memory.c revision 4779cb31c0ee3b355116745edca3f3e5fe865553
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/module.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59
60#include <asm/io.h>
61#include <asm/pgalloc.h>
62#include <asm/uaccess.h>
63#include <asm/tlb.h>
64#include <asm/tlbflush.h>
65#include <asm/pgtable.h>
66
67#include "internal.h"
68
69#ifndef CONFIG_NEED_MULTIPLE_NODES
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
90
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 *   as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99					1;
100#else
101					2;
102#endif
103
104static int __init disable_randmaps(char *s)
105{
106	randomize_va_space = 0;
107	return 1;
108}
109__setup("norandmaps", disable_randmaps);
110
111unsigned long zero_pfn __read_mostly;
112unsigned long highest_memmap_pfn __read_mostly;
113
114/*
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116 */
117static int __init init_zero_pfn(void)
118{
119	zero_pfn = page_to_pfn(ZERO_PAGE(0));
120	return 0;
121}
122core_initcall(init_zero_pfn);
123
124/*
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none.  Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
128 */
129
130void pgd_clear_bad(pgd_t *pgd)
131{
132	pgd_ERROR(*pgd);
133	pgd_clear(pgd);
134}
135
136void pud_clear_bad(pud_t *pud)
137{
138	pud_ERROR(*pud);
139	pud_clear(pud);
140}
141
142void pmd_clear_bad(pmd_t *pmd)
143{
144	pmd_ERROR(*pmd);
145	pmd_clear(pmd);
146}
147
148/*
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
151 */
152static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
153			   unsigned long addr)
154{
155	pgtable_t token = pmd_pgtable(*pmd);
156	pmd_clear(pmd);
157	pte_free_tlb(tlb, token, addr);
158	tlb->mm->nr_ptes--;
159}
160
161static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
162				unsigned long addr, unsigned long end,
163				unsigned long floor, unsigned long ceiling)
164{
165	pmd_t *pmd;
166	unsigned long next;
167	unsigned long start;
168
169	start = addr;
170	pmd = pmd_offset(pud, addr);
171	do {
172		next = pmd_addr_end(addr, end);
173		if (pmd_none_or_clear_bad(pmd))
174			continue;
175		free_pte_range(tlb, pmd, addr);
176	} while (pmd++, addr = next, addr != end);
177
178	start &= PUD_MASK;
179	if (start < floor)
180		return;
181	if (ceiling) {
182		ceiling &= PUD_MASK;
183		if (!ceiling)
184			return;
185	}
186	if (end - 1 > ceiling - 1)
187		return;
188
189	pmd = pmd_offset(pud, start);
190	pud_clear(pud);
191	pmd_free_tlb(tlb, pmd, start);
192}
193
194static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195				unsigned long addr, unsigned long end,
196				unsigned long floor, unsigned long ceiling)
197{
198	pud_t *pud;
199	unsigned long next;
200	unsigned long start;
201
202	start = addr;
203	pud = pud_offset(pgd, addr);
204	do {
205		next = pud_addr_end(addr, end);
206		if (pud_none_or_clear_bad(pud))
207			continue;
208		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
209	} while (pud++, addr = next, addr != end);
210
211	start &= PGDIR_MASK;
212	if (start < floor)
213		return;
214	if (ceiling) {
215		ceiling &= PGDIR_MASK;
216		if (!ceiling)
217			return;
218	}
219	if (end - 1 > ceiling - 1)
220		return;
221
222	pud = pud_offset(pgd, start);
223	pgd_clear(pgd);
224	pud_free_tlb(tlb, pud, start);
225}
226
227/*
228 * This function frees user-level page tables of a process.
229 *
230 * Must be called with pagetable lock held.
231 */
232void free_pgd_range(struct mmu_gather *tlb,
233			unsigned long addr, unsigned long end,
234			unsigned long floor, unsigned long ceiling)
235{
236	pgd_t *pgd;
237	unsigned long next;
238	unsigned long start;
239
240	/*
241	 * The next few lines have given us lots of grief...
242	 *
243	 * Why are we testing PMD* at this top level?  Because often
244	 * there will be no work to do at all, and we'd prefer not to
245	 * go all the way down to the bottom just to discover that.
246	 *
247	 * Why all these "- 1"s?  Because 0 represents both the bottom
248	 * of the address space and the top of it (using -1 for the
249	 * top wouldn't help much: the masks would do the wrong thing).
250	 * The rule is that addr 0 and floor 0 refer to the bottom of
251	 * the address space, but end 0 and ceiling 0 refer to the top
252	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253	 * that end 0 case should be mythical).
254	 *
255	 * Wherever addr is brought up or ceiling brought down, we must
256	 * be careful to reject "the opposite 0" before it confuses the
257	 * subsequent tests.  But what about where end is brought down
258	 * by PMD_SIZE below? no, end can't go down to 0 there.
259	 *
260	 * Whereas we round start (addr) and ceiling down, by different
261	 * masks at different levels, in order to test whether a table
262	 * now has no other vmas using it, so can be freed, we don't
263	 * bother to round floor or end up - the tests don't need that.
264	 */
265
266	addr &= PMD_MASK;
267	if (addr < floor) {
268		addr += PMD_SIZE;
269		if (!addr)
270			return;
271	}
272	if (ceiling) {
273		ceiling &= PMD_MASK;
274		if (!ceiling)
275			return;
276	}
277	if (end - 1 > ceiling - 1)
278		end -= PMD_SIZE;
279	if (addr > end - 1)
280		return;
281
282	start = addr;
283	pgd = pgd_offset(tlb->mm, addr);
284	do {
285		next = pgd_addr_end(addr, end);
286		if (pgd_none_or_clear_bad(pgd))
287			continue;
288		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
289	} while (pgd++, addr = next, addr != end);
290}
291
292void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
293		unsigned long floor, unsigned long ceiling)
294{
295	while (vma) {
296		struct vm_area_struct *next = vma->vm_next;
297		unsigned long addr = vma->vm_start;
298
299		/*
300		 * Hide vma from rmap and truncate_pagecache before freeing
301		 * pgtables
302		 */
303		anon_vma_unlink(vma);
304		unlink_file_vma(vma);
305
306		if (is_vm_hugetlb_page(vma)) {
307			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
308				floor, next? next->vm_start: ceiling);
309		} else {
310			/*
311			 * Optimization: gather nearby vmas into one call down
312			 */
313			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
314			       && !is_vm_hugetlb_page(next)) {
315				vma = next;
316				next = vma->vm_next;
317				anon_vma_unlink(vma);
318				unlink_file_vma(vma);
319			}
320			free_pgd_range(tlb, addr, vma->vm_end,
321				floor, next? next->vm_start: ceiling);
322		}
323		vma = next;
324	}
325}
326
327int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
328{
329	pgtable_t new = pte_alloc_one(mm, address);
330	if (!new)
331		return -ENOMEM;
332
333	/*
334	 * Ensure all pte setup (eg. pte page lock and page clearing) are
335	 * visible before the pte is made visible to other CPUs by being
336	 * put into page tables.
337	 *
338	 * The other side of the story is the pointer chasing in the page
339	 * table walking code (when walking the page table without locking;
340	 * ie. most of the time). Fortunately, these data accesses consist
341	 * of a chain of data-dependent loads, meaning most CPUs (alpha
342	 * being the notable exception) will already guarantee loads are
343	 * seen in-order. See the alpha page table accessors for the
344	 * smp_read_barrier_depends() barriers in page table walking code.
345	 */
346	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
347
348	spin_lock(&mm->page_table_lock);
349	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
350		mm->nr_ptes++;
351		pmd_populate(mm, pmd, new);
352		new = NULL;
353	}
354	spin_unlock(&mm->page_table_lock);
355	if (new)
356		pte_free(mm, new);
357	return 0;
358}
359
360int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
361{
362	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
363	if (!new)
364		return -ENOMEM;
365
366	smp_wmb(); /* See comment in __pte_alloc */
367
368	spin_lock(&init_mm.page_table_lock);
369	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
370		pmd_populate_kernel(&init_mm, pmd, new);
371		new = NULL;
372	}
373	spin_unlock(&init_mm.page_table_lock);
374	if (new)
375		pte_free_kernel(&init_mm, new);
376	return 0;
377}
378
379static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
380{
381	if (file_rss)
382		add_mm_counter(mm, file_rss, file_rss);
383	if (anon_rss)
384		add_mm_counter(mm, anon_rss, anon_rss);
385}
386
387/*
388 * This function is called to print an error when a bad pte
389 * is found. For example, we might have a PFN-mapped pte in
390 * a region that doesn't allow it.
391 *
392 * The calling function must still handle the error.
393 */
394static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
395			  pte_t pte, struct page *page)
396{
397	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
398	pud_t *pud = pud_offset(pgd, addr);
399	pmd_t *pmd = pmd_offset(pud, addr);
400	struct address_space *mapping;
401	pgoff_t index;
402	static unsigned long resume;
403	static unsigned long nr_shown;
404	static unsigned long nr_unshown;
405
406	/*
407	 * Allow a burst of 60 reports, then keep quiet for that minute;
408	 * or allow a steady drip of one report per second.
409	 */
410	if (nr_shown == 60) {
411		if (time_before(jiffies, resume)) {
412			nr_unshown++;
413			return;
414		}
415		if (nr_unshown) {
416			printk(KERN_ALERT
417				"BUG: Bad page map: %lu messages suppressed\n",
418				nr_unshown);
419			nr_unshown = 0;
420		}
421		nr_shown = 0;
422	}
423	if (nr_shown++ == 0)
424		resume = jiffies + 60 * HZ;
425
426	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
427	index = linear_page_index(vma, addr);
428
429	printk(KERN_ALERT
430		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
431		current->comm,
432		(long long)pte_val(pte), (long long)pmd_val(*pmd));
433	if (page) {
434		printk(KERN_ALERT
435		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
436		page, (void *)page->flags, page_count(page),
437		page_mapcount(page), page->mapping, page->index);
438	}
439	printk(KERN_ALERT
440		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
441		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
442	/*
443	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
444	 */
445	if (vma->vm_ops)
446		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
447				(unsigned long)vma->vm_ops->fault);
448	if (vma->vm_file && vma->vm_file->f_op)
449		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
450				(unsigned long)vma->vm_file->f_op->mmap);
451	dump_stack();
452	add_taint(TAINT_BAD_PAGE);
453}
454
455static inline int is_cow_mapping(unsigned int flags)
456{
457	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
458}
459
460#ifndef is_zero_pfn
461static inline int is_zero_pfn(unsigned long pfn)
462{
463	return pfn == zero_pfn;
464}
465#endif
466
467#ifndef my_zero_pfn
468static inline unsigned long my_zero_pfn(unsigned long addr)
469{
470	return zero_pfn;
471}
472#endif
473
474/*
475 * vm_normal_page -- This function gets the "struct page" associated with a pte.
476 *
477 * "Special" mappings do not wish to be associated with a "struct page" (either
478 * it doesn't exist, or it exists but they don't want to touch it). In this
479 * case, NULL is returned here. "Normal" mappings do have a struct page.
480 *
481 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
482 * pte bit, in which case this function is trivial. Secondly, an architecture
483 * may not have a spare pte bit, which requires a more complicated scheme,
484 * described below.
485 *
486 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
487 * special mapping (even if there are underlying and valid "struct pages").
488 * COWed pages of a VM_PFNMAP are always normal.
489 *
490 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
491 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
492 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
493 * mapping will always honor the rule
494 *
495 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
496 *
497 * And for normal mappings this is false.
498 *
499 * This restricts such mappings to be a linear translation from virtual address
500 * to pfn. To get around this restriction, we allow arbitrary mappings so long
501 * as the vma is not a COW mapping; in that case, we know that all ptes are
502 * special (because none can have been COWed).
503 *
504 *
505 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
506 *
507 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
508 * page" backing, however the difference is that _all_ pages with a struct
509 * page (that is, those where pfn_valid is true) are refcounted and considered
510 * normal pages by the VM. The disadvantage is that pages are refcounted
511 * (which can be slower and simply not an option for some PFNMAP users). The
512 * advantage is that we don't have to follow the strict linearity rule of
513 * PFNMAP mappings in order to support COWable mappings.
514 *
515 */
516#ifdef __HAVE_ARCH_PTE_SPECIAL
517# define HAVE_PTE_SPECIAL 1
518#else
519# define HAVE_PTE_SPECIAL 0
520#endif
521struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
522				pte_t pte)
523{
524	unsigned long pfn = pte_pfn(pte);
525
526	if (HAVE_PTE_SPECIAL) {
527		if (likely(!pte_special(pte)))
528			goto check_pfn;
529		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
530			return NULL;
531		if (!is_zero_pfn(pfn))
532			print_bad_pte(vma, addr, pte, NULL);
533		return NULL;
534	}
535
536	/* !HAVE_PTE_SPECIAL case follows: */
537
538	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
539		if (vma->vm_flags & VM_MIXEDMAP) {
540			if (!pfn_valid(pfn))
541				return NULL;
542			goto out;
543		} else {
544			unsigned long off;
545			off = (addr - vma->vm_start) >> PAGE_SHIFT;
546			if (pfn == vma->vm_pgoff + off)
547				return NULL;
548			if (!is_cow_mapping(vma->vm_flags))
549				return NULL;
550		}
551	}
552
553	if (is_zero_pfn(pfn))
554		return NULL;
555check_pfn:
556	if (unlikely(pfn > highest_memmap_pfn)) {
557		print_bad_pte(vma, addr, pte, NULL);
558		return NULL;
559	}
560
561	/*
562	 * NOTE! We still have PageReserved() pages in the page tables.
