reusing it ever after.
1029	 * 3) it's part of a non-compound high order page.
1030	 *    Implies some kernel user: cannot stop them from
1031	 *    R/W the page; let's pray that the page has been
1032	 *    used and will be freed some time later.
1033	 * In fact it's dangerous to directly bump up page count from 0,
1034	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1035	 */
1036	if (!(flags & MF_COUNT_INCREASED) &&
1037		!get_page_unless_zero(hpage)) {
1038		if (is_free_buddy_page(p)) {
1039			action_result(pfn, "free buddy", DELAYED);
1040			return 0;
1041		} else if (PageHuge(hpage)) {
1042			/*
1043			 * Check "just unpoisoned", "filter hit", and
1044			 * "race with other subpage."
1045			 */
1046			lock_page(hpage);
1047			if (!PageHWPoison(hpage)
1048			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1049			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1050				atomic_long_sub(nr_pages, &mce_bad_pages);
1051				return 0;
1052			}
1053			set_page_hwpoison_huge_page(hpage);
1054			res = dequeue_hwpoisoned_huge_page(hpage);
1055			action_result(pfn, "free huge",
1056				      res ? IGNORED : DELAYED);
1057			unlock_page(hpage);
1058			return res;
1059		} else {
1060			action_result(pfn, "high order kernel", IGNORED);
1061			return -EBUSY;
1062		}
1063	}
1064
1065	/*
1066	 * We ignore non-LRU pages for good reasons.
1067	 * - PG_locked is only well defined for LRU pages and a few others
1068	 * - to avoid races with __set_page_locked()
1069	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1070	 * The check (unnecessarily) ignores LRU pages being isolated and
1071	 * walked by the page reclaim code, however that's not a big loss.
1072	 */
1073	if (!PageHuge(p) && !PageTransCompound(p)) {
1074		if (!PageLRU(p))
1075			shake_page(p, 0);
1076		if (!PageLRU(p)) {
1077			/*
1078			 * shake_page could have turned it free.
1079			 */
1080			if (is_free_buddy_page(p)) {
1081				action_result(pfn, "free buddy, 2nd try",
1082						DELAYED);
1083				return 0;
1084			}
1085			action_result(pfn, "non LRU", IGNORED);
1086			put_page(p);
1087			return -EBUSY;
1088		}
1089	}
1090
1091	/*
1092	 * Lock the page and wait for writeback to finish.
1093	 * It's very difficult to mess with pages currently under IO
1094	 * and in many cases impossible, so we just avoid it here.
1095	 */
1096	lock_page(hpage);
1097
1098	/*
1099	 * unpoison always clear PG_hwpoison inside page lock
1100	 */
1101	if (!PageHWPoison(p)) {
1102		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1103		res = 0;
1104		goto out;
1105	}
1106	if (hwpoison_filter(p)) {
1107		if (TestClearPageHWPoison(p))
1108			atomic_long_sub(nr_pages, &mce_bad_pages);
1109		unlock_page(hpage);
1110		put_page(hpage);
1111		return 0;
1112	}
1113
1114	/*
1115	 * For error on the tail page, we should set PG_hwpoison
1116	 * on the head page to show that the hugepage is hwpoisoned
1117	 */
1118	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1119		action_result(pfn, "hugepage already hardware poisoned",
1120				IGNORED);
1121		unlock_page(hpage);
1122		put_page(hpage);
1123		return 0;
1124	}
1125	/*
1126	 * Set PG_hwpoison on all pages in an error hugepage,
1127	 * because containment is done in hugepage unit for now.
1128	 * Since we have done TestSetPageHWPoison() for the head page with
1129	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1130	 */
1131	if (PageHuge(p))
1132		set_page_hwpoison_huge_page(hpage);
1133
1134	wait_on_page_writeback(p);
1135
1136	/*
1137	 * Now take care of user space mappings.
1138	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1139	 */
1140	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1141		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1142		res = -EBUSY;
1143		goto out;
1144	}
1145
1146	/*
1147	 * Torn down by someone else?
1148	 */
1149	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1150		action_result(pfn, "already truncated LRU", IGNORED);
1151		res = -EBUSY;
1152		goto out;
1153	}
1154
1155	res = -EBUSY;
1156	for (ps = error_states;; ps++) {
1157		if ((p->flags & ps->mask) == ps->res) {
1158			res = page_action(ps, p, pfn);
1159			break;
1160		}
1161	}
1162out:
1163	unlock_page(hpage);
1164	return res;
1165}
1166EXPORT_SYMBOL_GPL(__memory_failure);
1167
1168/**
1169 * memory_failure - Handle memory failure of a page.
1170 * @pfn: Page Number of the corrupted page
1171 * @trapno: Trap number reported in the signal to user space.
1172 *
1173 * This function is called by the low level machine check code
1174 * of an architecture when it detects hardware memory corruption
1175 * of a page. It tries its best to recover, which includes
1176 * dropping pages, killing processes etc.
