memory.c revision 4294621f41a85497019fae64341aa5351a1921b7
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
61#ifndef CONFIG_NEED_MULTIPLE_NODES
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none.  Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93	pgd_ERROR(*pgd);
94	pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99	pud_ERROR(*pud);
100	pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105	pmd_ERROR(*pmd);
106	pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114{
115	struct page *page = pmd_page(*pmd);
116	pmd_clear(pmd);
117	pte_free_tlb(tlb, page);
118	dec_page_state(nr_page_table_pages);
119	tlb->mm->nr_ptes--;
120}
121
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123				unsigned long addr, unsigned long end,
124				unsigned long floor, unsigned long ceiling)
125{
126	pmd_t *pmd;
127	unsigned long next;
128	unsigned long start;
129
130	start = addr;
131	pmd = pmd_offset(pud, addr);
132	do {
133		next = pmd_addr_end(addr, end);
134		if (pmd_none_or_clear_bad(pmd))
135			continue;
136		free_pte_range(tlb, pmd);
137	} while (pmd++, addr = next, addr != end);
138
139	start &= PUD_MASK;
140	if (start < floor)
141		return;
142	if (ceiling) {
143		ceiling &= PUD_MASK;
144		if (!ceiling)
145			return;
146	}
147	if (end - 1 > ceiling - 1)
148		return;
149
150	pmd = pmd_offset(pud, start);
151	pud_clear(pud);
152	pmd_free_tlb(tlb, pmd);
153}
154
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156				unsigned long addr, unsigned long end,
157				unsigned long floor, unsigned long ceiling)
158{
159	pud_t *pud;
160	unsigned long next;
161	unsigned long start;
162
163	start = addr;
164	pud = pud_offset(pgd, addr);
165	do {
166		next = pud_addr_end(addr, end);
167		if (pud_none_or_clear_bad(pud))
168			continue;
169		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170	} while (pud++, addr = next, addr != end);
171
172	start &= PGDIR_MASK;
173	if (start < floor)
174		return;
175	if (ceiling) {
176		ceiling &= PGDIR_MASK;
177		if (!ceiling)
178			return;
179	}
180	if (end - 1 > ceiling - 1)
181		return;
182
183	pud = pud_offset(pgd, start);
184	pgd_clear(pgd);
185	pud_free_tlb(tlb, pud);
186}
187
188/*
189 * This function frees user-level page tables of a process.
190 *
191 * Must be called with pagetable lock held.
192 */
193void free_pgd_range(struct mmu_gather **tlb,
194			unsigned long addr, unsigned long end,
195			unsigned long floor, unsigned long ceiling)
196{
197	pgd_t *pgd;
198	unsigned long next;
199	unsigned long start;
200
201	/*
202	 * The next few lines have given us lots of grief...
203	 *
204	 * Why are we testing PMD* at this top level?  Because often
205	 * there will be no work to do at all, and we'd prefer not to
206	 * go all the way down to the bottom just to discover that.
207	 *
208	 * Why all these "- 1"s?  Because 0 represents both the bottom
209	 * of the address space and the top of it (using -1 for the
210	 * top wouldn't help much: the masks would do the wrong thing).
211	 * The rule is that addr 0 and floor 0 refer to the bottom of
212	 * the address space, but end 0 and ceiling 0 refer to the top
213	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214	 * that end 0 case should be mythical).
215	 *
216	 * Wherever addr is brought up or ceiling brought down, we must
217	 * be careful to reject "the opposite 0" before it confuses the
218	 * subsequent tests.  But what about where end is brought down
219	 * by PMD_SIZE below? no, end can't go down to 0 there.
220	 *
221	 * Whereas we round start (addr) and ceiling down, by different
222	 * masks at different levels, in order to test whether a table
223	 * now has no other vmas using it, so can be freed, we don't
224	 * bother to round floor or end up - the tests don't need that.
225	 */
226
227	addr &= PMD_MASK;
228	if (addr < floor) {
229		addr += PMD_SIZE;
230		if (!addr)
231			return;
232	}
233	if (ceiling) {
234		ceiling &= PMD_MASK;
235		if (!ceiling)
236			return;
237	}
238	if (end - 1 > ceiling - 1)
239		end -= PMD_SIZE;
240	if (addr > end - 1)
241		return;
242
243	start = addr;
244	pgd = pgd_offset((*tlb)->mm, addr);
245	do {
246		next = pgd_addr_end(addr, end);
247		if (pgd_none_or_clear_bad(pgd))
248			continue;
249		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250	} while (pgd++, addr = next, addr != end);
251
252	if (!(*tlb)->fullmm)
253		flush_tlb_pgtables((*tlb)->mm, start, end);
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257		unsigned long floor, unsigned long ceiling)
258{
259	while (vma) {
260		struct vm_area_struct *next = vma->vm_next;
261		unsigned long addr = vma->vm_start;
262
263		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265				floor, next? next->vm_start: ceiling);
266		} else {
267			/*
268			 * Optimization: gather nearby vmas into one call down
269			 */
270			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272							HPAGE_SIZE)) {
273				vma = next;
274				next = vma->vm_next;
275			}
276			free_pgd_range(tlb, addr, vma->vm_end,
277				floor, next? next->vm_start: ceiling);
278		}
279		vma = next;
280	}
281}
282
283pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284				unsigned long address)
285{
286	if (!pmd_present(*pmd)) {
287		struct page *new;
288
289		spin_unlock(&mm->page_table_lock);
290		new = pte_alloc_one(mm, address);
291		spin_lock(&mm->page_table_lock);
292		if (!new)
293			return NULL;
294		/*
295		 * Because we dropped the lock, we should re-check the
296		 * entry, as somebody else could have populated it..
297		 */
298		if (pmd_present(*pmd)) {
299			pte_free(new);
300			goto out;
301		}
302		mm->nr_ptes++;
303		inc_page_state(nr_page_table_pages);
304		pmd_populate(mm, pmd, new);
305	}
306out:
307	return pte_offset_map(pmd, address);
308}
309
310pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311{
312	if (!pmd_present(*pmd)) {
313		pte_t *new;
314
315		spin_unlock(&mm->page_table_lock);
316		new = pte_alloc_one_kernel(mm, address);
317		spin_lock(&mm->page_table_lock);
318		if (!new)
319			return NULL;
320
321		/*
322		 * Because we dropped the lock, we should re-check the
323		 * entry, as somebody else could have populated it..
324		 */
325		if (pmd_present(*pmd)) {
326			pte_free_kernel(new);
327			goto out;
328		}
329		pmd_populate_kernel(mm, pmd, new);
330	}
331out:
332	return pte_offset_kernel(pmd, address);
333}
334
335/*
336 * copy one vm_area from one task to the other. Assumes the page tables
337 * already present in the new task to be cleared in the whole range
338 * covered by this vma.
339 *
340 * dst->page_table_lock is held on entry and exit,
341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342 */
343
344static inline void
345copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346		pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347		unsigned long addr)
348{
349	pte_t pte = *src_pte;
350	struct page *page;
351	unsigned long pfn;
352
353	/* pte contains position in swap or file, so copy. */
354	if (unlikely(!pte_present(pte))) {
355		if (!pte_file(pte)) {
356			swap_duplicate(pte_to_swp_entry(pte));
357			/* make sure dst_mm is on swapoff's mmlist. */
358			if (unlikely(list_empty(&dst_mm->mmlist))) {
359				spin_lock(&mmlist_lock);
360				list_add(&dst_mm->mmlist, &src_mm->mmlist);
361				spin_unlock(&mmlist_lock);
362			}
363		}
364		set_pte_at(dst_mm, addr, dst_pte, pte);
365		return;
366	}
367
368	pfn = pte_pfn(pte);
369	/* the pte points outside of valid memory, the
370	 * mapping is assumed to be good, meaningful
371	 * and not mapped via rmap - duplicate the
372	 * mapping as is.