563	 * eg. VDSO mappings can cause them to exist.
564	 */
565out:
566	return pfn_to_page(pfn);
567}
568
569/*
570 * copy one vm_area from one task to the other. Assumes the page tables
571 * already present in the new task to be cleared in the whole range
572 * covered by this vma.
573 */
574
575static inline void
576copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
577		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
578		unsigned long addr, int *rss)
579{
580	unsigned long vm_flags = vma->vm_flags;
581	pte_t pte = *src_pte;
582	struct page *page;
583
584	/* pte contains position in swap or file, so copy. */
585	if (unlikely(!pte_present(pte))) {
586		if (!pte_file(pte)) {
587			swp_entry_t entry = pte_to_swp_entry(pte);
588
589			swap_duplicate(entry);
590			/* make sure dst_mm is on swapoff's mmlist. */
591			if (unlikely(list_empty(&dst_mm->mmlist))) {
592				spin_lock(&mmlist_lock);
593				if (list_empty(&dst_mm->mmlist))
594					list_add(&dst_mm->mmlist,
595						 &src_mm->mmlist);
596				spin_unlock(&mmlist_lock);
597			}
598			if (is_write_migration_entry(entry) &&
599					is_cow_mapping(vm_flags)) {
600				/*
601				 * COW mappings require pages in both parent
602				 * and child to be set to read.
603				 */
604				make_migration_entry_read(&entry);
605				pte = swp_entry_to_pte(entry);
606				set_pte_at(src_mm, addr, src_pte, pte);
607			}
608		}
609		goto out_set_pte;
610	}
611
612	/*
613	 * If it's a COW mapping, write protect it both
614	 * in the parent and the child
615	 */
616	if (is_cow_mapping(vm_flags)) {
617		ptep_set_wrprotect(src_mm, addr, src_pte);
618		pte = pte_wrprotect(pte);
619	}
620
621	/*
622	 * If it's a shared mapping, mark it clean in
623	 * the child
624	 */
625	if (vm_flags & VM_SHARED)
626		pte = pte_mkclean(pte);
627	pte = pte_mkold(pte);
628
629	page = vm_normal_page(vma, addr, pte);
630	if (page) {
631		get_page(page);
632		page_dup_rmap(page);
633		rss[PageAnon(page)]++;
634	}
635
636out_set_pte:
637	set_pte_at(dst_mm, addr, dst_pte, pte);
638}
639
640static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
641		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
642		unsigned long addr, unsigned long end)
643{
644	pte_t *src_pte, *dst_pte;
645	spinlock_t *src_ptl, *dst_ptl;
646	int progress = 0;
647	int rss[2];
648
649again:
650	rss[1] = rss[0] = 0;
651	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
652	if (!dst_pte)
653		return -ENOMEM;
654	src_pte = pte_offset_map_nested(src_pmd, addr);
655	src_ptl = pte_lockptr(src_mm, src_pmd);
656	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
657	arch_enter_lazy_mmu_mode();
658
659	do {
660		/*
661		 * We are holding two locks at this point - either of them
662		 * could generate latencies in another task on another CPU.
663		 */
664		if (progress >= 32) {
665			progress = 0;
666			if (need_resched() ||
667			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
668				break;
669		}
670		if (pte_none(*src_pte)) {
671			progress++;
672			continue;
673		}
674		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
675		progress += 8;
676	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
677
678	arch_leave_lazy_mmu_mode();
679	spin_unlock(src_ptl);
680	pte_unmap_nested(src_pte - 1);
681	add_mm_rss(dst_mm, rss[0], rss[1]);
682	pte_unmap_unlock(dst_pte - 1, dst_ptl);
683	cond_resched();
684	if (addr != end)
685		goto again;
686	return 0;
687}
688
689static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
690		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
691		unsigned long addr, unsigned long end)
692{
693	pmd_t *src_pmd, *dst_pmd;
694	unsigned long next;
695
696	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
697	if (!dst_pmd)
698		return -ENOMEM;
699	src_pmd = pmd_offset(src_pud, addr);
700	do {
701		next = pmd_addr_end(addr, end);
702		if (pmd_none_or_clear_bad(src_pmd))
703			continue;
704		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
705						vma, addr, next))
706			return -ENOMEM;
707	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
708	return 0;
709}
710
711static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
712		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
713		unsigned long addr, unsigned long end)
714{
715	pud_t *src_pud, *dst_pud;
716	unsigned long next;
717
718	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
719	if (!dst_pud)
720		return -ENOMEM;
721	src_pud = pud_offset(src_pgd, addr);
722	do {
723		next = pud_addr_end(addr, end);
724		if (pud_none_or_clear_bad(src_pud))
725			continue;
726		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
727						vma, addr, next))
728			return -ENOMEM;
729	} while (dst_pud++, src_pud++, addr = next, addr != end);
730	return 0;
731}
732
733int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
734		struct vm_area_struct *vma)
735{
736	pgd_t *src_pgd, *dst_pgd;
737	unsigned long next;
738	unsigned long addr = vma->vm_start;
739	unsigned long end = vma->vm_end;
740	int ret;
741
742	/*
743	 * Don't copy ptes where a page fault will fill them correctly.
744	 * Fork becomes much lighter when there are big shared or private
745	 * readonly mappings. The tradeoff is that copy_page_range is more
746	 * efficient than faulting.
747	 */
748	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
749		if (!vma->anon_vma)
750			return 0;
751	}
752
753	if (is_vm_hugetlb_page(vma))
754		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
755
756	if (unlikely(is_pfn_mapping(vma))) {
757		/*
758		 * We do not free on error cases below as remove_vma
759		 * gets called on error from higher level routine
760		 */
761		ret = track_pfn_vma_copy(vma);
762		if (ret)
763			return ret;
764	}
765
766	/*
767	 * We need to invalidate the secondary MMU mappings only when
768	 * there could be a permission downgrade on the ptes of the
769	 * parent mm. And a permission downgrade will only happen if
770	 * is_cow_mapping() returns true.
771	 */
772	if (is_cow_mapping(vma->vm_flags))
773		mmu_notifier_invalidate_range_start(src_mm, addr, end);
774
775	ret = 0;
776	dst_pgd = pgd_offset(dst_mm, addr);
777	src_pgd = pgd_offset(src_mm, addr);
778	do {
779		next = pgd_addr_end(addr, end);
780		if (pgd_none_or_clear_bad(src_pgd))
781			continue;
782		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
783					    vma, addr, next))) {
784			ret = -ENOMEM;
785			break;
786		}
787	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
788
789	if (is_cow_mapping(vma->vm_flags))
790		mmu_notifier_invalidate_range_end(src_mm,
791						  vma->vm_start, end);
792	return ret;
793}
794
795static unsigned long zap_pte_range(struct mmu_gather *tlb,
796				struct vm_area_struct *vma, pmd_t *pmd,
797				unsigned long addr, unsigned long end,
798				long *zap_work, struct zap_details *details)
799{
800	struct mm_struct *mm = tlb->mm;
801	pte_t *pte;
802	spinlock_t *ptl;
803	int file_rss = 0;
804	int anon_rss = 0;
805
806	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
807	arch_enter_lazy_mmu_mode();
808	do {
809		pte_t ptent = *pte;
810		if (pte_none(ptent)) {
811			(*zap_work)--;
812			continue;
813		}
814
815		(*zap_work) -= PAGE_SIZE;
816
817		if (pte_present(ptent)) {
818			struct page *page;
819
820			page = vm_normal_page(vma, addr, ptent);
821			if (unlikely(details) && page) {
822				/*
823				 * unmap_shared_mapping_pages() wants to
824				 * invalidate cache without truncating:
825				 * unmap shared but keep private pages.
826				 */
827				if (details->check_mapping &&
828				    details->check_mapping != page->mapping)
829					continue;
830				/*
831				 * Each page->index must be checked when
832				 * invalidating or truncating nonlinear.
833				 */
834				if (details->nonlinear_vma &&
835				    (page->index < details->first_index ||
836				     page->index > details->last_index))
837					continue;
838			}
839			ptent = ptep_get_and_clear_full(mm, addr, pte,
840							tlb->fullmm);
841			tlb_remove_tlb_entry(tlb, pte, addr);
842			if (unlikely(!page))
843				continue;
844			if (unlikely(details) && details->nonlinear_vma
845			    && linear_page_index(details->nonlinear_vma,
846						addr) != page->index)
847				set_pte_at(mm, addr, pte,
848					   pgoff_to_pte(page->index));
849			if (PageAnon(page))
850				anon_rss--;
851			else {
852				if (pte_dirty(ptent))
853					set_page_dirty(page);
854				if (pte_young(ptent) &&
855				    likely(!VM_SequentialReadHint(vma)))
856					mark_page_accessed(page);
857				file_rss--;
858			}
859			page_remove_rmap(page);
860			if (unlikely(page_mapcount(page) < 0))
861				print_bad_pte(vma, addr, ptent, page);
862			tlb_remove_page(tlb, page);
863			continue;
864		}
865		/*
866		 * If details->check_mapping, we leave swap entries;
867		 * if details->nonlinear_vma, we leave file entries.
868		 */
869		if (unlikely(details))
870			continue;
871		if (pte_file(ptent)) {
872			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
873				print_bad_pte(vma, addr, ptent, NULL);
874		} else if
875		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
876			print_bad_pte(vma, addr, ptent, NULL);
877		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
878	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
879
880	add_mm_rss(mm, file_rss, anon_rss);
881	arch_leave_lazy_mmu_mode();
882	pte_unmap_unlock(pte - 1, ptl);
883
884	return addr;
885}
886
887static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
888				struct vm_area_struct *vma, pud_t *pud,
889				unsigned long addr, unsigned long end,
890				long *zap_work, struct zap_details *details)
891{
892	pmd_t *pmd;
893	unsigned long next;
894
895	pmd = pmd_offset(pud, addr);
896	do {
897		next = pmd_addr_end(addr, end);
898		if (pmd_none_or_clear_bad(pmd)) {
899			(*zap_work)--;
900			continue;
901		}
902		next = zap_pte_range(tlb, vma, pmd, addr, next,
903						zap_work, details);
904	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
905
906	return addr;
907}
908
909static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
910				struct vm_area_struct *vma, pgd_t *pgd,
911				unsigned long addr, unsigned long end,
912				long *zap_work, struct zap_details *details)
913{
914	pud_t *pud;
915	unsigned long next;
916
917	pud = pud_offset(pgd, addr);
918	do {
919		next = pud_addr_end(addr, end);
920		if (pud_none_or_clear_bad(pud)) {
921			(*zap_work)--;
922			continue;
923		}
924		next = zap_pmd_range(tlb, vma, pud, addr, next,
925						zap_work, details);
926	} while (pud++, addr = next, (addr != end && *zap_work > 0));
927
928	return addr;
929}
930
931static unsigned long unmap_page_range(struct mmu_gather *tlb,
932				struct vm_area_struct *vma,
933				unsigned long addr, unsigned long end,
934				long *zap_work, struct zap_details *details)
935{
936	pgd_t *pgd;
937	unsigned long next;
938
939	if (details && !details->check_mapping && !details->nonlinear_vma)
940		details = NULL;
941
942	BUG_ON(addr >= end);
943	tlb_start_vma(tlb, vma);
944	pgd = pgd_offset(vma->vm_mm, addr);
945	do {
946		next = pgd_addr_end(addr, end);
947		if (pgd_none_or_clear_bad(pgd)) {
948			(*zap_work)--;
949			continue;
950		}
951		next = zap_pud_range(tlb, vma, pgd, addr, next,
952						zap_work, details);
953	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
954	tlb_end_vma(tlb, vma);
955
956	return addr;
957}
958
959#ifdef CONFIG_PREEMPT
960# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
961#else
962/* No preempt: go for improved straight-line efficiency */
963# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
964#endif
965
966/**
967 * unmap_vmas - unmap a range of memory covered by a list of vma's
968 * @tlbp: address of the caller's struct mmu_gather
969 * @vma: the starting vma
970 * @start_addr: virtual address at which to start unmapping
971 * @end_addr: virtual address at which to end unmapping
972 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
973 * @details: details of nonlinear truncation or shared cache invalidation
974 *
975 * Returns the end address of the unmapping (restart addr if interrupted).
976 *
977 * Unmap all pages in the vma list.
978 *
979 * We aim to not hold locks for too long (for scheduling latency reasons).
