memory.c revision 14d1a55cd26f1860f837f37ae42520c7c13b1347
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/module.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60
61#include <asm/io.h>
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
68#include "internal.h"
69
70#ifndef CONFIG_NEED_MULTIPLE_NODES
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
91
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 *   as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100					1;
101#else
102					2;
103#endif
104
105static int __init disable_randmaps(char *s)
106{
107	randomize_va_space = 0;
108	return 1;
109}
110__setup("norandmaps", disable_randmaps);
111
112unsigned long zero_pfn __read_mostly;
113unsigned long highest_memmap_pfn __read_mostly;
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121	return 0;
122}
123core_initcall(init_zero_pfn);
124
125
126#if defined(SPLIT_RSS_COUNTING)
127
128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129{
130	int i;
131
132	for (i = 0; i < NR_MM_COUNTERS; i++) {
133		if (task->rss_stat.count[i]) {
134			add_mm_counter(mm, i, task->rss_stat.count[i]);
135			task->rss_stat.count[i] = 0;
136		}
137	}
138	task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143	struct task_struct *task = current;
144
145	if (likely(task->mm == mm))
146		task->rss_stat.count[member] += val;
147	else
148		add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH	(64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157	if (unlikely(task != current))
158		return;
159	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160		__sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165	long val = 0;
166
167	/*
168	 * Don't use task->mm here...for avoiding to use task_get_mm()..
169	 * The caller must guarantee task->mm is not invalid.
170	 */
171	val = atomic_long_read(&mm->rss_stat.count[member]);
172	/*
173	 * counter is updated in asynchronous manner and may go to minus.
174	 * But it's never be expected number for users.
175	 */
176	if (val < 0)
177		return 0;
178	return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183	__sync_task_rss_stat(task, mm);
184}
185#else
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
194#endif
195
196/*
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none.  Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
200 */
201
202void pgd_clear_bad(pgd_t *pgd)
203{
204	pgd_ERROR(*pgd);
205	pgd_clear(pgd);
206}
207
208void pud_clear_bad(pud_t *pud)
209{
210	pud_ERROR(*pud);
211	pud_clear(pud);
212}
213
214void pmd_clear_bad(pmd_t *pmd)
215{
216	pmd_ERROR(*pmd);
217	pmd_clear(pmd);
218}
219
220/*
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
223 */
224static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225			   unsigned long addr)
226{
227	pgtable_t token = pmd_pgtable(*pmd);
228	pmd_clear(pmd);
229	pte_free_tlb(tlb, token, addr);
230	tlb->mm->nr_ptes--;
231}
232
233static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234				unsigned long addr, unsigned long end,
235				unsigned long floor, unsigned long ceiling)
236{
237	pmd_t *pmd;
238	unsigned long next;
239	unsigned long start;
240
241	start = addr;
242	pmd = pmd_offset(pud, addr);
243	do {
244		next = pmd_addr_end(addr, end);
245		if (pmd_none_or_clear_bad(pmd))
246			continue;
247		free_pte_range(tlb, pmd, addr);
248	} while (pmd++, addr = next, addr != end);
249
250	start &= PUD_MASK;
251	if (start < floor)
252		return;
253	if (ceiling) {
254		ceiling &= PUD_MASK;
255		if (!ceiling)
256			return;
257	}
258	if (end - 1 > ceiling - 1)
259		return;
260
261	pmd = pmd_offset(pud, start);
262	pud_clear(pud);
263	pmd_free_tlb(tlb, pmd, start);
264}
265
266static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267				unsigned long addr, unsigned long end,
268				unsigned long floor, unsigned long ceiling)
269{
270	pud_t *pud;
271	unsigned long next;
272	unsigned long start;
273
274	start = addr;
275	pud = pud_offset(pgd, addr);
276	do {
277		next = pud_addr_end(addr, end);
278		if (pud_none_or_clear_bad(pud))
279			continue;
280		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281	} while (pud++, addr = next, addr != end);
282
283	start &= PGDIR_MASK;
284	if (start < floor)
285		return;
286	if (ceiling) {
287		ceiling &= PGDIR_MASK;
288		if (!ceiling)
289			return;
290	}
291	if (end - 1 > ceiling - 1)
292		return;
293
294	pud = pud_offset(pgd, start);
295	pgd_clear(pgd);
296	pud_free_tlb(tlb, pud, start);
297}
298
299/*
300 * This function frees user-level page tables of a process.
301 *
302 * Must be called with pagetable lock held.
303 */
304void free_pgd_range(struct mmu_gather *tlb,
305			unsigned long addr, unsigned long end,
306			unsigned long floor, unsigned long ceiling)
307{
308	pgd_t *pgd;
309	unsigned long next;
310
311	/*
312	 * The next few lines have given us lots of grief...
313	 *
314	 * Why are we testing PMD* at this top level?  Because often
315	 * there will be no work to do at all, and we'd prefer not to
316	 * go all the way down to the bottom just to discover that.
317	 *
318	 * Why all these "- 1"s?  Because 0 represents both the bottom
319	 * of the address space and the top of it (using -1 for the
320	 * top wouldn't help much: the masks would do the wrong thing).
321	 * The rule is that addr 0 and floor 0 refer to the bottom of
322	 * the address space, but end 0 and ceiling 0 refer to the top
323	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324	 * that end 0 case should be mythical).
325	 *
326	 * Wherever addr is brought up or ceiling brought down, we must
327	 * be careful to reject "the opposite 0" before it confuses the
328	 * subsequent tests.  But what about where end is brought down
329	 * by PMD_SIZE below? no, end can't go down to 0 there.
330	 *
331	 * Whereas we round start (addr) and ceiling down, by different
332	 * masks at different levels, in order to test whether a table
333	 * now has no other vmas using it, so can be freed, we don't
334	 * bother to round floor or end up - the tests don't need that.
335	 */
336
337	addr &= PMD_MASK;
338	if (addr < floor) {
339		addr += PMD_SIZE;
340		if (!addr)
341			return;
342	}
343	if (ceiling) {
344		ceiling &= PMD_MASK;
345		if (!ceiling)
346			return;
347	}
348	if (end - 1 > ceiling - 1)
349		end -= PMD_SIZE;
350	if (addr > end - 1)
351		return;
352
353	pgd = pgd_offset(tlb->mm, addr);
354	do {
355		next = pgd_addr_end(addr, end);
356		if (pgd_none_or_clear_bad(pgd))
357			continue;
358		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
359	} while (pgd++, addr = next, addr != end);
360}
361
362void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
363		unsigned long floor, unsigned long ceiling)
364{
365	while (vma) {
366		struct vm_area_struct *next = vma->vm_next;
367		unsigned long addr = vma->vm_start;
368
369		/*
370		 * Hide vma from rmap and truncate_pagecache before freeing
371		 * pgtables
372		 */
373		unlink_anon_vmas(vma);
374		unlink_file_vma(vma);
375
376		if (is_vm_hugetlb_page(vma)) {
377			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
378				floor, next? next->vm_start: ceiling);
379		} else {
380			/*
381			 * Optimization: gather nearby vmas into one call down
382			 */
383			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
384			       && !is_vm_hugetlb_page(next)) {
385				vma = next;
386				next = vma->vm_next;
387				unlink_anon_vmas(vma);
388				unlink_file_vma(vma);
389			}
390			free_pgd_range(tlb, addr, vma->vm_end,
391				floor, next? next->vm_start: ceiling);
392		}
393		vma = next;
394	}
395}
396
397int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
398		pmd_t *pmd, unsigned long address)
399{
400	pgtable_t new = pte_alloc_one(mm, address);
401	int wait_split_huge_page;
402	if (!new)
403		return -ENOMEM;
404
405	/*
406	 * Ensure all pte setup (eg. pte page lock and page clearing) are
407	 * visible before the pte is made visible to other CPUs by being
408	 * put into page tables.
409	 *
410	 * The other side of the story is the pointer chasing in the page
411	 * table walking code (when walking the page table without locking;
412	 * ie. most of the time). Fortunately, these data accesses consist
413	 * of a chain of data-dependent loads, meaning most CPUs (alpha
414	 * being the notable exception) will already guarantee loads are
415	 * seen in-order. See the alpha page table accessors for the
416	 * smp_read_barrier_depends() barriers in page table walking code.
417	 */
418	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
419
420	spin_lock(&mm->page_table_lock);
421	wait_split_huge_page = 0;
422	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
423		mm->nr_ptes++;
424		pmd_populate(mm, pmd, new);
425		new = NULL;
426	} else if (unlikely(pmd_trans_splitting(*pmd)))
427		wait_split_huge_page = 1;
428	spin_unlock(&mm->page_table_lock);
429	if (new)
430		pte_free(mm, new);
431	if (wait_split_huge_page)
432		wait_split_huge_page(vma->anon_vma, pmd);
433	return 0;
434}
435
436int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
437{
438	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
439	if (!new)
440		return -ENOMEM;
441
442	smp_wmb(); /* See comment in __pte_alloc */
443
444	spin_lock(&init_mm.page_table_lock);
445	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
446		pmd_populate_kernel(&init_mm, pmd, new);
447		new = NULL;
448	} else
449		VM_BUG_ON(pmd_trans_splitting(*pmd));
450	spin_unlock(&init_mm.page_table_lock);
451	if (new)
452		pte_free_kernel(&init_mm, new);
453	return 0;
454}
455
456static inline void init_rss_vec(int *rss)
457{
458	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459}
460
461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
462{
463	int i;
464
465	if (current->mm == mm)
466		sync_mm_rss(current, mm);
467	for (i = 0; i < NR_MM_COUNTERS; i++)
468		if (rss[i])
469			add_mm_counter(mm, i, rss[i]);
470}
471
472/*
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
476 *
477 * The calling function must still handle the error.
478 */
479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480			  pte_t pte, struct page *page)
481{
482	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483	pud_t *pud = pud_offset(pgd, addr);
484	pmd_t *pmd = pmd_offset(pud, addr);
485	struct address_space *mapping;
486	pgoff_t index;
487	static unsigned long resume;
488	static unsigned long nr_shown;
489	static unsigned long nr_unshown;
490
491	/*
492	 * Allow a burst of 60 reports, then keep quiet for that minute;
493	 * or allow a steady drip of one report per second.
494	 */
495	if (nr_shown == 60) {
496		if (time_before(jiffies, resume)) {
497			nr_unshown++;
498			return;
499		}
500		if (nr_unshown) {
501			printk(KERN_ALERT
502				"BUG: Bad page map: %lu messages suppressed\n",
503				nr_unshown);
504			nr_unshown = 0;
505		}
506		nr_shown = 0;
507	}
508	if (nr_shown++ == 0)
509		resume = jiffies + 60 * HZ;
510
511	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512	index = linear_page_index(vma, addr);
513
514	printk(KERN_ALERT
515		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
516		current->comm,
517		(long long)pte_val(pte), (long long)pmd_val(*pmd));
518	if (page)
519		dump_page(page);
520	printk(KERN_ALERT
521		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523	/*
524	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
525	 */
526	if (vma->vm_ops)
527		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
528				(unsigned long)vma->vm_ops->fault);
529	if (vma->vm_file && vma->vm_file->f_op)
530		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
531				(unsigned long)vma->vm_file->f_op->mmap);
532	dump_stack();
533	add_taint(TAINT_BAD_PAGE);
534}
535
536static inline int is_cow_mapping(unsigned int flags)
537{
538	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
539}
540
541#ifndef is_zero_pfn
542static inline int is_zero_pfn(unsigned long pfn)
543{
544	return pfn == zero_pfn;
545}
546#endif
547
548#ifndef my_zero_pfn
549static inline unsigned long my_zero_pfn(unsigned long addr)
550{
551	return zero_pfn;
552}
553#endif
554
555/*
556 * vm_normal_page -- This function gets the "struct page" associated with a pte.
557 *
558 * "Special" mappings do not wish to be associated with a "struct page" (either
559 * it doesn't exist, or it exists but they don't want to touch it). In this
560 * case, NULL is returned here. "Normal" mappings do have a struct page.
561 *
562 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
563 * pte bit, in which case this function is trivial. Secondly, an architecture
564 * may not have a spare pte bit, which requires a more complicated scheme,
565 * described below.
566 *
567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
568 * special mapping (even if there are underlying and valid "struct pages").
569 * COWed pages of a VM_PFNMAP are always normal.
570 *
571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
574 * mapping will always honor the rule
575 *
576 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
577 *
578 * And for normal mappings this is false.
579 *
580 * This restricts such mappings to be a linear translation from virtual address
581 * to pfn. To get around this restriction, we allow arbitrary mappings so long
582 * as the vma is not a COW mapping; in that case, we know that all ptes are
583 * special (because none can have been COWed).
584 *
585 *
586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
587 *
588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
589 * page" backing, however the difference is that _all_ pages with a struct
590 * page (that is, those where pfn_valid is true) are refcounted and considered
591 * normal pages by the VM. The disadvantage is that pages are refcounted
592 * (which can be slower and simply not an option for some PFNMAP users). The
593 * advantage is that we don't have to follow the strict linearity rule of
594 * PFNMAP mappings in order to support COWable mappings.
595 *
596 */
597#ifdef __HAVE_ARCH_PTE_SPECIAL
598# define HAVE_PTE_SPECIAL 1
599#else
600# define HAVE_PTE_SPECIAL 0
601#endif
602struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603				pte_t pte)
604{
605	unsigned long pfn = pte_pfn(pte);
606
607	if (HAVE_PTE_SPECIAL) {
608		if (likely(!pte_special(pte)))
609			goto check_pfn;
610		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
611			return NULL;
612		if (!is_zero_pfn(pfn))
613			print_bad_pte(vma, addr, pte, NULL);
614		return NULL;
615	}
616
617	/* !HAVE_PTE_SPECIAL case follows: */
618
619	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620		if (vma->vm_flags & VM_MIXEDMAP) {
621			if (!pfn_valid(pfn))
622				return NULL;
623			goto out;
624		} else {
625			unsigned long off;
626			off = (addr - vma->vm_start) >> PAGE_SHIFT;
627			if (pfn == vma->vm_pgoff + off)
628				return NULL;
629			if (!is_cow_mapping(vma->vm_flags))
630				return NULL;
631		}
632	}
633
634	if (is_zero_pfn(pfn))
635		return NULL;
636check_pfn:
637	if (unlikely(pfn > highest_memmap_pfn)) {
638		print_bad_pte(vma, addr, pte, NULL);
639		return NULL;
640	}
641
642	/*
643	 * NOTE! We still have PageReserved() pages in the page tables.
