memory.c revision 1ff8038988adecfde71d82c0597727fc239d4e8c
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
61#ifndef CONFIG_NEED_MULTIPLE_NODES
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none.  Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93	pgd_ERROR(*pgd);
94	pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99	pud_ERROR(*pud);
100	pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105	pmd_ERROR(*pmd);
106	pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114{
115	struct page *page = pmd_page(*pmd);
116	pmd_clear(pmd);
117	pte_lock_deinit(page);
118	pte_free_tlb(tlb, page);
119	dec_page_state(nr_page_table_pages);
120	tlb->mm->nr_ptes--;
121}
122
123static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
124				unsigned long addr, unsigned long end,
125				unsigned long floor, unsigned long ceiling)
126{
127	pmd_t *pmd;
128	unsigned long next;
129	unsigned long start;
130
131	start = addr;
132	pmd = pmd_offset(pud, addr);
133	do {
134		next = pmd_addr_end(addr, end);
135		if (pmd_none_or_clear_bad(pmd))
136			continue;
137		free_pte_range(tlb, pmd);
138	} while (pmd++, addr = next, addr != end);
139
140	start &= PUD_MASK;
141	if (start < floor)
142		return;
143	if (ceiling) {
144		ceiling &= PUD_MASK;
145		if (!ceiling)
146			return;
147	}
148	if (end - 1 > ceiling - 1)
149		return;
150
151	pmd = pmd_offset(pud, start);
152	pud_clear(pud);
153	pmd_free_tlb(tlb, pmd);
154}
155
156static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
157				unsigned long addr, unsigned long end,
158				unsigned long floor, unsigned long ceiling)
159{
160	pud_t *pud;
161	unsigned long next;
162	unsigned long start;
163
164	start = addr;
165	pud = pud_offset(pgd, addr);
166	do {
167		next = pud_addr_end(addr, end);
168		if (pud_none_or_clear_bad(pud))
169			continue;
170		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
171	} while (pud++, addr = next, addr != end);
172
173	start &= PGDIR_MASK;
174	if (start < floor)
175		return;
176	if (ceiling) {
177		ceiling &= PGDIR_MASK;
178		if (!ceiling)
179			return;
180	}
181	if (end - 1 > ceiling - 1)
182		return;
183
184	pud = pud_offset(pgd, start);
185	pgd_clear(pgd);
186	pud_free_tlb(tlb, pud);
187}
188
189/*
190 * This function frees user-level page tables of a process.
191 *
192 * Must be called with pagetable lock held.
193 */
194void free_pgd_range(struct mmu_gather **tlb,
195			unsigned long addr, unsigned long end,
196			unsigned long floor, unsigned long ceiling)
197{
198	pgd_t *pgd;
199	unsigned long next;
200	unsigned long start;
201
202	/*
203	 * The next few lines have given us lots of grief...
204	 *
205	 * Why are we testing PMD* at this top level?  Because often
206	 * there will be no work to do at all, and we'd prefer not to
207	 * go all the way down to the bottom just to discover that.
208	 *
209	 * Why all these "- 1"s?  Because 0 represents both the bottom
210	 * of the address space and the top of it (using -1 for the
211	 * top wouldn't help much: the masks would do the wrong thing).
212	 * The rule is that addr 0 and floor 0 refer to the bottom of
213	 * the address space, but end 0 and ceiling 0 refer to the top
214	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
215	 * that end 0 case should be mythical).
216	 *
217	 * Wherever addr is brought up or ceiling brought down, we must
218	 * be careful to reject "the opposite 0" before it confuses the
219	 * subsequent tests.  But what about where end is brought down
220	 * by PMD_SIZE below? no, end can't go down to 0 there.
221	 *
222	 * Whereas we round start (addr) and ceiling down, by different
223	 * masks at different levels, in order to test whether a table
224	 * now has no other vmas using it, so can be freed, we don't
225	 * bother to round floor or end up - the tests don't need that.
226	 */
227
228	addr &= PMD_MASK;
229	if (addr < floor) {
230		addr += PMD_SIZE;
231		if (!addr)
232			return;
233	}
234	if (ceiling) {
235		ceiling &= PMD_MASK;
236		if (!ceiling)
237			return;
238	}
239	if (end - 1 > ceiling - 1)
240		end -= PMD_SIZE;
241	if (addr > end - 1)
242		return;
243
244	start = addr;
245	pgd = pgd_offset((*tlb)->mm, addr);
246	do {
247		next = pgd_addr_end(addr, end);
248		if (pgd_none_or_clear_bad(pgd))
249			continue;
250		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
251	} while (pgd++, addr = next, addr != end);
252
253	if (!(*tlb)->fullmm)
254		flush_tlb_pgtables((*tlb)->mm, start, end);
255}
256
257void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
258		unsigned long floor, unsigned long ceiling)
259{
260	while (vma) {
261		struct vm_area_struct *next = vma->vm_next;
262		unsigned long addr = vma->vm_start;
263
264		/*
265		 * Hide vma from rmap and vmtruncate before freeing pgtables
266		 */
267		anon_vma_unlink(vma);
268		unlink_file_vma(vma);
269
270		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
271			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
272				floor, next? next->vm_start: ceiling);
273		} else {
274			/*
275			 * Optimization: gather nearby vmas into one call down
276			 */
277			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
278			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
279							HPAGE_SIZE)) {
280				vma = next;
281				next = vma->vm_next;
282				anon_vma_unlink(vma);
283				unlink_file_vma(vma);
284			}
285			free_pgd_range(tlb, addr, vma->vm_end,
286				floor, next? next->vm_start: ceiling);
287		}
288		vma = next;
289	}
290}
291
292int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
293{
294	struct page *new = pte_alloc_one(mm, address);
295	if (!new)
296		return -ENOMEM;
297
298	pte_lock_init(new);
299	spin_lock(&mm->page_table_lock);
300	if (pmd_present(*pmd)) {	/* Another has populated it */
301		pte_lock_deinit(new);
302		pte_free(new);
303	} else {
304		mm->nr_ptes++;
305		inc_page_state(nr_page_table_pages);
306		pmd_populate(mm, pmd, new);
307	}
308	spin_unlock(&mm->page_table_lock);
309	return 0;
310}
311
312int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
313{
314	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
315	if (!new)
316		return -ENOMEM;
317
318	spin_lock(&init_mm.page_table_lock);
319	if (pmd_present(*pmd))		/* Another has populated it */
320		pte_free_kernel(new);
321	else
322		pmd_populate_kernel(&init_mm, pmd, new);
323	spin_unlock(&init_mm.page_table_lock);
324	return 0;
325}
326
327static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
328{
329	if (file_rss)
330		add_mm_counter(mm, file_rss, file_rss);
331	if (anon_rss)
332		add_mm_counter(mm, anon_rss, anon_rss);
333}
334
335/*
336 * This function is called to print an error when a bad pte
337 * is found. For example, we might have a PFN-mapped pte in
338 * a region that doesn't allow it.
339 *
340 * The calling function must still handle the error.
341 */
342void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
343{
344	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
345			"vm_flags = %lx, vaddr = %lx\n",
346		(long long)pte_val(pte),
347		(vma->vm_mm == current->mm ? current->comm : "???"),
348		vma->vm_flags, vaddr);
349	dump_stack();
350}
351
352static inline int is_cow_mapping(unsigned int flags)
353{
354	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
355}
356
357/*
358 * This function gets the "struct page" associated with a pte.
359 *
360 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
361 * will have each page table entry just pointing to a raw page frame
362 * number, and as far as the VM layer is concerned, those do not have
363 * pages associated with them - even if the PFN might point to memory
364 * that otherwise is perfectly fine and has a "struct page".
365 *
366 * The way we recognize those mappings is through the rules set up
367 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
368 * and the vm_pgoff will point to the first PFN mapped: thus every
369 * page that is a raw mapping will always honor the rule
370 *
371 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
372 *
373 * and if that isn't true, the page has been COW'ed (in which case it
374 * _does_ have a "struct page" associated with it even if it is in a
375 * VM_PFNMAP range).
376 */
377struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
378{
379	unsigned long pfn = pte_pfn(pte);
380
381	if (vma->vm_flags & VM_PFNMAP) {
382		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
383		if (pfn == vma->vm_pgoff + off)
384			return NULL;
385		if (!is_cow_mapping(vma->vm_flags))
386			return NULL;
387	}
388
389	/*
390	 * Add some anal sanity checks for now. Eventually,
391	 * we should just do "return pfn_to_page(pfn)", but
392	 * in the meantime we check that we get a valid pfn,
393	 * and that the resulting page looks ok.
394	 *
395	 * Remove this test eventually!
396	 */
397	if (unlikely(!pfn_valid(pfn))) {
398		print_bad_pte(vma, pte, addr);
399		return NULL;
400	}
401
402	/*
403	 * NOTE! We still have PageReserved() pages in the page
404	 * tables.
405	 *
406	 * The PAGE_ZERO() pages and various VDSO mappings can
407	 * cause them to exist.
408	 */
409	return pfn_to_page(pfn);
410}
411
412/*
413 * copy one vm_area from one task to the other. Assumes the page tables
414 * already present in the new task to be cleared in the whole range
415 * covered by this vma.
