memory.c revision 362a61ad61199e19a61b8e432015e2586b288f5b
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53#include <linux/memcontrol.h>
54
55#include <asm/pgalloc.h>
56#include <asm/uaccess.h>
57#include <asm/tlb.h>
58#include <asm/tlbflush.h>
59#include <asm/pgtable.h>
60
61#include <linux/swapops.h>
62#include <linux/elf.h>
63
64#ifndef CONFIG_NEED_MULTIPLE_NODES
65/* use the per-pgdat data instead for discontigmem - mbligh */
66unsigned long max_mapnr;
67struct page *mem_map;
68
69EXPORT_SYMBOL(max_mapnr);
70EXPORT_SYMBOL(mem_map);
71#endif
72
73unsigned long num_physpages;
74/*
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 * and ZONE_HIGHMEM.
80 */
81void * high_memory;
82
83EXPORT_SYMBOL(num_physpages);
84EXPORT_SYMBOL(high_memory);
85
86/*
87 * Randomize the address space (stacks, mmaps, brk, etc.).
88 *
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 *   as ancient (libc5 based) binaries can segfault. )
91 */
92int randomize_va_space __read_mostly =
93#ifdef CONFIG_COMPAT_BRK
94					1;
95#else
96					2;
97#endif
98
99static int __init disable_randmaps(char *s)
100{
101	randomize_va_space = 0;
102	return 1;
103}
104__setup("norandmaps", disable_randmaps);
105
106
107/*
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none.  Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
111 */
112
113void pgd_clear_bad(pgd_t *pgd)
114{
115	pgd_ERROR(*pgd);
116	pgd_clear(pgd);
117}
118
119void pud_clear_bad(pud_t *pud)
120{
121	pud_ERROR(*pud);
122	pud_clear(pud);
123}
124
125void pmd_clear_bad(pmd_t *pmd)
126{
127	pmd_ERROR(*pmd);
128	pmd_clear(pmd);
129}
130
131/*
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
134 */
135static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136{
137	pgtable_t token = pmd_pgtable(*pmd);
138	pmd_clear(pmd);
139	pte_free_tlb(tlb, token);
140	tlb->mm->nr_ptes--;
141}
142
143static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144				unsigned long addr, unsigned long end,
145				unsigned long floor, unsigned long ceiling)
146{
147	pmd_t *pmd;
148	unsigned long next;
149	unsigned long start;
150
151	start = addr;
152	pmd = pmd_offset(pud, addr);
153	do {
154		next = pmd_addr_end(addr, end);
155		if (pmd_none_or_clear_bad(pmd))
156			continue;
157		free_pte_range(tlb, pmd);
158	} while (pmd++, addr = next, addr != end);
159
160	start &= PUD_MASK;
161	if (start < floor)
162		return;
163	if (ceiling) {
164		ceiling &= PUD_MASK;
165		if (!ceiling)
166			return;
167	}
168	if (end - 1 > ceiling - 1)
169		return;
170
171	pmd = pmd_offset(pud, start);
172	pud_clear(pud);
173	pmd_free_tlb(tlb, pmd);
174}
175
176static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177				unsigned long addr, unsigned long end,
178				unsigned long floor, unsigned long ceiling)
179{
180	pud_t *pud;
181	unsigned long next;
182	unsigned long start;
183
184	start = addr;
185	pud = pud_offset(pgd, addr);
186	do {
187		next = pud_addr_end(addr, end);
188		if (pud_none_or_clear_bad(pud))
189			continue;
190		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191	} while (pud++, addr = next, addr != end);
192
193	start &= PGDIR_MASK;
194	if (start < floor)
195		return;
196	if (ceiling) {
197		ceiling &= PGDIR_MASK;
198		if (!ceiling)
199			return;
200	}
201	if (end - 1 > ceiling - 1)
202		return;
203
204	pud = pud_offset(pgd, start);
205	pgd_clear(pgd);
206	pud_free_tlb(tlb, pud);
207}
208
209/*
210 * This function frees user-level page tables of a process.
211 *
212 * Must be called with pagetable lock held.
213 */
214void free_pgd_range(struct mmu_gather **tlb,
215			unsigned long addr, unsigned long end,
216			unsigned long floor, unsigned long ceiling)
217{
218	pgd_t *pgd;
219	unsigned long next;
220	unsigned long start;
221
222	/*
223	 * The next few lines have given us lots of grief...
224	 *
225	 * Why are we testing PMD* at this top level?  Because often
226	 * there will be no work to do at all, and we'd prefer not to
227	 * go all the way down to the bottom just to discover that.
228	 *
229	 * Why all these "- 1"s?  Because 0 represents both the bottom
230	 * of the address space and the top of it (using -1 for the
231	 * top wouldn't help much: the masks would do the wrong thing).
232	 * The rule is that addr 0 and floor 0 refer to the bottom of
233	 * the address space, but end 0 and ceiling 0 refer to the top
234	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235	 * that end 0 case should be mythical).
236	 *
237	 * Wherever addr is brought up or ceiling brought down, we must
238	 * be careful to reject "the opposite 0" before it confuses the
239	 * subsequent tests.  But what about where end is brought down
240	 * by PMD_SIZE below? no, end can't go down to 0 there.
241	 *
242	 * Whereas we round start (addr) and ceiling down, by different
243	 * masks at different levels, in order to test whether a table
244	 * now has no other vmas using it, so can be freed, we don't
245	 * bother to round floor or end up - the tests don't need that.
246	 */
247
248	addr &= PMD_MASK;
249	if (addr < floor) {
250		addr += PMD_SIZE;
251		if (!addr)
252			return;
253	}
254	if (ceiling) {
255		ceiling &= PMD_MASK;
256		if (!ceiling)
257			return;
258	}
259	if (end - 1 > ceiling - 1)
260		end -= PMD_SIZE;
261	if (addr > end - 1)
262		return;
263
264	start = addr;
265	pgd = pgd_offset((*tlb)->mm, addr);
266	do {
267		next = pgd_addr_end(addr, end);
268		if (pgd_none_or_clear_bad(pgd))
269			continue;
270		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271	} while (pgd++, addr = next, addr != end);
272}
273
274void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275		unsigned long floor, unsigned long ceiling)
276{
277	while (vma) {
278		struct vm_area_struct *next = vma->vm_next;
279		unsigned long addr = vma->vm_start;
280
281		/*
282		 * Hide vma from rmap and vmtruncate before freeing pgtables
283		 */
284		anon_vma_unlink(vma);
285		unlink_file_vma(vma);
286
287		if (is_vm_hugetlb_page(vma)) {
288			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289				floor, next? next->vm_start: ceiling);
290		} else {
291			/*
292			 * Optimization: gather nearby vmas into one call down
293			 */
294			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295			       && !is_vm_hugetlb_page(next)) {
296				vma = next;
297				next = vma->vm_next;
298				anon_vma_unlink(vma);
299				unlink_file_vma(vma);
300			}
301			free_pgd_range(tlb, addr, vma->vm_end,
302				floor, next? next->vm_start: ceiling);
303		}
304		vma = next;
305	}
306}
307
308int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309{
310	pgtable_t new = pte_alloc_one(mm, address);
311	if (!new)
312		return -ENOMEM;
313
314	/*
315	 * Ensure all pte setup (eg. pte page lock and page clearing) are
316	 * visible before the pte is made visible to other CPUs by being
317	 * put into page tables.
318	 *
319	 * The other side of the story is the pointer chasing in the page
320	 * table walking code (when walking the page table without locking;
321	 * ie. most of the time). Fortunately, these data accesses consist
322	 * of a chain of data-dependent loads, meaning most CPUs (alpha
323	 * being the notable exception) will already guarantee loads are
324	 * seen in-order. See the alpha page table accessors for the
325	 * smp_read_barrier_depends() barriers in page table walking code.
326	 */
327	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
328
329	spin_lock(&mm->page_table_lock);
330	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
331		mm->nr_ptes++;
332		pmd_populate(mm, pmd, new);
333		new = NULL;
334	}
335	spin_unlock(&mm->page_table_lock);
336	if (new)
337		pte_free(mm, new);
338	return 0;
339}
340
341int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
342{
343	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
344	if (!new)
345		return -ENOMEM;
346
347	smp_wmb(); /* See comment in __pte_alloc */
348
349	spin_lock(&init_mm.page_table_lock);
350	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
351		pmd_populate_kernel(&init_mm, pmd, new);
352		new = NULL;
353	}
354	spin_unlock(&init_mm.page_table_lock);
355	if (new)
356		pte_free_kernel(&init_mm, new);
357	return 0;
358}
359
360static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
361{
362	if (file_rss)
363		add_mm_counter(mm, file_rss, file_rss);
364	if (anon_rss)
365		add_mm_counter(mm, anon_rss, anon_rss);
366}
367
368/*
369 * This function is called to print an error when a bad pte
370 * is found. For example, we might have a PFN-mapped pte in
371 * a region that doesn't allow it.
372 *
373 * The calling function must still handle the error.
374 */
375void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
376{
377	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
378			"vm_flags = %lx, vaddr = %lx\n",
379		(long long)pte_val(pte),
380		(vma->vm_mm == current->mm ? current->comm : "???"),
381		vma->vm_flags, vaddr);
382	dump_stack();
383}
384
385static inline int is_cow_mapping(unsigned int flags)
386{
387	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
388}
389
390/*
391 * vm_normal_page -- This function gets the "struct page" associated with a pte.
392 *
393 * "Special" mappings do not wish to be associated with a "struct page" (either
394 * it doesn't exist, or it exists but they don't want to touch it). In this
395 * case, NULL is returned here. "Normal" mappings do have a struct page.
396 *
397 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398 * pte bit, in which case this function is trivial. Secondly, an architecture
399 * may not have a spare pte bit, which requires a more complicated scheme,
400 * described below.
401 *
402 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403 * special mapping (even if there are underlying and valid "struct pages").
404 * COWed pages of a VM_PFNMAP are always normal.
405 *
406 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
408 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409 * mapping will always honor the rule
410 *
411 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
412 *
413 * And for normal mappings this is false.
414 *
415 * This restricts such mappings to be a linear translation from virtual address
416 * to pfn. To get around this restriction, we allow arbitrary mappings so long
417 * as the vma is not a COW mapping; in that case, we know that all ptes are
418 * special (because none can have been COWed).
419 *
420 *
421 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
422 *
423 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424 * page" backing, however the difference is that _all_ pages with a struct
425 * page (that is, those where pfn_valid is true) are refcounted and considered
426 * normal pages by the VM. The disadvantage is that pages are refcounted
427 * (which can be slower and simply not an option for some PFNMAP users). The
428 * advantage is that we don't have to follow the strict linearity rule of
429 * PFNMAP mappings in order to support COWable mappings.
