memory-failure.c revision a6bc32b899223a877f595ef9ddc1e89ead5072b8
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states.	The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/export.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
49#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
52#include <linux/slab.h>
53#include <linux/swapops.h>
54#include <linux/hugetlb.h>
55#include <linux/memory_hotplug.h>
56#include <linux/mm_inline.h>
57#include <linux/kfifo.h>
58#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
64atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68u32 hwpoison_filter_enable = 0;
69u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
71u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
73EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79static int hwpoison_filter_dev(struct page *p)
80{
81	struct address_space *mapping;
82	dev_t dev;
83
84	if (hwpoison_filter_dev_major == ~0U &&
85	    hwpoison_filter_dev_minor == ~0U)
86		return 0;
87
88	/*
89	 * page_mapping() does not accept slab pages.
90	 */
91	if (PageSlab(p))
92		return -EINVAL;
93
94	mapping = page_mapping(p);
95	if (mapping == NULL || mapping->host == NULL)
96		return -EINVAL;
97
98	dev = mapping->host->i_sb->s_dev;
99	if (hwpoison_filter_dev_major != ~0U &&
100	    hwpoison_filter_dev_major != MAJOR(dev))
101		return -EINVAL;
102	if (hwpoison_filter_dev_minor != ~0U &&
103	    hwpoison_filter_dev_minor != MINOR(dev))
104		return -EINVAL;
105
106	return 0;
107}
108
109static int hwpoison_filter_flags(struct page *p)
110{
111	if (!hwpoison_filter_flags_mask)
112		return 0;
113
114	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115				    hwpoison_filter_flags_value)
116		return 0;
117	else
118		return -EINVAL;
119}
120
121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136	struct mem_cgroup *mem;
137	struct cgroup_subsys_state *css;
138	unsigned long ino;
139
140	if (!hwpoison_filter_memcg)
141		return 0;
142
143	mem = try_get_mem_cgroup_from_page(p);
144	if (!mem)
145		return -EINVAL;
146
147	css = mem_cgroup_css(mem);
148	/* root_mem_cgroup has NULL dentries */
149	if (!css->cgroup->dentry)
150		return -EINVAL;
151
152	ino = css->cgroup->dentry->d_inode->i_ino;
153	css_put(css);
154
155	if (ino != hwpoison_filter_memcg)
156		return -EINVAL;
157
158	return 0;
159}
160#else
161static int hwpoison_filter_task(struct page *p) { return 0; }
162#endif
163
164int hwpoison_filter(struct page *p)
165{
166	if (!hwpoison_filter_enable)
167		return 0;
168
169	if (hwpoison_filter_dev(p))
170		return -EINVAL;
171
172	if (hwpoison_filter_flags(p))
173		return -EINVAL;
174
175	if (hwpoison_filter_task(p))
176		return -EINVAL;
177
178	return 0;
179}
180#else
181int hwpoison_filter(struct page *p)
182{
183	return 0;
184}
185#endif
186
187EXPORT_SYMBOL_GPL(hwpoison_filter);
188
189/*
190 * Send all the processes who have the page mapped an ``action optional''
191 * signal.
192 */
193static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
194			unsigned long pfn, struct page *page)
195{
196	struct siginfo si;
197	int ret;
198
199	printk(KERN_ERR
200		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
201		pfn, t->comm, t->pid);
202	si.si_signo = SIGBUS;
203	si.si_errno = 0;
204	si.si_code = BUS_MCEERR_AO;
205	si.si_addr = (void *)addr;
206#ifdef __ARCH_SI_TRAPNO
207	si.si_trapno = trapno;
208#endif
209	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
210	/*
211	 * Don't use force here, it's convenient if the signal
212	 * can be temporarily blocked.
213	 * This could cause a loop when the user sets SIGBUS
214	 * to SIG_IGN, but hopefully no one will do that?
215	 */
216	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
217	if (ret < 0)
218		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
219		       t->comm, t->pid, ret);
220	return ret;
221}
222
223/*
224 * When a unknown page type is encountered drain as many buffers as possible
225 * in the hope to turn the page into a LRU or free page, which we can handle.
226 */
227void shake_page(struct page *p, int access)
228{
229	if (!PageSlab(p)) {
230		lru_add_drain_all();
231		if (PageLRU(p))
232			return;
233		drain_all_pages();
234		if (PageLRU(p) || is_free_buddy_page(p))
235			return;
236	}
237
238	/*
239	 * Only call shrink_slab here (which would also shrink other caches) if
240	 * access is not potentially fatal.
241	 */
242	if (access) {
243		int nr;
244		do {
245			struct shrink_control shrink = {
246				.gfp_mask = GFP_KERNEL,
247			};
248
249			nr = shrink_slab(&shrink, 1000, 1000);
250			if (page_count(p) == 1)
251				break;
252		} while (nr > 10);
253	}
254}
255EXPORT_SYMBOL_GPL(shake_page);
256
257/*
258 * Kill all processes that have a poisoned page mapped and then isolate
259 * the page.
260 *
261 * General strategy:
262 * Find all processes having the page mapped and kill them.
263 * But we keep a page reference around so that the page is not
264 * actually freed yet.
265 * Then stash the page away
266 *
267 * There's no convenient way to get back to mapped processes
268 * from the VMAs. So do a brute-force search over all
269 * running processes.
270 *
271 * Remember that machine checks are not common (or rather
272 * if they are common you have other problems), so this shouldn't
273 * be a performance issue.
274 *
275 * Also there are some races possible while we get from the
276 * error detection to actually handle it.
277 */
278
279struct to_kill {
280	struct list_head nd;
281	struct task_struct *tsk;
282	unsigned long addr;
283	char addr_valid;
284};
285
286/*
287 * Failure handling: if we can't find or can't kill a process there's
288 * not much we can do.	We just print a message and ignore otherwise.