644	 * eg. VDSO mappings can cause them to exist.
645	 */
646out:
647	return pfn_to_page(pfn);
648}
649
650/*
651 * copy one vm_area from one task to the other. Assumes the page tables
652 * already present in the new task to be cleared in the whole range
653 * covered by this vma.
654 */
655
656static inline unsigned long
657copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
659		unsigned long addr, int *rss)
660{
661	unsigned long vm_flags = vma->vm_flags;
662	pte_t pte = *src_pte;
663	struct page *page;
664
665	/* pte contains position in swap or file, so copy. */
666	if (unlikely(!pte_present(pte))) {
667		if (!pte_file(pte)) {
668			swp_entry_t entry = pte_to_swp_entry(pte);
669
670			if (swap_duplicate(entry) < 0)
671				return entry.val;
672
673			/* make sure dst_mm is on swapoff's mmlist. */
674			if (unlikely(list_empty(&dst_mm->mmlist))) {
675				spin_lock(&mmlist_lock);
676				if (list_empty(&dst_mm->mmlist))
677					list_add(&dst_mm->mmlist,
678						 &src_mm->mmlist);
679				spin_unlock(&mmlist_lock);
680			}
681			if (likely(!non_swap_entry(entry)))
682				rss[MM_SWAPENTS]++;
683			else if (is_write_migration_entry(entry) &&
684					is_cow_mapping(vm_flags)) {
685				/*
686				 * COW mappings require pages in both parent
687				 * and child to be set to read.
688				 */
689				make_migration_entry_read(&entry);
690				pte = swp_entry_to_pte(entry);
691				set_pte_at(src_mm, addr, src_pte, pte);
692			}
693		}
694		goto out_set_pte;
695	}
696
697	/*
698	 * If it's a COW mapping, write protect it both
699	 * in the parent and the child
700	 */
701	if (is_cow_mapping(vm_flags)) {
702		ptep_set_wrprotect(src_mm, addr, src_pte);
703		pte = pte_wrprotect(pte);
704	}
705
706	/*
707	 * If it's a shared mapping, mark it clean in
708	 * the child
709	 */
710	if (vm_flags & VM_SHARED)
711		pte = pte_mkclean(pte);
712	pte = pte_mkold(pte);
713
714	page = vm_normal_page(vma, addr, pte);
715	if (page) {
716		get_page(page);
717		page_dup_rmap(page);
718		if (PageAnon(page))
719			rss[MM_ANONPAGES]++;
720		else
721			rss[MM_FILEPAGES]++;
722	}
723
724out_set_pte:
725	set_pte_at(dst_mm, addr, dst_pte, pte);
726	return 0;
727}
728
729int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
730		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
731		   unsigned long addr, unsigned long end)
732{
733	pte_t *orig_src_pte, *orig_dst_pte;
734	pte_t *src_pte, *dst_pte;
735	spinlock_t *src_ptl, *dst_ptl;
736	int progress = 0;
737	int rss[NR_MM_COUNTERS];
738	swp_entry_t entry = (swp_entry_t){0};
739
740again:
741	init_rss_vec(rss);
742
743	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
744	if (!dst_pte)
745		return -ENOMEM;
746	src_pte = pte_offset_map(src_pmd, addr);
747	src_ptl = pte_lockptr(src_mm, src_pmd);
748	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
749	orig_src_pte = src_pte;
750	orig_dst_pte = dst_pte;
751	arch_enter_lazy_mmu_mode();
752
753	do {
754		/*
755		 * We are holding two locks at this point - either of them
756		 * could generate latencies in another task on another CPU.
757		 */
758		if (progress >= 32) {
759			progress = 0;
760			if (need_resched() ||
761			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
762				break;
763		}
764		if (pte_none(*src_pte)) {
765			progress++;
766			continue;
767		}
768		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
769							vma, addr, rss);
770		if (entry.val)
771			break;
772		progress += 8;
773	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
774
775	arch_leave_lazy_mmu_mode();
776	spin_unlock(src_ptl);
777	pte_unmap(orig_src_pte);
778	add_mm_rss_vec(dst_mm, rss);
779	pte_unmap_unlock(orig_dst_pte, dst_ptl);
780	cond_resched();
781
782	if (entry.val) {
783		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
784			return -ENOMEM;
785		progress = 0;
786	}
787	if (addr != end)
788		goto again;
789	return 0;
790}
791
792static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
794		unsigned long addr, unsigned long end)
795{
796	pmd_t *src_pmd, *dst_pmd;
797	unsigned long next;
798
799	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
800	if (!dst_pmd)
801		return -ENOMEM;
802	src_pmd = pmd_offset(src_pud, addr);
803	do {
804		next = pmd_addr_end(addr, end);
805		if (pmd_trans_huge(*src_pmd)) {
806			int err;
807			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
808			err = copy_huge_pmd(dst_mm, src_mm,
809					    dst_pmd, src_pmd, addr, vma);
810			if (err == -ENOMEM)
811				return -ENOMEM;
812			if (!err)
813				continue;
814			/* fall through */
815		}
816		if (pmd_none_or_clear_bad(src_pmd))
817			continue;
818		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
819						vma, addr, next))
820			return -ENOMEM;
821	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
822	return 0;
823}
824
825static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
826		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
827		unsigned long addr, unsigned long end)
828{
829	pud_t *src_pud, *dst_pud;
830	unsigned long next;
831
832	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
833	if (!dst_pud)
834		return -ENOMEM;
835	src_pud = pud_offset(src_pgd, addr);
836	do {
837		next = pud_addr_end(addr, end);
838		if (pud_none_or_clear_bad(src_pud))
839			continue;
840		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
841						vma, addr, next))
842			return -ENOMEM;
843	} while (dst_pud++, src_pud++, addr = next, addr != end);
844	return 0;
845}
846
847int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848		struct vm_area_struct *vma)
849{
850	pgd_t *src_pgd, *dst_pgd;
851	unsigned long next;
852	unsigned long addr = vma->vm_start;
853	unsigned long end = vma->vm_end;
854	int ret;
855
856	/*
857	 * Don't copy ptes where a page fault will fill them correctly.
858	 * Fork becomes much lighter when there are big shared or private
859	 * readonly mappings. The tradeoff is that copy_page_range is more
860	 * efficient than faulting.
861	 */
862	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
863		if (!vma->anon_vma)
864			return 0;
865	}
866
867	if (is_vm_hugetlb_page(vma))
868		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
869
870	if (unlikely(is_pfn_mapping(vma))) {
871		/*
872		 * We do not free on error cases below as remove_vma
873		 * gets called on error from higher level routine
874		 */
875		ret = track_pfn_vma_copy(vma);
876		if (ret)
877			return ret;
878	}
879
880	/*
881	 * We need to invalidate the secondary MMU mappings only when
882	 * there could be a permission downgrade on the ptes of the
883	 * parent mm. And a permission downgrade will only happen if
884	 * is_cow_mapping() returns true.
885	 */
886	if (is_cow_mapping(vma->vm_flags))
887		mmu_notifier_invalidate_range_start(src_mm, addr, end);
888
889	ret = 0;
890	dst_pgd = pgd_offset(dst_mm, addr);
891	src_pgd = pgd_offset(src_mm, addr);
892	do {
893		next = pgd_addr_end(addr, end);
894		if (pgd_none_or_clear_bad(src_pgd))
895			continue;
896		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
897					    vma, addr, next))) {
898			ret = -ENOMEM;
899			break;
900		}
901	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
902
903	if (is_cow_mapping(vma->vm_flags))
904		mmu_notifier_invalidate_range_end(src_mm,
905						  vma->vm_start, end);
906	return ret;
907}
908
909static unsigned long zap_pte_range(struct mmu_gather *tlb,
910				struct vm_area_struct *vma, pmd_t *pmd,
911				unsigned long addr, unsigned long end,
912				long *zap_work, struct zap_details *details)
913{
914	struct mm_struct *mm = tlb->mm;
915	pte_t *pte;
916	spinlock_t *ptl;
917	int rss[NR_MM_COUNTERS];
918
919	init_rss_vec(rss);
920
921	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
922	arch_enter_lazy_mmu_mode();
923	do {
924		pte_t ptent = *pte;
925		if (pte_none(ptent)) {
926			(*zap_work)--;
927			continue;
928		}
929
930		(*zap_work) -= PAGE_SIZE;
931
932		if (pte_present(ptent)) {
933			struct page *page;
934
935			page = vm_normal_page(vma, addr, ptent);
936			if (unlikely(details) && page) {
937				/*
938				 * unmap_shared_mapping_pages() wants to
939				 * invalidate cache without truncating:
940				 * unmap shared but keep private pages.
941				 */
942				if (details->check_mapping &&
943				    details->check_mapping != page->mapping)
944					continue;
945				/*
946				 * Each page->index must be checked when
947				 * invalidating or truncating nonlinear.
948				 */
949				if (details->nonlinear_vma &&
950				    (page->index < details->first_index ||
951				     page->index > details->last_index))
952					continue;
953			}
954			ptent = ptep_get_and_clear_full(mm, addr, pte,
955							tlb->fullmm);
956			tlb_remove_tlb_entry(tlb, pte, addr);
957			if (unlikely(!page))
958				continue;
959			if (unlikely(details) && details->nonlinear_vma
960			    && linear_page_index(details->nonlinear_vma,
961						addr) != page->index)
962				set_pte_at(mm, addr, pte,
963					   pgoff_to_pte(page->index));
964			if (PageAnon(page))
965				rss[MM_ANONPAGES]--;
966			else {
967				if (pte_dirty(ptent))
968					set_page_dirty(page);
969				if (pte_young(ptent) &&
970				    likely(!VM_SequentialReadHint(vma)))
971					mark_page_accessed(page);
972				rss[MM_FILEPAGES]--;
973			}
974			page_remove_rmap(page);
975			if (unlikely(page_mapcount(page) < 0))
976				print_bad_pte(vma, addr, ptent, page);
977			tlb_remove_page(tlb, page);
978			continue;
979		}
980		/*
981		 * If details->check_mapping, we leave swap entries;
982		 * if details->nonlinear_vma, we leave file entries.
983		 */
984		if (unlikely(details))
985			continue;
986		if (pte_file(ptent)) {
987			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
988				print_bad_pte(vma, addr, ptent, NULL);
989		} else {
990			swp_entry_t entry = pte_to_swp_entry(ptent);
991
992			if (!non_swap_entry(entry))
993				rss[MM_SWAPENTS]--;
994			if (unlikely(!free_swap_and_cache(entry)))
995				print_bad_pte(vma, addr, ptent, NULL);
996		}
997		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
998	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
999
1000	add_mm_rss_vec(mm, rss);
1001	arch_leave_lazy_mmu_mode();
1002	pte_unmap_unlock(pte - 1, ptl);
1003
1004	return addr;
1005}
1006
1007static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1008				struct vm_area_struct *vma, pud_t *pud,
1009				unsigned long addr, unsigned long end,
1010				long *zap_work, struct zap_details *details)
1011{
1012	pmd_t *pmd;
1013	unsigned long next;
1014
1015	pmd = pmd_offset(pud, addr);
1016	do {
1017		next = pmd_addr_end(addr, end);
1018		if (pmd_trans_huge(*pmd)) {
1019			if (next-addr != HPAGE_PMD_SIZE) {
1020				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1021				split_huge_page_pmd(vma->vm_mm, pmd);
1022			} else if (zap_huge_pmd(tlb, vma, pmd)) {
1023				(*zap_work)--;
1024				continue;
1025			}
1026			/* fall through */
1027		}
1028		if (pmd_none_or_clear_bad(pmd)) {
1029			(*zap_work)--;
1030			continue;
1031		}
1032		next = zap_pte_range(tlb, vma, pmd, addr, next,
1033						zap_work, details);
1034	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
1035
1036	return addr;
1037}
1038
1039static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1040				struct vm_area_struct *vma, pgd_t *pgd,
1041				unsigned long addr, unsigned long end,
1042				long *zap_work, struct zap_details *details)
1043{
1044	pud_t *pud;
1045	unsigned long next;
1046
1047	pud = pud_offset(pgd, addr);
1048	do {
1049		next = pud_addr_end(addr, end);
1050		if (pud_none_or_clear_bad(pud)) {
1051			(*zap_work)--;
1052			continue;
1053		}
1054		next = zap_pmd_range(tlb, vma, pud, addr, next,
1055						zap_work, details);
1056	} while (pud++, addr = next, (addr != end && *zap_work > 0));
1057
1058	return addr;
1059}
1060
1061static unsigned long unmap_page_range(struct mmu_gather *tlb,
1062				struct vm_area_struct *vma,
1063				unsigned long addr, unsigned long end,
1064				long *zap_work, struct zap_details *details)
1065{
1066	pgd_t *pgd;
1067	unsigned long next;
1068
1069	if (details && !details->check_mapping && !details->nonlinear_vma)
1070		details = NULL;
1071
1072	BUG_ON(addr >= end);
1073	mem_cgroup_uncharge_start();
1074	tlb_start_vma(tlb, vma);
1075	pgd = pgd_offset(vma->vm_mm, addr);
1076	do {
1077		next = pgd_addr_end(addr, end);
1078		if (pgd_none_or_clear_bad(pgd)) {
1079			(*zap_work)--;
1080			continue;
1081		}
1082		next = zap_pud_range(tlb, vma, pgd, addr, next,
1083						zap_work, details);
1084	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
1085	tlb_end_vma(tlb, vma);
1086	mem_cgroup_uncharge_end();
1087
1088	return addr;
1089}
1090
1091#ifdef CONFIG_PREEMPT
1092# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1093#else
1094/* No preempt: go for improved straight-line efficiency */
1095# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1096#endif
1097
1098/**
1099 * unmap_vmas - unmap a range of memory covered by a list of vma's
1100 * @tlbp: address of the caller's struct mmu_gather
1101 * @vma: the starting vma
1102 * @start_addr: virtual address at which to start unmapping
1103 * @end_addr: virtual address at which to end unmapping
1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1105 * @details: details of nonlinear truncation or shared cache invalidation
1106 *
1107 * Returns the end address of the unmapping (restart addr if interrupted).
1108 *
1109 * Unmap all pages in the vma list.
1110 *
1111 * We aim to not hold locks for too long (for scheduling latency reasons).
1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1113 * return the ending mmu_gather to the caller.
1114 *
1115 * Only addresses between `start' and `end' will be unmapped.
