memory.c revision 4c21e2f2441dc5fbb957b030333f5a3f2d02dea7
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
61#ifndef CONFIG_NEED_MULTIPLE_NODES
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none.  Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93	pgd_ERROR(*pgd);
94	pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99	pud_ERROR(*pud);
100	pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105	pmd_ERROR(*pmd);
106	pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114{
115	struct page *page = pmd_page(*pmd);
116	pmd_clear(pmd);
117	pte_lock_deinit(page);
118	pte_free_tlb(tlb, page);
119	dec_page_state(nr_page_table_pages);
120	tlb->mm->nr_ptes--;
121}
122
123static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
124				unsigned long addr, unsigned long end,
125				unsigned long floor, unsigned long ceiling)
126{
127	pmd_t *pmd;
128	unsigned long next;
129	unsigned long start;
130
131	start = addr;
132	pmd = pmd_offset(pud, addr);
133	do {
134		next = pmd_addr_end(addr, end);
135		if (pmd_none_or_clear_bad(pmd))
136			continue;
137		free_pte_range(tlb, pmd);
138	} while (pmd++, addr = next, addr != end);
139
140	start &= PUD_MASK;
141	if (start < floor)
142		return;
143	if (ceiling) {
144		ceiling &= PUD_MASK;
145		if (!ceiling)
146			return;
147	}
148	if (end - 1 > ceiling - 1)
149		return;
150
151	pmd = pmd_offset(pud, start);
152	pud_clear(pud);
153	pmd_free_tlb(tlb, pmd);
154}
155
156static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
157				unsigned long addr, unsigned long end,
158				unsigned long floor, unsigned long ceiling)
159{
160	pud_t *pud;
161	unsigned long next;
162	unsigned long start;
163
164	start = addr;
165	pud = pud_offset(pgd, addr);
166	do {
167		next = pud_addr_end(addr, end);
168		if (pud_none_or_clear_bad(pud))
169			continue;
170		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
171	} while (pud++, addr = next, addr != end);
172
173	start &= PGDIR_MASK;
174	if (start < floor)
175		return;
176	if (ceiling) {
177		ceiling &= PGDIR_MASK;
178		if (!ceiling)
179			return;
180	}
181	if (end - 1 > ceiling - 1)
182		return;
183
184	pud = pud_offset(pgd, start);
185	pgd_clear(pgd);
186	pud_free_tlb(tlb, pud);
187}
188
189/*
190 * This function frees user-level page tables of a process.
191 *
192 * Must be called with pagetable lock held.
193 */
194void free_pgd_range(struct mmu_gather **tlb,
195			unsigned long addr, unsigned long end,
196			unsigned long floor, unsigned long ceiling)
197{
198	pgd_t *pgd;
199	unsigned long next;
200	unsigned long start;
201
202	/*
203	 * The next few lines have given us lots of grief...
204	 *
205	 * Why are we testing PMD* at this top level?  Because often
206	 * there will be no work to do at all, and we'd prefer not to
207	 * go all the way down to the bottom just to discover that.
208	 *
209	 * Why all these "- 1"s?  Because 0 represents both the bottom
210	 * of the address space and the top of it (using -1 for the
211	 * top wouldn't help much: the masks would do the wrong thing).
212	 * The rule is that addr 0 and floor 0 refer to the bottom of
213	 * the address space, but end 0 and ceiling 0 refer to the top
214	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
215	 * that end 0 case should be mythical).
216	 *
217	 * Wherever addr is brought up or ceiling brought down, we must
218	 * be careful to reject "the opposite 0" before it confuses the
219	 * subsequent tests.  But what about where end is brought down
220	 * by PMD_SIZE below? no, end can't go down to 0 there.
221	 *
222	 * Whereas we round start (addr) and ceiling down, by different
223	 * masks at different levels, in order to test whether a table
224	 * now has no other vmas using it, so can be freed, we don't
225	 * bother to round floor or end up - the tests don't need that.