289 */
290
291/*
292 * Schedule a process for later kill.
293 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
294 * TBD would GFP_NOIO be enough?
295 */
296static void add_to_kill(struct task_struct *tsk, struct page *p,
297		       struct vm_area_struct *vma,
298		       struct list_head *to_kill,
299		       struct to_kill **tkc)
300{
301	struct to_kill *tk;
302
303	if (*tkc) {
304		tk = *tkc;
305		*tkc = NULL;
306	} else {
307		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
308		if (!tk) {
309			printk(KERN_ERR
310		"MCE: Out of memory while machine check handling\n");
311			return;
312		}
313	}
314	tk->addr = page_address_in_vma(p, vma);
315	tk->addr_valid = 1;
316
317	/*
318	 * In theory we don't have to kill when the page was
319	 * munmaped. But it could be also a mremap. Since that's
320	 * likely very rare kill anyways just out of paranoia, but use
321	 * a SIGKILL because the error is not contained anymore.
322	 */
323	if (tk->addr == -EFAULT) {
324		pr_info("MCE: Unable to find user space address %lx in %s\n",
325			page_to_pfn(p), tsk->comm);
326		tk->addr_valid = 0;
327	}
328	get_task_struct(tsk);
329	tk->tsk = tsk;
330	list_add_tail(&tk->nd, to_kill);
331}
332
333/*
334 * Kill the processes that have been collected earlier.
335 *
336 * Only do anything when DOIT is set, otherwise just free the list
337 * (this is used for clean pages which do not need killing)
338 * Also when FAIL is set do a force kill because something went
339 * wrong earlier.
340 */
341static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
342			  int fail, struct page *page, unsigned long pfn)
343{
344	struct to_kill *tk, *next;
345
346	list_for_each_entry_safe (tk, next, to_kill, nd) {
347		if (doit) {
348			/*
349			 * In case something went wrong with munmapping
350			 * make sure the process doesn't catch the
351			 * signal and then access the memory. Just kill it.
352			 */
353			if (fail || tk->addr_valid == 0) {
354				printk(KERN_ERR
355		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
356					pfn, tk->tsk->comm, tk->tsk->pid);
357				force_sig(SIGKILL, tk->tsk);
358			}
359
360			/*
361			 * In theory the process could have mapped
362			 * something else on the address in-between. We could
363			 * check for that, but we need to tell the
364			 * process anyways.
365			 */
366			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
367					      pfn, page) < 0)
368				printk(KERN_ERR
369		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
370					pfn, tk->tsk->comm, tk->tsk->pid);
371		}
372		put_task_struct(tk->tsk);
373		kfree(tk);
374	}
375}
376
377static int task_early_kill(struct task_struct *tsk)
378{
379	if (!tsk->mm)
380		return 0;
381	if (tsk->flags & PF_MCE_PROCESS)
382		return !!(tsk->flags & PF_MCE_EARLY);
383	return sysctl_memory_failure_early_kill;
384}
385
386/*
387 * Collect processes when the error hit an anonymous page.
388 */
389static void collect_procs_anon(struct page *page, struct list_head *to_kill,
390			      struct to_kill **tkc)
391{
392	struct vm_area_struct *vma;
393	struct task_struct *tsk;
394	struct anon_vma *av;
395
396	av = page_lock_anon_vma(page);
397	if (av == NULL)	/* Not actually mapped anymore */
398		return;
399
400	read_lock(&tasklist_lock);
401	for_each_process (tsk) {
402		struct anon_vma_chain *vmac;
403
404		if (!task_early_kill(tsk))
405			continue;
406		list_for_each_entry(vmac, &av->head, same_anon_vma) {
407			vma = vmac->vma;
408			if (!page_mapped_in_vma(page, vma))
409				continue;
410			if (vma->vm_mm == tsk->mm)
411				add_to_kill(tsk, page, vma, to_kill, tkc);
412		}
413	}
414	read_unlock(&tasklist_lock);
415	page_unlock_anon_vma(av);
416}
417
418/*
419 * Collect processes when the error hit a file mapped page.
420 */
421static void collect_procs_file(struct page *page, struct list_head *to_kill,
422			      struct to_kill **tkc)
423{
424	struct vm_area_struct *vma;
425	struct task_struct *tsk;
426	struct prio_tree_iter iter;
427	struct address_space *mapping = page->mapping;
428
429	mutex_lock(&mapping->i_mmap_mutex);
430	read_lock(&tasklist_lock);
431	for_each_process(tsk) {
432		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
433
434		if (!task_early_kill(tsk))
435			continue;
436
437		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
438				      pgoff) {
439			/*
440			 * Send early kill signal to tasks where a vma covers
441			 * the page but the corrupted page is not necessarily
442			 * mapped it in its pte.
443			 * Assume applications who requested early kill want
444			 * to be informed of all such data corruptions.
445			 */
446			if (vma->vm_mm == tsk->mm)
447				add_to_kill(tsk, page, vma, to_kill, tkc);
448		}
449	}
450	read_unlock(&tasklist_lock);
451	mutex_unlock(&mapping->i_mmap_mutex);
452}
453
454/*
455 * Collect the processes who have the corrupted page mapped to kill.
456 * This is done in two steps for locking reasons.
457 * First preallocate one tokill structure outside the spin locks,
458 * so that we can kill at least one process reasonably reliable.
459 */
460static void collect_procs(struct page *page, struct list_head *tokill)
461{
462	struct to_kill *tk;
463
464	if (!page->mapping)
465		return;
466
467	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
468	if (!tk)
469		return;
470	if (PageAnon(page))
471		collect_procs_anon(page, tokill, &tk);
472	else
473		collect_procs_file(page, tokill, &tk);
474	kfree(tk);
475}
476
477/*
478 * Error handlers for various types of pages.