430 *
431 */
432#ifdef __HAVE_ARCH_PTE_SPECIAL
433# define HAVE_PTE_SPECIAL 1
434#else
435# define HAVE_PTE_SPECIAL 0
436#endif
437struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
438				pte_t pte)
439{
440	unsigned long pfn;
441
442	if (HAVE_PTE_SPECIAL) {
443		if (likely(!pte_special(pte))) {
444			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
445			return pte_page(pte);
446		}
447		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
448		return NULL;
449	}
450
451	/* !HAVE_PTE_SPECIAL case follows: */
452
453	pfn = pte_pfn(pte);
454
455	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
456		if (vma->vm_flags & VM_MIXEDMAP) {
457			if (!pfn_valid(pfn))
458				return NULL;
459			goto out;
460		} else {
461			unsigned long off;
462			off = (addr - vma->vm_start) >> PAGE_SHIFT;
463			if (pfn == vma->vm_pgoff + off)
464				return NULL;
465			if (!is_cow_mapping(vma->vm_flags))
466				return NULL;
467		}
468	}
469
470	VM_BUG_ON(!pfn_valid(pfn));
471
472	/*
473	 * NOTE! We still have PageReserved() pages in the page tables.
474	 *
475	 * eg. VDSO mappings can cause them to exist.
476	 */
477out:
478	return pfn_to_page(pfn);
479}
480
481/*
482 * copy one vm_area from one task to the other. Assumes the page tables
483 * already present in the new task to be cleared in the whole range
484 * covered by this vma.
485 */
486
487static inline void
488copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
489		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
490		unsigned long addr, int *rss)
491{
492	unsigned long vm_flags = vma->vm_flags;
493	pte_t pte = *src_pte;
494	struct page *page;
495
496	/* pte contains position in swap or file, so copy. */
497	if (unlikely(!pte_present(pte))) {
498		if (!pte_file(pte)) {
499			swp_entry_t entry = pte_to_swp_entry(pte);
500
501			swap_duplicate(entry);
502			/* make sure dst_mm is on swapoff's mmlist. */
503			if (unlikely(list_empty(&dst_mm->mmlist))) {
504				spin_lock(&mmlist_lock);
505				if (list_empty(&dst_mm->mmlist))
506					list_add(&dst_mm->mmlist,
507						 &src_mm->mmlist);
508				spin_unlock(&mmlist_lock);
509			}
510			if (is_write_migration_entry(entry) &&
511					is_cow_mapping(vm_flags)) {
512				/*
513				 * COW mappings require pages in both parent
514				 * and child to be set to read.
515				 */
516				make_migration_entry_read(&entry);
517				pte = swp_entry_to_pte(entry);
518				set_pte_at(src_mm, addr, src_pte, pte);
519			}
520		}
521		goto out_set_pte;
522	}
523
524	/*
525	 * If it's a COW mapping, write protect it both
526	 * in the parent and the child
527	 */
528	if (is_cow_mapping(vm_flags)) {
529		ptep_set_wrprotect(src_mm, addr, src_pte);
530		pte = pte_wrprotect(pte);
531	}
532
533	/*
534	 * If it's a shared mapping, mark it clean in
535	 * the child
536	 */
537	if (vm_flags & VM_SHARED)
538		pte = pte_mkclean(pte);
539	pte = pte_mkold(pte);
540
541	page = vm_normal_page(vma, addr, pte);
542	if (page) {
543		get_page(page);
544		page_dup_rmap(page, vma, addr);
545		rss[!!PageAnon(page)]++;
546	}
547
548out_set_pte:
549	set_pte_at(dst_mm, addr, dst_pte, pte);
550}
551
552static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
553		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
554		unsigned long addr, unsigned long end)
555{
556	pte_t *src_pte, *dst_pte;
557	spinlock_t *src_ptl, *dst_ptl;
558	int progress = 0;
559	int rss[2];
560
561again:
562	rss[1] = rss[0] = 0;
563	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
564	if (!dst_pte)
565		return -ENOMEM;
566	src_pte = pte_offset_map_nested(src_pmd, addr);
567	src_ptl = pte_lockptr(src_mm, src_pmd);
568	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
569	arch_enter_lazy_mmu_mode();
570
571	do {
572		/*
573		 * We are holding two locks at this point - either of them
574		 * could generate latencies in another task on another CPU.
575		 */
576		if (progress >= 32) {
577			progress = 0;
578			if (need_resched() ||
579			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
580				break;
581		}
582		if (pte_none(*src_pte)) {
583			progress++;
584			continue;
585		}
586		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
587		progress += 8;
588	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
589
590	arch_leave_lazy_mmu_mode();
591	spin_unlock(src_ptl);
592	pte_unmap_nested(src_pte - 1);
593	add_mm_rss(dst_mm, rss[0], rss[1]);
594	pte_unmap_unlock(dst_pte - 1, dst_ptl);
595	cond_resched();
596	if (addr != end)
597		goto again;
598	return 0;
599}
600
601static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
602		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
603		unsigned long addr, unsigned long end)
604{
605	pmd_t *src_pmd, *dst_pmd;
606	unsigned long next;
607
608	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
609	if (!dst_pmd)
610		return -ENOMEM;
611	src_pmd = pmd_offset(src_pud, addr);
612	do {
613		next = pmd_addr_end(addr, end);
614		if (pmd_none_or_clear_bad(src_pmd))
615			continue;
616		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
617						vma, addr, next))
618			return -ENOMEM;
619	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
620	return 0;
621}
622
623static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
624		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
625		unsigned long addr, unsigned long end)
626{
627	pud_t *src_pud, *dst_pud;
628	unsigned long next;
629
630	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
631	if (!dst_pud)
632		return -ENOMEM;
633	src_pud = pud_offset(src_pgd, addr);
634	do {
635		next = pud_addr_end(addr, end);
636		if (pud_none_or_clear_bad(src_pud))
637			continue;
638		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
639						vma, addr, next))
640			return -ENOMEM;
641	} while (dst_pud++, src_pud++, addr = next, addr != end);
642	return 0;
643}
644
645int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
646		struct vm_area_struct *vma)
647{
648	pgd_t *src_pgd, *dst_pgd;
649	unsigned long next;
650	unsigned long addr = vma->vm_start;
651	unsigned long end = vma->vm_end;
652
653	/*
654	 * Don't copy ptes where a page fault will fill them correctly.
655	 * Fork becomes much lighter when there are big shared or private
656	 * readonly mappings. The tradeoff is that copy_page_range is more
657	 * efficient than faulting.
658	 */
659	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
660		if (!vma->anon_vma)
661			return 0;
662	}
663
664	if (is_vm_hugetlb_page(vma))
665		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
666
667	dst_pgd = pgd_offset(dst_mm, addr);
668	src_pgd = pgd_offset(src_mm, addr);
669	do {
670		next = pgd_addr_end(addr, end);
671		if (pgd_none_or_clear_bad(src_pgd))
672			continue;
673		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
674						vma, addr, next))
675			return -ENOMEM;
676	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
677	return 0;
678}
679
680static unsigned long zap_pte_range(struct mmu_gather *tlb,
681				struct vm_area_struct *vma, pmd_t *pmd,
682				unsigned long addr, unsigned long end,
683				long *zap_work, struct zap_details *details)
684{
685	struct mm_struct *mm = tlb->mm;
686	pte_t *pte;
687	spinlock_t *ptl;
688	int file_rss = 0;
689	int anon_rss = 0;
690
691	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
692	arch_enter_lazy_mmu_mode();
693	do {
694		pte_t ptent = *pte;
695		if (pte_none(ptent)) {
696			(*zap_work)--;
697			continue;
698		}
699
700		(*zap_work) -= PAGE_SIZE;
701
702		if (pte_present(ptent)) {
703			struct page *page;
704
705			page = vm_normal_page(vma, addr, ptent);
706			if (unlikely(details) && page) {
707				/*
708				 * unmap_shared_mapping_pages() wants to
709				 * invalidate cache without truncating:
710				 * unmap shared but keep private pages.
711				 */
712				if (details->check_mapping &&
713				    details->check_mapping != page->mapping)
714					continue;
715				/*
716				 * Each page->index must be checked when
717				 * invalidating or truncating nonlinear.
718				 */
719				if (details->nonlinear_vma &&
720				    (page->index < details->first_index ||
721				     page->index > details->last_index))
722					continue;
723			}
724			ptent = ptep_get_and_clear_full(mm, addr, pte,
725							tlb->fullmm);
726			tlb_remove_tlb_entry(tlb, pte, addr);
727			if (unlikely(!page))
728				continue;
729			if (unlikely(details) && details->nonlinear_vma
730			    && linear_page_index(details->nonlinear_vma,
731						addr) != page->index)
732				set_pte_at(mm, addr, pte,
733					   pgoff_to_pte(page->index));
734			if (PageAnon(page))
735				anon_rss--;
736			else {
737				if (pte_dirty(ptent))
738					set_page_dirty(page);
739				if (pte_young(ptent))
740					SetPageReferenced(page);
741				file_rss--;
742			}
743			page_remove_rmap(page, vma);
744			tlb_remove_page(tlb, page);
745			continue;
746		}
747		/*
748		 * If details->check_mapping, we leave swap entries;
749		 * if details->nonlinear_vma, we leave file entries.
750		 */
751		if (unlikely(details))
752			continue;
753		if (!pte_file(ptent))
754			free_swap_and_cache(pte_to_swp_entry(ptent));
755		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
756	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
757
758	add_mm_rss(mm, file_rss, anon_rss);
759	arch_leave_lazy_mmu_mode();
760	pte_unmap_unlock(pte - 1, ptl);
761
762	return addr;
763}
764
765static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
766				struct vm_area_struct *vma, pud_t *pud,
767				unsigned long addr, unsigned long end,
768				long *zap_work, struct zap_details *details)
769{
770	pmd_t *pmd;
771	unsigned long next;
772
773	pmd = pmd_offset(pud, addr);
774	do {
775		next = pmd_addr_end(addr, end);
776		if (pmd_none_or_clear_bad(pmd)) {
777			(*zap_work)--;
778			continue;
779		}
780		next = zap_pte_range(tlb, vma, pmd, addr, next,
781						zap_work, details);
782	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
783
784	return addr;
785}
786
787static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
788				struct vm_area_struct *vma, pgd_t *pgd,
789				unsigned long addr, unsigned long end,
790				long *zap_work, struct zap_details *details)
791{
792	pud_t *pud;
793	unsigned long next;
794
795	pud = pud_offset(pgd, addr);
796	do {
797		next = pud_addr_end(addr, end);
798		if (pud_none_or_clear_bad(pud)) {
799			(*zap_work)--;
800			continue;
801		}
802		next = zap_pmd_range(tlb, vma, pud, addr, next,
803						zap_work, details);
804	} while (pud++, addr = next, (addr != end && *zap_work > 0));
805
806	return addr;
807}
808
809static unsigned long unmap_page_range(struct mmu_gather *tlb,
810				struct vm_area_struct *vma,
811				unsigned long addr, unsigned long end,
812				long *zap_work, struct zap_details *details)
813{
814	pgd_t *pgd;
815	unsigned long next;
816
817	if (details && !details->check_mapping && !details->nonlinear_vma)
818		details = NULL;
819
820	BUG_ON(addr >= end);
821	tlb_start_vma(tlb, vma);
822	pgd = pgd_offset(vma->vm_mm, addr);
823	do {
824		next = pgd_addr_end(addr, end);
825		if (pgd_none_or_clear_bad(pgd)) {
826			(*zap_work)--;
827			continue;
828		}
829		next = zap_pud_range(tlb, vma, pgd, addr, next,
830						zap_work, details);
831	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
832	tlb_end_vma(tlb, vma);
833
834	return addr;
835}
836
837#ifdef CONFIG_PREEMPT
838# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
839#else
840/* No preempt: go for improved straight-line efficiency */
841# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
842#endif
843
844/**
845 * unmap_vmas - unmap a range of memory covered by a list of vma's
846 * @tlbp: address of the caller's struct mmu_gather
847 * @vma: the starting vma
848 * @start_addr: virtual address at which to start unmapping
849 * @end_addr: virtual address at which to end unmapping
850 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851 * @details: details of nonlinear truncation or shared cache invalidation
852 *
853 * Returns the end address of the unmapping (restart addr if interrupted).