1116 *
1117 * The VMA list must be sorted in ascending virtual address order.
1118 *
1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1120 * range after unmap_vmas() returns.  So the only responsibility here is to
1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1122 * drops the lock and schedules.
1123 */
1124unsigned long unmap_vmas(struct mmu_gather **tlbp,
1125		struct vm_area_struct *vma, unsigned long start_addr,
1126		unsigned long end_addr, unsigned long *nr_accounted,
1127		struct zap_details *details)
1128{
1129	long zap_work = ZAP_BLOCK_SIZE;
1130	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
1131	int tlb_start_valid = 0;
1132	unsigned long start = start_addr;
1133	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1134	int fullmm = (*tlbp)->fullmm;
1135	struct mm_struct *mm = vma->vm_mm;
1136
1137	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1138	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1139		unsigned long end;
1140
1141		start = max(vma->vm_start, start_addr);
1142		if (start >= vma->vm_end)
1143			continue;
1144		end = min(vma->vm_end, end_addr);
1145		if (end <= vma->vm_start)
1146			continue;
1147
1148		if (vma->vm_flags & VM_ACCOUNT)
1149			*nr_accounted += (end - start) >> PAGE_SHIFT;
1150
1151		if (unlikely(is_pfn_mapping(vma)))
1152			untrack_pfn_vma(vma, 0, 0);
1153
1154		while (start != end) {
1155			if (!tlb_start_valid) {
1156				tlb_start = start;
1157				tlb_start_valid = 1;
1158			}
1159
1160			if (unlikely(is_vm_hugetlb_page(vma))) {
1161				/*
1162				 * It is undesirable to test vma->vm_file as it
1163				 * should be non-null for valid hugetlb area.
1164				 * However, vm_file will be NULL in the error
1165				 * cleanup path of do_mmap_pgoff. When
1166				 * hugetlbfs ->mmap method fails,
1167				 * do_mmap_pgoff() nullifies vma->vm_file
1168				 * before calling this function to clean up.
1169				 * Since no pte has actually been setup, it is
1170				 * safe to do nothing in this case.
1171				 */
1172				if (vma->vm_file) {
1173					unmap_hugepage_range(vma, start, end, NULL);
1174					zap_work -= (end - start) /
1175					pages_per_huge_page(hstate_vma(vma));
1176				}
1177
1178				start = end;
1179			} else
1180				start = unmap_page_range(*tlbp, vma,
1181						start, end, &zap_work, details);
1182
1183			if (zap_work > 0) {
1184				BUG_ON(start != end);
1185				break;
1186			}
1187
1188			tlb_finish_mmu(*tlbp, tlb_start, start);
1189
1190			if (need_resched() ||
1191				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1192				if (i_mmap_lock) {
1193					*tlbp = NULL;
1194					goto out;
1195				}
1196				cond_resched();
1197			}
1198
1199			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1200			tlb_start_valid = 0;
1201			zap_work = ZAP_BLOCK_SIZE;
1202		}
1203	}
1204out:
1205	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1206	return start;	/* which is now the end (or restart) address */
1207}
1208
1209/**
1210 * zap_page_range - remove user pages in a given range
1211 * @vma: vm_area_struct holding the applicable pages
1212 * @address: starting address of pages to zap
1213 * @size: number of bytes to zap
1214 * @details: details of nonlinear truncation or shared cache invalidation
1215 */
1216unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1217		unsigned long size, struct zap_details *details)
1218{
1219	struct mm_struct *mm = vma->vm_mm;
1220	struct mmu_gather *tlb;
1221	unsigned long end = address + size;
1222	unsigned long nr_accounted = 0;
1223
1224	lru_add_drain();
1225	tlb = tlb_gather_mmu(mm, 0);
1226	update_hiwater_rss(mm);
1227	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1228	if (tlb)
1229		tlb_finish_mmu(tlb, address, end);
1230	return end;
1231}
1232
1233/**
1234 * zap_vma_ptes - remove ptes mapping the vma
1235 * @vma: vm_area_struct holding ptes to be zapped
1236 * @address: starting address of pages to zap
1237 * @size: number of bytes to zap
1238 *
1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1240 *
1241 * The entire address range must be fully contained within the vma.
1242 *
1243 * Returns 0 if successful.
1244 */
1245int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1246		unsigned long size)
1247{
1248	if (address < vma->vm_start || address + size > vma->vm_end ||
1249	    		!(vma->vm_flags & VM_PFNMAP))
1250		return -1;
1251	zap_page_range(vma, address, size, NULL);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(zap_vma_ptes);
1255
1256/**
1257 * follow_page - look up a page descriptor from a user-virtual address
1258 * @vma: vm_area_struct mapping @address
1259 * @address: virtual address to look up
1260 * @flags: flags modifying lookup behaviour
1261 *
1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1263 *
1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1265 * an error pointer if there is a mapping to something not represented
1266 * by a page descriptor (see also vm_normal_page()).
1267 */
1268struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1269			unsigned int flags)
1270{
1271	pgd_t *pgd;
1272	pud_t *pud;
1273	pmd_t *pmd;
1274	pte_t *ptep, pte;
1275	spinlock_t *ptl;
1276	struct page *page;
1277	struct mm_struct *mm = vma->vm_mm;
1278
1279	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1280	if (!IS_ERR(page)) {
1281		BUG_ON(flags & FOLL_GET);
1282		goto out;
1283	}
1284
1285	page = NULL;
1286	pgd = pgd_offset(mm, address);
1287	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1288		goto no_page_table;
1289
1290	pud = pud_offset(pgd, address);
1291	if (pud_none(*pud))
1292		goto no_page_table;
1293	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1294		BUG_ON(flags & FOLL_GET);
1295		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1296		goto out;
1297	}
1298	if (unlikely(pud_bad(*pud)))
1299		goto no_page_table;
1300
1301	pmd = pmd_offset(pud, address);
1302	if (pmd_none(*pmd))
1303		goto no_page_table;
1304	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1305		BUG_ON(flags & FOLL_GET);
1306		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1307		goto out;
1308	}
1309	if (pmd_trans_huge(*pmd)) {
1310		if (flags & FOLL_SPLIT) {
1311			split_huge_page_pmd(mm, pmd);
1312			goto split_fallthrough;
1313		}
1314		spin_lock(&mm->page_table_lock);
1315		if (likely(pmd_trans_huge(*pmd))) {
1316			if (unlikely(pmd_trans_splitting(*pmd))) {
1317				spin_unlock(&mm->page_table_lock);
1318				wait_split_huge_page(vma->anon_vma, pmd);
1319			} else {
1320				page = follow_trans_huge_pmd(mm, address,
1321							     pmd, flags);
1322				spin_unlock(&mm->page_table_lock);
1323				goto out;
1324			}
1325		} else
1326			spin_unlock(&mm->page_table_lock);
1327		/* fall through */
1328	}
1329split_fallthrough:
1330	if (unlikely(pmd_bad(*pmd)))
1331		goto no_page_table;
1332
1333	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1334
1335	pte = *ptep;
1336	if (!pte_present(pte))
1337		goto no_page;
1338	if ((flags & FOLL_WRITE) && !pte_write(pte))
1339		goto unlock;
1340
1341	page = vm_normal_page(vma, address, pte);
1342	if (unlikely(!page)) {
1343		if ((flags & FOLL_DUMP) ||
1344		    !is_zero_pfn(pte_pfn(pte)))
1345			goto bad_page;
1346		page = pte_page(pte);
1347	}
1348
1349	if (flags & FOLL_GET)
1350		get_page(page);
1351	if (flags & FOLL_TOUCH) {
1352		if ((flags & FOLL_WRITE) &&
1353		    !pte_dirty(pte) && !PageDirty(page))
1354			set_page_dirty(page);
1355		/*
1356		 * pte_mkyoung() would be more correct here, but atomic care
1357		 * is needed to avoid losing the dirty bit: it is easier to use
1358		 * mark_page_accessed().
1359		 */
1360		mark_page_accessed(page);
1361	}
1362	if (flags & FOLL_MLOCK) {
1363		/*
1364		 * The preliminary mapping check is mainly to avoid the
1365		 * pointless overhead of lock_page on the ZERO_PAGE
1366		 * which might bounce very badly if there is contention.
1367		 *
1368		 * If the page is already locked, we don't need to
1369		 * handle it now - vmscan will handle it later if and
1370		 * when it attempts to reclaim the page.
1371		 */
1372		if (page->mapping && trylock_page(page)) {
1373			lru_add_drain();  /* push cached pages to LRU */
1374			/*
1375			 * Because we lock page here and migration is
1376			 * blocked by the pte's page reference, we need
1377			 * only check for file-cache page truncation.
1378			 */
1379			if (page->mapping)
1380				mlock_vma_page(page);
1381			unlock_page(page);
1382		}
1383	}
1384unlock:
1385	pte_unmap_unlock(ptep, ptl);
1386out:
1387	return page;
1388
1389bad_page:
1390	pte_unmap_unlock(ptep, ptl);
1391	return ERR_PTR(-EFAULT);
1392
1393no_page:
1394	pte_unmap_unlock(ptep, ptl);
1395	if (!pte_none(pte))
1396		return page;
1397
1398no_page_table:
1399	/*
1400	 * When core dumping an enormous anonymous area that nobody
1401	 * has touched so far, we don't want to allocate unnecessary pages or
1402	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1403	 * then get_dump_page() will return NULL to leave a hole in the dump.
1404	 * But we can only make this optimization where a hole would surely
1405	 * be zero-filled if handle_mm_fault() actually did handle it.
1406	 */
1407	if ((flags & FOLL_DUMP) &&
1408	    (!vma->vm_ops || !vma->vm_ops->fault))
1409		return ERR_PTR(-EFAULT);
1410	return page;
1411}
1412
1413int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1414		     unsigned long start, int nr_pages, unsigned int gup_flags,
1415		     struct page **pages, struct vm_area_struct **vmas,
1416		     int *nonblocking)
1417{
1418	int i;
1419	unsigned long vm_flags;
1420
1421	if (nr_pages <= 0)
1422		return 0;
1423
1424	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1425
1426	/*
1427	 * Require read or write permissions.
1428	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1429	 */
1430	vm_flags  = (gup_flags & FOLL_WRITE) ?
1431			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1432	vm_flags &= (gup_flags & FOLL_FORCE) ?
1433			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1434	i = 0;
1435
1436	do {
1437		struct vm_area_struct *vma;
1438
1439		vma = find_extend_vma(mm, start);
1440		if (!vma && in_gate_area(tsk, start)) {
1441			unsigned long pg = start & PAGE_MASK;
1442			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1443			pgd_t *pgd;
1444			pud_t *pud;
1445			pmd_t *pmd;
1446			pte_t *pte;
1447
1448			/* user gate pages are read-only */
1449			if (gup_flags & FOLL_WRITE)
1450				return i ? : -EFAULT;
1451			if (pg > TASK_SIZE)
1452				pgd = pgd_offset_k(pg);
1453			else
1454				pgd = pgd_offset_gate(mm, pg);
1455			BUG_ON(pgd_none(*pgd));
1456			pud = pud_offset(pgd, pg);
1457			BUG_ON(pud_none(*pud));
1458			pmd = pmd_offset(pud, pg);
1459			if (pmd_none(*pmd))
1460				return i ? : -EFAULT;
1461			VM_BUG_ON(pmd_trans_huge(*pmd));
1462			pte = pte_offset_map(pmd, pg);
1463			if (pte_none(*pte)) {
1464				pte_unmap(pte);
1465				return i ? : -EFAULT;
1466			}
1467			if (pages) {
1468				struct page *page;
1469
1470				page = vm_normal_page(gate_vma, start, *pte);
1471				if (!page) {
1472					if (!(gup_flags & FOLL_DUMP) &&
1473					     is_zero_pfn(pte_pfn(*pte)))
1474						page = pte_page(*pte);
1475					else {
1476						pte_unmap(pte);
1477						return i ? : -EFAULT;
1478					}
1479				}
1480				pages[i] = page;
1481				get_page(page);
1482			}
1483			pte_unmap(pte);
1484			if (vmas)
1485				vmas[i] = gate_vma;
1486			i++;
1487			start += PAGE_SIZE;
1488			nr_pages--;
1489			continue;
1490		}
1491
1492		if (!vma ||
1493		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1494		    !(vm_flags & vma->vm_flags))
1495			return i ? : -EFAULT;
1496
1497		if (is_vm_hugetlb_page(vma)) {
1498			i = follow_hugetlb_page(mm, vma, pages, vmas,
1499					&start, &nr_pages, i, gup_flags);
1500			continue;
1501		}
1502
1503		do {
1504			struct page *page;
1505			unsigned int foll_flags = gup_flags;
1506
1507			/*
1508			 * If we have a pending SIGKILL, don't keep faulting
1509			 * pages and potentially allocating memory.
1510			 */
1511			if (unlikely(fatal_signal_pending(current)))
1512				return i ? i : -ERESTARTSYS;
1513
1514			cond_resched();
1515			while (!(page = follow_page(vma, start, foll_flags))) {
1516				int ret;
1517				unsigned int fault_flags = 0;
1518
1519				if (foll_flags & FOLL_WRITE)
1520					fault_flags |= FAULT_FLAG_WRITE;
1521				if (nonblocking)
1522					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1523
1524				ret = handle_mm_fault(mm, vma, start,
1525							fault_flags);
1526
1527				if (ret & VM_FAULT_ERROR) {
1528					if (ret & VM_FAULT_OOM)
1529						return i ? i : -ENOMEM;
1530					if (ret &
1531					    (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
1532					     VM_FAULT_SIGBUS))
1533						return i ? i : -EFAULT;
1534					BUG();
1535				}
1536				if (ret & VM_FAULT_MAJOR)
1537					tsk->maj_flt++;
1538				else
1539					tsk->min_flt++;
1540
1541				if (ret & VM_FAULT_RETRY) {
1542					*nonblocking = 0;
1543					return i;
1544				}
1545
1546				/*
1547				 * The VM_FAULT_WRITE bit tells us that
1548				 * do_wp_page has broken COW when necessary,
1549				 * even if maybe_mkwrite decided not to set
1550				 * pte_write. We can thus safely do subsequent
1551				 * page lookups as if they were reads. But only
1552				 * do so when looping for pte_write is futile:
1553				 * in some cases userspace may also be wanting
1554				 * to write to the gotten user page, which a
1555				 * read fault here might prevent (a readonly
1556				 * page might get reCOWed by userspace write).