373	 */
374	page = NULL;
375	if (pfn_valid(pfn))
376		page = pfn_to_page(pfn);
377
378	if (!page || PageReserved(page)) {
379		set_pte_at(dst_mm, addr, dst_pte, pte);
380		return;
381	}
382
383	/*
384	 * If it's a COW mapping, write protect it both
385	 * in the parent and the child
386	 */
387	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388		ptep_set_wrprotect(src_mm, addr, src_pte);
389		pte = *src_pte;
390	}
391
392	/*
393	 * If it's a shared mapping, mark it clean in
394	 * the child
395	 */
396	if (vm_flags & VM_SHARED)
397		pte = pte_mkclean(pte);
398	pte = pte_mkold(pte);
399	get_page(page);
400	if (PageAnon(page))
401		inc_mm_counter(dst_mm, anon_rss);
402	else
403		inc_mm_counter(dst_mm, file_rss);
404	set_pte_at(dst_mm, addr, dst_pte, pte);
405	page_dup_rmap(page);
406}
407
408static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
409		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
410		unsigned long addr, unsigned long end)
411{
412	pte_t *src_pte, *dst_pte;
413	unsigned long vm_flags = vma->vm_flags;
414	int progress = 0;
415
416again:
417	dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
418	if (!dst_pte)
419		return -ENOMEM;
420	src_pte = pte_offset_map_nested(src_pmd, addr);
421
422	spin_lock(&src_mm->page_table_lock);
423	do {
424		/*
425		 * We are holding two locks at this point - either of them
426		 * could generate latencies in another task on another CPU.
427		 */
428		if (progress >= 32) {
429			progress = 0;
430			if (need_resched() ||
431			    need_lockbreak(&src_mm->page_table_lock) ||
432			    need_lockbreak(&dst_mm->page_table_lock))
433				break;
434		}
435		if (pte_none(*src_pte)) {
436			progress++;
437			continue;
438		}
439		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
440		progress += 8;
441	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
442	spin_unlock(&src_mm->page_table_lock);
443
444	pte_unmap_nested(src_pte - 1);
445	pte_unmap(dst_pte - 1);
446	cond_resched_lock(&dst_mm->page_table_lock);
447	if (addr != end)
448		goto again;
449	return 0;
450}
451
452static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
453		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
454		unsigned long addr, unsigned long end)
455{
456	pmd_t *src_pmd, *dst_pmd;
457	unsigned long next;
458
459	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
460	if (!dst_pmd)
461		return -ENOMEM;
462	src_pmd = pmd_offset(src_pud, addr);
463	do {
464		next = pmd_addr_end(addr, end);
465		if (pmd_none_or_clear_bad(src_pmd))
466			continue;
467		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
468						vma, addr, next))
469			return -ENOMEM;
470	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
471	return 0;
472}
473
474static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
475		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
476		unsigned long addr, unsigned long end)
477{
478	pud_t *src_pud, *dst_pud;
479	unsigned long next;
480
481	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
482	if (!dst_pud)
483		return -ENOMEM;
484	src_pud = pud_offset(src_pgd, addr);
485	do {
486		next = pud_addr_end(addr, end);
487		if (pud_none_or_clear_bad(src_pud))
488			continue;
489		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
490						vma, addr, next))
491			return -ENOMEM;
492	} while (dst_pud++, src_pud++, addr = next, addr != end);
493	return 0;
494}
495
496int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
497		struct vm_area_struct *vma)
498{
499	pgd_t *src_pgd, *dst_pgd;
500	unsigned long next;
501	unsigned long addr = vma->vm_start;
502	unsigned long end = vma->vm_end;
503
504	/*
505	 * Don't copy ptes where a page fault will fill them correctly.
506	 * Fork becomes much lighter when there are big shared or private
507	 * readonly mappings. The tradeoff is that copy_page_range is more
508	 * efficient than faulting.
509	 */
510	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
511		if (!vma->anon_vma)
512			return 0;
513	}
514
515	if (is_vm_hugetlb_page(vma))
516		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
517
518	dst_pgd = pgd_offset(dst_mm, addr);
519	src_pgd = pgd_offset(src_mm, addr);
520	do {
521		next = pgd_addr_end(addr, end);
522		if (pgd_none_or_clear_bad(src_pgd))
523			continue;
524		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
525						vma, addr, next))
526			return -ENOMEM;
527	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
528	return 0;
529}
530
531static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
532				unsigned long addr, unsigned long end,
533				struct zap_details *details)
534{
535	pte_t *pte;
536
537	pte = pte_offset_map(pmd, addr);
538	do {
539		pte_t ptent = *pte;
540		if (pte_none(ptent))
541			continue;
542		if (pte_present(ptent)) {
543			struct page *page = NULL;
544			unsigned long pfn = pte_pfn(ptent);
545			if (pfn_valid(pfn)) {
546				page = pfn_to_page(pfn);
547				if (PageReserved(page))
548					page = NULL;
549			}
550			if (unlikely(details) && page) {
551				/*
552				 * unmap_shared_mapping_pages() wants to
553				 * invalidate cache without truncating:
554				 * unmap shared but keep private pages.
555				 */
556				if (details->check_mapping &&
557				    details->check_mapping != page->mapping)
558					continue;
559				/*
560				 * Each page->index must be checked when
561				 * invalidating or truncating nonlinear.
562				 */
563				if (details->nonlinear_vma &&
564				    (page->index < details->first_index ||
565				     page->index > details->last_index))
566					continue;
567			}
568			ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
569							tlb->fullmm);
570			tlb_remove_tlb_entry(tlb, pte, addr);
571			if (unlikely(!page))
572				continue;
573			if (unlikely(details) && details->nonlinear_vma
574			    && linear_page_index(details->nonlinear_vma,
575						addr) != page->index)
576				set_pte_at(tlb->mm, addr, pte,
577					   pgoff_to_pte(page->index));
578			if (PageAnon(page))
579				dec_mm_counter(tlb->mm, anon_rss);
580			else {
581				if (pte_dirty(ptent))
582					set_page_dirty(page);
583				if (pte_young(ptent))
584					mark_page_accessed(page);
585				dec_mm_counter(tlb->mm, file_rss);
586			}
587			page_remove_rmap(page);
588			tlb_remove_page(tlb, page);
589			continue;
590		}
591		/*
592		 * If details->check_mapping, we leave swap entries;
593		 * if details->nonlinear_vma, we leave file entries.
594		 */
595		if (unlikely(details))
596			continue;
597		if (!pte_file(ptent))
598			free_swap_and_cache(pte_to_swp_entry(ptent));
599		pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
600	} while (pte++, addr += PAGE_SIZE, addr != end);
601	pte_unmap(pte - 1);
602}
603
604static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
605				unsigned long addr, unsigned long end,
606				struct zap_details *details)
607{
608	pmd_t *pmd;
609	unsigned long next;
610
611	pmd = pmd_offset(pud, addr);
612	do {
613		next = pmd_addr_end(addr, end);
614		if (pmd_none_or_clear_bad(pmd))
615			continue;
616		zap_pte_range(tlb, pmd, addr, next, details);
617	} while (pmd++, addr = next, addr != end);
618}
619
620static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
621				unsigned long addr, unsigned long end,
622				struct zap_details *details)
623{
624	pud_t *pud;
625	unsigned long next;
626
627	pud = pud_offset(pgd, addr);
628	do {
629		next = pud_addr_end(addr, end);
630		if (pud_none_or_clear_bad(pud))
631			continue;
632		zap_pmd_range(tlb, pud, addr, next, details);
633	} while (pud++, addr = next, addr != end);
634}
635
636static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
637				unsigned long addr, unsigned long end,
638				struct zap_details *details)
639{
640	pgd_t *pgd;
641	unsigned long next;
642
643	if (details && !details->check_mapping && !details->nonlinear_vma)
644		details = NULL;
645
646	BUG_ON(addr >= end);
647	tlb_start_vma(tlb, vma);
648	pgd = pgd_offset(vma->vm_mm, addr);
649	do {
650		next = pgd_addr_end(addr, end);
651		if (pgd_none_or_clear_bad(pgd))
652			continue;
653		zap_pud_range(tlb, pgd, addr, next, details);
654	} while (pgd++, addr = next, addr != end);
655	tlb_end_vma(tlb, vma);
656}
657
658#ifdef CONFIG_PREEMPT
659# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
660#else
661/* No preempt: go for improved straight-line efficiency */
662# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
663#endif
664
665/**
666 * unmap_vmas - unmap a range of memory covered by a list of vma's
667 * @tlbp: address of the caller's struct mmu_gather
668 * @mm: the controlling mm_struct
669 * @vma: the starting vma
670 * @start_addr: virtual address at which to start unmapping
671 * @end_addr: virtual address at which to end unmapping
672 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
673 * @details: details of nonlinear truncation or shared cache invalidation
674 *
675 * Returns the end address of the unmapping (restart addr if interrupted).
676 *
677 * Unmap all pages in the vma list.  Called under page_table_lock.
678 *
679 * We aim to not hold page_table_lock for too long (for scheduling latency
680 * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
681 * return the ending mmu_gather to the caller.