854 *
855 * Unmap all pages in the vma list.
856 *
857 * We aim to not hold locks for too long (for scheduling latency reasons).
858 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
859 * return the ending mmu_gather to the caller.
860 *
861 * Only addresses between `start' and `end' will be unmapped.
862 *
863 * The VMA list must be sorted in ascending virtual address order.
864 *
865 * unmap_vmas() assumes that the caller will flush the whole unmapped address
866 * range after unmap_vmas() returns.  So the only responsibility here is to
867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868 * drops the lock and schedules.
869 */
870unsigned long unmap_vmas(struct mmu_gather **tlbp,
871		struct vm_area_struct *vma, unsigned long start_addr,
872		unsigned long end_addr, unsigned long *nr_accounted,
873		struct zap_details *details)
874{
875	long zap_work = ZAP_BLOCK_SIZE;
876	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
877	int tlb_start_valid = 0;
878	unsigned long start = start_addr;
879	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
880	int fullmm = (*tlbp)->fullmm;
881
882	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
883		unsigned long end;
884
885		start = max(vma->vm_start, start_addr);
886		if (start >= vma->vm_end)
887			continue;
888		end = min(vma->vm_end, end_addr);
889		if (end <= vma->vm_start)
890			continue;
891
892		if (vma->vm_flags & VM_ACCOUNT)
893			*nr_accounted += (end - start) >> PAGE_SHIFT;
894
895		while (start != end) {
896			if (!tlb_start_valid) {
897				tlb_start = start;
898				tlb_start_valid = 1;
899			}
900
901			if (unlikely(is_vm_hugetlb_page(vma))) {
902				unmap_hugepage_range(vma, start, end);
903				zap_work -= (end - start) /
904						(HPAGE_SIZE / PAGE_SIZE);
905				start = end;
906			} else
907				start = unmap_page_range(*tlbp, vma,
908						start, end, &zap_work, details);
909
910			if (zap_work > 0) {
911				BUG_ON(start != end);
912				break;
913			}
914
915			tlb_finish_mmu(*tlbp, tlb_start, start);
916
917			if (need_resched() ||
918				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
919				if (i_mmap_lock) {
920					*tlbp = NULL;
921					goto out;
922				}
923				cond_resched();
924			}
925
926			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
927			tlb_start_valid = 0;
928			zap_work = ZAP_BLOCK_SIZE;
929		}
930	}
931out:
932	return start;	/* which is now the end (or restart) address */
933}
934
935/**
936 * zap_page_range - remove user pages in a given range
937 * @vma: vm_area_struct holding the applicable pages
938 * @address: starting address of pages to zap
939 * @size: number of bytes to zap
940 * @details: details of nonlinear truncation or shared cache invalidation
941 */
942unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
943		unsigned long size, struct zap_details *details)
944{
945	struct mm_struct *mm = vma->vm_mm;
946	struct mmu_gather *tlb;
947	unsigned long end = address + size;
948	unsigned long nr_accounted = 0;
949
950	lru_add_drain();
951	tlb = tlb_gather_mmu(mm, 0);
952	update_hiwater_rss(mm);
953	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
954	if (tlb)
955		tlb_finish_mmu(tlb, address, end);
956	return end;
957}
958
959/*
960 * Do a quick page-table lookup for a single page.
961 */
962struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
963			unsigned int flags)
964{
965	pgd_t *pgd;
966	pud_t *pud;
967	pmd_t *pmd;
968	pte_t *ptep, pte;
969	spinlock_t *ptl;
970	struct page *page;
971	struct mm_struct *mm = vma->vm_mm;
972
973	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
974	if (!IS_ERR(page)) {
975		BUG_ON(flags & FOLL_GET);
976		goto out;
977	}
978
979	page = NULL;
980	pgd = pgd_offset(mm, address);
981	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
982		goto no_page_table;
983
984	pud = pud_offset(pgd, address);
985	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
986		goto no_page_table;
987
988	pmd = pmd_offset(pud, address);
989	if (pmd_none(*pmd))
990		goto no_page_table;
991
992	if (pmd_huge(*pmd)) {
993		BUG_ON(flags & FOLL_GET);
994		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
995		goto out;
996	}
997
998	if (unlikely(pmd_bad(*pmd)))
999		goto no_page_table;
1000
1001	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1002	if (!ptep)
1003		goto out;
1004
1005	pte = *ptep;
1006	if (!pte_present(pte))
1007		goto unlock;
1008	if ((flags & FOLL_WRITE) && !pte_write(pte))
1009		goto unlock;
1010	page = vm_normal_page(vma, address, pte);
1011	if (unlikely(!page))
1012		goto unlock;
1013
1014	if (flags & FOLL_GET)
1015		get_page(page);
1016	if (flags & FOLL_TOUCH) {
1017		if ((flags & FOLL_WRITE) &&
1018		    !pte_dirty(pte) && !PageDirty(page))
1019			set_page_dirty(page);
1020		mark_page_accessed(page);
1021	}
1022unlock:
1023	pte_unmap_unlock(ptep, ptl);
1024out:
1025	return page;
1026
1027no_page_table:
1028	/*
1029	 * When core dumping an enormous anonymous area that nobody
1030	 * has touched so far, we don't want to allocate page tables.
1031	 */
1032	if (flags & FOLL_ANON) {
1033		page = ZERO_PAGE(0);
1034		if (flags & FOLL_GET)
1035			get_page(page);
1036		BUG_ON(flags & FOLL_WRITE);
1037	}
1038	return page;
1039}
1040
1041int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1042		unsigned long start, int len, int write, int force,
1043		struct page **pages, struct vm_area_struct **vmas)
1044{
1045	int i;
1046	unsigned int vm_flags;
1047
1048	if (len <= 0)
1049		return 0;
1050	/*
1051	 * Require read or write permissions.
1052	 * If 'force' is set, we only require the "MAY" flags.
1053	 */
1054	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1055	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1056	i = 0;
1057
1058	do {
1059		struct vm_area_struct *vma;
1060		unsigned int foll_flags;
1061
1062		vma = find_extend_vma(mm, start);
1063		if (!vma && in_gate_area(tsk, start)) {
1064			unsigned long pg = start & PAGE_MASK;
1065			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1066			pgd_t *pgd;
1067			pud_t *pud;
1068			pmd_t *pmd;
1069			pte_t *pte;
1070			if (write) /* user gate pages are read-only */
1071				return i ? : -EFAULT;
1072			if (pg > TASK_SIZE)
1073				pgd = pgd_offset_k(pg);
1074			else
1075				pgd = pgd_offset_gate(mm, pg);
1076			BUG_ON(pgd_none(*pgd));
1077			pud = pud_offset(pgd, pg);
1078			BUG_ON(pud_none(*pud));
1079			pmd = pmd_offset(pud, pg);
1080			if (pmd_none(*pmd))
1081				return i ? : -EFAULT;
1082			pte = pte_offset_map(pmd, pg);
1083			if (pte_none(*pte)) {
1084				pte_unmap(pte);
1085				return i ? : -EFAULT;
1086			}
1087			if (pages) {
1088				struct page *page = vm_normal_page(gate_vma, start, *pte);
1089				pages[i] = page;
1090				if (page)
1091					get_page(page);
1092			}
1093			pte_unmap(pte);
1094			if (vmas)
1095				vmas[i] = gate_vma;
1096			i++;
1097			start += PAGE_SIZE;
1098			len--;
1099			continue;
1100		}
1101
1102		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1103				|| !(vm_flags & vma->vm_flags))
1104			return i ? : -EFAULT;
1105
1106		if (is_vm_hugetlb_page(vma)) {
1107			i = follow_hugetlb_page(mm, vma, pages, vmas,
1108						&start, &len, i, write);
1109			continue;
1110		}
1111
1112		foll_flags = FOLL_TOUCH;
1113		if (pages)
1114			foll_flags |= FOLL_GET;
1115		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1116		    (!vma->vm_ops || !vma->vm_ops->fault))
1117			foll_flags |= FOLL_ANON;
1118
1119		do {
1120			struct page *page;
1121
1122			/*
1123			 * If tsk is ooming, cut off its access to large memory
1124			 * allocations. It has a pending SIGKILL, but it can't
1125			 * be processed until returning to user space.
1126			 */
1127			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1128				return -ENOMEM;
1129
1130			if (write)
1131				foll_flags |= FOLL_WRITE;
1132
1133			cond_resched();
1134			while (!(page = follow_page(vma, start, foll_flags))) {
1135				int ret;
1136				ret = handle_mm_fault(mm, vma, start,
1137						foll_flags & FOLL_WRITE);
1138				if (ret & VM_FAULT_ERROR) {
1139					if (ret & VM_FAULT_OOM)
1140						return i ? i : -ENOMEM;
1141					else if (ret & VM_FAULT_SIGBUS)
1142						return i ? i : -EFAULT;
1143					BUG();
1144				}
1145				if (ret & VM_FAULT_MAJOR)
1146					tsk->maj_flt++;
1147				else
1148					tsk->min_flt++;
1149
1150				/*
1151				 * The VM_FAULT_WRITE bit tells us that
1152				 * do_wp_page has broken COW when necessary,
1153				 * even if maybe_mkwrite decided not to set
1154				 * pte_write. We can thus safely do subsequent
1155				 * page lookups as if they were reads.
