memory.c revision 251b97f552b1ad414cc5a9ccc8e4e94503edd5fc
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53#include <linux/memcontrol.h>
54
55#include <asm/pgalloc.h>
56#include <asm/uaccess.h>
57#include <asm/tlb.h>
58#include <asm/tlbflush.h>
59#include <asm/pgtable.h>
60
61#include <linux/swapops.h>
62#include <linux/elf.h>
63
64#ifndef CONFIG_NEED_MULTIPLE_NODES
65/* use the per-pgdat data instead for discontigmem - mbligh */
66unsigned long max_mapnr;
67struct page *mem_map;
68
69EXPORT_SYMBOL(max_mapnr);
70EXPORT_SYMBOL(mem_map);
71#endif
72
73unsigned long num_physpages;
74/*
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 * and ZONE_HIGHMEM.
80 */
81void * high_memory;
82
83EXPORT_SYMBOL(num_physpages);
84EXPORT_SYMBOL(high_memory);
85
86/*
87 * Randomize the address space (stacks, mmaps, brk, etc.).
88 *
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 *   as ancient (libc5 based) binaries can segfault. )
91 */
92int randomize_va_space __read_mostly =
93#ifdef CONFIG_COMPAT_BRK
94					1;
95#else
96					2;
97#endif
98
99static int __init disable_randmaps(char *s)
100{
101	randomize_va_space = 0;
102	return 1;
103}
104__setup("norandmaps", disable_randmaps);
105
106
107/*
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none.  Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
111 */
112
113void pgd_clear_bad(pgd_t *pgd)
114{
115	pgd_ERROR(*pgd);
116	pgd_clear(pgd);
117}
118
119void pud_clear_bad(pud_t *pud)
120{
121	pud_ERROR(*pud);
122	pud_clear(pud);
123}
124
125void pmd_clear_bad(pmd_t *pmd)
126{
127	pmd_ERROR(*pmd);
128	pmd_clear(pmd);
129}
130
131/*
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
134 */
135static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136{
137	pgtable_t token = pmd_pgtable(*pmd);
138	pmd_clear(pmd);
139	pte_free_tlb(tlb, token);
140	tlb->mm->nr_ptes--;
141}
142
143static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144				unsigned long addr, unsigned long end,
145				unsigned long floor, unsigned long ceiling)
146{
147	pmd_t *pmd;
148	unsigned long next;
149	unsigned long start;
150
151	start = addr;
152	pmd = pmd_offset(pud, addr);
153	do {
154		next = pmd_addr_end(addr, end);
155		if (pmd_none_or_clear_bad(pmd))
156			continue;
157		free_pte_range(tlb, pmd);
158	} while (pmd++, addr = next, addr != end);
159
160	start &= PUD_MASK;
161	if (start < floor)
162		return;
163	if (ceiling) {
164		ceiling &= PUD_MASK;
165		if (!ceiling)
166			return;
167	}
168	if (end - 1 > ceiling - 1)
169		return;
170
171	pmd = pmd_offset(pud, start);
172	pud_clear(pud);
173	pmd_free_tlb(tlb, pmd);
174}
175
176static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177				unsigned long addr, unsigned long end,
178				unsigned long floor, unsigned long ceiling)
179{
180	pud_t *pud;
181	unsigned long next;
182	unsigned long start;
183
184	start = addr;
185	pud = pud_offset(pgd, addr);
186	do {
187		next = pud_addr_end(addr, end);
188		if (pud_none_or_clear_bad(pud))
189			continue;
190		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191	} while (pud++, addr = next, addr != end);
192
193	start &= PGDIR_MASK;
194	if (start < floor)
195		return;
196	if (ceiling) {
197		ceiling &= PGDIR_MASK;
198		if (!ceiling)
199			return;
200	}
201	if (end - 1 > ceiling - 1)
202		return;
203
204	pud = pud_offset(pgd, start);
205	pgd_clear(pgd);
206	pud_free_tlb(tlb, pud);
207}
208
209/*
210 * This function frees user-level page tables of a process.
211 *
212 * Must be called with pagetable lock held.
213 */
214void free_pgd_range(struct mmu_gather **tlb,
215			unsigned long addr, unsigned long end,
216			unsigned long floor, unsigned long ceiling)
217{
218	pgd_t *pgd;
219	unsigned long next;
220	unsigned long start;
221
222	/*
223	 * The next few lines have given us lots of grief...
224	 *
225	 * Why are we testing PMD* at this top level?  Because often
226	 * there will be no work to do at all, and we'd prefer not to
227	 * go all the way down to the bottom just to discover that.
228	 *
229	 * Why all these "- 1"s?  Because 0 represents both the bottom
230	 * of the address space and the top of it (using -1 for the
231	 * top wouldn't help much: the masks would do the wrong thing).
232	 * The rule is that addr 0 and floor 0 refer to the bottom of
233	 * the address space, but end 0 and ceiling 0 refer to the top
234	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235	 * that end 0 case should be mythical).
236	 *
237	 * Wherever addr is brought up or ceiling brought down, we must
238	 * be careful to reject "the opposite 0" before it confuses the
239	 * subsequent tests.  But what about where end is brought down
240	 * by PMD_SIZE below? no, end can't go down to 0 there.
241	 *
242	 * Whereas we round start (addr) and ceiling down, by different
243	 * masks at different levels, in order to test whether a table
244	 * now has no other vmas using it, so can be freed, we don't
245	 * bother to round floor or end up - the tests don't need that.
246	 */
247
248	addr &= PMD_MASK;
249	if (addr < floor) {
250		addr += PMD_SIZE;
251		if (!addr)
252			return;
253	}
254	if (ceiling) {
255		ceiling &= PMD_MASK;
256		if (!ceiling)
257			return;
258	}
259	if (end - 1 > ceiling - 1)
260		end -= PMD_SIZE;
261	if (addr > end - 1)
262		return;
263
264	start = addr;
265	pgd = pgd_offset((*tlb)->mm, addr);
266	do {
267		next = pgd_addr_end(addr, end);
268		if (pgd_none_or_clear_bad(pgd))
269			continue;
270		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271	} while (pgd++, addr = next, addr != end);
272}
273
274void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275		unsigned long floor, unsigned long ceiling)
276{
277	while (vma) {
278		struct vm_area_struct *next = vma->vm_next;
279		unsigned long addr = vma->vm_start;
280
281		/*
282		 * Hide vma from rmap and vmtruncate before freeing pgtables
283		 */
284		anon_vma_unlink(vma);
285		unlink_file_vma(vma);
286
287		if (is_vm_hugetlb_page(vma)) {
288			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289				floor, next? next->vm_start: ceiling);
290		} else {
291			/*
292			 * Optimization: gather nearby vmas into one call down
293			 */
294			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295			       && !is_vm_hugetlb_page(next)) {
296				vma = next;
297				next = vma->vm_next;
298				anon_vma_unlink(vma);
299				unlink_file_vma(vma);
300			}
301			free_pgd_range(tlb, addr, vma->vm_end,
302				floor, next? next->vm_start: ceiling);
303		}
304		vma = next;
305	}
306}
307
308int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309{
310	pgtable_t new = pte_alloc_one(mm, address);
311	if (!new)
312		return -ENOMEM;
313
314	/*
315	 * Ensure all pte setup (eg. pte page lock and page clearing) are
316	 * visible before the pte is made visible to other CPUs by being
317	 * put into page tables.
318	 *
319	 * The other side of the story is the pointer chasing in the page
320	 * table walking code (when walking the page table without locking;
321	 * ie. most of the time). Fortunately, these data accesses consist
322	 * of a chain of data-dependent loads, meaning most CPUs (alpha
323	 * being the notable exception) will already guarantee loads are
324	 * seen in-order. See the alpha page table accessors for the
325	 * smp_read_barrier_depends() barriers in page table walking code.
326	 */
327	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
328
329	spin_lock(&mm->page_table_lock);
330	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
331		mm->nr_ptes++;
332		pmd_populate(mm, pmd, new);
333		new = NULL;
334	}
335	spin_unlock(&mm->page_table_lock);
336	if (new)
337		pte_free(mm, new);
338	return 0;
339}
340
341int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
342{
343	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
344	if (!new)
345		return -ENOMEM;
346
347	smp_wmb(); /* See comment in __pte_alloc */
348
349	spin_lock(&init_mm.page_table_lock);
350	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
351		pmd_populate_kernel(&init_mm, pmd, new);
352		new = NULL;
353	}
354	spin_unlock(&init_mm.page_table_lock);
355	if (new)
356		pte_free_kernel(&init_mm, new);
357	return 0;
358}
359
360static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
361{
362	if (file_rss)
363		add_mm_counter(mm, file_rss, file_rss);
364	if (anon_rss)
365		add_mm_counter(mm, anon_rss, anon_rss);
366}
367
368/*
369 * This function is called to print an error when a bad pte
370 * is found. For example, we might have a PFN-mapped pte in
371 * a region that doesn't allow it.
372 *
373 * The calling function must still handle the error.
374 */
375void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
376{
377	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
378			"vm_flags = %lx, vaddr = %lx\n",
379		(long long)pte_val(pte),
380		(vma->vm_mm == current->mm ? current->comm : "???"),
381		vma->vm_flags, vaddr);
382	dump_stack();
383}
384
385static inline int is_cow_mapping(unsigned int flags)
386{
387	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
388}
389
390/*
391 * vm_normal_page -- This function gets the "struct page" associated with a pte.
392 *
393 * "Special" mappings do not wish to be associated with a "struct page" (either
394 * it doesn't exist, or it exists but they don't want to touch it). In this
395 * case, NULL is returned here. "Normal" mappings do have a struct page.
396 *
397 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398 * pte bit, in which case this function is trivial. Secondly, an architecture
399 * may not have a spare pte bit, which requires a more complicated scheme,
400 * described below.
401 *
402 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403 * special mapping (even if there are underlying and valid "struct pages").
404 * COWed pages of a VM_PFNMAP are always normal.
405 *
406 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
408 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409 * mapping will always honor the rule
410 *
411 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
412 *
413 * And for normal mappings this is false.
414 *
415 * This restricts such mappings to be a linear translation from virtual address
416 * to pfn. To get around this restriction, we allow arbitrary mappings so long
417 * as the vma is not a COW mapping; in that case, we know that all ptes are
418 * special (because none can have been COWed).
419 *
420 *
421 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
422 *
423 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424 * page" backing, however the difference is that _all_ pages with a struct
425 * page (that is, those where pfn_valid is true) are refcounted and considered
426 * normal pages by the VM. The disadvantage is that pages are refcounted
427 * (which can be slower and simply not an option for some PFNMAP users). The
428 * advantage is that we don't have to follow the strict linearity rule of
429 * PFNMAP mappings in order to support COWable mappings.