479 */
480
481enum outcome {
482	IGNORED,	/* Error: cannot be handled */
483	FAILED,		/* Error: handling failed */
484	DELAYED,	/* Will be handled later */
485	RECOVERED,	/* Successfully recovered */
486};
487
488static const char *action_name[] = {
489	[IGNORED] = "Ignored",
490	[FAILED] = "Failed",
491	[DELAYED] = "Delayed",
492	[RECOVERED] = "Recovered",
493};
494
495/*
496 * XXX: It is possible that a page is isolated from LRU cache,
497 * and then kept in swap cache or failed to remove from page cache.
498 * The page count will stop it from being freed by unpoison.
499 * Stress tests should be aware of this memory leak problem.
500 */
501static int delete_from_lru_cache(struct page *p)
502{
503	if (!isolate_lru_page(p)) {
504		/*
505		 * Clear sensible page flags, so that the buddy system won't
506		 * complain when the page is unpoison-and-freed.
507		 */
508		ClearPageActive(p);
509		ClearPageUnevictable(p);
510		/*
511		 * drop the page count elevated by isolate_lru_page()
512		 */
513		page_cache_release(p);
514		return 0;
515	}
516	return -EIO;
517}
518
519/*
520 * Error hit kernel page.
521 * Do nothing, try to be lucky and not touch this instead. For a few cases we
522 * could be more sophisticated.
523 */
524static int me_kernel(struct page *p, unsigned long pfn)
525{
526	return IGNORED;
527}
528
529/*
530 * Page in unknown state. Do nothing.
531 */
532static int me_unknown(struct page *p, unsigned long pfn)
533{
534	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
535	return FAILED;
536}
537
538/*
539 * Clean (or cleaned) page cache page.
540 */
541static int me_pagecache_clean(struct page *p, unsigned long pfn)
542{
543	int err;
544	int ret = FAILED;
545	struct address_space *mapping;
546
547	delete_from_lru_cache(p);
548
549	/*
550	 * For anonymous pages we're done the only reference left
551	 * should be the one m_f() holds.
552	 */
553	if (PageAnon(p))
554		return RECOVERED;
555
556	/*
557	 * Now truncate the page in the page cache. This is really
558	 * more like a "temporary hole punch"
559	 * Don't do this for block devices when someone else
560	 * has a reference, because it could be file system metadata
561	 * and that's not safe to truncate.
562	 */
563	mapping = page_mapping(p);
564	if (!mapping) {
565		/*
566		 * Page has been teared down in the meanwhile
567		 */
568		return FAILED;
569	}
570
571	/*
572	 * Truncation is a bit tricky. Enable it per file system for now.
573	 *
574	 * Open: to take i_mutex or not for this? Right now we don't.
575	 */
576	if (mapping->a_ops->error_remove_page) {
577		err = mapping->a_ops->error_remove_page(mapping, p);
578		if (err != 0) {
579			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
580					pfn, err);
581		} else if (page_has_private(p) &&
582				!try_to_release_page(p, GFP_NOIO)) {
583			pr_info("MCE %#lx: failed to release buffers\n", pfn);
584		} else {
585			ret = RECOVERED;
586		}
587	} else {
588		/*
589		 * If the file system doesn't support it just invalidate
590		 * This fails on dirty or anything with private pages
591		 */
592		if (invalidate_inode_page(p))
593			ret = RECOVERED;
594		else
595			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
596				pfn);
597	}
598	return ret;
599}
600
601/*
602 * Dirty cache page page
603 * Issues: when the error hit a hole page the error is not properly
604 * propagated.
605 */
606static int me_pagecache_dirty(struct page *p, unsigned long pfn)
607{
608	struct address_space *mapping = page_mapping(p);
609
610	SetPageError(p);
611	/* TBD: print more information about the file. */
612	if (mapping) {
613		/*
614		 * IO error will be reported by write(), fsync(), etc.
615		 * who check the mapping.
616		 * This way the application knows that something went
617		 * wrong with its dirty file data.
618		 *
619		 * There's one open issue:
620		 *
621		 * The EIO will be only reported on the next IO
622		 * operation and then cleared through the IO map.
623		 * Normally Linux has two mechanisms to pass IO error
624		 * first through the AS_EIO flag in the address space
625		 * and then through the PageError flag in the page.
626		 * Since we drop pages on memory failure handling the
627		 * only mechanism open to use is through AS_AIO.
628		 *
629		 * This has the disadvantage that it gets cleared on
630		 * the first operation that returns an error, while
631		 * the PageError bit is more sticky and only cleared
632		 * when the page is reread or dropped.  If an
633		 * application assumes it will always get error on
634		 * fsync, but does other operations on the fd before
635		 * and the page is dropped between then the error
636		 * will not be properly reported.
637		 *
638		 * This can already happen even without hwpoisoned
639		 * pages: first on metadata IO errors (which only
640		 * report through AS_EIO) or when the page is dropped
641		 * at the wrong time.
642		 *
643		 * So right now we assume that the application DTRT on
644		 * the first EIO, but we're not worse than other parts
645		 * of the kernel.
646		 */
647		mapping_set_error(mapping, EIO);
648	}
649
650	return me_pagecache_clean(p, pfn);
651}
652
653/*
654 * Clean and dirty swap cache.
655 *
656 * Dirty swap cache page is tricky to handle. The page could live both in page
657 * cache and swap cache(ie. page is freshly swapped in). So it could be
658 * referenced concurrently by 2 types of PTEs:
659 * normal PTEs and swap PTEs. We try to handle them consistently by calling
660 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
661 * and then
662 *      - clear dirty bit to prevent IO
663 *      - remove from LRU
664 *      - but keep in the swap cache, so that when we return to it on
665 *        a later page fault, we know the application is accessing
666 *        corrupted data and shall be killed (we installed simple
667 *        interception code in do_swap_page to catch it).