1177 *
1178 * The function is primarily of use for corruptions that
1179 * happen outside the current execution context (e.g. when
1180 * detected by a background scrubber)
1181 *
1182 * Must run in process context (e.g. a work queue) with interrupts
1183 * enabled and no spinlocks hold.
1184 */
1185void memory_failure(unsigned long pfn, int trapno)
1186{
1187	__memory_failure(pfn, trapno, 0);
1188}
1189
1190/**
1191 * unpoison_memory - Unpoison a previously poisoned page
1192 * @pfn: Page number of the to be unpoisoned page
1193 *
1194 * Software-unpoison a page that has been poisoned by
1195 * memory_failure() earlier.
1196 *
1197 * This is only done on the software-level, so it only works
1198 * for linux injected failures, not real hardware failures
1199 *
1200 * Returns 0 for success, otherwise -errno.
1201 */
1202int unpoison_memory(unsigned long pfn)
1203{
1204	struct page *page;
1205	struct page *p;
1206	int freeit = 0;
1207	unsigned int nr_pages;
1208
1209	if (!pfn_valid(pfn))
1210		return -ENXIO;
1211
1212	p = pfn_to_page(pfn);
1213	page = compound_head(p);
1214
1215	if (!PageHWPoison(p)) {
1216		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1217		return 0;
1218	}
1219
1220	nr_pages = 1 << compound_trans_order(page);
1221
1222	if (!get_page_unless_zero(page)) {
1223		/*
1224		 * Since HWPoisoned hugepage should have non-zero refcount,
1225		 * race between memory failure and unpoison seems to happen.
1226		 * In such case unpoison fails and memory failure runs
1227		 * to the end.
1228		 */
1229		if (PageHuge(page)) {
1230			pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1231			return 0;
1232		}
1233		if (TestClearPageHWPoison(p))
1234			atomic_long_sub(nr_pages, &mce_bad_pages);
1235		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1236		return 0;
1237	}
1238
1239	lock_page(page);
1240	/*
1241	 * This test is racy because PG_hwpoison is set outside of page lock.
1242	 * That's acceptable because that won't trigger kernel panic. Instead,
1243	 * the PG_hwpoison page will be caught and isolated on the entrance to
1244	 * the free buddy page pool.
1245	 */
1246	if (TestClearPageHWPoison(page)) {
1247		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1248		atomic_long_sub(nr_pages, &mce_bad_pages);
1249		freeit = 1;
1250		if (PageHuge(page))
1251			clear_page_hwpoison_huge_page(page);
1252	}
1253	unlock_page(page);
1254
1255	put_page(page);
1256	if (freeit)
1257		put_page(page);
1258
1259	return 0;
1260}
1261EXPORT_SYMBOL(unpoison_memory);
1262
1263static struct page *new_page(struct page *p, unsigned long private, int **x)
1264{
1265	int nid = page_to_nid(p);
1266	if (PageHuge(p))
1267		return alloc_huge_page_node(page_hstate(compound_head(p)),
1268						   nid);
1269	else
1270		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1271}
1272
1273/*
1274 * Safely get reference count of an arbitrary page.
1275 * Returns 0 for a free page, -EIO for a zero refcount page
1276 * that is not free, and 1 for any other page type.
1277 * For 1 the page is returned with increased page count, otherwise not.
1278 */
1279static int get_any_page(struct page *p, unsigned long pfn, int flags)
1280{
1281	int ret;
1282
1283	if (flags & MF_COUNT_INCREASED)
1284		return 1;
1285
1286	/*
1287	 * The lock_memory_hotplug prevents a race with memory hotplug.
1288	 * This is a big hammer, a better would be nicer.
1289	 */
1290	lock_memory_hotplug();
1291
1292	/*
1293	 * Isolate the page, so that it doesn't get reallocated if it
1294	 * was free.
1295	 */
1296	set_migratetype_isolate(p);
1297	/*
1298	 * When the target page is a free hugepage, just remove it
1299	 * from free hugepage list.