226	 */
227
228	addr &= PMD_MASK;
229	if (addr < floor) {
230		addr += PMD_SIZE;
231		if (!addr)
232			return;
233	}
234	if (ceiling) {
235		ceiling &= PMD_MASK;
236		if (!ceiling)
237			return;
238	}
239	if (end - 1 > ceiling - 1)
240		end -= PMD_SIZE;
241	if (addr > end - 1)
242		return;
243
244	start = addr;
245	pgd = pgd_offset((*tlb)->mm, addr);
246	do {
247		next = pgd_addr_end(addr, end);
248		if (pgd_none_or_clear_bad(pgd))
249			continue;
250		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
251	} while (pgd++, addr = next, addr != end);
252
253	if (!(*tlb)->fullmm)
254		flush_tlb_pgtables((*tlb)->mm, start, end);
255}
256
257void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
258		unsigned long floor, unsigned long ceiling)
259{
260	while (vma) {
261		struct vm_area_struct *next = vma->vm_next;
262		unsigned long addr = vma->vm_start;
263
264		/*
265		 * Hide vma from rmap and vmtruncate before freeing pgtables
266		 */
267		anon_vma_unlink(vma);
268		unlink_file_vma(vma);
269
270		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
271			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
272				floor, next? next->vm_start: ceiling);
273		} else {
274			/*
275			 * Optimization: gather nearby vmas into one call down
276			 */
277			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
278			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
279							HPAGE_SIZE)) {
280				vma = next;
281				next = vma->vm_next;
282				anon_vma_unlink(vma);
283				unlink_file_vma(vma);
284			}
285			free_pgd_range(tlb, addr, vma->vm_end,
286				floor, next? next->vm_start: ceiling);
287		}
288		vma = next;
289	}
290}
291
292int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
293{
294	struct page *new = pte_alloc_one(mm, address);
295	if (!new)
296		return -ENOMEM;
297
298	pte_lock_init(new);
299	spin_lock(&mm->page_table_lock);
300	if (pmd_present(*pmd)) {	/* Another has populated it */
301		pte_lock_deinit(new);
302		pte_free(new);
303	} else {
304		mm->nr_ptes++;
305		inc_page_state(nr_page_table_pages);
306		pmd_populate(mm, pmd, new);
307	}
308	spin_unlock(&mm->page_table_lock);
309	return 0;
310}
311
312int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
313{
314	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
315	if (!new)
316		return -ENOMEM;
317
318	spin_lock(&init_mm.page_table_lock);
319	if (pmd_present(*pmd))		/* Another has populated it */
320		pte_free_kernel(new);
321	else
322		pmd_populate_kernel(&init_mm, pmd, new);
323	spin_unlock(&init_mm.page_table_lock);
324	return 0;
325}
326
327static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
328{
329	if (file_rss)
330		add_mm_counter(mm, file_rss, file_rss);
331	if (anon_rss)
332		add_mm_counter(mm, anon_rss, anon_rss);
333}
334
335/*
336 * This function is called to print an error when a pte in a
337 * !VM_RESERVED region is found pointing to an invalid pfn (which
338 * is an error.
339 *
340 * The calling function must still handle the error.
341 */
342void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
343{
344	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
345			"vm_flags = %lx, vaddr = %lx\n",
346		(long long)pte_val(pte),
347		(vma->vm_mm == current->mm ? current->comm : "???"),
348		vma->vm_flags, vaddr);
349	dump_stack();
350}
351
352/*
353 * copy one vm_area from one task to the other. Assumes the page tables
354 * already present in the new task to be cleared in the whole range
355 * covered by this vma.