668 *
669 * Clean swap cache pages can be directly isolated. A later page fault will
670 * bring in the known good data from disk.
671 */
672static int me_swapcache_dirty(struct page *p, unsigned long pfn)
673{
674	ClearPageDirty(p);
675	/* Trigger EIO in shmem: */
676	ClearPageUptodate(p);
677
678	if (!delete_from_lru_cache(p))
679		return DELAYED;
680	else
681		return FAILED;
682}
683
684static int me_swapcache_clean(struct page *p, unsigned long pfn)
685{
686	delete_from_swap_cache(p);
687
688	if (!delete_from_lru_cache(p))
689		return RECOVERED;
690	else
691		return FAILED;
692}
693
694/*
695 * Huge pages. Needs work.
696 * Issues:
697 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
698 *   To narrow down kill region to one page, we need to break up pmd.
699 */
700static int me_huge_page(struct page *p, unsigned long pfn)
701{
702	int res = 0;
703	struct page *hpage = compound_head(p);
704	/*
705	 * We can safely recover from error on free or reserved (i.e.
706	 * not in-use) hugepage by dequeuing it from freelist.
707	 * To check whether a hugepage is in-use or not, we can't use
708	 * page->lru because it can be used in other hugepage operations,
709	 * such as __unmap_hugepage_range() and gather_surplus_pages().
710	 * So instead we use page_mapping() and PageAnon().
711	 * We assume that this function is called with page lock held,
712	 * so there is no race between isolation and mapping/unmapping.
713	 */
714	if (!(page_mapping(hpage) || PageAnon(hpage))) {
715		res = dequeue_hwpoisoned_huge_page(hpage);
716		if (!res)
717			return RECOVERED;
718	}
719	return DELAYED;
720}
721
722/*
723 * Various page states we can handle.
724 *
725 * A page state is defined by its current page->flags bits.
726 * The table matches them in order and calls the right handler.
727 *
728 * This is quite tricky because we can access page at any time
729 * in its live cycle, so all accesses have to be extremely careful.
730 *
731 * This is not complete. More states could be added.
732 * For any missing state don't attempt recovery.
733 */
734
735#define dirty		(1UL << PG_dirty)
736#define sc		(1UL << PG_swapcache)
737#define unevict		(1UL << PG_unevictable)
738#define mlock		(1UL << PG_mlocked)
739#define writeback	(1UL << PG_writeback)
740#define lru		(1UL << PG_lru)
741#define swapbacked	(1UL << PG_swapbacked)
742#define head		(1UL << PG_head)
743#define tail		(1UL << PG_tail)
744#define compound	(1UL << PG_compound)
745#define slab		(1UL << PG_slab)
746#define reserved	(1UL << PG_reserved)
747
748static struct page_state {
749	unsigned long mask;
750	unsigned long res;
751	char *msg;
752	int (*action)(struct page *p, unsigned long pfn);
753} error_states[] = {
754	{ reserved,	reserved,	"reserved kernel",	me_kernel },
755	/*
756	 * free pages are specially detected outside this table:
757	 * PG_buddy pages only make a small fraction of all free pages.
758	 */
759
760	/*
761	 * Could in theory check if slab page is free or if we can drop
762	 * currently unused objects without touching them. But just
763	 * treat it as standard kernel for now.
764	 */
765	{ slab,		slab,		"kernel slab",	me_kernel },
766
767#ifdef CONFIG_PAGEFLAGS_EXTENDED
768	{ head,		head,		"huge",		me_huge_page },
769	{ tail,		tail,		"huge",		me_huge_page },
770#else
771	{ compound,	compound,	"huge",		me_huge_page },
772#endif
773
774	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
775	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
776
777	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
778	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
779
780	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
781	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
782
783	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
784	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
785
786	/*
787	 * Catchall entry: must be at end.
788	 */
789	{ 0,		0,		"unknown page state",	me_unknown },
790};
791
792#undef dirty
793#undef sc
794#undef unevict
795#undef mlock
796#undef writeback
797#undef lru
798#undef swapbacked
799#undef head
800#undef tail
801#undef compound
802#undef slab
803#undef reserved
804
805static void action_result(unsigned long pfn, char *msg, int result)
806{
807	struct page *page = pfn_to_page(pfn);
808
809	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
810		pfn,
811		PageDirty(page) ? "dirty " : "",
812		msg, action_name[result]);
813}
814
815static int page_action(struct page_state *ps, struct page *p,
816			unsigned long pfn)
817{
818	int result;
819	int count;
820
821	result = ps->action(p, pfn);
822	action_result(pfn, ps->msg, result);
823
824	count = page_count(p) - 1;
825	if (ps->action == me_swapcache_dirty && result == DELAYED)
826		count--;
827	if (count != 0) {
828		printk(KERN_ERR
829		       "MCE %#lx: %s page still referenced by %d users\n",
830		       pfn, ps->msg, count);
831		result = FAILED;
832	}
833
834	/* Could do more checks here if page looks ok */
835	/*
836	 * Could adjust zone counters here to correct for the missing page.
837	 */
838
839	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
840}
841
842/*
843 * Do all that is necessary to remove user space mappings. Unmap
844 * the pages and send SIGBUS to the processes if the data was dirty.
845 */
846static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
847				  int trapno)
848{
849	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
850	struct address_space *mapping;
851	LIST_HEAD(tokill);
852	int ret;
853	int kill = 1;
854	struct page *hpage = compound_head(p);
855	struct page *ppage;
856
857	if (PageReserved(p) || PageSlab(p))
858		return SWAP_SUCCESS;
859
860	/*
861	 * This check implies we don't kill processes if their pages
862	 * are in the swap cache early. Those are always late kills.