1300	 */
1301	if (!get_page_unless_zero(compound_head(p))) {
1302		if (PageHuge(p)) {
1303			pr_info("get_any_page: %#lx free huge page\n", pfn);
1304			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1305		} else if (is_free_buddy_page(p)) {
1306			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1307			/* Set hwpoison bit while page is still isolated */
1308			SetPageHWPoison(p);
1309			ret = 0;
1310		} else {
1311			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1312				pfn, p->flags);
1313			ret = -EIO;
1314		}
1315	} else {
1316		/* Not a free page */
1317		ret = 1;
1318	}
1319	unset_migratetype_isolate(p);
1320	unlock_memory_hotplug();
1321	return ret;
1322}
1323
1324static int soft_offline_huge_page(struct page *page, int flags)
1325{
1326	int ret;
1327	unsigned long pfn = page_to_pfn(page);
1328	struct page *hpage = compound_head(page);
1329	LIST_HEAD(pagelist);
1330
1331	ret = get_any_page(page, pfn, flags);
1332	if (ret < 0)
1333		return ret;
1334	if (ret == 0)
1335		goto done;
1336
1337	if (PageHWPoison(hpage)) {
1338		put_page(hpage);
1339		pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1340		return -EBUSY;
1341	}
1342
1343	/* Keep page count to indicate a given hugepage is isolated. */
1344
1345	list_add(&hpage->lru, &pagelist);
1346	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1347				true);
1348	if (ret) {
1349		struct page *page1, *page2;
1350		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1351			put_page(page1);
1352
1353		pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1354			 pfn, ret, page->flags);
1355		if (ret > 0)
1356			ret = -EIO;
1357		return ret;
1358	}
1359done:
1360	if (!PageHWPoison(hpage))
1361		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1362	set_page_hwpoison_huge_page(hpage);
1363	dequeue_hwpoisoned_huge_page(hpage);
1364	/* keep elevated page count for bad page */
1365	return ret;
1366}
1367
1368/**
1369 * soft_offline_page - Soft offline a page.
1370 * @page: page to offline
1371 * @flags: flags. Same as memory_failure().
1372 *
1373 * Returns 0 on success, otherwise negated errno.
1374 *
1375 * Soft offline a page, by migration or invalidation,
1376 * without killing anything. This is for the case when
1377 * a page is not corrupted yet (so it's still valid to access),
1378 * but has had a number of corrected errors and is better taken
1379 * out.
1380 *
1381 * The actual policy on when to do that is maintained by
1382 * user space.
1383 *
1384 * This should never impact any application or cause data loss,
1385 * however it might take some time.
1386 *
1387 * This is not a 100% solution for all memory, but tries to be
1388 * ``good enough'' for the majority of memory.
1389 */
1390int soft_offline_page(struct page *page, int flags)
1391{
1392	int ret;
1393	unsigned long pfn = page_to_pfn(page);
1394
1395	if (PageHuge(page))
1396		return soft_offline_huge_page(page, flags);
1397
1398	ret = get_any_page(page, pfn, flags);
1399	if (ret < 0)
1400		return ret;
1401	if (ret == 0)
1402		goto done;
1403
1404	/*
1405	 * Page cache page we can handle?
1406	 */
1407	if (!PageLRU(page)) {
1408		/*
1409		 * Try to free it.
1410		 */
1411		put_page(page);
1412		shake_page(page, 1);
1413
1414		/*
1415		 * Did it turn free?
1416		 */
1417		ret = get_any_page(page, pfn, 0);
1418		if (ret < 0)
1419			return ret;
1420		if (ret == 0)
1421			goto done;
1422	}
1423	if (!PageLRU(page)) {
1424		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1425				pfn, page->flags);
1426		return -EIO;
1427	}
1428
1429	lock_page(page);
1430	wait_on_page_writeback(page);
1431
1432	/*
1433	 * Synchronized using the page lock with memory_failure()
1434	 */
1435	if (PageHWPoison(page)) {
1436		unlock_page(page);
1437		put_page(page);
1438		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1439		return -EBUSY;
1440	}
1441
1442	/*
1443	 * Try to invalidate first. This should work for
1444	 * non dirty unmapped page cache pages.
1445	 */
1446	ret = invalidate_inode_page(page);
1447	unlock_page(page);
1448	/*
1449	 * RED-PEN would be better to keep it isolated here, but we
1450	 * would need to fix isolation locking first.
1451	 */
1452	if (ret == 1) {
1453		put_page(page);
1454		ret = 0;
1455		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1456		goto done;
1457	}
1458
1459	/*
1460	 * Simple invalidation didn't work.
1461	 * Try to migrate to a new page instead. migrate.c
1462	 * handles a large number of cases for us.
1463	 */
1464	ret = isolate_lru_page(page);
1465	/*
1466	 * Drop page reference which is came from get_any_page()
1467	 * successful isolate_lru_page() already took another one.
1468	 */
1469	put_page(page);
1470	if (!ret) {
1471		LIST_HEAD(pagelist);
1472
1473		list_add(&page->lru, &pagelist);
1474		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1475								0, true);
1476		if (ret) {
1477			putback_lru_pages(&pagelist);
1478			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1479				pfn, ret, page->flags);
1480			if (ret > 0)
1481				ret = -EIO;
1482		}
1483	} else {
1484		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1485				pfn, ret, page_count(page), page->flags);
1486	}
1487	if (ret)
1488		return ret;
1489
1490done:
1491	atomic_long_add(1, &mce_bad_pages);
1492	SetPageHWPoison(page);
1493	/* keep elevated page count for bad page */
1494	return ret;
1495}
1496