356 */
357
358static inline void
359copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
360		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
361		unsigned long addr, int *rss)
362{
363	unsigned long vm_flags = vma->vm_flags;
364	pte_t pte = *src_pte;
365	struct page *page;
366	unsigned long pfn;
367
368	/* pte contains position in swap or file, so copy. */
369	if (unlikely(!pte_present(pte))) {
370		if (!pte_file(pte)) {
371			swap_duplicate(pte_to_swp_entry(pte));
372			/* make sure dst_mm is on swapoff's mmlist. */
373			if (unlikely(list_empty(&dst_mm->mmlist))) {
374				spin_lock(&mmlist_lock);
375				list_add(&dst_mm->mmlist, &src_mm->mmlist);
376				spin_unlock(&mmlist_lock);
377			}
378		}
379		goto out_set_pte;
380	}
381
382	/* If the region is VM_RESERVED, the mapping is not
383	 * mapped via rmap - duplicate the pte as is.
384	 */
385	if (vm_flags & VM_RESERVED)
386		goto out_set_pte;
387
388	pfn = pte_pfn(pte);
389	/* If the pte points outside of valid memory but
390	 * the region is not VM_RESERVED, we have a problem.
391	 */
392	if (unlikely(!pfn_valid(pfn))) {
393		print_bad_pte(vma, pte, addr);
394		goto out_set_pte; /* try to do something sane */
395	}
396
397	page = pfn_to_page(pfn);
398
399	/*
400	 * If it's a COW mapping, write protect it both
401	 * in the parent and the child
402	 */
403	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
404		ptep_set_wrprotect(src_mm, addr, src_pte);
405		pte = *src_pte;
406	}
407
408	/*
409	 * If it's a shared mapping, mark it clean in
410	 * the child
411	 */
412	if (vm_flags & VM_SHARED)
413		pte = pte_mkclean(pte);
414	pte = pte_mkold(pte);
415	get_page(page);
416	page_dup_rmap(page);
417	rss[!!PageAnon(page)]++;
418
419out_set_pte:
420	set_pte_at(dst_mm, addr, dst_pte, pte);
421}
422
423static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
424		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
425		unsigned long addr, unsigned long end)
426{
427	pte_t *src_pte, *dst_pte;
428	spinlock_t *src_ptl, *dst_ptl;
429	int progress = 0;
430	int rss[2];
431
432again:
433	rss[1] = rss[0] = 0;
434	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
435	if (!dst_pte)
436		return -ENOMEM;
437	src_pte = pte_offset_map_nested(src_pmd, addr);
438	src_ptl = pte_lockptr(src_mm, src_pmd);
439	spin_lock(src_ptl);
440
441	do {
442		/*
443		 * We are holding two locks at this point - either of them
444		 * could generate latencies in another task on another CPU.
445		 */
446		if (progress >= 32) {
447			progress = 0;
448			if (need_resched() ||
449			    need_lockbreak(src_ptl) ||
450			    need_lockbreak(dst_ptl))
451				break;
452		}
453		if (pte_none(*src_pte)) {
454			progress++;
455			continue;
456		}
457		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
458		progress += 8;
459	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
460
461	spin_unlock(src_ptl);
462	pte_unmap_nested(src_pte - 1);
463	add_mm_rss(dst_mm, rss[0], rss[1]);
464	pte_unmap_unlock(dst_pte - 1, dst_ptl);
465	cond_resched();
466	if (addr != end)
467		goto again;
468	return 0;
469}
470
471static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
473		unsigned long addr, unsigned long end)
474{
475	pmd_t *src_pmd, *dst_pmd;
476	unsigned long next;
477
478	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
479	if (!dst_pmd)
480		return -ENOMEM;
481	src_pmd = pmd_offset(src_pud, addr);
482	do {
483		next = pmd_addr_end(addr, end);
484		if (pmd_none_or_clear_bad(src_pmd))
485			continue;
486		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
487						vma, addr, next))
488			return -ENOMEM;
489	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
490	return 0;
491}
492
493static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
494		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
495		unsigned long addr, unsigned long end)
496{
497	pud_t *src_pud, *dst_pud;
498	unsigned long next;
499
500	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
501	if (!dst_pud)
502		return -ENOMEM;
503	src_pud = pud_offset(src_pgd, addr);
504	do {
505		next = pud_addr_end(addr, end);
506		if (pud_none_or_clear_bad(src_pud))
507			continue;
508		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
509						vma, addr, next))
510			return -ENOMEM;
511	} while (dst_pud++, src_pud++, addr = next, addr != end);
512	return 0;
513}
514
515int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
516		struct vm_area_struct *vma)
517{
518	pgd_t *src_pgd, *dst_pgd;
519	unsigned long next;
520	unsigned long addr = vma->vm_start;
521	unsigned long end = vma->vm_end;
522
523	/*
524	 * Don't copy ptes where a page fault will fill them correctly.