682 *
683 * Only addresses between `start' and `end' will be unmapped.
684 *
685 * The VMA list must be sorted in ascending virtual address order.
686 *
687 * unmap_vmas() assumes that the caller will flush the whole unmapped address
688 * range after unmap_vmas() returns.  So the only responsibility here is to
689 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
690 * drops the lock and schedules.
691 */
692unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
693		struct vm_area_struct *vma, unsigned long start_addr,
694		unsigned long end_addr, unsigned long *nr_accounted,
695		struct zap_details *details)
696{
697	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
698	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
699	int tlb_start_valid = 0;
700	unsigned long start = start_addr;
701	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
702	int fullmm = (*tlbp)->fullmm;
703
704	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
705		unsigned long end;
706
707		start = max(vma->vm_start, start_addr);
708		if (start >= vma->vm_end)
709			continue;
710		end = min(vma->vm_end, end_addr);
711		if (end <= vma->vm_start)
712			continue;
713
714		if (vma->vm_flags & VM_ACCOUNT)
715			*nr_accounted += (end - start) >> PAGE_SHIFT;
716
717		while (start != end) {
718			unsigned long block;
719
720			if (!tlb_start_valid) {
721				tlb_start = start;
722				tlb_start_valid = 1;
723			}
724
725			if (is_vm_hugetlb_page(vma)) {
726				block = end - start;
727				unmap_hugepage_range(vma, start, end);
728			} else {
729				block = min(zap_bytes, end - start);
730				unmap_page_range(*tlbp, vma, start,
731						start + block, details);
732			}
733
734			start += block;
735			zap_bytes -= block;
736			if ((long)zap_bytes > 0)
737				continue;
738
739			tlb_finish_mmu(*tlbp, tlb_start, start);
740
741			if (need_resched() ||
742				need_lockbreak(&mm->page_table_lock) ||
743				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
744				if (i_mmap_lock) {
745					/* must reset count of rss freed */
746					*tlbp = tlb_gather_mmu(mm, fullmm);
747					goto out;
748				}
749				spin_unlock(&mm->page_table_lock);
750				cond_resched();
751				spin_lock(&mm->page_table_lock);
752			}
753
754			*tlbp = tlb_gather_mmu(mm, fullmm);
755			tlb_start_valid = 0;
756			zap_bytes = ZAP_BLOCK_SIZE;
757		}
758	}
759out:
760	return start;	/* which is now the end (or restart) address */
761}
762
763/**
764 * zap_page_range - remove user pages in a given range
765 * @vma: vm_area_struct holding the applicable pages
766 * @address: starting address of pages to zap
767 * @size: number of bytes to zap
768 * @details: details of nonlinear truncation or shared cache invalidation
769 */
770unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
771		unsigned long size, struct zap_details *details)
772{
773	struct mm_struct *mm = vma->vm_mm;
774	struct mmu_gather *tlb;
775	unsigned long end = address + size;
776	unsigned long nr_accounted = 0;
777
778	if (is_vm_hugetlb_page(vma)) {
779		zap_hugepage_range(vma, address, size);
780		return end;
781	}
782
783	lru_add_drain();
784	spin_lock(&mm->page_table_lock);
785	tlb = tlb_gather_mmu(mm, 0);
786	end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
787	tlb_finish_mmu(tlb, address, end);
788	spin_unlock(&mm->page_table_lock);
789	return end;
790}
791
792/*
793 * Do a quick page-table lookup for a single page.
794 * mm->page_table_lock must be held.
795 */
796static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
797			int read, int write, int accessed)
798{
799	pgd_t *pgd;
800	pud_t *pud;
801	pmd_t *pmd;
802	pte_t *ptep, pte;
803	unsigned long pfn;
804	struct page *page;
805
806	page = follow_huge_addr(mm, address, write);
807	if (! IS_ERR(page))
808		return page;
809
810	pgd = pgd_offset(mm, address);
811	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
812		goto out;
813
814	pud = pud_offset(pgd, address);
815	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
816		goto out;
817
818	pmd = pmd_offset(pud, address);
819	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
820		goto out;
821	if (pmd_huge(*pmd))
822		return follow_huge_pmd(mm, address, pmd, write);
823
824	ptep = pte_offset_map(pmd, address);
825	if (!ptep)
826		goto out;
827
828	pte = *ptep;
829	pte_unmap(ptep);
830	if (pte_present(pte)) {
831		if (write && !pte_write(pte))
832			goto out;
833		if (read && !pte_read(pte))
834			goto out;
835		pfn = pte_pfn(pte);
836		if (pfn_valid(pfn)) {
837			page = pfn_to_page(pfn);
838			if (accessed) {
839				if (write && !pte_dirty(pte) &&!PageDirty(page))
840					set_page_dirty(page);
841				mark_page_accessed(page);
842			}
843			return page;
844		}
845	}
846
847out:
848	return NULL;
849}
850
851inline struct page *
852follow_page(struct mm_struct *mm, unsigned long address, int write)
853{
854	return __follow_page(mm, address, 0, write, 1);
855}
856
857/*
858 * check_user_page_readable() can be called frm niterrupt context by oprofile,
859 * so we need to avoid taking any non-irq-safe locks
860 */
861int check_user_page_readable(struct mm_struct *mm, unsigned long address)
862{
863	return __follow_page(mm, address, 1, 0, 0) != NULL;
864}
865EXPORT_SYMBOL(check_user_page_readable);
866
867static inline int
868untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
869			 unsigned long address)
870{
871	pgd_t *pgd;
872	pud_t *pud;
873	pmd_t *pmd;
874
875	/* Check if the vma is for an anonymous mapping. */
876	if (vma->vm_ops && vma->vm_ops->nopage)
877		return 0;
878
879	/* Check if page directory entry exists. */
880	pgd = pgd_offset(mm, address);
881	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
882		return 1;
883
884	pud = pud_offset(pgd, address);
885	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
886		return 1;
887
888	/* Check if page middle directory entry exists. */
889	pmd = pmd_offset(pud, address);
890	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
891		return 1;
892
893	/* There is a pte slot for 'address' in 'mm'. */
894	return 0;
895}
896
897int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
898		unsigned long start, int len, int write, int force,
899		struct page **pages, struct vm_area_struct **vmas)
900{
901	int i;
902	unsigned int flags;
903
904	/*
905	 * Require read or write permissions.
906	 * If 'force' is set, we only require the "MAY" flags.
907	 */
908	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
909	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
910	i = 0;
911
912	do {
913		struct vm_area_struct *	vma;
914
915		vma = find_extend_vma(mm, start);
916		if (!vma && in_gate_area(tsk, start)) {
917			unsigned long pg = start & PAGE_MASK;
918			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
919			pgd_t *pgd;
920			pud_t *pud;
921			pmd_t *pmd;
922			pte_t *pte;
923			if (write) /* user gate pages are read-only */
924				return i ? : -EFAULT;
925			if (pg > TASK_SIZE)
926				pgd = pgd_offset_k(pg);
927			else
928				pgd = pgd_offset_gate(mm, pg);
929			BUG_ON(pgd_none(*pgd));
930			pud = pud_offset(pgd, pg);
931			BUG_ON(pud_none(*pud));
932			pmd = pmd_offset(pud, pg);
933			if (pmd_none(*pmd))
934				return i ? : -EFAULT;
935			pte = pte_offset_map(pmd, pg);
936			if (pte_none(*pte)) {
937				pte_unmap(pte);
938				return i ? : -EFAULT;
939			}
940			if (pages) {
941				pages[i] = pte_page(*pte);
942				get_page(pages[i]);
943			}
944			pte_unmap(pte);
945			if (vmas)
946				vmas[i] = gate_vma;
947			i++;
948			start += PAGE_SIZE;
949			len--;
950			continue;
951		}
952
953		if (!vma || (vma->vm_flags & VM_IO)
954				|| !(flags & vma->vm_flags))
955			return i ? : -EFAULT;
956
957		if (is_vm_hugetlb_page(vma)) {
958			i = follow_hugetlb_page(mm, vma, pages, vmas,
959						&start, &len, i);
960			continue;
961		}
962		spin_lock(&mm->page_table_lock);
963		do {
964			int write_access = write;
965			struct page *page;
966
967			cond_resched_lock(&mm->page_table_lock);
968			while (!(page = follow_page(mm, start, write_access))) {
969				int ret;
970
971				/*
972				 * Shortcut for anonymous pages. We don't want
973				 * to force the creation of pages tables for
974				 * insanely big anonymously mapped areas that
975				 * nobody touched so far. This is important
976				 * for doing a core dump for these mappings.