416 */
417
418static inline void
419copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
420		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
421		unsigned long addr, int *rss)
422{
423	unsigned long vm_flags = vma->vm_flags;
424	pte_t pte = *src_pte;
425	struct page *page;
426
427	/* pte contains position in swap or file, so copy. */
428	if (unlikely(!pte_present(pte))) {
429		if (!pte_file(pte)) {
430			swap_duplicate(pte_to_swp_entry(pte));
431			/* make sure dst_mm is on swapoff's mmlist. */
432			if (unlikely(list_empty(&dst_mm->mmlist))) {
433				spin_lock(&mmlist_lock);
434				if (list_empty(&dst_mm->mmlist))
435					list_add(&dst_mm->mmlist,
436						 &src_mm->mmlist);
437				spin_unlock(&mmlist_lock);
438			}
439		}
440		goto out_set_pte;
441	}
442
443	/*
444	 * If it's a COW mapping, write protect it both
445	 * in the parent and the child
446	 */
447	if (is_cow_mapping(vm_flags)) {
448		ptep_set_wrprotect(src_mm, addr, src_pte);
449		pte = *src_pte;
450	}
451
452	/*
453	 * If it's a shared mapping, mark it clean in
454	 * the child
455	 */
456	if (vm_flags & VM_SHARED)
457		pte = pte_mkclean(pte);
458	pte = pte_mkold(pte);
459
460	page = vm_normal_page(vma, addr, pte);
461	if (page) {
462		get_page(page);
463		page_dup_rmap(page);
464		rss[!!PageAnon(page)]++;
465	}
466
467out_set_pte:
468	set_pte_at(dst_mm, addr, dst_pte, pte);
469}
470
471static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
473		unsigned long addr, unsigned long end)
474{
475	pte_t *src_pte, *dst_pte;
476	spinlock_t *src_ptl, *dst_ptl;
477	int progress = 0;
478	int rss[2];
479
480again:
481	rss[1] = rss[0] = 0;
482	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
483	if (!dst_pte)
484		return -ENOMEM;
485	src_pte = pte_offset_map_nested(src_pmd, addr);
486	src_ptl = pte_lockptr(src_mm, src_pmd);
487	spin_lock(src_ptl);
488
489	do {
490		/*
491		 * We are holding two locks at this point - either of them
492		 * could generate latencies in another task on another CPU.
493		 */
494		if (progress >= 32) {
495			progress = 0;
496			if (need_resched() ||
497			    need_lockbreak(src_ptl) ||
498			    need_lockbreak(dst_ptl))
499				break;
500		}
501		if (pte_none(*src_pte)) {
502			progress++;
503			continue;
504		}
505		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
506		progress += 8;
507	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
508
509	spin_unlock(src_ptl);
510	pte_unmap_nested(src_pte - 1);
511	add_mm_rss(dst_mm, rss[0], rss[1]);
512	pte_unmap_unlock(dst_pte - 1, dst_ptl);
513	cond_resched();
514	if (addr != end)
515		goto again;
516	return 0;
517}
518
519static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
520		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
521		unsigned long addr, unsigned long end)
522{
523	pmd_t *src_pmd, *dst_pmd;
524	unsigned long next;
525
526	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
527	if (!dst_pmd)
528		return -ENOMEM;
529	src_pmd = pmd_offset(src_pud, addr);
530	do {
531		next = pmd_addr_end(addr, end);
532		if (pmd_none_or_clear_bad(src_pmd))
533			continue;
534		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
535						vma, addr, next))
536			return -ENOMEM;
537	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
538	return 0;
539}
540
541static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
542		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
543		unsigned long addr, unsigned long end)
544{
545	pud_t *src_pud, *dst_pud;
546	unsigned long next;
547
548	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
549	if (!dst_pud)
550		return -ENOMEM;
551	src_pud = pud_offset(src_pgd, addr);
552	do {
553		next = pud_addr_end(addr, end);
554		if (pud_none_or_clear_bad(src_pud))
555			continue;
556		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
557						vma, addr, next))
558			return -ENOMEM;
559	} while (dst_pud++, src_pud++, addr = next, addr != end);
560	return 0;
561}
562
563int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
564		struct vm_area_struct *vma)
565{
566	pgd_t *src_pgd, *dst_pgd;
567	unsigned long next;
568	unsigned long addr = vma->vm_start;
569	unsigned long end = vma->vm_end;
570
571	/*
572	 * Don't copy ptes where a page fault will fill them correctly.
573	 * Fork becomes much lighter when there are big shared or private
574	 * readonly mappings. The tradeoff is that copy_page_range is more
575	 * efficient than faulting.
576	 */
577	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP))) {
578		if (!vma->anon_vma)
579			return 0;
580	}
581
582	if (is_vm_hugetlb_page(vma))
583		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
584
585	dst_pgd = pgd_offset(dst_mm, addr);
586	src_pgd = pgd_offset(src_mm, addr);
587	do {
588		next = pgd_addr_end(addr, end);
589		if (pgd_none_or_clear_bad(src_pgd))
590			continue;
591		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
592						vma, addr, next))
593			return -ENOMEM;
594	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
595	return 0;
596}
597
598static unsigned long zap_pte_range(struct mmu_gather *tlb,
599				struct vm_area_struct *vma, pmd_t *pmd,
600				unsigned long addr, unsigned long end,
601				long *zap_work, struct zap_details *details)
602{
603	struct mm_struct *mm = tlb->mm;
604	pte_t *pte;
605	spinlock_t *ptl;
606	int file_rss = 0;
607	int anon_rss = 0;
608
609	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
610	do {
611		pte_t ptent = *pte;
612		if (pte_none(ptent)) {
613			(*zap_work)--;
614			continue;
615		}
616		if (pte_present(ptent)) {
617			struct page *page;
618
619			(*zap_work) -= PAGE_SIZE;
620
621			page = vm_normal_page(vma, addr, ptent);
622			if (unlikely(details) && page) {
623				/*
624				 * unmap_shared_mapping_pages() wants to
625				 * invalidate cache without truncating:
626				 * unmap shared but keep private pages.
627				 */
628				if (details->check_mapping &&
629				    details->check_mapping != page->mapping)
630					continue;
631				/*
632				 * Each page->index must be checked when
633				 * invalidating or truncating nonlinear.
634				 */
635				if (details->nonlinear_vma &&
636				    (page->index < details->first_index ||
637				     page->index > details->last_index))
638					continue;
639			}
640			ptent = ptep_get_and_clear_full(mm, addr, pte,
641							tlb->fullmm);
642			tlb_remove_tlb_entry(tlb, pte, addr);
643			if (unlikely(!page))
644				continue;
645			if (unlikely(details) && details->nonlinear_vma
646			    && linear_page_index(details->nonlinear_vma,
647						addr) != page->index)
648				set_pte_at(mm, addr, pte,
649					   pgoff_to_pte(page->index));
650			if (PageAnon(page))
651				anon_rss--;
652			else {
653				if (pte_dirty(ptent))
654					set_page_dirty(page);
655				if (pte_young(ptent))
656					mark_page_accessed(page);
657				file_rss--;
658			}
659			page_remove_rmap(page);
660			tlb_remove_page(tlb, page);
661			continue;
662		}
663		/*
664		 * If details->check_mapping, we leave swap entries;
665		 * if details->nonlinear_vma, we leave file entries.
666		 */
667		if (unlikely(details))
668			continue;
669		if (!pte_file(ptent))
670			free_swap_and_cache(pte_to_swp_entry(ptent));
671		pte_clear_full(mm, addr, pte, tlb->fullmm);
672	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
673
674	add_mm_rss(mm, file_rss, anon_rss);
675	pte_unmap_unlock(pte - 1, ptl);
676
677	return addr;
678}
679
680static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
681				struct vm_area_struct *vma, pud_t *pud,
682				unsigned long addr, unsigned long end,
683				long *zap_work, struct zap_details *details)
684{
685	pmd_t *pmd;
686	unsigned long next;
687
688	pmd = pmd_offset(pud, addr);
689	do {
690		next = pmd_addr_end(addr, end);
691		if (pmd_none_or_clear_bad(pmd)) {
692			(*zap_work)--;
693			continue;
694		}
695		next = zap_pte_range(tlb, vma, pmd, addr, next,
696						zap_work, details);
697	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
698
699	return addr;
700}
701
702static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
703				struct vm_area_struct *vma, pgd_t *pgd,
704				unsigned long addr, unsigned long end,
705				long *zap_work, struct zap_details *details)
706{
707	pud_t *pud;
708	unsigned long next;
709
710	pud = pud_offset(pgd, addr);
711	do {
712		next = pud_addr_end(addr, end);
713		if (pud_none_or_clear_bad(pud)) {
714			(*zap_work)--;
715			continue;
716		}
717		next = zap_pmd_range(tlb, vma, pud, addr, next,
718						zap_work, details);
719	} while (pud++, addr = next, (addr != end && *zap_work > 0));
720
721	return addr;
722}
723
724static unsigned long unmap_page_range(struct mmu_gather *tlb,
725				struct vm_area_struct *vma,
726				unsigned long addr, unsigned long end,
727				long *zap_work, struct zap_details *details)
728{
729	pgd_t *pgd;
730	unsigned long next;
731
732	if (details && !details->check_mapping && !details->nonlinear_vma)
733		details = NULL;
734
735	BUG_ON(addr >= end);
736	tlb_start_vma(tlb, vma);
737	pgd = pgd_offset(vma->vm_mm, addr);
738	do {
739		next = pgd_addr_end(addr, end);
740		if (pgd_none_or_clear_bad(pgd)) {
741			(*zap_work)--;
742			continue;
743		}
744		next = zap_pud_range(tlb, vma, pgd, addr, next,
745						zap_work, details);
746	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
747	tlb_end_vma(tlb, vma);
748
749	return addr;
750}
751
752#ifdef CONFIG_PREEMPT
753# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
754#else
755/* No preempt: go for improved straight-line efficiency */
756# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
757#endif
758
759/**
760 * unmap_vmas - unmap a range of memory covered by a list of vma's
761 * @tlbp: address of the caller's struct mmu_gather
762 * @vma: the starting vma
763 * @start_addr: virtual address at which to start unmapping
764 * @end_addr: virtual address at which to end unmapping
765 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
766 * @details: details of nonlinear truncation or shared cache invalidation
767 *
768 * Returns the end address of the unmapping (restart addr if interrupted).