525	 * Fork becomes much lighter when there are big shared or private
526	 * readonly mappings. The tradeoff is that copy_page_range is more
527	 * efficient than faulting.
528	 */
529	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
530		if (!vma->anon_vma)
531			return 0;
532	}
533
534	if (is_vm_hugetlb_page(vma))
535		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
536
537	dst_pgd = pgd_offset(dst_mm, addr);
538	src_pgd = pgd_offset(src_mm, addr);
539	do {
540		next = pgd_addr_end(addr, end);
541		if (pgd_none_or_clear_bad(src_pgd))
542			continue;
543		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
544						vma, addr, next))
545			return -ENOMEM;
546	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
547	return 0;
548}
549
550static void zap_pte_range(struct mmu_gather *tlb,
551				struct vm_area_struct *vma, pmd_t *pmd,
552				unsigned long addr, unsigned long end,
553				struct zap_details *details)
554{
555	struct mm_struct *mm = tlb->mm;
556	pte_t *pte;
557	spinlock_t *ptl;
558	int file_rss = 0;
559	int anon_rss = 0;
560
561	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
562	do {
563		pte_t ptent = *pte;
564		if (pte_none(ptent))
565			continue;
566		if (pte_present(ptent)) {
567			struct page *page = NULL;
568			if (!(vma->vm_flags & VM_RESERVED)) {
569				unsigned long pfn = pte_pfn(ptent);
570				if (unlikely(!pfn_valid(pfn)))
571					print_bad_pte(vma, ptent, addr);
572				else
573					page = pfn_to_page(pfn);
574			}
575			if (unlikely(details) && page) {
576				/*
577				 * unmap_shared_mapping_pages() wants to
578				 * invalidate cache without truncating:
579				 * unmap shared but keep private pages.
580				 */
581				if (details->check_mapping &&
582				    details->check_mapping != page->mapping)
583					continue;
584				/*
585				 * Each page->index must be checked when
586				 * invalidating or truncating nonlinear.
587				 */
588				if (details->nonlinear_vma &&
589				    (page->index < details->first_index ||
590				     page->index > details->last_index))
591					continue;
592			}
593			ptent = ptep_get_and_clear_full(mm, addr, pte,
594							tlb->fullmm);
595			tlb_remove_tlb_entry(tlb, pte, addr);
596			if (unlikely(!page))
597				continue;
598			if (unlikely(details) && details->nonlinear_vma
599			    && linear_page_index(details->nonlinear_vma,
600						addr) != page->index)
601				set_pte_at(mm, addr, pte,
602					   pgoff_to_pte(page->index));
603			if (PageAnon(page))
604				anon_rss--;
605			else {
606				if (pte_dirty(ptent))
607					set_page_dirty(page);
608				if (pte_young(ptent))
609					mark_page_accessed(page);
610				file_rss--;
611			}
612			page_remove_rmap(page);
613			tlb_remove_page(tlb, page);
614			continue;
615		}
616		/*
617		 * If details->check_mapping, we leave swap entries;
618		 * if details->nonlinear_vma, we leave file entries.