1156				 */
1157				if (ret & VM_FAULT_WRITE)
1158					foll_flags &= ~FOLL_WRITE;
1159
1160				cond_resched();
1161			}
1162			if (pages) {
1163				pages[i] = page;
1164
1165				flush_anon_page(vma, page, start);
1166				flush_dcache_page(page);
1167			}
1168			if (vmas)
1169				vmas[i] = vma;
1170			i++;
1171			start += PAGE_SIZE;
1172			len--;
1173		} while (len && start < vma->vm_end);
1174	} while (len);
1175	return i;
1176}
1177EXPORT_SYMBOL(get_user_pages);
1178
1179pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1180			spinlock_t **ptl)
1181{
1182	pgd_t * pgd = pgd_offset(mm, addr);
1183	pud_t * pud = pud_alloc(mm, pgd, addr);
1184	if (pud) {
1185		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1186		if (pmd)
1187			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1188	}
1189	return NULL;
1190}
1191
1192/*
1193 * This is the old fallback for page remapping.
1194 *
1195 * For historical reasons, it only allows reserved pages. Only
1196 * old drivers should use this, and they needed to mark their
1197 * pages reserved for the old functions anyway.
1198 */
1199static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1200			struct page *page, pgprot_t prot)
1201{
1202	struct mm_struct *mm = vma->vm_mm;
1203	int retval;
1204	pte_t *pte;
1205	spinlock_t *ptl;
1206
1207	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1208	if (retval)
1209		goto out;
1210
1211	retval = -EINVAL;
1212	if (PageAnon(page))
1213		goto out_uncharge;
1214	retval = -ENOMEM;
1215	flush_dcache_page(page);
1216	pte = get_locked_pte(mm, addr, &ptl);
1217	if (!pte)
1218		goto out_uncharge;
1219	retval = -EBUSY;
1220	if (!pte_none(*pte))
1221		goto out_unlock;
1222
1223	/* Ok, finally just insert the thing.. */
1224	get_page(page);
1225	inc_mm_counter(mm, file_rss);
1226	page_add_file_rmap(page);
1227	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1228
1229	retval = 0;
1230	pte_unmap_unlock(pte, ptl);
1231	return retval;
1232out_unlock:
1233	pte_unmap_unlock(pte, ptl);
1234out_uncharge:
1235	mem_cgroup_uncharge_page(page);
1236out:
1237	return retval;
1238}
1239
1240/**
1241 * vm_insert_page - insert single page into user vma
1242 * @vma: user vma to map to
1243 * @addr: target user address of this page
1244 * @page: source kernel page
1245 *
1246 * This allows drivers to insert individual pages they've allocated
1247 * into a user vma.
1248 *
1249 * The page has to be a nice clean _individual_ kernel allocation.
1250 * If you allocate a compound page, you need to have marked it as
1251 * such (__GFP_COMP), or manually just split the page up yourself
1252 * (see split_page()).
1253 *
1254 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1255 * took an arbitrary page protection parameter. This doesn't allow
1256 * that. Your vma protection will have to be set up correctly, which
1257 * means that if you want a shared writable mapping, you'd better
1258 * ask for a shared writable mapping!
1259 *
1260 * The page does not need to be reserved.
1261 */
1262int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1263			struct page *page)
1264{
1265	if (addr < vma->vm_start || addr >= vma->vm_end)
1266		return -EFAULT;
1267	if (!page_count(page))
1268		return -EINVAL;
1269	vma->vm_flags |= VM_INSERTPAGE;
1270	return insert_page(vma, addr, page, vma->vm_page_prot);
1271}
1272EXPORT_SYMBOL(vm_insert_page);
1273
1274static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1275			unsigned long pfn, pgprot_t prot)
1276{
1277	struct mm_struct *mm = vma->vm_mm;
1278	int retval;
1279	pte_t *pte, entry;
1280	spinlock_t *ptl;
1281
1282	retval = -ENOMEM;
1283	pte = get_locked_pte(mm, addr, &ptl);
1284	if (!pte)
1285		goto out;
1286	retval = -EBUSY;
1287	if (!pte_none(*pte))
1288		goto out_unlock;
1289
1290	/* Ok, finally just insert the thing.. */
1291	entry = pte_mkspecial(pfn_pte(pfn, prot));
1292	set_pte_at(mm, addr, pte, entry);
1293	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1294
1295	retval = 0;
1296out_unlock:
1297	pte_unmap_unlock(pte, ptl);
1298out:
1299	return retval;
1300}
1301
1302/**
1303 * vm_insert_pfn - insert single pfn into user vma
1304 * @vma: user vma to map to
1305 * @addr: target user address of this page
1306 * @pfn: source kernel pfn
1307 *
1308 * Similar to vm_inert_page, this allows drivers to insert individual pages
1309 * they've allocated into a user vma. Same comments apply.
1310 *
1311 * This function should only be called from a vm_ops->fault handler, and
1312 * in that case the handler should return NULL.
1313 */
1314int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1315			unsigned long pfn)
1316{
1317	/*
1318	 * Technically, architectures with pte_special can avoid all these
1319	 * restrictions (same for remap_pfn_range).  However we would like
1320	 * consistency in testing and feature parity among all, so we should
1321	 * try to keep these invariants in place for everybody.
1322	 */
1323	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1324	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1325						(VM_PFNMAP|VM_MIXEDMAP));
1326	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1327	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1328
1329	if (addr < vma->vm_start || addr >= vma->vm_end)
1330		return -EFAULT;
1331	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1332}
1333EXPORT_SYMBOL(vm_insert_pfn);
1334
1335int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1336			unsigned long pfn)
1337{
1338	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1339
1340	if (addr < vma->vm_start || addr >= vma->vm_end)
1341		return -EFAULT;
1342
1343	/*
1344	 * If we don't have pte special, then we have to use the pfn_valid()
1345	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1346	 * refcount the page if pfn_valid is true (hence insert_page rather
1347	 * than insert_pfn).
1348	 */
1349	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1350		struct page *page;
1351
1352		page = pfn_to_page(pfn);
1353		return insert_page(vma, addr, page, vma->vm_page_prot);
1354	}
1355	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1356}
1357EXPORT_SYMBOL(vm_insert_mixed);
1358
1359/*
1360 * maps a range of physical memory into the requested pages. the old
1361 * mappings are removed. any references to nonexistent pages results
1362 * in null mappings (currently treated as "copy-on-access")
1363 */
1364static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1365			unsigned long addr, unsigned long end,
1366			unsigned long pfn, pgprot_t prot)
1367{
1368	pte_t *pte;
1369	spinlock_t *ptl;
1370
1371	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1372	if (!pte)
1373		return -ENOMEM;
1374	arch_enter_lazy_mmu_mode();
1375	do {
1376		BUG_ON(!pte_none(*pte));
1377		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1378		pfn++;
1379	} while (pte++, addr += PAGE_SIZE, addr != end);
1380	arch_leave_lazy_mmu_mode();
1381	pte_unmap_unlock(pte - 1, ptl);
1382	return 0;
1383}
1384
1385static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1386			unsigned long addr, unsigned long end,
1387			unsigned long pfn, pgprot_t prot)
1388{
1389	pmd_t *pmd;
1390	unsigned long next;
1391
1392	pfn -= addr >> PAGE_SHIFT;
1393	pmd = pmd_alloc(mm, pud, addr);
1394	if (!pmd)
1395		return -ENOMEM;
1396	do {
1397		next = pmd_addr_end(addr, end);
1398		if (remap_pte_range(mm, pmd, addr, next,
1399				pfn + (addr >> PAGE_SHIFT), prot))
1400			return -ENOMEM;
1401	} while (pmd++, addr = next, addr != end);
1402	return 0;
1403}
1404
1405static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1406			unsigned long addr, unsigned long end,
1407			unsigned long pfn, pgprot_t prot)
1408{
1409	pud_t *pud;
1410	unsigned long next;
1411
1412	pfn -= addr >> PAGE_SHIFT;
1413	pud = pud_alloc(mm, pgd, addr);
1414	if (!pud)
1415		return -ENOMEM;
1416	do {
1417		next = pud_addr_end(addr, end);
1418		if (remap_pmd_range(mm, pud, addr, next,
1419				pfn + (addr >> PAGE_SHIFT), prot))
1420			return -ENOMEM;
1421	} while (pud++, addr = next, addr != end);
1422	return 0;
1423}
1424
1425/**
1426 * remap_pfn_range - remap kernel memory to userspace
1427 * @vma: user vma to map to
1428 * @addr: target user address to start at
1429 * @pfn: physical address of kernel memory
1430 * @size: size of map area
1431 * @prot: page protection flags for this mapping
1432 *
1433 *  Note: this is only safe if the mm semaphore is held when called.
1434 */
1435int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1436		    unsigned long pfn, unsigned long size, pgprot_t prot)
1437{
1438	pgd_t *pgd;
1439	unsigned long next;
1440	unsigned long end = addr + PAGE_ALIGN(size);
1441	struct mm_struct *mm = vma->vm_mm;
1442	int err;
1443
1444	/*
1445	 * Physically remapped pages are special. Tell the
1446	 * rest of the world about it:
1447	 *   VM_IO tells people not to look at these pages
1448	 *	(accesses can have side effects).
1449	 *   VM_RESERVED is specified all over the place, because
1450	 *	in 2.4 it kept swapout's vma scan off this vma; but
1451	 *	in 2.6 the LRU scan won't even find its pages, so this
1452	 *	flag means no more than count its pages in reserved_vm,
1453	 * 	and omit it from core dump, even when VM_IO turned off.
1454	 *   VM_PFNMAP tells the core MM that the base pages are just
1455	 *	raw PFN mappings, and do not have a "struct page" associated
1456	 *	with them.
1457	 *
1458	 * There's a horrible special case to handle copy-on-write
1459	 * behaviour that some programs depend on. We mark the "original"
1460	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1461	 */
1462	if (is_cow_mapping(vma->vm_flags)) {
1463		if (addr != vma->vm_start || end != vma->vm_end)
1464			return -EINVAL;
1465		vma->vm_pgoff = pfn;
1466	}
1467
1468	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1469
1470	BUG_ON(addr >= end);
1471	pfn -= addr >> PAGE_SHIFT;
1472	pgd = pgd_offset(mm, addr);
1473	flush_cache_range(vma, addr, end);
1474	do {
1475		next = pgd_addr_end(addr, end);
1476		err = remap_pud_range(mm, pgd, addr, next,
1477				pfn + (addr >> PAGE_SHIFT), prot);
1478		if (err)
1479			break;
1480	} while (pgd++, addr = next, addr != end);
1481	return err;
1482}
1483EXPORT_SYMBOL(remap_pfn_range);
1484
1485static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1486				     unsigned long addr, unsigned long end,
1487				     pte_fn_t fn, void *data)
1488{
1489	pte_t *pte;
1490	int err;
1491	pgtable_t token;
1492	spinlock_t *uninitialized_var(ptl);
1493
1494	pte = (mm == &init_mm) ?