430 *
431 */
432#ifdef __HAVE_ARCH_PTE_SPECIAL
433# define HAVE_PTE_SPECIAL 1
434#else
435# define HAVE_PTE_SPECIAL 0
436#endif
437struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
438				pte_t pte)
439{
440	unsigned long pfn;
441
442	if (HAVE_PTE_SPECIAL) {
443		if (likely(!pte_special(pte))) {
444			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
445			return pte_page(pte);
446		}
447		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
448		return NULL;
449	}
450
451	/* !HAVE_PTE_SPECIAL case follows: */
452
453	pfn = pte_pfn(pte);
454
455	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
456		if (vma->vm_flags & VM_MIXEDMAP) {
457			if (!pfn_valid(pfn))
458				return NULL;
459			goto out;
460		} else {
461			unsigned long off;
462			off = (addr - vma->vm_start) >> PAGE_SHIFT;
463			if (pfn == vma->vm_pgoff + off)
464				return NULL;
465			if (!is_cow_mapping(vma->vm_flags))
466				return NULL;
467		}
468	}
469
470	VM_BUG_ON(!pfn_valid(pfn));
471
472	/*
473	 * NOTE! We still have PageReserved() pages in the page tables.
474	 *
475	 * eg. VDSO mappings can cause them to exist.
476	 */
477out:
478	return pfn_to_page(pfn);
479}
480
481/*
482 * copy one vm_area from one task to the other. Assumes the page tables
483 * already present in the new task to be cleared in the whole range
484 * covered by this vma.
485 */
486
487static inline void
488copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
489		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
490		unsigned long addr, int *rss)
491{
492	unsigned long vm_flags = vma->vm_flags;
493	pte_t pte = *src_pte;
494	struct page *page;
495
496	/* pte contains position in swap or file, so copy. */
497	if (unlikely(!pte_present(pte))) {
498		if (!pte_file(pte)) {
499			swp_entry_t entry = pte_to_swp_entry(pte);
500
501			swap_duplicate(entry);
502			/* make sure dst_mm is on swapoff's mmlist. */
503			if (unlikely(list_empty(&dst_mm->mmlist))) {
504				spin_lock(&mmlist_lock);
505				if (list_empty(&dst_mm->mmlist))
506					list_add(&dst_mm->mmlist,
507						 &src_mm->mmlist);
508				spin_unlock(&mmlist_lock);
509			}
510			if (is_write_migration_entry(entry) &&
511					is_cow_mapping(vm_flags)) {
512				/*
513				 * COW mappings require pages in both parent
514				 * and child to be set to read.
515				 */
516				make_migration_entry_read(&entry);
517				pte = swp_entry_to_pte(entry);
518				set_pte_at(src_mm, addr, src_pte, pte);
519			}
520		}
521		goto out_set_pte;
522	}
523
524	/*
525	 * If it's a COW mapping, write protect it both
526	 * in the parent and the child
527	 */
528	if (is_cow_mapping(vm_flags)) {
529		ptep_set_wrprotect(src_mm, addr, src_pte);
530		pte = pte_wrprotect(pte);
531	}
532
533	/*
534	 * If it's a shared mapping, mark it clean in
535	 * the child
536	 */
537	if (vm_flags & VM_SHARED)
538		pte = pte_mkclean(pte);
539	pte = pte_mkold(pte);
540
541	page = vm_normal_page(vma, addr, pte);
542	if (page) {
543		get_page(page);
544		page_dup_rmap(page, vma, addr);
545		rss[!!PageAnon(page)]++;
546	}
547
548out_set_pte:
549	set_pte_at(dst_mm, addr, dst_pte, pte);
550}
551
552static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
553		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
554		unsigned long addr, unsigned long end)
555{
556	pte_t *src_pte, *dst_pte;
557	spinlock_t *src_ptl, *dst_ptl;
558	int progress = 0;
559	int rss[2];
560
561again:
562	rss[1] = rss[0] = 0;
563	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
564	if (!dst_pte)
565		return -ENOMEM;
566	src_pte = pte_offset_map_nested(src_pmd, addr);
567	src_ptl = pte_lockptr(src_mm, src_pmd);
568	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
569	arch_enter_lazy_mmu_mode();
570
571	do {
572		/*
573		 * We are holding two locks at this point - either of them
574		 * could generate latencies in another task on another CPU.
575		 */
576		if (progress >= 32) {
577			progress = 0;
578			if (need_resched() ||
579			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
580				break;
581		}
582		if (pte_none(*src_pte)) {
583			progress++;
584			continue;
585		}
586		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
587		progress += 8;
588	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
589
590	arch_leave_lazy_mmu_mode();
591	spin_unlock(src_ptl);
592	pte_unmap_nested(src_pte - 1);
593	add_mm_rss(dst_mm, rss[0], rss[1]);
594	pte_unmap_unlock(dst_pte - 1, dst_ptl);
595	cond_resched();
596	if (addr != end)
597		goto again;
598	return 0;
599}
600
601static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
602		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
603		unsigned long addr, unsigned long end)
604{
605	pmd_t *src_pmd, *dst_pmd;
606	unsigned long next;
607
608	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
609	if (!dst_pmd)
610		return -ENOMEM;
611	src_pmd = pmd_offset(src_pud, addr);
612	do {
613		next = pmd_addr_end(addr, end);
614		if (pmd_none_or_clear_bad(src_pmd))
615			continue;
616		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
617						vma, addr, next))
618			return -ENOMEM;
619	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
620	return 0;
621}
622
623static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
624		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
625		unsigned long addr, unsigned long end)
626{
627	pud_t *src_pud, *dst_pud;
628	unsigned long next;
629
630	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
631	if (!dst_pud)
632		return -ENOMEM;
633	src_pud = pud_offset(src_pgd, addr);
634	do {
635		next = pud_addr_end(addr, end);
636		if (pud_none_or_clear_bad(src_pud))
637			continue;
638		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
639						vma, addr, next))
640			return -ENOMEM;
641	} while (dst_pud++, src_pud++, addr = next, addr != end);
642	return 0;
643}
644
645int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
646		struct vm_area_struct *vma)
647{
648	pgd_t *src_pgd, *dst_pgd;
649	unsigned long next;
650	unsigned long addr = vma->vm_start;
651	unsigned long end = vma->vm_end;
652
653	/*
654	 * Don't copy ptes where a page fault will fill them correctly.
655	 * Fork becomes much lighter when there are big shared or private
656	 * readonly mappings. The tradeoff is that copy_page_range is more
657	 * efficient than faulting.
658	 */
659	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
660		if (!vma->anon_vma)
661			return 0;
662	}
663
664	if (is_vm_hugetlb_page(vma))
665		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
666
667	dst_pgd = pgd_offset(dst_mm, addr);
668	src_pgd = pgd_offset(src_mm, addr);
669	do {
670		next = pgd_addr_end(addr, end);
671		if (pgd_none_or_clear_bad(src_pgd))
672			continue;
673		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
674						vma, addr, next))
675			return -ENOMEM;
676	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
677	return 0;
678}
679
680static unsigned long zap_pte_range(struct mmu_gather *tlb,
681				struct vm_area_struct *vma, pmd_t *pmd,
682				unsigned long addr, unsigned long end,
683				long *zap_work, struct zap_details *details)
684{
685	struct mm_struct *mm = tlb->mm;
686	pte_t *pte;
687	spinlock_t *ptl;
688	int file_rss = 0;
689	int anon_rss = 0;
690
691	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
692	arch_enter_lazy_mmu_mode();
693	do {
694		pte_t ptent = *pte;
695		if (pte_none(ptent)) {
696			(*zap_work)--;
697			continue;
698		}
699
700		(*zap_work) -= PAGE_SIZE;
701
702		if (pte_present(ptent)) {
703			struct page *page;
704
705			page = vm_normal_page(vma, addr, ptent);
706			if (unlikely(details) && page) {
707				/*
708				 * unmap_shared_mapping_pages() wants to
709				 * invalidate cache without truncating:
710				 * unmap shared but keep private pages.
711				 */
712				if (details->check_mapping &&
713				    details->check_mapping != page->mapping)
714					continue;
715				/*
716				 * Each page->index must be checked when
717				 * invalidating or truncating nonlinear.
718				 */
719				if (details->nonlinear_vma &&
720				    (page->index < details->first_index ||
721				     page->index > details->last_index))
722					continue;
723			}
724			ptent = ptep_get_and_clear_full(mm, addr, pte,
725							tlb->fullmm);
726			tlb_remove_tlb_entry(tlb, pte, addr);
727			if (unlikely(!page))
728				continue;
729			if (unlikely(details) && details->nonlinear_vma
730			    && linear_page_index(details->nonlinear_vma,
731						addr) != page->index)
732				set_pte_at(mm, addr, pte,
733					   pgoff_to_pte(page->index));
734			if (PageAnon(page))
735				anon_rss--;
736			else {
737				if (pte_dirty(ptent))
738					set_page_dirty(page);
739				if (pte_young(ptent))
740					SetPageReferenced(page);
741				file_rss--;
742			}
743			page_remove_rmap(page, vma);
744			tlb_remove_page(tlb, page);
745			continue;
746		}
747		/*
748		 * If details->check_mapping, we leave swap entries;
749		 * if details->nonlinear_vma, we leave file entries.
750		 */
751		if (unlikely(details))
752			continue;
753		if (!pte_file(ptent))
754			free_swap_and_cache(pte_to_swp_entry(ptent));
755		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
756	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
757
758	add_mm_rss(mm, file_rss, anon_rss);
759	arch_leave_lazy_mmu_mode();
760	pte_unmap_unlock(pte - 1, ptl);
761
762	return addr;
763}
764
765static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
766				struct vm_area_struct *vma, pud_t *pud,
767				unsigned long addr, unsigned long end,
768				long *zap_work, struct zap_details *details)
769{
770	pmd_t *pmd;
771	unsigned long next;
772
773	pmd = pmd_offset(pud, addr);
774	do {
775		next = pmd_addr_end(addr, end);
776		if (pmd_none_or_clear_bad(pmd)) {
777			(*zap_work)--;
778			continue;
779		}
780		next = zap_pte_range(tlb, vma, pmd, addr, next,
781						zap_work, details);
782	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
783
784	return addr;
785}
786
787static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
788				struct vm_area_struct *vma, pgd_t *pgd,
789				unsigned long addr, unsigned long end,
790				long *zap_work, struct zap_details *details)
791{
792	pud_t *pud;
793	unsigned long next;
794
795	pud = pud_offset(pgd, addr);
796	do {
797		next = pud_addr_end(addr, end);
798		if (pud_none_or_clear_bad(pud)) {
799			(*zap_work)--;
800			continue;
801		}
802		next = zap_pmd_range(tlb, vma, pud, addr, next,
803						zap_work, details);
804	} while (pud++, addr = next, (addr != end && *zap_work > 0));
805
806	return addr;
807}
808
809static unsigned long unmap_page_range(struct mmu_gather *tlb,
810				struct vm_area_struct *vma,
811				unsigned long addr, unsigned long end,
812				long *zap_work, struct zap_details *details)
813{
814	pgd_t *pgd;
815	unsigned long next;
816
817	if (details && !details->check_mapping && !details->nonlinear_vma)
818		details = NULL;
819
820	BUG_ON(addr >= end);
821	tlb_start_vma(tlb, vma);
822	pgd = pgd_offset(vma->vm_mm, addr);
823	do {
824		next = pgd_addr_end(addr, end);
825		if (pgd_none_or_clear_bad(pgd)) {
826			(*zap_work)--;
827			continue;
828		}
829		next = zap_pud_range(tlb, vma, pgd, addr, next,
830						zap_work, details);
831	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
832	tlb_end_vma(tlb, vma);
833
834	return addr;
835}
836
837#ifdef CONFIG_PREEMPT
838# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
839#else
840/* No preempt: go for improved straight-line efficiency */
841# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
842#endif
843
844/**
845 * unmap_vmas - unmap a range of memory covered by a list of vma's
846 * @tlbp: address of the caller's struct mmu_gather
847 * @vma: the starting vma
848 * @start_addr: virtual address at which to start unmapping
849 * @end_addr: virtual address at which to end unmapping
850 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851 * @details: details of nonlinear truncation or shared cache invalidation
852 *
853 * Returns the end address of the unmapping (restart addr if interrupted).