977				 */
978				if (!write && untouched_anonymous_page(mm,vma,start)) {
979					page = ZERO_PAGE(start);
980					break;
981				}
982				spin_unlock(&mm->page_table_lock);
983				ret = __handle_mm_fault(mm, vma, start, write_access);
984
985				/*
986				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
987				 * broken COW when necessary, even if maybe_mkwrite
988				 * decided not to set pte_write. We can thus safely do
989				 * subsequent page lookups as if they were reads.
990				 */
991				if (ret & VM_FAULT_WRITE)
992					write_access = 0;
993
994				switch (ret & ~VM_FAULT_WRITE) {
995				case VM_FAULT_MINOR:
996					tsk->min_flt++;
997					break;
998				case VM_FAULT_MAJOR:
999					tsk->maj_flt++;
1000					break;
1001				case VM_FAULT_SIGBUS:
1002					return i ? i : -EFAULT;
1003				case VM_FAULT_OOM:
1004					return i ? i : -ENOMEM;
1005				default:
1006					BUG();
1007				}
1008				spin_lock(&mm->page_table_lock);
1009			}
1010			if (pages) {
1011				pages[i] = page;
1012				flush_dcache_page(page);
1013				if (!PageReserved(page))
1014					page_cache_get(page);
1015			}
1016			if (vmas)
1017				vmas[i] = vma;
1018			i++;
1019			start += PAGE_SIZE;
1020			len--;
1021		} while (len && start < vma->vm_end);
1022		spin_unlock(&mm->page_table_lock);
1023	} while (len);
1024	return i;
1025}
1026EXPORT_SYMBOL(get_user_pages);
1027
1028static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1029			unsigned long addr, unsigned long end, pgprot_t prot)
1030{
1031	pte_t *pte;
1032
1033	pte = pte_alloc_map(mm, pmd, addr);
1034	if (!pte)
1035		return -ENOMEM;
1036	do {
1037		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1038		BUG_ON(!pte_none(*pte));
1039		set_pte_at(mm, addr, pte, zero_pte);
1040	} while (pte++, addr += PAGE_SIZE, addr != end);
1041	pte_unmap(pte - 1);
1042	return 0;
1043}
1044
1045static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1046			unsigned long addr, unsigned long end, pgprot_t prot)
1047{
1048	pmd_t *pmd;
1049	unsigned long next;
1050
1051	pmd = pmd_alloc(mm, pud, addr);
1052	if (!pmd)
1053		return -ENOMEM;
1054	do {
1055		next = pmd_addr_end(addr, end);
1056		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1057			return -ENOMEM;
1058	} while (pmd++, addr = next, addr != end);
1059	return 0;
1060}
1061
1062static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1063			unsigned long addr, unsigned long end, pgprot_t prot)
1064{
1065	pud_t *pud;
1066	unsigned long next;
1067
1068	pud = pud_alloc(mm, pgd, addr);
1069	if (!pud)
1070		return -ENOMEM;
1071	do {
1072		next = pud_addr_end(addr, end);
1073		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1074			return -ENOMEM;
1075	} while (pud++, addr = next, addr != end);
1076	return 0;
1077}
1078
1079int zeromap_page_range(struct vm_area_struct *vma,
1080			unsigned long addr, unsigned long size, pgprot_t prot)
1081{
1082	pgd_t *pgd;
1083	unsigned long next;
1084	unsigned long end = addr + size;
1085	struct mm_struct *mm = vma->vm_mm;
1086	int err;
1087
1088	BUG_ON(addr >= end);
1089	pgd = pgd_offset(mm, addr);
1090	flush_cache_range(vma, addr, end);
1091	spin_lock(&mm->page_table_lock);
1092	do {
1093		next = pgd_addr_end(addr, end);
1094		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1095		if (err)
1096			break;
1097	} while (pgd++, addr = next, addr != end);
1098	spin_unlock(&mm->page_table_lock);
1099	return err;
1100}
1101
1102/*
1103 * maps a range of physical memory into the requested pages. the old
1104 * mappings are removed. any references to nonexistent pages results
1105 * in null mappings (currently treated as "copy-on-access")
1106 */
1107static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1108			unsigned long addr, unsigned long end,
1109			unsigned long pfn, pgprot_t prot)
1110{
1111	pte_t *pte;
1112
1113	pte = pte_alloc_map(mm, pmd, addr);
1114	if (!pte)
1115		return -ENOMEM;
1116	do {
1117		BUG_ON(!pte_none(*pte));
1118		if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1119			set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1120		pfn++;
1121	} while (pte++, addr += PAGE_SIZE, addr != end);
1122	pte_unmap(pte - 1);
1123	return 0;
1124}
1125
1126static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1127			unsigned long addr, unsigned long end,
1128			unsigned long pfn, pgprot_t prot)
1129{
1130	pmd_t *pmd;
1131	unsigned long next;
1132
1133	pfn -= addr >> PAGE_SHIFT;
1134	pmd = pmd_alloc(mm, pud, addr);
1135	if (!pmd)
1136		return -ENOMEM;
1137	do {
1138		next = pmd_addr_end(addr, end);
1139		if (remap_pte_range(mm, pmd, addr, next,
1140				pfn + (addr >> PAGE_SHIFT), prot))
1141			return -ENOMEM;
1142	} while (pmd++, addr = next, addr != end);
1143	return 0;
1144}
1145
1146static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1147			unsigned long addr, unsigned long end,
1148			unsigned long pfn, pgprot_t prot)
1149{
1150	pud_t *pud;
1151	unsigned long next;
1152
1153	pfn -= addr >> PAGE_SHIFT;
1154	pud = pud_alloc(mm, pgd, addr);
1155	if (!pud)
1156		return -ENOMEM;
1157	do {
1158		next = pud_addr_end(addr, end);
1159		if (remap_pmd_range(mm, pud, addr, next,
1160				pfn + (addr >> PAGE_SHIFT), prot))
1161			return -ENOMEM;
1162	} while (pud++, addr = next, addr != end);
1163	return 0;
1164}
1165
1166/*  Note: this is only safe if the mm semaphore is held when called. */
1167int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1168		    unsigned long pfn, unsigned long size, pgprot_t prot)
1169{
1170	pgd_t *pgd;
1171	unsigned long next;
1172	unsigned long end = addr + PAGE_ALIGN(size);
1173	struct mm_struct *mm = vma->vm_mm;
1174	int err;
1175
1176	/*
1177	 * Physically remapped pages are special. Tell the
1178	 * rest of the world about it:
1179	 *   VM_IO tells people not to look at these pages
1180	 *	(accesses can have side effects).
1181	 *   VM_RESERVED tells swapout not to try to touch
1182	 *	this region.
1183	 */
1184	vma->vm_flags |= VM_IO | VM_RESERVED;
1185
1186	BUG_ON(addr >= end);
1187	pfn -= addr >> PAGE_SHIFT;
1188	pgd = pgd_offset(mm, addr);
1189	flush_cache_range(vma, addr, end);
1190	spin_lock(&mm->page_table_lock);
1191	do {
1192		next = pgd_addr_end(addr, end);
1193		err = remap_pud_range(mm, pgd, addr, next,
1194				pfn + (addr >> PAGE_SHIFT), prot);
1195		if (err)
1196			break;
1197	} while (pgd++, addr = next, addr != end);
1198	spin_unlock(&mm->page_table_lock);
1199	return err;
1200}
1201EXPORT_SYMBOL(remap_pfn_range);
1202
1203/*
1204 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1205 * servicing faults for write access.  In the normal case, do always want
1206 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1207 * that do not have writing enabled, when used by access_process_vm.
1208 */
1209static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1210{
1211	if (likely(vma->vm_flags & VM_WRITE))
1212		pte = pte_mkwrite(pte);
1213	return pte;
1214}
1215
1216/*
1217 * This routine handles present pages, when users try to write
1218 * to a shared page. It is done by copying the page to a new address
1219 * and decrementing the shared-page counter for the old page.
1220 *
1221 * Note that this routine assumes that the protection checks have been
1222 * done by the caller (the low-level page fault routine in most cases).
1223 * Thus we can safely just mark it writable once we've done any necessary
1224 * COW.
1225 *
1226 * We also mark the page dirty at this point even though the page will
1227 * change only once the write actually happens. This avoids a few races,
1228 * and potentially makes it more efficient.
1229 *
1230 * We hold the mm semaphore and the page_table_lock on entry and exit
1231 * with the page_table_lock released.