619		 */
620		if (unlikely(details))
621			continue;
622		if (!pte_file(ptent))
623			free_swap_and_cache(pte_to_swp_entry(ptent));
624		pte_clear_full(mm, addr, pte, tlb->fullmm);
625	} while (pte++, addr += PAGE_SIZE, addr != end);
626
627	add_mm_rss(mm, file_rss, anon_rss);
628	pte_unmap_unlock(pte - 1, ptl);
629}
630
631static inline void zap_pmd_range(struct mmu_gather *tlb,
632				struct vm_area_struct *vma, pud_t *pud,
633				unsigned long addr, unsigned long end,
634				struct zap_details *details)
635{
636	pmd_t *pmd;
637	unsigned long next;
638
639	pmd = pmd_offset(pud, addr);
640	do {
641		next = pmd_addr_end(addr, end);
642		if (pmd_none_or_clear_bad(pmd))
643			continue;
644		zap_pte_range(tlb, vma, pmd, addr, next, details);
645	} while (pmd++, addr = next, addr != end);
646}
647
648static inline void zap_pud_range(struct mmu_gather *tlb,
649				struct vm_area_struct *vma, pgd_t *pgd,
650				unsigned long addr, unsigned long end,
651				struct zap_details *details)
652{
653	pud_t *pud;
654	unsigned long next;
655
656	pud = pud_offset(pgd, addr);
657	do {
658		next = pud_addr_end(addr, end);
659		if (pud_none_or_clear_bad(pud))
660			continue;
661		zap_pmd_range(tlb, vma, pud, addr, next, details);
662	} while (pud++, addr = next, addr != end);
663}
664
665static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
666				unsigned long addr, unsigned long end,
667				struct zap_details *details)
668{
669	pgd_t *pgd;
670	unsigned long next;
671
672	if (details && !details->check_mapping && !details->nonlinear_vma)
673		details = NULL;
674
675	BUG_ON(addr >= end);
676	tlb_start_vma(tlb, vma);
677	pgd = pgd_offset(vma->vm_mm, addr);
678	do {
679		next = pgd_addr_end(addr, end);
680		if (pgd_none_or_clear_bad(pgd))
681			continue;
682		zap_pud_range(tlb, vma, pgd, addr, next, details);
683	} while (pgd++, addr = next, addr != end);
684	tlb_end_vma(tlb, vma);
685}
686
687#ifdef CONFIG_PREEMPT
688# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
689#else
690/* No preempt: go for improved straight-line efficiency */
691# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
692#endif
693
694/**
695 * unmap_vmas - unmap a range of memory covered by a list of vma's
696 * @tlbp: address of the caller's struct mmu_gather
697 * @vma: the starting vma
698 * @start_addr: virtual address at which to start unmapping
699 * @end_addr: virtual address at which to end unmapping
700 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
701 * @details: details of nonlinear truncation or shared cache invalidation
702 *
703 * Returns the end address of the unmapping (restart addr if interrupted).
704 *
705 * Unmap all pages in the vma list.
706 *
707 * We aim to not hold locks for too long (for scheduling latency reasons).
708 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
709 * return the ending mmu_gather to the caller.
710 *
711 * Only addresses between `start' and `end' will be unmapped.
712 *
713 * The VMA list must be sorted in ascending virtual address order.
714 *
715 * unmap_vmas() assumes that the caller will flush the whole unmapped address
716 * range after unmap_vmas() returns.  So the only responsibility here is to
717 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
718 * drops the lock and schedules.