863	 */
864	if (!page_mapped(hpage))
865		return SWAP_SUCCESS;
866
867	if (PageKsm(p))
868		return SWAP_FAIL;
869
870	if (PageSwapCache(p)) {
871		printk(KERN_ERR
872		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
873		ttu |= TTU_IGNORE_HWPOISON;
874	}
875
876	/*
877	 * Propagate the dirty bit from PTEs to struct page first, because we
878	 * need this to decide if we should kill or just drop the page.
879	 * XXX: the dirty test could be racy: set_page_dirty() may not always
880	 * be called inside page lock (it's recommended but not enforced).
881	 */
882	mapping = page_mapping(hpage);
883	if (!PageDirty(hpage) && mapping &&
884	    mapping_cap_writeback_dirty(mapping)) {
885		if (page_mkclean(hpage)) {
886			SetPageDirty(hpage);
887		} else {
888			kill = 0;
889			ttu |= TTU_IGNORE_HWPOISON;
890			printk(KERN_INFO
891	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
892				pfn);
893		}
894	}
895
896	/*
897	 * ppage: poisoned page
898	 *   if p is regular page(4k page)
899	 *        ppage == real poisoned page;
900	 *   else p is hugetlb or THP, ppage == head page.
901	 */
902	ppage = hpage;
903
904	if (PageTransHuge(hpage)) {
905		/*
906		 * Verify that this isn't a hugetlbfs head page, the check for
907		 * PageAnon is just for avoid tripping a split_huge_page
908		 * internal debug check, as split_huge_page refuses to deal with
909		 * anything that isn't an anon page. PageAnon can't go away fro
910		 * under us because we hold a refcount on the hpage, without a
911		 * refcount on the hpage. split_huge_page can't be safely called
912		 * in the first place, having a refcount on the tail isn't
913		 * enough * to be safe.
914		 */
915		if (!PageHuge(hpage) && PageAnon(hpage)) {
916			if (unlikely(split_huge_page(hpage))) {
917				/*
918				 * FIXME: if splitting THP is failed, it is
919				 * better to stop the following operation rather
920				 * than causing panic by unmapping. System might
921				 * survive if the page is freed later.
922				 */
923				printk(KERN_INFO
924					"MCE %#lx: failed to split THP\n", pfn);
925
926				BUG_ON(!PageHWPoison(p));
927				return SWAP_FAIL;
928			}
929			/* THP is split, so ppage should be the real poisoned page. */
930			ppage = p;
931		}
932	}
933
934	/*
935	 * First collect all the processes that have the page
936	 * mapped in dirty form.  This has to be done before try_to_unmap,
937	 * because ttu takes the rmap data structures down.
938	 *
939	 * Error handling: We ignore errors here because
940	 * there's nothing that can be done.
941	 */
942	if (kill)
943		collect_procs(ppage, &tokill);
944
945	if (hpage != ppage)
946		lock_page(ppage);
947
948	ret = try_to_unmap(ppage, ttu);
949	if (ret != SWAP_SUCCESS)
950		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
951				pfn, page_mapcount(ppage));
952
953	if (hpage != ppage)
954		unlock_page(ppage);
955
956	/*
957	 * Now that the dirty bit has been propagated to the
958	 * struct page and all unmaps done we can decide if
959	 * killing is needed or not.  Only kill when the page
960	 * was dirty, otherwise the tokill list is merely
961	 * freed.  When there was a problem unmapping earlier
962	 * use a more force-full uncatchable kill to prevent
963	 * any accesses to the poisoned memory.
964	 */
965	kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
966		      ret != SWAP_SUCCESS, p, pfn);
967
968	return ret;
969}
970
971static void set_page_hwpoison_huge_page(struct page *hpage)
972{
973	int i;
974	int nr_pages = 1 << compound_trans_order(hpage);
975	for (i = 0; i < nr_pages; i++)
976		SetPageHWPoison(hpage + i);
977}
978
979static void clear_page_hwpoison_huge_page(struct page *hpage)
980{
981	int i;
982	int nr_pages = 1 << compound_trans_order(hpage);
983	for (i = 0; i < nr_pages; i++)
984		ClearPageHWPoison(hpage + i);
985}
986
987int __memory_failure(unsigned long pfn, int trapno, int flags)
988{
989	struct page_state *ps;
990	struct page *p;
991	struct page *hpage;
992	int res;
993	unsigned int nr_pages;
994
995	if (!sysctl_memory_failure_recovery)
996		panic("Memory failure from trap %d on page %lx", trapno, pfn);
997
998	if (!pfn_valid(pfn)) {
999		printk(KERN_ERR
1000		       "MCE %#lx: memory outside kernel control\n",
1001		       pfn);
1002		return -ENXIO;
1003	}
1004
1005	p = pfn_to_page(pfn);
1006	hpage = compound_head(p);
1007	if (TestSetPageHWPoison(p)) {
1008		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1009		return 0;
1010	}
1011
1012	nr_pages = 1 << compound_trans_order(hpage);
1013	atomic_long_add(nr_pages, &mce_bad_pages);
1014
1015	/*
1016	 * We need/can do nothing about count=0 pages.
1017	 * 1) it's a free page, and therefore in safe hand:
1018	 *    prep_new_page() will be the gate keeper.
1019	 * 2) it's a free hugepage, which is also safe:
1020	 *    an affected hugepage will be dequeued from hugepage freelist,
1021	 *    so there's no concern about reusing it ever after.
1022	 * 3) it's part of a non-compound high order page.
1023	 *    Implies some kernel user: cannot stop them from
1024	 *    R/W the page; let's pray that the page has been
1025	 *    used and will be freed some time later.