980 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
981 * return the ending mmu_gather to the caller.
982 *
983 * Only addresses between `start' and `end' will be unmapped.
984 *
985 * The VMA list must be sorted in ascending virtual address order.
986 *
987 * unmap_vmas() assumes that the caller will flush the whole unmapped address
988 * range after unmap_vmas() returns.  So the only responsibility here is to
989 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
990 * drops the lock and schedules.
991 */
992unsigned long unmap_vmas(struct mmu_gather **tlbp,
993		struct vm_area_struct *vma, unsigned long start_addr,
994		unsigned long end_addr, unsigned long *nr_accounted,
995		struct zap_details *details)
996{
997	long zap_work = ZAP_BLOCK_SIZE;
998	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
999	int tlb_start_valid = 0;
1000	unsigned long start = start_addr;
1001	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1002	int fullmm = (*tlbp)->fullmm;
1003	struct mm_struct *mm = vma->vm_mm;
1004
1005	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1006	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1007		unsigned long end;
1008
1009		start = max(vma->vm_start, start_addr);
1010		if (start >= vma->vm_end)
1011			continue;
1012		end = min(vma->vm_end, end_addr);
1013		if (end <= vma->vm_start)
1014			continue;
1015
1016		if (vma->vm_flags & VM_ACCOUNT)
1017			*nr_accounted += (end - start) >> PAGE_SHIFT;
1018
1019		if (unlikely(is_pfn_mapping(vma)))
1020			untrack_pfn_vma(vma, 0, 0);
1021
1022		while (start != end) {
1023			if (!tlb_start_valid) {
1024				tlb_start = start;
1025				tlb_start_valid = 1;
1026			}
1027
1028			if (unlikely(is_vm_hugetlb_page(vma))) {
1029				/*
1030				 * It is undesirable to test vma->vm_file as it
1031				 * should be non-null for valid hugetlb area.
1032				 * However, vm_file will be NULL in the error
1033				 * cleanup path of do_mmap_pgoff. When
1034				 * hugetlbfs ->mmap method fails,
1035				 * do_mmap_pgoff() nullifies vma->vm_file
1036				 * before calling this function to clean up.
1037				 * Since no pte has actually been setup, it is
1038				 * safe to do nothing in this case.
1039				 */
1040				if (vma->vm_file) {
1041					unmap_hugepage_range(vma, start, end, NULL);
1042					zap_work -= (end - start) /
1043					pages_per_huge_page(hstate_vma(vma));
1044				}
1045
1046				start = end;
1047			} else
1048				start = unmap_page_range(*tlbp, vma,
1049						start, end, &zap_work, details);
1050
1051			if (zap_work > 0) {
1052				BUG_ON(start != end);
1053				break;
1054			}
1055
1056			tlb_finish_mmu(*tlbp, tlb_start, start);
1057
1058			if (need_resched() ||
1059				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1060				if (i_mmap_lock) {
1061					*tlbp = NULL;
1062					goto out;
1063				}
1064				cond_resched();
1065			}
1066
1067			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1068			tlb_start_valid = 0;
1069			zap_work = ZAP_BLOCK_SIZE;
1070		}
1071	}
1072out:
1073	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1074	return start;	/* which is now the end (or restart) address */
1075}
1076
1077/**
1078 * zap_page_range - remove user pages in a given range
1079 * @vma: vm_area_struct holding the applicable pages
1080 * @address: starting address of pages to zap
1081 * @size: number of bytes to zap
1082 * @details: details of nonlinear truncation or shared cache invalidation
1083 */
1084unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1085		unsigned long size, struct zap_details *details)
1086{
1087	struct mm_struct *mm = vma->vm_mm;
1088	struct mmu_gather *tlb;
1089	unsigned long end = address + size;
1090	unsigned long nr_accounted = 0;
1091
1092	lru_add_drain();
1093	tlb = tlb_gather_mmu(mm, 0);
1094	update_hiwater_rss(mm);
1095	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1096	if (tlb)
1097		tlb_finish_mmu(tlb, address, end);
1098	return end;
1099}
1100
1101/**
1102 * zap_vma_ptes - remove ptes mapping the vma
1103 * @vma: vm_area_struct holding ptes to be zapped
1104 * @address: starting address of pages to zap
1105 * @size: number of bytes to zap
1106 *
1107 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1108 *
1109 * The entire address range must be fully contained within the vma.
1110 *
1111 * Returns 0 if successful.
1112 */
1113int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1114		unsigned long size)
1115{
1116	if (address < vma->vm_start || address + size > vma->vm_end ||
1117	    		!(vma->vm_flags & VM_PFNMAP))
1118		return -1;
1119	zap_page_range(vma, address, size, NULL);
1120	return 0;
1121}
1122EXPORT_SYMBOL_GPL(zap_vma_ptes);
1123
1124/*
1125 * Do a quick page-table lookup for a single page.
1126 */
1127struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1128			unsigned int flags)
1129{
1130	pgd_t *pgd;
1131	pud_t *pud;
1132	pmd_t *pmd;
1133	pte_t *ptep, pte;
1134	spinlock_t *ptl;
1135	struct page *page;
1136	struct mm_struct *mm = vma->vm_mm;
1137
1138	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1139	if (!IS_ERR(page)) {
1140		BUG_ON(flags & FOLL_GET);
1141		goto out;
1142	}
1143
1144	page = NULL;
1145	pgd = pgd_offset(mm, address);
1146	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1147		goto no_page_table;
1148
1149	pud = pud_offset(pgd, address);
1150	if (pud_none(*pud))
1151		goto no_page_table;
1152	if (pud_huge(*pud)) {
1153		BUG_ON(flags & FOLL_GET);
1154		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1155		goto out;
1156	}
1157	if (unlikely(pud_bad(*pud)))
1158		goto no_page_table;
1159
1160	pmd = pmd_offset(pud, address);
1161	if (pmd_none(*pmd))
1162		goto no_page_table;
1163	if (pmd_huge(*pmd)) {
1164		BUG_ON(flags & FOLL_GET);
1165		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1166		goto out;
1167	}
1168	if (unlikely(pmd_bad(*pmd)))
1169		goto no_page_table;
1170
1171	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1172
1173	pte = *ptep;
1174	if (!pte_present(pte))
1175		goto no_page;
1176	if ((flags & FOLL_WRITE) && !pte_write(pte))
1177		goto unlock;
1178
1179	page = vm_normal_page(vma, address, pte);
1180	if (unlikely(!page)) {
1181		if ((flags & FOLL_DUMP) ||
1182		    !is_zero_pfn(pte_pfn(pte)))
1183			goto bad_page;
1184		page = pte_page(pte);
1185	}
1186
1187	if (flags & FOLL_GET)
1188		get_page(page);
1189	if (flags & FOLL_TOUCH) {
1190		if ((flags & FOLL_WRITE) &&
1191		    !pte_dirty(pte) && !PageDirty(page))
1192			set_page_dirty(page);
1193		/*
1194		 * pte_mkyoung() would be more correct here, but atomic care
1195		 * is needed to avoid losing the dirty bit: it is easier to use
1196		 * mark_page_accessed().
1197		 */
1198		mark_page_accessed(page);
1199	}
1200unlock:
1201	pte_unmap_unlock(ptep, ptl);
1202out:
1203	return page;
1204
1205bad_page:
1206	pte_unmap_unlock(ptep, ptl);
1207	return ERR_PTR(-EFAULT);
1208
1209no_page:
1210	pte_unmap_unlock(ptep, ptl);
1211	if (!pte_none(pte))
1212		return page;
1213
1214no_page_table:
1215	/*
1216	 * When core dumping an enormous anonymous area that nobody
1217	 * has touched so far, we don't want to allocate unnecessary pages or
1218	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1219	 * then get_dump_page() will return NULL to leave a hole in the dump.
1220	 * But we can only make this optimization where a hole would surely
1221	 * be zero-filled if handle_mm_fault() actually did handle it.
1222	 */
1223	if ((flags & FOLL_DUMP) &&
1224	    (!vma->vm_ops || !vma->vm_ops->fault))
1225		return ERR_PTR(-EFAULT);
1226	return page;
1227}
1228
1229int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1230		     unsigned long start, int nr_pages, unsigned int gup_flags,
1231		     struct page **pages, struct vm_area_struct **vmas)
1232{
1233	int i;
1234	unsigned long vm_flags;
1235
1236	if (nr_pages <= 0)
1237		return 0;
1238
1239	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1240
1241	/*
1242	 * Require read or write permissions.
1243	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1244	 */
1245	vm_flags  = (gup_flags & FOLL_WRITE) ?
1246			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1247	vm_flags &= (gup_flags & FOLL_FORCE) ?
1248			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1249	i = 0;
1250
1251	do {
1252		struct vm_area_struct *vma;
1253
1254		vma = find_extend_vma(mm, start);
1255		if (!vma && in_gate_area(tsk, start)) {
1256			unsigned long pg = start & PAGE_MASK;
1257			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1258			pgd_t *pgd;
1259			pud_t *pud;
1260			pmd_t *pmd;
1261			pte_t *pte;
1262
1263			/* user gate pages are read-only */
1264			if (gup_flags & FOLL_WRITE)
1265				return i ? : -EFAULT;
1266			if (pg > TASK_SIZE)
1267				pgd = pgd_offset_k(pg);
1268			else
1269				pgd = pgd_offset_gate(mm, pg);
1270			BUG_ON(pgd_none(*pgd));
1271			pud = pud_offset(pgd, pg);
1272			BUG_ON(pud_none(*pud));
1273			pmd = pmd_offset(pud, pg);
1274			if (pmd_none(*pmd))
1275				return i ? : -EFAULT;
1276			pte = pte_offset_map(pmd, pg);
1277			if (pte_none(*pte)) {
1278				pte_unmap(pte);
1279				return i ? : -EFAULT;
1280			}
1281			if (pages) {
1282				struct page *page = vm_normal_page(gate_vma, start, *pte);
1283				pages[i] = page;
1284				if (page)
1285					get_page(page);
1286			}
1287			pte_unmap(pte);
1288			if (vmas)
1289				vmas[i] = gate_vma;
1290			i++;
1291			start += PAGE_SIZE;
1292			nr_pages--;
1293			continue;
1294		}
1295
1296		if (!vma ||
1297		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1298		    !(vm_flags & vma->vm_flags))
1299			return i ? : -EFAULT;
1300
1301		if (is_vm_hugetlb_page(vma)) {
1302			i = follow_hugetlb_page(mm, vma, pages, vmas,
1303					&start, &nr_pages, i, gup_flags);
1304			continue;
1305		}
1306
1307		do {
1308			struct page *page;
1309			unsigned int foll_flags = gup_flags;
1310
1311			/*
1312			 * If we have a pending SIGKILL, don't keep faulting
1313			 * pages and potentially allocating memory.
1314			 */
1315			if (unlikely(fatal_signal_pending(current)))
1316				return i ? i : -ERESTARTSYS;
1317
1318			cond_resched();
1319			while (!(page = follow_page(vma, start, foll_flags))) {
1320				int ret;
1321
1322				ret = handle_mm_fault(mm, vma, start,
1323					(foll_flags & FOLL_WRITE) ?
1324					FAULT_FLAG_WRITE : 0);
1325
1326				if (ret & VM_FAULT_ERROR) {
1327					if (ret & VM_FAULT_OOM)
1328						return i ? i : -ENOMEM;
1329					if (ret &
1330					    (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1331						return i ? i : -EFAULT;
1332					BUG();
1333				}
1334				if (ret & VM_FAULT_MAJOR)
1335					tsk->maj_flt++;
1336				else
1337					tsk->min_flt++;
1338
1339				/*
1340				 * The VM_FAULT_WRITE bit tells us that
1341				 * do_wp_page has broken COW when necessary,
1342				 * even if maybe_mkwrite decided not to set
1343				 * pte_write. We can thus safely do subsequent
1344				 * page lookups as if they were reads. But only
1345				 * do so when looping for pte_write is futile:
1346				 * in some cases userspace may also be wanting
1347				 * to write to the gotten user page, which a
1348				 * read fault here might prevent (a readonly
1349				 * page might get reCOWed by userspace write).
1350				 */
1351				if ((ret & VM_FAULT_WRITE) &&
1352				    !(vma->vm_flags & VM_WRITE))
1353					foll_flags &= ~FOLL_WRITE;
1354
1355				cond_resched();
1356			}
1357			if (IS_ERR(page))
1358				return i ? i : PTR_ERR(page);
1359			if (pages) {
1360				pages[i] = page;
1361
1362				flush_anon_page(vma, page, start);
1363				flush_dcache_page(page);
1364			}
1365			if (vmas)
1366				vmas[i] = vma;
1367			i++;
1368			start += PAGE_SIZE;
1369			nr_pages--;
1370		} while (nr_pages && start < vma->vm_end);
1371	} while (nr_pages);
1372	return i;
1373}
1374
1375/**
1376 * get_user_pages() - pin user pages in memory
1377 * @tsk:	task_struct of target task
1378 * @mm:		mm_struct of target mm
1379 * @start:	starting user address
1380 * @nr_pages:	number of pages from start to pin
1381 * @write:	whether pages will be written to by the caller
1382 * @force:	whether to force write access even if user mapping is
1383 *		readonly. This will result in the page being COWed even
1384 *		in MAP_SHARED mappings. You do not want this.
