memory.c revision 3b6748e2dd69906af3835db4dc9d1c8a3ee4c68c
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53#include <linux/memcontrol.h>
54#include <linux/mmu_notifier.h>
55#include <linux/kallsyms.h>
56#include <linux/swapops.h>
57#include <linux/elf.h>
58
59#include <asm/pgalloc.h>
60#include <asm/uaccess.h>
61#include <asm/tlb.h>
62#include <asm/tlbflush.h>
63#include <asm/pgtable.h>
64
65#include "internal.h"
66
67#ifndef CONFIG_NEED_MULTIPLE_NODES
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
88
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 *   as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97					1;
98#else
99					2;
100#endif
101
102static int __init disable_randmaps(char *s)
103{
104	randomize_va_space = 0;
105	return 1;
106}
107__setup("norandmaps", disable_randmaps);
108
109
110/*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none.  Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116void pgd_clear_bad(pgd_t *pgd)
117{
118	pgd_ERROR(*pgd);
119	pgd_clear(pgd);
120}
121
122void pud_clear_bad(pud_t *pud)
123{
124	pud_ERROR(*pud);
125	pud_clear(pud);
126}
127
128void pmd_clear_bad(pmd_t *pmd)
129{
130	pmd_ERROR(*pmd);
131	pmd_clear(pmd);
132}
133
134/*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
138static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139{
140	pgtable_t token = pmd_pgtable(*pmd);
141	pmd_clear(pmd);
142	pte_free_tlb(tlb, token);
143	tlb->mm->nr_ptes--;
144}
145
146static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147				unsigned long addr, unsigned long end,
148				unsigned long floor, unsigned long ceiling)
149{
150	pmd_t *pmd;
151	unsigned long next;
152	unsigned long start;
153
154	start = addr;
155	pmd = pmd_offset(pud, addr);
156	do {
157		next = pmd_addr_end(addr, end);
158		if (pmd_none_or_clear_bad(pmd))
159			continue;
160		free_pte_range(tlb, pmd);
161	} while (pmd++, addr = next, addr != end);
162
163	start &= PUD_MASK;
164	if (start < floor)
165		return;
166	if (ceiling) {
167		ceiling &= PUD_MASK;
168		if (!ceiling)
169			return;
170	}
171	if (end - 1 > ceiling - 1)
172		return;
173
174	pmd = pmd_offset(pud, start);
175	pud_clear(pud);
176	pmd_free_tlb(tlb, pmd);
177}
178
179static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180				unsigned long addr, unsigned long end,
181				unsigned long floor, unsigned long ceiling)
182{
183	pud_t *pud;
184	unsigned long next;
185	unsigned long start;
186
187	start = addr;
188	pud = pud_offset(pgd, addr);
189	do {
190		next = pud_addr_end(addr, end);
191		if (pud_none_or_clear_bad(pud))
192			continue;
193		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194	} while (pud++, addr = next, addr != end);
195
196	start &= PGDIR_MASK;
197	if (start < floor)
198		return;
199	if (ceiling) {
200		ceiling &= PGDIR_MASK;
201		if (!ceiling)
202			return;
203	}
204	if (end - 1 > ceiling - 1)
205		return;
206
207	pud = pud_offset(pgd, start);
208	pgd_clear(pgd);
209	pud_free_tlb(tlb, pud);
210}
211
212/*
213 * This function frees user-level page tables of a process.
214 *
215 * Must be called with pagetable lock held.
216 */
217void free_pgd_range(struct mmu_gather *tlb,
218			unsigned long addr, unsigned long end,
219			unsigned long floor, unsigned long ceiling)
220{
221	pgd_t *pgd;
222	unsigned long next;
223	unsigned long start;
224
225	/*
226	 * The next few lines have given us lots of grief...
227	 *
228	 * Why are we testing PMD* at this top level?  Because often
229	 * there will be no work to do at all, and we'd prefer not to
230	 * go all the way down to the bottom just to discover that.
231	 *
232	 * Why all these "- 1"s?  Because 0 represents both the bottom
233	 * of the address space and the top of it (using -1 for the
234	 * top wouldn't help much: the masks would do the wrong thing).
235	 * The rule is that addr 0 and floor 0 refer to the bottom of
236	 * the address space, but end 0 and ceiling 0 refer to the top
237	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238	 * that end 0 case should be mythical).
239	 *
240	 * Wherever addr is brought up or ceiling brought down, we must
241	 * be careful to reject "the opposite 0" before it confuses the
242	 * subsequent tests.  But what about where end is brought down
243	 * by PMD_SIZE below? no, end can't go down to 0 there.
244	 *
245	 * Whereas we round start (addr) and ceiling down, by different
246	 * masks at different levels, in order to test whether a table
247	 * now has no other vmas using it, so can be freed, we don't
248	 * bother to round floor or end up - the tests don't need that.
249	 */
250
251	addr &= PMD_MASK;
252	if (addr < floor) {
253		addr += PMD_SIZE;
254		if (!addr)
255			return;
256	}
257	if (ceiling) {
258		ceiling &= PMD_MASK;
259		if (!ceiling)
260			return;
261	}
262	if (end - 1 > ceiling - 1)
263		end -= PMD_SIZE;
264	if (addr > end - 1)
265		return;
266
267	start = addr;
268	pgd = pgd_offset(tlb->mm, addr);
269	do {
270		next = pgd_addr_end(addr, end);
271		if (pgd_none_or_clear_bad(pgd))
272			continue;
273		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274	} while (pgd++, addr = next, addr != end);
275}
276
277void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278		unsigned long floor, unsigned long ceiling)
279{
280	while (vma) {
281		struct vm_area_struct *next = vma->vm_next;
282		unsigned long addr = vma->vm_start;
283
284		/*
285		 * Hide vma from rmap and vmtruncate before freeing pgtables
286		 */
287		anon_vma_unlink(vma);
288		unlink_file_vma(vma);
289
290		if (is_vm_hugetlb_page(vma)) {
291			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292				floor, next? next->vm_start: ceiling);
293		} else {
294			/*
295			 * Optimization: gather nearby vmas into one call down
296			 */
297			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298			       && !is_vm_hugetlb_page(next)) {
299				vma = next;
300				next = vma->vm_next;
301				anon_vma_unlink(vma);
302				unlink_file_vma(vma);
303			}
304			free_pgd_range(tlb, addr, vma->vm_end,
305				floor, next? next->vm_start: ceiling);
306		}
307		vma = next;
308	}
309}
310
311int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312{
313	pgtable_t new = pte_alloc_one(mm, address);
314	if (!new)
315		return -ENOMEM;
316
317	/*
318	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319	 * visible before the pte is made visible to other CPUs by being
320	 * put into page tables.
321	 *
322	 * The other side of the story is the pointer chasing in the page
323	 * table walking code (when walking the page table without locking;
324	 * ie. most of the time). Fortunately, these data accesses consist
325	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326	 * being the notable exception) will already guarantee loads are
327	 * seen in-order. See the alpha page table accessors for the
328	 * smp_read_barrier_depends() barriers in page table walking code.
329	 */
330	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
332	spin_lock(&mm->page_table_lock);
333	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334		mm->nr_ptes++;
335		pmd_populate(mm, pmd, new);
336		new = NULL;
337	}
338	spin_unlock(&mm->page_table_lock);
339	if (new)
340		pte_free(mm, new);
341	return 0;
342}
343
344int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345{
346	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347	if (!new)
348		return -ENOMEM;
349
350	smp_wmb(); /* See comment in __pte_alloc */
351
352	spin_lock(&init_mm.page_table_lock);
353	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354		pmd_populate_kernel(&init_mm, pmd, new);
355		new = NULL;
356	}
357	spin_unlock(&init_mm.page_table_lock);
358	if (new)
359		pte_free_kernel(&init_mm, new);
360	return 0;
361}
362
363static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364{
365	if (file_rss)
366		add_mm_counter(mm, file_rss, file_rss);
367	if (anon_rss)
368		add_mm_counter(mm, anon_rss, anon_rss);
369}
370
371/*
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
375 *
376 * The calling function must still handle the error.
377 */
378static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379			  pte_t pte, struct page *page)
380{
381	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382	pud_t *pud = pud_offset(pgd, addr);
383	pmd_t *pmd = pmd_offset(pud, addr);
384	struct address_space *mapping;
385	pgoff_t index;
386	static unsigned long resume;
387	static unsigned long nr_shown;
388	static unsigned long nr_unshown;
389
390	/*
391	 * Allow a burst of 60 reports, then keep quiet for that minute;
392	 * or allow a steady drip of one report per second.
393	 */
394	if (nr_shown == 60) {
395		if (time_before(jiffies, resume)) {
396			nr_unshown++;
397			return;
398		}
399		if (nr_unshown) {
400			printk(KERN_ALERT
401				"BUG: Bad page map: %lu messages suppressed\n",
402				nr_unshown);
403			nr_unshown = 0;
404		}
405		nr_shown = 0;
406	}
407	if (nr_shown++ == 0)
408		resume = jiffies + 60 * HZ;
409
410	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
411	index = linear_page_index(vma, addr);
412
413	printk(KERN_ALERT
414		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
415		current->comm,
416		(long long)pte_val(pte), (long long)pmd_val(*pmd));
417	if (page) {
418		printk(KERN_ALERT
419		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
420		page, (void *)page->flags, page_count(page),
421		page_mapcount(page), page->mapping, page->index);
422	}
423	printk(KERN_ALERT
424		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
425		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
426	/*
427	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
428	 */
429	if (vma->vm_ops)
430		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
431				(unsigned long)vma->vm_ops->fault);
432	if (vma->vm_file && vma->vm_file->f_op)
433		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
434				(unsigned long)vma->vm_file->f_op->mmap);
435	dump_stack();
436	add_taint(TAINT_BAD_PAGE);
437}
438
439static inline int is_cow_mapping(unsigned int flags)
440{
441	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
442}
443
444/*
445 * vm_normal_page -- This function gets the "struct page" associated with a pte.
446 *
447 * "Special" mappings do not wish to be associated with a "struct page" (either
448 * it doesn't exist, or it exists but they don't want to touch it). In this
449 * case, NULL is returned here. "Normal" mappings do have a struct page.
450 *
451 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
452 * pte bit, in which case this function is trivial. Secondly, an architecture
453 * may not have a spare pte bit, which requires a more complicated scheme,
454 * described below.
455 *
456 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
457 * special mapping (even if there are underlying and valid "struct pages").
458 * COWed pages of a VM_PFNMAP are always normal.
459 *
460 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
461 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
462 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
463 * mapping will always honor the rule
464 *
465 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
466 *
467 * And for normal mappings this is false.
468 *
469 * This restricts such mappings to be a linear translation from virtual address
470 * to pfn. To get around this restriction, we allow arbitrary mappings so long
471 * as the vma is not a COW mapping; in that case, we know that all ptes are
472 * special (because none can have been COWed).
473 *
474 *
475 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
476 *
477 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
478 * page" backing, however the difference is that _all_ pages with a struct
479 * page (that is, those where pfn_valid is true) are refcounted and considered
480 * normal pages by the VM. The disadvantage is that pages are refcounted
481 * (which can be slower and simply not an option for some PFNMAP users). The
482 * advantage is that we don't have to follow the strict linearity rule of
483 * PFNMAP mappings in order to support COWable mappings.
484 *
485 */
486#ifdef __HAVE_ARCH_PTE_SPECIAL
487# define HAVE_PTE_SPECIAL 1
488#else
489# define HAVE_PTE_SPECIAL 0
490#endif
491struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
492				pte_t pte)
493{
494	unsigned long pfn = pte_pfn(pte);
495
496	if (HAVE_PTE_SPECIAL) {
497		if (likely(!pte_special(pte)))
498			goto check_pfn;
499		if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
500			print_bad_pte(vma, addr, pte, NULL);
501		return NULL;
502	}
503
504	/* !HAVE_PTE_SPECIAL case follows: */
505
506	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
507		if (vma->vm_flags & VM_MIXEDMAP) {
508			if (!pfn_valid(pfn))
509				return NULL;
510			goto out;
511		} else {
512			unsigned long off;
513			off = (addr - vma->vm_start) >> PAGE_SHIFT;
514			if (pfn == vma->vm_pgoff + off)
515				return NULL;
516			if (!is_cow_mapping(vma->vm_flags))
517				return NULL;
518		}
519	}
520
521check_pfn:
522	if (unlikely(pfn > highest_memmap_pfn)) {
523		print_bad_pte(vma, addr, pte, NULL);
524		return NULL;
525	}
526
527	/*
528	 * NOTE! We still have PageReserved() pages in the page tables.
529	 * eg. VDSO mappings can cause them to exist.
530	 */
531out:
532	return pfn_to_page(pfn);
533}
534
535/*
536 * copy one vm_area from one task to the other. Assumes the page tables
537 * already present in the new task to be cleared in the whole range
538 * covered by this vma.