769 *
770 * Unmap all pages in the vma list.
771 *
772 * We aim to not hold locks for too long (for scheduling latency reasons).
773 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
774 * return the ending mmu_gather to the caller.
775 *
776 * Only addresses between `start' and `end' will be unmapped.
777 *
778 * The VMA list must be sorted in ascending virtual address order.
779 *
780 * unmap_vmas() assumes that the caller will flush the whole unmapped address
781 * range after unmap_vmas() returns.  So the only responsibility here is to
782 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
783 * drops the lock and schedules.
784 */
785unsigned long unmap_vmas(struct mmu_gather **tlbp,
786		struct vm_area_struct *vma, unsigned long start_addr,
787		unsigned long end_addr, unsigned long *nr_accounted,
788		struct zap_details *details)
789{
790	long zap_work = ZAP_BLOCK_SIZE;
791	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
792	int tlb_start_valid = 0;
793	unsigned long start = start_addr;
794	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
795	int fullmm = (*tlbp)->fullmm;
796
797	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
798		unsigned long end;
799
800		start = max(vma->vm_start, start_addr);
801		if (start >= vma->vm_end)
802			continue;
803		end = min(vma->vm_end, end_addr);
804		if (end <= vma->vm_start)
805			continue;
806
807		if (vma->vm_flags & VM_ACCOUNT)
808			*nr_accounted += (end - start) >> PAGE_SHIFT;
809
810		while (start != end) {
811			if (!tlb_start_valid) {
812				tlb_start = start;
813				tlb_start_valid = 1;
814			}
815
816			if (unlikely(is_vm_hugetlb_page(vma))) {
817				unmap_hugepage_range(vma, start, end);
818				zap_work -= (end - start) /
819						(HPAGE_SIZE / PAGE_SIZE);
820				start = end;
821			} else
822				start = unmap_page_range(*tlbp, vma,
823						start, end, &zap_work, details);
824
825			if (zap_work > 0) {
826				BUG_ON(start != end);
827				break;
828			}
829
830			tlb_finish_mmu(*tlbp, tlb_start, start);
831
832			if (need_resched() ||
833				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
834				if (i_mmap_lock) {
835					*tlbp = NULL;
836					goto out;
837				}
838				cond_resched();
839			}
840
841			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
842			tlb_start_valid = 0;
843			zap_work = ZAP_BLOCK_SIZE;
844		}
845	}
846out:
847	return start;	/* which is now the end (or restart) address */
848}
849
850/**
851 * zap_page_range - remove user pages in a given range
852 * @vma: vm_area_struct holding the applicable pages
853 * @address: starting address of pages to zap
854 * @size: number of bytes to zap
855 * @details: details of nonlinear truncation or shared cache invalidation
856 */
857unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
858		unsigned long size, struct zap_details *details)
859{
860	struct mm_struct *mm = vma->vm_mm;
861	struct mmu_gather *tlb;
862	unsigned long end = address + size;
863	unsigned long nr_accounted = 0;
864
865	lru_add_drain();
866	tlb = tlb_gather_mmu(mm, 0);
867	update_hiwater_rss(mm);
868	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
869	if (tlb)
870		tlb_finish_mmu(tlb, address, end);
871	return end;
872}
873
874/*
875 * Do a quick page-table lookup for a single page.
876 */
877struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
878			unsigned int flags)
879{
880	pgd_t *pgd;
881	pud_t *pud;
882	pmd_t *pmd;
883	pte_t *ptep, pte;
884	spinlock_t *ptl;
885	struct page *page;
886	struct mm_struct *mm = vma->vm_mm;
887
888	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
889	if (!IS_ERR(page)) {
890		BUG_ON(flags & FOLL_GET);
891		goto out;
892	}
893
894	page = NULL;
895	pgd = pgd_offset(mm, address);
896	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
897		goto no_page_table;
898
899	pud = pud_offset(pgd, address);
900	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
901		goto no_page_table;
902
903	pmd = pmd_offset(pud, address);
904	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
905		goto no_page_table;
906
907	if (pmd_huge(*pmd)) {
908		BUG_ON(flags & FOLL_GET);
909		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
910		goto out;
911	}
912
913	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
914	if (!ptep)
915		goto out;
916
917	pte = *ptep;
918	if (!pte_present(pte))
919		goto unlock;
920	if ((flags & FOLL_WRITE) && !pte_write(pte))
921		goto unlock;
922	page = vm_normal_page(vma, address, pte);
923	if (unlikely(!page))
924		goto unlock;
925
926	if (flags & FOLL_GET)
927		get_page(page);
928	if (flags & FOLL_TOUCH) {
929		if ((flags & FOLL_WRITE) &&
930		    !pte_dirty(pte) && !PageDirty(page))
931			set_page_dirty(page);
932		mark_page_accessed(page);
933	}
934unlock:
935	pte_unmap_unlock(ptep, ptl);
936out:
937	return page;
938
939no_page_table:
940	/*
941	 * When core dumping an enormous anonymous area that nobody
942	 * has touched so far, we don't want to allocate page tables.
943	 */
944	if (flags & FOLL_ANON) {
945		page = ZERO_PAGE(address);
946		if (flags & FOLL_GET)
947			get_page(page);
948		BUG_ON(flags & FOLL_WRITE);
949	}
950	return page;
951}
952
953int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
954		unsigned long start, int len, int write, int force,
955		struct page **pages, struct vm_area_struct **vmas)
956{
957	int i;
958	unsigned int vm_flags;
959
960	/*
961	 * Require read or write permissions.
962	 * If 'force' is set, we only require the "MAY" flags.
963	 */
964	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
965	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
966	i = 0;
967
968	do {
969		struct vm_area_struct *vma;
970		unsigned int foll_flags;
971
972		vma = find_extend_vma(mm, start);
973		if (!vma && in_gate_area(tsk, start)) {
974			unsigned long pg = start & PAGE_MASK;
975			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
976			pgd_t *pgd;
977			pud_t *pud;
978			pmd_t *pmd;
979			pte_t *pte;
980			if (write) /* user gate pages are read-only */
981				return i ? : -EFAULT;
982			if (pg > TASK_SIZE)
983				pgd = pgd_offset_k(pg);
984			else
985				pgd = pgd_offset_gate(mm, pg);
986			BUG_ON(pgd_none(*pgd));
987			pud = pud_offset(pgd, pg);
988			BUG_ON(pud_none(*pud));
989			pmd = pmd_offset(pud, pg);
990			if (pmd_none(*pmd))
991				return i ? : -EFAULT;
992			pte = pte_offset_map(pmd, pg);
993			if (pte_none(*pte)) {
994				pte_unmap(pte);
995				return i ? : -EFAULT;
996			}
997			if (pages) {
998				struct page *page = vm_normal_page(gate_vma, start, *pte);
999				pages[i] = page;
1000				if (page)
1001					get_page(page);
1002			}
1003			pte_unmap(pte);
1004			if (vmas)
1005				vmas[i] = gate_vma;
1006			i++;
1007			start += PAGE_SIZE;
1008			len--;
1009			continue;
1010		}
1011
1012		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1013				|| !(vm_flags & vma->vm_flags))
1014			return i ? : -EFAULT;
1015
1016		if (is_vm_hugetlb_page(vma)) {
1017			i = follow_hugetlb_page(mm, vma, pages, vmas,
1018						&start, &len, i);
1019			continue;
1020		}
1021
1022		foll_flags = FOLL_TOUCH;
1023		if (pages)
1024			foll_flags |= FOLL_GET;
1025		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1026		    (!vma->vm_ops || !vma->vm_ops->nopage))
1027			foll_flags |= FOLL_ANON;
1028
1029		do {
1030			struct page *page;
1031
1032			if (write)
1033				foll_flags |= FOLL_WRITE;
1034
1035			cond_resched();
1036			while (!(page = follow_page(vma, start, foll_flags))) {
1037				int ret;
1038				ret = __handle_mm_fault(mm, vma, start,
1039						foll_flags & FOLL_WRITE);
1040				/*
1041				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1042				 * broken COW when necessary, even if maybe_mkwrite
1043				 * decided not to set pte_write. We can thus safely do
1044				 * subsequent page lookups as if they were reads.