1557				 */
1558				if ((ret & VM_FAULT_WRITE) &&
1559				    !(vma->vm_flags & VM_WRITE))
1560					foll_flags &= ~FOLL_WRITE;
1561
1562				cond_resched();
1563			}
1564			if (IS_ERR(page))
1565				return i ? i : PTR_ERR(page);
1566			if (pages) {
1567				pages[i] = page;
1568
1569				flush_anon_page(vma, page, start);
1570				flush_dcache_page(page);
1571			}
1572			if (vmas)
1573				vmas[i] = vma;
1574			i++;
1575			start += PAGE_SIZE;
1576			nr_pages--;
1577		} while (nr_pages && start < vma->vm_end);
1578	} while (nr_pages);
1579	return i;
1580}
1581
1582/**
1583 * get_user_pages() - pin user pages in memory
1584 * @tsk:	task_struct of target task
1585 * @mm:		mm_struct of target mm
1586 * @start:	starting user address
1587 * @nr_pages:	number of pages from start to pin
1588 * @write:	whether pages will be written to by the caller
1589 * @force:	whether to force write access even if user mapping is
1590 *		readonly. This will result in the page being COWed even
1591 *		in MAP_SHARED mappings. You do not want this.
1592 * @pages:	array that receives pointers to the pages pinned.
1593 *		Should be at least nr_pages long. Or NULL, if caller
1594 *		only intends to ensure the pages are faulted in.
1595 * @vmas:	array of pointers to vmas corresponding to each page.
1596 *		Or NULL if the caller does not require them.
1597 *
1598 * Returns number of pages pinned. This may be fewer than the number
1599 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1600 * were pinned, returns -errno. Each page returned must be released
1601 * with a put_page() call when it is finished with. vmas will only
1602 * remain valid while mmap_sem is held.
1603 *
1604 * Must be called with mmap_sem held for read or write.
1605 *
1606 * get_user_pages walks a process's page tables and takes a reference to
1607 * each struct page that each user address corresponds to at a given
1608 * instant. That is, it takes the page that would be accessed if a user
1609 * thread accesses the given user virtual address at that instant.
1610 *
1611 * This does not guarantee that the page exists in the user mappings when
1612 * get_user_pages returns, and there may even be a completely different
1613 * page there in some cases (eg. if mmapped pagecache has been invalidated
1614 * and subsequently re faulted). However it does guarantee that the page
1615 * won't be freed completely. And mostly callers simply care that the page
1616 * contains data that was valid *at some point in time*. Typically, an IO
1617 * or similar operation cannot guarantee anything stronger anyway because
1618 * locks can't be held over the syscall boundary.
1619 *
1620 * If write=0, the page must not be written to. If the page is written to,
1621 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1622 * after the page is finished with, and before put_page is called.
1623 *
1624 * get_user_pages is typically used for fewer-copy IO operations, to get a
1625 * handle on the memory by some means other than accesses via the user virtual
1626 * addresses. The pages may be submitted for DMA to devices or accessed via
1627 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1628 * use the correct cache flushing APIs.
1629 *
1630 * See also get_user_pages_fast, for performance critical applications.
1631 */
1632int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1633		unsigned long start, int nr_pages, int write, int force,
1634		struct page **pages, struct vm_area_struct **vmas)
1635{
1636	int flags = FOLL_TOUCH;
1637
1638	if (pages)
1639		flags |= FOLL_GET;
1640	if (write)
1641		flags |= FOLL_WRITE;
1642	if (force)
1643		flags |= FOLL_FORCE;
1644
1645	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1646				NULL);
1647}
1648EXPORT_SYMBOL(get_user_pages);
1649
1650/**
1651 * get_dump_page() - pin user page in memory while writing it to core dump
1652 * @addr: user address
1653 *
1654 * Returns struct page pointer of user page pinned for dump,
1655 * to be freed afterwards by page_cache_release() or put_page().
1656 *
1657 * Returns NULL on any kind of failure - a hole must then be inserted into
1658 * the corefile, to preserve alignment with its headers; and also returns
1659 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1660 * allowing a hole to be left in the corefile to save diskspace.
1661 *
1662 * Called without mmap_sem, but after all other threads have been killed.
1663 */
1664#ifdef CONFIG_ELF_CORE
1665struct page *get_dump_page(unsigned long addr)
1666{
1667	struct vm_area_struct *vma;
1668	struct page *page;
1669
1670	if (__get_user_pages(current, current->mm, addr, 1,
1671			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1672			     NULL) < 1)
1673		return NULL;
1674	flush_cache_page(vma, addr, page_to_pfn(page));
1675	return page;
1676}
1677#endif /* CONFIG_ELF_CORE */
1678
1679pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1680			spinlock_t **ptl)
1681{
1682	pgd_t * pgd = pgd_offset(mm, addr);
1683	pud_t * pud = pud_alloc(mm, pgd, addr);
1684	if (pud) {
1685		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1686		if (pmd) {
1687			VM_BUG_ON(pmd_trans_huge(*pmd));
1688			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1689		}
1690	}
1691	return NULL;
1692}
1693
1694/*
1695 * This is the old fallback for page remapping.
1696 *
1697 * For historical reasons, it only allows reserved pages. Only
1698 * old drivers should use this, and they needed to mark their
1699 * pages reserved for the old functions anyway.
1700 */
1701static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1702			struct page *page, pgprot_t prot)
1703{
1704	struct mm_struct *mm = vma->vm_mm;
1705	int retval;
1706	pte_t *pte;
1707	spinlock_t *ptl;
1708
1709	retval = -EINVAL;
1710	if (PageAnon(page))
1711		goto out;
1712	retval = -ENOMEM;
1713	flush_dcache_page(page);
1714	pte = get_locked_pte(mm, addr, &ptl);
1715	if (!pte)
1716		goto out;
1717	retval = -EBUSY;
1718	if (!pte_none(*pte))
1719		goto out_unlock;
1720
1721	/* Ok, finally just insert the thing.. */
1722	get_page(page);
1723	inc_mm_counter_fast(mm, MM_FILEPAGES);
1724	page_add_file_rmap(page);
1725	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1726
1727	retval = 0;
1728	pte_unmap_unlock(pte, ptl);
1729	return retval;
1730out_unlock:
1731	pte_unmap_unlock(pte, ptl);
1732out:
1733	return retval;
1734}
1735
1736/**
1737 * vm_insert_page - insert single page into user vma
1738 * @vma: user vma to map to
1739 * @addr: target user address of this page
1740 * @page: source kernel page
1741 *
1742 * This allows drivers to insert individual pages they've allocated
1743 * into a user vma.
1744 *
1745 * The page has to be a nice clean _individual_ kernel allocation.
1746 * If you allocate a compound page, you need to have marked it as
1747 * such (__GFP_COMP), or manually just split the page up yourself
1748 * (see split_page()).
1749 *
1750 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1751 * took an arbitrary page protection parameter. This doesn't allow
1752 * that. Your vma protection will have to be set up correctly, which
1753 * means that if you want a shared writable mapping, you'd better
1754 * ask for a shared writable mapping!
1755 *
1756 * The page does not need to be reserved.
1757 */
1758int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1759			struct page *page)
1760{
1761	if (addr < vma->vm_start || addr >= vma->vm_end)
1762		return -EFAULT;
1763	if (!page_count(page))
1764		return -EINVAL;
1765	vma->vm_flags |= VM_INSERTPAGE;
1766	return insert_page(vma, addr, page, vma->vm_page_prot);
1767}
1768EXPORT_SYMBOL(vm_insert_page);
1769
1770static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1771			unsigned long pfn, pgprot_t prot)
1772{
1773	struct mm_struct *mm = vma->vm_mm;
1774	int retval;
1775	pte_t *pte, entry;
1776	spinlock_t *ptl;
1777
1778	retval = -ENOMEM;
1779	pte = get_locked_pte(mm, addr, &ptl);
1780	if (!pte)
1781		goto out;
1782	retval = -EBUSY;
1783	if (!pte_none(*pte))
1784		goto out_unlock;
1785
1786	/* Ok, finally just insert the thing.. */
1787	entry = pte_mkspecial(pfn_pte(pfn, prot));
1788	set_pte_at(mm, addr, pte, entry);
1789	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1790
1791	retval = 0;
1792out_unlock:
1793	pte_unmap_unlock(pte, ptl);
1794out:
1795	return retval;
1796}
1797
1798/**
1799 * vm_insert_pfn - insert single pfn into user vma
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @pfn: source kernel pfn
1803 *
1804 * Similar to vm_inert_page, this allows drivers to insert individual pages
1805 * they've allocated into a user vma. Same comments apply.
1806 *
1807 * This function should only be called from a vm_ops->fault handler, and
1808 * in that case the handler should return NULL.
1809 *
1810 * vma cannot be a COW mapping.
1811 *
1812 * As this is called only for pages that do not currently exist, we
1813 * do not need to flush old virtual caches or the TLB.
1814 */
1815int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1816			unsigned long pfn)
1817{
1818	int ret;
1819	pgprot_t pgprot = vma->vm_page_prot;
1820	/*
1821	 * Technically, architectures with pte_special can avoid all these
1822	 * restrictions (same for remap_pfn_range).  However we would like
1823	 * consistency in testing and feature parity among all, so we should
1824	 * try to keep these invariants in place for everybody.
1825	 */
1826	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828						(VM_PFNMAP|VM_MIXEDMAP));
1829	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1831
1832	if (addr < vma->vm_start || addr >= vma->vm_end)
1833		return -EFAULT;
1834	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1835		return -EINVAL;
1836
1837	ret = insert_pfn(vma, addr, pfn, pgprot);
1838
1839	if (ret)
1840		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1841
1842	return ret;
1843}
1844EXPORT_SYMBOL(vm_insert_pfn);
1845
1846int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1847			unsigned long pfn)
1848{
1849	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1850
1851	if (addr < vma->vm_start || addr >= vma->vm_end)
1852		return -EFAULT;
1853
1854	/*
1855	 * If we don't have pte special, then we have to use the pfn_valid()
1856	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1857	 * refcount the page if pfn_valid is true (hence insert_page rather
1858	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1859	 * without pte special, it would there be refcounted as a normal page.
1860	 */
1861	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1862		struct page *page;
1863
1864		page = pfn_to_page(pfn);
1865		return insert_page(vma, addr, page, vma->vm_page_prot);
1866	}
1867	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1868}
1869EXPORT_SYMBOL(vm_insert_mixed);
1870
1871/*
1872 * maps a range of physical memory into the requested pages. the old
1873 * mappings are removed. any references to nonexistent pages results
1874 * in null mappings (currently treated as "copy-on-access")
1875 */
1876static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1877			unsigned long addr, unsigned long end,
1878			unsigned long pfn, pgprot_t prot)
1879{
1880	pte_t *pte;
1881	spinlock_t *ptl;
1882
1883	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1884	if (!pte)
1885		return -ENOMEM;
1886	arch_enter_lazy_mmu_mode();
1887	do {
1888		BUG_ON(!pte_none(*pte));
1889		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1890		pfn++;
1891	} while (pte++, addr += PAGE_SIZE, addr != end);
1892	arch_leave_lazy_mmu_mode();
1893	pte_unmap_unlock(pte - 1, ptl);
1894	return 0;
1895}
1896
1897static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1898			unsigned long addr, unsigned long end,
1899			unsigned long pfn, pgprot_t prot)
1900{
1901	pmd_t *pmd;
1902	unsigned long next;
1903
1904	pfn -= addr >> PAGE_SHIFT;
1905	pmd = pmd_alloc(mm, pud, addr);
1906	if (!pmd)
1907		return -ENOMEM;
1908	VM_BUG_ON(pmd_trans_huge(*pmd));
1909	do {
1910		next = pmd_addr_end(addr, end);
1911		if (remap_pte_range(mm, pmd, addr, next,
1912				pfn + (addr >> PAGE_SHIFT), prot))
1913			return -ENOMEM;
1914	} while (pmd++, addr = next, addr != end);
1915	return 0;
1916}
1917
1918static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1919			unsigned long addr, unsigned long end,
1920			unsigned long pfn, pgprot_t prot)
1921{
1922	pud_t *pud;
1923	unsigned long next;
1924
1925	pfn -= addr >> PAGE_SHIFT;
1926	pud = pud_alloc(mm, pgd, addr);
1927	if (!pud)
1928		return -ENOMEM;
1929	do {
1930		next = pud_addr_end(addr, end);
1931		if (remap_pmd_range(mm, pud, addr, next,
1932				pfn + (addr >> PAGE_SHIFT), prot))
1933			return -ENOMEM;
1934	} while (pud++, addr = next, addr != end);
1935	return 0;
1936}
1937
1938/**
1939 * remap_pfn_range - remap kernel memory to userspace
1940 * @vma: user vma to map to
1941 * @addr: target user address to start at
1942 * @pfn: physical address of kernel memory
1943 * @size: size of map area
1944 * @prot: page protection flags for this mapping
1945 *
1946 *  Note: this is only safe if the mm semaphore is held when called.
1947 */
1948int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1949		    unsigned long pfn, unsigned long size, pgprot_t prot)
1950{
1951	pgd_t *pgd;
1952	unsigned long next;
1953	unsigned long end = addr + PAGE_ALIGN(size);
1954	struct mm_struct *mm = vma->vm_mm;
1955	int err;
1956
1957	/*
1958	 * Physically remapped pages are special. Tell the
1959	 * rest of the world about it:
1960	 *   VM_IO tells people not to look at these pages
1961	 *	(accesses can have side effects).
1962	 *   VM_RESERVED is specified all over the place, because
1963	 *	in 2.4 it kept swapout's vma scan off this vma; but
1964	 *	in 2.6 the LRU scan won't even find its pages, so this
1965	 *	flag means no more than count its pages in reserved_vm,
1966	 * 	and omit it from core dump, even when VM_IO turned off.
1967	 *   VM_PFNMAP tells the core MM that the base pages are just
1968	 *	raw PFN mappings, and do not have a "struct page" associated
1969	 *	with them.