854 *
855 * Unmap all pages in the vma list.
856 *
857 * We aim to not hold locks for too long (for scheduling latency reasons).
858 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
859 * return the ending mmu_gather to the caller.
860 *
861 * Only addresses between `start' and `end' will be unmapped.
862 *
863 * The VMA list must be sorted in ascending virtual address order.
864 *
865 * unmap_vmas() assumes that the caller will flush the whole unmapped address
866 * range after unmap_vmas() returns.  So the only responsibility here is to
867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868 * drops the lock and schedules.
869 */
870unsigned long unmap_vmas(struct mmu_gather **tlbp,
871		struct vm_area_struct *vma, unsigned long start_addr,
872		unsigned long end_addr, unsigned long *nr_accounted,
873		struct zap_details *details)
874{
875	long zap_work = ZAP_BLOCK_SIZE;
876	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
877	int tlb_start_valid = 0;
878	unsigned long start = start_addr;
879	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
880	int fullmm = (*tlbp)->fullmm;
881
882	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
883		unsigned long end;
884
885		start = max(vma->vm_start, start_addr);
886		if (start >= vma->vm_end)
887			continue;
888		end = min(vma->vm_end, end_addr);
889		if (end <= vma->vm_start)
890			continue;
891
892		if (vma->vm_flags & VM_ACCOUNT)
893			*nr_accounted += (end - start) >> PAGE_SHIFT;
894
895		while (start != end) {
896			if (!tlb_start_valid) {
897				tlb_start = start;
898				tlb_start_valid = 1;
899			}
900
901			if (unlikely(is_vm_hugetlb_page(vma))) {
902				unmap_hugepage_range(vma, start, end);
903				zap_work -= (end - start) /
904						(HPAGE_SIZE / PAGE_SIZE);
905				start = end;
906			} else
907				start = unmap_page_range(*tlbp, vma,
908						start, end, &zap_work, details);
909
910			if (zap_work > 0) {
911				BUG_ON(start != end);
912				break;
913			}
914
915			tlb_finish_mmu(*tlbp, tlb_start, start);
916
917			if (need_resched() ||
918				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
919				if (i_mmap_lock) {
920					*tlbp = NULL;
921					goto out;
922				}
923				cond_resched();
924			}
925
926			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
927			tlb_start_valid = 0;
928			zap_work = ZAP_BLOCK_SIZE;
929		}
930	}
931out:
932	return start;	/* which is now the end (or restart) address */
933}
934
935/**
936 * zap_page_range - remove user pages in a given range
937 * @vma: vm_area_struct holding the applicable pages
938 * @address: starting address of pages to zap
939 * @size: number of bytes to zap
940 * @details: details of nonlinear truncation or shared cache invalidation
941 */
942unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
943		unsigned long size, struct zap_details *details)
944{
945	struct mm_struct *mm = vma->vm_mm;
946	struct mmu_gather *tlb;
947	unsigned long end = address + size;
948	unsigned long nr_accounted = 0;
949
950	lru_add_drain();
951	tlb = tlb_gather_mmu(mm, 0);
952	update_hiwater_rss(mm);
953	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
954	if (tlb)
955		tlb_finish_mmu(tlb, address, end);
956	return end;
957}
958
959/*
960 * Do a quick page-table lookup for a single page.
961 */
962struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
963			unsigned int flags)
964{
965	pgd_t *pgd;
966	pud_t *pud;
967	pmd_t *pmd;
968	pte_t *ptep, pte;
969	spinlock_t *ptl;
970	struct page *page;
971	struct mm_struct *mm = vma->vm_mm;
972
973	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
974	if (!IS_ERR(page)) {
975		BUG_ON(flags & FOLL_GET);
976		goto out;
977	}
978
979	page = NULL;
980	pgd = pgd_offset(mm, address);
981	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
982		goto no_page_table;
983
984	pud = pud_offset(pgd, address);
985	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
986		goto no_page_table;
987
988	pmd = pmd_offset(pud, address);
989	if (pmd_none(*pmd))
990		goto no_page_table;
991
992	if (pmd_huge(*pmd)) {
993		BUG_ON(flags & FOLL_GET);
994		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
995		goto out;
996	}
997
998	if (unlikely(pmd_bad(*pmd)))
999		goto no_page_table;
1000
1001	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1002
1003	pte = *ptep;
1004	if (!pte_present(pte))
1005		goto no_page;
1006	if ((flags & FOLL_WRITE) && !pte_write(pte))
1007		goto unlock;
1008	page = vm_normal_page(vma, address, pte);
1009	if (unlikely(!page))
1010		goto bad_page;
1011
1012	if (flags & FOLL_GET)
1013		get_page(page);
1014	if (flags & FOLL_TOUCH) {
1015		if ((flags & FOLL_WRITE) &&
1016		    !pte_dirty(pte) && !PageDirty(page))
1017			set_page_dirty(page);
1018		mark_page_accessed(page);
1019	}
1020unlock:
1021	pte_unmap_unlock(ptep, ptl);
1022out:
1023	return page;
1024
1025bad_page:
1026	pte_unmap_unlock(ptep, ptl);
1027	return ERR_PTR(-EFAULT);
1028
1029no_page:
1030	pte_unmap_unlock(ptep, ptl);
1031	if (!pte_none(pte))
1032		return page;
1033	/* Fall through to ZERO_PAGE handling */
1034no_page_table:
1035	/*
1036	 * When core dumping an enormous anonymous area that nobody
1037	 * has touched so far, we don't want to allocate page tables.
1038	 */
1039	if (flags & FOLL_ANON) {
1040		page = ZERO_PAGE(0);
1041		if (flags & FOLL_GET)
1042			get_page(page);
1043		BUG_ON(flags & FOLL_WRITE);
1044	}
1045	return page;
1046}
1047
1048/* Can we do the FOLL_ANON optimization? */
1049static inline int use_zero_page(struct vm_area_struct *vma)
1050{
1051	/*
1052	 * We don't want to optimize FOLL_ANON for make_pages_present()
1053	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1054	 * we want to get the page from the page tables to make sure
1055	 * that we serialize and update with any other user of that
1056	 * mapping.
1057	 */
1058	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1059		return 0;
1060	/*
1061	 * And if we have a fault or a nopfn routine, it's not an
1062	 * anonymous region.
1063	 */
1064	return !vma->vm_ops ||
1065		(!vma->vm_ops->fault && !vma->vm_ops->nopfn);
1066}
1067
1068int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1069		unsigned long start, int len, int write, int force,
1070		struct page **pages, struct vm_area_struct **vmas)
1071{
1072	int i;
1073	unsigned int vm_flags;
1074
1075	if (len <= 0)
1076		return 0;
1077	/*
1078	 * Require read or write permissions.
1079	 * If 'force' is set, we only require the "MAY" flags.
1080	 */
1081	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1082	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1083	i = 0;
1084
1085	do {
1086		struct vm_area_struct *vma;
1087		unsigned int foll_flags;
1088
1089		vma = find_extend_vma(mm, start);
1090		if (!vma && in_gate_area(tsk, start)) {
1091			unsigned long pg = start & PAGE_MASK;
1092			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1093			pgd_t *pgd;
1094			pud_t *pud;
1095			pmd_t *pmd;
1096			pte_t *pte;
1097			if (write) /* user gate pages are read-only */
1098				return i ? : -EFAULT;
1099			if (pg > TASK_SIZE)
1100				pgd = pgd_offset_k(pg);
1101			else
1102				pgd = pgd_offset_gate(mm, pg);
1103			BUG_ON(pgd_none(*pgd));
1104			pud = pud_offset(pgd, pg);
1105			BUG_ON(pud_none(*pud));
1106			pmd = pmd_offset(pud, pg);
1107			if (pmd_none(*pmd))
1108				return i ? : -EFAULT;
1109			pte = pte_offset_map(pmd, pg);
1110			if (pte_none(*pte)) {
1111				pte_unmap(pte);
1112				return i ? : -EFAULT;
1113			}
1114			if (pages) {
1115				struct page *page = vm_normal_page(gate_vma, start, *pte);
1116				pages[i] = page;
1117				if (page)
1118					get_page(page);
1119			}
1120			pte_unmap(pte);
1121			if (vmas)
1122				vmas[i] = gate_vma;
1123			i++;
1124			start += PAGE_SIZE;
1125			len--;
1126			continue;
1127		}
1128
1129		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1130				|| !(vm_flags & vma->vm_flags))
1131			return i ? : -EFAULT;
1132
1133		if (is_vm_hugetlb_page(vma)) {
1134			i = follow_hugetlb_page(mm, vma, pages, vmas,
1135						&start, &len, i, write);
1136			continue;
1137		}
1138
1139		foll_flags = FOLL_TOUCH;
1140		if (pages)
1141			foll_flags |= FOLL_GET;
1142		if (!write && use_zero_page(vma))
1143			foll_flags |= FOLL_ANON;
1144
1145		do {
1146			struct page *page;
1147
1148			/*
1149			 * If tsk is ooming, cut off its access to large memory
1150			 * allocations. It has a pending SIGKILL, but it can't
1151			 * be processed until returning to user space.
1152			 */
1153			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1154				return -ENOMEM;
1155
1156			if (write)
1157				foll_flags |= FOLL_WRITE;
1158
1159			cond_resched();
1160			while (!(page = follow_page(vma, start, foll_flags))) {
1161				int ret;
1162				ret = handle_mm_fault(mm, vma, start,
1163						foll_flags & FOLL_WRITE);
1164				if (ret & VM_FAULT_ERROR) {
1165					if (ret & VM_FAULT_OOM)
1166						return i ? i : -ENOMEM;
1167					else if (ret & VM_FAULT_SIGBUS)
1168						return i ? i : -EFAULT;
1169					BUG();
1170				}
1171				if (ret & VM_FAULT_MAJOR)
1172					tsk->maj_flt++;
1173				else
1174					tsk->min_flt++;
1175
1176				/*
1177				 * The VM_FAULT_WRITE bit tells us that
1178				 * do_wp_page has broken COW when necessary,
1179				 * even if maybe_mkwrite decided not to set
1180				 * pte_write. We can thus safely do subsequent
1181				 * page lookups as if they were reads.