1045				 */
1046				if (ret & VM_FAULT_WRITE)
1047					foll_flags &= ~FOLL_WRITE;
1048
1049				switch (ret & ~VM_FAULT_WRITE) {
1050				case VM_FAULT_MINOR:
1051					tsk->min_flt++;
1052					break;
1053				case VM_FAULT_MAJOR:
1054					tsk->maj_flt++;
1055					break;
1056				case VM_FAULT_SIGBUS:
1057					return i ? i : -EFAULT;
1058				case VM_FAULT_OOM:
1059					return i ? i : -ENOMEM;
1060				default:
1061					BUG();
1062				}
1063			}
1064			if (pages) {
1065				pages[i] = page;
1066				flush_dcache_page(page);
1067			}
1068			if (vmas)
1069				vmas[i] = vma;
1070			i++;
1071			start += PAGE_SIZE;
1072			len--;
1073		} while (len && start < vma->vm_end);
1074	} while (len);
1075	return i;
1076}
1077EXPORT_SYMBOL(get_user_pages);
1078
1079static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1080			unsigned long addr, unsigned long end, pgprot_t prot)
1081{
1082	pte_t *pte;
1083	spinlock_t *ptl;
1084
1085	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1086	if (!pte)
1087		return -ENOMEM;
1088	do {
1089		struct page *page = ZERO_PAGE(addr);
1090		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1091		page_cache_get(page);
1092		page_add_file_rmap(page);
1093		inc_mm_counter(mm, file_rss);
1094		BUG_ON(!pte_none(*pte));
1095		set_pte_at(mm, addr, pte, zero_pte);
1096	} while (pte++, addr += PAGE_SIZE, addr != end);
1097	pte_unmap_unlock(pte - 1, ptl);
1098	return 0;
1099}
1100
1101static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1102			unsigned long addr, unsigned long end, pgprot_t prot)
1103{
1104	pmd_t *pmd;
1105	unsigned long next;
1106
1107	pmd = pmd_alloc(mm, pud, addr);
1108	if (!pmd)
1109		return -ENOMEM;
1110	do {
1111		next = pmd_addr_end(addr, end);
1112		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1113			return -ENOMEM;
1114	} while (pmd++, addr = next, addr != end);
1115	return 0;
1116}
1117
1118static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1119			unsigned long addr, unsigned long end, pgprot_t prot)
1120{
1121	pud_t *pud;
1122	unsigned long next;
1123
1124	pud = pud_alloc(mm, pgd, addr);
1125	if (!pud)
1126		return -ENOMEM;
1127	do {
1128		next = pud_addr_end(addr, end);
1129		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1130			return -ENOMEM;
1131	} while (pud++, addr = next, addr != end);
1132	return 0;
1133}
1134
1135int zeromap_page_range(struct vm_area_struct *vma,
1136			unsigned long addr, unsigned long size, pgprot_t prot)
1137{
1138	pgd_t *pgd;
1139	unsigned long next;
1140	unsigned long end = addr + size;
1141	struct mm_struct *mm = vma->vm_mm;
1142	int err;
1143
1144	BUG_ON(addr >= end);
1145	pgd = pgd_offset(mm, addr);
1146	flush_cache_range(vma, addr, end);
1147	do {
1148		next = pgd_addr_end(addr, end);
1149		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1150		if (err)
1151			break;
1152	} while (pgd++, addr = next, addr != end);
1153	return err;
1154}
1155
1156pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1157{
1158	pgd_t * pgd = pgd_offset(mm, addr);
1159	pud_t * pud = pud_alloc(mm, pgd, addr);
1160	if (pud) {
1161		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1162		if (pmd)
1163			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1164	}
1165	return NULL;
1166}
1167
1168/*
1169 * This is the old fallback for page remapping.
1170 *
1171 * For historical reasons, it only allows reserved pages. Only
1172 * old drivers should use this, and they needed to mark their
1173 * pages reserved for the old functions anyway.
1174 */
1175static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1176{
1177	int retval;
1178	pte_t *pte;
1179	spinlock_t *ptl;
1180
1181	retval = -EINVAL;
1182	if (PageAnon(page))
1183		goto out;
1184	retval = -ENOMEM;
1185	flush_dcache_page(page);
1186	pte = get_locked_pte(mm, addr, &ptl);
1187	if (!pte)
1188		goto out;
1189	retval = -EBUSY;
1190	if (!pte_none(*pte))
1191		goto out_unlock;
1192
1193	/* Ok, finally just insert the thing.. */
1194	get_page(page);
1195	inc_mm_counter(mm, file_rss);
1196	page_add_file_rmap(page);
1197	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1198
1199	retval = 0;
1200out_unlock:
1201	pte_unmap_unlock(pte, ptl);
1202out:
1203	return retval;
1204}
1205
1206/*
1207 * This allows drivers to insert individual pages they've allocated
1208 * into a user vma.
1209 *
1210 * The page has to be a nice clean _individual_ kernel allocation.
1211 * If you allocate a compound page, you need to have marked it as
1212 * such (__GFP_COMP), or manually just split the page up yourself
1213 * (which is mainly an issue of doing "set_page_count(page, 1)" for
1214 * each sub-page, and then freeing them one by one when you free
1215 * them rather than freeing it as a compound page).
1216 *
1217 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1218 * took an arbitrary page protection parameter. This doesn't allow
1219 * that. Your vma protection will have to be set up correctly, which
1220 * means that if you want a shared writable mapping, you'd better
1221 * ask for a shared writable mapping!
1222 *
1223 * The page does not need to be reserved.
1224 */
1225int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1226{
1227	if (addr < vma->vm_start || addr >= vma->vm_end)
1228		return -EFAULT;
1229	if (!page_count(page))
1230		return -EINVAL;
1231	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1232}
1233EXPORT_SYMBOL(vm_insert_page);
1234
1235/*
1236 * maps a range of physical memory into the requested pages. the old
1237 * mappings are removed. any references to nonexistent pages results
1238 * in null mappings (currently treated as "copy-on-access")
1239 */
1240static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1241			unsigned long addr, unsigned long end,
1242			unsigned long pfn, pgprot_t prot)
1243{
1244	pte_t *pte;
1245	spinlock_t *ptl;
1246
1247	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1248	if (!pte)
1249		return -ENOMEM;
1250	do {
1251		BUG_ON(!pte_none(*pte));
1252		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1253		pfn++;
1254	} while (pte++, addr += PAGE_SIZE, addr != end);
1255	pte_unmap_unlock(pte - 1, ptl);
1256	return 0;
1257}
1258
1259static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1260			unsigned long addr, unsigned long end,
1261			unsigned long pfn, pgprot_t prot)
1262{
1263	pmd_t *pmd;
1264	unsigned long next;
1265
1266	pfn -= addr >> PAGE_SHIFT;
1267	pmd = pmd_alloc(mm, pud, addr);
1268	if (!pmd)
1269		return -ENOMEM;
1270	do {
1271		next = pmd_addr_end(addr, end);
1272		if (remap_pte_range(mm, pmd, addr, next,
1273				pfn + (addr >> PAGE_SHIFT), prot))
1274			return -ENOMEM;
1275	} while (pmd++, addr = next, addr != end);
1276	return 0;
1277}
1278
1279static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1280			unsigned long addr, unsigned long end,
1281			unsigned long pfn, pgprot_t prot)
1282{
1283	pud_t *pud;
1284	unsigned long next;
1285
1286	pfn -= addr >> PAGE_SHIFT;
1287	pud = pud_alloc(mm, pgd, addr);
1288	if (!pud)
1289		return -ENOMEM;
1290	do {
1291		next = pud_addr_end(addr, end);
1292		if (remap_pmd_range(mm, pud, addr, next,
1293				pfn + (addr >> PAGE_SHIFT), prot))
1294			return -ENOMEM;
1295	} while (pud++, addr = next, addr != end);
1296	return 0;
1297}
1298
1299/*  Note: this is only safe if the mm semaphore is held when called. */
1300int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1301		    unsigned long pfn, unsigned long size, pgprot_t prot)
1302{
1303	pgd_t *pgd;
1304	unsigned long next;
1305	unsigned long end = addr + PAGE_ALIGN(size);
1306	struct mm_struct *mm = vma->vm_mm;
1307	int err;
1308
1309	/*
1310	 * Physically remapped pages are special. Tell the
1311	 * rest of the world about it:
1312	 *   VM_IO tells people not to look at these pages
1313	 *	(accesses can have side effects).
1314	 *   VM_RESERVED is specified all over the place, because
1315	 *	in 2.4 it kept swapout's vma scan off this vma; but
1316	 *	in 2.6 the LRU scan won't even find its pages, so this
1317	 *	flag means no more than count its pages in reserved_vm,
1318	 * 	and omit it from core dump, even when VM_IO turned off.