1970	 *
1971	 * There's a horrible special case to handle copy-on-write
1972	 * behaviour that some programs depend on. We mark the "original"
1973	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1974	 */
1975	if (addr == vma->vm_start && end == vma->vm_end) {
1976		vma->vm_pgoff = pfn;
1977		vma->vm_flags |= VM_PFN_AT_MMAP;
1978	} else if (is_cow_mapping(vma->vm_flags))
1979		return -EINVAL;
1980
1981	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1982
1983	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1984	if (err) {
1985		/*
1986		 * To indicate that track_pfn related cleanup is not
1987		 * needed from higher level routine calling unmap_vmas
1988		 */
1989		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1990		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1991		return -EINVAL;
1992	}
1993
1994	BUG_ON(addr >= end);
1995	pfn -= addr >> PAGE_SHIFT;
1996	pgd = pgd_offset(mm, addr);
1997	flush_cache_range(vma, addr, end);
1998	do {
1999		next = pgd_addr_end(addr, end);
2000		err = remap_pud_range(mm, pgd, addr, next,
2001				pfn + (addr >> PAGE_SHIFT), prot);
2002		if (err)
2003			break;
2004	} while (pgd++, addr = next, addr != end);
2005
2006	if (err)
2007		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2008
2009	return err;
2010}
2011EXPORT_SYMBOL(remap_pfn_range);
2012
2013static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2014				     unsigned long addr, unsigned long end,
2015				     pte_fn_t fn, void *data)
2016{
2017	pte_t *pte;
2018	int err;
2019	pgtable_t token;
2020	spinlock_t *uninitialized_var(ptl);
2021
2022	pte = (mm == &init_mm) ?
2023		pte_alloc_kernel(pmd, addr) :
2024		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2025	if (!pte)
2026		return -ENOMEM;
2027
2028	BUG_ON(pmd_huge(*pmd));
2029
2030	arch_enter_lazy_mmu_mode();
2031
2032	token = pmd_pgtable(*pmd);
2033
2034	do {
2035		err = fn(pte++, token, addr, data);
2036		if (err)
2037			break;
2038	} while (addr += PAGE_SIZE, addr != end);
2039
2040	arch_leave_lazy_mmu_mode();
2041
2042	if (mm != &init_mm)
2043		pte_unmap_unlock(pte-1, ptl);
2044	return err;
2045}
2046
2047static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2048				     unsigned long addr, unsigned long end,
2049				     pte_fn_t fn, void *data)
2050{
2051	pmd_t *pmd;
2052	unsigned long next;
2053	int err;
2054
2055	BUG_ON(pud_huge(*pud));
2056
2057	pmd = pmd_alloc(mm, pud, addr);
2058	if (!pmd)
2059		return -ENOMEM;
2060	do {
2061		next = pmd_addr_end(addr, end);
2062		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2063		if (err)
2064			break;
2065	} while (pmd++, addr = next, addr != end);
2066	return err;
2067}
2068
2069static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2070				     unsigned long addr, unsigned long end,
2071				     pte_fn_t fn, void *data)
2072{
2073	pud_t *pud;
2074	unsigned long next;
2075	int err;
2076
2077	pud = pud_alloc(mm, pgd, addr);
2078	if (!pud)
2079		return -ENOMEM;
2080	do {
2081		next = pud_addr_end(addr, end);
2082		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2083		if (err)
2084			break;
2085	} while (pud++, addr = next, addr != end);
2086	return err;
2087}
2088
2089/*
2090 * Scan a region of virtual memory, filling in page tables as necessary
2091 * and calling a provided function on each leaf page table.
2092 */
2093int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2094			unsigned long size, pte_fn_t fn, void *data)
2095{
2096	pgd_t *pgd;
2097	unsigned long next;
2098	unsigned long end = addr + size;
2099	int err;
2100
2101	BUG_ON(addr >= end);
2102	pgd = pgd_offset(mm, addr);
2103	do {
2104		next = pgd_addr_end(addr, end);
2105		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2106		if (err)
2107			break;
2108	} while (pgd++, addr = next, addr != end);
2109
2110	return err;
2111}
2112EXPORT_SYMBOL_GPL(apply_to_page_range);
2113
2114/*
2115 * handle_pte_fault chooses page fault handler according to an entry
2116 * which was read non-atomically.  Before making any commitment, on
2117 * those architectures or configurations (e.g. i386 with PAE) which
2118 * might give a mix of unmatched parts, do_swap_page and do_file_page
2119 * must check under lock before unmapping the pte and proceeding
2120 * (but do_wp_page is only called after already making such a check;
2121 * and do_anonymous_page and do_no_page can safely check later on).
2122 */
2123static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2124				pte_t *page_table, pte_t orig_pte)
2125{
2126	int same = 1;
2127#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2128	if (sizeof(pte_t) > sizeof(unsigned long)) {
2129		spinlock_t *ptl = pte_lockptr(mm, pmd);
2130		spin_lock(ptl);
2131		same = pte_same(*page_table, orig_pte);
2132		spin_unlock(ptl);
2133	}
2134#endif
2135	pte_unmap(page_table);
2136	return same;
2137}
2138
2139static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2140{
2141	/*
2142	 * If the source page was a PFN mapping, we don't have
2143	 * a "struct page" for it. We do a best-effort copy by
2144	 * just copying from the original user address. If that
2145	 * fails, we just zero-fill it. Live with it.
2146	 */
2147	if (unlikely(!src)) {
2148		void *kaddr = kmap_atomic(dst, KM_USER0);
2149		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2150
2151		/*
2152		 * This really shouldn't fail, because the page is there
2153		 * in the page tables. But it might just be unreadable,
2154		 * in which case we just give up and fill the result with
2155		 * zeroes.
2156		 */
2157		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2158			clear_page(kaddr);
2159		kunmap_atomic(kaddr, KM_USER0);
2160		flush_dcache_page(dst);
2161	} else
2162		copy_user_highpage(dst, src, va, vma);
2163}
2164
2165/*
2166 * This routine handles present pages, when users try to write
2167 * to a shared page. It is done by copying the page to a new address
2168 * and decrementing the shared-page counter for the old page.
2169 *
2170 * Note that this routine assumes that the protection checks have been
2171 * done by the caller (the low-level page fault routine in most cases).
2172 * Thus we can safely just mark it writable once we've done any necessary
2173 * COW.
2174 *
2175 * We also mark the page dirty at this point even though the page will
2176 * change only once the write actually happens. This avoids a few races,
2177 * and potentially makes it more efficient.
2178 *
2179 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2180 * but allow concurrent faults), with pte both mapped and locked.
2181 * We return with mmap_sem still held, but pte unmapped and unlocked.
2182 */
2183static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2184		unsigned long address, pte_t *page_table, pmd_t *pmd,
2185		spinlock_t *ptl, pte_t orig_pte)
2186	__releases(ptl)
2187{
2188	struct page *old_page, *new_page;
2189	pte_t entry;
2190	int ret = 0;
2191	int page_mkwrite = 0;
2192	struct page *dirty_page = NULL;
2193
2194	old_page = vm_normal_page(vma, address, orig_pte);
2195	if (!old_page) {
2196		/*
2197		 * VM_MIXEDMAP !pfn_valid() case
2198		 *
2199		 * We should not cow pages in a shared writeable mapping.
2200		 * Just mark the pages writable as we can't do any dirty
2201		 * accounting on raw pfn maps.
2202		 */
2203		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2204				     (VM_WRITE|VM_SHARED))
2205			goto reuse;
2206		goto gotten;
2207	}
2208
2209	/*
2210	 * Take out anonymous pages first, anonymous shared vmas are
2211	 * not dirty accountable.
2212	 */
2213	if (PageAnon(old_page) && !PageKsm(old_page)) {
2214		if (!trylock_page(old_page)) {
2215			page_cache_get(old_page);
2216			pte_unmap_unlock(page_table, ptl);
2217			lock_page(old_page);
2218			page_table = pte_offset_map_lock(mm, pmd, address,
2219							 &ptl);
2220			if (!pte_same(*page_table, orig_pte)) {
2221				unlock_page(old_page);
2222				page_cache_release(old_page);
2223				goto unlock;
2224			}
2225			page_cache_release(old_page);
2226		}
2227		if (reuse_swap_page(old_page)) {
2228			/*
2229			 * The page is all ours.  Move it to our anon_vma so
2230			 * the rmap code will not search our parent or siblings.
2231			 * Protected against the rmap code by the page lock.
2232			 */
2233			page_move_anon_rmap(old_page, vma, address);
2234			unlock_page(old_page);
2235			goto reuse;
2236		}
2237		unlock_page(old_page);
2238	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2239					(VM_WRITE|VM_SHARED))) {
2240		/*
2241		 * Only catch write-faults on shared writable pages,
2242		 * read-only shared pages can get COWed by
2243		 * get_user_pages(.write=1, .force=1).
2244		 */
2245		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2246			struct vm_fault vmf;
2247			int tmp;
2248
2249			vmf.virtual_address = (void __user *)(address &
2250								PAGE_MASK);
2251			vmf.pgoff = old_page->index;
2252			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2253			vmf.page = old_page;
2254
2255			/*
2256			 * Notify the address space that the page is about to
2257			 * become writable so that it can prohibit this or wait
2258			 * for the page to get into an appropriate state.
2259			 *
2260			 * We do this without the lock held, so that it can
2261			 * sleep if it needs to.
2262			 */
2263			page_cache_get(old_page);
2264			pte_unmap_unlock(page_table, ptl);
2265
2266			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2267			if (unlikely(tmp &
2268					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2269				ret = tmp;
2270				goto unwritable_page;
2271			}
2272			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2273				lock_page(old_page);
2274				if (!old_page->mapping) {
2275					ret = 0; /* retry the fault */
2276					unlock_page(old_page);
2277					goto unwritable_page;
2278				}
2279			} else
2280				VM_BUG_ON(!PageLocked(old_page));
2281
2282			/*
2283			 * Since we dropped the lock we need to revalidate
2284			 * the PTE as someone else may have changed it.  If
2285			 * they did, we just return, as we can count on the
2286			 * MMU to tell us if they didn't also make it writable.
2287			 */
2288			page_table = pte_offset_map_lock(mm, pmd, address,
2289							 &ptl);
2290			if (!pte_same(*page_table, orig_pte)) {
2291				unlock_page(old_page);
2292				page_cache_release(old_page);
2293				goto unlock;
2294			}
2295
2296			page_mkwrite = 1;
2297		}
2298		dirty_page = old_page;
2299		get_page(dirty_page);
2300
2301reuse:
2302		flush_cache_page(vma, address, pte_pfn(orig_pte));
2303		entry = pte_mkyoung(orig_pte);
2304		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2305		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2306			update_mmu_cache(vma, address, page_table);
2307		pte_unmap_unlock(page_table, ptl);
2308		ret |= VM_FAULT_WRITE;
2309
2310		if (!dirty_page)
2311			return ret;
2312
2313		/*
2314		 * Yes, Virginia, this is actually required to prevent a race
2315		 * with clear_page_dirty_for_io() from clearing the page dirty
2316		 * bit after it clear all dirty ptes, but before a racing
2317		 * do_wp_page installs a dirty pte.
2318		 *
2319		 * do_no_page is protected similarly.
2320		 */
2321		if (!page_mkwrite) {
2322			wait_on_page_locked(dirty_page);
2323			set_page_dirty_balance(dirty_page, page_mkwrite);
2324		}
2325		put_page(dirty_page);
2326		if (page_mkwrite) {
2327			struct address_space *mapping = dirty_page->mapping;
2328
2329			set_page_dirty(dirty_page);
2330			unlock_page(dirty_page);
2331			page_cache_release(dirty_page);
2332			if (mapping)	{
2333				/*
2334				 * Some device drivers do not set page.mapping
2335				 * but still dirty their pages
2336				 */
2337				balance_dirty_pages_ratelimited(mapping);
2338			}
2339		}
2340
2341		/* file_update_time outside page_lock */
2342		if (vma->vm_file)
2343			file_update_time(vma->vm_file);
2344
2345		return ret;
2346	}
2347
2348	/*
2349	 * Ok, we need to copy. Oh, well..
2350	 */
2351	page_cache_get(old_page);
2352gotten:
2353	pte_unmap_unlock(page_table, ptl);
2354
2355	if (unlikely(anon_vma_prepare(vma)))
2356		goto oom;
2357
2358	if (is_zero_pfn(pte_pfn(orig_pte))) {
2359		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2360		if (!new_page)
2361			goto oom;
2362	} else {
2363		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2364		if (!new_page)
2365			goto oom;
2366		cow_user_page(new_page, old_page, address, vma);
2367	}
2368	__SetPageUptodate(new_page);
2369
2370	/*
2371	 * Don't let another task, with possibly unlocked vma,
2372	 * keep the mlocked page.
2373	 */
2374	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2375		lock_page(old_page);	/* for LRU manipulation */
2376		clear_page_mlock(old_page);
2377		unlock_page(old_page);
2378	}
2379
2380	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2381		goto oom_free_new;
2382
2383	/*
2384	 * Re-check the pte - we dropped the lock
2385	 */
2386	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2387	if (likely(pte_same(*page_table, orig_pte))) {
2388		if (old_page) {
2389			if (!PageAnon(old_page)) {
2390				dec_mm_counter_fast(mm, MM_FILEPAGES);
2391				inc_mm_counter_fast(mm, MM_ANONPAGES);
2392			}
2393		} else
2394			inc_mm_counter_fast(mm, MM_ANONPAGES);
2395		flush_cache_page(vma, address, pte_pfn(orig_pte));
2396		entry = mk_pte(new_page, vma->vm_page_prot);
2397		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2398		/*
2399		 * Clear the pte entry and flush it first, before updating the
2400		 * pte with the new entry. This will avoid a race condition
2401		 * seen in the presence of one thread doing SMC and another
2402		 * thread doing COW.
2403		 */
2404		ptep_clear_flush(vma, address, page_table);
2405		page_add_new_anon_rmap(new_page, vma, address);
2406		/*
2407		 * We call the notify macro here because, when using secondary
2408		 * mmu page tables (such as kvm shadow page tables), we want the
2409		 * new page to be mapped directly into the secondary page table.
2410		 */
2411		set_pte_at_notify(mm, address, page_table, entry);
2412		update_mmu_cache(vma, address, page_table);
2413		if (old_page) {
2414			/*
2415			 * Only after switching the pte to the new page may
2416			 * we remove the mapcount here. Otherwise another
2417			 * process may come and find the rmap count decremented
2418			 * before the pte is switched to the new page, and
2419			 * "reuse" the old page writing into it while our pte
2420			 * here still points into it and can be read by other
2421			 * threads.
2422			 *
2423			 * The critical issue is to order this
2424			 * page_remove_rmap with the ptp_clear_flush above.
2425			 * Those stores are ordered by (if nothing else,)
2426			 * the barrier present in the atomic_add_negative
2427			 * in page_remove_rmap.