1232 */
1233static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1234		unsigned long address, pte_t *page_table, pmd_t *pmd,
1235		pte_t orig_pte)
1236{
1237	struct page *old_page, *new_page;
1238	unsigned long pfn = pte_pfn(orig_pte);
1239	pte_t entry;
1240	int ret = VM_FAULT_MINOR;
1241
1242	if (unlikely(!pfn_valid(pfn))) {
1243		/*
1244		 * Page table corrupted: show pte and kill process.
1245		 */
1246		pte_ERROR(orig_pte);
1247		ret = VM_FAULT_OOM;
1248		goto unlock;
1249	}
1250	old_page = pfn_to_page(pfn);
1251
1252	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1253		int reuse = can_share_swap_page(old_page);
1254		unlock_page(old_page);
1255		if (reuse) {
1256			flush_cache_page(vma, address, pfn);
1257			entry = pte_mkyoung(orig_pte);
1258			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1259			ptep_set_access_flags(vma, address, page_table, entry, 1);
1260			update_mmu_cache(vma, address, entry);
1261			lazy_mmu_prot_update(entry);
1262			ret |= VM_FAULT_WRITE;
1263			goto unlock;
1264		}
1265	}
1266
1267	/*
1268	 * Ok, we need to copy. Oh, well..
1269	 */
1270	if (!PageReserved(old_page))
1271		page_cache_get(old_page);
1272	pte_unmap(page_table);
1273	spin_unlock(&mm->page_table_lock);
1274
1275	if (unlikely(anon_vma_prepare(vma)))
1276		goto oom;
1277	if (old_page == ZERO_PAGE(address)) {
1278		new_page = alloc_zeroed_user_highpage(vma, address);
1279		if (!new_page)
1280			goto oom;
1281	} else {
1282		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1283		if (!new_page)
1284			goto oom;
1285		copy_user_highpage(new_page, old_page, address);
1286	}
1287
1288	/*
1289	 * Re-check the pte - we dropped the lock
1290	 */
1291	spin_lock(&mm->page_table_lock);
1292	page_table = pte_offset_map(pmd, address);
1293	if (likely(pte_same(*page_table, orig_pte))) {
1294		if (PageReserved(old_page))
1295			inc_mm_counter(mm, anon_rss);
1296		else {
1297			page_remove_rmap(old_page);
1298			if (!PageAnon(old_page)) {
1299				inc_mm_counter(mm, anon_rss);
1300				dec_mm_counter(mm, file_rss);
1301			}
1302		}
1303		flush_cache_page(vma, address, pfn);
1304		entry = mk_pte(new_page, vma->vm_page_prot);
1305		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1306		ptep_establish(vma, address, page_table, entry);
1307		update_mmu_cache(vma, address, entry);
1308		lazy_mmu_prot_update(entry);
1309
1310		lru_cache_add_active(new_page);
1311		page_add_anon_rmap(new_page, vma, address);
1312
1313		/* Free the old page.. */
1314		new_page = old_page;
1315		ret |= VM_FAULT_WRITE;
1316	}
1317	page_cache_release(new_page);
1318	page_cache_release(old_page);
1319unlock:
1320	pte_unmap(page_table);
1321	spin_unlock(&mm->page_table_lock);
1322	return ret;
1323oom:
1324	page_cache_release(old_page);
1325	return VM_FAULT_OOM;
1326}
1327
1328/*
1329 * Helper functions for unmap_mapping_range().
1330 *
1331 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1332 *
1333 * We have to restart searching the prio_tree whenever we drop the lock,
1334 * since the iterator is only valid while the lock is held, and anyway
1335 * a later vma might be split and reinserted earlier while lock dropped.
1336 *
1337 * The list of nonlinear vmas could be handled more efficiently, using
1338 * a placeholder, but handle it in the same way until a need is shown.
1339 * It is important to search the prio_tree before nonlinear list: a vma
1340 * may become nonlinear and be shifted from prio_tree to nonlinear list
1341 * while the lock is dropped; but never shifted from list to prio_tree.
1342 *
1343 * In order to make forward progress despite restarting the search,
1344 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1345 * quickly skip it next time around.  Since the prio_tree search only
1346 * shows us those vmas affected by unmapping the range in question, we
1347 * can't efficiently keep all vmas in step with mapping->truncate_count:
1348 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1349 * mapping->truncate_count and vma->vm_truncate_count are protected by
1350 * i_mmap_lock.
1351 *
1352 * In order to make forward progress despite repeatedly restarting some
1353 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1354 * and restart from that address when we reach that vma again.  It might
1355 * have been split or merged, shrunk or extended, but never shifted: so
1356 * restart_addr remains valid so long as it remains in the vma's range.
1357 * unmap_mapping_range forces truncate_count to leap over page-aligned
1358 * values so we can save vma's restart_addr in its truncate_count field.
1359 */
1360#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1361
1362static void reset_vma_truncate_counts(struct address_space *mapping)
1363{
1364	struct vm_area_struct *vma;
1365	struct prio_tree_iter iter;
1366
1367	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1368		vma->vm_truncate_count = 0;
1369	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1370		vma->vm_truncate_count = 0;
1371}
1372
1373static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1374		unsigned long start_addr, unsigned long end_addr,
1375		struct zap_details *details)
1376{
1377	unsigned long restart_addr;
1378	int need_break;
1379
1380again:
1381	restart_addr = vma->vm_truncate_count;
1382	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1383		start_addr = restart_addr;
1384		if (start_addr >= end_addr) {
1385			/* Top of vma has been split off since last time */
1386			vma->vm_truncate_count = details->truncate_count;
1387			return 0;
1388		}
1389	}
1390
1391	restart_addr = zap_page_range(vma, start_addr,
1392					end_addr - start_addr, details);
1393
1394	/*
1395	 * We cannot rely on the break test in unmap_vmas:
1396	 * on the one hand, we don't want to restart our loop
1397	 * just because that broke out for the page_table_lock;
1398	 * on the other hand, it does no test when vma is small.
1399	 */
1400	need_break = need_resched() ||
1401			need_lockbreak(details->i_mmap_lock);
1402
1403	if (restart_addr >= end_addr) {
1404		/* We have now completed this vma: mark it so */
1405		vma->vm_truncate_count = details->truncate_count;
1406		if (!need_break)
1407			return 0;
1408	} else {
1409		/* Note restart_addr in vma's truncate_count field */
1410		vma->vm_truncate_count = restart_addr;
1411		if (!need_break)
1412			goto again;
1413	}
1414
1415	spin_unlock(details->i_mmap_lock);
1416	cond_resched();
1417	spin_lock(details->i_mmap_lock);
1418	return -EINTR;
1419}
1420
1421static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1422					    struct zap_details *details)
1423{
1424	struct vm_area_struct *vma;
1425	struct prio_tree_iter iter;
1426	pgoff_t vba, vea, zba, zea;
1427
1428restart:
1429	vma_prio_tree_foreach(vma, &iter, root,
1430			details->first_index, details->last_index) {
1431		/* Skip quickly over those we have already dealt with */
1432		if (vma->vm_truncate_count == details->truncate_count)
1433			continue;
1434
1435		vba = vma->vm_pgoff;
1436		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1437		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1438		zba = details->first_index;
1439		if (zba < vba)
1440			zba = vba;
1441		zea = details->last_index;
1442		if (zea > vea)
1443			zea = vea;
1444
1445		if (unmap_mapping_range_vma(vma,
1446			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1447			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1448				details) < 0)
1449			goto restart;
1450	}
1451}
1452
1453static inline void unmap_mapping_range_list(struct list_head *head,
1454					    struct zap_details *details)
1455{
1456	struct vm_area_struct *vma;
1457
1458	/*
1459	 * In nonlinear VMAs there is no correspondence between virtual address
1460	 * offset and file offset.  So we must perform an exhaustive search
1461	 * across *all* the pages in each nonlinear VMA, not just the pages
1462	 * whose virtual address lies outside the file truncation point.
1463	 */
1464restart:
1465	list_for_each_entry(vma, head, shared.vm_set.list) {
1466		/* Skip quickly over those we have already dealt with */
1467		if (vma->vm_truncate_count == details->truncate_count)
1468			continue;
1469		details->nonlinear_vma = vma;
1470		if (unmap_mapping_range_vma(vma, vma->vm_start,
1471					vma->vm_end, details) < 0)
1472			goto restart;
1473	}
1474}
1475
1476/**
1477 * unmap_mapping_range - unmap the portion of all mmaps
1478 * in the specified address_space corresponding to the specified
1479 * page range in the underlying file.