1495		pte_alloc_kernel(pmd, addr) :
1496		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1497	if (!pte)
1498		return -ENOMEM;
1499
1500	BUG_ON(pmd_huge(*pmd));
1501
1502	token = pmd_pgtable(*pmd);
1503
1504	do {
1505		err = fn(pte, token, addr, data);
1506		if (err)
1507			break;
1508	} while (pte++, addr += PAGE_SIZE, addr != end);
1509
1510	if (mm != &init_mm)
1511		pte_unmap_unlock(pte-1, ptl);
1512	return err;
1513}
1514
1515static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1516				     unsigned long addr, unsigned long end,
1517				     pte_fn_t fn, void *data)
1518{
1519	pmd_t *pmd;
1520	unsigned long next;
1521	int err;
1522
1523	pmd = pmd_alloc(mm, pud, addr);
1524	if (!pmd)
1525		return -ENOMEM;
1526	do {
1527		next = pmd_addr_end(addr, end);
1528		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1529		if (err)
1530			break;
1531	} while (pmd++, addr = next, addr != end);
1532	return err;
1533}
1534
1535static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1536				     unsigned long addr, unsigned long end,
1537				     pte_fn_t fn, void *data)
1538{
1539	pud_t *pud;
1540	unsigned long next;
1541	int err;
1542
1543	pud = pud_alloc(mm, pgd, addr);
1544	if (!pud)
1545		return -ENOMEM;
1546	do {
1547		next = pud_addr_end(addr, end);
1548		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1549		if (err)
1550			break;
1551	} while (pud++, addr = next, addr != end);
1552	return err;
1553}
1554
1555/*
1556 * Scan a region of virtual memory, filling in page tables as necessary
1557 * and calling a provided function on each leaf page table.
1558 */
1559int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1560			unsigned long size, pte_fn_t fn, void *data)
1561{
1562	pgd_t *pgd;
1563	unsigned long next;
1564	unsigned long end = addr + size;
1565	int err;
1566
1567	BUG_ON(addr >= end);
1568	pgd = pgd_offset(mm, addr);
1569	do {
1570		next = pgd_addr_end(addr, end);
1571		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1572		if (err)
1573			break;
1574	} while (pgd++, addr = next, addr != end);
1575	return err;
1576}
1577EXPORT_SYMBOL_GPL(apply_to_page_range);
1578
1579/*
1580 * handle_pte_fault chooses page fault handler according to an entry
1581 * which was read non-atomically.  Before making any commitment, on
1582 * those architectures or configurations (e.g. i386 with PAE) which
1583 * might give a mix of unmatched parts, do_swap_page and do_file_page
1584 * must check under lock before unmapping the pte and proceeding
1585 * (but do_wp_page is only called after already making such a check;
1586 * and do_anonymous_page and do_no_page can safely check later on).
1587 */
1588static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1589				pte_t *page_table, pte_t orig_pte)
1590{
1591	int same = 1;
1592#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1593	if (sizeof(pte_t) > sizeof(unsigned long)) {
1594		spinlock_t *ptl = pte_lockptr(mm, pmd);
1595		spin_lock(ptl);
1596		same = pte_same(*page_table, orig_pte);
1597		spin_unlock(ptl);
1598	}
1599#endif
1600	pte_unmap(page_table);
1601	return same;
1602}
1603
1604/*
1605 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1606 * servicing faults for write access.  In the normal case, do always want
1607 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1608 * that do not have writing enabled, when used by access_process_vm.
1609 */
1610static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1611{
1612	if (likely(vma->vm_flags & VM_WRITE))
1613		pte = pte_mkwrite(pte);
1614	return pte;
1615}
1616
1617static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1618{
1619	/*
1620	 * If the source page was a PFN mapping, we don't have
1621	 * a "struct page" for it. We do a best-effort copy by
1622	 * just copying from the original user address. If that
1623	 * fails, we just zero-fill it. Live with it.
1624	 */
1625	if (unlikely(!src)) {
1626		void *kaddr = kmap_atomic(dst, KM_USER0);
1627		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1628
1629		/*
1630		 * This really shouldn't fail, because the page is there
1631		 * in the page tables. But it might just be unreadable,
1632		 * in which case we just give up and fill the result with
1633		 * zeroes.
1634		 */
1635		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1636			memset(kaddr, 0, PAGE_SIZE);
1637		kunmap_atomic(kaddr, KM_USER0);
1638		flush_dcache_page(dst);
1639	} else
1640		copy_user_highpage(dst, src, va, vma);
1641}
1642
1643/*
1644 * This routine handles present pages, when users try to write
1645 * to a shared page. It is done by copying the page to a new address
1646 * and decrementing the shared-page counter for the old page.
1647 *
1648 * Note that this routine assumes that the protection checks have been
1649 * done by the caller (the low-level page fault routine in most cases).
1650 * Thus we can safely just mark it writable once we've done any necessary
1651 * COW.
1652 *
1653 * We also mark the page dirty at this point even though the page will
1654 * change only once the write actually happens. This avoids a few races,
1655 * and potentially makes it more efficient.
1656 *
1657 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1658 * but allow concurrent faults), with pte both mapped and locked.
1659 * We return with mmap_sem still held, but pte unmapped and unlocked.
1660 */
1661static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1662		unsigned long address, pte_t *page_table, pmd_t *pmd,
1663		spinlock_t *ptl, pte_t orig_pte)
1664{
1665	struct page *old_page, *new_page;
1666	pte_t entry;
1667	int reuse = 0, ret = 0;
1668	int page_mkwrite = 0;
1669	struct page *dirty_page = NULL;
1670
1671	old_page = vm_normal_page(vma, address, orig_pte);
1672	if (!old_page)
1673		goto gotten;
1674
1675	/*
1676	 * Take out anonymous pages first, anonymous shared vmas are
1677	 * not dirty accountable.
1678	 */
1679	if (PageAnon(old_page)) {
1680		if (!TestSetPageLocked(old_page)) {
1681			reuse = can_share_swap_page(old_page);
1682			unlock_page(old_page);
1683		}
1684	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1685					(VM_WRITE|VM_SHARED))) {
1686		/*
1687		 * Only catch write-faults on shared writable pages,
1688		 * read-only shared pages can get COWed by
1689		 * get_user_pages(.write=1, .force=1).
1690		 */
1691		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1692			/*
1693			 * Notify the address space that the page is about to
1694			 * become writable so that it can prohibit this or wait
1695			 * for the page to get into an appropriate state.
1696			 *
1697			 * We do this without the lock held, so that it can
1698			 * sleep if it needs to.
1699			 */
1700			page_cache_get(old_page);
1701			pte_unmap_unlock(page_table, ptl);
1702
1703			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1704				goto unwritable_page;
1705
1706			/*
1707			 * Since we dropped the lock we need to revalidate
1708			 * the PTE as someone else may have changed it.  If
1709			 * they did, we just return, as we can count on the
1710			 * MMU to tell us if they didn't also make it writable.
1711			 */
1712			page_table = pte_offset_map_lock(mm, pmd, address,
1713							 &ptl);
1714			page_cache_release(old_page);
1715			if (!pte_same(*page_table, orig_pte))
1716				goto unlock;
1717
1718			page_mkwrite = 1;
1719		}
1720		dirty_page = old_page;
1721		get_page(dirty_page);
1722		reuse = 1;
1723	}
1724
1725	if (reuse) {
1726		flush_cache_page(vma, address, pte_pfn(orig_pte));
1727		entry = pte_mkyoung(orig_pte);
1728		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1729		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1730			update_mmu_cache(vma, address, entry);
1731		ret |= VM_FAULT_WRITE;
1732		goto unlock;
1733	}
1734
1735	/*
1736	 * Ok, we need to copy. Oh, well..
1737	 */
1738	page_cache_get(old_page);
1739gotten:
1740	pte_unmap_unlock(page_table, ptl);
1741
1742	if (unlikely(anon_vma_prepare(vma)))
1743		goto oom;
1744	VM_BUG_ON(old_page == ZERO_PAGE(0));
1745	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1746	if (!new_page)
1747		goto oom;
1748	cow_user_page(new_page, old_page, address, vma);
1749	__SetPageUptodate(new_page);
1750
1751	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1752		goto oom_free_new;
1753
1754	/*
1755	 * Re-check the pte - we dropped the lock
1756	 */
1757	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1758	if (likely(pte_same(*page_table, orig_pte))) {
1759		if (old_page) {
1760			page_remove_rmap(old_page, vma);
1761			if (!PageAnon(old_page)) {
1762				dec_mm_counter(mm, file_rss);
1763				inc_mm_counter(mm, anon_rss);
1764			}
1765		} else
1766			inc_mm_counter(mm, anon_rss);
1767		flush_cache_page(vma, address, pte_pfn(orig_pte));
1768		entry = mk_pte(new_page, vma->vm_page_prot);
1769		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1770		/*
1771		 * Clear the pte entry and flush it first, before updating the
1772		 * pte with the new entry. This will avoid a race condition
1773		 * seen in the presence of one thread doing SMC and another
1774		 * thread doing COW.
1775		 */
1776		ptep_clear_flush(vma, address, page_table);
1777		set_pte_at(mm, address, page_table, entry);
1778		update_mmu_cache(vma, address, entry);
1779		lru_cache_add_active(new_page);
1780		page_add_new_anon_rmap(new_page, vma, address);
1781
1782		/* Free the old page.. */
1783		new_page = old_page;
1784		ret |= VM_FAULT_WRITE;
1785	} else
1786		mem_cgroup_uncharge_page(new_page);
1787
1788	if (new_page)
1789		page_cache_release(new_page);
1790	if (old_page)
1791		page_cache_release(old_page);
1792unlock:
1793	pte_unmap_unlock(page_table, ptl);
1794	if (dirty_page) {
1795		if (vma->vm_file)
1796			file_update_time(vma->vm_file);
1797
1798		/*
1799		 * Yes, Virginia, this is actually required to prevent a race
1800		 * with clear_page_dirty_for_io() from clearing the page dirty
1801		 * bit after it clear all dirty ptes, but before a racing
1802		 * do_wp_page installs a dirty pte.
1803		 *
1804		 * do_no_page is protected similarly.
1805		 */
1806		wait_on_page_locked(dirty_page);
1807		set_page_dirty_balance(dirty_page, page_mkwrite);
1808		put_page(dirty_page);
1809	}
1810	return ret;
1811oom_free_new:
1812	page_cache_release(new_page);
1813oom:
1814	if (old_page)
1815		page_cache_release(old_page);
1816	return VM_FAULT_OOM;
1817
1818unwritable_page:
1819	page_cache_release(old_page);
1820	return VM_FAULT_SIGBUS;
1821}
1822
1823/*
1824 * Helper functions for unmap_mapping_range().
1825 *
1826 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1827 *
1828 * We have to restart searching the prio_tree whenever we drop the lock,
1829 * since the iterator is only valid while the lock is held, and anyway
1830 * a later vma might be split and reinserted earlier while lock dropped.