2428			 *
2429			 * Then the TLB flush in ptep_clear_flush ensures that
2430			 * no process can access the old page before the
2431			 * decremented mapcount is visible. And the old page
2432			 * cannot be reused until after the decremented
2433			 * mapcount is visible. So transitively, TLBs to
2434			 * old page will be flushed before it can be reused.
2435			 */
2436			page_remove_rmap(old_page);
2437		}
2438
2439		/* Free the old page.. */
2440		new_page = old_page;
2441		ret |= VM_FAULT_WRITE;
2442	} else
2443		mem_cgroup_uncharge_page(new_page);
2444
2445	if (new_page)
2446		page_cache_release(new_page);
2447	if (old_page)
2448		page_cache_release(old_page);
2449unlock:
2450	pte_unmap_unlock(page_table, ptl);
2451	return ret;
2452oom_free_new:
2453	page_cache_release(new_page);
2454oom:
2455	if (old_page) {
2456		if (page_mkwrite) {
2457			unlock_page(old_page);
2458			page_cache_release(old_page);
2459		}
2460		page_cache_release(old_page);
2461	}
2462	return VM_FAULT_OOM;
2463
2464unwritable_page:
2465	page_cache_release(old_page);
2466	return ret;
2467}
2468
2469/*
2470 * Helper functions for unmap_mapping_range().
2471 *
2472 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2473 *
2474 * We have to restart searching the prio_tree whenever we drop the lock,
2475 * since the iterator is only valid while the lock is held, and anyway
2476 * a later vma might be split and reinserted earlier while lock dropped.
2477 *
2478 * The list of nonlinear vmas could be handled more efficiently, using
2479 * a placeholder, but handle it in the same way until a need is shown.
2480 * It is important to search the prio_tree before nonlinear list: a vma
2481 * may become nonlinear and be shifted from prio_tree to nonlinear list
2482 * while the lock is dropped; but never shifted from list to prio_tree.
2483 *
2484 * In order to make forward progress despite restarting the search,
2485 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2486 * quickly skip it next time around.  Since the prio_tree search only
2487 * shows us those vmas affected by unmapping the range in question, we
2488 * can't efficiently keep all vmas in step with mapping->truncate_count:
2489 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2490 * mapping->truncate_count and vma->vm_truncate_count are protected by
2491 * i_mmap_lock.
2492 *
2493 * In order to make forward progress despite repeatedly restarting some
2494 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2495 * and restart from that address when we reach that vma again.  It might
2496 * have been split or merged, shrunk or extended, but never shifted: so
2497 * restart_addr remains valid so long as it remains in the vma's range.
2498 * unmap_mapping_range forces truncate_count to leap over page-aligned
2499 * values so we can save vma's restart_addr in its truncate_count field.
2500 */
2501#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2502
2503static void reset_vma_truncate_counts(struct address_space *mapping)
2504{
2505	struct vm_area_struct *vma;
2506	struct prio_tree_iter iter;
2507
2508	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2509		vma->vm_truncate_count = 0;
2510	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2511		vma->vm_truncate_count = 0;
2512}
2513
2514static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2515		unsigned long start_addr, unsigned long end_addr,
2516		struct zap_details *details)
2517{
2518	unsigned long restart_addr;
2519	int need_break;
2520
2521	/*
2522	 * files that support invalidating or truncating portions of the
2523	 * file from under mmaped areas must have their ->fault function
2524	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2525	 * This provides synchronisation against concurrent unmapping here.
2526	 */
2527
2528again:
2529	restart_addr = vma->vm_truncate_count;
2530	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2531		start_addr = restart_addr;
2532		if (start_addr >= end_addr) {
2533			/* Top of vma has been split off since last time */
2534			vma->vm_truncate_count = details->truncate_count;
2535			return 0;
2536		}
2537	}
2538
2539	restart_addr = zap_page_range(vma, start_addr,
2540					end_addr - start_addr, details);
2541	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2542
2543	if (restart_addr >= end_addr) {
2544		/* We have now completed this vma: mark it so */
2545		vma->vm_truncate_count = details->truncate_count;
2546		if (!need_break)
2547			return 0;
2548	} else {
2549		/* Note restart_addr in vma's truncate_count field */
2550		vma->vm_truncate_count = restart_addr;
2551		if (!need_break)
2552			goto again;
2553	}
2554
2555	spin_unlock(details->i_mmap_lock);
2556	cond_resched();
2557	spin_lock(details->i_mmap_lock);
2558	return -EINTR;
2559}
2560
2561static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2562					    struct zap_details *details)
2563{
2564	struct vm_area_struct *vma;
2565	struct prio_tree_iter iter;
2566	pgoff_t vba, vea, zba, zea;
2567
2568restart:
2569	vma_prio_tree_foreach(vma, &iter, root,
2570			details->first_index, details->last_index) {
2571		/* Skip quickly over those we have already dealt with */
2572		if (vma->vm_truncate_count == details->truncate_count)
2573			continue;
2574
2575		vba = vma->vm_pgoff;
2576		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2577		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2578		zba = details->first_index;
2579		if (zba < vba)
2580			zba = vba;
2581		zea = details->last_index;
2582		if (zea > vea)
2583			zea = vea;
2584
2585		if (unmap_mapping_range_vma(vma,
2586			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2587			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2588				details) < 0)
2589			goto restart;
2590	}
2591}
2592
2593static inline void unmap_mapping_range_list(struct list_head *head,
2594					    struct zap_details *details)
2595{
2596	struct vm_area_struct *vma;
2597
2598	/*
2599	 * In nonlinear VMAs there is no correspondence between virtual address
2600	 * offset and file offset.  So we must perform an exhaustive search
2601	 * across *all* the pages in each nonlinear VMA, not just the pages
2602	 * whose virtual address lies outside the file truncation point.
2603	 */
2604restart:
2605	list_for_each_entry(vma, head, shared.vm_set.list) {
2606		/* Skip quickly over those we have already dealt with */
2607		if (vma->vm_truncate_count == details->truncate_count)
2608			continue;
2609		details->nonlinear_vma = vma;
2610		if (unmap_mapping_range_vma(vma, vma->vm_start,
2611					vma->vm_end, details) < 0)
2612			goto restart;
2613	}
2614}
2615
2616/**
2617 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2618 * @mapping: the address space containing mmaps to be unmapped.
2619 * @holebegin: byte in first page to unmap, relative to the start of
2620 * the underlying file.  This will be rounded down to a PAGE_SIZE
2621 * boundary.  Note that this is different from truncate_pagecache(), which
2622 * must keep the partial page.  In contrast, we must get rid of
2623 * partial pages.
2624 * @holelen: size of prospective hole in bytes.  This will be rounded
2625 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2626 * end of the file.
2627 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2628 * but 0 when invalidating pagecache, don't throw away private data.
2629 */
2630void unmap_mapping_range(struct address_space *mapping,
2631		loff_t const holebegin, loff_t const holelen, int even_cows)
2632{
2633	struct zap_details details;
2634	pgoff_t hba = holebegin >> PAGE_SHIFT;
2635	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2636
2637	/* Check for overflow. */
2638	if (sizeof(holelen) > sizeof(hlen)) {
2639		long long holeend =
2640			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2641		if (holeend & ~(long long)ULONG_MAX)
2642			hlen = ULONG_MAX - hba + 1;
2643	}
2644
2645	details.check_mapping = even_cows? NULL: mapping;
2646	details.nonlinear_vma = NULL;
2647	details.first_index = hba;
2648	details.last_index = hba + hlen - 1;
2649	if (details.last_index < details.first_index)
2650		details.last_index = ULONG_MAX;
2651	details.i_mmap_lock = &mapping->i_mmap_lock;
2652
2653	spin_lock(&mapping->i_mmap_lock);
2654
2655	/* Protect against endless unmapping loops */
2656	mapping->truncate_count++;
2657	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2658		if (mapping->truncate_count == 0)
2659			reset_vma_truncate_counts(mapping);
2660		mapping->truncate_count++;
2661	}
2662	details.truncate_count = mapping->truncate_count;
2663
2664	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2665		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2666	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2667		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2668	spin_unlock(&mapping->i_mmap_lock);
2669}
2670EXPORT_SYMBOL(unmap_mapping_range);
2671
2672int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2673{
2674	struct address_space *mapping = inode->i_mapping;
2675
2676	/*
2677	 * If the underlying filesystem is not going to provide
2678	 * a way to truncate a range of blocks (punch a hole) -
2679	 * we should return failure right now.
2680	 */
2681	if (!inode->i_op->truncate_range)
2682		return -ENOSYS;
2683
2684	mutex_lock(&inode->i_mutex);
2685	down_write(&inode->i_alloc_sem);
2686	unmap_mapping_range(mapping, offset, (end - offset), 1);
2687	truncate_inode_pages_range(mapping, offset, end);
2688	unmap_mapping_range(mapping, offset, (end - offset), 1);
2689	inode->i_op->truncate_range(inode, offset, end);
2690	up_write(&inode->i_alloc_sem);
2691	mutex_unlock(&inode->i_mutex);
2692
2693	return 0;
2694}
2695
2696/*
2697 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2698 * but allow concurrent faults), and pte mapped but not yet locked.
2699 * We return with mmap_sem still held, but pte unmapped and unlocked.
2700 */
2701static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2702		unsigned long address, pte_t *page_table, pmd_t *pmd,
2703		unsigned int flags, pte_t orig_pte)
2704{
2705	spinlock_t *ptl;
2706	struct page *page, *swapcache = NULL;
2707	swp_entry_t entry;
2708	pte_t pte;
2709	int locked;
2710	struct mem_cgroup *ptr = NULL;
2711	int exclusive = 0;
2712	int ret = 0;
2713
2714	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2715		goto out;
2716
2717	entry = pte_to_swp_entry(orig_pte);
2718	if (unlikely(non_swap_entry(entry))) {
2719		if (is_migration_entry(entry)) {
2720			migration_entry_wait(mm, pmd, address);
2721		} else if (is_hwpoison_entry(entry)) {
2722			ret = VM_FAULT_HWPOISON;
2723		} else {
2724			print_bad_pte(vma, address, orig_pte, NULL);
2725			ret = VM_FAULT_SIGBUS;
2726		}
2727		goto out;
2728	}
2729	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2730	page = lookup_swap_cache(entry);
2731	if (!page) {
2732		grab_swap_token(mm); /* Contend for token _before_ read-in */
2733		page = swapin_readahead(entry,
2734					GFP_HIGHUSER_MOVABLE, vma, address);
2735		if (!page) {
2736			/*
2737			 * Back out if somebody else faulted in this pte
2738			 * while we released the pte lock.
2739			 */
2740			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2741			if (likely(pte_same(*page_table, orig_pte)))
2742				ret = VM_FAULT_OOM;
2743			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2744			goto unlock;
2745		}
2746
2747		/* Had to read the page from swap area: Major fault */
2748		ret = VM_FAULT_MAJOR;
2749		count_vm_event(PGMAJFAULT);
2750	} else if (PageHWPoison(page)) {
2751		/*
2752		 * hwpoisoned dirty swapcache pages are kept for killing
2753		 * owner processes (which may be unknown at hwpoison time)
2754		 */
2755		ret = VM_FAULT_HWPOISON;
2756		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2757		goto out_release;
2758	}
2759
2760	locked = lock_page_or_retry(page, mm, flags);
2761	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2762	if (!locked) {
2763		ret |= VM_FAULT_RETRY;
2764		goto out_release;
2765	}
2766
2767	/*
2768	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2769	 * release the swapcache from under us.  The page pin, and pte_same
2770	 * test below, are not enough to exclude that.  Even if it is still
2771	 * swapcache, we need to check that the page's swap has not changed.
2772	 */
2773	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2774		goto out_page;
2775
2776	if (ksm_might_need_to_copy(page, vma, address)) {
2777		swapcache = page;
2778		page = ksm_does_need_to_copy(page, vma, address);
2779
2780		if (unlikely(!page)) {
2781			ret = VM_FAULT_OOM;
2782			page = swapcache;
2783			swapcache = NULL;
2784			goto out_page;
2785		}
2786	}
2787
2788	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2789		ret = VM_FAULT_OOM;
2790		goto out_page;
2791	}
2792
2793	/*
2794	 * Back out if somebody else already faulted in this pte.
2795	 */
2796	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2797	if (unlikely(!pte_same(*page_table, orig_pte)))
2798		goto out_nomap;
2799
2800	if (unlikely(!PageUptodate(page))) {
2801		ret = VM_FAULT_SIGBUS;
2802		goto out_nomap;
2803	}
2804
2805	/*
2806	 * The page isn't present yet, go ahead with the fault.
2807	 *
2808	 * Be careful about the sequence of operations here.
2809	 * To get its accounting right, reuse_swap_page() must be called
2810	 * while the page is counted on swap but not yet in mapcount i.e.
2811	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2812	 * must be called after the swap_free(), or it will never succeed.
2813	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2814	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2815	 * in page->private. In this case, a record in swap_cgroup  is silently
2816	 * discarded at swap_free().
2817	 */
2818
2819	inc_mm_counter_fast(mm, MM_ANONPAGES);
2820	dec_mm_counter_fast(mm, MM_SWAPENTS);
2821	pte = mk_pte(page, vma->vm_page_prot);
2822	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2823		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2824		flags &= ~FAULT_FLAG_WRITE;
2825		ret |= VM_FAULT_WRITE;
2826		exclusive = 1;
2827	}
2828	flush_icache_page(vma, page);
2829	set_pte_at(mm, address, page_table, pte);
2830	do_page_add_anon_rmap(page, vma, address, exclusive);
2831	/* It's better to call commit-charge after rmap is established */
2832	mem_cgroup_commit_charge_swapin(page, ptr);
2833
2834	swap_free(entry);
2835	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2836		try_to_free_swap(page);
2837	unlock_page(page);
2838	if (swapcache) {
2839		/*
2840		 * Hold the lock to avoid the swap entry to be reused
2841		 * until we take the PT lock for the pte_same() check
2842		 * (to avoid false positives from pte_same). For
2843		 * further safety release the lock after the swap_free
2844		 * so that the swap count won't change under a
2845		 * parallel locked swapcache.