539 */
540
541static inline void
542copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
544		unsigned long addr, int *rss)
545{
546	unsigned long vm_flags = vma->vm_flags;
547	pte_t pte = *src_pte;
548	struct page *page;
549
550	/* pte contains position in swap or file, so copy. */
551	if (unlikely(!pte_present(pte))) {
552		if (!pte_file(pte)) {
553			swp_entry_t entry = pte_to_swp_entry(pte);
554
555			swap_duplicate(entry);
556			/* make sure dst_mm is on swapoff's mmlist. */
557			if (unlikely(list_empty(&dst_mm->mmlist))) {
558				spin_lock(&mmlist_lock);
559				if (list_empty(&dst_mm->mmlist))
560					list_add(&dst_mm->mmlist,
561						 &src_mm->mmlist);
562				spin_unlock(&mmlist_lock);
563			}
564			if (is_write_migration_entry(entry) &&
565					is_cow_mapping(vm_flags)) {
566				/*
567				 * COW mappings require pages in both parent
568				 * and child to be set to read.
569				 */
570				make_migration_entry_read(&entry);
571				pte = swp_entry_to_pte(entry);
572				set_pte_at(src_mm, addr, src_pte, pte);
573			}
574		}
575		goto out_set_pte;
576	}
577
578	/*
579	 * If it's a COW mapping, write protect it both
580	 * in the parent and the child
581	 */
582	if (is_cow_mapping(vm_flags)) {
583		ptep_set_wrprotect(src_mm, addr, src_pte);
584		pte = pte_wrprotect(pte);
585	}
586
587	/*
588	 * If it's a shared mapping, mark it clean in
589	 * the child
590	 */
591	if (vm_flags & VM_SHARED)
592		pte = pte_mkclean(pte);
593	pte = pte_mkold(pte);
594
595	page = vm_normal_page(vma, addr, pte);
596	if (page) {
597		get_page(page);
598		page_dup_rmap(page, vma, addr);
599		rss[!!PageAnon(page)]++;
600	}
601
602out_set_pte:
603	set_pte_at(dst_mm, addr, dst_pte, pte);
604}
605
606static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
608		unsigned long addr, unsigned long end)
609{
610	pte_t *src_pte, *dst_pte;
611	spinlock_t *src_ptl, *dst_ptl;
612	int progress = 0;
613	int rss[2];
614
615again:
616	rss[1] = rss[0] = 0;
617	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
618	if (!dst_pte)
619		return -ENOMEM;
620	src_pte = pte_offset_map_nested(src_pmd, addr);
621	src_ptl = pte_lockptr(src_mm, src_pmd);
622	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
623	arch_enter_lazy_mmu_mode();
624
625	do {
626		/*
627		 * We are holding two locks at this point - either of them
628		 * could generate latencies in another task on another CPU.
629		 */
630		if (progress >= 32) {
631			progress = 0;
632			if (need_resched() ||
633			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
634				break;
635		}
636		if (pte_none(*src_pte)) {
637			progress++;
638			continue;
639		}
640		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
641		progress += 8;
642	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
643
644	arch_leave_lazy_mmu_mode();
645	spin_unlock(src_ptl);
646	pte_unmap_nested(src_pte - 1);
647	add_mm_rss(dst_mm, rss[0], rss[1]);
648	pte_unmap_unlock(dst_pte - 1, dst_ptl);
649	cond_resched();
650	if (addr != end)
651		goto again;
652	return 0;
653}
654
655static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
656		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
657		unsigned long addr, unsigned long end)
658{
659	pmd_t *src_pmd, *dst_pmd;
660	unsigned long next;
661
662	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
663	if (!dst_pmd)
664		return -ENOMEM;
665	src_pmd = pmd_offset(src_pud, addr);
666	do {
667		next = pmd_addr_end(addr, end);
668		if (pmd_none_or_clear_bad(src_pmd))
669			continue;
670		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
671						vma, addr, next))
672			return -ENOMEM;
673	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
674	return 0;
675}
676
677static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
678		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
679		unsigned long addr, unsigned long end)
680{
681	pud_t *src_pud, *dst_pud;
682	unsigned long next;
683
684	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
685	if (!dst_pud)
686		return -ENOMEM;
687	src_pud = pud_offset(src_pgd, addr);
688	do {
689		next = pud_addr_end(addr, end);
690		if (pud_none_or_clear_bad(src_pud))
691			continue;
692		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
693						vma, addr, next))
694			return -ENOMEM;
695	} while (dst_pud++, src_pud++, addr = next, addr != end);
696	return 0;
697}
698
699int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700		struct vm_area_struct *vma)
701{
702	pgd_t *src_pgd, *dst_pgd;
703	unsigned long next;
704	unsigned long addr = vma->vm_start;
705	unsigned long end = vma->vm_end;
706	int ret;
707
708	/*
709	 * Don't copy ptes where a page fault will fill them correctly.
710	 * Fork becomes much lighter when there are big shared or private
711	 * readonly mappings. The tradeoff is that copy_page_range is more
712	 * efficient than faulting.
713	 */
714	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
715		if (!vma->anon_vma)
716			return 0;
717	}
718
719	if (is_vm_hugetlb_page(vma))
720		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
721
722	if (unlikely(is_pfn_mapping(vma))) {
723		/*
724		 * We do not free on error cases below as remove_vma
725		 * gets called on error from higher level routine
726		 */
727		ret = track_pfn_vma_copy(vma);
728		if (ret)
729			return ret;
730	}
731
732	/*
733	 * We need to invalidate the secondary MMU mappings only when
734	 * there could be a permission downgrade on the ptes of the
735	 * parent mm. And a permission downgrade will only happen if
736	 * is_cow_mapping() returns true.
737	 */
738	if (is_cow_mapping(vma->vm_flags))
739		mmu_notifier_invalidate_range_start(src_mm, addr, end);
740
741	ret = 0;
742	dst_pgd = pgd_offset(dst_mm, addr);
743	src_pgd = pgd_offset(src_mm, addr);
744	do {
745		next = pgd_addr_end(addr, end);
746		if (pgd_none_or_clear_bad(src_pgd))
747			continue;
748		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
749					    vma, addr, next))) {
750			ret = -ENOMEM;
751			break;
752		}
753	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
754
755	if (is_cow_mapping(vma->vm_flags))
756		mmu_notifier_invalidate_range_end(src_mm,
757						  vma->vm_start, end);
758	return ret;
759}
760
761static unsigned long zap_pte_range(struct mmu_gather *tlb,
762				struct vm_area_struct *vma, pmd_t *pmd,
763				unsigned long addr, unsigned long end,
764				long *zap_work, struct zap_details *details)
765{
766	struct mm_struct *mm = tlb->mm;
767	pte_t *pte;
768	spinlock_t *ptl;
769	int file_rss = 0;
770	int anon_rss = 0;
771
772	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
773	arch_enter_lazy_mmu_mode();
774	do {
775		pte_t ptent = *pte;
776		if (pte_none(ptent)) {
777			(*zap_work)--;
778			continue;
779		}
780
781		(*zap_work) -= PAGE_SIZE;
782
783		if (pte_present(ptent)) {
784			struct page *page;
785
786			page = vm_normal_page(vma, addr, ptent);
787			if (unlikely(details) && page) {
788				/*
789				 * unmap_shared_mapping_pages() wants to
790				 * invalidate cache without truncating:
791				 * unmap shared but keep private pages.
792				 */
793				if (details->check_mapping &&
794				    details->check_mapping != page->mapping)
795					continue;
796				/*
797				 * Each page->index must be checked when
798				 * invalidating or truncating nonlinear.
799				 */
800				if (details->nonlinear_vma &&
801				    (page->index < details->first_index ||
802				     page->index > details->last_index))
803					continue;
804			}
805			ptent = ptep_get_and_clear_full(mm, addr, pte,
806							tlb->fullmm);
807			tlb_remove_tlb_entry(tlb, pte, addr);
808			if (unlikely(!page))
809				continue;
810			if (unlikely(details) && details->nonlinear_vma
811			    && linear_page_index(details->nonlinear_vma,
812						addr) != page->index)
813				set_pte_at(mm, addr, pte,
814					   pgoff_to_pte(page->index));
815			if (PageAnon(page))
816				anon_rss--;
817			else {
818				if (pte_dirty(ptent))
819					set_page_dirty(page);
820				if (pte_young(ptent) &&
821				    likely(!VM_SequentialReadHint(vma)))
822					mark_page_accessed(page);
823				file_rss--;
824			}
825			page_remove_rmap(page);
826			if (unlikely(page_mapcount(page) < 0))
827				print_bad_pte(vma, addr, ptent, page);
828			tlb_remove_page(tlb, page);
829			continue;
830		}
831		/*
832		 * If details->check_mapping, we leave swap entries;
833		 * if details->nonlinear_vma, we leave file entries.
834		 */
835		if (unlikely(details))
836			continue;
837		if (pte_file(ptent)) {
838			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
839				print_bad_pte(vma, addr, ptent, NULL);
840		} else if
841		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
842			print_bad_pte(vma, addr, ptent, NULL);
843		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
844	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
845
846	add_mm_rss(mm, file_rss, anon_rss);
847	arch_leave_lazy_mmu_mode();
848	pte_unmap_unlock(pte - 1, ptl);
849
850	return addr;
851}
852
853static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
854				struct vm_area_struct *vma, pud_t *pud,
855				unsigned long addr, unsigned long end,
856				long *zap_work, struct zap_details *details)
857{
858	pmd_t *pmd;
859	unsigned long next;
860
861	pmd = pmd_offset(pud, addr);
862	do {
863		next = pmd_addr_end(addr, end);
864		if (pmd_none_or_clear_bad(pmd)) {
865			(*zap_work)--;
866			continue;
867		}
868		next = zap_pte_range(tlb, vma, pmd, addr, next,
869						zap_work, details);
870	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
871
872	return addr;
873}
874
875static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
876				struct vm_area_struct *vma, pgd_t *pgd,
877				unsigned long addr, unsigned long end,
878				long *zap_work, struct zap_details *details)
879{
880	pud_t *pud;
881	unsigned long next;
882
883	pud = pud_offset(pgd, addr);
884	do {
885		next = pud_addr_end(addr, end);
886		if (pud_none_or_clear_bad(pud)) {
887			(*zap_work)--;
888			continue;
889		}
890		next = zap_pmd_range(tlb, vma, pud, addr, next,
891						zap_work, details);
892	} while (pud++, addr = next, (addr != end && *zap_work > 0));
893
894	return addr;
895}
896
897static unsigned long unmap_page_range(struct mmu_gather *tlb,
898				struct vm_area_struct *vma,
899				unsigned long addr, unsigned long end,
900				long *zap_work, struct zap_details *details)
901{
902	pgd_t *pgd;
903	unsigned long next;
904
905	if (details && !details->check_mapping && !details->nonlinear_vma)
906		details = NULL;
907
908	BUG_ON(addr >= end);
909	tlb_start_vma(tlb, vma);
910	pgd = pgd_offset(vma->vm_mm, addr);
911	do {
912		next = pgd_addr_end(addr, end);
913		if (pgd_none_or_clear_bad(pgd)) {
914			(*zap_work)--;
915			continue;
916		}
917		next = zap_pud_range(tlb, vma, pgd, addr, next,
918						zap_work, details);
919	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
920	tlb_end_vma(tlb, vma);
921
922	return addr;
923}
924
925#ifdef CONFIG_PREEMPT
926# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
927#else
928/* No preempt: go for improved straight-line efficiency */
929# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
930#endif
931
932/**
933 * unmap_vmas - unmap a range of memory covered by a list of vma's
934 * @tlbp: address of the caller's struct mmu_gather
935 * @vma: the starting vma
936 * @start_addr: virtual address at which to start unmapping
937 * @end_addr: virtual address at which to end unmapping
938 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
939 * @details: details of nonlinear truncation or shared cache invalidation
940 *
941 * Returns the end address of the unmapping (restart addr if interrupted).
942 *
943 * Unmap all pages in the vma list.
944 *
945 * We aim to not hold locks for too long (for scheduling latency reasons).
946 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
947 * return the ending mmu_gather to the caller.
948 *
949 * Only addresses between `start' and `end' will be unmapped.
950 *
951 * The VMA list must be sorted in ascending virtual address order.
952 *
953 * unmap_vmas() assumes that the caller will flush the whole unmapped address
954 * range after unmap_vmas() returns.  So the only responsibility here is to
955 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
956 * drops the lock and schedules.