1385 * @pages:	array that receives pointers to the pages pinned.
1386 *		Should be at least nr_pages long. Or NULL, if caller
1387 *		only intends to ensure the pages are faulted in.
1388 * @vmas:	array of pointers to vmas corresponding to each page.
1389 *		Or NULL if the caller does not require them.
1390 *
1391 * Returns number of pages pinned. This may be fewer than the number
1392 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1393 * were pinned, returns -errno. Each page returned must be released
1394 * with a put_page() call when it is finished with. vmas will only
1395 * remain valid while mmap_sem is held.
1396 *
1397 * Must be called with mmap_sem held for read or write.
1398 *
1399 * get_user_pages walks a process's page tables and takes a reference to
1400 * each struct page that each user address corresponds to at a given
1401 * instant. That is, it takes the page that would be accessed if a user
1402 * thread accesses the given user virtual address at that instant.
1403 *
1404 * This does not guarantee that the page exists in the user mappings when
1405 * get_user_pages returns, and there may even be a completely different
1406 * page there in some cases (eg. if mmapped pagecache has been invalidated
1407 * and subsequently re faulted). However it does guarantee that the page
1408 * won't be freed completely. And mostly callers simply care that the page
1409 * contains data that was valid *at some point in time*. Typically, an IO
1410 * or similar operation cannot guarantee anything stronger anyway because
1411 * locks can't be held over the syscall boundary.
1412 *
1413 * If write=0, the page must not be written to. If the page is written to,
1414 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1415 * after the page is finished with, and before put_page is called.
1416 *
1417 * get_user_pages is typically used for fewer-copy IO operations, to get a
1418 * handle on the memory by some means other than accesses via the user virtual
1419 * addresses. The pages may be submitted for DMA to devices or accessed via
1420 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1421 * use the correct cache flushing APIs.
1422 *
1423 * See also get_user_pages_fast, for performance critical applications.
1424 */
1425int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1426		unsigned long start, int nr_pages, int write, int force,
1427		struct page **pages, struct vm_area_struct **vmas)
1428{
1429	int flags = FOLL_TOUCH;
1430
1431	if (pages)
1432		flags |= FOLL_GET;
1433	if (write)
1434		flags |= FOLL_WRITE;
1435	if (force)
1436		flags |= FOLL_FORCE;
1437
1438	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1439}
1440EXPORT_SYMBOL(get_user_pages);
1441
1442/**
1443 * get_dump_page() - pin user page in memory while writing it to core dump
1444 * @addr: user address
1445 *
1446 * Returns struct page pointer of user page pinned for dump,
1447 * to be freed afterwards by page_cache_release() or put_page().
1448 *
1449 * Returns NULL on any kind of failure - a hole must then be inserted into
1450 * the corefile, to preserve alignment with its headers; and also returns
1451 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1452 * allowing a hole to be left in the corefile to save diskspace.
1453 *
1454 * Called without mmap_sem, but after all other threads have been killed.
1455 */
1456#ifdef CONFIG_ELF_CORE
1457struct page *get_dump_page(unsigned long addr)
1458{
1459	struct vm_area_struct *vma;
1460	struct page *page;
1461
1462	if (__get_user_pages(current, current->mm, addr, 1,
1463			FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1464		return NULL;
1465	flush_cache_page(vma, addr, page_to_pfn(page));
1466	return page;
1467}
1468#endif /* CONFIG_ELF_CORE */
1469
1470pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1471			spinlock_t **ptl)
1472{
1473	pgd_t * pgd = pgd_offset(mm, addr);
1474	pud_t * pud = pud_alloc(mm, pgd, addr);
1475	if (pud) {
1476		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1477		if (pmd)
1478			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1479	}
1480	return NULL;
1481}
1482
1483/*
1484 * This is the old fallback for page remapping.
1485 *
1486 * For historical reasons, it only allows reserved pages. Only
1487 * old drivers should use this, and they needed to mark their
1488 * pages reserved for the old functions anyway.
1489 */
1490static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1491			struct page *page, pgprot_t prot)
1492{
1493	struct mm_struct *mm = vma->vm_mm;
1494	int retval;
1495	pte_t *pte;
1496	spinlock_t *ptl;
1497
1498	retval = -EINVAL;
1499	if (PageAnon(page))
1500		goto out;
1501	retval = -ENOMEM;
1502	flush_dcache_page(page);
1503	pte = get_locked_pte(mm, addr, &ptl);
1504	if (!pte)
1505		goto out;
1506	retval = -EBUSY;
1507	if (!pte_none(*pte))
1508		goto out_unlock;
1509
1510	/* Ok, finally just insert the thing.. */
1511	get_page(page);
1512	inc_mm_counter(mm, file_rss);
1513	page_add_file_rmap(page);
1514	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1515
1516	retval = 0;
1517	pte_unmap_unlock(pte, ptl);
1518	return retval;
1519out_unlock:
1520	pte_unmap_unlock(pte, ptl);
1521out:
1522	return retval;
1523}
1524
1525/**
1526 * vm_insert_page - insert single page into user vma
1527 * @vma: user vma to map to
1528 * @addr: target user address of this page
1529 * @page: source kernel page
1530 *
1531 * This allows drivers to insert individual pages they've allocated
1532 * into a user vma.
1533 *
1534 * The page has to be a nice clean _individual_ kernel allocation.
1535 * If you allocate a compound page, you need to have marked it as
1536 * such (__GFP_COMP), or manually just split the page up yourself
1537 * (see split_page()).
1538 *
1539 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1540 * took an arbitrary page protection parameter. This doesn't allow
1541 * that. Your vma protection will have to be set up correctly, which
1542 * means that if you want a shared writable mapping, you'd better
1543 * ask for a shared writable mapping!
1544 *
1545 * The page does not need to be reserved.
1546 */
1547int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1548			struct page *page)
1549{
1550	if (addr < vma->vm_start || addr >= vma->vm_end)
1551		return -EFAULT;
1552	if (!page_count(page))
1553		return -EINVAL;
1554	vma->vm_flags |= VM_INSERTPAGE;
1555	return insert_page(vma, addr, page, vma->vm_page_prot);
1556}
1557EXPORT_SYMBOL(vm_insert_page);
1558
1559static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1560			unsigned long pfn, pgprot_t prot)
1561{
1562	struct mm_struct *mm = vma->vm_mm;
1563	int retval;
1564	pte_t *pte, entry;
1565	spinlock_t *ptl;
1566
1567	retval = -ENOMEM;
1568	pte = get_locked_pte(mm, addr, &ptl);
1569	if (!pte)
1570		goto out;
1571	retval = -EBUSY;
1572	if (!pte_none(*pte))
1573		goto out_unlock;
1574
1575	/* Ok, finally just insert the thing.. */
1576	entry = pte_mkspecial(pfn_pte(pfn, prot));
1577	set_pte_at(mm, addr, pte, entry);
1578	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1579
1580	retval = 0;
1581out_unlock:
1582	pte_unmap_unlock(pte, ptl);
1583out:
1584	return retval;
1585}
1586
1587/**
1588 * vm_insert_pfn - insert single pfn into user vma
1589 * @vma: user vma to map to
1590 * @addr: target user address of this page
1591 * @pfn: source kernel pfn
1592 *
1593 * Similar to vm_inert_page, this allows drivers to insert individual pages
1594 * they've allocated into a user vma. Same comments apply.
1595 *
1596 * This function should only be called from a vm_ops->fault handler, and
1597 * in that case the handler should return NULL.
1598 *
1599 * vma cannot be a COW mapping.
1600 *
1601 * As this is called only for pages that do not currently exist, we
1602 * do not need to flush old virtual caches or the TLB.
1603 */
1604int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1605			unsigned long pfn)
1606{
1607	int ret;
1608	pgprot_t pgprot = vma->vm_page_prot;
1609	/*
1610	 * Technically, architectures with pte_special can avoid all these
1611	 * restrictions (same for remap_pfn_range).  However we would like
1612	 * consistency in testing and feature parity among all, so we should
1613	 * try to keep these invariants in place for everybody.
1614	 */
1615	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1616	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1617						(VM_PFNMAP|VM_MIXEDMAP));
1618	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1619	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1620
1621	if (addr < vma->vm_start || addr >= vma->vm_end)
1622		return -EFAULT;
1623	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1624		return -EINVAL;
1625
1626	ret = insert_pfn(vma, addr, pfn, pgprot);
1627
1628	if (ret)
1629		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1630
1631	return ret;
1632}
1633EXPORT_SYMBOL(vm_insert_pfn);
1634
1635int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1636			unsigned long pfn)
1637{
1638	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1639
1640	if (addr < vma->vm_start || addr >= vma->vm_end)
1641		return -EFAULT;
1642
1643	/*
1644	 * If we don't have pte special, then we have to use the pfn_valid()
1645	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1646	 * refcount the page if pfn_valid is true (hence insert_page rather
1647	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1648	 * without pte special, it would there be refcounted as a normal page.
1649	 */
1650	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1651		struct page *page;
1652
1653		page = pfn_to_page(pfn);
1654		return insert_page(vma, addr, page, vma->vm_page_prot);
1655	}
1656	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1657}
1658EXPORT_SYMBOL(vm_insert_mixed);
1659
1660/*
1661 * maps a range of physical memory into the requested pages. the old
1662 * mappings are removed. any references to nonexistent pages results
1663 * in null mappings (currently treated as "copy-on-access")
1664 */
1665static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1666			unsigned long addr, unsigned long end,
1667			unsigned long pfn, pgprot_t prot)
1668{
1669	pte_t *pte;
1670	spinlock_t *ptl;
1671
1672	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1673	if (!pte)
1674		return -ENOMEM;
1675	arch_enter_lazy_mmu_mode();
1676	do {
1677		BUG_ON(!pte_none(*pte));
1678		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1679		pfn++;
1680	} while (pte++, addr += PAGE_SIZE, addr != end);
1681	arch_leave_lazy_mmu_mode();
1682	pte_unmap_unlock(pte - 1, ptl);
1683	return 0;
1684}
1685
1686static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1687			unsigned long addr, unsigned long end,
1688			unsigned long pfn, pgprot_t prot)
1689{
1690	pmd_t *pmd;
1691	unsigned long next;
1692
1693	pfn -= addr >> PAGE_SHIFT;
1694	pmd = pmd_alloc(mm, pud, addr);
1695	if (!pmd)
1696		return -ENOMEM;
1697	do {
1698		next = pmd_addr_end(addr, end);
1699		if (remap_pte_range(mm, pmd, addr, next,
1700				pfn + (addr >> PAGE_SHIFT), prot))
1701			return -ENOMEM;
1702	} while (pmd++, addr = next, addr != end);
1703	return 0;
1704}
1705
1706static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1707			unsigned long addr, unsigned long end,
1708			unsigned long pfn, pgprot_t prot)
1709{
1710	pud_t *pud;
1711	unsigned long next;
1712
1713	pfn -= addr >> PAGE_SHIFT;
1714	pud = pud_alloc(mm, pgd, addr);
1715	if (!pud)
1716		return -ENOMEM;
1717	do {
1718		next = pud_addr_end(addr, end);
1719		if (remap_pmd_range(mm, pud, addr, next,
1720				pfn + (addr >> PAGE_SHIFT), prot))
1721			return -ENOMEM;
1722	} while (pud++, addr = next, addr != end);
1723	return 0;
1724}
1725
1726/**
1727 * remap_pfn_range - remap kernel memory to userspace
1728 * @vma: user vma to map to
1729 * @addr: target user address to start at
1730 * @pfn: physical address of kernel memory
1731 * @size: size of map area
1732 * @prot: page protection flags for this mapping
1733 *
1734 *  Note: this is only safe if the mm semaphore is held when called.
1735 */
1736int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1737		    unsigned long pfn, unsigned long size, pgprot_t prot)
1738{
1739	pgd_t *pgd;
1740	unsigned long next;
1741	unsigned long end = addr + PAGE_ALIGN(size);
1742	struct mm_struct *mm = vma->vm_mm;
1743	int err;
1744
1745	/*
1746	 * Physically remapped pages are special. Tell the
1747	 * rest of the world about it:
1748	 *   VM_IO tells people not to look at these pages
1749	 *	(accesses can have side effects).
1750	 *   VM_RESERVED is specified all over the place, because
1751	 *	in 2.4 it kept swapout's vma scan off this vma; but
1752	 *	in 2.6 the LRU scan won't even find its pages, so this
1753	 *	flag means no more than count its pages in reserved_vm,
1754	 * 	and omit it from core dump, even when VM_IO turned off.