1831 *
1832 * The list of nonlinear vmas could be handled more efficiently, using
1833 * a placeholder, but handle it in the same way until a need is shown.
1834 * It is important to search the prio_tree before nonlinear list: a vma
1835 * may become nonlinear and be shifted from prio_tree to nonlinear list
1836 * while the lock is dropped; but never shifted from list to prio_tree.
1837 *
1838 * In order to make forward progress despite restarting the search,
1839 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1840 * quickly skip it next time around.  Since the prio_tree search only
1841 * shows us those vmas affected by unmapping the range in question, we
1842 * can't efficiently keep all vmas in step with mapping->truncate_count:
1843 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1844 * mapping->truncate_count and vma->vm_truncate_count are protected by
1845 * i_mmap_lock.
1846 *
1847 * In order to make forward progress despite repeatedly restarting some
1848 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1849 * and restart from that address when we reach that vma again.  It might
1850 * have been split or merged, shrunk or extended, but never shifted: so
1851 * restart_addr remains valid so long as it remains in the vma's range.
1852 * unmap_mapping_range forces truncate_count to leap over page-aligned
1853 * values so we can save vma's restart_addr in its truncate_count field.
1854 */
1855#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1856
1857static void reset_vma_truncate_counts(struct address_space *mapping)
1858{
1859	struct vm_area_struct *vma;
1860	struct prio_tree_iter iter;
1861
1862	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1863		vma->vm_truncate_count = 0;
1864	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1865		vma->vm_truncate_count = 0;
1866}
1867
1868static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1869		unsigned long start_addr, unsigned long end_addr,
1870		struct zap_details *details)
1871{
1872	unsigned long restart_addr;
1873	int need_break;
1874
1875	/*
1876	 * files that support invalidating or truncating portions of the
1877	 * file from under mmaped areas must have their ->fault function
1878	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1879	 * This provides synchronisation against concurrent unmapping here.
1880	 */
1881
1882again:
1883	restart_addr = vma->vm_truncate_count;
1884	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1885		start_addr = restart_addr;
1886		if (start_addr >= end_addr) {
1887			/* Top of vma has been split off since last time */
1888			vma->vm_truncate_count = details->truncate_count;
1889			return 0;
1890		}
1891	}
1892
1893	restart_addr = zap_page_range(vma, start_addr,
1894					end_addr - start_addr, details);
1895	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1896
1897	if (restart_addr >= end_addr) {
1898		/* We have now completed this vma: mark it so */
1899		vma->vm_truncate_count = details->truncate_count;
1900		if (!need_break)
1901			return 0;
1902	} else {
1903		/* Note restart_addr in vma's truncate_count field */
1904		vma->vm_truncate_count = restart_addr;
1905		if (!need_break)
1906			goto again;
1907	}
1908
1909	spin_unlock(details->i_mmap_lock);
1910	cond_resched();
1911	spin_lock(details->i_mmap_lock);
1912	return -EINTR;
1913}
1914
1915static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1916					    struct zap_details *details)
1917{
1918	struct vm_area_struct *vma;
1919	struct prio_tree_iter iter;
1920	pgoff_t vba, vea, zba, zea;
1921
1922restart:
1923	vma_prio_tree_foreach(vma, &iter, root,
1924			details->first_index, details->last_index) {
1925		/* Skip quickly over those we have already dealt with */
1926		if (vma->vm_truncate_count == details->truncate_count)
1927			continue;
1928
1929		vba = vma->vm_pgoff;
1930		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1931		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1932		zba = details->first_index;
1933		if (zba < vba)
1934			zba = vba;
1935		zea = details->last_index;
1936		if (zea > vea)
1937			zea = vea;
1938
1939		if (unmap_mapping_range_vma(vma,
1940			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1941			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1942				details) < 0)
1943			goto restart;
1944	}
1945}
1946
1947static inline void unmap_mapping_range_list(struct list_head *head,
1948					    struct zap_details *details)
1949{
1950	struct vm_area_struct *vma;
1951
1952	/*
1953	 * In nonlinear VMAs there is no correspondence between virtual address
1954	 * offset and file offset.  So we must perform an exhaustive search
1955	 * across *all* the pages in each nonlinear VMA, not just the pages
1956	 * whose virtual address lies outside the file truncation point.
1957	 */
1958restart:
1959	list_for_each_entry(vma, head, shared.vm_set.list) {
1960		/* Skip quickly over those we have already dealt with */
1961		if (vma->vm_truncate_count == details->truncate_count)
1962			continue;
1963		details->nonlinear_vma = vma;
1964		if (unmap_mapping_range_vma(vma, vma->vm_start,
1965					vma->vm_end, details) < 0)
1966			goto restart;
1967	}
1968}
1969
1970/**
1971 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1972 * @mapping: the address space containing mmaps to be unmapped.
1973 * @holebegin: byte in first page to unmap, relative to the start of
1974 * the underlying file.  This will be rounded down to a PAGE_SIZE
1975 * boundary.  Note that this is different from vmtruncate(), which
1976 * must keep the partial page.  In contrast, we must get rid of
1977 * partial pages.
1978 * @holelen: size of prospective hole in bytes.  This will be rounded
1979 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1980 * end of the file.
1981 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1982 * but 0 when invalidating pagecache, don't throw away private data.
1983 */
1984void unmap_mapping_range(struct address_space *mapping,
1985		loff_t const holebegin, loff_t const holelen, int even_cows)
1986{
1987	struct zap_details details;
1988	pgoff_t hba = holebegin >> PAGE_SHIFT;
1989	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1990
1991	/* Check for overflow. */
1992	if (sizeof(holelen) > sizeof(hlen)) {
1993		long long holeend =
1994			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1995		if (holeend & ~(long long)ULONG_MAX)
1996			hlen = ULONG_MAX - hba + 1;
1997	}
1998
1999	details.check_mapping = even_cows? NULL: mapping;
2000	details.nonlinear_vma = NULL;
2001	details.first_index = hba;
2002	details.last_index = hba + hlen - 1;
2003	if (details.last_index < details.first_index)
2004		details.last_index = ULONG_MAX;
2005	details.i_mmap_lock = &mapping->i_mmap_lock;
2006
2007	spin_lock(&mapping->i_mmap_lock);
2008
2009	/* Protect against endless unmapping loops */
2010	mapping->truncate_count++;
2011	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2012		if (mapping->truncate_count == 0)
2013			reset_vma_truncate_counts(mapping);
2014		mapping->truncate_count++;
2015	}
2016	details.truncate_count = mapping->truncate_count;
2017
2018	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2019		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2020	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2021		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2022	spin_unlock(&mapping->i_mmap_lock);
2023}
2024EXPORT_SYMBOL(unmap_mapping_range);
2025
2026/**
2027 * vmtruncate - unmap mappings "freed" by truncate() syscall
2028 * @inode: inode of the file used
2029 * @offset: file offset to start truncating
2030 *
2031 * NOTE! We have to be ready to update the memory sharing
2032 * between the file and the memory map for a potential last
2033 * incomplete page.  Ugly, but necessary.
2034 */
2035int vmtruncate(struct inode * inode, loff_t offset)
2036{
2037	if (inode->i_size < offset) {
2038		unsigned long limit;
2039
2040		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2041		if (limit != RLIM_INFINITY && offset > limit)
2042			goto out_sig;
2043		if (offset > inode->i_sb->s_maxbytes)
2044			goto out_big;
2045		i_size_write(inode, offset);
2046	} else {
2047		struct address_space *mapping = inode->i_mapping;
2048
2049		/*
2050		 * truncation of in-use swapfiles is disallowed - it would
2051		 * cause subsequent swapout to scribble on the now-freed
2052		 * blocks.
2053		 */
2054		if (IS_SWAPFILE(inode))
2055			return -ETXTBSY;
2056		i_size_write(inode, offset);
2057
2058		/*
2059		 * unmap_mapping_range is called twice, first simply for
2060		 * efficiency so that truncate_inode_pages does fewer
2061		 * single-page unmaps.  However after this first call, and
2062		 * before truncate_inode_pages finishes, it is possible for
2063		 * private pages to be COWed, which remain after
2064		 * truncate_inode_pages finishes, hence the second
2065		 * unmap_mapping_range call must be made for correctness.
2066		 */
2067		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2068		truncate_inode_pages(mapping, offset);
2069		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2070	}
2071
2072	if (inode->i_op && inode->i_op->truncate)
2073		inode->i_op->truncate(inode);
2074	return 0;
2075
2076out_sig:
2077	send_sig(SIGXFSZ, current, 0);
2078out_big:
2079	return -EFBIG;
2080}
2081EXPORT_SYMBOL(vmtruncate);
2082
2083int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2084{
2085	struct address_space *mapping = inode->i_mapping;
2086
2087	/*
2088	 * If the underlying filesystem is not going to provide
2089	 * a way to truncate a range of blocks (punch a hole) -
2090	 * we should return failure right now.
2091	 */
2092	if (!inode->i_op || !inode->i_op->truncate_range)
2093		return -ENOSYS;
2094
2095	mutex_lock(&inode->i_mutex);
2096	down_write(&inode->i_alloc_sem);
2097	unmap_mapping_range(mapping, offset, (end - offset), 1);
2098	truncate_inode_pages_range(mapping, offset, end);
2099	unmap_mapping_range(mapping, offset, (end - offset), 1);
2100	inode->i_op->truncate_range(inode, offset, end);
2101	up_write(&inode->i_alloc_sem);
2102	mutex_unlock(&inode->i_mutex);
2103
2104	return 0;
2105}
2106
2107/*
2108 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2109 * but allow concurrent faults), and pte mapped but not yet locked.
2110 * We return with mmap_sem still held, but pte unmapped and unlocked.
2111 */
2112static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2113		unsigned long address, pte_t *page_table, pmd_t *pmd,
2114		int write_access, pte_t orig_pte)
2115{
2116	spinlock_t *ptl;
2117	struct page *page;
2118	swp_entry_t entry;
2119	pte_t pte;
2120	int ret = 0;
2121
2122	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2123		goto out;
2124
2125	entry = pte_to_swp_entry(orig_pte);
2126	if (is_migration_entry(entry)) {
2127		migration_entry_wait(mm, pmd, address);
2128		goto out;
2129	}
2130	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2131	page = lookup_swap_cache(entry);
2132	if (!page) {
2133		grab_swap_token(); /* Contend for token _before_ read-in */
2134		page = swapin_readahead(entry,
2135					GFP_HIGHUSER_MOVABLE, vma, address);
2136		if (!page) {
2137			/*
2138			 * Back out if somebody else faulted in this pte
2139			 * while we released the pte lock.