957 */
958unsigned long unmap_vmas(struct mmu_gather **tlbp,
959		struct vm_area_struct *vma, unsigned long start_addr,
960		unsigned long end_addr, unsigned long *nr_accounted,
961		struct zap_details *details)
962{
963	long zap_work = ZAP_BLOCK_SIZE;
964	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
965	int tlb_start_valid = 0;
966	unsigned long start = start_addr;
967	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
968	int fullmm = (*tlbp)->fullmm;
969	struct mm_struct *mm = vma->vm_mm;
970
971	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
972	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
973		unsigned long end;
974
975		start = max(vma->vm_start, start_addr);
976		if (start >= vma->vm_end)
977			continue;
978		end = min(vma->vm_end, end_addr);
979		if (end <= vma->vm_start)
980			continue;
981
982		if (vma->vm_flags & VM_ACCOUNT)
983			*nr_accounted += (end - start) >> PAGE_SHIFT;
984
985		if (unlikely(is_pfn_mapping(vma)))
986			untrack_pfn_vma(vma, 0, 0);
987
988		while (start != end) {
989			if (!tlb_start_valid) {
990				tlb_start = start;
991				tlb_start_valid = 1;
992			}
993
994			if (unlikely(is_vm_hugetlb_page(vma))) {
995				/*
996				 * It is undesirable to test vma->vm_file as it
997				 * should be non-null for valid hugetlb area.
998				 * However, vm_file will be NULL in the error
999				 * cleanup path of do_mmap_pgoff. When
1000				 * hugetlbfs ->mmap method fails,
1001				 * do_mmap_pgoff() nullifies vma->vm_file
1002				 * before calling this function to clean up.
1003				 * Since no pte has actually been setup, it is
1004				 * safe to do nothing in this case.
1005				 */
1006				if (vma->vm_file) {
1007					unmap_hugepage_range(vma, start, end, NULL);
1008					zap_work -= (end - start) /
1009					pages_per_huge_page(hstate_vma(vma));
1010				}
1011
1012				start = end;
1013			} else
1014				start = unmap_page_range(*tlbp, vma,
1015						start, end, &zap_work, details);
1016
1017			if (zap_work > 0) {
1018				BUG_ON(start != end);
1019				break;
1020			}
1021
1022			tlb_finish_mmu(*tlbp, tlb_start, start);
1023
1024			if (need_resched() ||
1025				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1026				if (i_mmap_lock) {
1027					*tlbp = NULL;
1028					goto out;
1029				}
1030				cond_resched();
1031			}
1032
1033			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1034			tlb_start_valid = 0;
1035			zap_work = ZAP_BLOCK_SIZE;
1036		}
1037	}
1038out:
1039	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1040	return start;	/* which is now the end (or restart) address */
1041}
1042
1043/**
1044 * zap_page_range - remove user pages in a given range
1045 * @vma: vm_area_struct holding the applicable pages
1046 * @address: starting address of pages to zap
1047 * @size: number of bytes to zap
1048 * @details: details of nonlinear truncation or shared cache invalidation
1049 */
1050unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1051		unsigned long size, struct zap_details *details)
1052{
1053	struct mm_struct *mm = vma->vm_mm;
1054	struct mmu_gather *tlb;
1055	unsigned long end = address + size;
1056	unsigned long nr_accounted = 0;
1057
1058	lru_add_drain();
1059	tlb = tlb_gather_mmu(mm, 0);
1060	update_hiwater_rss(mm);
1061	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1062	if (tlb)
1063		tlb_finish_mmu(tlb, address, end);
1064	return end;
1065}
1066
1067/**
1068 * zap_vma_ptes - remove ptes mapping the vma
1069 * @vma: vm_area_struct holding ptes to be zapped
1070 * @address: starting address of pages to zap
1071 * @size: number of bytes to zap
1072 *
1073 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1074 *
1075 * The entire address range must be fully contained within the vma.
1076 *
1077 * Returns 0 if successful.
1078 */
1079int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1080		unsigned long size)
1081{
1082	if (address < vma->vm_start || address + size > vma->vm_end ||
1083	    		!(vma->vm_flags & VM_PFNMAP))
1084		return -1;
1085	zap_page_range(vma, address, size, NULL);
1086	return 0;
1087}
1088EXPORT_SYMBOL_GPL(zap_vma_ptes);
1089
1090/*
1091 * Do a quick page-table lookup for a single page.
1092 */
1093struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1094			unsigned int flags)
1095{
1096	pgd_t *pgd;
1097	pud_t *pud;
1098	pmd_t *pmd;
1099	pte_t *ptep, pte;
1100	spinlock_t *ptl;
1101	struct page *page;
1102	struct mm_struct *mm = vma->vm_mm;
1103
1104	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1105	if (!IS_ERR(page)) {
1106		BUG_ON(flags & FOLL_GET);
1107		goto out;
1108	}
1109
1110	page = NULL;
1111	pgd = pgd_offset(mm, address);
1112	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1113		goto no_page_table;
1114
1115	pud = pud_offset(pgd, address);
1116	if (pud_none(*pud))
1117		goto no_page_table;
1118	if (pud_huge(*pud)) {
1119		BUG_ON(flags & FOLL_GET);
1120		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1121		goto out;
1122	}
1123	if (unlikely(pud_bad(*pud)))
1124		goto no_page_table;
1125
1126	pmd = pmd_offset(pud, address);
1127	if (pmd_none(*pmd))
1128		goto no_page_table;
1129	if (pmd_huge(*pmd)) {
1130		BUG_ON(flags & FOLL_GET);
1131		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1132		goto out;
1133	}
1134	if (unlikely(pmd_bad(*pmd)))
1135		goto no_page_table;
1136
1137	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1138
1139	pte = *ptep;
1140	if (!pte_present(pte))
1141		goto no_page;
1142	if ((flags & FOLL_WRITE) && !pte_write(pte))
1143		goto unlock;
1144	page = vm_normal_page(vma, address, pte);
1145	if (unlikely(!page))
1146		goto bad_page;
1147
1148	if (flags & FOLL_GET)
1149		get_page(page);
1150	if (flags & FOLL_TOUCH) {
1151		if ((flags & FOLL_WRITE) &&
1152		    !pte_dirty(pte) && !PageDirty(page))
1153			set_page_dirty(page);
1154		/*
1155		 * pte_mkyoung() would be more correct here, but atomic care
1156		 * is needed to avoid losing the dirty bit: it is easier to use
1157		 * mark_page_accessed().
1158		 */
1159		mark_page_accessed(page);
1160	}
1161unlock:
1162	pte_unmap_unlock(ptep, ptl);
1163out:
1164	return page;
1165
1166bad_page:
1167	pte_unmap_unlock(ptep, ptl);
1168	return ERR_PTR(-EFAULT);
1169
1170no_page:
1171	pte_unmap_unlock(ptep, ptl);
1172	if (!pte_none(pte))
1173		return page;
1174	/* Fall through to ZERO_PAGE handling */
1175no_page_table:
1176	/*
1177	 * When core dumping an enormous anonymous area that nobody
1178	 * has touched so far, we don't want to allocate page tables.
1179	 */
1180	if (flags & FOLL_ANON) {
1181		page = ZERO_PAGE(0);
1182		if (flags & FOLL_GET)
1183			get_page(page);
1184		BUG_ON(flags & FOLL_WRITE);
1185	}
1186	return page;
1187}
1188
1189/* Can we do the FOLL_ANON optimization? */
1190static inline int use_zero_page(struct vm_area_struct *vma)
1191{
1192	/*
1193	 * We don't want to optimize FOLL_ANON for make_pages_present()
1194	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1195	 * we want to get the page from the page tables to make sure
1196	 * that we serialize and update with any other user of that
1197	 * mapping.
1198	 */
1199	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1200		return 0;
1201	/*
1202	 * And if we have a fault routine, it's not an anonymous region.
1203	 */
1204	return !vma->vm_ops || !vma->vm_ops->fault;
1205}
1206
1207
1208
1209int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1210		     unsigned long start, int len, int flags,
1211		struct page **pages, struct vm_area_struct **vmas)
1212{
1213	int i;
1214	unsigned int vm_flags = 0;
1215	int write = !!(flags & GUP_FLAGS_WRITE);
1216	int force = !!(flags & GUP_FLAGS_FORCE);
1217	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1218	int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1219
1220	if (len <= 0)
1221		return 0;
1222	/*
1223	 * Require read or write permissions.
1224	 * If 'force' is set, we only require the "MAY" flags.
1225	 */
1226	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1227	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1228	i = 0;
1229
1230	do {
1231		struct vm_area_struct *vma;
1232		unsigned int foll_flags;
1233
1234		vma = find_extend_vma(mm, start);
1235		if (!vma && in_gate_area(tsk, start)) {
1236			unsigned long pg = start & PAGE_MASK;
1237			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1238			pgd_t *pgd;
1239			pud_t *pud;
1240			pmd_t *pmd;
1241			pte_t *pte;
1242
1243			/* user gate pages are read-only */
1244			if (!ignore && write)
1245				return i ? : -EFAULT;
1246			if (pg > TASK_SIZE)
1247				pgd = pgd_offset_k(pg);
1248			else
1249				pgd = pgd_offset_gate(mm, pg);
1250			BUG_ON(pgd_none(*pgd));
1251			pud = pud_offset(pgd, pg);
1252			BUG_ON(pud_none(*pud));
1253			pmd = pmd_offset(pud, pg);
1254			if (pmd_none(*pmd))
1255				return i ? : -EFAULT;
1256			pte = pte_offset_map(pmd, pg);
1257			if (pte_none(*pte)) {
1258				pte_unmap(pte);
1259				return i ? : -EFAULT;
1260			}
1261			if (pages) {
1262				struct page *page = vm_normal_page(gate_vma, start, *pte);
1263				pages[i] = page;
1264				if (page)
1265					get_page(page);
1266			}
1267			pte_unmap(pte);
1268			if (vmas)
1269				vmas[i] = gate_vma;
1270			i++;
1271			start += PAGE_SIZE;
1272			len--;
1273			continue;
1274		}
1275
1276		if (!vma ||
1277		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1278		    (!ignore && !(vm_flags & vma->vm_flags)))
1279			return i ? : -EFAULT;
1280
1281		if (is_vm_hugetlb_page(vma)) {
1282			i = follow_hugetlb_page(mm, vma, pages, vmas,
1283						&start, &len, i, write);
1284			continue;
1285		}
1286
1287		foll_flags = FOLL_TOUCH;
1288		if (pages)
1289			foll_flags |= FOLL_GET;
1290		if (!write && use_zero_page(vma))
1291			foll_flags |= FOLL_ANON;
1292
1293		do {
1294			struct page *page;
1295
1296			/*
1297			 * If we have a pending SIGKILL, don't keep faulting
1298			 * pages and potentially allocating memory, unless
1299			 * current is handling munlock--e.g., on exit. In
1300			 * that case, we are not allocating memory.  Rather,
1301			 * we're only unlocking already resident/mapped pages.
1302			 */
1303			if (unlikely(!ignore_sigkill &&
1304					fatal_signal_pending(current)))
1305				return i ? i : -ERESTARTSYS;
1306
1307			if (write)
1308				foll_flags |= FOLL_WRITE;
1309
1310			cond_resched();
1311			while (!(page = follow_page(vma, start, foll_flags))) {
1312				int ret;
1313				ret = handle_mm_fault(mm, vma, start,
1314						foll_flags & FOLL_WRITE);
1315				if (ret & VM_FAULT_ERROR) {
1316					if (ret & VM_FAULT_OOM)
1317						return i ? i : -ENOMEM;
1318					else if (ret & VM_FAULT_SIGBUS)
1319						return i ? i : -EFAULT;
1320					BUG();
1321				}
1322				if (ret & VM_FAULT_MAJOR)
1323					tsk->maj_flt++;
1324				else
1325					tsk->min_flt++;
1326
1327				/*
1328				 * The VM_FAULT_WRITE bit tells us that
1329				 * do_wp_page has broken COW when necessary,
1330				 * even if maybe_mkwrite decided not to set
1331				 * pte_write. We can thus safely do subsequent
1332				 * page lookups as if they were reads. But only
1333				 * do so when looping for pte_write is futile:
1334				 * in some cases userspace may also be wanting
1335				 * to write to the gotten user page, which a
1336				 * read fault here might prevent (a readonly
1337				 * page might get reCOWed by userspace write).
1338				 */
1339				if ((ret & VM_FAULT_WRITE) &&
1340				    !(vma->vm_flags & VM_WRITE))
1341					foll_flags &= ~FOLL_WRITE;
1342
1343				cond_resched();
1344			}
1345			if (IS_ERR(page))
1346				return i ? i : PTR_ERR(page);
1347			if (pages) {
1348				pages[i] = page;
1349
1350				flush_anon_page(vma, page, start);
1351				flush_dcache_page(page);
1352			}
1353			if (vmas)
1354				vmas[i] = vma;
1355			i++;
1356			start += PAGE_SIZE;
1357			len--;
1358		} while (len && start < vma->vm_end);
1359	} while (len);
1360	return i;
1361}
1362
1363/**
1364 * get_user_pages() - pin user pages in memory
1365 * @tsk:	task_struct of target task
1366 * @mm:		mm_struct of target mm
1367 * @start:	starting user address
1368 * @len:	number of pages from start to pin
1369 * @write:	whether pages will be written to by the caller
1370 * @force:	whether to force write access even if user mapping is
1371 *		readonly. This will result in the page being COWed even
1372 *		in MAP_SHARED mappings. You do not want this.