1026	 * In fact it's dangerous to directly bump up page count from 0,
1027	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1028	 */
1029	if (!(flags & MF_COUNT_INCREASED) &&
1030		!get_page_unless_zero(hpage)) {
1031		if (is_free_buddy_page(p)) {
1032			action_result(pfn, "free buddy", DELAYED);
1033			return 0;
1034		} else if (PageHuge(hpage)) {
1035			/*
1036			 * Check "just unpoisoned", "filter hit", and
1037			 * "race with other subpage."
1038			 */
1039			lock_page(hpage);
1040			if (!PageHWPoison(hpage)
1041			    || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1042			    || (p != hpage && TestSetPageHWPoison(hpage))) {
1043				atomic_long_sub(nr_pages, &mce_bad_pages);
1044				return 0;
1045			}
1046			set_page_hwpoison_huge_page(hpage);
1047			res = dequeue_hwpoisoned_huge_page(hpage);
1048			action_result(pfn, "free huge",
1049				      res ? IGNORED : DELAYED);
1050			unlock_page(hpage);
1051			return res;
1052		} else {
1053			action_result(pfn, "high order kernel", IGNORED);
1054			return -EBUSY;
1055		}
1056	}
1057
1058	/*
1059	 * We ignore non-LRU pages for good reasons.
1060	 * - PG_locked is only well defined for LRU pages and a few others
1061	 * - to avoid races with __set_page_locked()
1062	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1063	 * The check (unnecessarily) ignores LRU pages being isolated and
1064	 * walked by the page reclaim code, however that's not a big loss.
1065	 */
1066	if (!PageHuge(p) && !PageTransCompound(p)) {
1067		if (!PageLRU(p))
1068			shake_page(p, 0);
1069		if (!PageLRU(p)) {
1070			/*
1071			 * shake_page could have turned it free.
1072			 */
1073			if (is_free_buddy_page(p)) {
1074				action_result(pfn, "free buddy, 2nd try",
1075						DELAYED);
1076				return 0;
1077			}
1078			action_result(pfn, "non LRU", IGNORED);
1079			put_page(p);
1080			return -EBUSY;
1081		}
1082	}
1083
1084	/*
1085	 * Lock the page and wait for writeback to finish.
1086	 * It's very difficult to mess with pages currently under IO
1087	 * and in many cases impossible, so we just avoid it here.
1088	 */
1089	lock_page(hpage);
1090
1091	/*
1092	 * unpoison always clear PG_hwpoison inside page lock
1093	 */
1094	if (!PageHWPoison(p)) {
1095		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1096		res = 0;
1097		goto out;
1098	}
1099	if (hwpoison_filter(p)) {
1100		if (TestClearPageHWPoison(p))
1101			atomic_long_sub(nr_pages, &mce_bad_pages);
1102		unlock_page(hpage);
1103		put_page(hpage);
1104		return 0;
1105	}
1106
1107	/*
1108	 * For error on the tail page, we should set PG_hwpoison
1109	 * on the head page to show that the hugepage is hwpoisoned
1110	 */
1111	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1112		action_result(pfn, "hugepage already hardware poisoned",
1113				IGNORED);
1114		unlock_page(hpage);
1115		put_page(hpage);
1116		return 0;
1117	}
1118	/*
1119	 * Set PG_hwpoison on all pages in an error hugepage,
1120	 * because containment is done in hugepage unit for now.
1121	 * Since we have done TestSetPageHWPoison() for the head page with
1122	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1123	 */
1124	if (PageHuge(p))
1125		set_page_hwpoison_huge_page(hpage);
1126
1127	wait_on_page_writeback(p);
1128
1129	/*
1130	 * Now take care of user space mappings.
1131	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1132	 */
1133	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1134		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1135		res = -EBUSY;
1136		goto out;
1137	}
1138
1139	/*
1140	 * Torn down by someone else?
1141	 */
1142	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1143		action_result(pfn, "already truncated LRU", IGNORED);
1144		res = -EBUSY;
1145		goto out;
1146	}
1147
1148	res = -EBUSY;
1149	for (ps = error_states;; ps++) {
1150		if ((p->flags & ps->mask) == ps->res) {
1151			res = page_action(ps, p, pfn);
1152			break;
1153		}
1154	}
1155out:
1156	unlock_page(hpage);
1157	return res;
1158}
1159EXPORT_SYMBOL_GPL(__memory_failure);
1160
1161/**
1162 * memory_failure - Handle memory failure of a page.
1163 * @pfn: Page Number of the corrupted page
1164 * @trapno: Trap number reported in the signal to user space.
1165 *
1166 * This function is called by the low level machine check code
1167 * of an architecture when it detects hardware memory corruption
1168 * of a page. It tries its best to recover, which includes
1169 * dropping pages, killing processes etc.
1170 *
1171 * The function is primarily of use for corruptions that
1172 * happen outside the current execution context (e.g. when
1173 * detected by a background scrubber)
1174 *
1175 * Must run in process context (e.g. a work queue) with interrupts
1176 * enabled and no spinlocks hold.
1177 */
1178void memory_failure(unsigned long pfn, int trapno)
1179{
1180	__memory_failure(pfn, trapno, 0);
1181}
1182
1183#define MEMORY_FAILURE_FIFO_ORDER	4
1184#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1185
1186struct memory_failure_entry {
1187	unsigned long pfn;
1188	int trapno;
1189	int flags;
1190};
1191
1192struct memory_failure_cpu {
1193	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1194		      MEMORY_FAILURE_FIFO_SIZE);
1195	spinlock_t lock;
1196	struct work_struct work;
1197};
1198
1199static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1200
1201/**
1202 * memory_failure_queue - Schedule handling memory failure of a page.
1203 * @pfn: Page Number of the corrupted page
1204 * @trapno: Trap number reported in the signal to user space.