2846		 */
2847		unlock_page(swapcache);
2848		page_cache_release(swapcache);
2849	}
2850
2851	if (flags & FAULT_FLAG_WRITE) {
2852		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2853		if (ret & VM_FAULT_ERROR)
2854			ret &= VM_FAULT_ERROR;
2855		goto out;
2856	}
2857
2858	/* No need to invalidate - it was non-present before */
2859	update_mmu_cache(vma, address, page_table);
2860unlock:
2861	pte_unmap_unlock(page_table, ptl);
2862out:
2863	return ret;
2864out_nomap:
2865	mem_cgroup_cancel_charge_swapin(ptr);
2866	pte_unmap_unlock(page_table, ptl);
2867out_page:
2868	unlock_page(page);
2869out_release:
2870	page_cache_release(page);
2871	if (swapcache) {
2872		unlock_page(swapcache);
2873		page_cache_release(swapcache);
2874	}
2875	return ret;
2876}
2877
2878/*
2879 * This is like a special single-page "expand_{down|up}wards()",
2880 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2881 * doesn't hit another vma.
2882 */
2883static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2884{
2885	address &= PAGE_MASK;
2886	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2887		struct vm_area_struct *prev = vma->vm_prev;
2888
2889		/*
2890		 * Is there a mapping abutting this one below?
2891		 *
2892		 * That's only ok if it's the same stack mapping
2893		 * that has gotten split..
2894		 */
2895		if (prev && prev->vm_end == address)
2896			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2897
2898		expand_stack(vma, address - PAGE_SIZE);
2899	}
2900	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2901		struct vm_area_struct *next = vma->vm_next;
2902
2903		/* As VM_GROWSDOWN but s/below/above/ */
2904		if (next && next->vm_start == address + PAGE_SIZE)
2905			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2906
2907		expand_upwards(vma, address + PAGE_SIZE);
2908	}
2909	return 0;
2910}
2911
2912/*
2913 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2914 * but allow concurrent faults), and pte mapped but not yet locked.
2915 * We return with mmap_sem still held, but pte unmapped and unlocked.
2916 */
2917static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2918		unsigned long address, pte_t *page_table, pmd_t *pmd,
2919		unsigned int flags)
2920{
2921	struct page *page;
2922	spinlock_t *ptl;
2923	pte_t entry;
2924
2925	pte_unmap(page_table);
2926
2927	/* Check if we need to add a guard page to the stack */
2928	if (check_stack_guard_page(vma, address) < 0)
2929		return VM_FAULT_SIGBUS;
2930
2931	/* Use the zero-page for reads */
2932	if (!(flags & FAULT_FLAG_WRITE)) {
2933		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2934						vma->vm_page_prot));
2935		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2936		if (!pte_none(*page_table))
2937			goto unlock;
2938		goto setpte;
2939	}
2940
2941	/* Allocate our own private page. */
2942	if (unlikely(anon_vma_prepare(vma)))
2943		goto oom;
2944	page = alloc_zeroed_user_highpage_movable(vma, address);
2945	if (!page)
2946		goto oom;
2947	__SetPageUptodate(page);
2948
2949	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2950		goto oom_free_page;
2951
2952	entry = mk_pte(page, vma->vm_page_prot);
2953	if (vma->vm_flags & VM_WRITE)
2954		entry = pte_mkwrite(pte_mkdirty(entry));
2955
2956	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2957	if (!pte_none(*page_table))
2958		goto release;
2959
2960	inc_mm_counter_fast(mm, MM_ANONPAGES);
2961	page_add_new_anon_rmap(page, vma, address);
2962setpte:
2963	set_pte_at(mm, address, page_table, entry);
2964
2965	/* No need to invalidate - it was non-present before */
2966	update_mmu_cache(vma, address, page_table);
2967unlock:
2968	pte_unmap_unlock(page_table, ptl);
2969	return 0;
2970release:
2971	mem_cgroup_uncharge_page(page);
2972	page_cache_release(page);
2973	goto unlock;
2974oom_free_page:
2975	page_cache_release(page);
2976oom:
2977	return VM_FAULT_OOM;
2978}
2979
2980/*
2981 * __do_fault() tries to create a new page mapping. It aggressively
2982 * tries to share with existing pages, but makes a separate copy if
2983 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2984 * the next page fault.
2985 *
2986 * As this is called only for pages that do not currently exist, we
2987 * do not need to flush old virtual caches or the TLB.
2988 *
2989 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2990 * but allow concurrent faults), and pte neither mapped nor locked.
2991 * We return with mmap_sem still held, but pte unmapped and unlocked.
2992 */
2993static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2994		unsigned long address, pmd_t *pmd,
2995		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2996{
2997	pte_t *page_table;
2998	spinlock_t *ptl;
2999	struct page *page;
3000	pte_t entry;
3001	int anon = 0;
3002	int charged = 0;
3003	struct page *dirty_page = NULL;
3004	struct vm_fault vmf;
3005	int ret;
3006	int page_mkwrite = 0;
3007
3008	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3009	vmf.pgoff = pgoff;
3010	vmf.flags = flags;
3011	vmf.page = NULL;
3012
3013	ret = vma->vm_ops->fault(vma, &vmf);
3014	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3015			    VM_FAULT_RETRY)))
3016		return ret;
3017
3018	if (unlikely(PageHWPoison(vmf.page))) {
3019		if (ret & VM_FAULT_LOCKED)
3020			unlock_page(vmf.page);
3021		return VM_FAULT_HWPOISON;
3022	}
3023
3024	/*
3025	 * For consistency in subsequent calls, make the faulted page always
3026	 * locked.
3027	 */
3028	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3029		lock_page(vmf.page);
3030	else
3031		VM_BUG_ON(!PageLocked(vmf.page));
3032
3033	/*
3034	 * Should we do an early C-O-W break?
3035	 */
3036	page = vmf.page;
3037	if (flags & FAULT_FLAG_WRITE) {
3038		if (!(vma->vm_flags & VM_SHARED)) {
3039			anon = 1;
3040			if (unlikely(anon_vma_prepare(vma))) {
3041				ret = VM_FAULT_OOM;
3042				goto out;
3043			}
3044			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3045						vma, address);
3046			if (!page) {
3047				ret = VM_FAULT_OOM;
3048				goto out;
3049			}
3050			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3051				ret = VM_FAULT_OOM;
3052				page_cache_release(page);
3053				goto out;
3054			}
3055			charged = 1;
3056			/*
3057			 * Don't let another task, with possibly unlocked vma,
3058			 * keep the mlocked page.
3059			 */
3060			if (vma->vm_flags & VM_LOCKED)
3061				clear_page_mlock(vmf.page);
3062			copy_user_highpage(page, vmf.page, address, vma);
3063			__SetPageUptodate(page);
3064		} else {
3065			/*
3066			 * If the page will be shareable, see if the backing
3067			 * address space wants to know that the page is about
3068			 * to become writable
3069			 */
3070			if (vma->vm_ops->page_mkwrite) {
3071				int tmp;
3072
3073				unlock_page(page);
3074				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3075				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3076				if (unlikely(tmp &
3077					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3078					ret = tmp;
3079					goto unwritable_page;
3080				}
3081				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3082					lock_page(page);
3083					if (!page->mapping) {
3084						ret = 0; /* retry the fault */
3085						unlock_page(page);
3086						goto unwritable_page;
3087					}
3088				} else
3089					VM_BUG_ON(!PageLocked(page));
3090				page_mkwrite = 1;
3091			}
3092		}
3093
3094	}
3095
3096	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3097
3098	/*
3099	 * This silly early PAGE_DIRTY setting removes a race
3100	 * due to the bad i386 page protection. But it's valid
3101	 * for other architectures too.
3102	 *
3103	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3104	 * an exclusive copy of the page, or this is a shared mapping,
3105	 * so we can make it writable and dirty to avoid having to
3106	 * handle that later.
3107	 */
3108	/* Only go through if we didn't race with anybody else... */
3109	if (likely(pte_same(*page_table, orig_pte))) {
3110		flush_icache_page(vma, page);
3111		entry = mk_pte(page, vma->vm_page_prot);
3112		if (flags & FAULT_FLAG_WRITE)
3113			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3114		if (anon) {
3115			inc_mm_counter_fast(mm, MM_ANONPAGES);
3116			page_add_new_anon_rmap(page, vma, address);
3117		} else {
3118			inc_mm_counter_fast(mm, MM_FILEPAGES);
3119			page_add_file_rmap(page);
3120			if (flags & FAULT_FLAG_WRITE) {
3121				dirty_page = page;
3122				get_page(dirty_page);
3123			}
3124		}
3125		set_pte_at(mm, address, page_table, entry);
3126
3127		/* no need to invalidate: a not-present page won't be cached */
3128		update_mmu_cache(vma, address, page_table);
3129	} else {
3130		if (charged)
3131			mem_cgroup_uncharge_page(page);
3132		if (anon)
3133			page_cache_release(page);
3134		else
3135			anon = 1; /* no anon but release faulted_page */
3136	}
3137
3138	pte_unmap_unlock(page_table, ptl);
3139
3140out:
3141	if (dirty_page) {
3142		struct address_space *mapping = page->mapping;
3143
3144		if (set_page_dirty(dirty_page))
3145			page_mkwrite = 1;
3146		unlock_page(dirty_page);
3147		put_page(dirty_page);
3148		if (page_mkwrite && mapping) {
3149			/*
3150			 * Some device drivers do not set page.mapping but still
3151			 * dirty their pages
3152			 */
3153			balance_dirty_pages_ratelimited(mapping);
3154		}
3155
3156		/* file_update_time outside page_lock */
3157		if (vma->vm_file)
3158			file_update_time(vma->vm_file);
3159	} else {
3160		unlock_page(vmf.page);
3161		if (anon)
3162			page_cache_release(vmf.page);
3163	}
3164
3165	return ret;
3166
3167unwritable_page:
3168	page_cache_release(page);
3169	return ret;
3170}
3171
3172static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3173		unsigned long address, pte_t *page_table, pmd_t *pmd,
3174		unsigned int flags, pte_t orig_pte)
3175{
3176	pgoff_t pgoff = (((address & PAGE_MASK)
3177			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3178
3179	pte_unmap(page_table);
3180	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3181}
3182
3183/*
3184 * Fault of a previously existing named mapping. Repopulate the pte
3185 * from the encoded file_pte if possible. This enables swappable
3186 * nonlinear vmas.
3187 *
3188 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3189 * but allow concurrent faults), and pte mapped but not yet locked.
3190 * We return with mmap_sem still held, but pte unmapped and unlocked.
3191 */
3192static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3193		unsigned long address, pte_t *page_table, pmd_t *pmd,
3194		unsigned int flags, pte_t orig_pte)
3195{
3196	pgoff_t pgoff;
3197
3198	flags |= FAULT_FLAG_NONLINEAR;
3199
3200	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3201		return 0;
3202
3203	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3204		/*
3205		 * Page table corrupted: show pte and kill process.
3206		 */
3207		print_bad_pte(vma, address, orig_pte, NULL);
3208		return VM_FAULT_SIGBUS;
3209	}
3210
3211	pgoff = pte_to_pgoff(orig_pte);
3212	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3213}
3214
3215/*
3216 * These routines also need to handle stuff like marking pages dirty
3217 * and/or accessed for architectures that don't do it in hardware (most
3218 * RISC architectures).  The early dirtying is also good on the i386.
3219 *
3220 * There is also a hook called "update_mmu_cache()" that architectures
3221 * with external mmu caches can use to update those (ie the Sparc or
3222 * PowerPC hashed page tables that act as extended TLBs).
3223 *
3224 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3225 * but allow concurrent faults), and pte mapped but not yet locked.
3226 * We return with mmap_sem still held, but pte unmapped and unlocked.
3227 */
3228int handle_pte_fault(struct mm_struct *mm,
3229		     struct vm_area_struct *vma, unsigned long address,
3230		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3231{
3232	pte_t entry;
3233	spinlock_t *ptl;
3234
3235	entry = *pte;
3236	if (!pte_present(entry)) {
3237		if (pte_none(entry)) {
3238			if (vma->vm_ops) {
3239				if (likely(vma->vm_ops->fault))
3240					return do_linear_fault(mm, vma, address,
3241						pte, pmd, flags, entry);
3242			}
3243			return do_anonymous_page(mm, vma, address,
3244						 pte, pmd, flags);
3245		}
3246		if (pte_file(entry))
3247			return do_nonlinear_fault(mm, vma, address,
3248					pte, pmd, flags, entry);
3249		return do_swap_page(mm, vma, address,
3250					pte, pmd, flags, entry);
3251	}
3252
3253	ptl = pte_lockptr(mm, pmd);
3254	spin_lock(ptl);
3255	if (unlikely(!pte_same(*pte, entry)))
3256		goto unlock;
3257	if (flags & FAULT_FLAG_WRITE) {
3258		if (!pte_write(entry))
3259			return do_wp_page(mm, vma, address,
3260					pte, pmd, ptl, entry);
3261		entry = pte_mkdirty(entry);
3262	}
3263	entry = pte_mkyoung(entry);
3264	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3265		update_mmu_cache(vma, address, pte);
3266	} else {
3267		/*
3268		 * This is needed only for protection faults but the arch code
3269		 * is not yet telling us if this is a protection fault or not.
3270		 * This still avoids useless tlb flushes for .text page faults
3271		 * with threads.
3272		 */
3273		if (flags & FAULT_FLAG_WRITE)
3274			flush_tlb_fix_spurious_fault(vma, address);
3275	}
3276unlock:
3277	pte_unmap_unlock(pte, ptl);
3278	return 0;
3279}
3280
3281/*
3282 * By the time we get here, we already hold the mm semaphore
3283 */
3284int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3285		unsigned long address, unsigned int flags)
3286{
3287	pgd_t *pgd;
3288	pud_t *pud;
3289	pmd_t *pmd;
3290	pte_t *pte;
3291
3292	__set_current_state(TASK_RUNNING);
3293
3294	count_vm_event(PGFAULT);
3295
3296	/* do counter updates before entering really critical section. */
3297	check_sync_rss_stat(current);
3298
3299	if (unlikely(is_vm_hugetlb_page(vma)))
3300		return hugetlb_fault(mm, vma, address, flags);
3301
3302	pgd = pgd_offset(mm, address);
3303	pud = pud_alloc(mm, pgd, address);
3304	if (!pud)
3305		return VM_FAULT_OOM;
3306	pmd = pmd_alloc(mm, pud, address);
3307	if (!pmd)
3308		return VM_FAULT_OOM;
3309	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3310		if (!vma->vm_ops)
3311			return do_huge_pmd_anonymous_page(mm, vma, address,
3312							  pmd, flags);
3313	} else {
3314		pmd_t orig_pmd = *pmd;
3315		barrier();
3316		if (pmd_trans_huge(orig_pmd)) {
3317			if (flags & FAULT_FLAG_WRITE &&
3318			    !pmd_write(orig_pmd) &&
3319			    !pmd_trans_splitting(orig_pmd))
3320				return do_huge_pmd_wp_page(mm, vma, address,
3321							   pmd, orig_pmd);
3322			return 0;
3323		}
3324	}
3325
3326	/*
3327	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3328	 * run pte_offset_map on the pmd, if an huge pmd could
3329	 * materialize from under us from a different thread.