1373 * @pages:	array that receives pointers to the pages pinned.
1374 *		Should be at least nr_pages long. Or NULL, if caller
1375 *		only intends to ensure the pages are faulted in.
1376 * @vmas:	array of pointers to vmas corresponding to each page.
1377 *		Or NULL if the caller does not require them.
1378 *
1379 * Returns number of pages pinned. This may be fewer than the number
1380 * requested. If len is 0 or negative, returns 0. If no pages
1381 * were pinned, returns -errno. Each page returned must be released
1382 * with a put_page() call when it is finished with. vmas will only
1383 * remain valid while mmap_sem is held.
1384 *
1385 * Must be called with mmap_sem held for read or write.
1386 *
1387 * get_user_pages walks a process's page tables and takes a reference to
1388 * each struct page that each user address corresponds to at a given
1389 * instant. That is, it takes the page that would be accessed if a user
1390 * thread accesses the given user virtual address at that instant.
1391 *
1392 * This does not guarantee that the page exists in the user mappings when
1393 * get_user_pages returns, and there may even be a completely different
1394 * page there in some cases (eg. if mmapped pagecache has been invalidated
1395 * and subsequently re faulted). However it does guarantee that the page
1396 * won't be freed completely. And mostly callers simply care that the page
1397 * contains data that was valid *at some point in time*. Typically, an IO
1398 * or similar operation cannot guarantee anything stronger anyway because
1399 * locks can't be held over the syscall boundary.
1400 *
1401 * If write=0, the page must not be written to. If the page is written to,
1402 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1403 * after the page is finished with, and before put_page is called.
1404 *
1405 * get_user_pages is typically used for fewer-copy IO operations, to get a
1406 * handle on the memory by some means other than accesses via the user virtual
1407 * addresses. The pages may be submitted for DMA to devices or accessed via
1408 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1409 * use the correct cache flushing APIs.
1410 *
1411 * See also get_user_pages_fast, for performance critical applications.
1412 */
1413int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1414		unsigned long start, int len, int write, int force,
1415		struct page **pages, struct vm_area_struct **vmas)
1416{
1417	int flags = 0;
1418
1419	if (write)
1420		flags |= GUP_FLAGS_WRITE;
1421	if (force)
1422		flags |= GUP_FLAGS_FORCE;
1423
1424	return __get_user_pages(tsk, mm,
1425				start, len, flags,
1426				pages, vmas);
1427}
1428
1429EXPORT_SYMBOL(get_user_pages);
1430
1431pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1432			spinlock_t **ptl)
1433{
1434	pgd_t * pgd = pgd_offset(mm, addr);
1435	pud_t * pud = pud_alloc(mm, pgd, addr);
1436	if (pud) {
1437		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1438		if (pmd)
1439			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1440	}
1441	return NULL;
1442}
1443
1444/*
1445 * This is the old fallback for page remapping.
1446 *
1447 * For historical reasons, it only allows reserved pages. Only
1448 * old drivers should use this, and they needed to mark their
1449 * pages reserved for the old functions anyway.
1450 */
1451static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1452			struct page *page, pgprot_t prot)
1453{
1454	struct mm_struct *mm = vma->vm_mm;
1455	int retval;
1456	pte_t *pte;
1457	spinlock_t *ptl;
1458
1459	retval = -EINVAL;
1460	if (PageAnon(page))
1461		goto out;
1462	retval = -ENOMEM;
1463	flush_dcache_page(page);
1464	pte = get_locked_pte(mm, addr, &ptl);
1465	if (!pte)
1466		goto out;
1467	retval = -EBUSY;
1468	if (!pte_none(*pte))
1469		goto out_unlock;
1470
1471	/* Ok, finally just insert the thing.. */
1472	get_page(page);
1473	inc_mm_counter(mm, file_rss);
1474	page_add_file_rmap(page);
1475	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1476
1477	retval = 0;
1478	pte_unmap_unlock(pte, ptl);
1479	return retval;
1480out_unlock:
1481	pte_unmap_unlock(pte, ptl);
1482out:
1483	return retval;
1484}
1485
1486/**
1487 * vm_insert_page - insert single page into user vma
1488 * @vma: user vma to map to
1489 * @addr: target user address of this page
1490 * @page: source kernel page
1491 *
1492 * This allows drivers to insert individual pages they've allocated
1493 * into a user vma.
1494 *
1495 * The page has to be a nice clean _individual_ kernel allocation.
1496 * If you allocate a compound page, you need to have marked it as
1497 * such (__GFP_COMP), or manually just split the page up yourself
1498 * (see split_page()).
1499 *
1500 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1501 * took an arbitrary page protection parameter. This doesn't allow
1502 * that. Your vma protection will have to be set up correctly, which
1503 * means that if you want a shared writable mapping, you'd better
1504 * ask for a shared writable mapping!
1505 *
1506 * The page does not need to be reserved.
1507 */
1508int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1509			struct page *page)
1510{
1511	if (addr < vma->vm_start || addr >= vma->vm_end)
1512		return -EFAULT;
1513	if (!page_count(page))
1514		return -EINVAL;
1515	vma->vm_flags |= VM_INSERTPAGE;
1516	return insert_page(vma, addr, page, vma->vm_page_prot);
1517}
1518EXPORT_SYMBOL(vm_insert_page);
1519
1520static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1521			unsigned long pfn, pgprot_t prot)
1522{
1523	struct mm_struct *mm = vma->vm_mm;
1524	int retval;
1525	pte_t *pte, entry;
1526	spinlock_t *ptl;
1527
1528	retval = -ENOMEM;
1529	pte = get_locked_pte(mm, addr, &ptl);
1530	if (!pte)
1531		goto out;
1532	retval = -EBUSY;
1533	if (!pte_none(*pte))
1534		goto out_unlock;
1535
1536	/* Ok, finally just insert the thing.. */
1537	entry = pte_mkspecial(pfn_pte(pfn, prot));
1538	set_pte_at(mm, addr, pte, entry);
1539	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1540
1541	retval = 0;
1542out_unlock:
1543	pte_unmap_unlock(pte, ptl);
1544out:
1545	return retval;
1546}
1547
1548/**
1549 * vm_insert_pfn - insert single pfn into user vma
1550 * @vma: user vma to map to
1551 * @addr: target user address of this page
1552 * @pfn: source kernel pfn
1553 *
1554 * Similar to vm_inert_page, this allows drivers to insert individual pages
1555 * they've allocated into a user vma. Same comments apply.
1556 *
1557 * This function should only be called from a vm_ops->fault handler, and
1558 * in that case the handler should return NULL.
1559 *
1560 * vma cannot be a COW mapping.
1561 *
1562 * As this is called only for pages that do not currently exist, we
1563 * do not need to flush old virtual caches or the TLB.
1564 */
1565int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1566			unsigned long pfn)
1567{
1568	int ret;
1569	pgprot_t pgprot = vma->vm_page_prot;
1570	/*
1571	 * Technically, architectures with pte_special can avoid all these
1572	 * restrictions (same for remap_pfn_range).  However we would like
1573	 * consistency in testing and feature parity among all, so we should
1574	 * try to keep these invariants in place for everybody.
1575	 */
1576	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1577	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1578						(VM_PFNMAP|VM_MIXEDMAP));
1579	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1580	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1581
1582	if (addr < vma->vm_start || addr >= vma->vm_end)
1583		return -EFAULT;
1584	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1585		return -EINVAL;
1586
1587	ret = insert_pfn(vma, addr, pfn, pgprot);
1588
1589	if (ret)
1590		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1591
1592	return ret;
1593}
1594EXPORT_SYMBOL(vm_insert_pfn);
1595
1596int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1597			unsigned long pfn)
1598{
1599	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1600
1601	if (addr < vma->vm_start || addr >= vma->vm_end)
1602		return -EFAULT;
1603
1604	/*
1605	 * If we don't have pte special, then we have to use the pfn_valid()
1606	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1607	 * refcount the page if pfn_valid is true (hence insert_page rather
1608	 * than insert_pfn).
1609	 */
1610	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1611		struct page *page;
1612
1613		page = pfn_to_page(pfn);
1614		return insert_page(vma, addr, page, vma->vm_page_prot);
1615	}
1616	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1617}
1618EXPORT_SYMBOL(vm_insert_mixed);
1619
1620/*
1621 * maps a range of physical memory into the requested pages. the old
1622 * mappings are removed. any references to nonexistent pages results
1623 * in null mappings (currently treated as "copy-on-access")
1624 */
1625static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1626			unsigned long addr, unsigned long end,
1627			unsigned long pfn, pgprot_t prot)
1628{
1629	pte_t *pte;
1630	spinlock_t *ptl;
1631
1632	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1633	if (!pte)
1634		return -ENOMEM;
1635	arch_enter_lazy_mmu_mode();
1636	do {
1637		BUG_ON(!pte_none(*pte));
1638		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1639		pfn++;
1640	} while (pte++, addr += PAGE_SIZE, addr != end);
1641	arch_leave_lazy_mmu_mode();
1642	pte_unmap_unlock(pte - 1, ptl);
1643	return 0;
1644}
1645
1646static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1647			unsigned long addr, unsigned long end,
1648			unsigned long pfn, pgprot_t prot)
1649{
1650	pmd_t *pmd;
1651	unsigned long next;
1652
1653	pfn -= addr >> PAGE_SHIFT;
1654	pmd = pmd_alloc(mm, pud, addr);
1655	if (!pmd)
1656		return -ENOMEM;
1657	do {
1658		next = pmd_addr_end(addr, end);
1659		if (remap_pte_range(mm, pmd, addr, next,
1660				pfn + (addr >> PAGE_SHIFT), prot))
1661			return -ENOMEM;
1662	} while (pmd++, addr = next, addr != end);
1663	return 0;
1664}
1665
1666static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1667			unsigned long addr, unsigned long end,
1668			unsigned long pfn, pgprot_t prot)
1669{
1670	pud_t *pud;
1671	unsigned long next;
1672
1673	pfn -= addr >> PAGE_SHIFT;
1674	pud = pud_alloc(mm, pgd, addr);
1675	if (!pud)
1676		return -ENOMEM;
1677	do {
1678		next = pud_addr_end(addr, end);
1679		if (remap_pmd_range(mm, pud, addr, next,
1680				pfn + (addr >> PAGE_SHIFT), prot))
1681			return -ENOMEM;
1682	} while (pud++, addr = next, addr != end);
1683	return 0;
1684}
1685
1686/**
1687 * remap_pfn_range - remap kernel memory to userspace
1688 * @vma: user vma to map to
1689 * @addr: target user address to start at
1690 * @pfn: physical address of kernel memory
1691 * @size: size of map area
1692 * @prot: page protection flags for this mapping
1693 *
1694 *  Note: this is only safe if the mm semaphore is held when called.
1695 */
1696int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1697		    unsigned long pfn, unsigned long size, pgprot_t prot)
1698{
1699	pgd_t *pgd;
1700	unsigned long next;
1701	unsigned long end = addr + PAGE_ALIGN(size);
1702	struct mm_struct *mm = vma->vm_mm;
1703	int err;
1704
1705	/*
1706	 * Physically remapped pages are special. Tell the
1707	 * rest of the world about it:
1708	 *   VM_IO tells people not to look at these pages
1709	 *	(accesses can have side effects).
1710	 *   VM_RESERVED is specified all over the place, because
1711	 *	in 2.4 it kept swapout's vma scan off this vma; but
1712	 *	in 2.6 the LRU scan won't even find its pages, so this
1713	 *	flag means no more than count its pages in reserved_vm,
1714	 * 	and omit it from core dump, even when VM_IO turned off.
1715	 *   VM_PFNMAP tells the core MM that the base pages are just
1716	 *	raw PFN mappings, and do not have a "struct page" associated
1717	 *	with them.