1480 * @mapping: the address space containing mmaps to be unmapped.
1481 * @holebegin: byte in first page to unmap, relative to the start of
1482 * the underlying file.  This will be rounded down to a PAGE_SIZE
1483 * boundary.  Note that this is different from vmtruncate(), which
1484 * must keep the partial page.  In contrast, we must get rid of
1485 * partial pages.
1486 * @holelen: size of prospective hole in bytes.  This will be rounded
1487 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1488 * end of the file.
1489 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1490 * but 0 when invalidating pagecache, don't throw away private data.
1491 */
1492void unmap_mapping_range(struct address_space *mapping,
1493		loff_t const holebegin, loff_t const holelen, int even_cows)
1494{
1495	struct zap_details details;
1496	pgoff_t hba = holebegin >> PAGE_SHIFT;
1497	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1498
1499	/* Check for overflow. */
1500	if (sizeof(holelen) > sizeof(hlen)) {
1501		long long holeend =
1502			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1503		if (holeend & ~(long long)ULONG_MAX)
1504			hlen = ULONG_MAX - hba + 1;
1505	}
1506
1507	details.check_mapping = even_cows? NULL: mapping;
1508	details.nonlinear_vma = NULL;
1509	details.first_index = hba;
1510	details.last_index = hba + hlen - 1;
1511	if (details.last_index < details.first_index)
1512		details.last_index = ULONG_MAX;
1513	details.i_mmap_lock = &mapping->i_mmap_lock;
1514
1515	spin_lock(&mapping->i_mmap_lock);
1516
1517	/* serialize i_size write against truncate_count write */
1518	smp_wmb();
1519	/* Protect against page faults, and endless unmapping loops */
1520	mapping->truncate_count++;
1521	/*
1522	 * For archs where spin_lock has inclusive semantics like ia64
1523	 * this smp_mb() will prevent to read pagetable contents
1524	 * before the truncate_count increment is visible to
1525	 * other cpus.
1526	 */
1527	smp_mb();
1528	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1529		if (mapping->truncate_count == 0)
1530			reset_vma_truncate_counts(mapping);
1531		mapping->truncate_count++;
1532	}
1533	details.truncate_count = mapping->truncate_count;
1534
1535	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1536		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1537	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1538		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1539	spin_unlock(&mapping->i_mmap_lock);
1540}
1541EXPORT_SYMBOL(unmap_mapping_range);
1542
1543/*
1544 * Handle all mappings that got truncated by a "truncate()"
1545 * system call.
1546 *
1547 * NOTE! We have to be ready to update the memory sharing
1548 * between the file and the memory map for a potential last
1549 * incomplete page.  Ugly, but necessary.
1550 */
1551int vmtruncate(struct inode * inode, loff_t offset)
1552{
1553	struct address_space *mapping = inode->i_mapping;
1554	unsigned long limit;
1555
1556	if (inode->i_size < offset)
1557		goto do_expand;
1558	/*
1559	 * truncation of in-use swapfiles is disallowed - it would cause
1560	 * subsequent swapout to scribble on the now-freed blocks.
1561	 */
1562	if (IS_SWAPFILE(inode))
1563		goto out_busy;
1564	i_size_write(inode, offset);
1565	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1566	truncate_inode_pages(mapping, offset);
1567	goto out_truncate;
1568
1569do_expand:
1570	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1571	if (limit != RLIM_INFINITY && offset > limit)
1572		goto out_sig;
1573	if (offset > inode->i_sb->s_maxbytes)
1574		goto out_big;
1575	i_size_write(inode, offset);
1576
1577out_truncate:
1578	if (inode->i_op && inode->i_op->truncate)
1579		inode->i_op->truncate(inode);
1580	return 0;
1581out_sig:
1582	send_sig(SIGXFSZ, current, 0);
1583out_big:
1584	return -EFBIG;
1585out_busy:
1586	return -ETXTBSY;
1587}
1588
1589EXPORT_SYMBOL(vmtruncate);
1590
1591/*
1592 * Primitive swap readahead code. We simply read an aligned block of
1593 * (1 << page_cluster) entries in the swap area. This method is chosen
1594 * because it doesn't cost us any seek time.  We also make sure to queue
1595 * the 'original' request together with the readahead ones...
1596 *
1597 * This has been extended to use the NUMA policies from the mm triggering
1598 * the readahead.
1599 *
1600 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1601 */
1602void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1603{
1604#ifdef CONFIG_NUMA
1605	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1606#endif
1607	int i, num;
1608	struct page *new_page;
1609	unsigned long offset;
1610
1611	/*
1612	 * Get the number of handles we should do readahead io to.
1613	 */
1614	num = valid_swaphandles(entry, &offset);
1615	for (i = 0; i < num; offset++, i++) {
1616		/* Ok, do the async read-ahead now */
1617		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1618							   offset), vma, addr);
1619		if (!new_page)
1620			break;
1621		page_cache_release(new_page);
1622#ifdef CONFIG_NUMA
1623		/*
1624		 * Find the next applicable VMA for the NUMA policy.
1625		 */
1626		addr += PAGE_SIZE;
1627		if (addr == 0)
1628			vma = NULL;
1629		if (vma) {
1630			if (addr >= vma->vm_end) {
1631				vma = next_vma;
1632				next_vma = vma ? vma->vm_next : NULL;
1633			}
1634			if (vma && addr < vma->vm_start)
1635				vma = NULL;
1636		} else {
1637			if (next_vma && addr >= next_vma->vm_start) {
1638				vma = next_vma;
1639				next_vma = vma->vm_next;
1640			}
1641		}
1642#endif
1643	}
1644	lru_add_drain();	/* Push any new pages onto the LRU now */
1645}
1646
1647/*
1648 * We hold the mm semaphore and the page_table_lock on entry and
1649 * should release the pagetable lock on exit..
1650 */
1651static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1652		unsigned long address, pte_t *page_table, pmd_t *pmd,
1653		int write_access, pte_t orig_pte)
1654{
1655	struct page *page;
1656	swp_entry_t entry;
1657	pte_t pte;
1658	int ret = VM_FAULT_MINOR;
1659
1660	pte_unmap(page_table);
1661	spin_unlock(&mm->page_table_lock);
1662
1663	entry = pte_to_swp_entry(orig_pte);
1664	page = lookup_swap_cache(entry);
1665	if (!page) {
1666 		swapin_readahead(entry, address, vma);
1667 		page = read_swap_cache_async(entry, vma, address);
1668		if (!page) {
1669			/*
1670			 * Back out if somebody else faulted in this pte while
1671			 * we released the page table lock.
1672			 */
1673			spin_lock(&mm->page_table_lock);
1674			page_table = pte_offset_map(pmd, address);
1675			if (likely(pte_same(*page_table, orig_pte)))
1676				ret = VM_FAULT_OOM;
1677			goto unlock;
1678		}
1679
1680		/* Had to read the page from swap area: Major fault */
1681		ret = VM_FAULT_MAJOR;
1682		inc_page_state(pgmajfault);
1683		grab_swap_token();
1684	}
1685
1686	mark_page_accessed(page);
1687	lock_page(page);
1688
1689	/*
1690	 * Back out if somebody else faulted in this pte while we
1691	 * released the page table lock.
1692	 */
1693	spin_lock(&mm->page_table_lock);
1694	page_table = pte_offset_map(pmd, address);
1695	if (unlikely(!pte_same(*page_table, orig_pte))) {
1696		ret = VM_FAULT_MINOR;
1697		goto out_nomap;
1698	}
1699
1700	if (unlikely(!PageUptodate(page))) {
1701		ret = VM_FAULT_SIGBUS;
1702		goto out_nomap;
1703	}
1704
1705	/* The page isn't present yet, go ahead with the fault. */
1706
1707	inc_mm_counter(mm, anon_rss);
1708	pte = mk_pte(page, vma->vm_page_prot);
1709	if (write_access && can_share_swap_page(page)) {
1710		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1711		write_access = 0;
1712	}
1713
1714	flush_icache_page(vma, page);
1715	set_pte_at(mm, address, page_table, pte);
1716	page_add_anon_rmap(page, vma, address);
1717
1718	swap_free(entry);
1719	if (vm_swap_full())
1720		remove_exclusive_swap_page(page);
1721	unlock_page(page);
1722
1723	if (write_access) {
1724		if (do_wp_page(mm, vma, address,
1725				page_table, pmd, pte) == VM_FAULT_OOM)
1726			ret = VM_FAULT_OOM;
1727		goto out;
1728	}
1729
1730	/* No need to invalidate - it was non-present before */
1731	update_mmu_cache(vma, address, pte);
1732	lazy_mmu_prot_update(pte);
1733unlock:
1734	pte_unmap(page_table);
1735	spin_unlock(&mm->page_table_lock);
1736out:
1737	return ret;
1738out_nomap:
1739	pte_unmap(page_table);
1740	spin_unlock(&mm->page_table_lock);
1741	unlock_page(page);
1742	page_cache_release(page);
1743	return ret;
1744}
1745
1746/*
1747 * We are called with the MM semaphore and page_table_lock
1748 * spinlock held to protect against concurrent faults in
1749 * multithreaded programs.