1182				 */
1183				if (ret & VM_FAULT_WRITE)
1184					foll_flags &= ~FOLL_WRITE;
1185
1186				cond_resched();
1187			}
1188			if (IS_ERR(page))
1189				return i ? i : PTR_ERR(page);
1190			if (pages) {
1191				pages[i] = page;
1192
1193				flush_anon_page(vma, page, start);
1194				flush_dcache_page(page);
1195			}
1196			if (vmas)
1197				vmas[i] = vma;
1198			i++;
1199			start += PAGE_SIZE;
1200			len--;
1201		} while (len && start < vma->vm_end);
1202	} while (len);
1203	return i;
1204}
1205EXPORT_SYMBOL(get_user_pages);
1206
1207pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1208			spinlock_t **ptl)
1209{
1210	pgd_t * pgd = pgd_offset(mm, addr);
1211	pud_t * pud = pud_alloc(mm, pgd, addr);
1212	if (pud) {
1213		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1214		if (pmd)
1215			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1216	}
1217	return NULL;
1218}
1219
1220/*
1221 * This is the old fallback for page remapping.
1222 *
1223 * For historical reasons, it only allows reserved pages. Only
1224 * old drivers should use this, and they needed to mark their
1225 * pages reserved for the old functions anyway.
1226 */
1227static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1228			struct page *page, pgprot_t prot)
1229{
1230	struct mm_struct *mm = vma->vm_mm;
1231	int retval;
1232	pte_t *pte;
1233	spinlock_t *ptl;
1234
1235	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1236	if (retval)
1237		goto out;
1238
1239	retval = -EINVAL;
1240	if (PageAnon(page))
1241		goto out_uncharge;
1242	retval = -ENOMEM;
1243	flush_dcache_page(page);
1244	pte = get_locked_pte(mm, addr, &ptl);
1245	if (!pte)
1246		goto out_uncharge;
1247	retval = -EBUSY;
1248	if (!pte_none(*pte))
1249		goto out_unlock;
1250
1251	/* Ok, finally just insert the thing.. */
1252	get_page(page);
1253	inc_mm_counter(mm, file_rss);
1254	page_add_file_rmap(page);
1255	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1256
1257	retval = 0;
1258	pte_unmap_unlock(pte, ptl);
1259	return retval;
1260out_unlock:
1261	pte_unmap_unlock(pte, ptl);
1262out_uncharge:
1263	mem_cgroup_uncharge_page(page);
1264out:
1265	return retval;
1266}
1267
1268/**
1269 * vm_insert_page - insert single page into user vma
1270 * @vma: user vma to map to
1271 * @addr: target user address of this page
1272 * @page: source kernel page
1273 *
1274 * This allows drivers to insert individual pages they've allocated
1275 * into a user vma.
1276 *
1277 * The page has to be a nice clean _individual_ kernel allocation.
1278 * If you allocate a compound page, you need to have marked it as
1279 * such (__GFP_COMP), or manually just split the page up yourself
1280 * (see split_page()).
1281 *
1282 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1283 * took an arbitrary page protection parameter. This doesn't allow
1284 * that. Your vma protection will have to be set up correctly, which
1285 * means that if you want a shared writable mapping, you'd better
1286 * ask for a shared writable mapping!
1287 *
1288 * The page does not need to be reserved.
1289 */
1290int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1291			struct page *page)
1292{
1293	if (addr < vma->vm_start || addr >= vma->vm_end)
1294		return -EFAULT;
1295	if (!page_count(page))
1296		return -EINVAL;
1297	vma->vm_flags |= VM_INSERTPAGE;
1298	return insert_page(vma, addr, page, vma->vm_page_prot);
1299}
1300EXPORT_SYMBOL(vm_insert_page);
1301
1302static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1303			unsigned long pfn, pgprot_t prot)
1304{
1305	struct mm_struct *mm = vma->vm_mm;
1306	int retval;
1307	pte_t *pte, entry;
1308	spinlock_t *ptl;
1309
1310	retval = -ENOMEM;
1311	pte = get_locked_pte(mm, addr, &ptl);
1312	if (!pte)
1313		goto out;
1314	retval = -EBUSY;
1315	if (!pte_none(*pte))
1316		goto out_unlock;
1317
1318	/* Ok, finally just insert the thing.. */
1319	entry = pte_mkspecial(pfn_pte(pfn, prot));
1320	set_pte_at(mm, addr, pte, entry);
1321	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1322
1323	retval = 0;
1324out_unlock:
1325	pte_unmap_unlock(pte, ptl);
1326out:
1327	return retval;
1328}
1329
1330/**
1331 * vm_insert_pfn - insert single pfn into user vma
1332 * @vma: user vma to map to
1333 * @addr: target user address of this page
1334 * @pfn: source kernel pfn
1335 *
1336 * Similar to vm_inert_page, this allows drivers to insert individual pages
1337 * they've allocated into a user vma. Same comments apply.
1338 *
1339 * This function should only be called from a vm_ops->fault handler, and
1340 * in that case the handler should return NULL.
1341 */
1342int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1343			unsigned long pfn)
1344{
1345	/*
1346	 * Technically, architectures with pte_special can avoid all these
1347	 * restrictions (same for remap_pfn_range).  However we would like
1348	 * consistency in testing and feature parity among all, so we should
1349	 * try to keep these invariants in place for everybody.
1350	 */
1351	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1352	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1353						(VM_PFNMAP|VM_MIXEDMAP));
1354	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1355	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1356
1357	if (addr < vma->vm_start || addr >= vma->vm_end)
1358		return -EFAULT;
1359	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1360}
1361EXPORT_SYMBOL(vm_insert_pfn);
1362
1363int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1364			unsigned long pfn)
1365{
1366	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1367
1368	if (addr < vma->vm_start || addr >= vma->vm_end)
1369		return -EFAULT;
1370
1371	/*
1372	 * If we don't have pte special, then we have to use the pfn_valid()
1373	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1374	 * refcount the page if pfn_valid is true (hence insert_page rather
1375	 * than insert_pfn).
1376	 */
1377	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1378		struct page *page;
1379
1380		page = pfn_to_page(pfn);
1381		return insert_page(vma, addr, page, vma->vm_page_prot);
1382	}
1383	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1384}
1385EXPORT_SYMBOL(vm_insert_mixed);
1386
1387/*
1388 * maps a range of physical memory into the requested pages. the old
1389 * mappings are removed. any references to nonexistent pages results
1390 * in null mappings (currently treated as "copy-on-access")
1391 */
1392static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1393			unsigned long addr, unsigned long end,
1394			unsigned long pfn, pgprot_t prot)
1395{
1396	pte_t *pte;
1397	spinlock_t *ptl;
1398
1399	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1400	if (!pte)
1401		return -ENOMEM;
1402	arch_enter_lazy_mmu_mode();
1403	do {
1404		BUG_ON(!pte_none(*pte));
1405		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1406		pfn++;
1407	} while (pte++, addr += PAGE_SIZE, addr != end);
1408	arch_leave_lazy_mmu_mode();
1409	pte_unmap_unlock(pte - 1, ptl);
1410	return 0;
1411}
1412
1413static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1414			unsigned long addr, unsigned long end,
1415			unsigned long pfn, pgprot_t prot)
1416{
1417	pmd_t *pmd;
1418	unsigned long next;
1419
1420	pfn -= addr >> PAGE_SHIFT;
1421	pmd = pmd_alloc(mm, pud, addr);
1422	if (!pmd)
1423		return -ENOMEM;
1424	do {
1425		next = pmd_addr_end(addr, end);
1426		if (remap_pte_range(mm, pmd, addr, next,
1427				pfn + (addr >> PAGE_SHIFT), prot))
1428			return -ENOMEM;
1429	} while (pmd++, addr = next, addr != end);
1430	return 0;
1431}
1432
1433static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1434			unsigned long addr, unsigned long end,
1435			unsigned long pfn, pgprot_t prot)
1436{
1437	pud_t *pud;
1438	unsigned long next;
1439
1440	pfn -= addr >> PAGE_SHIFT;
1441	pud = pud_alloc(mm, pgd, addr);
1442	if (!pud)
1443		return -ENOMEM;
1444	do {
1445		next = pud_addr_end(addr, end);
1446		if (remap_pmd_range(mm, pud, addr, next,
1447				pfn + (addr >> PAGE_SHIFT), prot))
1448			return -ENOMEM;
1449	} while (pud++, addr = next, addr != end);
1450	return 0;
1451}
1452
1453/**
1454 * remap_pfn_range - remap kernel memory to userspace
1455 * @vma: user vma to map to
1456 * @addr: target user address to start at
1457 * @pfn: physical address of kernel memory
1458 * @size: size of map area
1459 * @prot: page protection flags for this mapping
1460 *
1461 *  Note: this is only safe if the mm semaphore is held when called.
1462 */
1463int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1464		    unsigned long pfn, unsigned long size, pgprot_t prot)
1465{
1466	pgd_t *pgd;
1467	unsigned long next;
1468	unsigned long end = addr + PAGE_ALIGN(size);
1469	struct mm_struct *mm = vma->vm_mm;
1470	int err;
1471
1472	/*
1473	 * Physically remapped pages are special. Tell the
1474	 * rest of the world about it:
1475	 *   VM_IO tells people not to look at these pages
1476	 *	(accesses can have side effects).
1477	 *   VM_RESERVED is specified all over the place, because
1478	 *	in 2.4 it kept swapout's vma scan off this vma; but
1479	 *	in 2.6 the LRU scan won't even find its pages, so this
1480	 *	flag means no more than count its pages in reserved_vm,
1481	 * 	and omit it from core dump, even when VM_IO turned off.
1482	 *   VM_PFNMAP tells the core MM that the base pages are just
1483	 *	raw PFN mappings, and do not have a "struct page" associated
1484	 *	with them.
1485	 *
1486	 * There's a horrible special case to handle copy-on-write
1487	 * behaviour that some programs depend on. We mark the "original"
1488	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1489	 */
1490	if (is_cow_mapping(vma->vm_flags)) {
1491		if (addr != vma->vm_start || end != vma->vm_end)
1492			return -EINVAL;
1493		vma->vm_pgoff = pfn;
1494	}
1495
1496	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1497
1498	BUG_ON(addr >= end);
1499	pfn -= addr >> PAGE_SHIFT;
1500	pgd = pgd_offset(mm, addr);
1501	flush_cache_range(vma, addr, end);
1502	do {
1503		next = pgd_addr_end(addr, end);
1504		err = remap_pud_range(mm, pgd, addr, next,
1505				pfn + (addr >> PAGE_SHIFT), prot);
1506		if (err)
1507			break;
1508	} while (pgd++, addr = next, addr != end);
1509	return err;
1510}
1511EXPORT_SYMBOL(remap_pfn_range);
1512
1513static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1514				     unsigned long addr, unsigned long end,
1515				     pte_fn_t fn, void *data)
1516{
1517	pte_t *pte;
1518	int err;
1519	pgtable_t token;
1520	spinlock_t *uninitialized_var(ptl);
1521
1522	pte = (mm == &init_mm) ?