1718	 *
1719	 * There's a horrible special case to handle copy-on-write
1720	 * behaviour that some programs depend on. We mark the "original"
1721	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1722	 */
1723	if (addr == vma->vm_start && end == vma->vm_end) {
1724		vma->vm_pgoff = pfn;
1725		vma->vm_flags |= VM_PFN_AT_MMAP;
1726	} else if (is_cow_mapping(vma->vm_flags))
1727		return -EINVAL;
1728
1729	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1730
1731	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1732	if (err) {
1733		/*
1734		 * To indicate that track_pfn related cleanup is not
1735		 * needed from higher level routine calling unmap_vmas
1736		 */
1737		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1738		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1739		return -EINVAL;
1740	}
1741
1742	BUG_ON(addr >= end);
1743	pfn -= addr >> PAGE_SHIFT;
1744	pgd = pgd_offset(mm, addr);
1745	flush_cache_range(vma, addr, end);
1746	do {
1747		next = pgd_addr_end(addr, end);
1748		err = remap_pud_range(mm, pgd, addr, next,
1749				pfn + (addr >> PAGE_SHIFT), prot);
1750		if (err)
1751			break;
1752	} while (pgd++, addr = next, addr != end);
1753
1754	if (err)
1755		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1756
1757	return err;
1758}
1759EXPORT_SYMBOL(remap_pfn_range);
1760
1761static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1762				     unsigned long addr, unsigned long end,
1763				     pte_fn_t fn, void *data)
1764{
1765	pte_t *pte;
1766	int err;
1767	pgtable_t token;
1768	spinlock_t *uninitialized_var(ptl);
1769
1770	pte = (mm == &init_mm) ?
1771		pte_alloc_kernel(pmd, addr) :
1772		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1773	if (!pte)
1774		return -ENOMEM;
1775
1776	BUG_ON(pmd_huge(*pmd));
1777
1778	arch_enter_lazy_mmu_mode();
1779
1780	token = pmd_pgtable(*pmd);
1781
1782	do {
1783		err = fn(pte, token, addr, data);
1784		if (err)
1785			break;
1786	} while (pte++, addr += PAGE_SIZE, addr != end);
1787
1788	arch_leave_lazy_mmu_mode();
1789
1790	if (mm != &init_mm)
1791		pte_unmap_unlock(pte-1, ptl);
1792	return err;
1793}
1794
1795static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1796				     unsigned long addr, unsigned long end,
1797				     pte_fn_t fn, void *data)
1798{
1799	pmd_t *pmd;
1800	unsigned long next;
1801	int err;
1802
1803	BUG_ON(pud_huge(*pud));
1804
1805	pmd = pmd_alloc(mm, pud, addr);
1806	if (!pmd)
1807		return -ENOMEM;
1808	do {
1809		next = pmd_addr_end(addr, end);
1810		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1811		if (err)
1812			break;
1813	} while (pmd++, addr = next, addr != end);
1814	return err;
1815}
1816
1817static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1818				     unsigned long addr, unsigned long end,
1819				     pte_fn_t fn, void *data)
1820{
1821	pud_t *pud;
1822	unsigned long next;
1823	int err;
1824
1825	pud = pud_alloc(mm, pgd, addr);
1826	if (!pud)
1827		return -ENOMEM;
1828	do {
1829		next = pud_addr_end(addr, end);
1830		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1831		if (err)
1832			break;
1833	} while (pud++, addr = next, addr != end);
1834	return err;
1835}
1836
1837/*
1838 * Scan a region of virtual memory, filling in page tables as necessary
1839 * and calling a provided function on each leaf page table.
1840 */
1841int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1842			unsigned long size, pte_fn_t fn, void *data)
1843{
1844	pgd_t *pgd;
1845	unsigned long next;
1846	unsigned long start = addr, end = addr + size;
1847	int err;
1848
1849	BUG_ON(addr >= end);
1850	mmu_notifier_invalidate_range_start(mm, start, end);
1851	pgd = pgd_offset(mm, addr);
1852	do {
1853		next = pgd_addr_end(addr, end);
1854		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1855		if (err)
1856			break;
1857	} while (pgd++, addr = next, addr != end);
1858	mmu_notifier_invalidate_range_end(mm, start, end);
1859	return err;
1860}
1861EXPORT_SYMBOL_GPL(apply_to_page_range);
1862
1863/*
1864 * handle_pte_fault chooses page fault handler according to an entry
1865 * which was read non-atomically.  Before making any commitment, on
1866 * those architectures or configurations (e.g. i386 with PAE) which
1867 * might give a mix of unmatched parts, do_swap_page and do_file_page
1868 * must check under lock before unmapping the pte and proceeding
1869 * (but do_wp_page is only called after already making such a check;
1870 * and do_anonymous_page and do_no_page can safely check later on).
1871 */
1872static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1873				pte_t *page_table, pte_t orig_pte)
1874{
1875	int same = 1;
1876#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1877	if (sizeof(pte_t) > sizeof(unsigned long)) {
1878		spinlock_t *ptl = pte_lockptr(mm, pmd);
1879		spin_lock(ptl);
1880		same = pte_same(*page_table, orig_pte);
1881		spin_unlock(ptl);
1882	}
1883#endif
1884	pte_unmap(page_table);
1885	return same;
1886}
1887
1888/*
1889 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1890 * servicing faults for write access.  In the normal case, do always want
1891 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1892 * that do not have writing enabled, when used by access_process_vm.
1893 */
1894static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1895{
1896	if (likely(vma->vm_flags & VM_WRITE))
1897		pte = pte_mkwrite(pte);
1898	return pte;
1899}
1900
1901static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1902{
1903	/*
1904	 * If the source page was a PFN mapping, we don't have
1905	 * a "struct page" for it. We do a best-effort copy by
1906	 * just copying from the original user address. If that
1907	 * fails, we just zero-fill it. Live with it.
1908	 */
1909	if (unlikely(!src)) {
1910		void *kaddr = kmap_atomic(dst, KM_USER0);
1911		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1912
1913		/*
1914		 * This really shouldn't fail, because the page is there
1915		 * in the page tables. But it might just be unreadable,
1916		 * in which case we just give up and fill the result with
1917		 * zeroes.
1918		 */
1919		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1920			memset(kaddr, 0, PAGE_SIZE);
1921		kunmap_atomic(kaddr, KM_USER0);
1922		flush_dcache_page(dst);
1923	} else
1924		copy_user_highpage(dst, src, va, vma);
1925}
1926
1927/*
1928 * This routine handles present pages, when users try to write
1929 * to a shared page. It is done by copying the page to a new address
1930 * and decrementing the shared-page counter for the old page.
1931 *
1932 * Note that this routine assumes that the protection checks have been
1933 * done by the caller (the low-level page fault routine in most cases).
1934 * Thus we can safely just mark it writable once we've done any necessary
1935 * COW.
1936 *
1937 * We also mark the page dirty at this point even though the page will
1938 * change only once the write actually happens. This avoids a few races,
1939 * and potentially makes it more efficient.
1940 *
1941 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1942 * but allow concurrent faults), with pte both mapped and locked.
1943 * We return with mmap_sem still held, but pte unmapped and unlocked.
1944 */
1945static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1946		unsigned long address, pte_t *page_table, pmd_t *pmd,
1947		spinlock_t *ptl, pte_t orig_pte)
1948{
1949	struct page *old_page, *new_page;
1950	pte_t entry;
1951	int reuse = 0, ret = 0;
1952	int page_mkwrite = 0;
1953	struct page *dirty_page = NULL;
1954
1955	old_page = vm_normal_page(vma, address, orig_pte);
1956	if (!old_page) {
1957		/*
1958		 * VM_MIXEDMAP !pfn_valid() case
1959		 *
1960		 * We should not cow pages in a shared writeable mapping.
1961		 * Just mark the pages writable as we can't do any dirty
1962		 * accounting on raw pfn maps.
1963		 */
1964		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1965				     (VM_WRITE|VM_SHARED))
1966			goto reuse;
1967		goto gotten;
1968	}
1969
1970	/*
1971	 * Take out anonymous pages first, anonymous shared vmas are
1972	 * not dirty accountable.
1973	 */
1974	if (PageAnon(old_page)) {
1975		if (!trylock_page(old_page)) {
1976			page_cache_get(old_page);
1977			pte_unmap_unlock(page_table, ptl);
1978			lock_page(old_page);
1979			page_table = pte_offset_map_lock(mm, pmd, address,
1980							 &ptl);
1981			if (!pte_same(*page_table, orig_pte)) {
1982				unlock_page(old_page);
1983				page_cache_release(old_page);
1984				goto unlock;
1985			}
1986			page_cache_release(old_page);
1987		}
1988		reuse = reuse_swap_page(old_page);
1989		unlock_page(old_page);
1990	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1991					(VM_WRITE|VM_SHARED))) {
1992		/*
1993		 * Only catch write-faults on shared writable pages,
1994		 * read-only shared pages can get COWed by
1995		 * get_user_pages(.write=1, .force=1).
1996		 */
1997		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1998			struct vm_fault vmf;
1999			int tmp;
2000
2001			vmf.virtual_address = (void __user *)(address &
2002								PAGE_MASK);
2003			vmf.pgoff = old_page->index;
2004			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2005			vmf.page = old_page;
2006
2007			/*
2008			 * Notify the address space that the page is about to
2009			 * become writable so that it can prohibit this or wait
2010			 * for the page to get into an appropriate state.
2011			 *
2012			 * We do this without the lock held, so that it can
2013			 * sleep if it needs to.
2014			 */
2015			page_cache_get(old_page);
2016			pte_unmap_unlock(page_table, ptl);
2017
2018			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2019			if (unlikely(tmp &
2020					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2021				ret = tmp;
2022				goto unwritable_page;
2023			}
2024			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2025				lock_page(old_page);
2026				if (!old_page->mapping) {
2027					ret = 0; /* retry the fault */
2028					unlock_page(old_page);
2029					goto unwritable_page;
2030				}
2031			} else
2032				VM_BUG_ON(!PageLocked(old_page));
2033
2034			/*
2035			 * Since we dropped the lock we need to revalidate
2036			 * the PTE as someone else may have changed it.  If
2037			 * they did, we just return, as we can count on the
2038			 * MMU to tell us if they didn't also make it writable.
2039			 */
2040			page_table = pte_offset_map_lock(mm, pmd, address,
2041							 &ptl);
2042			if (!pte_same(*page_table, orig_pte)) {
2043				unlock_page(old_page);
2044				page_cache_release(old_page);
2045				goto unlock;
2046			}
2047
2048			page_mkwrite = 1;
2049		}
2050		dirty_page = old_page;
2051		get_page(dirty_page);
2052		reuse = 1;
2053	}
2054
2055	if (reuse) {
2056reuse:
2057		flush_cache_page(vma, address, pte_pfn(orig_pte));
2058		entry = pte_mkyoung(orig_pte);
2059		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2060		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2061			update_mmu_cache(vma, address, entry);
2062		ret |= VM_FAULT_WRITE;
2063		goto unlock;
2064	}
2065
2066	/*
2067	 * Ok, we need to copy. Oh, well..
2068	 */
2069	page_cache_get(old_page);
2070gotten:
2071	pte_unmap_unlock(page_table, ptl);
2072
2073	if (unlikely(anon_vma_prepare(vma)))
2074		goto oom;
2075	VM_BUG_ON(old_page == ZERO_PAGE(0));
2076	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2077	if (!new_page)
2078		goto oom;
2079	/*
2080	 * Don't let another task, with possibly unlocked vma,
2081	 * keep the mlocked page.
2082	 */
2083	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2084		lock_page(old_page);	/* for LRU manipulation */
2085		clear_page_mlock(old_page);
2086		unlock_page(old_page);
2087	}
2088	cow_user_page(new_page, old_page, address, vma);
2089	__SetPageUptodate(new_page);
2090
2091	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2092		goto oom_free_new;
2093
2094	/*
2095	 * Re-check the pte - we dropped the lock
2096	 */
2097	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2098	if (likely(pte_same(*page_table, orig_pte))) {
2099		if (old_page) {
2100			if (!PageAnon(old_page)) {
2101				dec_mm_counter(mm, file_rss);
2102				inc_mm_counter(mm, anon_rss);
2103			}
2104		} else
2105			inc_mm_counter(mm, anon_rss);
2106		flush_cache_page(vma, address, pte_pfn(orig_pte));
2107		entry = mk_pte(new_page, vma->vm_page_prot);
2108		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2109		/*
2110		 * Clear the pte entry and flush it first, before updating the
2111		 * pte with the new entry. This will avoid a race condition
2112		 * seen in the presence of one thread doing SMC and another
2113		 * thread doing COW.
2114		 */
2115		ptep_clear_flush_notify(vma, address, page_table);
2116		page_add_new_anon_rmap(new_page, vma, address);
2117		set_pte_at(mm, address, page_table, entry);
2118		update_mmu_cache(vma, address, entry);
2119		if (old_page) {
2120			/*
2121			 * Only after switching the pte to the new page may
2122			 * we remove the mapcount here. Otherwise another
2123			 * process may come and find the rmap count decremented
2124			 * before the pte is switched to the new page, and
2125			 * "reuse" the old page writing into it while our pte
2126			 * here still points into it and can be read by other
2127			 * threads.
2128			 *
2129			 * The critical issue is to order this
2130			 * page_remove_rmap with the ptp_clear_flush above.
2131			 * Those stores are ordered by (if nothing else,)
2132			 * the barrier present in the atomic_add_negative
2133			 * in page_remove_rmap.