1319	 *   VM_PFNMAP tells the core MM that the base pages are just
1320	 *	raw PFN mappings, and do not have a "struct page" associated
1321	 *	with them.
1322	 *
1323	 * There's a horrible special case to handle copy-on-write
1324	 * behaviour that some programs depend on. We mark the "original"
1325	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1326	 */
1327	if (is_cow_mapping(vma->vm_flags)) {
1328		if (addr != vma->vm_start || end != vma->vm_end)
1329			return -EINVAL;
1330		vma->vm_pgoff = pfn;
1331	}
1332
1333	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1334
1335	BUG_ON(addr >= end);
1336	pfn -= addr >> PAGE_SHIFT;
1337	pgd = pgd_offset(mm, addr);
1338	flush_cache_range(vma, addr, end);
1339	do {
1340		next = pgd_addr_end(addr, end);
1341		err = remap_pud_range(mm, pgd, addr, next,
1342				pfn + (addr >> PAGE_SHIFT), prot);
1343		if (err)
1344			break;
1345	} while (pgd++, addr = next, addr != end);
1346	return err;
1347}
1348EXPORT_SYMBOL(remap_pfn_range);
1349
1350/*
1351 * handle_pte_fault chooses page fault handler according to an entry
1352 * which was read non-atomically.  Before making any commitment, on
1353 * those architectures or configurations (e.g. i386 with PAE) which
1354 * might give a mix of unmatched parts, do_swap_page and do_file_page
1355 * must check under lock before unmapping the pte and proceeding
1356 * (but do_wp_page is only called after already making such a check;
1357 * and do_anonymous_page and do_no_page can safely check later on).
1358 */
1359static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1360				pte_t *page_table, pte_t orig_pte)
1361{
1362	int same = 1;
1363#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1364	if (sizeof(pte_t) > sizeof(unsigned long)) {
1365		spinlock_t *ptl = pte_lockptr(mm, pmd);
1366		spin_lock(ptl);
1367		same = pte_same(*page_table, orig_pte);
1368		spin_unlock(ptl);
1369	}
1370#endif
1371	pte_unmap(page_table);
1372	return same;
1373}
1374
1375/*
1376 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1377 * servicing faults for write access.  In the normal case, do always want
1378 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1379 * that do not have writing enabled, when used by access_process_vm.
1380 */
1381static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1382{
1383	if (likely(vma->vm_flags & VM_WRITE))
1384		pte = pte_mkwrite(pte);
1385	return pte;
1386}
1387
1388static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1389{
1390	/*
1391	 * If the source page was a PFN mapping, we don't have
1392	 * a "struct page" for it. We do a best-effort copy by
1393	 * just copying from the original user address. If that
1394	 * fails, we just zero-fill it. Live with it.
1395	 */
1396	if (unlikely(!src)) {
1397		void *kaddr = kmap_atomic(dst, KM_USER0);
1398		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1399
1400		/*
1401		 * This really shouldn't fail, because the page is there
1402		 * in the page tables. But it might just be unreadable,
1403		 * in which case we just give up and fill the result with
1404		 * zeroes.
1405		 */
1406		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1407			memset(kaddr, 0, PAGE_SIZE);
1408		kunmap_atomic(kaddr, KM_USER0);
1409		return;
1410
1411	}
1412	copy_user_highpage(dst, src, va);
1413}
1414
1415/*
1416 * This routine handles present pages, when users try to write
1417 * to a shared page. It is done by copying the page to a new address
1418 * and decrementing the shared-page counter for the old page.
1419 *
1420 * Note that this routine assumes that the protection checks have been
1421 * done by the caller (the low-level page fault routine in most cases).
1422 * Thus we can safely just mark it writable once we've done any necessary
1423 * COW.
1424 *
1425 * We also mark the page dirty at this point even though the page will
1426 * change only once the write actually happens. This avoids a few races,
1427 * and potentially makes it more efficient.
1428 *
1429 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1430 * but allow concurrent faults), with pte both mapped and locked.
1431 * We return with mmap_sem still held, but pte unmapped and unlocked.
1432 */
1433static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1434		unsigned long address, pte_t *page_table, pmd_t *pmd,
1435		spinlock_t *ptl, pte_t orig_pte)
1436{
1437	struct page *old_page, *new_page;
1438	pte_t entry;
1439	int ret = VM_FAULT_MINOR;
1440
1441	old_page = vm_normal_page(vma, address, orig_pte);
1442	if (!old_page)
1443		goto gotten;
1444
1445	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1446		int reuse = can_share_swap_page(old_page);
1447		unlock_page(old_page);
1448		if (reuse) {
1449			flush_cache_page(vma, address, pte_pfn(orig_pte));
1450			entry = pte_mkyoung(orig_pte);
1451			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1452			ptep_set_access_flags(vma, address, page_table, entry, 1);
1453			update_mmu_cache(vma, address, entry);
1454			lazy_mmu_prot_update(entry);
1455			ret |= VM_FAULT_WRITE;
1456			goto unlock;
1457		}
1458	}
1459
1460	/*
1461	 * Ok, we need to copy. Oh, well..
1462	 */
1463	page_cache_get(old_page);
1464gotten:
1465	pte_unmap_unlock(page_table, ptl);
1466
1467	if (unlikely(anon_vma_prepare(vma)))
1468		goto oom;
1469	if (old_page == ZERO_PAGE(address)) {
1470		new_page = alloc_zeroed_user_highpage(vma, address);
1471		if (!new_page)
1472			goto oom;
1473	} else {
1474		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1475		if (!new_page)
1476			goto oom;
1477		cow_user_page(new_page, old_page, address);
1478	}
1479
1480	/*
1481	 * Re-check the pte - we dropped the lock
1482	 */
1483	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1484	if (likely(pte_same(*page_table, orig_pte))) {
1485		if (old_page) {
1486			page_remove_rmap(old_page);
1487			if (!PageAnon(old_page)) {
1488				dec_mm_counter(mm, file_rss);
1489				inc_mm_counter(mm, anon_rss);
1490			}
1491		} else
1492			inc_mm_counter(mm, anon_rss);
1493		flush_cache_page(vma, address, pte_pfn(orig_pte));
1494		entry = mk_pte(new_page, vma->vm_page_prot);
1495		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1496		ptep_establish(vma, address, page_table, entry);
1497		update_mmu_cache(vma, address, entry);
1498		lazy_mmu_prot_update(entry);
1499		lru_cache_add_active(new_page);
1500		page_add_anon_rmap(new_page, vma, address);
1501
1502		/* Free the old page.. */
1503		new_page = old_page;
1504		ret |= VM_FAULT_WRITE;
1505	}
1506	if (new_page)
1507		page_cache_release(new_page);
1508	if (old_page)
1509		page_cache_release(old_page);
1510unlock:
1511	pte_unmap_unlock(page_table, ptl);
1512	return ret;
1513oom:
1514	if (old_page)
1515		page_cache_release(old_page);
1516	return VM_FAULT_OOM;
1517}
1518
1519/*
1520 * Helper functions for unmap_mapping_range().
1521 *
1522 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1523 *
1524 * We have to restart searching the prio_tree whenever we drop the lock,
1525 * since the iterator is only valid while the lock is held, and anyway
1526 * a later vma might be split and reinserted earlier while lock dropped.
1527 *
1528 * The list of nonlinear vmas could be handled more efficiently, using
1529 * a placeholder, but handle it in the same way until a need is shown.
1530 * It is important to search the prio_tree before nonlinear list: a vma
1531 * may become nonlinear and be shifted from prio_tree to nonlinear list
1532 * while the lock is dropped; but never shifted from list to prio_tree.
1533 *
1534 * In order to make forward progress despite restarting the search,
1535 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1536 * quickly skip it next time around.  Since the prio_tree search only
1537 * shows us those vmas affected by unmapping the range in question, we
1538 * can't efficiently keep all vmas in step with mapping->truncate_count:
1539 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1540 * mapping->truncate_count and vma->vm_truncate_count are protected by
1541 * i_mmap_lock.
1542 *
1543 * In order to make forward progress despite repeatedly restarting some
1544 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1545 * and restart from that address when we reach that vma again.  It might
1546 * have been split or merged, shrunk or extended, but never shifted: so
1547 * restart_addr remains valid so long as it remains in the vma's range.
1548 * unmap_mapping_range forces truncate_count to leap over page-aligned
1549 * values so we can save vma's restart_addr in its truncate_count field.