1523		pte_alloc_kernel(pmd, addr) :
1524		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1525	if (!pte)
1526		return -ENOMEM;
1527
1528	BUG_ON(pmd_huge(*pmd));
1529
1530	token = pmd_pgtable(*pmd);
1531
1532	do {
1533		err = fn(pte, token, addr, data);
1534		if (err)
1535			break;
1536	} while (pte++, addr += PAGE_SIZE, addr != end);
1537
1538	if (mm != &init_mm)
1539		pte_unmap_unlock(pte-1, ptl);
1540	return err;
1541}
1542
1543static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1544				     unsigned long addr, unsigned long end,
1545				     pte_fn_t fn, void *data)
1546{
1547	pmd_t *pmd;
1548	unsigned long next;
1549	int err;
1550
1551	pmd = pmd_alloc(mm, pud, addr);
1552	if (!pmd)
1553		return -ENOMEM;
1554	do {
1555		next = pmd_addr_end(addr, end);
1556		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1557		if (err)
1558			break;
1559	} while (pmd++, addr = next, addr != end);
1560	return err;
1561}
1562
1563static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1564				     unsigned long addr, unsigned long end,
1565				     pte_fn_t fn, void *data)
1566{
1567	pud_t *pud;
1568	unsigned long next;
1569	int err;
1570
1571	pud = pud_alloc(mm, pgd, addr);
1572	if (!pud)
1573		return -ENOMEM;
1574	do {
1575		next = pud_addr_end(addr, end);
1576		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1577		if (err)
1578			break;
1579	} while (pud++, addr = next, addr != end);
1580	return err;
1581}
1582
1583/*
1584 * Scan a region of virtual memory, filling in page tables as necessary
1585 * and calling a provided function on each leaf page table.
1586 */
1587int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1588			unsigned long size, pte_fn_t fn, void *data)
1589{
1590	pgd_t *pgd;
1591	unsigned long next;
1592	unsigned long end = addr + size;
1593	int err;
1594
1595	BUG_ON(addr >= end);
1596	pgd = pgd_offset(mm, addr);
1597	do {
1598		next = pgd_addr_end(addr, end);
1599		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1600		if (err)
1601			break;
1602	} while (pgd++, addr = next, addr != end);
1603	return err;
1604}
1605EXPORT_SYMBOL_GPL(apply_to_page_range);
1606
1607/*
1608 * handle_pte_fault chooses page fault handler according to an entry
1609 * which was read non-atomically.  Before making any commitment, on
1610 * those architectures or configurations (e.g. i386 with PAE) which
1611 * might give a mix of unmatched parts, do_swap_page and do_file_page
1612 * must check under lock before unmapping the pte and proceeding
1613 * (but do_wp_page is only called after already making such a check;
1614 * and do_anonymous_page and do_no_page can safely check later on).
1615 */
1616static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1617				pte_t *page_table, pte_t orig_pte)
1618{
1619	int same = 1;
1620#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1621	if (sizeof(pte_t) > sizeof(unsigned long)) {
1622		spinlock_t *ptl = pte_lockptr(mm, pmd);
1623		spin_lock(ptl);
1624		same = pte_same(*page_table, orig_pte);
1625		spin_unlock(ptl);
1626	}
1627#endif
1628	pte_unmap(page_table);
1629	return same;
1630}
1631
1632/*
1633 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1634 * servicing faults for write access.  In the normal case, do always want
1635 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1636 * that do not have writing enabled, when used by access_process_vm.
1637 */
1638static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1639{
1640	if (likely(vma->vm_flags & VM_WRITE))
1641		pte = pte_mkwrite(pte);
1642	return pte;
1643}
1644
1645static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1646{
1647	/*
1648	 * If the source page was a PFN mapping, we don't have
1649	 * a "struct page" for it. We do a best-effort copy by
1650	 * just copying from the original user address. If that
1651	 * fails, we just zero-fill it. Live with it.
1652	 */
1653	if (unlikely(!src)) {
1654		void *kaddr = kmap_atomic(dst, KM_USER0);
1655		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1656
1657		/*
1658		 * This really shouldn't fail, because the page is there
1659		 * in the page tables. But it might just be unreadable,
1660		 * in which case we just give up and fill the result with
1661		 * zeroes.
1662		 */
1663		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1664			memset(kaddr, 0, PAGE_SIZE);
1665		kunmap_atomic(kaddr, KM_USER0);
1666		flush_dcache_page(dst);
1667	} else
1668		copy_user_highpage(dst, src, va, vma);
1669}
1670
1671/*
1672 * This routine handles present pages, when users try to write
1673 * to a shared page. It is done by copying the page to a new address
1674 * and decrementing the shared-page counter for the old page.
1675 *
1676 * Note that this routine assumes that the protection checks have been
1677 * done by the caller (the low-level page fault routine in most cases).
1678 * Thus we can safely just mark it writable once we've done any necessary
1679 * COW.
1680 *
1681 * We also mark the page dirty at this point even though the page will
1682 * change only once the write actually happens. This avoids a few races,
1683 * and potentially makes it more efficient.
1684 *
1685 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1686 * but allow concurrent faults), with pte both mapped and locked.
1687 * We return with mmap_sem still held, but pte unmapped and unlocked.
1688 */
1689static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1690		unsigned long address, pte_t *page_table, pmd_t *pmd,
1691		spinlock_t *ptl, pte_t orig_pte)
1692{
1693	struct page *old_page, *new_page;
1694	pte_t entry;
1695	int reuse = 0, ret = 0;
1696	int page_mkwrite = 0;
1697	struct page *dirty_page = NULL;
1698
1699	old_page = vm_normal_page(vma, address, orig_pte);
1700	if (!old_page) {
1701		/*
1702		 * VM_MIXEDMAP !pfn_valid() case
1703		 *
1704		 * We should not cow pages in a shared writeable mapping.
1705		 * Just mark the pages writable as we can't do any dirty
1706		 * accounting on raw pfn maps.
1707		 */
1708		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1709				     (VM_WRITE|VM_SHARED))
1710			goto reuse;
1711		goto gotten;
1712	}
1713
1714	/*
1715	 * Take out anonymous pages first, anonymous shared vmas are
1716	 * not dirty accountable.
1717	 */
1718	if (PageAnon(old_page)) {
1719		if (!TestSetPageLocked(old_page)) {
1720			reuse = can_share_swap_page(old_page);
1721			unlock_page(old_page);
1722		}
1723	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1724					(VM_WRITE|VM_SHARED))) {
1725		/*
1726		 * Only catch write-faults on shared writable pages,
1727		 * read-only shared pages can get COWed by
1728		 * get_user_pages(.write=1, .force=1).
1729		 */
1730		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1731			/*
1732			 * Notify the address space that the page is about to
1733			 * become writable so that it can prohibit this or wait
1734			 * for the page to get into an appropriate state.
1735			 *
1736			 * We do this without the lock held, so that it can
1737			 * sleep if it needs to.
1738			 */
1739			page_cache_get(old_page);
1740			pte_unmap_unlock(page_table, ptl);
1741
1742			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1743				goto unwritable_page;
1744
1745			/*
1746			 * Since we dropped the lock we need to revalidate
1747			 * the PTE as someone else may have changed it.  If
1748			 * they did, we just return, as we can count on the
1749			 * MMU to tell us if they didn't also make it writable.
1750			 */
1751			page_table = pte_offset_map_lock(mm, pmd, address,
1752							 &ptl);
1753			page_cache_release(old_page);
1754			if (!pte_same(*page_table, orig_pte))
1755				goto unlock;
1756
1757			page_mkwrite = 1;
1758		}
1759		dirty_page = old_page;
1760		get_page(dirty_page);
1761		reuse = 1;
1762	}
1763
1764	if (reuse) {
1765reuse:
1766		flush_cache_page(vma, address, pte_pfn(orig_pte));
1767		entry = pte_mkyoung(orig_pte);
1768		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1769		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1770			update_mmu_cache(vma, address, entry);
1771		ret |= VM_FAULT_WRITE;
1772		goto unlock;
1773	}
1774
1775	/*
1776	 * Ok, we need to copy. Oh, well..
1777	 */
1778	page_cache_get(old_page);
1779gotten:
1780	pte_unmap_unlock(page_table, ptl);
1781
1782	if (unlikely(anon_vma_prepare(vma)))
1783		goto oom;
1784	VM_BUG_ON(old_page == ZERO_PAGE(0));
1785	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1786	if (!new_page)
1787		goto oom;
1788	cow_user_page(new_page, old_page, address, vma);
1789	__SetPageUptodate(new_page);
1790
1791	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1792		goto oom_free_new;
1793
1794	/*
1795	 * Re-check the pte - we dropped the lock
1796	 */
1797	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1798	if (likely(pte_same(*page_table, orig_pte))) {
1799		if (old_page) {
1800			if (!PageAnon(old_page)) {
1801				dec_mm_counter(mm, file_rss);
1802				inc_mm_counter(mm, anon_rss);
1803			}
1804		} else
1805			inc_mm_counter(mm, anon_rss);
1806		flush_cache_page(vma, address, pte_pfn(orig_pte));
1807		entry = mk_pte(new_page, vma->vm_page_prot);
1808		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1809		/*
1810		 * Clear the pte entry and flush it first, before updating the
1811		 * pte with the new entry. This will avoid a race condition
1812		 * seen in the presence of one thread doing SMC and another
1813		 * thread doing COW.
1814		 */
1815		ptep_clear_flush(vma, address, page_table);
1816		set_pte_at(mm, address, page_table, entry);
1817		update_mmu_cache(vma, address, entry);
1818		lru_cache_add_active(new_page);
1819		page_add_new_anon_rmap(new_page, vma, address);
1820
1821		if (old_page) {
1822			/*
1823			 * Only after switching the pte to the new page may
1824			 * we remove the mapcount here. Otherwise another
1825			 * process may come and find the rmap count decremented
1826			 * before the pte is switched to the new page, and
1827			 * "reuse" the old page writing into it while our pte
1828			 * here still points into it and can be read by other
1829			 * threads.
1830			 *
1831			 * The critical issue is to order this
1832			 * page_remove_rmap with the ptp_clear_flush above.
1833			 * Those stores are ordered by (if nothing else,)
1834			 * the barrier present in the atomic_add_negative
1835			 * in page_remove_rmap.
1836			 *
1837			 * Then the TLB flush in ptep_clear_flush ensures that
1838			 * no process can access the old page before the
1839			 * decremented mapcount is visible. And the old page
1840			 * cannot be reused until after the decremented
1841			 * mapcount is visible. So transitively, TLBs to
1842			 * old page will be flushed before it can be reused.
1843			 */
1844			page_remove_rmap(old_page, vma);
1845		}
1846
1847		/* Free the old page.. */
1848		new_page = old_page;
1849		ret |= VM_FAULT_WRITE;
1850	} else
1851		mem_cgroup_uncharge_page(new_page);
1852
1853	if (new_page)
1854		page_cache_release(new_page);
1855	if (old_page)
1856		page_cache_release(old_page);
1857unlock:
1858	pte_unmap_unlock(page_table, ptl);
1859	if (dirty_page) {
1860		if (vma->vm_file)
1861			file_update_time(vma->vm_file);
1862
1863		/*
1864		 * Yes, Virginia, this is actually required to prevent a race
1865		 * with clear_page_dirty_for_io() from clearing the page dirty
1866		 * bit after it clear all dirty ptes, but before a racing
1867		 * do_wp_page installs a dirty pte.