2134			 *
2135			 * Then the TLB flush in ptep_clear_flush ensures that
2136			 * no process can access the old page before the
2137			 * decremented mapcount is visible. And the old page
2138			 * cannot be reused until after the decremented
2139			 * mapcount is visible. So transitively, TLBs to
2140			 * old page will be flushed before it can be reused.
2141			 */
2142			page_remove_rmap(old_page);
2143		}
2144
2145		/* Free the old page.. */
2146		new_page = old_page;
2147		ret |= VM_FAULT_WRITE;
2148	} else
2149		mem_cgroup_uncharge_page(new_page);
2150
2151	if (new_page)
2152		page_cache_release(new_page);
2153	if (old_page)
2154		page_cache_release(old_page);
2155unlock:
2156	pte_unmap_unlock(page_table, ptl);
2157	if (dirty_page) {
2158		/*
2159		 * Yes, Virginia, this is actually required to prevent a race
2160		 * with clear_page_dirty_for_io() from clearing the page dirty
2161		 * bit after it clear all dirty ptes, but before a racing
2162		 * do_wp_page installs a dirty pte.
2163		 *
2164		 * do_no_page is protected similarly.
2165		 */
2166		if (!page_mkwrite) {
2167			wait_on_page_locked(dirty_page);
2168			set_page_dirty_balance(dirty_page, page_mkwrite);
2169		}
2170		put_page(dirty_page);
2171		if (page_mkwrite) {
2172			struct address_space *mapping = dirty_page->mapping;
2173
2174			set_page_dirty(dirty_page);
2175			unlock_page(dirty_page);
2176			page_cache_release(dirty_page);
2177			if (mapping)	{
2178				/*
2179				 * Some device drivers do not set page.mapping
2180				 * but still dirty their pages
2181				 */
2182				balance_dirty_pages_ratelimited(mapping);
2183			}
2184		}
2185
2186		/* file_update_time outside page_lock */
2187		if (vma->vm_file)
2188			file_update_time(vma->vm_file);
2189	}
2190	return ret;
2191oom_free_new:
2192	page_cache_release(new_page);
2193oom:
2194	if (old_page) {
2195		if (page_mkwrite) {
2196			unlock_page(old_page);
2197			page_cache_release(old_page);
2198		}
2199		page_cache_release(old_page);
2200	}
2201	return VM_FAULT_OOM;
2202
2203unwritable_page:
2204	page_cache_release(old_page);
2205	return ret;
2206}
2207
2208/*
2209 * Helper functions for unmap_mapping_range().
2210 *
2211 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2212 *
2213 * We have to restart searching the prio_tree whenever we drop the lock,
2214 * since the iterator is only valid while the lock is held, and anyway
2215 * a later vma might be split and reinserted earlier while lock dropped.
2216 *
2217 * The list of nonlinear vmas could be handled more efficiently, using
2218 * a placeholder, but handle it in the same way until a need is shown.
2219 * It is important to search the prio_tree before nonlinear list: a vma
2220 * may become nonlinear and be shifted from prio_tree to nonlinear list
2221 * while the lock is dropped; but never shifted from list to prio_tree.
2222 *
2223 * In order to make forward progress despite restarting the search,
2224 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2225 * quickly skip it next time around.  Since the prio_tree search only
2226 * shows us those vmas affected by unmapping the range in question, we
2227 * can't efficiently keep all vmas in step with mapping->truncate_count:
2228 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2229 * mapping->truncate_count and vma->vm_truncate_count are protected by
2230 * i_mmap_lock.
2231 *
2232 * In order to make forward progress despite repeatedly restarting some
2233 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2234 * and restart from that address when we reach that vma again.  It might
2235 * have been split or merged, shrunk or extended, but never shifted: so
2236 * restart_addr remains valid so long as it remains in the vma's range.
2237 * unmap_mapping_range forces truncate_count to leap over page-aligned
2238 * values so we can save vma's restart_addr in its truncate_count field.
2239 */
2240#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2241
2242static void reset_vma_truncate_counts(struct address_space *mapping)
2243{
2244	struct vm_area_struct *vma;
2245	struct prio_tree_iter iter;
2246
2247	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2248		vma->vm_truncate_count = 0;
2249	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2250		vma->vm_truncate_count = 0;
2251}
2252
2253static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2254		unsigned long start_addr, unsigned long end_addr,
2255		struct zap_details *details)
2256{
2257	unsigned long restart_addr;
2258	int need_break;
2259
2260	/*
2261	 * files that support invalidating or truncating portions of the
2262	 * file from under mmaped areas must have their ->fault function
2263	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2264	 * This provides synchronisation against concurrent unmapping here.
2265	 */
2266
2267again:
2268	restart_addr = vma->vm_truncate_count;
2269	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2270		start_addr = restart_addr;
2271		if (start_addr >= end_addr) {
2272			/* Top of vma has been split off since last time */
2273			vma->vm_truncate_count = details->truncate_count;
2274			return 0;
2275		}
2276	}
2277
2278	restart_addr = zap_page_range(vma, start_addr,
2279					end_addr - start_addr, details);
2280	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2281
2282	if (restart_addr >= end_addr) {
2283		/* We have now completed this vma: mark it so */
2284		vma->vm_truncate_count = details->truncate_count;
2285		if (!need_break)
2286			return 0;
2287	} else {
2288		/* Note restart_addr in vma's truncate_count field */
2289		vma->vm_truncate_count = restart_addr;
2290		if (!need_break)
2291			goto again;
2292	}
2293
2294	spin_unlock(details->i_mmap_lock);
2295	cond_resched();
2296	spin_lock(details->i_mmap_lock);
2297	return -EINTR;
2298}
2299
2300static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2301					    struct zap_details *details)
2302{
2303	struct vm_area_struct *vma;
2304	struct prio_tree_iter iter;
2305	pgoff_t vba, vea, zba, zea;
2306
2307restart:
2308	vma_prio_tree_foreach(vma, &iter, root,
2309			details->first_index, details->last_index) {
2310		/* Skip quickly over those we have already dealt with */
2311		if (vma->vm_truncate_count == details->truncate_count)
2312			continue;
2313
2314		vba = vma->vm_pgoff;
2315		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2316		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2317		zba = details->first_index;
2318		if (zba < vba)
2319			zba = vba;
2320		zea = details->last_index;
2321		if (zea > vea)
2322			zea = vea;
2323
2324		if (unmap_mapping_range_vma(vma,
2325			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2326			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2327				details) < 0)
2328			goto restart;
2329	}
2330}
2331
2332static inline void unmap_mapping_range_list(struct list_head *head,
2333					    struct zap_details *details)
2334{
2335	struct vm_area_struct *vma;
2336
2337	/*
2338	 * In nonlinear VMAs there is no correspondence between virtual address
2339	 * offset and file offset.  So we must perform an exhaustive search
2340	 * across *all* the pages in each nonlinear VMA, not just the pages
2341	 * whose virtual address lies outside the file truncation point.
2342	 */
2343restart:
2344	list_for_each_entry(vma, head, shared.vm_set.list) {
2345		/* Skip quickly over those we have already dealt with */
2346		if (vma->vm_truncate_count == details->truncate_count)
2347			continue;
2348		details->nonlinear_vma = vma;
2349		if (unmap_mapping_range_vma(vma, vma->vm_start,
2350					vma->vm_end, details) < 0)
2351			goto restart;
2352	}
2353}
2354
2355/**
2356 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2357 * @mapping: the address space containing mmaps to be unmapped.
2358 * @holebegin: byte in first page to unmap, relative to the start of
2359 * the underlying file.  This will be rounded down to a PAGE_SIZE
2360 * boundary.  Note that this is different from vmtruncate(), which
2361 * must keep the partial page.  In contrast, we must get rid of
2362 * partial pages.
2363 * @holelen: size of prospective hole in bytes.  This will be rounded
2364 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2365 * end of the file.
2366 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2367 * but 0 when invalidating pagecache, don't throw away private data.
2368 */
2369void unmap_mapping_range(struct address_space *mapping,
2370		loff_t const holebegin, loff_t const holelen, int even_cows)
2371{
2372	struct zap_details details;
2373	pgoff_t hba = holebegin >> PAGE_SHIFT;
2374	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2375
2376	/* Check for overflow. */
2377	if (sizeof(holelen) > sizeof(hlen)) {
2378		long long holeend =
2379			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2380		if (holeend & ~(long long)ULONG_MAX)
2381			hlen = ULONG_MAX - hba + 1;
2382	}
2383
2384	details.check_mapping = even_cows? NULL: mapping;
2385	details.nonlinear_vma = NULL;
2386	details.first_index = hba;
2387	details.last_index = hba + hlen - 1;
2388	if (details.last_index < details.first_index)
2389		details.last_index = ULONG_MAX;
2390	details.i_mmap_lock = &mapping->i_mmap_lock;
2391
2392	spin_lock(&mapping->i_mmap_lock);
2393
2394	/* Protect against endless unmapping loops */
2395	mapping->truncate_count++;
2396	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2397		if (mapping->truncate_count == 0)
2398			reset_vma_truncate_counts(mapping);
2399		mapping->truncate_count++;
2400	}
2401	details.truncate_count = mapping->truncate_count;
2402
2403	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2404		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2405	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2406		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2407	spin_unlock(&mapping->i_mmap_lock);
2408}
2409EXPORT_SYMBOL(unmap_mapping_range);
2410
2411/**
2412 * vmtruncate - unmap mappings "freed" by truncate() syscall
2413 * @inode: inode of the file used
2414 * @offset: file offset to start truncating
2415 *
2416 * NOTE! We have to be ready to update the memory sharing
2417 * between the file and the memory map for a potential last
2418 * incomplete page.  Ugly, but necessary.
2419 */
2420int vmtruncate(struct inode * inode, loff_t offset)
2421{
2422	if (inode->i_size < offset) {
2423		unsigned long limit;
2424
2425		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2426		if (limit != RLIM_INFINITY && offset > limit)
2427			goto out_sig;
2428		if (offset > inode->i_sb->s_maxbytes)
2429			goto out_big;
2430		i_size_write(inode, offset);
2431	} else {
2432		struct address_space *mapping = inode->i_mapping;
2433
2434		/*
2435		 * truncation of in-use swapfiles is disallowed - it would
2436		 * cause subsequent swapout to scribble on the now-freed
2437		 * blocks.
2438		 */
2439		if (IS_SWAPFILE(inode))
2440			return -ETXTBSY;
2441		i_size_write(inode, offset);
2442
2443		/*
2444		 * unmap_mapping_range is called twice, first simply for
2445		 * efficiency so that truncate_inode_pages does fewer
2446		 * single-page unmaps.  However after this first call, and
2447		 * before truncate_inode_pages finishes, it is possible for
2448		 * private pages to be COWed, which remain after
2449		 * truncate_inode_pages finishes, hence the second
2450		 * unmap_mapping_range call must be made for correctness.
2451		 */
2452		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2453		truncate_inode_pages(mapping, offset);
2454		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2455	}
2456
2457	if (inode->i_op->truncate)
2458		inode->i_op->truncate(inode);
2459	return 0;
2460
2461out_sig:
2462	send_sig(SIGXFSZ, current, 0);
2463out_big:
2464	return -EFBIG;
2465}
2466EXPORT_SYMBOL(vmtruncate);
2467
2468int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2469{
2470	struct address_space *mapping = inode->i_mapping;
2471
2472	/*
2473	 * If the underlying filesystem is not going to provide
2474	 * a way to truncate a range of blocks (punch a hole) -
2475	 * we should return failure right now.
2476	 */
2477	if (!inode->i_op->truncate_range)
2478		return -ENOSYS;
2479
2480	mutex_lock(&inode->i_mutex);
2481	down_write(&inode->i_alloc_sem);
2482	unmap_mapping_range(mapping, offset, (end - offset), 1);
2483	truncate_inode_pages_range(mapping, offset, end);
2484	unmap_mapping_range(mapping, offset, (end - offset), 1);
2485	inode->i_op->truncate_range(inode, offset, end);
2486	up_write(&inode->i_alloc_sem);
2487	mutex_unlock(&inode->i_mutex);
2488
2489	return 0;
2490}
2491
2492/*
2493 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2494 * but allow concurrent faults), and pte mapped but not yet locked.
2495 * We return with mmap_sem still held, but pte unmapped and unlocked.
2496 */
2497static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2498		unsigned long address, pte_t *page_table, pmd_t *pmd,
2499		int write_access, pte_t orig_pte)
2500{
2501	spinlock_t *ptl;
2502	struct page *page;
2503	swp_entry_t entry;
2504	pte_t pte;
2505	struct mem_cgroup *ptr = NULL;
2506	int ret = 0;
2507
2508	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2509		goto out;
2510
2511	entry = pte_to_swp_entry(orig_pte);
2512	if (is_migration_entry(entry)) {
2513		migration_entry_wait(mm, pmd, address);
2514		goto out;
2515	}
2516	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2517	page = lookup_swap_cache(entry);
2518	if (!page) {
2519		grab_swap_token(); /* Contend for token _before_ read-in */
2520		page = swapin_readahead(entry,
2521					GFP_HIGHUSER_MOVABLE, vma, address);
2522		if (!page) {
2523			/*
2524			 * Back out if somebody else faulted in this pte
2525			 * while we released the pte lock.