1205 * @flags: Flags for memory failure handling
1206 *
1207 * This function is called by the low level hardware error handler
1208 * when it detects hardware memory corruption of a page. It schedules
1209 * the recovering of error page, including dropping pages, killing
1210 * processes etc.
1211 *
1212 * The function is primarily of use for corruptions that
1213 * happen outside the current execution context (e.g. when
1214 * detected by a background scrubber)
1215 *
1216 * Can run in IRQ context.
1217 */
1218void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1219{
1220	struct memory_failure_cpu *mf_cpu;
1221	unsigned long proc_flags;
1222	struct memory_failure_entry entry = {
1223		.pfn =		pfn,
1224		.trapno =	trapno,
1225		.flags =	flags,
1226	};
1227
1228	mf_cpu = &get_cpu_var(memory_failure_cpu);
1229	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1230	if (kfifo_put(&mf_cpu->fifo, &entry))
1231		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1232	else
1233		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
1234		       pfn);
1235	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1236	put_cpu_var(memory_failure_cpu);
1237}
1238EXPORT_SYMBOL_GPL(memory_failure_queue);
1239
1240static void memory_failure_work_func(struct work_struct *work)
1241{
1242	struct memory_failure_cpu *mf_cpu;
1243	struct memory_failure_entry entry = { 0, };
1244	unsigned long proc_flags;
1245	int gotten;
1246
1247	mf_cpu = &__get_cpu_var(memory_failure_cpu);
1248	for (;;) {
1249		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1250		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1251		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1252		if (!gotten)
1253			break;
1254		__memory_failure(entry.pfn, entry.trapno, entry.flags);
1255	}
1256}
1257
1258static int __init memory_failure_init(void)
1259{
1260	struct memory_failure_cpu *mf_cpu;
1261	int cpu;
1262
1263	for_each_possible_cpu(cpu) {
1264		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1265		spin_lock_init(&mf_cpu->lock);
1266		INIT_KFIFO(mf_cpu->fifo);
1267		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1268	}
1269
1270	return 0;
1271}
1272core_initcall(memory_failure_init);
1273
1274/**
1275 * unpoison_memory - Unpoison a previously poisoned page
1276 * @pfn: Page number of the to be unpoisoned page
1277 *
1278 * Software-unpoison a page that has been poisoned by
1279 * memory_failure() earlier.
1280 *
1281 * This is only done on the software-level, so it only works
1282 * for linux injected failures, not real hardware failures
1283 *
1284 * Returns 0 for success, otherwise -errno.
1285 */
1286int unpoison_memory(unsigned long pfn)
1287{
1288	struct page *page;
1289	struct page *p;
1290	int freeit = 0;
1291	unsigned int nr_pages;
1292
1293	if (!pfn_valid(pfn))
1294		return -ENXIO;
1295
1296	p = pfn_to_page(pfn);
1297	page = compound_head(p);
1298
1299	if (!PageHWPoison(p)) {
1300		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1301		return 0;
1302	}
1303
1304	nr_pages = 1 << compound_trans_order(page);
1305
1306	if (!get_page_unless_zero(page)) {
1307		/*
1308		 * Since HWPoisoned hugepage should have non-zero refcount,
1309		 * race between memory failure and unpoison seems to happen.
1310		 * In such case unpoison fails and memory failure runs
1311		 * to the end.
1312		 */
1313		if (PageHuge(page)) {
1314			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1315			return 0;
1316		}
1317		if (TestClearPageHWPoison(p))
1318			atomic_long_sub(nr_pages, &mce_bad_pages);
1319		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1320		return 0;
1321	}
1322
1323	lock_page(page);
1324	/*
1325	 * This test is racy because PG_hwpoison is set outside of page lock.
1326	 * That's acceptable because that won't trigger kernel panic. Instead,
1327	 * the PG_hwpoison page will be caught and isolated on the entrance to
1328	 * the free buddy page pool.
1329	 */
1330	if (TestClearPageHWPoison(page)) {
1331		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1332		atomic_long_sub(nr_pages, &mce_bad_pages);
1333		freeit = 1;
1334		if (PageHuge(page))
1335			clear_page_hwpoison_huge_page(page);
1336	}
1337	unlock_page(page);
1338
1339	put_page(page);
1340	if (freeit)
1341		put_page(page);
1342
1343	return 0;
1344}
1345EXPORT_SYMBOL(unpoison_memory);
1346
1347static struct page *new_page(struct page *p, unsigned long private, int **x)
1348{
1349	int nid = page_to_nid(p);
1350	if (PageHuge(p))
1351		return alloc_huge_page_node(page_hstate(compound_head(p)),
1352						   nid);
1353	else
1354		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1355}
1356
1357/*
1358 * Safely get reference count of an arbitrary page.
1359 * Returns 0 for a free page, -EIO for a zero refcount page
1360 * that is not free, and 1 for any other page type.
1361 * For 1 the page is returned with increased page count, otherwise not.
1362 */
1363static int get_any_page(struct page *p, unsigned long pfn, int flags)
1364{
1365	int ret;
1366
1367	if (flags & MF_COUNT_INCREASED)
1368		return 1;
1369
1370	/*
1371	 * The lock_memory_hotplug prevents a race with memory hotplug.
1372	 * This is a big hammer, a better would be nicer.
1373	 */
1374	lock_memory_hotplug();
1375
1376	/*
1377	 * Isolate the page, so that it doesn't get reallocated if it
1378	 * was free.
1379	 */
1380	set_migratetype_isolate(p);
1381	/*
1382	 * When the target page is a free hugepage, just remove it
1383	 * from free hugepage list.