3330	 */
3331	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
3332		return VM_FAULT_OOM;
3333	/* if an huge pmd materialized from under us just retry later */
3334	if (unlikely(pmd_trans_huge(*pmd)))
3335		return 0;
3336	/*
3337	 * A regular pmd is established and it can't morph into a huge pmd
3338	 * from under us anymore at this point because we hold the mmap_sem
3339	 * read mode and khugepaged takes it in write mode. So now it's
3340	 * safe to run pte_offset_map().
3341	 */
3342	pte = pte_offset_map(pmd, address);
3343
3344	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3345}
3346
3347#ifndef __PAGETABLE_PUD_FOLDED
3348/*
3349 * Allocate page upper directory.
3350 * We've already handled the fast-path in-line.
3351 */
3352int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3353{
3354	pud_t *new = pud_alloc_one(mm, address);
3355	if (!new)
3356		return -ENOMEM;
3357
3358	smp_wmb(); /* See comment in __pte_alloc */
3359
3360	spin_lock(&mm->page_table_lock);
3361	if (pgd_present(*pgd))		/* Another has populated it */
3362		pud_free(mm, new);
3363	else
3364		pgd_populate(mm, pgd, new);
3365	spin_unlock(&mm->page_table_lock);
3366	return 0;
3367}
3368#endif /* __PAGETABLE_PUD_FOLDED */
3369
3370#ifndef __PAGETABLE_PMD_FOLDED
3371/*
3372 * Allocate page middle directory.
3373 * We've already handled the fast-path in-line.
3374 */
3375int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3376{
3377	pmd_t *new = pmd_alloc_one(mm, address);
3378	if (!new)
3379		return -ENOMEM;
3380
3381	smp_wmb(); /* See comment in __pte_alloc */
3382
3383	spin_lock(&mm->page_table_lock);
3384#ifndef __ARCH_HAS_4LEVEL_HACK
3385	if (pud_present(*pud))		/* Another has populated it */
3386		pmd_free(mm, new);
3387	else
3388		pud_populate(mm, pud, new);
3389#else
3390	if (pgd_present(*pud))		/* Another has populated it */
3391		pmd_free(mm, new);
3392	else
3393		pgd_populate(mm, pud, new);
3394#endif /* __ARCH_HAS_4LEVEL_HACK */
3395	spin_unlock(&mm->page_table_lock);
3396	return 0;
3397}
3398#endif /* __PAGETABLE_PMD_FOLDED */
3399
3400int make_pages_present(unsigned long addr, unsigned long end)
3401{
3402	int ret, len, write;
3403	struct vm_area_struct * vma;
3404
3405	vma = find_vma(current->mm, addr);
3406	if (!vma)
3407		return -ENOMEM;
3408	/*
3409	 * We want to touch writable mappings with a write fault in order
3410	 * to break COW, except for shared mappings because these don't COW
3411	 * and we would not want to dirty them for nothing.
3412	 */
3413	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3414	BUG_ON(addr >= end);
3415	BUG_ON(end > vma->vm_end);
3416	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3417	ret = get_user_pages(current, current->mm, addr,
3418			len, write, 0, NULL, NULL);
3419	if (ret < 0)
3420		return ret;
3421	return ret == len ? 0 : -EFAULT;
3422}
3423
3424#if !defined(__HAVE_ARCH_GATE_AREA)
3425
3426#if defined(AT_SYSINFO_EHDR)
3427static struct vm_area_struct gate_vma;
3428
3429static int __init gate_vma_init(void)
3430{
3431	gate_vma.vm_mm = NULL;
3432	gate_vma.vm_start = FIXADDR_USER_START;
3433	gate_vma.vm_end = FIXADDR_USER_END;
3434	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3435	gate_vma.vm_page_prot = __P101;
3436	/*
3437	 * Make sure the vDSO gets into every core dump.
3438	 * Dumping its contents makes post-mortem fully interpretable later
3439	 * without matching up the same kernel and hardware config to see
3440	 * what PC values meant.
3441	 */
3442	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3443	return 0;
3444}
3445__initcall(gate_vma_init);
3446#endif
3447
3448struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3449{
3450#ifdef AT_SYSINFO_EHDR
3451	return &gate_vma;
3452#else
3453	return NULL;
3454#endif
3455}
3456
3457int in_gate_area_no_task(unsigned long addr)
3458{
3459#ifdef AT_SYSINFO_EHDR
3460	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3461		return 1;
3462#endif
3463	return 0;
3464}
3465
3466#endif	/* __HAVE_ARCH_GATE_AREA */
3467
3468static int __follow_pte(struct mm_struct *mm, unsigned long address,
3469		pte_t **ptepp, spinlock_t **ptlp)
3470{
3471	pgd_t *pgd;
3472	pud_t *pud;
3473	pmd_t *pmd;
3474	pte_t *ptep;
3475
3476	pgd = pgd_offset(mm, address);
3477	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3478		goto out;
3479
3480	pud = pud_offset(pgd, address);
3481	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3482		goto out;
3483
3484	pmd = pmd_offset(pud, address);
3485	VM_BUG_ON(pmd_trans_huge(*pmd));
3486	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3487		goto out;
3488
3489	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3490	if (pmd_huge(*pmd))
3491		goto out;
3492
3493	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3494	if (!ptep)
3495		goto out;
3496	if (!pte_present(*ptep))
3497		goto unlock;
3498	*ptepp = ptep;
3499	return 0;
3500unlock:
3501	pte_unmap_unlock(ptep, *ptlp);
3502out:
3503	return -EINVAL;
3504}
3505
3506static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3507			     pte_t **ptepp, spinlock_t **ptlp)
3508{
3509	int res;
3510
3511	/* (void) is needed to make gcc happy */
3512	(void) __cond_lock(*ptlp,
3513			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3514	return res;
3515}
3516
3517/**
3518 * follow_pfn - look up PFN at a user virtual address
3519 * @vma: memory mapping
3520 * @address: user virtual address
3521 * @pfn: location to store found PFN
3522 *
3523 * Only IO mappings and raw PFN mappings are allowed.
3524 *
3525 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3526 */
3527int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3528	unsigned long *pfn)
3529{
3530	int ret = -EINVAL;
3531	spinlock_t *ptl;
3532	pte_t *ptep;
3533
3534	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3535		return ret;
3536
3537	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3538	if (ret)
3539		return ret;
3540	*pfn = pte_pfn(*ptep);
3541	pte_unmap_unlock(ptep, ptl);
3542	return 0;
3543}
3544EXPORT_SYMBOL(follow_pfn);
3545
3546#ifdef CONFIG_HAVE_IOREMAP_PROT
3547int follow_phys(struct vm_area_struct *vma,
3548		unsigned long address, unsigned int flags,
3549		unsigned long *prot, resource_size_t *phys)
3550{
3551	int ret = -EINVAL;
3552	pte_t *ptep, pte;
3553	spinlock_t *ptl;
3554
3555	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3556		goto out;
3557
3558	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3559		goto out;
3560	pte = *ptep;
3561
3562	if ((flags & FOLL_WRITE) && !pte_write(pte))
3563		goto unlock;
3564
3565	*prot = pgprot_val(pte_pgprot(pte));
3566	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3567
3568	ret = 0;
3569unlock:
3570	pte_unmap_unlock(ptep, ptl);
3571out:
3572	return ret;
3573}
3574
3575int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3576			void *buf, int len, int write)
3577{
3578	resource_size_t phys_addr;
3579	unsigned long prot = 0;
3580	void __iomem *maddr;
3581	int offset = addr & (PAGE_SIZE-1);
3582
3583	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3584		return -EINVAL;
3585
3586	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3587	if (write)
3588		memcpy_toio(maddr + offset, buf, len);
3589	else
3590		memcpy_fromio(buf, maddr + offset, len);
3591	iounmap(maddr);
3592
3593	return len;
3594}
3595#endif
3596
3597/*
3598 * Access another process' address space.
3599 * Source/target buffer must be kernel space,
3600 * Do not walk the page table directly, use get_user_pages
3601 */
3602int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3603{
3604	struct mm_struct *mm;
3605	struct vm_area_struct *vma;
3606	void *old_buf = buf;
3607
3608	mm = get_task_mm(tsk);
3609	if (!mm)
3610		return 0;
3611
3612	down_read(&mm->mmap_sem);
3613	/* ignore errors, just check how much was successfully transferred */
3614	while (len) {
3615		int bytes, ret, offset;
3616		void *maddr;
3617		struct page *page = NULL;
3618
3619		ret = get_user_pages(tsk, mm, addr, 1,
3620				write, 1, &page, &vma);
3621		if (ret <= 0) {
3622			/*
3623			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3624			 * we can access using slightly different code.
3625			 */
3626#ifdef CONFIG_HAVE_IOREMAP_PROT
3627			vma = find_vma(mm, addr);
3628			if (!vma)
3629				break;
3630			if (vma->vm_ops && vma->vm_ops->access)
3631				ret = vma->vm_ops->access(vma, addr, buf,
3632							  len, write);
3633			if (ret <= 0)
3634#endif
3635				break;
3636			bytes = ret;
3637		} else {
3638			bytes = len;
3639			offset = addr & (PAGE_SIZE-1);
3640			if (bytes > PAGE_SIZE-offset)
3641				bytes = PAGE_SIZE-offset;
3642
3643			maddr = kmap(page);
3644			if (write) {
3645				copy_to_user_page(vma, page, addr,
3646						  maddr + offset, buf, bytes);
3647				set_page_dirty_lock(page);
3648			} else {
3649				copy_from_user_page(vma, page, addr,
3650						    buf, maddr + offset, bytes);
3651			}
3652			kunmap(page);
3653			page_cache_release(page);
3654		}
3655		len -= bytes;
3656		buf += bytes;
3657		addr += bytes;
3658	}
3659	up_read(&mm->mmap_sem);
3660	mmput(mm);
3661
3662	return buf - old_buf;
3663}
3664
3665/*
3666 * Print the name of a VMA.
3667 */
3668void print_vma_addr(char *prefix, unsigned long ip)
3669{
3670	struct mm_struct *mm = current->mm;
3671	struct vm_area_struct *vma;
3672
3673	/*
3674	 * Do not print if we are in atomic
3675	 * contexts (in exception stacks, etc.):
3676	 */
3677	if (preempt_count())
3678		return;
3679
3680	down_read(&mm->mmap_sem);
3681	vma = find_vma(mm, ip);
3682	if (vma && vma->vm_file) {
3683		struct file *f = vma->vm_file;
3684		char *buf = (char *)__get_free_page(GFP_KERNEL);
3685		if (buf) {
3686			char *p, *s;
3687
3688			p = d_path(&f->f_path, buf, PAGE_SIZE);
3689			if (IS_ERR(p))
3690				p = "?";
3691			s = strrchr(p, '/');
3692			if (s)
3693				p = s+1;
3694			printk("%s%s[%lx+%lx]", prefix, p,
3695					vma->vm_start,
3696					vma->vm_end - vma->vm_start);
3697			free_page((unsigned long)buf);
3698		}
3699	}
3700	up_read(&current->mm->mmap_sem);
3701}
3702
3703#ifdef CONFIG_PROVE_LOCKING
3704void might_fault(void)
3705{
3706	/*
3707	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3708	 * holding the mmap_sem, this is safe because kernel memory doesn't
3709	 * get paged out, therefore we'll never actually fault, and the
3710	 * below annotations will generate false positives.
3711	 */
3712	if (segment_eq(get_fs(), KERNEL_DS))
3713		return;
3714
3715	might_sleep();
3716	/*
3717	 * it would be nicer only to annotate paths which are not under
3718	 * pagefault_disable, however that requires a larger audit and
3719	 * providing helpers like get_user_atomic.
3720	 */
3721	if (!in_atomic() && current->mm)
3722		might_lock_read(&current->mm->mmap_sem);
3723}
3724EXPORT_SYMBOL(might_fault);
3725#endif
3726
3727#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3728static void clear_gigantic_page(struct page *page,
3729				unsigned long addr,
3730				unsigned int pages_per_huge_page)
3731{
3732	int i;
3733	struct page *p = page;
3734
3735	might_sleep();
3736	for (i = 0; i < pages_per_huge_page;
3737	     i++, p = mem_map_next(p, page, i)) {
3738		cond_resched();
3739		clear_user_highpage(p, addr + i * PAGE_SIZE);
3740	}
3741}
3742void clear_huge_page(struct page *page,
3743		     unsigned long addr, unsigned int pages_per_huge_page)
3744{
3745	int i;
3746
3747	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3748		clear_gigantic_page(page, addr, pages_per_huge_page);
3749		return;
3750	}
3751
3752	might_sleep();
3753	for (i = 0; i < pages_per_huge_page; i++) {
3754		cond_resched();
3755		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3756	}
3757}
3758
3759static void copy_user_gigantic_page(struct page *dst, struct page *src,
3760				    unsigned long addr,
3761				    struct vm_area_struct *vma,
3762				    unsigned int pages_per_huge_page)
3763{
3764	int i;
3765	struct page *dst_base = dst;
3766	struct page *src_base = src;
3767
3768	for (i = 0; i < pages_per_huge_page; ) {
3769		cond_resched();
3770		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3771
3772		i++;
3773		dst = mem_map_next(dst, dst_base, i);
3774		src = mem_map_next(src, src_base, i);
3775	}
3776}
3777
3778void copy_user_huge_page(struct page *dst, struct page *src,
3779			 unsigned long addr, struct vm_area_struct *vma,
3780			 unsigned int pages_per_huge_page)
3781{
3782	int i;
3783
3784	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3785		copy_user_gigantic_page(dst, src, addr, vma,
3786					pages_per_huge_page);
3787		return;
3788	}
3789
3790	might_sleep();
3791	for (i = 0; i < pages_per_huge_page; i++) {
3792		cond_resched();
3793		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3794	}
3795}
3796#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3797