2526			 */
2527			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2528			if (likely(pte_same(*page_table, orig_pte)))
2529				ret = VM_FAULT_OOM;
2530			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2531			goto unlock;
2532		}
2533
2534		/* Had to read the page from swap area: Major fault */
2535		ret = VM_FAULT_MAJOR;
2536		count_vm_event(PGMAJFAULT);
2537	}
2538
2539	lock_page(page);
2540	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2541
2542	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2543		ret = VM_FAULT_OOM;
2544		goto out_page;
2545	}
2546
2547	/*
2548	 * Back out if somebody else already faulted in this pte.
2549	 */
2550	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2551	if (unlikely(!pte_same(*page_table, orig_pte)))
2552		goto out_nomap;
2553
2554	if (unlikely(!PageUptodate(page))) {
2555		ret = VM_FAULT_SIGBUS;
2556		goto out_nomap;
2557	}
2558
2559	/*
2560	 * The page isn't present yet, go ahead with the fault.
2561	 *
2562	 * Be careful about the sequence of operations here.
2563	 * To get its accounting right, reuse_swap_page() must be called
2564	 * while the page is counted on swap but not yet in mapcount i.e.
2565	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2566	 * must be called after the swap_free(), or it will never succeed.
2567	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2568	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2569	 * in page->private. In this case, a record in swap_cgroup  is silently
2570	 * discarded at swap_free().
2571	 */
2572
2573	inc_mm_counter(mm, anon_rss);
2574	pte = mk_pte(page, vma->vm_page_prot);
2575	if (write_access && reuse_swap_page(page)) {
2576		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2577		write_access = 0;
2578	}
2579	flush_icache_page(vma, page);
2580	set_pte_at(mm, address, page_table, pte);
2581	page_add_anon_rmap(page, vma, address);
2582	/* It's better to call commit-charge after rmap is established */
2583	mem_cgroup_commit_charge_swapin(page, ptr);
2584
2585	swap_free(entry);
2586	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2587		try_to_free_swap(page);
2588	unlock_page(page);
2589
2590	if (write_access) {
2591		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2592		if (ret & VM_FAULT_ERROR)
2593			ret &= VM_FAULT_ERROR;
2594		goto out;
2595	}
2596
2597	/* No need to invalidate - it was non-present before */
2598	update_mmu_cache(vma, address, pte);
2599unlock:
2600	pte_unmap_unlock(page_table, ptl);
2601out:
2602	return ret;
2603out_nomap:
2604	mem_cgroup_cancel_charge_swapin(ptr);
2605	pte_unmap_unlock(page_table, ptl);
2606out_page:
2607	unlock_page(page);
2608	page_cache_release(page);
2609	return ret;
2610}
2611
2612/*
2613 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2614 * but allow concurrent faults), and pte mapped but not yet locked.
2615 * We return with mmap_sem still held, but pte unmapped and unlocked.
2616 */
2617static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2618		unsigned long address, pte_t *page_table, pmd_t *pmd,
2619		int write_access)
2620{
2621	struct page *page;
2622	spinlock_t *ptl;
2623	pte_t entry;
2624
2625	/* Allocate our own private page. */
2626	pte_unmap(page_table);
2627
2628	if (unlikely(anon_vma_prepare(vma)))
2629		goto oom;
2630	page = alloc_zeroed_user_highpage_movable(vma, address);
2631	if (!page)
2632		goto oom;
2633	__SetPageUptodate(page);
2634
2635	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2636		goto oom_free_page;
2637
2638	entry = mk_pte(page, vma->vm_page_prot);
2639	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2640
2641	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2642	if (!pte_none(*page_table))
2643		goto release;
2644	inc_mm_counter(mm, anon_rss);
2645	page_add_new_anon_rmap(page, vma, address);
2646	set_pte_at(mm, address, page_table, entry);
2647
2648	/* No need to invalidate - it was non-present before */
2649	update_mmu_cache(vma, address, entry);
2650unlock:
2651	pte_unmap_unlock(page_table, ptl);
2652	return 0;
2653release:
2654	mem_cgroup_uncharge_page(page);
2655	page_cache_release(page);
2656	goto unlock;
2657oom_free_page:
2658	page_cache_release(page);
2659oom:
2660	return VM_FAULT_OOM;
2661}
2662
2663/*
2664 * __do_fault() tries to create a new page mapping. It aggressively
2665 * tries to share with existing pages, but makes a separate copy if
2666 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2667 * the next page fault.
2668 *
2669 * As this is called only for pages that do not currently exist, we
2670 * do not need to flush old virtual caches or the TLB.
2671 *
2672 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2673 * but allow concurrent faults), and pte neither mapped nor locked.
2674 * We return with mmap_sem still held, but pte unmapped and unlocked.
2675 */
2676static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2677		unsigned long address, pmd_t *pmd,
2678		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2679{
2680	pte_t *page_table;
2681	spinlock_t *ptl;
2682	struct page *page;
2683	pte_t entry;
2684	int anon = 0;
2685	int charged = 0;
2686	struct page *dirty_page = NULL;
2687	struct vm_fault vmf;
2688	int ret;
2689	int page_mkwrite = 0;
2690
2691	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2692	vmf.pgoff = pgoff;
2693	vmf.flags = flags;
2694	vmf.page = NULL;
2695
2696	ret = vma->vm_ops->fault(vma, &vmf);
2697	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2698		return ret;
2699
2700	/*
2701	 * For consistency in subsequent calls, make the faulted page always
2702	 * locked.
2703	 */
2704	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2705		lock_page(vmf.page);
2706	else
2707		VM_BUG_ON(!PageLocked(vmf.page));
2708
2709	/*
2710	 * Should we do an early C-O-W break?
2711	 */
2712	page = vmf.page;
2713	if (flags & FAULT_FLAG_WRITE) {
2714		if (!(vma->vm_flags & VM_SHARED)) {
2715			anon = 1;
2716			if (unlikely(anon_vma_prepare(vma))) {
2717				ret = VM_FAULT_OOM;
2718				goto out;
2719			}
2720			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2721						vma, address);
2722			if (!page) {
2723				ret = VM_FAULT_OOM;
2724				goto out;
2725			}
2726			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2727				ret = VM_FAULT_OOM;
2728				page_cache_release(page);
2729				goto out;
2730			}
2731			charged = 1;
2732			/*
2733			 * Don't let another task, with possibly unlocked vma,
2734			 * keep the mlocked page.
2735			 */
2736			if (vma->vm_flags & VM_LOCKED)
2737				clear_page_mlock(vmf.page);
2738			copy_user_highpage(page, vmf.page, address, vma);
2739			__SetPageUptodate(page);
2740		} else {
2741			/*
2742			 * If the page will be shareable, see if the backing
2743			 * address space wants to know that the page is about
2744			 * to become writable
2745			 */
2746			if (vma->vm_ops->page_mkwrite) {
2747				int tmp;
2748
2749				unlock_page(page);
2750				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2751				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2752				if (unlikely(tmp &
2753					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2754					ret = tmp;
2755					goto unwritable_page;
2756				}
2757				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2758					lock_page(page);
2759					if (!page->mapping) {
2760						ret = 0; /* retry the fault */
2761						unlock_page(page);
2762						goto unwritable_page;
2763					}
2764				} else
2765					VM_BUG_ON(!PageLocked(page));
2766				page_mkwrite = 1;
2767			}
2768		}
2769
2770	}
2771
2772	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2773
2774	/*
2775	 * This silly early PAGE_DIRTY setting removes a race
2776	 * due to the bad i386 page protection. But it's valid
2777	 * for other architectures too.
2778	 *
2779	 * Note that if write_access is true, we either now have
2780	 * an exclusive copy of the page, or this is a shared mapping,
2781	 * so we can make it writable and dirty to avoid having to
2782	 * handle that later.
2783	 */
2784	/* Only go through if we didn't race with anybody else... */
2785	if (likely(pte_same(*page_table, orig_pte))) {
2786		flush_icache_page(vma, page);
2787		entry = mk_pte(page, vma->vm_page_prot);
2788		if (flags & FAULT_FLAG_WRITE)
2789			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2790		if (anon) {
2791			inc_mm_counter(mm, anon_rss);
2792			page_add_new_anon_rmap(page, vma, address);
2793		} else {
2794			inc_mm_counter(mm, file_rss);
2795			page_add_file_rmap(page);
2796			if (flags & FAULT_FLAG_WRITE) {
2797				dirty_page = page;
2798				get_page(dirty_page);
2799			}
2800		}
2801		set_pte_at(mm, address, page_table, entry);
2802
2803		/* no need to invalidate: a not-present page won't be cached */
2804		update_mmu_cache(vma, address, entry);
2805	} else {
2806		if (charged)
2807			mem_cgroup_uncharge_page(page);
2808		if (anon)
2809			page_cache_release(page);
2810		else
2811			anon = 1; /* no anon but release faulted_page */
2812	}
2813
2814	pte_unmap_unlock(page_table, ptl);
2815
2816out:
2817	if (dirty_page) {
2818		struct address_space *mapping = page->mapping;
2819
2820		if (set_page_dirty(dirty_page))
2821			page_mkwrite = 1;
2822		unlock_page(dirty_page);
2823		put_page(dirty_page);
2824		if (page_mkwrite && mapping) {
2825			/*
2826			 * Some device drivers do not set page.mapping but still
2827			 * dirty their pages
2828			 */
2829			balance_dirty_pages_ratelimited(mapping);
2830		}
2831
2832		/* file_update_time outside page_lock */
2833		if (vma->vm_file)
2834			file_update_time(vma->vm_file);
2835	} else {
2836		unlock_page(vmf.page);
2837		if (anon)
2838			page_cache_release(vmf.page);
2839	}
2840
2841	return ret;
2842
2843unwritable_page:
2844	page_cache_release(page);
2845	return ret;
2846}
2847
2848static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2849		unsigned long address, pte_t *page_table, pmd_t *pmd,
2850		int write_access, pte_t orig_pte)
2851{
2852	pgoff_t pgoff = (((address & PAGE_MASK)
2853			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2854	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2855
2856	pte_unmap(page_table);
2857	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2858}
2859
2860/*
2861 * Fault of a previously existing named mapping. Repopulate the pte
2862 * from the encoded file_pte if possible. This enables swappable
2863 * nonlinear vmas.
2864 *
2865 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2866 * but allow concurrent faults), and pte mapped but not yet locked.
2867 * We return with mmap_sem still held, but pte unmapped and unlocked.
2868 */
2869static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2870		unsigned long address, pte_t *page_table, pmd_t *pmd,
2871		int write_access, pte_t orig_pte)
2872{
2873	unsigned int flags = FAULT_FLAG_NONLINEAR |
2874				(write_access ? FAULT_FLAG_WRITE : 0);
2875	pgoff_t pgoff;
2876
2877	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2878		return 0;
2879
2880	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2881		/*
2882		 * Page table corrupted: show pte and kill process.
2883		 */
2884		print_bad_pte(vma, address, orig_pte, NULL);
2885		return VM_FAULT_OOM;
2886	}
2887
2888	pgoff = pte_to_pgoff(orig_pte);
2889	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2890}
2891
2892/*
2893 * These routines also need to handle stuff like marking pages dirty
2894 * and/or accessed for architectures that don't do it in hardware (most
2895 * RISC architectures).  The early dirtying is also good on the i386.
2896 *
2897 * There is also a hook called "update_mmu_cache()" that architectures
2898 * with external mmu caches can use to update those (ie the Sparc or
2899 * PowerPC hashed page tables that act as extended TLBs).
2900 *
2901 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2902 * but allow concurrent faults), and pte mapped but not yet locked.
2903 * We return with mmap_sem still held, but pte unmapped and unlocked.
2904 */
2905static inline int handle_pte_fault(struct mm_struct *mm,
2906		struct vm_area_struct *vma, unsigned long address,
2907		pte_t *pte, pmd_t *pmd, int write_access)
2908{
2909	pte_t entry;
2910	spinlock_t *ptl;
2911
2912	entry = *pte;
2913	if (!pte_present(entry)) {
2914		if (pte_none(entry)) {
2915			if (vma->vm_ops) {
2916				if (likely(vma->vm_ops->fault))
2917					return do_linear_fault(mm, vma, address,
2918						pte, pmd, write_access, entry);
2919			}
2920			return do_anonymous_page(mm, vma, address,
2921						 pte, pmd, write_access);
2922		}
2923		if (pte_file(entry))
2924			return do_nonlinear_fault(mm, vma, address,
2925					pte, pmd, write_access, entry);
2926		return do_swap_page(mm, vma, address,
2927					pte, pmd, write_access, entry);
2928	}
2929
2930	ptl = pte_lockptr(mm, pmd);
2931	spin_lock(ptl);
2932	if (unlikely(!pte_same(*pte, entry)))
2933		goto unlock;
2934	if (write_access) {
2935		if (!pte_write(entry))
2936			return do_wp_page(mm, vma, address,
2937					pte, pmd, ptl, entry);
2938		entry = pte_mkdirty(entry);
2939	}
2940	entry = pte_mkyoung(entry);
2941	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2942		update_mmu_cache(vma, address, entry);
2943	} else {
2944		/*
2945		 * This is needed only for protection faults but the arch code
2946		 * is not yet telling us if this is a protection fault or not.