1750 */
1751static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1752		unsigned long address, pte_t *page_table, pmd_t *pmd,
1753		int write_access)
1754{
1755	pte_t entry;
1756
1757	/* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1758	entry = mk_pte(ZERO_PAGE(addr), vma->vm_page_prot);
1759
1760	if (write_access) {
1761		struct page *page;
1762
1763		/* Allocate our own private page. */
1764		pte_unmap(page_table);
1765		spin_unlock(&mm->page_table_lock);
1766
1767		if (unlikely(anon_vma_prepare(vma)))
1768			goto oom;
1769		page = alloc_zeroed_user_highpage(vma, address);
1770		if (!page)
1771			goto oom;
1772
1773		spin_lock(&mm->page_table_lock);
1774		page_table = pte_offset_map(pmd, address);
1775
1776		if (!pte_none(*page_table)) {
1777			page_cache_release(page);
1778			goto unlock;
1779		}
1780		inc_mm_counter(mm, anon_rss);
1781		entry = mk_pte(page, vma->vm_page_prot);
1782		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1783		lru_cache_add_active(page);
1784		SetPageReferenced(page);
1785		page_add_anon_rmap(page, vma, address);
1786	}
1787
1788	set_pte_at(mm, address, page_table, entry);
1789
1790	/* No need to invalidate - it was non-present before */
1791	update_mmu_cache(vma, address, entry);
1792	lazy_mmu_prot_update(entry);
1793unlock:
1794	pte_unmap(page_table);
1795	spin_unlock(&mm->page_table_lock);
1796	return VM_FAULT_MINOR;
1797oom:
1798	return VM_FAULT_OOM;
1799}
1800
1801/*
1802 * do_no_page() tries to create a new page mapping. It aggressively
1803 * tries to share with existing pages, but makes a separate copy if
1804 * the "write_access" parameter is true in order to avoid the next
1805 * page fault.
1806 *
1807 * As this is called only for pages that do not currently exist, we
1808 * do not need to flush old virtual caches or the TLB.
1809 *
1810 * This is called with the MM semaphore held and the page table
1811 * spinlock held. Exit with the spinlock released.
1812 */
1813static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1814		unsigned long address, pte_t *page_table, pmd_t *pmd,
1815		int write_access)
1816{
1817	struct page *new_page;
1818	struct address_space *mapping = NULL;
1819	pte_t entry;
1820	unsigned int sequence = 0;
1821	int ret = VM_FAULT_MINOR;
1822	int anon = 0;
1823
1824	pte_unmap(page_table);
1825	spin_unlock(&mm->page_table_lock);
1826
1827	if (vma->vm_file) {
1828		mapping = vma->vm_file->f_mapping;
1829		sequence = mapping->truncate_count;
1830		smp_rmb(); /* serializes i_size against truncate_count */
1831	}
1832retry:
1833	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1834	/*
1835	 * No smp_rmb is needed here as long as there's a full
1836	 * spin_lock/unlock sequence inside the ->nopage callback
1837	 * (for the pagecache lookup) that acts as an implicit
1838	 * smp_mb() and prevents the i_size read to happen
1839	 * after the next truncate_count read.
1840	 */
1841
1842	/* no page was available -- either SIGBUS or OOM */
1843	if (new_page == NOPAGE_SIGBUS)
1844		return VM_FAULT_SIGBUS;
1845	if (new_page == NOPAGE_OOM)
1846		return VM_FAULT_OOM;
1847
1848	/*
1849	 * Should we do an early C-O-W break?
1850	 */
1851	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1852		struct page *page;
1853
1854		if (unlikely(anon_vma_prepare(vma)))
1855			goto oom;
1856		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1857		if (!page)
1858			goto oom;
1859		copy_user_highpage(page, new_page, address);
1860		page_cache_release(new_page);
1861		new_page = page;
1862		anon = 1;
1863	}
1864
1865	spin_lock(&mm->page_table_lock);
1866	/*
1867	 * For a file-backed vma, someone could have truncated or otherwise
1868	 * invalidated this page.  If unmap_mapping_range got called,
1869	 * retry getting the page.
1870	 */
1871	if (mapping && unlikely(sequence != mapping->truncate_count)) {
1872		spin_unlock(&mm->page_table_lock);
1873		page_cache_release(new_page);
1874		cond_resched();
1875		sequence = mapping->truncate_count;
1876		smp_rmb();
1877		goto retry;
1878	}
1879	page_table = pte_offset_map(pmd, address);
1880
1881	/*
1882	 * This silly early PAGE_DIRTY setting removes a race
1883	 * due to the bad i386 page protection. But it's valid
1884	 * for other architectures too.
1885	 *
1886	 * Note that if write_access is true, we either now have
1887	 * an exclusive copy of the page, or this is a shared mapping,
1888	 * so we can make it writable and dirty to avoid having to
1889	 * handle that later.
1890	 */
1891	/* Only go through if we didn't race with anybody else... */
1892	if (pte_none(*page_table)) {
1893		flush_icache_page(vma, new_page);
1894		entry = mk_pte(new_page, vma->vm_page_prot);
1895		if (write_access)
1896			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1897		set_pte_at(mm, address, page_table, entry);
1898		if (anon) {
1899			inc_mm_counter(mm, anon_rss);
1900			lru_cache_add_active(new_page);
1901			page_add_anon_rmap(new_page, vma, address);
1902		} else if (!PageReserved(new_page)) {
1903			inc_mm_counter(mm, file_rss);
1904			page_add_file_rmap(new_page);
1905		}
1906	} else {
1907		/* One of our sibling threads was faster, back out. */
1908		page_cache_release(new_page);
1909		goto unlock;
1910	}
1911
1912	/* no need to invalidate: a not-present page shouldn't be cached */
1913	update_mmu_cache(vma, address, entry);
1914	lazy_mmu_prot_update(entry);
1915unlock:
1916	pte_unmap(page_table);
1917	spin_unlock(&mm->page_table_lock);
1918	return ret;
1919oom:
1920	page_cache_release(new_page);
1921	return VM_FAULT_OOM;
1922}
1923
1924/*
1925 * Fault of a previously existing named mapping. Repopulate the pte
1926 * from the encoded file_pte if possible. This enables swappable
1927 * nonlinear vmas.
1928 */
1929static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1930		unsigned long address, pte_t *page_table, pmd_t *pmd,
1931		int write_access, pte_t orig_pte)
1932{
1933	pgoff_t pgoff;
1934	int err;
1935
1936	pte_unmap(page_table);
1937	spin_unlock(&mm->page_table_lock);
1938
1939	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1940		/*
1941		 * Page table corrupted: show pte and kill process.
1942		 */
1943		pte_ERROR(orig_pte);
1944		return VM_FAULT_OOM;
1945	}
1946	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
1947
1948	pgoff = pte_to_pgoff(orig_pte);
1949	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1950					vma->vm_page_prot, pgoff, 0);
1951	if (err == -ENOMEM)
1952		return VM_FAULT_OOM;
1953	if (err)
1954		return VM_FAULT_SIGBUS;
1955	return VM_FAULT_MAJOR;
1956}
1957
1958/*
1959 * These routines also need to handle stuff like marking pages dirty
1960 * and/or accessed for architectures that don't do it in hardware (most
1961 * RISC architectures).  The early dirtying is also good on the i386.
1962 *
1963 * There is also a hook called "update_mmu_cache()" that architectures
1964 * with external mmu caches can use to update those (ie the Sparc or
1965 * PowerPC hashed page tables that act as extended TLBs).
1966 *
1967 * Note the "page_table_lock". It is to protect against kswapd removing
1968 * pages from under us. Note that kswapd only ever _removes_ pages, never
1969 * adds them. As such, once we have noticed that the page is not present,
1970 * we can drop the lock early.
1971 *
1972 * The adding of pages is protected by the MM semaphore (which we hold),
1973 * so we don't need to worry about a page being suddenly been added into
1974 * our VM.