1550 */
1551#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1552
1553static void reset_vma_truncate_counts(struct address_space *mapping)
1554{
1555	struct vm_area_struct *vma;
1556	struct prio_tree_iter iter;
1557
1558	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1559		vma->vm_truncate_count = 0;
1560	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1561		vma->vm_truncate_count = 0;
1562}
1563
1564static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1565		unsigned long start_addr, unsigned long end_addr,
1566		struct zap_details *details)
1567{
1568	unsigned long restart_addr;
1569	int need_break;
1570
1571again:
1572	restart_addr = vma->vm_truncate_count;
1573	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1574		start_addr = restart_addr;
1575		if (start_addr >= end_addr) {
1576			/* Top of vma has been split off since last time */
1577			vma->vm_truncate_count = details->truncate_count;
1578			return 0;
1579		}
1580	}
1581
1582	restart_addr = zap_page_range(vma, start_addr,
1583					end_addr - start_addr, details);
1584	need_break = need_resched() ||
1585			need_lockbreak(details->i_mmap_lock);
1586
1587	if (restart_addr >= end_addr) {
1588		/* We have now completed this vma: mark it so */
1589		vma->vm_truncate_count = details->truncate_count;
1590		if (!need_break)
1591			return 0;
1592	} else {
1593		/* Note restart_addr in vma's truncate_count field */
1594		vma->vm_truncate_count = restart_addr;
1595		if (!need_break)
1596			goto again;
1597	}
1598
1599	spin_unlock(details->i_mmap_lock);
1600	cond_resched();
1601	spin_lock(details->i_mmap_lock);
1602	return -EINTR;
1603}
1604
1605static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1606					    struct zap_details *details)
1607{
1608	struct vm_area_struct *vma;
1609	struct prio_tree_iter iter;
1610	pgoff_t vba, vea, zba, zea;
1611
1612restart:
1613	vma_prio_tree_foreach(vma, &iter, root,
1614			details->first_index, details->last_index) {
1615		/* Skip quickly over those we have already dealt with */
1616		if (vma->vm_truncate_count == details->truncate_count)
1617			continue;
1618
1619		vba = vma->vm_pgoff;
1620		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1621		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1622		zba = details->first_index;
1623		if (zba < vba)
1624			zba = vba;
1625		zea = details->last_index;
1626		if (zea > vea)
1627			zea = vea;
1628
1629		if (unmap_mapping_range_vma(vma,
1630			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1631			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1632				details) < 0)
1633			goto restart;
1634	}
1635}
1636
1637static inline void unmap_mapping_range_list(struct list_head *head,
1638					    struct zap_details *details)
1639{
1640	struct vm_area_struct *vma;
1641
1642	/*
1643	 * In nonlinear VMAs there is no correspondence between virtual address
1644	 * offset and file offset.  So we must perform an exhaustive search
1645	 * across *all* the pages in each nonlinear VMA, not just the pages
1646	 * whose virtual address lies outside the file truncation point.
1647	 */
1648restart:
1649	list_for_each_entry(vma, head, shared.vm_set.list) {
1650		/* Skip quickly over those we have already dealt with */
1651		if (vma->vm_truncate_count == details->truncate_count)
1652			continue;
1653		details->nonlinear_vma = vma;
1654		if (unmap_mapping_range_vma(vma, vma->vm_start,
1655					vma->vm_end, details) < 0)
1656			goto restart;
1657	}
1658}
1659
1660/**
1661 * unmap_mapping_range - unmap the portion of all mmaps
1662 * in the specified address_space corresponding to the specified
1663 * page range in the underlying file.
1664 * @mapping: the address space containing mmaps to be unmapped.
1665 * @holebegin: byte in first page to unmap, relative to the start of
1666 * the underlying file.  This will be rounded down to a PAGE_SIZE
1667 * boundary.  Note that this is different from vmtruncate(), which
1668 * must keep the partial page.  In contrast, we must get rid of
1669 * partial pages.
1670 * @holelen: size of prospective hole in bytes.  This will be rounded
1671 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1672 * end of the file.
1673 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1674 * but 0 when invalidating pagecache, don't throw away private data.
1675 */
1676void unmap_mapping_range(struct address_space *mapping,
1677		loff_t const holebegin, loff_t const holelen, int even_cows)
1678{
1679	struct zap_details details;
1680	pgoff_t hba = holebegin >> PAGE_SHIFT;
1681	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1682
1683	/* Check for overflow. */
1684	if (sizeof(holelen) > sizeof(hlen)) {
1685		long long holeend =
1686			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1687		if (holeend & ~(long long)ULONG_MAX)
1688			hlen = ULONG_MAX - hba + 1;
1689	}
1690
1691	details.check_mapping = even_cows? NULL: mapping;
1692	details.nonlinear_vma = NULL;
1693	details.first_index = hba;
1694	details.last_index = hba + hlen - 1;
1695	if (details.last_index < details.first_index)
1696		details.last_index = ULONG_MAX;
1697	details.i_mmap_lock = &mapping->i_mmap_lock;
1698
1699	spin_lock(&mapping->i_mmap_lock);
1700
1701	/* serialize i_size write against truncate_count write */
1702	smp_wmb();
1703	/* Protect against page faults, and endless unmapping loops */
1704	mapping->truncate_count++;
1705	/*
1706	 * For archs where spin_lock has inclusive semantics like ia64
1707	 * this smp_mb() will prevent to read pagetable contents
1708	 * before the truncate_count increment is visible to
1709	 * other cpus.
1710	 */
1711	smp_mb();
1712	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1713		if (mapping->truncate_count == 0)
1714			reset_vma_truncate_counts(mapping);
1715		mapping->truncate_count++;
1716	}
1717	details.truncate_count = mapping->truncate_count;
1718
1719	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1720		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1721	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1722		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1723	spin_unlock(&mapping->i_mmap_lock);
1724}
1725EXPORT_SYMBOL(unmap_mapping_range);
1726
1727/*
1728 * Handle all mappings that got truncated by a "truncate()"
1729 * system call.
1730 *
1731 * NOTE! We have to be ready to update the memory sharing
1732 * between the file and the memory map for a potential last
1733 * incomplete page.  Ugly, but necessary.
1734 */
1735int vmtruncate(struct inode * inode, loff_t offset)
1736{
1737	struct address_space *mapping = inode->i_mapping;
1738	unsigned long limit;
1739
1740	if (inode->i_size < offset)
1741		goto do_expand;
1742	/*
1743	 * truncation of in-use swapfiles is disallowed - it would cause
1744	 * subsequent swapout to scribble on the now-freed blocks.
1745	 */
1746	if (IS_SWAPFILE(inode))
1747		goto out_busy;
1748	i_size_write(inode, offset);
1749	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1750	truncate_inode_pages(mapping, offset);
1751	goto out_truncate;
1752
1753do_expand:
1754	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1755	if (limit != RLIM_INFINITY && offset > limit)
1756		goto out_sig;
1757	if (offset > inode->i_sb->s_maxbytes)
1758		goto out_big;
1759	i_size_write(inode, offset);
1760
1761out_truncate:
1762	if (inode->i_op && inode->i_op->truncate)
1763		inode->i_op->truncate(inode);
1764	return 0;
1765out_sig:
1766	send_sig(SIGXFSZ, current, 0);
1767out_big:
1768	return -EFBIG;
1769out_busy:
1770	return -ETXTBSY;
1771}
1772
1773EXPORT_SYMBOL(vmtruncate);
1774
1775/*
1776 * Primitive swap readahead code. We simply read an aligned block of
1777 * (1 << page_cluster) entries in the swap area. This method is chosen
1778 * because it doesn't cost us any seek time.  We also make sure to queue
1779 * the 'original' request together with the readahead ones...
1780 *
1781 * This has been extended to use the NUMA policies from the mm triggering
1782 * the readahead.
1783 *
1784 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1785 */
1786void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1787{
1788#ifdef CONFIG_NUMA
1789	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1790#endif
1791	int i, num;
1792	struct page *new_page;
1793	unsigned long offset;
1794
1795	/*
1796	 * Get the number of handles we should do readahead io to.
1797	 */
1798	num = valid_swaphandles(entry, &offset);
1799	for (i = 0; i < num; offset++, i++) {
1800		/* Ok, do the async read-ahead now */
1801		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1802							   offset), vma, addr);
1803		if (!new_page)
1804			break;
1805		page_cache_release(new_page);
1806#ifdef CONFIG_NUMA
1807		/*
1808		 * Find the next applicable VMA for the NUMA policy.
1809		 */
1810		addr += PAGE_SIZE;
1811		if (addr == 0)
1812			vma = NULL;
1813		if (vma) {
1814			if (addr >= vma->vm_end) {
1815				vma = next_vma;
1816				next_vma = vma ? vma->vm_next : NULL;
1817			}
1818			if (vma && addr < vma->vm_start)
1819				vma = NULL;
1820		} else {
1821			if (next_vma && addr >= next_vma->vm_start) {
1822				vma = next_vma;
1823				next_vma = vma->vm_next;
1824			}
1825		}
1826#endif
1827	}
1828	lru_add_drain();	/* Push any new pages onto the LRU now */
1829}
1830
1831/*
1832 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1833 * but allow concurrent faults), and pte mapped but not yet locked.
1834 * We return with mmap_sem still held, but pte unmapped and unlocked.
1835 */
1836static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1837		unsigned long address, pte_t *page_table, pmd_t *pmd,
1838		int write_access, pte_t orig_pte)
1839{
1840	spinlock_t *ptl;
1841	struct page *page;
1842	swp_entry_t entry;
1843	pte_t pte;
1844	int ret = VM_FAULT_MINOR;
1845
1846	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1847		goto out;
1848
1849	entry = pte_to_swp_entry(orig_pte);
1850	page = lookup_swap_cache(entry);
1851	if (!page) {
1852 		swapin_readahead(entry, address, vma);
1853 		page = read_swap_cache_async(entry, vma, address);
1854		if (!page) {
1855			/*
1856			 * Back out if somebody else faulted in this pte
1857			 * while we released the pte lock.