2947		 * This still avoids useless tlb flushes for .text page faults
2948		 * with threads.
2949		 */
2950		if (write_access)
2951			flush_tlb_page(vma, address);
2952	}
2953unlock:
2954	pte_unmap_unlock(pte, ptl);
2955	return 0;
2956}
2957
2958/*
2959 * By the time we get here, we already hold the mm semaphore
2960 */
2961int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2962		unsigned long address, int write_access)
2963{
2964	pgd_t *pgd;
2965	pud_t *pud;
2966	pmd_t *pmd;
2967	pte_t *pte;
2968
2969	__set_current_state(TASK_RUNNING);
2970
2971	count_vm_event(PGFAULT);
2972
2973	if (unlikely(is_vm_hugetlb_page(vma)))
2974		return hugetlb_fault(mm, vma, address, write_access);
2975
2976	pgd = pgd_offset(mm, address);
2977	pud = pud_alloc(mm, pgd, address);
2978	if (!pud)
2979		return VM_FAULT_OOM;
2980	pmd = pmd_alloc(mm, pud, address);
2981	if (!pmd)
2982		return VM_FAULT_OOM;
2983	pte = pte_alloc_map(mm, pmd, address);
2984	if (!pte)
2985		return VM_FAULT_OOM;
2986
2987	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2988}
2989
2990#ifndef __PAGETABLE_PUD_FOLDED
2991/*
2992 * Allocate page upper directory.
2993 * We've already handled the fast-path in-line.
2994 */
2995int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2996{
2997	pud_t *new = pud_alloc_one(mm, address);
2998	if (!new)
2999		return -ENOMEM;
3000
3001	smp_wmb(); /* See comment in __pte_alloc */
3002
3003	spin_lock(&mm->page_table_lock);
3004	if (pgd_present(*pgd))		/* Another has populated it */
3005		pud_free(mm, new);
3006	else
3007		pgd_populate(mm, pgd, new);
3008	spin_unlock(&mm->page_table_lock);
3009	return 0;
3010}
3011#endif /* __PAGETABLE_PUD_FOLDED */
3012
3013#ifndef __PAGETABLE_PMD_FOLDED
3014/*
3015 * Allocate page middle directory.
3016 * We've already handled the fast-path in-line.
3017 */
3018int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3019{
3020	pmd_t *new = pmd_alloc_one(mm, address);
3021	if (!new)
3022		return -ENOMEM;
3023
3024	smp_wmb(); /* See comment in __pte_alloc */
3025
3026	spin_lock(&mm->page_table_lock);
3027#ifndef __ARCH_HAS_4LEVEL_HACK
3028	if (pud_present(*pud))		/* Another has populated it */
3029		pmd_free(mm, new);
3030	else
3031		pud_populate(mm, pud, new);
3032#else
3033	if (pgd_present(*pud))		/* Another has populated it */
3034		pmd_free(mm, new);
3035	else
3036		pgd_populate(mm, pud, new);
3037#endif /* __ARCH_HAS_4LEVEL_HACK */
3038	spin_unlock(&mm->page_table_lock);
3039	return 0;
3040}
3041#endif /* __PAGETABLE_PMD_FOLDED */
3042
3043int make_pages_present(unsigned long addr, unsigned long end)
3044{
3045	int ret, len, write;
3046	struct vm_area_struct * vma;
3047
3048	vma = find_vma(current->mm, addr);
3049	if (!vma)
3050		return -ENOMEM;
3051	write = (vma->vm_flags & VM_WRITE) != 0;
3052	BUG_ON(addr >= end);
3053	BUG_ON(end > vma->vm_end);
3054	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3055	ret = get_user_pages(current, current->mm, addr,
3056			len, write, 0, NULL, NULL);
3057	if (ret < 0)
3058		return ret;
3059	return ret == len ? 0 : -EFAULT;
3060}
3061
3062#if !defined(__HAVE_ARCH_GATE_AREA)
3063
3064#if defined(AT_SYSINFO_EHDR)
3065static struct vm_area_struct gate_vma;
3066
3067static int __init gate_vma_init(void)
3068{
3069	gate_vma.vm_mm = NULL;
3070	gate_vma.vm_start = FIXADDR_USER_START;
3071	gate_vma.vm_end = FIXADDR_USER_END;
3072	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3073	gate_vma.vm_page_prot = __P101;
3074	/*
3075	 * Make sure the vDSO gets into every core dump.
3076	 * Dumping its contents makes post-mortem fully interpretable later
3077	 * without matching up the same kernel and hardware config to see
3078	 * what PC values meant.
3079	 */
3080	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3081	return 0;
3082}
3083__initcall(gate_vma_init);
3084#endif
3085
3086struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3087{
3088#ifdef AT_SYSINFO_EHDR
3089	return &gate_vma;
3090#else
3091	return NULL;
3092#endif
3093}
3094
3095int in_gate_area_no_task(unsigned long addr)
3096{
3097#ifdef AT_SYSINFO_EHDR
3098	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3099		return 1;
3100#endif
3101	return 0;
3102}
3103
3104#endif	/* __HAVE_ARCH_GATE_AREA */
3105
3106static int follow_pte(struct mm_struct *mm, unsigned long address,
3107		pte_t **ptepp, spinlock_t **ptlp)
3108{
3109	pgd_t *pgd;
3110	pud_t *pud;
3111	pmd_t *pmd;
3112	pte_t *ptep;
3113
3114	pgd = pgd_offset(mm, address);
3115	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3116		goto out;
3117
3118	pud = pud_offset(pgd, address);
3119	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3120		goto out;
3121
3122	pmd = pmd_offset(pud, address);
3123	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3124		goto out;
3125
3126	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3127	if (pmd_huge(*pmd))
3128		goto out;
3129
3130	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3131	if (!ptep)
3132		goto out;
3133	if (!pte_present(*ptep))
3134		goto unlock;
3135	*ptepp = ptep;
3136	return 0;
3137unlock:
3138	pte_unmap_unlock(ptep, *ptlp);
3139out:
3140	return -EINVAL;
3141}
3142
3143/**
3144 * follow_pfn - look up PFN at a user virtual address
3145 * @vma: memory mapping
3146 * @address: user virtual address
3147 * @pfn: location to store found PFN
3148 *
3149 * Only IO mappings and raw PFN mappings are allowed.
3150 *
3151 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3152 */
3153int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3154	unsigned long *pfn)
3155{
3156	int ret = -EINVAL;
3157	spinlock_t *ptl;
3158	pte_t *ptep;
3159
3160	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3161		return ret;
3162
3163	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3164	if (ret)
3165		return ret;
3166	*pfn = pte_pfn(*ptep);
3167	pte_unmap_unlock(ptep, ptl);
3168	return 0;
3169}
3170EXPORT_SYMBOL(follow_pfn);
3171
3172#ifdef CONFIG_HAVE_IOREMAP_PROT
3173int follow_phys(struct vm_area_struct *vma,
3174		unsigned long address, unsigned int flags,
3175		unsigned long *prot, resource_size_t *phys)
3176{
3177	int ret = -EINVAL;
3178	pte_t *ptep, pte;
3179	spinlock_t *ptl;
3180
3181	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3182		goto out;
3183
3184	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3185		goto out;
3186	pte = *ptep;
3187
3188	if ((flags & FOLL_WRITE) && !pte_write(pte))
3189		goto unlock;
3190
3191	*prot = pgprot_val(pte_pgprot(pte));
3192	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3193
3194	ret = 0;
3195unlock:
3196	pte_unmap_unlock(ptep, ptl);
3197out:
3198	return ret;
3199}
3200
3201int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3202			void *buf, int len, int write)
3203{
3204	resource_size_t phys_addr;
3205	unsigned long prot = 0;
3206	void __iomem *maddr;
3207	int offset = addr & (PAGE_SIZE-1);
3208
3209	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3210		return -EINVAL;
3211
3212	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3213	if (write)
3214		memcpy_toio(maddr + offset, buf, len);
3215	else
3216		memcpy_fromio(buf, maddr + offset, len);
3217	iounmap(maddr);
3218
3219	return len;
3220}
3221#endif
3222
3223/*
3224 * Access another process' address space.
3225 * Source/target buffer must be kernel space,
3226 * Do not walk the page table directly, use get_user_pages
3227 */
3228int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3229{
3230	struct mm_struct *mm;
3231	struct vm_area_struct *vma;
3232	void *old_buf = buf;
3233
3234	mm = get_task_mm(tsk);
3235	if (!mm)
3236		return 0;
3237
3238	down_read(&mm->mmap_sem);
3239	/* ignore errors, just check how much was successfully transferred */
3240	while (len) {
3241		int bytes, ret, offset;
3242		void *maddr;
3243		struct page *page = NULL;
3244
3245		ret = get_user_pages(tsk, mm, addr, 1,
3246				write, 1, &page, &vma);
3247		if (ret <= 0) {
3248			/*
3249			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3250			 * we can access using slightly different code.
3251			 */
3252#ifdef CONFIG_HAVE_IOREMAP_PROT
3253			vma = find_vma(mm, addr);
3254			if (!vma)
3255				break;
3256			if (vma->vm_ops && vma->vm_ops->access)
3257				ret = vma->vm_ops->access(vma, addr, buf,
3258							  len, write);
3259			if (ret <= 0)
3260#endif
3261				break;
3262			bytes = ret;
3263		} else {
3264			bytes = len;
3265			offset = addr & (PAGE_SIZE-1);
3266			if (bytes > PAGE_SIZE-offset)
3267				bytes = PAGE_SIZE-offset;
3268
3269			maddr = kmap(page);
3270			if (write) {
3271				copy_to_user_page(vma, page, addr,
3272						  maddr + offset, buf, bytes);
3273				set_page_dirty_lock(page);
3274			} else {
3275				copy_from_user_page(vma, page, addr,
3276						    buf, maddr + offset, bytes);
3277			}
3278			kunmap(page);
3279			page_cache_release(page);
3280		}
3281		len -= bytes;
3282		buf += bytes;
3283		addr += bytes;
3284	}
3285	up_read(&mm->mmap_sem);
3286	mmput(mm);
3287
3288	return buf - old_buf;
3289}
3290
3291/*
3292 * Print the name of a VMA.
3293 */
3294void print_vma_addr(char *prefix, unsigned long ip)
3295{
3296	struct mm_struct *mm = current->mm;
3297	struct vm_area_struct *vma;
3298
3299	/*
3300	 * Do not print if we are in atomic
3301	 * contexts (in exception stacks, etc.):
3302	 */
3303	if (preempt_count())
3304		return;
3305
3306	down_read(&mm->mmap_sem);
3307	vma = find_vma(mm, ip);
3308	if (vma && vma->vm_file) {
3309		struct file *f = vma->vm_file;
3310		char *buf = (char *)__get_free_page(GFP_KERNEL);
3311		if (buf) {
3312			char *p, *s;
3313
3314			p = d_path(&f->f_path, buf, PAGE_SIZE);
3315			if (IS_ERR(p))
3316				p = "?";
3317			s = strrchr(p, '/');
3318			if (s)
3319				p = s+1;
3320			printk("%s%s[%lx+%lx]", prefix, p,
3321					vma->vm_start,
3322					vma->vm_end - vma->vm_start);
3323			free_page((unsigned long)buf);
3324		}
3325	}
3326	up_read(&current->mm->mmap_sem);
3327}
3328
3329#ifdef CONFIG_PROVE_LOCKING
3330void might_fault(void)
3331{
3332	/*
3333	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3334	 * holding the mmap_sem, this is safe because kernel memory doesn't
3335	 * get paged out, therefore we'll never actually fault, and the
3336	 * below annotations will generate false positives.
3337	 */
3338	if (segment_eq(get_fs(), KERNEL_DS))
3339		return;
3340
3341	might_sleep();
3342	/*
3343	 * it would be nicer only to annotate paths which are not under
3344	 * pagefault_disable, however that requires a larger audit and
3345	 * providing helpers like get_user_atomic.
3346	 */
3347	if (!in_atomic() && current->mm)
3348		might_lock_read(&current->mm->mmap_sem);
3349}
3350EXPORT_SYMBOL(might_fault);
3351#endif
3352