1755	 *   VM_PFNMAP tells the core MM that the base pages are just
1756	 *	raw PFN mappings, and do not have a "struct page" associated
1757	 *	with them.
1758	 *
1759	 * There's a horrible special case to handle copy-on-write
1760	 * behaviour that some programs depend on. We mark the "original"
1761	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1762	 */
1763	if (addr == vma->vm_start && end == vma->vm_end) {
1764		vma->vm_pgoff = pfn;
1765		vma->vm_flags |= VM_PFN_AT_MMAP;
1766	} else if (is_cow_mapping(vma->vm_flags))
1767		return -EINVAL;
1768
1769	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1770
1771	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1772	if (err) {
1773		/*
1774		 * To indicate that track_pfn related cleanup is not
1775		 * needed from higher level routine calling unmap_vmas
1776		 */
1777		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1778		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1779		return -EINVAL;
1780	}
1781
1782	BUG_ON(addr >= end);
1783	pfn -= addr >> PAGE_SHIFT;
1784	pgd = pgd_offset(mm, addr);
1785	flush_cache_range(vma, addr, end);
1786	do {
1787		next = pgd_addr_end(addr, end);
1788		err = remap_pud_range(mm, pgd, addr, next,
1789				pfn + (addr >> PAGE_SHIFT), prot);
1790		if (err)
1791			break;
1792	} while (pgd++, addr = next, addr != end);
1793
1794	if (err)
1795		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1796
1797	return err;
1798}
1799EXPORT_SYMBOL(remap_pfn_range);
1800
1801static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1802				     unsigned long addr, unsigned long end,
1803				     pte_fn_t fn, void *data)
1804{
1805	pte_t *pte;
1806	int err;
1807	pgtable_t token;
1808	spinlock_t *uninitialized_var(ptl);
1809
1810	pte = (mm == &init_mm) ?
1811		pte_alloc_kernel(pmd, addr) :
1812		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1813	if (!pte)
1814		return -ENOMEM;
1815
1816	BUG_ON(pmd_huge(*pmd));
1817
1818	arch_enter_lazy_mmu_mode();
1819
1820	token = pmd_pgtable(*pmd);
1821
1822	do {
1823		err = fn(pte, token, addr, data);
1824		if (err)
1825			break;
1826	} while (pte++, addr += PAGE_SIZE, addr != end);
1827
1828	arch_leave_lazy_mmu_mode();
1829
1830	if (mm != &init_mm)
1831		pte_unmap_unlock(pte-1, ptl);
1832	return err;
1833}
1834
1835static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1836				     unsigned long addr, unsigned long end,
1837				     pte_fn_t fn, void *data)
1838{
1839	pmd_t *pmd;
1840	unsigned long next;
1841	int err;
1842
1843	BUG_ON(pud_huge(*pud));
1844
1845	pmd = pmd_alloc(mm, pud, addr);
1846	if (!pmd)
1847		return -ENOMEM;
1848	do {
1849		next = pmd_addr_end(addr, end);
1850		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1851		if (err)
1852			break;
1853	} while (pmd++, addr = next, addr != end);
1854	return err;
1855}
1856
1857static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1858				     unsigned long addr, unsigned long end,
1859				     pte_fn_t fn, void *data)
1860{
1861	pud_t *pud;
1862	unsigned long next;
1863	int err;
1864
1865	pud = pud_alloc(mm, pgd, addr);
1866	if (!pud)
1867		return -ENOMEM;
1868	do {
1869		next = pud_addr_end(addr, end);
1870		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1871		if (err)
1872			break;
1873	} while (pud++, addr = next, addr != end);
1874	return err;
1875}
1876
1877/*
1878 * Scan a region of virtual memory, filling in page tables as necessary
1879 * and calling a provided function on each leaf page table.
1880 */
1881int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1882			unsigned long size, pte_fn_t fn, void *data)
1883{
1884	pgd_t *pgd;
1885	unsigned long next;
1886	unsigned long start = addr, end = addr + size;
1887	int err;
1888
1889	BUG_ON(addr >= end);
1890	mmu_notifier_invalidate_range_start(mm, start, end);
1891	pgd = pgd_offset(mm, addr);
1892	do {
1893		next = pgd_addr_end(addr, end);
1894		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1895		if (err)
1896			break;
1897	} while (pgd++, addr = next, addr != end);
1898	mmu_notifier_invalidate_range_end(mm, start, end);
1899	return err;
1900}
1901EXPORT_SYMBOL_GPL(apply_to_page_range);
1902
1903/*
1904 * handle_pte_fault chooses page fault handler according to an entry
1905 * which was read non-atomically.  Before making any commitment, on
1906 * those architectures or configurations (e.g. i386 with PAE) which
1907 * might give a mix of unmatched parts, do_swap_page and do_file_page
1908 * must check under lock before unmapping the pte and proceeding
1909 * (but do_wp_page is only called after already making such a check;
1910 * and do_anonymous_page and do_no_page can safely check later on).
1911 */
1912static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1913				pte_t *page_table, pte_t orig_pte)
1914{
1915	int same = 1;
1916#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1917	if (sizeof(pte_t) > sizeof(unsigned long)) {
1918		spinlock_t *ptl = pte_lockptr(mm, pmd);
1919		spin_lock(ptl);
1920		same = pte_same(*page_table, orig_pte);
1921		spin_unlock(ptl);
1922	}
1923#endif
1924	pte_unmap(page_table);
1925	return same;
1926}
1927
1928/*
1929 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1930 * servicing faults for write access.  In the normal case, do always want
1931 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1932 * that do not have writing enabled, when used by access_process_vm.
1933 */
1934static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1935{
1936	if (likely(vma->vm_flags & VM_WRITE))
1937		pte = pte_mkwrite(pte);
1938	return pte;
1939}
1940
1941static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1942{
1943	/*
1944	 * If the source page was a PFN mapping, we don't have
1945	 * a "struct page" for it. We do a best-effort copy by
1946	 * just copying from the original user address. If that
1947	 * fails, we just zero-fill it. Live with it.
1948	 */
1949	if (unlikely(!src)) {
1950		void *kaddr = kmap_atomic(dst, KM_USER0);
1951		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1952
1953		/*
1954		 * This really shouldn't fail, because the page is there
1955		 * in the page tables. But it might just be unreadable,
1956		 * in which case we just give up and fill the result with
1957		 * zeroes.
1958		 */
1959		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1960			memset(kaddr, 0, PAGE_SIZE);
1961		kunmap_atomic(kaddr, KM_USER0);
1962		flush_dcache_page(dst);
1963	} else
1964		copy_user_highpage(dst, src, va, vma);
1965}
1966
1967/*
1968 * This routine handles present pages, when users try to write
1969 * to a shared page. It is done by copying the page to a new address
1970 * and decrementing the shared-page counter for the old page.
1971 *
1972 * Note that this routine assumes that the protection checks have been
1973 * done by the caller (the low-level page fault routine in most cases).
1974 * Thus we can safely just mark it writable once we've done any necessary
1975 * COW.
1976 *
1977 * We also mark the page dirty at this point even though the page will
1978 * change only once the write actually happens. This avoids a few races,
1979 * and potentially makes it more efficient.
1980 *
1981 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1982 * but allow concurrent faults), with pte both mapped and locked.
1983 * We return with mmap_sem still held, but pte unmapped and unlocked.
1984 */
1985static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1986		unsigned long address, pte_t *page_table, pmd_t *pmd,
1987		spinlock_t *ptl, pte_t orig_pte)
1988{
1989	struct page *old_page, *new_page;
1990	pte_t entry;
1991	int reuse = 0, ret = 0;
1992	int page_mkwrite = 0;
1993	struct page *dirty_page = NULL;
1994
1995	old_page = vm_normal_page(vma, address, orig_pte);
1996	if (!old_page) {
1997		/*
1998		 * VM_MIXEDMAP !pfn_valid() case
1999		 *
2000		 * We should not cow pages in a shared writeable mapping.
2001		 * Just mark the pages writable as we can't do any dirty
2002		 * accounting on raw pfn maps.
2003		 */
2004		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2005				     (VM_WRITE|VM_SHARED))
2006			goto reuse;
2007		goto gotten;
2008	}
2009
2010	/*
2011	 * Take out anonymous pages first, anonymous shared vmas are
2012	 * not dirty accountable.
2013	 */
2014	if (PageAnon(old_page) && !PageKsm(old_page)) {
2015		if (!trylock_page(old_page)) {
2016			page_cache_get(old_page);
2017			pte_unmap_unlock(page_table, ptl);
2018			lock_page(old_page);
2019			page_table = pte_offset_map_lock(mm, pmd, address,
2020							 &ptl);
2021			if (!pte_same(*page_table, orig_pte)) {
2022				unlock_page(old_page);
2023				page_cache_release(old_page);
2024				goto unlock;
2025			}
2026			page_cache_release(old_page);
2027		}
2028		reuse = reuse_swap_page(old_page);
2029		unlock_page(old_page);
2030	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2031					(VM_WRITE|VM_SHARED))) {
2032		/*
2033		 * Only catch write-faults on shared writable pages,
2034		 * read-only shared pages can get COWed by
2035		 * get_user_pages(.write=1, .force=1).
2036		 */
2037		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2038			struct vm_fault vmf;
2039			int tmp;
2040
2041			vmf.virtual_address = (void __user *)(address &
2042								PAGE_MASK);
2043			vmf.pgoff = old_page->index;
2044			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2045			vmf.page = old_page;
2046
2047			/*
2048			 * Notify the address space that the page is about to
2049			 * become writable so that it can prohibit this or wait
2050			 * for the page to get into an appropriate state.
2051			 *
2052			 * We do this without the lock held, so that it can
2053			 * sleep if it needs to.
2054			 */
2055			page_cache_get(old_page);
2056			pte_unmap_unlock(page_table, ptl);
2057
2058			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2059			if (unlikely(tmp &
2060					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2061				ret = tmp;
2062				goto unwritable_page;
2063			}
2064			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2065				lock_page(old_page);
2066				if (!old_page->mapping) {
2067					ret = 0; /* retry the fault */
2068					unlock_page(old_page);
2069					goto unwritable_page;
2070				}
2071			} else
2072				VM_BUG_ON(!PageLocked(old_page));
2073
2074			/*
2075			 * Since we dropped the lock we need to revalidate
2076			 * the PTE as someone else may have changed it.  If
2077			 * they did, we just return, as we can count on the
2078			 * MMU to tell us if they didn't also make it writable.
2079			 */
2080			page_table = pte_offset_map_lock(mm, pmd, address,
2081							 &ptl);
2082			if (!pte_same(*page_table, orig_pte)) {
2083				unlock_page(old_page);
2084				page_cache_release(old_page);
2085				goto unlock;
2086			}
2087
2088			page_mkwrite = 1;
2089		}
2090		dirty_page = old_page;
2091		get_page(dirty_page);
2092		reuse = 1;
2093	}
2094
2095	if (reuse) {
2096reuse:
2097		flush_cache_page(vma, address, pte_pfn(orig_pte));
2098		entry = pte_mkyoung(orig_pte);
2099		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2100		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2101			update_mmu_cache(vma, address, entry);
2102		ret |= VM_FAULT_WRITE;
2103		goto unlock;
2104	}
2105
2106	/*
2107	 * Ok, we need to copy. Oh, well..
2108	 */
2109	page_cache_get(old_page);
2110gotten:
2111	pte_unmap_unlock(page_table, ptl);
2112
2113	if (unlikely(anon_vma_prepare(vma)))
2114		goto oom;
2115
2116	if (is_zero_pfn(pte_pfn(orig_pte))) {
2117		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2118		if (!new_page)
2119			goto oom;
2120	} else {
2121		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2122		if (!new_page)
2123			goto oom;
2124		cow_user_page(new_page, old_page, address, vma);
2125	}
2126	__SetPageUptodate(new_page);
2127
2128	/*
2129	 * Don't let another task, with possibly unlocked vma,
2130	 * keep the mlocked page.
2131	 */
2132	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2133		lock_page(old_page);	/* for LRU manipulation */
2134		clear_page_mlock(old_page);
2135		unlock_page(old_page);
2136	}
2137
2138	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2139		goto oom_free_new;
2140
2141	/*
2142	 * Re-check the pte - we dropped the lock
2143	 */
2144	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2145	if (likely(pte_same(*page_table, orig_pte))) {
2146		if (old_page) {
2147			if (!PageAnon(old_page)) {
2148				dec_mm_counter(mm, file_rss);
2149				inc_mm_counter(mm, anon_rss);
2150			}
2151		} else
2152			inc_mm_counter(mm, anon_rss);
2153		flush_cache_page(vma, address, pte_pfn(orig_pte));
2154		entry = mk_pte(new_page, vma->vm_page_prot);
2155		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2156		/*
2157		 * Clear the pte entry and flush it first, before updating the
2158		 * pte with the new entry. This will avoid a race condition
2159		 * seen in the presence of one thread doing SMC and another
2160		 * thread doing COW.