1868		 *
1869		 * do_no_page is protected similarly.
1870		 */
1871		wait_on_page_locked(dirty_page);
1872		set_page_dirty_balance(dirty_page, page_mkwrite);
1873		put_page(dirty_page);
1874	}
1875	return ret;
1876oom_free_new:
1877	page_cache_release(new_page);
1878oom:
1879	if (old_page)
1880		page_cache_release(old_page);
1881	return VM_FAULT_OOM;
1882
1883unwritable_page:
1884	page_cache_release(old_page);
1885	return VM_FAULT_SIGBUS;
1886}
1887
1888/*
1889 * Helper functions for unmap_mapping_range().
1890 *
1891 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1892 *
1893 * We have to restart searching the prio_tree whenever we drop the lock,
1894 * since the iterator is only valid while the lock is held, and anyway
1895 * a later vma might be split and reinserted earlier while lock dropped.
1896 *
1897 * The list of nonlinear vmas could be handled more efficiently, using
1898 * a placeholder, but handle it in the same way until a need is shown.
1899 * It is important to search the prio_tree before nonlinear list: a vma
1900 * may become nonlinear and be shifted from prio_tree to nonlinear list
1901 * while the lock is dropped; but never shifted from list to prio_tree.
1902 *
1903 * In order to make forward progress despite restarting the search,
1904 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1905 * quickly skip it next time around.  Since the prio_tree search only
1906 * shows us those vmas affected by unmapping the range in question, we
1907 * can't efficiently keep all vmas in step with mapping->truncate_count:
1908 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1909 * mapping->truncate_count and vma->vm_truncate_count are protected by
1910 * i_mmap_lock.
1911 *
1912 * In order to make forward progress despite repeatedly restarting some
1913 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1914 * and restart from that address when we reach that vma again.  It might
1915 * have been split or merged, shrunk or extended, but never shifted: so
1916 * restart_addr remains valid so long as it remains in the vma's range.
1917 * unmap_mapping_range forces truncate_count to leap over page-aligned
1918 * values so we can save vma's restart_addr in its truncate_count field.
1919 */
1920#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1921
1922static void reset_vma_truncate_counts(struct address_space *mapping)
1923{
1924	struct vm_area_struct *vma;
1925	struct prio_tree_iter iter;
1926
1927	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1928		vma->vm_truncate_count = 0;
1929	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1930		vma->vm_truncate_count = 0;
1931}
1932
1933static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1934		unsigned long start_addr, unsigned long end_addr,
1935		struct zap_details *details)
1936{
1937	unsigned long restart_addr;
1938	int need_break;
1939
1940	/*
1941	 * files that support invalidating or truncating portions of the
1942	 * file from under mmaped areas must have their ->fault function
1943	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1944	 * This provides synchronisation against concurrent unmapping here.
1945	 */
1946
1947again:
1948	restart_addr = vma->vm_truncate_count;
1949	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1950		start_addr = restart_addr;
1951		if (start_addr >= end_addr) {
1952			/* Top of vma has been split off since last time */
1953			vma->vm_truncate_count = details->truncate_count;
1954			return 0;
1955		}
1956	}
1957
1958	restart_addr = zap_page_range(vma, start_addr,
1959					end_addr - start_addr, details);
1960	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1961
1962	if (restart_addr >= end_addr) {
1963		/* We have now completed this vma: mark it so */
1964		vma->vm_truncate_count = details->truncate_count;
1965		if (!need_break)
1966			return 0;
1967	} else {
1968		/* Note restart_addr in vma's truncate_count field */
1969		vma->vm_truncate_count = restart_addr;
1970		if (!need_break)
1971			goto again;
1972	}
1973
1974	spin_unlock(details->i_mmap_lock);
1975	cond_resched();
1976	spin_lock(details->i_mmap_lock);
1977	return -EINTR;
1978}
1979
1980static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1981					    struct zap_details *details)
1982{
1983	struct vm_area_struct *vma;
1984	struct prio_tree_iter iter;
1985	pgoff_t vba, vea, zba, zea;
1986
1987restart:
1988	vma_prio_tree_foreach(vma, &iter, root,
1989			details->first_index, details->last_index) {
1990		/* Skip quickly over those we have already dealt with */
1991		if (vma->vm_truncate_count == details->truncate_count)
1992			continue;
1993
1994		vba = vma->vm_pgoff;
1995		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1996		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1997		zba = details->first_index;
1998		if (zba < vba)
1999			zba = vba;
2000		zea = details->last_index;
2001		if (zea > vea)
2002			zea = vea;
2003
2004		if (unmap_mapping_range_vma(vma,
2005			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2006			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2007				details) < 0)
2008			goto restart;
2009	}
2010}
2011
2012static inline void unmap_mapping_range_list(struct list_head *head,
2013					    struct zap_details *details)
2014{
2015	struct vm_area_struct *vma;
2016
2017	/*
2018	 * In nonlinear VMAs there is no correspondence between virtual address
2019	 * offset and file offset.  So we must perform an exhaustive search
2020	 * across *all* the pages in each nonlinear VMA, not just the pages
2021	 * whose virtual address lies outside the file truncation point.
2022	 */
2023restart:
2024	list_for_each_entry(vma, head, shared.vm_set.list) {
2025		/* Skip quickly over those we have already dealt with */
2026		if (vma->vm_truncate_count == details->truncate_count)
2027			continue;
2028		details->nonlinear_vma = vma;
2029		if (unmap_mapping_range_vma(vma, vma->vm_start,
2030					vma->vm_end, details) < 0)
2031			goto restart;
2032	}
2033}
2034
2035/**
2036 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2037 * @mapping: the address space containing mmaps to be unmapped.
2038 * @holebegin: byte in first page to unmap, relative to the start of
2039 * the underlying file.  This will be rounded down to a PAGE_SIZE
2040 * boundary.  Note that this is different from vmtruncate(), which
2041 * must keep the partial page.  In contrast, we must get rid of
2042 * partial pages.
2043 * @holelen: size of prospective hole in bytes.  This will be rounded
2044 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2045 * end of the file.
2046 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2047 * but 0 when invalidating pagecache, don't throw away private data.
2048 */
2049void unmap_mapping_range(struct address_space *mapping,
2050		loff_t const holebegin, loff_t const holelen, int even_cows)
2051{
2052	struct zap_details details;
2053	pgoff_t hba = holebegin >> PAGE_SHIFT;
2054	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2055
2056	/* Check for overflow. */
2057	if (sizeof(holelen) > sizeof(hlen)) {
2058		long long holeend =
2059			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2060		if (holeend & ~(long long)ULONG_MAX)
2061			hlen = ULONG_MAX - hba + 1;
2062	}
2063
2064	details.check_mapping = even_cows? NULL: mapping;
2065	details.nonlinear_vma = NULL;
2066	details.first_index = hba;
2067	details.last_index = hba + hlen - 1;
2068	if (details.last_index < details.first_index)
2069		details.last_index = ULONG_MAX;
2070	details.i_mmap_lock = &mapping->i_mmap_lock;
2071
2072	spin_lock(&mapping->i_mmap_lock);
2073
2074	/* Protect against endless unmapping loops */
2075	mapping->truncate_count++;
2076	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2077		if (mapping->truncate_count == 0)
2078			reset_vma_truncate_counts(mapping);
2079		mapping->truncate_count++;
2080	}
2081	details.truncate_count = mapping->truncate_count;
2082
2083	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2084		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2085	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2086		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2087	spin_unlock(&mapping->i_mmap_lock);
2088}
2089EXPORT_SYMBOL(unmap_mapping_range);
2090
2091/**
2092 * vmtruncate - unmap mappings "freed" by truncate() syscall
2093 * @inode: inode of the file used
2094 * @offset: file offset to start truncating
2095 *
2096 * NOTE! We have to be ready to update the memory sharing
2097 * between the file and the memory map for a potential last
2098 * incomplete page.  Ugly, but necessary.
2099 */
2100int vmtruncate(struct inode * inode, loff_t offset)
2101{
2102	if (inode->i_size < offset) {
2103		unsigned long limit;
2104
2105		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2106		if (limit != RLIM_INFINITY && offset > limit)
2107			goto out_sig;
2108		if (offset > inode->i_sb->s_maxbytes)
2109			goto out_big;
2110		i_size_write(inode, offset);
2111	} else {
2112		struct address_space *mapping = inode->i_mapping;
2113
2114		/*
2115		 * truncation of in-use swapfiles is disallowed - it would
2116		 * cause subsequent swapout to scribble on the now-freed
2117		 * blocks.
2118		 */
2119		if (IS_SWAPFILE(inode))
2120			return -ETXTBSY;
2121		i_size_write(inode, offset);
2122
2123		/*
2124		 * unmap_mapping_range is called twice, first simply for
2125		 * efficiency so that truncate_inode_pages does fewer
2126		 * single-page unmaps.  However after this first call, and
2127		 * before truncate_inode_pages finishes, it is possible for
2128		 * private pages to be COWed, which remain after
2129		 * truncate_inode_pages finishes, hence the second
2130		 * unmap_mapping_range call must be made for correctness.
2131		 */
2132		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2133		truncate_inode_pages(mapping, offset);
2134		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2135	}
2136
2137	if (inode->i_op && inode->i_op->truncate)
2138		inode->i_op->truncate(inode);
2139	return 0;
2140
2141out_sig:
2142	send_sig(SIGXFSZ, current, 0);
2143out_big:
2144	return -EFBIG;
2145}
2146EXPORT_SYMBOL(vmtruncate);
2147
2148int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2149{
2150	struct address_space *mapping = inode->i_mapping;
2151
2152	/*
2153	 * If the underlying filesystem is not going to provide
2154	 * a way to truncate a range of blocks (punch a hole) -
2155	 * we should return failure right now.
2156	 */
2157	if (!inode->i_op || !inode->i_op->truncate_range)
2158		return -ENOSYS;
2159
2160	mutex_lock(&inode->i_mutex);
2161	down_write(&inode->i_alloc_sem);
2162	unmap_mapping_range(mapping, offset, (end - offset), 1);
2163	truncate_inode_pages_range(mapping, offset, end);
2164	unmap_mapping_range(mapping, offset, (end - offset), 1);
2165	inode->i_op->truncate_range(inode, offset, end);
2166	up_write(&inode->i_alloc_sem);
2167	mutex_unlock(&inode->i_mutex);
2168
2169	return 0;
2170}
2171
2172/*
2173 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2174 * but allow concurrent faults), and pte mapped but not yet locked.
2175 * We return with mmap_sem still held, but pte unmapped and unlocked.