2140			 */
2141			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2142			if (likely(pte_same(*page_table, orig_pte)))
2143				ret = VM_FAULT_OOM;
2144			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2145			goto unlock;
2146		}
2147
2148		/* Had to read the page from swap area: Major fault */
2149		ret = VM_FAULT_MAJOR;
2150		count_vm_event(PGMAJFAULT);
2151	}
2152
2153	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2154		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2155		ret = VM_FAULT_OOM;
2156		goto out;
2157	}
2158
2159	mark_page_accessed(page);
2160	lock_page(page);
2161	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2162
2163	/*
2164	 * Back out if somebody else already faulted in this pte.
2165	 */
2166	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2167	if (unlikely(!pte_same(*page_table, orig_pte)))
2168		goto out_nomap;
2169
2170	if (unlikely(!PageUptodate(page))) {
2171		ret = VM_FAULT_SIGBUS;
2172		goto out_nomap;
2173	}
2174
2175	/* The page isn't present yet, go ahead with the fault. */
2176
2177	inc_mm_counter(mm, anon_rss);
2178	pte = mk_pte(page, vma->vm_page_prot);
2179	if (write_access && can_share_swap_page(page)) {
2180		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2181		write_access = 0;
2182	}
2183
2184	flush_icache_page(vma, page);
2185	set_pte_at(mm, address, page_table, pte);
2186	page_add_anon_rmap(page, vma, address);
2187
2188	swap_free(entry);
2189	if (vm_swap_full())
2190		remove_exclusive_swap_page(page);
2191	unlock_page(page);
2192
2193	if (write_access) {
2194		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2195		if (ret & VM_FAULT_ERROR)
2196			ret &= VM_FAULT_ERROR;
2197		goto out;
2198	}
2199
2200	/* No need to invalidate - it was non-present before */
2201	update_mmu_cache(vma, address, pte);
2202unlock:
2203	pte_unmap_unlock(page_table, ptl);
2204out:
2205	return ret;
2206out_nomap:
2207	mem_cgroup_uncharge_page(page);
2208	pte_unmap_unlock(page_table, ptl);
2209	unlock_page(page);
2210	page_cache_release(page);
2211	return ret;
2212}
2213
2214/*
2215 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2216 * but allow concurrent faults), and pte mapped but not yet locked.
2217 * We return with mmap_sem still held, but pte unmapped and unlocked.
2218 */
2219static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2220		unsigned long address, pte_t *page_table, pmd_t *pmd,
2221		int write_access)
2222{
2223	struct page *page;
2224	spinlock_t *ptl;
2225	pte_t entry;
2226
2227	/* Allocate our own private page. */
2228	pte_unmap(page_table);
2229
2230	if (unlikely(anon_vma_prepare(vma)))
2231		goto oom;
2232	page = alloc_zeroed_user_highpage_movable(vma, address);
2233	if (!page)
2234		goto oom;
2235	__SetPageUptodate(page);
2236
2237	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2238		goto oom_free_page;
2239
2240	entry = mk_pte(page, vma->vm_page_prot);
2241	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2242
2243	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2244	if (!pte_none(*page_table))
2245		goto release;
2246	inc_mm_counter(mm, anon_rss);
2247	lru_cache_add_active(page);
2248	page_add_new_anon_rmap(page, vma, address);
2249	set_pte_at(mm, address, page_table, entry);
2250
2251	/* No need to invalidate - it was non-present before */
2252	update_mmu_cache(vma, address, entry);
2253unlock:
2254	pte_unmap_unlock(page_table, ptl);
2255	return 0;
2256release:
2257	mem_cgroup_uncharge_page(page);
2258	page_cache_release(page);
2259	goto unlock;
2260oom_free_page:
2261	page_cache_release(page);
2262oom:
2263	return VM_FAULT_OOM;
2264}
2265
2266/*
2267 * __do_fault() tries to create a new page mapping. It aggressively
2268 * tries to share with existing pages, but makes a separate copy if
2269 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2270 * the next page fault.
2271 *
2272 * As this is called only for pages that do not currently exist, we
2273 * do not need to flush old virtual caches or the TLB.
2274 *
2275 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2276 * but allow concurrent faults), and pte neither mapped nor locked.
2277 * We return with mmap_sem still held, but pte unmapped and unlocked.
2278 */
2279static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2280		unsigned long address, pmd_t *pmd,
2281		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2282{
2283	pte_t *page_table;
2284	spinlock_t *ptl;
2285	struct page *page;
2286	pte_t entry;
2287	int anon = 0;
2288	struct page *dirty_page = NULL;
2289	struct vm_fault vmf;
2290	int ret;
2291	int page_mkwrite = 0;
2292
2293	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2294	vmf.pgoff = pgoff;
2295	vmf.flags = flags;
2296	vmf.page = NULL;
2297
2298	BUG_ON(vma->vm_flags & VM_PFNMAP);
2299
2300	ret = vma->vm_ops->fault(vma, &vmf);
2301	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2302		return ret;
2303
2304	/*
2305	 * For consistency in subsequent calls, make the faulted page always
2306	 * locked.
2307	 */
2308	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2309		lock_page(vmf.page);
2310	else
2311		VM_BUG_ON(!PageLocked(vmf.page));
2312
2313	/*
2314	 * Should we do an early C-O-W break?
2315	 */
2316	page = vmf.page;
2317	if (flags & FAULT_FLAG_WRITE) {
2318		if (!(vma->vm_flags & VM_SHARED)) {
2319			anon = 1;
2320			if (unlikely(anon_vma_prepare(vma))) {
2321				ret = VM_FAULT_OOM;
2322				goto out;
2323			}
2324			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2325						vma, address);
2326			if (!page) {
2327				ret = VM_FAULT_OOM;
2328				goto out;
2329			}
2330			copy_user_highpage(page, vmf.page, address, vma);
2331			__SetPageUptodate(page);
2332		} else {
2333			/*
2334			 * If the page will be shareable, see if the backing
2335			 * address space wants to know that the page is about
2336			 * to become writable
2337			 */
2338			if (vma->vm_ops->page_mkwrite) {
2339				unlock_page(page);
2340				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2341					ret = VM_FAULT_SIGBUS;
2342					anon = 1; /* no anon but release vmf.page */
2343					goto out_unlocked;
2344				}
2345				lock_page(page);
2346				/*
2347				 * XXX: this is not quite right (racy vs
2348				 * invalidate) to unlock and relock the page
2349				 * like this, however a better fix requires
2350				 * reworking page_mkwrite locking API, which
2351				 * is better done later.
2352				 */
2353				if (!page->mapping) {
2354					ret = 0;
2355					anon = 1; /* no anon but release vmf.page */
2356					goto out;
2357				}
2358				page_mkwrite = 1;
2359			}
2360		}
2361
2362	}
2363
2364	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2365		ret = VM_FAULT_OOM;
2366		goto out;
2367	}
2368
2369	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2370
2371	/*
2372	 * This silly early PAGE_DIRTY setting removes a race
2373	 * due to the bad i386 page protection. But it's valid
2374	 * for other architectures too.
2375	 *
2376	 * Note that if write_access is true, we either now have
2377	 * an exclusive copy of the page, or this is a shared mapping,
2378	 * so we can make it writable and dirty to avoid having to
2379	 * handle that later.
2380	 */
2381	/* Only go through if we didn't race with anybody else... */
2382	if (likely(pte_same(*page_table, orig_pte))) {
2383		flush_icache_page(vma, page);
2384		entry = mk_pte(page, vma->vm_page_prot);
2385		if (flags & FAULT_FLAG_WRITE)
2386			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2387		set_pte_at(mm, address, page_table, entry);
2388		if (anon) {
2389                        inc_mm_counter(mm, anon_rss);
2390                        lru_cache_add_active(page);
2391                        page_add_new_anon_rmap(page, vma, address);
2392		} else {
2393			inc_mm_counter(mm, file_rss);
2394			page_add_file_rmap(page);
2395			if (flags & FAULT_FLAG_WRITE) {
2396				dirty_page = page;
2397				get_page(dirty_page);
2398			}
2399		}
2400
2401		/* no need to invalidate: a not-present page won't be cached */
2402		update_mmu_cache(vma, address, entry);
2403	} else {
2404		mem_cgroup_uncharge_page(page);
2405		if (anon)
2406			page_cache_release(page);
2407		else
2408			anon = 1; /* no anon but release faulted_page */
2409	}
2410
2411	pte_unmap_unlock(page_table, ptl);
2412
2413out:
2414	unlock_page(vmf.page);
2415out_unlocked:
2416	if (anon)
2417		page_cache_release(vmf.page);
2418	else if (dirty_page) {
2419		if (vma->vm_file)
2420			file_update_time(vma->vm_file);
2421
2422		set_page_dirty_balance(dirty_page, page_mkwrite);
2423		put_page(dirty_page);
2424	}
2425
2426	return ret;
2427}
2428
2429static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2430		unsigned long address, pte_t *page_table, pmd_t *pmd,
2431		int write_access, pte_t orig_pte)
2432{
2433	pgoff_t pgoff = (((address & PAGE_MASK)
2434			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2435	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2436
2437	pte_unmap(page_table);
2438	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2439}
2440
2441
2442/*
2443 * do_no_pfn() tries to create a new page mapping for a page without
2444 * a struct_page backing it
2445 *
2446 * As this is called only for pages that do not currently exist, we
2447 * do not need to flush old virtual caches or the TLB.
2448 *
2449 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2450 * but allow concurrent faults), and pte mapped but not yet locked.
2451 * We return with mmap_sem still held, but pte unmapped and unlocked.
2452 *
2453 * It is expected that the ->nopfn handler always returns the same pfn
2454 * for a given virtual mapping.
2455 *
2456 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2457 */
2458static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2459		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2460		     int write_access)
2461{
2462	spinlock_t *ptl;
2463	pte_t entry;
2464	unsigned long pfn;
2465
2466	pte_unmap(page_table);
2467	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2468	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2469
2470	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2471
2472	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2473
2474	if (unlikely(pfn == NOPFN_OOM))
2475		return VM_FAULT_OOM;
2476	else if (unlikely(pfn == NOPFN_SIGBUS))
2477		return VM_FAULT_SIGBUS;
2478	else if (unlikely(pfn == NOPFN_REFAULT))
2479		return 0;
2480
2481	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2482
2483	/* Only go through if we didn't race with anybody else... */
2484	if (pte_none(*page_table)) {
2485		entry = pfn_pte(pfn, vma->vm_page_prot);
2486		if (write_access)
2487			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2488		set_pte_at(mm, address, page_table, entry);
2489	}
2490	pte_unmap_unlock(page_table, ptl);
2491	return 0;
2492}
2493
2494/*
2495 * Fault of a previously existing named mapping. Repopulate the pte
2496 * from the encoded file_pte if possible. This enables swappable
2497 * nonlinear vmas.
2498 *
2499 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2500 * but allow concurrent faults), and pte mapped but not yet locked.
2501 * We return with mmap_sem still held, but pte unmapped and unlocked.