2161		 */
2162		ptep_clear_flush(vma, address, page_table);
2163		page_add_new_anon_rmap(new_page, vma, address);
2164		/*
2165		 * We call the notify macro here because, when using secondary
2166		 * mmu page tables (such as kvm shadow page tables), we want the
2167		 * new page to be mapped directly into the secondary page table.
2168		 */
2169		set_pte_at_notify(mm, address, page_table, entry);
2170		update_mmu_cache(vma, address, entry);
2171		if (old_page) {
2172			/*
2173			 * Only after switching the pte to the new page may
2174			 * we remove the mapcount here. Otherwise another
2175			 * process may come and find the rmap count decremented
2176			 * before the pte is switched to the new page, and
2177			 * "reuse" the old page writing into it while our pte
2178			 * here still points into it and can be read by other
2179			 * threads.
2180			 *
2181			 * The critical issue is to order this
2182			 * page_remove_rmap with the ptp_clear_flush above.
2183			 * Those stores are ordered by (if nothing else,)
2184			 * the barrier present in the atomic_add_negative
2185			 * in page_remove_rmap.
2186			 *
2187			 * Then the TLB flush in ptep_clear_flush ensures that
2188			 * no process can access the old page before the
2189			 * decremented mapcount is visible. And the old page
2190			 * cannot be reused until after the decremented
2191			 * mapcount is visible. So transitively, TLBs to
2192			 * old page will be flushed before it can be reused.
2193			 */
2194			page_remove_rmap(old_page);
2195		}
2196
2197		/* Free the old page.. */
2198		new_page = old_page;
2199		ret |= VM_FAULT_WRITE;
2200	} else
2201		mem_cgroup_uncharge_page(new_page);
2202
2203	if (new_page)
2204		page_cache_release(new_page);
2205	if (old_page)
2206		page_cache_release(old_page);
2207unlock:
2208	pte_unmap_unlock(page_table, ptl);
2209	if (dirty_page) {
2210		/*
2211		 * Yes, Virginia, this is actually required to prevent a race
2212		 * with clear_page_dirty_for_io() from clearing the page dirty
2213		 * bit after it clear all dirty ptes, but before a racing
2214		 * do_wp_page installs a dirty pte.
2215		 *
2216		 * do_no_page is protected similarly.
2217		 */
2218		if (!page_mkwrite) {
2219			wait_on_page_locked(dirty_page);
2220			set_page_dirty_balance(dirty_page, page_mkwrite);
2221		}
2222		put_page(dirty_page);
2223		if (page_mkwrite) {
2224			struct address_space *mapping = dirty_page->mapping;
2225
2226			set_page_dirty(dirty_page);
2227			unlock_page(dirty_page);
2228			page_cache_release(dirty_page);
2229			if (mapping)	{
2230				/*
2231				 * Some device drivers do not set page.mapping
2232				 * but still dirty their pages
2233				 */
2234				balance_dirty_pages_ratelimited(mapping);
2235			}
2236		}
2237
2238		/* file_update_time outside page_lock */
2239		if (vma->vm_file)
2240			file_update_time(vma->vm_file);
2241	}
2242	return ret;
2243oom_free_new:
2244	page_cache_release(new_page);
2245oom:
2246	if (old_page) {
2247		if (page_mkwrite) {
2248			unlock_page(old_page);
2249			page_cache_release(old_page);
2250		}
2251		page_cache_release(old_page);
2252	}
2253	return VM_FAULT_OOM;
2254
2255unwritable_page:
2256	page_cache_release(old_page);
2257	return ret;
2258}
2259
2260/*
2261 * Helper functions for unmap_mapping_range().
2262 *
2263 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2264 *
2265 * We have to restart searching the prio_tree whenever we drop the lock,
2266 * since the iterator is only valid while the lock is held, and anyway
2267 * a later vma might be split and reinserted earlier while lock dropped.
2268 *
2269 * The list of nonlinear vmas could be handled more efficiently, using
2270 * a placeholder, but handle it in the same way until a need is shown.
2271 * It is important to search the prio_tree before nonlinear list: a vma
2272 * may become nonlinear and be shifted from prio_tree to nonlinear list
2273 * while the lock is dropped; but never shifted from list to prio_tree.
2274 *
2275 * In order to make forward progress despite restarting the search,
2276 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2277 * quickly skip it next time around.  Since the prio_tree search only
2278 * shows us those vmas affected by unmapping the range in question, we
2279 * can't efficiently keep all vmas in step with mapping->truncate_count:
2280 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2281 * mapping->truncate_count and vma->vm_truncate_count are protected by
2282 * i_mmap_lock.
2283 *
2284 * In order to make forward progress despite repeatedly restarting some
2285 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2286 * and restart from that address when we reach that vma again.  It might
2287 * have been split or merged, shrunk or extended, but never shifted: so
2288 * restart_addr remains valid so long as it remains in the vma's range.
2289 * unmap_mapping_range forces truncate_count to leap over page-aligned
2290 * values so we can save vma's restart_addr in its truncate_count field.
2291 */
2292#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2293
2294static void reset_vma_truncate_counts(struct address_space *mapping)
2295{
2296	struct vm_area_struct *vma;
2297	struct prio_tree_iter iter;
2298
2299	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2300		vma->vm_truncate_count = 0;
2301	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2302		vma->vm_truncate_count = 0;
2303}
2304
2305static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2306		unsigned long start_addr, unsigned long end_addr,
2307		struct zap_details *details)
2308{
2309	unsigned long restart_addr;
2310	int need_break;
2311
2312	/*
2313	 * files that support invalidating or truncating portions of the
2314	 * file from under mmaped areas must have their ->fault function
2315	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2316	 * This provides synchronisation against concurrent unmapping here.
2317	 */
2318
2319again:
2320	restart_addr = vma->vm_truncate_count;
2321	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2322		start_addr = restart_addr;
2323		if (start_addr >= end_addr) {
2324			/* Top of vma has been split off since last time */
2325			vma->vm_truncate_count = details->truncate_count;
2326			return 0;
2327		}
2328	}
2329
2330	restart_addr = zap_page_range(vma, start_addr,
2331					end_addr - start_addr, details);
2332	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2333
2334	if (restart_addr >= end_addr) {
2335		/* We have now completed this vma: mark it so */
2336		vma->vm_truncate_count = details->truncate_count;
2337		if (!need_break)
2338			return 0;
2339	} else {
2340		/* Note restart_addr in vma's truncate_count field */
2341		vma->vm_truncate_count = restart_addr;
2342		if (!need_break)
2343			goto again;
2344	}
2345
2346	spin_unlock(details->i_mmap_lock);
2347	cond_resched();
2348	spin_lock(details->i_mmap_lock);
2349	return -EINTR;
2350}
2351
2352static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2353					    struct zap_details *details)
2354{
2355	struct vm_area_struct *vma;
2356	struct prio_tree_iter iter;
2357	pgoff_t vba, vea, zba, zea;
2358
2359restart:
2360	vma_prio_tree_foreach(vma, &iter, root,
2361			details->first_index, details->last_index) {
2362		/* Skip quickly over those we have already dealt with */
2363		if (vma->vm_truncate_count == details->truncate_count)
2364			continue;
2365
2366		vba = vma->vm_pgoff;
2367		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2368		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2369		zba = details->first_index;
2370		if (zba < vba)
2371			zba = vba;
2372		zea = details->last_index;
2373		if (zea > vea)
2374			zea = vea;
2375
2376		if (unmap_mapping_range_vma(vma,
2377			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2378			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2379				details) < 0)
2380			goto restart;
2381	}
2382}
2383
2384static inline void unmap_mapping_range_list(struct list_head *head,
2385					    struct zap_details *details)
2386{
2387	struct vm_area_struct *vma;
2388
2389	/*
2390	 * In nonlinear VMAs there is no correspondence between virtual address
2391	 * offset and file offset.  So we must perform an exhaustive search
2392	 * across *all* the pages in each nonlinear VMA, not just the pages
2393	 * whose virtual address lies outside the file truncation point.
2394	 */
2395restart:
2396	list_for_each_entry(vma, head, shared.vm_set.list) {
2397		/* Skip quickly over those we have already dealt with */
2398		if (vma->vm_truncate_count == details->truncate_count)
2399			continue;
2400		details->nonlinear_vma = vma;
2401		if (unmap_mapping_range_vma(vma, vma->vm_start,
2402					vma->vm_end, details) < 0)
2403			goto restart;
2404	}
2405}
2406
2407/**
2408 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2409 * @mapping: the address space containing mmaps to be unmapped.
2410 * @holebegin: byte in first page to unmap, relative to the start of
2411 * the underlying file.  This will be rounded down to a PAGE_SIZE
2412 * boundary.  Note that this is different from truncate_pagecache(), which
2413 * must keep the partial page.  In contrast, we must get rid of
2414 * partial pages.
2415 * @holelen: size of prospective hole in bytes.  This will be rounded
2416 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2417 * end of the file.
2418 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2419 * but 0 when invalidating pagecache, don't throw away private data.
2420 */
2421void unmap_mapping_range(struct address_space *mapping,
2422		loff_t const holebegin, loff_t const holelen, int even_cows)
2423{
2424	struct zap_details details;
2425	pgoff_t hba = holebegin >> PAGE_SHIFT;
2426	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2427
2428	/* Check for overflow. */
2429	if (sizeof(holelen) > sizeof(hlen)) {
2430		long long holeend =
2431			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2432		if (holeend & ~(long long)ULONG_MAX)
2433			hlen = ULONG_MAX - hba + 1;
2434	}
2435
2436	details.check_mapping = even_cows? NULL: mapping;
2437	details.nonlinear_vma = NULL;
2438	details.first_index = hba;
2439	details.last_index = hba + hlen - 1;
2440	if (details.last_index < details.first_index)
2441		details.last_index = ULONG_MAX;
2442	details.i_mmap_lock = &mapping->i_mmap_lock;
2443
2444	spin_lock(&mapping->i_mmap_lock);
2445
2446	/* Protect against endless unmapping loops */
2447	mapping->truncate_count++;
2448	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2449		if (mapping->truncate_count == 0)
2450			reset_vma_truncate_counts(mapping);
2451		mapping->truncate_count++;
2452	}
2453	details.truncate_count = mapping->truncate_count;
2454
2455	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2456		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2457	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2458		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2459	spin_unlock(&mapping->i_mmap_lock);
2460}
2461EXPORT_SYMBOL(unmap_mapping_range);
2462
2463int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2464{
2465	struct address_space *mapping = inode->i_mapping;
2466
2467	/*
2468	 * If the underlying filesystem is not going to provide
2469	 * a way to truncate a range of blocks (punch a hole) -
2470	 * we should return failure right now.
2471	 */
2472	if (!inode->i_op->truncate_range)
2473		return -ENOSYS;
2474
2475	mutex_lock(&inode->i_mutex);
2476	down_write(&inode->i_alloc_sem);
2477	unmap_mapping_range(mapping, offset, (end - offset), 1);
2478	truncate_inode_pages_range(mapping, offset, end);
2479	unmap_mapping_range(mapping, offset, (end - offset), 1);
2480	inode->i_op->truncate_range(inode, offset, end);
2481	up_write(&inode->i_alloc_sem);
2482	mutex_unlock(&inode->i_mutex);
2483
2484	return 0;
2485}
2486
2487/*
2488 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2489 * but allow concurrent faults), and pte mapped but not yet locked.
2490 * We return with mmap_sem still held, but pte unmapped and unlocked.
2491 */
2492static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2493		unsigned long address, pte_t *page_table, pmd_t *pmd,
2494		unsigned int flags, pte_t orig_pte)
2495{
2496	spinlock_t *ptl;
2497	struct page *page;
2498	swp_entry_t entry;
2499	pte_t pte;
2500	struct mem_cgroup *ptr = NULL;
2501	int ret = 0;
2502
2503	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2504		goto out;
2505
2506	entry = pte_to_swp_entry(orig_pte);
2507	if (unlikely(non_swap_entry(entry))) {
2508		if (is_migration_entry(entry)) {
2509			migration_entry_wait(mm, pmd, address);
2510		} else if (is_hwpoison_entry(entry)) {
2511			ret = VM_FAULT_HWPOISON;
2512		} else {
2513			print_bad_pte(vma, address, orig_pte, NULL);
2514			ret = VM_FAULT_OOM;
2515		}
2516		goto out;
2517	}
2518	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2519	page = lookup_swap_cache(entry);
2520	if (!page) {
2521		grab_swap_token(mm); /* Contend for token _before_ read-in */
2522		page = swapin_readahead(entry,
2523					GFP_HIGHUSER_MOVABLE, vma, address);
2524		if (!page) {
2525			/*
2526			 * Back out if somebody else faulted in this pte
2527			 * while we released the pte lock.