2176 */
2177static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2178		unsigned long address, pte_t *page_table, pmd_t *pmd,
2179		int write_access, pte_t orig_pte)
2180{
2181	spinlock_t *ptl;
2182	struct page *page;
2183	swp_entry_t entry;
2184	pte_t pte;
2185	int ret = 0;
2186
2187	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2188		goto out;
2189
2190	entry = pte_to_swp_entry(orig_pte);
2191	if (is_migration_entry(entry)) {
2192		migration_entry_wait(mm, pmd, address);
2193		goto out;
2194	}
2195	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2196	page = lookup_swap_cache(entry);
2197	if (!page) {
2198		grab_swap_token(); /* Contend for token _before_ read-in */
2199		page = swapin_readahead(entry,
2200					GFP_HIGHUSER_MOVABLE, vma, address);
2201		if (!page) {
2202			/*
2203			 * Back out if somebody else faulted in this pte
2204			 * while we released the pte lock.
2205			 */
2206			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2207			if (likely(pte_same(*page_table, orig_pte)))
2208				ret = VM_FAULT_OOM;
2209			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2210			goto unlock;
2211		}
2212
2213		/* Had to read the page from swap area: Major fault */
2214		ret = VM_FAULT_MAJOR;
2215		count_vm_event(PGMAJFAULT);
2216	}
2217
2218	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2219		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2220		ret = VM_FAULT_OOM;
2221		goto out;
2222	}
2223
2224	mark_page_accessed(page);
2225	lock_page(page);
2226	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2227
2228	/*
2229	 * Back out if somebody else already faulted in this pte.
2230	 */
2231	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2232	if (unlikely(!pte_same(*page_table, orig_pte)))
2233		goto out_nomap;
2234
2235	if (unlikely(!PageUptodate(page))) {
2236		ret = VM_FAULT_SIGBUS;
2237		goto out_nomap;
2238	}
2239
2240	/* The page isn't present yet, go ahead with the fault. */
2241
2242	inc_mm_counter(mm, anon_rss);
2243	pte = mk_pte(page, vma->vm_page_prot);
2244	if (write_access && can_share_swap_page(page)) {
2245		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2246		write_access = 0;
2247	}
2248
2249	flush_icache_page(vma, page);
2250	set_pte_at(mm, address, page_table, pte);
2251	page_add_anon_rmap(page, vma, address);
2252
2253	swap_free(entry);
2254	if (vm_swap_full())
2255		remove_exclusive_swap_page(page);
2256	unlock_page(page);
2257
2258	if (write_access) {
2259		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2260		if (ret & VM_FAULT_ERROR)
2261			ret &= VM_FAULT_ERROR;
2262		goto out;
2263	}
2264
2265	/* No need to invalidate - it was non-present before */
2266	update_mmu_cache(vma, address, pte);
2267unlock:
2268	pte_unmap_unlock(page_table, ptl);
2269out:
2270	return ret;
2271out_nomap:
2272	mem_cgroup_uncharge_page(page);
2273	pte_unmap_unlock(page_table, ptl);
2274	unlock_page(page);
2275	page_cache_release(page);
2276	return ret;
2277}
2278
2279/*
2280 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2281 * but allow concurrent faults), and pte mapped but not yet locked.
2282 * We return with mmap_sem still held, but pte unmapped and unlocked.
2283 */
2284static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2285		unsigned long address, pte_t *page_table, pmd_t *pmd,
2286		int write_access)
2287{
2288	struct page *page;
2289	spinlock_t *ptl;
2290	pte_t entry;
2291
2292	/* Allocate our own private page. */
2293	pte_unmap(page_table);
2294
2295	if (unlikely(anon_vma_prepare(vma)))
2296		goto oom;
2297	page = alloc_zeroed_user_highpage_movable(vma, address);
2298	if (!page)
2299		goto oom;
2300	__SetPageUptodate(page);
2301
2302	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2303		goto oom_free_page;
2304
2305	entry = mk_pte(page, vma->vm_page_prot);
2306	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2307
2308	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2309	if (!pte_none(*page_table))
2310		goto release;
2311	inc_mm_counter(mm, anon_rss);
2312	lru_cache_add_active(page);
2313	page_add_new_anon_rmap(page, vma, address);
2314	set_pte_at(mm, address, page_table, entry);
2315
2316	/* No need to invalidate - it was non-present before */
2317	update_mmu_cache(vma, address, entry);
2318unlock:
2319	pte_unmap_unlock(page_table, ptl);
2320	return 0;
2321release:
2322	mem_cgroup_uncharge_page(page);
2323	page_cache_release(page);
2324	goto unlock;
2325oom_free_page:
2326	page_cache_release(page);
2327oom:
2328	return VM_FAULT_OOM;
2329}
2330
2331/*
2332 * __do_fault() tries to create a new page mapping. It aggressively
2333 * tries to share with existing pages, but makes a separate copy if
2334 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2335 * the next page fault.
2336 *
2337 * As this is called only for pages that do not currently exist, we
2338 * do not need to flush old virtual caches or the TLB.
2339 *
2340 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2341 * but allow concurrent faults), and pte neither mapped nor locked.
2342 * We return with mmap_sem still held, but pte unmapped and unlocked.
2343 */
2344static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2345		unsigned long address, pmd_t *pmd,
2346		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2347{
2348	pte_t *page_table;
2349	spinlock_t *ptl;
2350	struct page *page;
2351	pte_t entry;
2352	int anon = 0;
2353	struct page *dirty_page = NULL;
2354	struct vm_fault vmf;
2355	int ret;
2356	int page_mkwrite = 0;
2357
2358	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2359	vmf.pgoff = pgoff;
2360	vmf.flags = flags;
2361	vmf.page = NULL;
2362
2363	ret = vma->vm_ops->fault(vma, &vmf);
2364	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2365		return ret;
2366
2367	/*
2368	 * For consistency in subsequent calls, make the faulted page always
2369	 * locked.
2370	 */
2371	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2372		lock_page(vmf.page);
2373	else
2374		VM_BUG_ON(!PageLocked(vmf.page));
2375
2376	/*
2377	 * Should we do an early C-O-W break?
2378	 */
2379	page = vmf.page;
2380	if (flags & FAULT_FLAG_WRITE) {
2381		if (!(vma->vm_flags & VM_SHARED)) {
2382			anon = 1;
2383			if (unlikely(anon_vma_prepare(vma))) {
2384				ret = VM_FAULT_OOM;
2385				goto out;
2386			}
2387			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2388						vma, address);
2389			if (!page) {
2390				ret = VM_FAULT_OOM;
2391				goto out;
2392			}
2393			copy_user_highpage(page, vmf.page, address, vma);
2394			__SetPageUptodate(page);
2395		} else {
2396			/*
2397			 * If the page will be shareable, see if the backing
2398			 * address space wants to know that the page is about
2399			 * to become writable
2400			 */
2401			if (vma->vm_ops->page_mkwrite) {
2402				unlock_page(page);
2403				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2404					ret = VM_FAULT_SIGBUS;
2405					anon = 1; /* no anon but release vmf.page */
2406					goto out_unlocked;
2407				}
2408				lock_page(page);
2409				/*
2410				 * XXX: this is not quite right (racy vs
2411				 * invalidate) to unlock and relock the page
2412				 * like this, however a better fix requires
2413				 * reworking page_mkwrite locking API, which
2414				 * is better done later.
2415				 */
2416				if (!page->mapping) {
2417					ret = 0;
2418					anon = 1; /* no anon but release vmf.page */
2419					goto out;
2420				}
2421				page_mkwrite = 1;
2422			}
2423		}
2424
2425	}
2426
2427	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2428		ret = VM_FAULT_OOM;
2429		goto out;
2430	}
2431
2432	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2433
2434	/*
2435	 * This silly early PAGE_DIRTY setting removes a race
2436	 * due to the bad i386 page protection. But it's valid
2437	 * for other architectures too.
2438	 *
2439	 * Note that if write_access is true, we either now have
2440	 * an exclusive copy of the page, or this is a shared mapping,
2441	 * so we can make it writable and dirty to avoid having to
2442	 * handle that later.
2443	 */
2444	/* Only go through if we didn't race with anybody else... */
2445	if (likely(pte_same(*page_table, orig_pte))) {
2446		flush_icache_page(vma, page);
2447		entry = mk_pte(page, vma->vm_page_prot);
2448		if (flags & FAULT_FLAG_WRITE)
2449			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2450		set_pte_at(mm, address, page_table, entry);
2451		if (anon) {
2452                        inc_mm_counter(mm, anon_rss);
2453                        lru_cache_add_active(page);
2454                        page_add_new_anon_rmap(page, vma, address);
2455		} else {
2456			inc_mm_counter(mm, file_rss);
2457			page_add_file_rmap(page);
2458			if (flags & FAULT_FLAG_WRITE) {
2459				dirty_page = page;
2460				get_page(dirty_page);
2461			}
2462		}
2463
2464		/* no need to invalidate: a not-present page won't be cached */
2465		update_mmu_cache(vma, address, entry);
2466	} else {
2467		mem_cgroup_uncharge_page(page);
2468		if (anon)
2469			page_cache_release(page);
2470		else
2471			anon = 1; /* no anon but release faulted_page */
2472	}
2473
2474	pte_unmap_unlock(page_table, ptl);
2475
2476out:
2477	unlock_page(vmf.page);
2478out_unlocked:
2479	if (anon)
2480		page_cache_release(vmf.page);
2481	else if (dirty_page) {
2482		if (vma->vm_file)
2483			file_update_time(vma->vm_file);
2484
2485		set_page_dirty_balance(dirty_page, page_mkwrite);
2486		put_page(dirty_page);
2487	}
2488
2489	return ret;
2490}
2491
2492static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2493		unsigned long address, pte_t *page_table, pmd_t *pmd,
2494		int write_access, pte_t orig_pte)
2495{
2496	pgoff_t pgoff = (((address & PAGE_MASK)
2497			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2498	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2499
2500	pte_unmap(page_table);
2501	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2502}
2503
2504
2505/*
2506 * do_no_pfn() tries to create a new page mapping for a page without
2507 * a struct_page backing it
2508 *
2509 * As this is called only for pages that do not currently exist, we
2510 * do not need to flush old virtual caches or the TLB.
2511 *
2512 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2513 * but allow concurrent faults), and pte mapped but not yet locked.
2514 * We return with mmap_sem still held, but pte unmapped and unlocked.
2515 *
2516 * It is expected that the ->nopfn handler always returns the same pfn
2517 * for a given virtual mapping.
2518 *
2519 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2520 */
2521static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2522		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2523		     int write_access)
2524{
2525	spinlock_t *ptl;
2526	pte_t entry;
2527	unsigned long pfn;
2528
2529	pte_unmap(page_table);
2530	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2531	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2532
2533	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2534
2535	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2536
2537	if (unlikely(pfn == NOPFN_OOM))
2538		return VM_FAULT_OOM;
2539	else if (unlikely(pfn == NOPFN_SIGBUS))
2540		return VM_FAULT_SIGBUS;
2541	else if (unlikely(pfn == NOPFN_REFAULT))
2542		return 0;
2543
2544	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2545
2546	/* Only go through if we didn't race with anybody else... */
2547	if (pte_none(*page_table)) {
2548		entry = pfn_pte(pfn, vma->vm_page_prot);
2549		if (write_access)
2550			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2551		set_pte_at(mm, address, page_table, entry);
2552	}
2553	pte_unmap_unlock(page_table, ptl);
2554	return 0;
2555}
2556
2557/*
2558 * Fault of a previously existing named mapping. Repopulate the pte
2559 * from the encoded file_pte if possible. This enables swappable
2560 * nonlinear vmas.