1384	 */
1385	if (!get_page_unless_zero(compound_head(p))) {
1386		if (PageHuge(p)) {
1387			pr_info("get_any_page: %#lx free huge page\n", pfn);
1388			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1389		} else if (is_free_buddy_page(p)) {
1390			pr_info("get_any_page: %#lx free buddy page\n", pfn);
1391			/* Set hwpoison bit while page is still isolated */
1392			SetPageHWPoison(p);
1393			ret = 0;
1394		} else {
1395			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1396				pfn, p->flags);
1397			ret = -EIO;
1398		}
1399	} else {
1400		/* Not a free page */
1401		ret = 1;
1402	}
1403	unset_migratetype_isolate(p);
1404	unlock_memory_hotplug();
1405	return ret;
1406}
1407
1408static int soft_offline_huge_page(struct page *page, int flags)
1409{
1410	int ret;
1411	unsigned long pfn = page_to_pfn(page);
1412	struct page *hpage = compound_head(page);
1413	LIST_HEAD(pagelist);
1414
1415	ret = get_any_page(page, pfn, flags);
1416	if (ret < 0)
1417		return ret;
1418	if (ret == 0)
1419		goto done;
1420
1421	if (PageHWPoison(hpage)) {
1422		put_page(hpage);
1423		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1424		return -EBUSY;
1425	}
1426
1427	/* Keep page count to indicate a given hugepage is isolated. */
1428
1429	list_add(&hpage->lru, &pagelist);
1430	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1431				true);
1432	if (ret) {
1433		struct page *page1, *page2;
1434		list_for_each_entry_safe(page1, page2, &pagelist, lru)
1435			put_page(page1);
1436
1437		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1438			pfn, ret, page->flags);
1439		if (ret > 0)
1440			ret = -EIO;
1441		return ret;
1442	}
1443done:
1444	if (!PageHWPoison(hpage))
1445		atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1446	set_page_hwpoison_huge_page(hpage);
1447	dequeue_hwpoisoned_huge_page(hpage);
1448	/* keep elevated page count for bad page */
1449	return ret;
1450}
1451
1452/**
1453 * soft_offline_page - Soft offline a page.
1454 * @page: page to offline
1455 * @flags: flags. Same as memory_failure().
1456 *
1457 * Returns 0 on success, otherwise negated errno.
1458 *
1459 * Soft offline a page, by migration or invalidation,
1460 * without killing anything. This is for the case when
1461 * a page is not corrupted yet (so it's still valid to access),
1462 * but has had a number of corrected errors and is better taken
1463 * out.
1464 *
1465 * The actual policy on when to do that is maintained by
1466 * user space.
1467 *
1468 * This should never impact any application or cause data loss,
1469 * however it might take some time.
1470 *
1471 * This is not a 100% solution for all memory, but tries to be
1472 * ``good enough'' for the majority of memory.
1473 */
1474int soft_offline_page(struct page *page, int flags)
1475{
1476	int ret;
1477	unsigned long pfn = page_to_pfn(page);
1478
1479	if (PageHuge(page))
1480		return soft_offline_huge_page(page, flags);
1481
1482	ret = get_any_page(page, pfn, flags);
1483	if (ret < 0)
1484		return ret;
1485	if (ret == 0)
1486		goto done;
1487
1488	/*
1489	 * Page cache page we can handle?
1490	 */
1491	if (!PageLRU(page)) {
1492		/*
1493		 * Try to free it.
1494		 */
1495		put_page(page);
1496		shake_page(page, 1);
1497
1498		/*
1499		 * Did it turn free?
1500		 */
1501		ret = get_any_page(page, pfn, 0);
1502		if (ret < 0)
1503			return ret;
1504		if (ret == 0)
1505			goto done;
1506	}
1507	if (!PageLRU(page)) {
1508		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1509			pfn, page->flags);
1510		return -EIO;
1511	}
1512
1513	lock_page(page);
1514	wait_on_page_writeback(page);
1515
1516	/*
1517	 * Synchronized using the page lock with memory_failure()
1518	 */
1519	if (PageHWPoison(page)) {
1520		unlock_page(page);
1521		put_page(page);
1522		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1523		return -EBUSY;
1524	}
1525
1526	/*
1527	 * Try to invalidate first. This should work for
1528	 * non dirty unmapped page cache pages.
1529	 */
1530	ret = invalidate_inode_page(page);
1531	unlock_page(page);
1532	/*
1533	 * RED-PEN would be better to keep it isolated here, but we
1534	 * would need to fix isolation locking first.
1535	 */
1536	if (ret == 1) {
1537		put_page(page);
1538		ret = 0;
1539		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1540		goto done;
1541	}
1542
1543	/*
1544	 * Simple invalidation didn't work.
1545	 * Try to migrate to a new page instead. migrate.c
1546	 * handles a large number of cases for us.
1547	 */
1548	ret = isolate_lru_page(page);
1549	/*
1550	 * Drop page reference which is came from get_any_page()
1551	 * successful isolate_lru_page() already took another one.
1552	 */
1553	put_page(page);
1554	if (!ret) {
1555		LIST_HEAD(pagelist);
1556		inc_zone_page_state(page, NR_ISOLATED_ANON +
1557					    page_is_file_cache(page));
1558		list_add(&page->lru, &pagelist);
1559		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1560							0, MIGRATE_SYNC);
1561		if (ret) {
1562			putback_lru_pages(&pagelist);
1563			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1564				pfn, ret, page->flags);
1565			if (ret > 0)
1566				ret = -EIO;
1567		}
1568	} else {
1569		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1570			pfn, ret, page_count(page), page->flags);
1571	}
1572	if (ret)
1573		return ret;
1574
1575done:
1576	atomic_long_add(1, &mce_bad_pages);
1577	SetPageHWPoison(page);
1578	/* keep elevated page count for bad page */
1579	return ret;
1580}
1581