2528			 */
2529			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2530			if (likely(pte_same(*page_table, orig_pte)))
2531				ret = VM_FAULT_OOM;
2532			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2533			goto unlock;
2534		}
2535
2536		/* Had to read the page from swap area: Major fault */
2537		ret = VM_FAULT_MAJOR;
2538		count_vm_event(PGMAJFAULT);
2539	} else if (PageHWPoison(page)) {
2540		ret = VM_FAULT_HWPOISON;
2541		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2542		goto out_release;
2543	}
2544
2545	lock_page(page);
2546	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2547
2548	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2549		ret = VM_FAULT_OOM;
2550		goto out_page;
2551	}
2552
2553	/*
2554	 * Back out if somebody else already faulted in this pte.
2555	 */
2556	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2557	if (unlikely(!pte_same(*page_table, orig_pte)))
2558		goto out_nomap;
2559
2560	if (unlikely(!PageUptodate(page))) {
2561		ret = VM_FAULT_SIGBUS;
2562		goto out_nomap;
2563	}
2564
2565	/*
2566	 * The page isn't present yet, go ahead with the fault.
2567	 *
2568	 * Be careful about the sequence of operations here.
2569	 * To get its accounting right, reuse_swap_page() must be called
2570	 * while the page is counted on swap but not yet in mapcount i.e.
2571	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2572	 * must be called after the swap_free(), or it will never succeed.
2573	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2574	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2575	 * in page->private. In this case, a record in swap_cgroup  is silently
2576	 * discarded at swap_free().
2577	 */
2578
2579	inc_mm_counter(mm, anon_rss);
2580	pte = mk_pte(page, vma->vm_page_prot);
2581	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2582		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2583		flags &= ~FAULT_FLAG_WRITE;
2584	}
2585	flush_icache_page(vma, page);
2586	set_pte_at(mm, address, page_table, pte);
2587	page_add_anon_rmap(page, vma, address);
2588	/* It's better to call commit-charge after rmap is established */
2589	mem_cgroup_commit_charge_swapin(page, ptr);
2590
2591	swap_free(entry);
2592	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2593		try_to_free_swap(page);
2594	unlock_page(page);
2595
2596	if (flags & FAULT_FLAG_WRITE) {
2597		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2598		if (ret & VM_FAULT_ERROR)
2599			ret &= VM_FAULT_ERROR;
2600		goto out;
2601	}
2602
2603	/* No need to invalidate - it was non-present before */
2604	update_mmu_cache(vma, address, pte);
2605unlock:
2606	pte_unmap_unlock(page_table, ptl);
2607out:
2608	return ret;
2609out_nomap:
2610	mem_cgroup_cancel_charge_swapin(ptr);
2611	pte_unmap_unlock(page_table, ptl);
2612out_page:
2613	unlock_page(page);
2614out_release:
2615	page_cache_release(page);
2616	return ret;
2617}
2618
2619/*
2620 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2621 * but allow concurrent faults), and pte mapped but not yet locked.
2622 * We return with mmap_sem still held, but pte unmapped and unlocked.
2623 */
2624static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2625		unsigned long address, pte_t *page_table, pmd_t *pmd,
2626		unsigned int flags)
2627{
2628	struct page *page;
2629	spinlock_t *ptl;
2630	pte_t entry;
2631
2632	if (!(flags & FAULT_FLAG_WRITE)) {
2633		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2634						vma->vm_page_prot));
2635		ptl = pte_lockptr(mm, pmd);
2636		spin_lock(ptl);
2637		if (!pte_none(*page_table))
2638			goto unlock;
2639		goto setpte;
2640	}
2641
2642	/* Allocate our own private page. */
2643	pte_unmap(page_table);
2644
2645	if (unlikely(anon_vma_prepare(vma)))
2646		goto oom;
2647	page = alloc_zeroed_user_highpage_movable(vma, address);
2648	if (!page)
2649		goto oom;
2650	__SetPageUptodate(page);
2651
2652	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2653		goto oom_free_page;
2654
2655	entry = mk_pte(page, vma->vm_page_prot);
2656	if (vma->vm_flags & VM_WRITE)
2657		entry = pte_mkwrite(pte_mkdirty(entry));
2658
2659	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2660	if (!pte_none(*page_table))
2661		goto release;
2662
2663	inc_mm_counter(mm, anon_rss);
2664	page_add_new_anon_rmap(page, vma, address);
2665setpte:
2666	set_pte_at(mm, address, page_table, entry);
2667
2668	/* No need to invalidate - it was non-present before */
2669	update_mmu_cache(vma, address, entry);
2670unlock:
2671	pte_unmap_unlock(page_table, ptl);
2672	return 0;
2673release:
2674	mem_cgroup_uncharge_page(page);
2675	page_cache_release(page);
2676	goto unlock;
2677oom_free_page:
2678	page_cache_release(page);
2679oom:
2680	return VM_FAULT_OOM;
2681}
2682
2683/*
2684 * __do_fault() tries to create a new page mapping. It aggressively
2685 * tries to share with existing pages, but makes a separate copy if
2686 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2687 * the next page fault.
2688 *
2689 * As this is called only for pages that do not currently exist, we
2690 * do not need to flush old virtual caches or the TLB.
2691 *
2692 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2693 * but allow concurrent faults), and pte neither mapped nor locked.
2694 * We return with mmap_sem still held, but pte unmapped and unlocked.
2695 */
2696static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2697		unsigned long address, pmd_t *pmd,
2698		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2699{
2700	pte_t *page_table;
2701	spinlock_t *ptl;
2702	struct page *page;
2703	pte_t entry;
2704	int anon = 0;
2705	int charged = 0;
2706	struct page *dirty_page = NULL;
2707	struct vm_fault vmf;
2708	int ret;
2709	int page_mkwrite = 0;
2710
2711	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2712	vmf.pgoff = pgoff;
2713	vmf.flags = flags;
2714	vmf.page = NULL;
2715
2716	ret = vma->vm_ops->fault(vma, &vmf);
2717	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2718		return ret;
2719
2720	if (unlikely(PageHWPoison(vmf.page))) {
2721		if (ret & VM_FAULT_LOCKED)
2722			unlock_page(vmf.page);
2723		return VM_FAULT_HWPOISON;
2724	}
2725
2726	/*
2727	 * For consistency in subsequent calls, make the faulted page always
2728	 * locked.
2729	 */
2730	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2731		lock_page(vmf.page);
2732	else
2733		VM_BUG_ON(!PageLocked(vmf.page));
2734
2735	/*
2736	 * Should we do an early C-O-W break?
2737	 */
2738	page = vmf.page;
2739	if (flags & FAULT_FLAG_WRITE) {
2740		if (!(vma->vm_flags & VM_SHARED)) {
2741			anon = 1;
2742			if (unlikely(anon_vma_prepare(vma))) {
2743				ret = VM_FAULT_OOM;
2744				goto out;
2745			}
2746			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2747						vma, address);
2748			if (!page) {
2749				ret = VM_FAULT_OOM;
2750				goto out;
2751			}
2752			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2753				ret = VM_FAULT_OOM;
2754				page_cache_release(page);
2755				goto out;
2756			}
2757			charged = 1;
2758			/*
2759			 * Don't let another task, with possibly unlocked vma,
2760			 * keep the mlocked page.
2761			 */
2762			if (vma->vm_flags & VM_LOCKED)
2763				clear_page_mlock(vmf.page);
2764			copy_user_highpage(page, vmf.page, address, vma);
2765			__SetPageUptodate(page);
2766		} else {
2767			/*
2768			 * If the page will be shareable, see if the backing
2769			 * address space wants to know that the page is about
2770			 * to become writable
2771			 */
2772			if (vma->vm_ops->page_mkwrite) {
2773				int tmp;
2774
2775				unlock_page(page);
2776				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2777				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2778				if (unlikely(tmp &
2779					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2780					ret = tmp;
2781					goto unwritable_page;
2782				}
2783				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2784					lock_page(page);
2785					if (!page->mapping) {
2786						ret = 0; /* retry the fault */
2787						unlock_page(page);
2788						goto unwritable_page;
2789					}
2790				} else
2791					VM_BUG_ON(!PageLocked(page));
2792				page_mkwrite = 1;
2793			}
2794		}
2795
2796	}
2797
2798	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2799
2800	/*
2801	 * This silly early PAGE_DIRTY setting removes a race
2802	 * due to the bad i386 page protection. But it's valid
2803	 * for other architectures too.
2804	 *
2805	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2806	 * an exclusive copy of the page, or this is a shared mapping,
2807	 * so we can make it writable and dirty to avoid having to
2808	 * handle that later.
2809	 */
2810	/* Only go through if we didn't race with anybody else... */
2811	if (likely(pte_same(*page_table, orig_pte))) {
2812		flush_icache_page(vma, page);
2813		entry = mk_pte(page, vma->vm_page_prot);
2814		if (flags & FAULT_FLAG_WRITE)
2815			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2816		if (anon) {
2817			inc_mm_counter(mm, anon_rss);
2818			page_add_new_anon_rmap(page, vma, address);
2819		} else {
2820			inc_mm_counter(mm, file_rss);
2821			page_add_file_rmap(page);
2822			if (flags & FAULT_FLAG_WRITE) {
2823				dirty_page = page;
2824				get_page(dirty_page);
2825			}
2826		}
2827		set_pte_at(mm, address, page_table, entry);
2828
2829		/* no need to invalidate: a not-present page won't be cached */
2830		update_mmu_cache(vma, address, entry);
2831	} else {
2832		if (charged)
2833			mem_cgroup_uncharge_page(page);
2834		if (anon)
2835			page_cache_release(page);
2836		else
2837			anon = 1; /* no anon but release faulted_page */
2838	}
2839
2840	pte_unmap_unlock(page_table, ptl);
2841
2842out:
2843	if (dirty_page) {
2844		struct address_space *mapping = page->mapping;
2845
2846		if (set_page_dirty(dirty_page))
2847			page_mkwrite = 1;
2848		unlock_page(dirty_page);
2849		put_page(dirty_page);
2850		if (page_mkwrite && mapping) {
2851			/*
2852			 * Some device drivers do not set page.mapping but still
2853			 * dirty their pages
2854			 */
2855			balance_dirty_pages_ratelimited(mapping);
2856		}
2857
2858		/* file_update_time outside page_lock */
2859		if (vma->vm_file)
2860			file_update_time(vma->vm_file);
2861	} else {
2862		unlock_page(vmf.page);
2863		if (anon)
2864			page_cache_release(vmf.page);
2865	}
2866
2867	return ret;
2868
2869unwritable_page:
2870	page_cache_release(page);
2871	return ret;
2872}
2873
2874static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2875		unsigned long address, pte_t *page_table, pmd_t *pmd,
2876		unsigned int flags, pte_t orig_pte)
2877{
2878	pgoff_t pgoff = (((address & PAGE_MASK)
2879			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2880
2881	pte_unmap(page_table);
2882	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2883}
2884
2885/*
2886 * Fault of a previously existing named mapping. Repopulate the pte
2887 * from the encoded file_pte if possible. This enables swappable
2888 * nonlinear vmas.
2889 *
2890 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2891 * but allow concurrent faults), and pte mapped but not yet locked.
2892 * We return with mmap_sem still held, but pte unmapped and unlocked.
2893 */
2894static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2895		unsigned long address, pte_t *page_table, pmd_t *pmd,
2896		unsigned int flags, pte_t orig_pte)
2897{
2898	pgoff_t pgoff;
2899
2900	flags |= FAULT_FLAG_NONLINEAR;
2901
2902	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2903		return 0;
2904
2905	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2906		/*
2907		 * Page table corrupted: show pte and kill process.
2908		 */
2909		print_bad_pte(vma, address, orig_pte, NULL);
2910		return VM_FAULT_OOM;
2911	}
2912
2913	pgoff = pte_to_pgoff(orig_pte);
2914	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2915}
2916
2917/*
2918 * These routines also need to handle stuff like marking pages dirty
2919 * and/or accessed for architectures that don't do it in hardware (most
2920 * RISC architectures).  The early dirtying is also good on the i386.
2921 *
2922 * There is also a hook called "update_mmu_cache()" that architectures
2923 * with external mmu caches can use to update those (ie the Sparc or
2924 * PowerPC hashed page tables that act as extended TLBs).
2925 *
2926 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2927 * but allow concurrent faults), and pte mapped but not yet locked.
2928 * We return with mmap_sem still held, but pte unmapped and unlocked.
2929 */
2930static inline int handle_pte_fault(struct mm_struct *mm,
2931		struct vm_area_struct *vma, unsigned long address,
2932		pte_t *pte, pmd_t *pmd, unsigned int flags)
2933{
2934	pte_t entry;
2935	spinlock_t *ptl;
2936
2937	entry = *pte;
2938	if (!pte_present(entry)) {
2939		if (pte_none(entry)) {
2940			if (vma->vm_ops) {
2941				if (likely(vma->vm_ops->fault))
2942					return do_linear_fault(mm, vma, address,
2943						pte, pmd, flags, entry);
2944			}
2945			return do_anonymous_page(mm, vma, address,
2946						 pte, pmd, flags);
2947		}
2948		if (pte_file(entry))
2949			return do_nonlinear_fault(mm, vma, address,
2950					pte, pmd, flags, entry);
2951		return do_swap_page(mm, vma, address,
2952					pte, pmd, flags, entry);
2953	}
2954
2955	ptl = pte_lockptr(mm, pmd);
2956	spin_lock(ptl);
2957	if (unlikely(!pte_same(*pte, entry)))
2958		goto unlock;
2959	if (flags & FAULT_FLAG_WRITE) {
2960		if (!pte_write(entry))
2961			return do_wp_page(mm, vma, address,
2962					pte, pmd, ptl, entry);
2963		entry = pte_mkdirty(entry);
2964	}
2965	entry = pte_mkyoung(entry);
2966	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2967		update_mmu_cache(vma, address, entry);
2968	} else {
2969		/*
2970		 * This is needed only for protection faults but the arch code
2971		 * is not yet telling us if this is a protection fault or not.