1858			 */
1859			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1860			if (likely(pte_same(*page_table, orig_pte)))
1861				ret = VM_FAULT_OOM;
1862			goto unlock;
1863		}
1864
1865		/* Had to read the page from swap area: Major fault */
1866		ret = VM_FAULT_MAJOR;
1867		inc_page_state(pgmajfault);
1868		grab_swap_token();
1869	}
1870
1871	mark_page_accessed(page);
1872	lock_page(page);
1873
1874	/*
1875	 * Back out if somebody else already faulted in this pte.
1876	 */
1877	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1878	if (unlikely(!pte_same(*page_table, orig_pte)))
1879		goto out_nomap;
1880
1881	if (unlikely(!PageUptodate(page))) {
1882		ret = VM_FAULT_SIGBUS;
1883		goto out_nomap;
1884	}
1885
1886	/* The page isn't present yet, go ahead with the fault. */
1887
1888	inc_mm_counter(mm, anon_rss);
1889	pte = mk_pte(page, vma->vm_page_prot);
1890	if (write_access && can_share_swap_page(page)) {
1891		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1892		write_access = 0;
1893	}
1894
1895	flush_icache_page(vma, page);
1896	set_pte_at(mm, address, page_table, pte);
1897	page_add_anon_rmap(page, vma, address);
1898
1899	swap_free(entry);
1900	if (vm_swap_full())
1901		remove_exclusive_swap_page(page);
1902	unlock_page(page);
1903
1904	if (write_access) {
1905		if (do_wp_page(mm, vma, address,
1906				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1907			ret = VM_FAULT_OOM;
1908		goto out;
1909	}
1910
1911	/* No need to invalidate - it was non-present before */
1912	update_mmu_cache(vma, address, pte);
1913	lazy_mmu_prot_update(pte);
1914unlock:
1915	pte_unmap_unlock(page_table, ptl);
1916out:
1917	return ret;
1918out_nomap:
1919	pte_unmap_unlock(page_table, ptl);
1920	unlock_page(page);
1921	page_cache_release(page);
1922	return ret;
1923}
1924
1925/*
1926 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1927 * but allow concurrent faults), and pte mapped but not yet locked.
1928 * We return with mmap_sem still held, but pte unmapped and unlocked.
1929 */
1930static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1931		unsigned long address, pte_t *page_table, pmd_t *pmd,
1932		int write_access)
1933{
1934	struct page *page;
1935	spinlock_t *ptl;
1936	pte_t entry;
1937
1938	if (write_access) {
1939		/* Allocate our own private page. */
1940		pte_unmap(page_table);
1941
1942		if (unlikely(anon_vma_prepare(vma)))
1943			goto oom;
1944		page = alloc_zeroed_user_highpage(vma, address);
1945		if (!page)
1946			goto oom;
1947
1948		entry = mk_pte(page, vma->vm_page_prot);
1949		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1950
1951		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1952		if (!pte_none(*page_table))
1953			goto release;
1954		inc_mm_counter(mm, anon_rss);
1955		lru_cache_add_active(page);
1956		SetPageReferenced(page);
1957		page_add_anon_rmap(page, vma, address);
1958	} else {
1959		/* Map the ZERO_PAGE - vm_page_prot is readonly */
1960		page = ZERO_PAGE(address);
1961		page_cache_get(page);
1962		entry = mk_pte(page, vma->vm_page_prot);
1963
1964		ptl = pte_lockptr(mm, pmd);
1965		spin_lock(ptl);
1966		if (!pte_none(*page_table))
1967			goto release;
1968		inc_mm_counter(mm, file_rss);
1969		page_add_file_rmap(page);
1970	}
1971
1972	set_pte_at(mm, address, page_table, entry);
1973
1974	/* No need to invalidate - it was non-present before */
1975	update_mmu_cache(vma, address, entry);
1976	lazy_mmu_prot_update(entry);
1977unlock:
1978	pte_unmap_unlock(page_table, ptl);
1979	return VM_FAULT_MINOR;
1980release:
1981	page_cache_release(page);
1982	goto unlock;
1983oom:
1984	return VM_FAULT_OOM;
1985}
1986
1987/*
1988 * do_no_page() tries to create a new page mapping. It aggressively
1989 * tries to share with existing pages, but makes a separate copy if
1990 * the "write_access" parameter is true in order to avoid the next
1991 * page fault.
1992 *
1993 * As this is called only for pages that do not currently exist, we
1994 * do not need to flush old virtual caches or the TLB.
1995 *
1996 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1997 * but allow concurrent faults), and pte mapped but not yet locked.
1998 * We return with mmap_sem still held, but pte unmapped and unlocked.
1999 */
2000static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2001		unsigned long address, pte_t *page_table, pmd_t *pmd,
2002		int write_access)
2003{
2004	spinlock_t *ptl;
2005	struct page *new_page;
2006	struct address_space *mapping = NULL;
2007	pte_t entry;
2008	unsigned int sequence = 0;
2009	int ret = VM_FAULT_MINOR;
2010	int anon = 0;
2011
2012	pte_unmap(page_table);
2013	BUG_ON(vma->vm_flags & VM_PFNMAP);
2014
2015	if (vma->vm_file) {
2016		mapping = vma->vm_file->f_mapping;
2017		sequence = mapping->truncate_count;
2018		smp_rmb(); /* serializes i_size against truncate_count */
2019	}
2020retry:
2021	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2022	/*
2023	 * No smp_rmb is needed here as long as there's a full
2024	 * spin_lock/unlock sequence inside the ->nopage callback
2025	 * (for the pagecache lookup) that acts as an implicit
2026	 * smp_mb() and prevents the i_size read to happen
2027	 * after the next truncate_count read.
2028	 */
2029
2030	/* no page was available -- either SIGBUS or OOM */
2031	if (new_page == NOPAGE_SIGBUS)
2032		return VM_FAULT_SIGBUS;
2033	if (new_page == NOPAGE_OOM)
2034		return VM_FAULT_OOM;
2035
2036	/*
2037	 * Should we do an early C-O-W break?
2038	 */
2039	if (write_access && !(vma->vm_flags & VM_SHARED)) {
2040		struct page *page;
2041
2042		if (unlikely(anon_vma_prepare(vma)))
2043			goto oom;
2044		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2045		if (!page)
2046			goto oom;
2047		copy_user_highpage(page, new_page, address);
2048		page_cache_release(new_page);
2049		new_page = page;
2050		anon = 1;
2051	}
2052
2053	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2054	/*
2055	 * For a file-backed vma, someone could have truncated or otherwise
2056	 * invalidated this page.  If unmap_mapping_range got called,
2057	 * retry getting the page.
2058	 */
2059	if (mapping && unlikely(sequence != mapping->truncate_count)) {
2060		pte_unmap_unlock(page_table, ptl);
2061		page_cache_release(new_page);
2062		cond_resched();
2063		sequence = mapping->truncate_count;
2064		smp_rmb();
2065		goto retry;
2066	}
2067
2068	/*
2069	 * This silly early PAGE_DIRTY setting removes a race
2070	 * due to the bad i386 page protection. But it's valid
2071	 * for other architectures too.
2072	 *
2073	 * Note that if write_access is true, we either now have
2074	 * an exclusive copy of the page, or this is a shared mapping,
2075	 * so we can make it writable and dirty to avoid having to
2076	 * handle that later.
2077	 */
2078	/* Only go through if we didn't race with anybody else... */
2079	if (pte_none(*page_table)) {
2080		flush_icache_page(vma, new_page);
2081		entry = mk_pte(new_page, vma->vm_page_prot);
2082		if (write_access)
2083			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2084		set_pte_at(mm, address, page_table, entry);
2085		if (anon) {
2086			inc_mm_counter(mm, anon_rss);
2087			lru_cache_add_active(new_page);
2088			page_add_anon_rmap(new_page, vma, address);
2089		} else {
2090			inc_mm_counter(mm, file_rss);
2091			page_add_file_rmap(new_page);
2092		}
2093	} else {
2094		/* One of our sibling threads was faster, back out. */
2095		page_cache_release(new_page);
2096		goto unlock;
2097	}
2098
2099	/* no need to invalidate: a not-present page shouldn't be cached */
2100	update_mmu_cache(vma, address, entry);
2101	lazy_mmu_prot_update(entry);
2102unlock:
2103	pte_unmap_unlock(page_table, ptl);
2104	return ret;
2105oom:
2106	page_cache_release(new_page);
2107	return VM_FAULT_OOM;
2108}
2109
2110/*
2111 * Fault of a previously existing named mapping. Repopulate the pte
2112 * from the encoded file_pte if possible. This enables swappable
2113 * nonlinear vmas.
2114 *
2115 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2116 * but allow concurrent faults), and pte mapped but not yet locked.
2117 * We return with mmap_sem still held, but pte unmapped and unlocked.
2118 */
2119static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2120		unsigned long address, pte_t *page_table, pmd_t *pmd,
2121		int write_access, pte_t orig_pte)
2122{
2123	pgoff_t pgoff;
2124	int err;
2125
2126	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2127		return VM_FAULT_MINOR;
2128
2129	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2130		/*
2131		 * Page table corrupted: show pte and kill process.