2561 *
2562 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2563 * but allow concurrent faults), and pte mapped but not yet locked.
2564 * We return with mmap_sem still held, but pte unmapped and unlocked.
2565 */
2566static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2567		unsigned long address, pte_t *page_table, pmd_t *pmd,
2568		int write_access, pte_t orig_pte)
2569{
2570	unsigned int flags = FAULT_FLAG_NONLINEAR |
2571				(write_access ? FAULT_FLAG_WRITE : 0);
2572	pgoff_t pgoff;
2573
2574	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2575		return 0;
2576
2577	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2578			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2579		/*
2580		 * Page table corrupted: show pte and kill process.
2581		 */
2582		print_bad_pte(vma, orig_pte, address);
2583		return VM_FAULT_OOM;
2584	}
2585
2586	pgoff = pte_to_pgoff(orig_pte);
2587	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2588}
2589
2590/*
2591 * These routines also need to handle stuff like marking pages dirty
2592 * and/or accessed for architectures that don't do it in hardware (most
2593 * RISC architectures).  The early dirtying is also good on the i386.
2594 *
2595 * There is also a hook called "update_mmu_cache()" that architectures
2596 * with external mmu caches can use to update those (ie the Sparc or
2597 * PowerPC hashed page tables that act as extended TLBs).
2598 *
2599 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2600 * but allow concurrent faults), and pte mapped but not yet locked.
2601 * We return with mmap_sem still held, but pte unmapped and unlocked.
2602 */
2603static inline int handle_pte_fault(struct mm_struct *mm,
2604		struct vm_area_struct *vma, unsigned long address,
2605		pte_t *pte, pmd_t *pmd, int write_access)
2606{
2607	pte_t entry;
2608	spinlock_t *ptl;
2609
2610	entry = *pte;
2611	if (!pte_present(entry)) {
2612		if (pte_none(entry)) {
2613			if (vma->vm_ops) {
2614				if (likely(vma->vm_ops->fault))
2615					return do_linear_fault(mm, vma, address,
2616						pte, pmd, write_access, entry);
2617				if (unlikely(vma->vm_ops->nopfn))
2618					return do_no_pfn(mm, vma, address, pte,
2619							 pmd, write_access);
2620			}
2621			return do_anonymous_page(mm, vma, address,
2622						 pte, pmd, write_access);
2623		}
2624		if (pte_file(entry))
2625			return do_nonlinear_fault(mm, vma, address,
2626					pte, pmd, write_access, entry);
2627		return do_swap_page(mm, vma, address,
2628					pte, pmd, write_access, entry);
2629	}
2630
2631	ptl = pte_lockptr(mm, pmd);
2632	spin_lock(ptl);
2633	if (unlikely(!pte_same(*pte, entry)))
2634		goto unlock;
2635	if (write_access) {
2636		if (!pte_write(entry))
2637			return do_wp_page(mm, vma, address,
2638					pte, pmd, ptl, entry);
2639		entry = pte_mkdirty(entry);
2640	}
2641	entry = pte_mkyoung(entry);
2642	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2643		update_mmu_cache(vma, address, entry);
2644	} else {
2645		/*
2646		 * This is needed only for protection faults but the arch code
2647		 * is not yet telling us if this is a protection fault or not.
2648		 * This still avoids useless tlb flushes for .text page faults
2649		 * with threads.
2650		 */
2651		if (write_access)
2652			flush_tlb_page(vma, address);
2653	}
2654unlock:
2655	pte_unmap_unlock(pte, ptl);
2656	return 0;
2657}
2658
2659/*
2660 * By the time we get here, we already hold the mm semaphore
2661 */
2662int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2663		unsigned long address, int write_access)
2664{
2665	pgd_t *pgd;
2666	pud_t *pud;
2667	pmd_t *pmd;
2668	pte_t *pte;
2669
2670	__set_current_state(TASK_RUNNING);
2671
2672	count_vm_event(PGFAULT);
2673
2674	if (unlikely(is_vm_hugetlb_page(vma)))
2675		return hugetlb_fault(mm, vma, address, write_access);
2676
2677	pgd = pgd_offset(mm, address);
2678	pud = pud_alloc(mm, pgd, address);
2679	if (!pud)
2680		return VM_FAULT_OOM;
2681	pmd = pmd_alloc(mm, pud, address);
2682	if (!pmd)
2683		return VM_FAULT_OOM;
2684	pte = pte_alloc_map(mm, pmd, address);
2685	if (!pte)
2686		return VM_FAULT_OOM;
2687
2688	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2689}
2690
2691#ifndef __PAGETABLE_PUD_FOLDED
2692/*
2693 * Allocate page upper directory.
2694 * We've already handled the fast-path in-line.
2695 */
2696int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2697{
2698	pud_t *new = pud_alloc_one(mm, address);
2699	if (!new)
2700		return -ENOMEM;
2701
2702	smp_wmb(); /* See comment in __pte_alloc */
2703
2704	spin_lock(&mm->page_table_lock);
2705	if (pgd_present(*pgd))		/* Another has populated it */
2706		pud_free(mm, new);
2707	else
2708		pgd_populate(mm, pgd, new);
2709	spin_unlock(&mm->page_table_lock);
2710	return 0;
2711}
2712#endif /* __PAGETABLE_PUD_FOLDED */
2713
2714#ifndef __PAGETABLE_PMD_FOLDED
2715/*
2716 * Allocate page middle directory.
2717 * We've already handled the fast-path in-line.
2718 */
2719int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2720{
2721	pmd_t *new = pmd_alloc_one(mm, address);
2722	if (!new)
2723		return -ENOMEM;
2724
2725	smp_wmb(); /* See comment in __pte_alloc */
2726
2727	spin_lock(&mm->page_table_lock);
2728#ifndef __ARCH_HAS_4LEVEL_HACK
2729	if (pud_present(*pud))		/* Another has populated it */
2730		pmd_free(mm, new);
2731	else
2732		pud_populate(mm, pud, new);
2733#else
2734	if (pgd_present(*pud))		/* Another has populated it */
2735		pmd_free(mm, new);
2736	else
2737		pgd_populate(mm, pud, new);
2738#endif /* __ARCH_HAS_4LEVEL_HACK */
2739	spin_unlock(&mm->page_table_lock);
2740	return 0;
2741}
2742#endif /* __PAGETABLE_PMD_FOLDED */
2743
2744int make_pages_present(unsigned long addr, unsigned long end)
2745{
2746	int ret, len, write;
2747	struct vm_area_struct * vma;
2748
2749	vma = find_vma(current->mm, addr);
2750	if (!vma)
2751		return -1;
2752	write = (vma->vm_flags & VM_WRITE) != 0;
2753	BUG_ON(addr >= end);
2754	BUG_ON(end > vma->vm_end);
2755	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2756	ret = get_user_pages(current, current->mm, addr,
2757			len, write, 0, NULL, NULL);
2758	if (ret < 0)
2759		return ret;
2760	return ret == len ? 0 : -1;
2761}
2762
2763#if !defined(__HAVE_ARCH_GATE_AREA)
2764
2765#if defined(AT_SYSINFO_EHDR)
2766static struct vm_area_struct gate_vma;
2767
2768static int __init gate_vma_init(void)
2769{
2770	gate_vma.vm_mm = NULL;
2771	gate_vma.vm_start = FIXADDR_USER_START;
2772	gate_vma.vm_end = FIXADDR_USER_END;
2773	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2774	gate_vma.vm_page_prot = __P101;
2775	/*
2776	 * Make sure the vDSO gets into every core dump.
2777	 * Dumping its contents makes post-mortem fully interpretable later
2778	 * without matching up the same kernel and hardware config to see
2779	 * what PC values meant.
2780	 */
2781	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2782	return 0;
2783}
2784__initcall(gate_vma_init);
2785#endif
2786
2787struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2788{
2789#ifdef AT_SYSINFO_EHDR
2790	return &gate_vma;
2791#else
2792	return NULL;
2793#endif
2794}
2795
2796int in_gate_area_no_task(unsigned long addr)
2797{
2798#ifdef AT_SYSINFO_EHDR
2799	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2800		return 1;
2801#endif
2802	return 0;
2803}
2804
2805#endif	/* __HAVE_ARCH_GATE_AREA */
2806
2807/*
2808 * Access another process' address space.
2809 * Source/target buffer must be kernel space,
2810 * Do not walk the page table directly, use get_user_pages
2811 */
2812int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2813{
2814	struct mm_struct *mm;
2815	struct vm_area_struct *vma;
2816	struct page *page;
2817	void *old_buf = buf;
2818
2819	mm = get_task_mm(tsk);
2820	if (!mm)
2821		return 0;
2822
2823	down_read(&mm->mmap_sem);
2824	/* ignore errors, just check how much was successfully transferred */
2825	while (len) {
2826		int bytes, ret, offset;
2827		void *maddr;
2828
2829		ret = get_user_pages(tsk, mm, addr, 1,
2830				write, 1, &page, &vma);
2831		if (ret <= 0)
2832			break;
2833
2834		bytes = len;
2835		offset = addr & (PAGE_SIZE-1);
2836		if (bytes > PAGE_SIZE-offset)
2837			bytes = PAGE_SIZE-offset;
2838
2839		maddr = kmap(page);
2840		if (write) {
2841			copy_to_user_page(vma, page, addr,
2842					  maddr + offset, buf, bytes);
2843			set_page_dirty_lock(page);
2844		} else {
2845			copy_from_user_page(vma, page, addr,
2846					    buf, maddr + offset, bytes);
2847		}
2848		kunmap(page);
2849		page_cache_release(page);
2850		len -= bytes;
2851		buf += bytes;
2852		addr += bytes;
2853	}
2854	up_read(&mm->mmap_sem);
2855	mmput(mm);
2856
2857	return buf - old_buf;
2858}
2859
2860/*
2861 * Print the name of a VMA.
2862 */
2863void print_vma_addr(char *prefix, unsigned long ip)
2864{
2865	struct mm_struct *mm = current->mm;
2866	struct vm_area_struct *vma;
2867
2868	/*
2869	 * Do not print if we are in atomic
2870	 * contexts (in exception stacks, etc.):
2871	 */
2872	if (preempt_count())
2873		return;
2874
2875	down_read(&mm->mmap_sem);
2876	vma = find_vma(mm, ip);
2877	if (vma && vma->vm_file) {
2878		struct file *f = vma->vm_file;
2879		char *buf = (char *)__get_free_page(GFP_KERNEL);
2880		if (buf) {
2881			char *p, *s;
2882
2883			p = d_path(&f->f_path, buf, PAGE_SIZE);
2884			if (IS_ERR(p))
2885				p = "?";
2886			s = strrchr(p, '/');
2887			if (s)
2888				p = s+1;
2889			printk("%s%s[%lx+%lx]", prefix, p,
2890					vma->vm_start,
2891					vma->vm_end - vma->vm_start);
2892			free_page((unsigned long)buf);
2893		}
2894	}
2895	up_read(&current->mm->mmap_sem);
2896}
2897