2502 */
2503static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2504		unsigned long address, pte_t *page_table, pmd_t *pmd,
2505		int write_access, pte_t orig_pte)
2506{
2507	unsigned int flags = FAULT_FLAG_NONLINEAR |
2508				(write_access ? FAULT_FLAG_WRITE : 0);
2509	pgoff_t pgoff;
2510
2511	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2512		return 0;
2513
2514	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2515			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2516		/*
2517		 * Page table corrupted: show pte and kill process.
2518		 */
2519		print_bad_pte(vma, orig_pte, address);
2520		return VM_FAULT_OOM;
2521	}
2522
2523	pgoff = pte_to_pgoff(orig_pte);
2524	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2525}
2526
2527/*
2528 * These routines also need to handle stuff like marking pages dirty
2529 * and/or accessed for architectures that don't do it in hardware (most
2530 * RISC architectures).  The early dirtying is also good on the i386.
2531 *
2532 * There is also a hook called "update_mmu_cache()" that architectures
2533 * with external mmu caches can use to update those (ie the Sparc or
2534 * PowerPC hashed page tables that act as extended TLBs).
2535 *
2536 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2537 * but allow concurrent faults), and pte mapped but not yet locked.
2538 * We return with mmap_sem still held, but pte unmapped and unlocked.
2539 */
2540static inline int handle_pte_fault(struct mm_struct *mm,
2541		struct vm_area_struct *vma, unsigned long address,
2542		pte_t *pte, pmd_t *pmd, int write_access)
2543{
2544	pte_t entry;
2545	spinlock_t *ptl;
2546
2547	entry = *pte;
2548	if (!pte_present(entry)) {
2549		if (pte_none(entry)) {
2550			if (vma->vm_ops) {
2551				if (likely(vma->vm_ops->fault))
2552					return do_linear_fault(mm, vma, address,
2553						pte, pmd, write_access, entry);
2554				if (unlikely(vma->vm_ops->nopfn))
2555					return do_no_pfn(mm, vma, address, pte,
2556							 pmd, write_access);
2557			}
2558			return do_anonymous_page(mm, vma, address,
2559						 pte, pmd, write_access);
2560		}
2561		if (pte_file(entry))
2562			return do_nonlinear_fault(mm, vma, address,
2563					pte, pmd, write_access, entry);
2564		return do_swap_page(mm, vma, address,
2565					pte, pmd, write_access, entry);
2566	}
2567
2568	ptl = pte_lockptr(mm, pmd);
2569	spin_lock(ptl);
2570	if (unlikely(!pte_same(*pte, entry)))
2571		goto unlock;
2572	if (write_access) {
2573		if (!pte_write(entry))
2574			return do_wp_page(mm, vma, address,
2575					pte, pmd, ptl, entry);
2576		entry = pte_mkdirty(entry);
2577	}
2578	entry = pte_mkyoung(entry);
2579	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2580		update_mmu_cache(vma, address, entry);
2581	} else {
2582		/*
2583		 * This is needed only for protection faults but the arch code
2584		 * is not yet telling us if this is a protection fault or not.
2585		 * This still avoids useless tlb flushes for .text page faults
2586		 * with threads.
2587		 */
2588		if (write_access)
2589			flush_tlb_page(vma, address);
2590	}
2591unlock:
2592	pte_unmap_unlock(pte, ptl);
2593	return 0;
2594}
2595
2596/*
2597 * By the time we get here, we already hold the mm semaphore
2598 */
2599int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2600		unsigned long address, int write_access)
2601{
2602	pgd_t *pgd;
2603	pud_t *pud;
2604	pmd_t *pmd;
2605	pte_t *pte;
2606
2607	__set_current_state(TASK_RUNNING);
2608
2609	count_vm_event(PGFAULT);
2610
2611	if (unlikely(is_vm_hugetlb_page(vma)))
2612		return hugetlb_fault(mm, vma, address, write_access);
2613
2614	pgd = pgd_offset(mm, address);
2615	pud = pud_alloc(mm, pgd, address);
2616	if (!pud)
2617		return VM_FAULT_OOM;
2618	pmd = pmd_alloc(mm, pud, address);
2619	if (!pmd)
2620		return VM_FAULT_OOM;
2621	pte = pte_alloc_map(mm, pmd, address);
2622	if (!pte)
2623		return VM_FAULT_OOM;
2624
2625	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2626}
2627
2628#ifndef __PAGETABLE_PUD_FOLDED
2629/*
2630 * Allocate page upper directory.
2631 * We've already handled the fast-path in-line.
2632 */
2633int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2634{
2635	pud_t *new = pud_alloc_one(mm, address);
2636	if (!new)
2637		return -ENOMEM;
2638
2639	smp_wmb(); /* See comment in __pte_alloc */
2640
2641	spin_lock(&mm->page_table_lock);
2642	if (pgd_present(*pgd))		/* Another has populated it */
2643		pud_free(mm, new);
2644	else
2645		pgd_populate(mm, pgd, new);
2646	spin_unlock(&mm->page_table_lock);
2647	return 0;
2648}
2649#endif /* __PAGETABLE_PUD_FOLDED */
2650
2651#ifndef __PAGETABLE_PMD_FOLDED
2652/*
2653 * Allocate page middle directory.
2654 * We've already handled the fast-path in-line.
2655 */
2656int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2657{
2658	pmd_t *new = pmd_alloc_one(mm, address);
2659	if (!new)
2660		return -ENOMEM;
2661
2662	smp_wmb(); /* See comment in __pte_alloc */
2663
2664	spin_lock(&mm->page_table_lock);
2665#ifndef __ARCH_HAS_4LEVEL_HACK
2666	if (pud_present(*pud))		/* Another has populated it */
2667		pmd_free(mm, new);
2668	else
2669		pud_populate(mm, pud, new);
2670#else
2671	if (pgd_present(*pud))		/* Another has populated it */
2672		pmd_free(mm, new);
2673	else
2674		pgd_populate(mm, pud, new);
2675#endif /* __ARCH_HAS_4LEVEL_HACK */
2676	spin_unlock(&mm->page_table_lock);
2677	return 0;
2678}
2679#endif /* __PAGETABLE_PMD_FOLDED */
2680
2681int make_pages_present(unsigned long addr, unsigned long end)
2682{
2683	int ret, len, write;
2684	struct vm_area_struct * vma;
2685
2686	vma = find_vma(current->mm, addr);
2687	if (!vma)
2688		return -1;
2689	write = (vma->vm_flags & VM_WRITE) != 0;
2690	BUG_ON(addr >= end);
2691	BUG_ON(end > vma->vm_end);
2692	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2693	ret = get_user_pages(current, current->mm, addr,
2694			len, write, 0, NULL, NULL);
2695	if (ret < 0)
2696		return ret;
2697	return ret == len ? 0 : -1;
2698}
2699
2700#if !defined(__HAVE_ARCH_GATE_AREA)
2701
2702#if defined(AT_SYSINFO_EHDR)
2703static struct vm_area_struct gate_vma;
2704
2705static int __init gate_vma_init(void)
2706{
2707	gate_vma.vm_mm = NULL;
2708	gate_vma.vm_start = FIXADDR_USER_START;
2709	gate_vma.vm_end = FIXADDR_USER_END;
2710	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2711	gate_vma.vm_page_prot = __P101;
2712	/*
2713	 * Make sure the vDSO gets into every core dump.
2714	 * Dumping its contents makes post-mortem fully interpretable later
2715	 * without matching up the same kernel and hardware config to see
2716	 * what PC values meant.
2717	 */
2718	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2719	return 0;
2720}
2721__initcall(gate_vma_init);
2722#endif
2723
2724struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2725{
2726#ifdef AT_SYSINFO_EHDR
2727	return &gate_vma;
2728#else
2729	return NULL;
2730#endif
2731}
2732
2733int in_gate_area_no_task(unsigned long addr)
2734{
2735#ifdef AT_SYSINFO_EHDR
2736	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2737		return 1;
2738#endif
2739	return 0;
2740}
2741
2742#endif	/* __HAVE_ARCH_GATE_AREA */
2743
2744/*
2745 * Access another process' address space.
2746 * Source/target buffer must be kernel space,
2747 * Do not walk the page table directly, use get_user_pages
2748 */
2749int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2750{
2751	struct mm_struct *mm;
2752	struct vm_area_struct *vma;
2753	struct page *page;
2754	void *old_buf = buf;
2755
2756	mm = get_task_mm(tsk);
2757	if (!mm)
2758		return 0;
2759
2760	down_read(&mm->mmap_sem);
2761	/* ignore errors, just check how much was successfully transferred */
2762	while (len) {
2763		int bytes, ret, offset;
2764		void *maddr;
2765
2766		ret = get_user_pages(tsk, mm, addr, 1,
2767				write, 1, &page, &vma);
2768		if (ret <= 0)
2769			break;
2770
2771		bytes = len;
2772		offset = addr & (PAGE_SIZE-1);
2773		if (bytes > PAGE_SIZE-offset)
2774			bytes = PAGE_SIZE-offset;
2775
2776		maddr = kmap(page);
2777		if (write) {
2778			copy_to_user_page(vma, page, addr,
2779					  maddr + offset, buf, bytes);
2780			set_page_dirty_lock(page);
2781		} else {
2782			copy_from_user_page(vma, page, addr,
2783					    buf, maddr + offset, bytes);
2784		}
2785		kunmap(page);
2786		page_cache_release(page);
2787		len -= bytes;
2788		buf += bytes;
2789		addr += bytes;
2790	}
2791	up_read(&mm->mmap_sem);
2792	mmput(mm);
2793
2794	return buf - old_buf;
2795}
2796
2797/*
2798 * Print the name of a VMA.
2799 */
2800void print_vma_addr(char *prefix, unsigned long ip)
2801{
2802	struct mm_struct *mm = current->mm;
2803	struct vm_area_struct *vma;
2804
2805	/*
2806	 * Do not print if we are in atomic
2807	 * contexts (in exception stacks, etc.):
2808	 */
2809	if (preempt_count())
2810		return;
2811
2812	down_read(&mm->mmap_sem);
2813	vma = find_vma(mm, ip);
2814	if (vma && vma->vm_file) {
2815		struct file *f = vma->vm_file;
2816		char *buf = (char *)__get_free_page(GFP_KERNEL);
2817		if (buf) {
2818			char *p, *s;
2819
2820			p = d_path(&f->f_path, buf, PAGE_SIZE);
2821			if (IS_ERR(p))
2822				p = "?";
2823			s = strrchr(p, '/');
2824			if (s)
2825				p = s+1;
2826			printk("%s%s[%lx+%lx]", prefix, p,
2827					vma->vm_start,
2828					vma->vm_end - vma->vm_start);
2829			free_page((unsigned long)buf);
2830		}
2831	}
2832	up_read(&current->mm->mmap_sem);
2833}
2834