2132		 */
2133		print_bad_pte(vma, orig_pte, address);
2134		return VM_FAULT_OOM;
2135	}
2136	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
2137
2138	pgoff = pte_to_pgoff(orig_pte);
2139	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2140					vma->vm_page_prot, pgoff, 0);
2141	if (err == -ENOMEM)
2142		return VM_FAULT_OOM;
2143	if (err)
2144		return VM_FAULT_SIGBUS;
2145	return VM_FAULT_MAJOR;
2146}
2147
2148/*
2149 * These routines also need to handle stuff like marking pages dirty
2150 * and/or accessed for architectures that don't do it in hardware (most
2151 * RISC architectures).  The early dirtying is also good on the i386.
2152 *
2153 * There is also a hook called "update_mmu_cache()" that architectures
2154 * with external mmu caches can use to update those (ie the Sparc or
2155 * PowerPC hashed page tables that act as extended TLBs).
2156 *
2157 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2158 * but allow concurrent faults), and pte mapped but not yet locked.
2159 * We return with mmap_sem still held, but pte unmapped and unlocked.
2160 */
2161static inline int handle_pte_fault(struct mm_struct *mm,
2162		struct vm_area_struct *vma, unsigned long address,
2163		pte_t *pte, pmd_t *pmd, int write_access)
2164{
2165	pte_t entry;
2166	pte_t old_entry;
2167	spinlock_t *ptl;
2168
2169	old_entry = entry = *pte;
2170	if (!pte_present(entry)) {
2171		if (pte_none(entry)) {
2172			if (!vma->vm_ops || !vma->vm_ops->nopage)
2173				return do_anonymous_page(mm, vma, address,
2174					pte, pmd, write_access);
2175			return do_no_page(mm, vma, address,
2176					pte, pmd, write_access);
2177		}
2178		if (pte_file(entry))
2179			return do_file_page(mm, vma, address,
2180					pte, pmd, write_access, entry);
2181		return do_swap_page(mm, vma, address,
2182					pte, pmd, write_access, entry);
2183	}
2184
2185	ptl = pte_lockptr(mm, pmd);
2186	spin_lock(ptl);
2187	if (unlikely(!pte_same(*pte, entry)))
2188		goto unlock;
2189	if (write_access) {
2190		if (!pte_write(entry))
2191			return do_wp_page(mm, vma, address,
2192					pte, pmd, ptl, entry);
2193		entry = pte_mkdirty(entry);
2194	}
2195	entry = pte_mkyoung(entry);
2196	if (!pte_same(old_entry, entry)) {
2197		ptep_set_access_flags(vma, address, pte, entry, write_access);
2198		update_mmu_cache(vma, address, entry);
2199		lazy_mmu_prot_update(entry);
2200	} else {
2201		/*
2202		 * This is needed only for protection faults but the arch code
2203		 * is not yet telling us if this is a protection fault or not.
2204		 * This still avoids useless tlb flushes for .text page faults
2205		 * with threads.
2206		 */
2207		if (write_access)
2208			flush_tlb_page(vma, address);
2209	}
2210unlock:
2211	pte_unmap_unlock(pte, ptl);
2212	return VM_FAULT_MINOR;
2213}
2214
2215/*
2216 * By the time we get here, we already hold the mm semaphore
2217 */
2218int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2219		unsigned long address, int write_access)
2220{
2221	pgd_t *pgd;
2222	pud_t *pud;
2223	pmd_t *pmd;
2224	pte_t *pte;
2225
2226	__set_current_state(TASK_RUNNING);
2227
2228	inc_page_state(pgfault);
2229
2230	if (unlikely(is_vm_hugetlb_page(vma)))
2231		return hugetlb_fault(mm, vma, address, write_access);
2232
2233	pgd = pgd_offset(mm, address);
2234	pud = pud_alloc(mm, pgd, address);
2235	if (!pud)
2236		return VM_FAULT_OOM;
2237	pmd = pmd_alloc(mm, pud, address);
2238	if (!pmd)
2239		return VM_FAULT_OOM;
2240	pte = pte_alloc_map(mm, pmd, address);
2241	if (!pte)
2242		return VM_FAULT_OOM;
2243
2244	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2245}
2246
2247#ifndef __PAGETABLE_PUD_FOLDED
2248/*
2249 * Allocate page upper directory.
2250 * We've already handled the fast-path in-line.
2251 */
2252int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2253{
2254	pud_t *new = pud_alloc_one(mm, address);
2255	if (!new)
2256		return -ENOMEM;
2257
2258	spin_lock(&mm->page_table_lock);
2259	if (pgd_present(*pgd))		/* Another has populated it */
2260		pud_free(new);
2261	else
2262		pgd_populate(mm, pgd, new);
2263	spin_unlock(&mm->page_table_lock);
2264	return 0;
2265}
2266#else
2267/* Workaround for gcc 2.96 */
2268int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2269{
2270	return 0;
2271}
2272#endif /* __PAGETABLE_PUD_FOLDED */
2273
2274#ifndef __PAGETABLE_PMD_FOLDED
2275/*
2276 * Allocate page middle directory.
2277 * We've already handled the fast-path in-line.
2278 */
2279int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2280{
2281	pmd_t *new = pmd_alloc_one(mm, address);
2282	if (!new)
2283		return -ENOMEM;
2284
2285	spin_lock(&mm->page_table_lock);
2286#ifndef __ARCH_HAS_4LEVEL_HACK
2287	if (pud_present(*pud))		/* Another has populated it */
2288		pmd_free(new);
2289	else
2290		pud_populate(mm, pud, new);
2291#else
2292	if (pgd_present(*pud))		/* Another has populated it */
2293		pmd_free(new);
2294	else
2295		pgd_populate(mm, pud, new);
2296#endif /* __ARCH_HAS_4LEVEL_HACK */
2297	spin_unlock(&mm->page_table_lock);
2298	return 0;
2299}
2300#else
2301/* Workaround for gcc 2.96 */
2302int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2303{
2304	return 0;
2305}
2306#endif /* __PAGETABLE_PMD_FOLDED */
2307
2308int make_pages_present(unsigned long addr, unsigned long end)
2309{
2310	int ret, len, write;
2311	struct vm_area_struct * vma;
2312
2313	vma = find_vma(current->mm, addr);
2314	if (!vma)
2315		return -1;
2316	write = (vma->vm_flags & VM_WRITE) != 0;
2317	if (addr >= end)
2318		BUG();
2319	if (end > vma->vm_end)
2320		BUG();
2321	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2322	ret = get_user_pages(current, current->mm, addr,
2323			len, write, 0, NULL, NULL);
2324	if (ret < 0)
2325		return ret;
2326	return ret == len ? 0 : -1;
2327}
2328
2329/*
2330 * Map a vmalloc()-space virtual address to the physical page.
2331 */
2332struct page * vmalloc_to_page(void * vmalloc_addr)
2333{
2334	unsigned long addr = (unsigned long) vmalloc_addr;
2335	struct page *page = NULL;
2336	pgd_t *pgd = pgd_offset_k(addr);
2337	pud_t *pud;
2338	pmd_t *pmd;
2339	pte_t *ptep, pte;
2340
2341	if (!pgd_none(*pgd)) {
2342		pud = pud_offset(pgd, addr);
2343		if (!pud_none(*pud)) {
2344			pmd = pmd_offset(pud, addr);
2345			if (!pmd_none(*pmd)) {
2346				ptep = pte_offset_map(pmd, addr);
2347				pte = *ptep;
2348				if (pte_present(pte))
2349					page = pte_page(pte);
2350				pte_unmap(ptep);
2351			}
2352		}
2353	}
2354	return page;
2355}
2356
2357EXPORT_SYMBOL(vmalloc_to_page);
2358
2359/*
2360 * Map a vmalloc()-space virtual address to the physical page frame number.
2361 */
2362unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2363{
2364	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2365}
2366
2367EXPORT_SYMBOL(vmalloc_to_pfn);
2368
2369#if !defined(__HAVE_ARCH_GATE_AREA)
2370
2371#if defined(AT_SYSINFO_EHDR)
2372static struct vm_area_struct gate_vma;
2373
2374static int __init gate_vma_init(void)
2375{
2376	gate_vma.vm_mm = NULL;
2377	gate_vma.vm_start = FIXADDR_USER_START;
2378	gate_vma.vm_end = FIXADDR_USER_END;
2379	gate_vma.vm_page_prot = PAGE_READONLY;
2380	gate_vma.vm_flags = 0;
2381	return 0;
2382}
2383__initcall(gate_vma_init);
2384#endif
2385
2386struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2387{
2388#ifdef AT_SYSINFO_EHDR
2389	return &gate_vma;
2390#else
2391	return NULL;
2392#endif
2393}
2394
2395int in_gate_area_no_task(unsigned long addr)
2396{
2397#ifdef AT_SYSINFO_EHDR
2398	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2399		return 1;
2400#endif
2401	return 0;
2402}
2403
2404#endif	/* __HAVE_ARCH_GATE_AREA */
2405