2972		 * This still avoids useless tlb flushes for .text page faults
2973		 * with threads.
2974		 */
2975		if (flags & FAULT_FLAG_WRITE)
2976			flush_tlb_page(vma, address);
2977	}
2978unlock:
2979	pte_unmap_unlock(pte, ptl);
2980	return 0;
2981}
2982
2983/*
2984 * By the time we get here, we already hold the mm semaphore
2985 */
2986int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2987		unsigned long address, unsigned int flags)
2988{
2989	pgd_t *pgd;
2990	pud_t *pud;
2991	pmd_t *pmd;
2992	pte_t *pte;
2993
2994	__set_current_state(TASK_RUNNING);
2995
2996	count_vm_event(PGFAULT);
2997
2998	if (unlikely(is_vm_hugetlb_page(vma)))
2999		return hugetlb_fault(mm, vma, address, flags);
3000
3001	pgd = pgd_offset(mm, address);
3002	pud = pud_alloc(mm, pgd, address);
3003	if (!pud)
3004		return VM_FAULT_OOM;
3005	pmd = pmd_alloc(mm, pud, address);
3006	if (!pmd)
3007		return VM_FAULT_OOM;
3008	pte = pte_alloc_map(mm, pmd, address);
3009	if (!pte)
3010		return VM_FAULT_OOM;
3011
3012	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3013}
3014
3015#ifndef __PAGETABLE_PUD_FOLDED
3016/*
3017 * Allocate page upper directory.
3018 * We've already handled the fast-path in-line.
3019 */
3020int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3021{
3022	pud_t *new = pud_alloc_one(mm, address);
3023	if (!new)
3024		return -ENOMEM;
3025
3026	smp_wmb(); /* See comment in __pte_alloc */
3027
3028	spin_lock(&mm->page_table_lock);
3029	if (pgd_present(*pgd))		/* Another has populated it */
3030		pud_free(mm, new);
3031	else
3032		pgd_populate(mm, pgd, new);
3033	spin_unlock(&mm->page_table_lock);
3034	return 0;
3035}
3036#endif /* __PAGETABLE_PUD_FOLDED */
3037
3038#ifndef __PAGETABLE_PMD_FOLDED
3039/*
3040 * Allocate page middle directory.
3041 * We've already handled the fast-path in-line.
3042 */
3043int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3044{
3045	pmd_t *new = pmd_alloc_one(mm, address);
3046	if (!new)
3047		return -ENOMEM;
3048
3049	smp_wmb(); /* See comment in __pte_alloc */
3050
3051	spin_lock(&mm->page_table_lock);
3052#ifndef __ARCH_HAS_4LEVEL_HACK
3053	if (pud_present(*pud))		/* Another has populated it */
3054		pmd_free(mm, new);
3055	else
3056		pud_populate(mm, pud, new);
3057#else
3058	if (pgd_present(*pud))		/* Another has populated it */
3059		pmd_free(mm, new);
3060	else
3061		pgd_populate(mm, pud, new);
3062#endif /* __ARCH_HAS_4LEVEL_HACK */
3063	spin_unlock(&mm->page_table_lock);
3064	return 0;
3065}
3066#endif /* __PAGETABLE_PMD_FOLDED */
3067
3068int make_pages_present(unsigned long addr, unsigned long end)
3069{
3070	int ret, len, write;
3071	struct vm_area_struct * vma;
3072
3073	vma = find_vma(current->mm, addr);
3074	if (!vma)
3075		return -ENOMEM;
3076	write = (vma->vm_flags & VM_WRITE) != 0;
3077	BUG_ON(addr >= end);
3078	BUG_ON(end > vma->vm_end);
3079	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3080	ret = get_user_pages(current, current->mm, addr,
3081			len, write, 0, NULL, NULL);
3082	if (ret < 0)
3083		return ret;
3084	return ret == len ? 0 : -EFAULT;
3085}
3086
3087#if !defined(__HAVE_ARCH_GATE_AREA)
3088
3089#if defined(AT_SYSINFO_EHDR)
3090static struct vm_area_struct gate_vma;
3091
3092static int __init gate_vma_init(void)
3093{
3094	gate_vma.vm_mm = NULL;
3095	gate_vma.vm_start = FIXADDR_USER_START;
3096	gate_vma.vm_end = FIXADDR_USER_END;
3097	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3098	gate_vma.vm_page_prot = __P101;
3099	/*
3100	 * Make sure the vDSO gets into every core dump.
3101	 * Dumping its contents makes post-mortem fully interpretable later
3102	 * without matching up the same kernel and hardware config to see
3103	 * what PC values meant.
3104	 */
3105	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3106	return 0;
3107}
3108__initcall(gate_vma_init);
3109#endif
3110
3111struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3112{
3113#ifdef AT_SYSINFO_EHDR
3114	return &gate_vma;
3115#else
3116	return NULL;
3117#endif
3118}
3119
3120int in_gate_area_no_task(unsigned long addr)
3121{
3122#ifdef AT_SYSINFO_EHDR
3123	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3124		return 1;
3125#endif
3126	return 0;
3127}
3128
3129#endif	/* __HAVE_ARCH_GATE_AREA */
3130
3131static int follow_pte(struct mm_struct *mm, unsigned long address,
3132		pte_t **ptepp, spinlock_t **ptlp)
3133{
3134	pgd_t *pgd;
3135	pud_t *pud;
3136	pmd_t *pmd;
3137	pte_t *ptep;
3138
3139	pgd = pgd_offset(mm, address);
3140	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3141		goto out;
3142
3143	pud = pud_offset(pgd, address);
3144	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3145		goto out;
3146
3147	pmd = pmd_offset(pud, address);
3148	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3149		goto out;
3150
3151	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3152	if (pmd_huge(*pmd))
3153		goto out;
3154
3155	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3156	if (!ptep)
3157		goto out;
3158	if (!pte_present(*ptep))
3159		goto unlock;
3160	*ptepp = ptep;
3161	return 0;
3162unlock:
3163	pte_unmap_unlock(ptep, *ptlp);
3164out:
3165	return -EINVAL;
3166}
3167
3168/**
3169 * follow_pfn - look up PFN at a user virtual address
3170 * @vma: memory mapping
3171 * @address: user virtual address
3172 * @pfn: location to store found PFN
3173 *
3174 * Only IO mappings and raw PFN mappings are allowed.
3175 *
3176 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3177 */
3178int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3179	unsigned long *pfn)
3180{
3181	int ret = -EINVAL;
3182	spinlock_t *ptl;
3183	pte_t *ptep;
3184
3185	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3186		return ret;
3187
3188	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3189	if (ret)
3190		return ret;
3191	*pfn = pte_pfn(*ptep);
3192	pte_unmap_unlock(ptep, ptl);
3193	return 0;
3194}
3195EXPORT_SYMBOL(follow_pfn);
3196
3197#ifdef CONFIG_HAVE_IOREMAP_PROT
3198int follow_phys(struct vm_area_struct *vma,
3199		unsigned long address, unsigned int flags,
3200		unsigned long *prot, resource_size_t *phys)
3201{
3202	int ret = -EINVAL;
3203	pte_t *ptep, pte;
3204	spinlock_t *ptl;
3205
3206	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3207		goto out;
3208
3209	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3210		goto out;
3211	pte = *ptep;
3212
3213	if ((flags & FOLL_WRITE) && !pte_write(pte))
3214		goto unlock;
3215
3216	*prot = pgprot_val(pte_pgprot(pte));
3217	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3218
3219	ret = 0;
3220unlock:
3221	pte_unmap_unlock(ptep, ptl);
3222out:
3223	return ret;
3224}
3225
3226int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3227			void *buf, int len, int write)
3228{
3229	resource_size_t phys_addr;
3230	unsigned long prot = 0;
3231	void __iomem *maddr;
3232	int offset = addr & (PAGE_SIZE-1);
3233
3234	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3235		return -EINVAL;
3236
3237	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3238	if (write)
3239		memcpy_toio(maddr + offset, buf, len);
3240	else
3241		memcpy_fromio(buf, maddr + offset, len);
3242	iounmap(maddr);
3243
3244	return len;
3245}
3246#endif
3247
3248/*
3249 * Access another process' address space.
3250 * Source/target buffer must be kernel space,
3251 * Do not walk the page table directly, use get_user_pages
3252 */
3253int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3254{
3255	struct mm_struct *mm;
3256	struct vm_area_struct *vma;
3257	void *old_buf = buf;
3258
3259	mm = get_task_mm(tsk);
3260	if (!mm)
3261		return 0;
3262
3263	down_read(&mm->mmap_sem);
3264	/* ignore errors, just check how much was successfully transferred */
3265	while (len) {
3266		int bytes, ret, offset;
3267		void *maddr;
3268		struct page *page = NULL;
3269
3270		ret = get_user_pages(tsk, mm, addr, 1,
3271				write, 1, &page, &vma);
3272		if (ret <= 0) {
3273			/*
3274			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3275			 * we can access using slightly different code.
3276			 */
3277#ifdef CONFIG_HAVE_IOREMAP_PROT
3278			vma = find_vma(mm, addr);
3279			if (!vma)
3280				break;
3281			if (vma->vm_ops && vma->vm_ops->access)
3282				ret = vma->vm_ops->access(vma, addr, buf,
3283							  len, write);
3284			if (ret <= 0)
3285#endif
3286				break;
3287			bytes = ret;
3288		} else {
3289			bytes = len;
3290			offset = addr & (PAGE_SIZE-1);
3291			if (bytes > PAGE_SIZE-offset)
3292				bytes = PAGE_SIZE-offset;
3293
3294			maddr = kmap(page);
3295			if (write) {
3296				copy_to_user_page(vma, page, addr,
3297						  maddr + offset, buf, bytes);
3298				set_page_dirty_lock(page);
3299			} else {
3300				copy_from_user_page(vma, page, addr,
3301						    buf, maddr + offset, bytes);
3302			}
3303			kunmap(page);
3304			page_cache_release(page);
3305		}
3306		len -= bytes;
3307		buf += bytes;
3308		addr += bytes;
3309	}
3310	up_read(&mm->mmap_sem);
3311	mmput(mm);
3312
3313	return buf - old_buf;
3314}
3315
3316/*
3317 * Print the name of a VMA.
3318 */
3319void print_vma_addr(char *prefix, unsigned long ip)
3320{
3321	struct mm_struct *mm = current->mm;
3322	struct vm_area_struct *vma;
3323
3324	/*
3325	 * Do not print if we are in atomic
3326	 * contexts (in exception stacks, etc.):
3327	 */
3328	if (preempt_count())
3329		return;
3330
3331	down_read(&mm->mmap_sem);
3332	vma = find_vma(mm, ip);
3333	if (vma && vma->vm_file) {
3334		struct file *f = vma->vm_file;
3335		char *buf = (char *)__get_free_page(GFP_KERNEL);
3336		if (buf) {
3337			char *p, *s;
3338
3339			p = d_path(&f->f_path, buf, PAGE_SIZE);
3340			if (IS_ERR(p))
3341				p = "?";
3342			s = strrchr(p, '/');
3343			if (s)
3344				p = s+1;
3345			printk("%s%s[%lx+%lx]", prefix, p,
3346					vma->vm_start,
3347					vma->vm_end - vma->vm_start);
3348			free_page((unsigned long)buf);
3349		}
3350	}
3351	up_read(&current->mm->mmap_sem);
3352}
3353
3354#ifdef CONFIG_PROVE_LOCKING
3355void might_fault(void)
3356{
3357	/*
3358	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3359	 * holding the mmap_sem, this is safe because kernel memory doesn't
3360	 * get paged out, therefore we'll never actually fault, and the
3361	 * below annotations will generate false positives.
3362	 */
3363	if (segment_eq(get_fs(), KERNEL_DS))
3364		return;
3365
3366	might_sleep();
3367	/*
3368	 * it would be nicer only to annotate paths which are not under
3369	 * pagefault_disable, however that requires a larger audit and
3370	 * providing helpers like get_user_atomic.
3371	 */
3372	if (!in_atomic() && current->mm)
3373		might_lock_read(&current->mm->mmap_sem);
3374}
3375EXPORT_SYMBOL(might_fault);
3376#endif
3377