1975 *
1976 * We enter with the pagetable spinlock held, we are supposed to
1977 * release it when done.
1978 */
1979static inline int handle_pte_fault(struct mm_struct *mm,
1980		struct vm_area_struct *vma, unsigned long address,
1981		pte_t *pte, pmd_t *pmd, int write_access)
1982{
1983	pte_t entry;
1984
1985	entry = *pte;
1986	if (!pte_present(entry)) {
1987		if (pte_none(entry)) {
1988			if (!vma->vm_ops || !vma->vm_ops->nopage)
1989				return do_anonymous_page(mm, vma, address,
1990					pte, pmd, write_access);
1991			return do_no_page(mm, vma, address,
1992					pte, pmd, write_access);
1993		}
1994		if (pte_file(entry))
1995			return do_file_page(mm, vma, address,
1996					pte, pmd, write_access, entry);
1997		return do_swap_page(mm, vma, address,
1998					pte, pmd, write_access, entry);
1999	}
2000
2001	if (write_access) {
2002		if (!pte_write(entry))
2003			return do_wp_page(mm, vma, address, pte, pmd, entry);
2004		entry = pte_mkdirty(entry);
2005	}
2006	entry = pte_mkyoung(entry);
2007	ptep_set_access_flags(vma, address, pte, entry, write_access);
2008	update_mmu_cache(vma, address, entry);
2009	lazy_mmu_prot_update(entry);
2010	pte_unmap(pte);
2011	spin_unlock(&mm->page_table_lock);
2012	return VM_FAULT_MINOR;
2013}
2014
2015/*
2016 * By the time we get here, we already hold the mm semaphore
2017 */
2018int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2019		unsigned long address, int write_access)
2020{
2021	pgd_t *pgd;
2022	pud_t *pud;
2023	pmd_t *pmd;
2024	pte_t *pte;
2025
2026	__set_current_state(TASK_RUNNING);
2027
2028	inc_page_state(pgfault);
2029
2030	if (unlikely(is_vm_hugetlb_page(vma)))
2031		return hugetlb_fault(mm, vma, address, write_access);
2032
2033	/*
2034	 * We need the page table lock to synchronize with kswapd
2035	 * and the SMP-safe atomic PTE updates.
2036	 */
2037	pgd = pgd_offset(mm, address);
2038	spin_lock(&mm->page_table_lock);
2039
2040	pud = pud_alloc(mm, pgd, address);
2041	if (!pud)
2042		goto oom;
2043
2044	pmd = pmd_alloc(mm, pud, address);
2045	if (!pmd)
2046		goto oom;
2047
2048	pte = pte_alloc_map(mm, pmd, address);
2049	if (!pte)
2050		goto oom;
2051
2052	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2053
2054 oom:
2055	spin_unlock(&mm->page_table_lock);
2056	return VM_FAULT_OOM;
2057}
2058
2059#ifndef __PAGETABLE_PUD_FOLDED
2060/*
2061 * Allocate page upper directory.
2062 *
2063 * We've already handled the fast-path in-line, and we own the
2064 * page table lock.
2065 */
2066pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2067{
2068	pud_t *new;
2069
2070	spin_unlock(&mm->page_table_lock);
2071	new = pud_alloc_one(mm, address);
2072	spin_lock(&mm->page_table_lock);
2073	if (!new)
2074		return NULL;
2075
2076	/*
2077	 * Because we dropped the lock, we should re-check the
2078	 * entry, as somebody else could have populated it..
2079	 */
2080	if (pgd_present(*pgd)) {
2081		pud_free(new);
2082		goto out;
2083	}
2084	pgd_populate(mm, pgd, new);
2085 out:
2086	return pud_offset(pgd, address);
2087}
2088#endif /* __PAGETABLE_PUD_FOLDED */
2089
2090#ifndef __PAGETABLE_PMD_FOLDED
2091/*
2092 * Allocate page middle directory.
2093 *
2094 * We've already handled the fast-path in-line, and we own the
2095 * page table lock.
2096 */
2097pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2098{
2099	pmd_t *new;
2100
2101	spin_unlock(&mm->page_table_lock);
2102	new = pmd_alloc_one(mm, address);
2103	spin_lock(&mm->page_table_lock);
2104	if (!new)
2105		return NULL;
2106
2107	/*
2108	 * Because we dropped the lock, we should re-check the
2109	 * entry, as somebody else could have populated it..
2110	 */
2111#ifndef __ARCH_HAS_4LEVEL_HACK
2112	if (pud_present(*pud)) {
2113		pmd_free(new);
2114		goto out;
2115	}
2116	pud_populate(mm, pud, new);
2117#else
2118	if (pgd_present(*pud)) {
2119		pmd_free(new);
2120		goto out;
2121	}
2122	pgd_populate(mm, pud, new);
2123#endif /* __ARCH_HAS_4LEVEL_HACK */
2124
2125 out:
2126	return pmd_offset(pud, address);
2127}
2128#endif /* __PAGETABLE_PMD_FOLDED */
2129
2130int make_pages_present(unsigned long addr, unsigned long end)
2131{
2132	int ret, len, write;
2133	struct vm_area_struct * vma;
2134
2135	vma = find_vma(current->mm, addr);
2136	if (!vma)
2137		return -1;
2138	write = (vma->vm_flags & VM_WRITE) != 0;
2139	if (addr >= end)
2140		BUG();
2141	if (end > vma->vm_end)
2142		BUG();
2143	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2144	ret = get_user_pages(current, current->mm, addr,
2145			len, write, 0, NULL, NULL);
2146	if (ret < 0)
2147		return ret;
2148	return ret == len ? 0 : -1;
2149}
2150
2151/*
2152 * Map a vmalloc()-space virtual address to the physical page.
2153 */
2154struct page * vmalloc_to_page(void * vmalloc_addr)
2155{
2156	unsigned long addr = (unsigned long) vmalloc_addr;
2157	struct page *page = NULL;
2158	pgd_t *pgd = pgd_offset_k(addr);
2159	pud_t *pud;
2160	pmd_t *pmd;
2161	pte_t *ptep, pte;
2162
2163	if (!pgd_none(*pgd)) {
2164		pud = pud_offset(pgd, addr);
2165		if (!pud_none(*pud)) {
2166			pmd = pmd_offset(pud, addr);
2167			if (!pmd_none(*pmd)) {
2168				ptep = pte_offset_map(pmd, addr);
2169				pte = *ptep;
2170				if (pte_present(pte))
2171					page = pte_page(pte);
2172				pte_unmap(ptep);
2173			}
2174		}
2175	}
2176	return page;
2177}
2178
2179EXPORT_SYMBOL(vmalloc_to_page);
2180
2181/*
2182 * Map a vmalloc()-space virtual address to the physical page frame number.
2183 */
2184unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2185{
2186	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2187}
2188
2189EXPORT_SYMBOL(vmalloc_to_pfn);
2190
2191/*
2192 * update_mem_hiwater
2193 *	- update per process rss and vm high water data
2194 */
2195void update_mem_hiwater(struct task_struct *tsk)
2196{
2197	if (tsk->mm) {
2198		unsigned long rss = get_mm_rss(tsk->mm);
2199
2200		if (tsk->mm->hiwater_rss < rss)
2201			tsk->mm->hiwater_rss = rss;
2202		if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2203			tsk->mm->hiwater_vm = tsk->mm->total_vm;
2204	}
2205}
2206
2207#if !defined(__HAVE_ARCH_GATE_AREA)
2208
2209#if defined(AT_SYSINFO_EHDR)
2210static struct vm_area_struct gate_vma;
2211
2212static int __init gate_vma_init(void)
2213{
2214	gate_vma.vm_mm = NULL;
2215	gate_vma.vm_start = FIXADDR_USER_START;
2216	gate_vma.vm_end = FIXADDR_USER_END;
2217	gate_vma.vm_page_prot = PAGE_READONLY;
2218	gate_vma.vm_flags = 0;
2219	return 0;
2220}
2221__initcall(gate_vma_init);
2222#endif
2223
2224struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2225{
2226#ifdef AT_SYSINFO_EHDR
2227	return &gate_vma;
2228#else
2229	return NULL;
2230#endif
2231}
2232
2233int in_gate_area_no_task(unsigned long addr)
2234{
2235#ifdef AT_SYSINFO_EHDR
2236	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2237		return 1;
2238#endif
2239	return 0;
2240}
2241
2242#endif	/* __HAVE_ARCH_GATE_AREA */
2243