719 */
720unsigned long unmap_vmas(struct mmu_gather **tlbp,
721		struct vm_area_struct *vma, unsigned long start_addr,
722		unsigned long end_addr, unsigned long *nr_accounted,
723		struct zap_details *details)
724{
725	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
726	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
727	int tlb_start_valid = 0;
728	unsigned long start = start_addr;
729	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
730	int fullmm = (*tlbp)->fullmm;
731
732	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
733		unsigned long end;
734
735		start = max(vma->vm_start, start_addr);
736		if (start >= vma->vm_end)
737			continue;
738		end = min(vma->vm_end, end_addr);
739		if (end <= vma->vm_start)
740			continue;
741
742		if (vma->vm_flags & VM_ACCOUNT)
743			*nr_accounted += (end - start) >> PAGE_SHIFT;
744
745		while (start != end) {
746			unsigned long block;
747
748			if (!tlb_start_valid) {
749				tlb_start = start;
750				tlb_start_valid = 1;
751			}
752
753			if (is_vm_hugetlb_page(vma)) {
754				block = end - start;
755				unmap_hugepage_range(vma, start, end);
756			} else {
757				block = min(zap_bytes, end - start);
758				unmap_page_range(*tlbp, vma, start,
759						start + block, details);
760			}
761
762			start += block;
763			zap_bytes -= block;
764			if ((long)zap_bytes > 0)
765				continue;
766
767			tlb_finish_mmu(*tlbp, tlb_start, start);
768
769			if (need_resched() ||
770				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
771				if (i_mmap_lock) {
772					*tlbp = NULL;
773					goto out;
774				}
775				cond_resched();
776			}
777
778			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
779			tlb_start_valid = 0;
780			zap_bytes = ZAP_BLOCK_SIZE;
781		}
782	}
783out:
784	return start;	/* which is now the end (or restart) address */
785}
786
787/**
788 * zap_page_range - remove user pages in a given range
789 * @vma: vm_area_struct holding the applicable pages
790 * @address: starting address of pages to zap
791 * @size: number of bytes to zap
792 * @details: details of nonlinear truncation or shared cache invalidation
793 */
794unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
795		unsigned long size, struct zap_details *details)
796{
797	struct mm_struct *mm = vma->vm_mm;
798	struct mmu_gather *tlb;
799	unsigned long end = address + size;
800	unsigned long nr_accounted = 0;
801
802	lru_add_drain();
803	tlb = tlb_gather_mmu(mm, 0);
804	update_hiwater_rss(mm);
805	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
806	if (tlb)
807		tlb_finish_mmu(tlb, address, end);
808	return end;
809}
810
811/*
812 * Do a quick page-table lookup for a single page.
813 */
814struct page *follow_page(struct mm_struct *mm, unsigned long address,
815			unsigned int flags)
816{
817	pgd_t *pgd;
818	pud_t *pud;
819	pmd_t *pmd;
820	pte_t *ptep, pte;
821	spinlock_t *ptl;
822	unsigned long pfn;
823	struct page *page;
824
825	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
826	if (!IS_ERR(page)) {
827		BUG_ON(flags & FOLL_GET);
828		goto out;
829	}
830
831	page = NULL;
832	pgd = pgd_offset(mm, address);
833	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
834		goto no_page_table;
835
836	pud = pud_offset(pgd, address);
837	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
838		goto no_page_table;
839
840	pmd = pmd_offset(pud, address);
841	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
842		goto no_page_table;
843
844	if (pmd_huge(*pmd)) {
845		BUG_ON(flags & FOLL_GET);
846		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
847		goto out;
848	}
849
850	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
851	if (!ptep)
852		goto out;
853
854	pte = *ptep;
855	if (!pte_present(pte))
856		goto unlock;
857	if ((flags & FOLL_WRITE) && !pte_write(pte))
858		goto unlock;
859	pfn = pte_pfn(pte);
860	if (!pfn_valid(pfn))
861		goto unlock;
862
863	page = pfn_to_page(pfn);
864	if (flags & FOLL_GET)
865		get_page(page);
866	if (flags & FOLL_TOUCH) {
867		if ((flags & FOLL_WRITE) &&
868		    !pte_dirty(pte) && !PageDirty(page))
869			set_page_dirty(page);
870		mark_page_accessed(page);
871	}
872unlock:
873	pte_unmap_unlock(ptep, ptl);
874out:
875	return page;
876
877no_page_table:
878	/*
879	 * When core dumping an enormous anonymous area that nobody
880	 * has touched so far, we don't want to allocate page tables.
881	 */
882	if (flags & FOLL_ANON) {
883		page = ZERO_PAGE(address);
884		if (flags & FOLL_GET)
885			get_page(page);
886		BUG_ON(flags & FOLL_WRITE);
887	}
888	return page;
889}
890
891int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
892		unsigned long start, int len, int write, int force,
893		struct page **pages, struct vm_area_struct **vmas)
894{
895	int i;
896	unsigned int vm_flags;
897
898	/*
899	 * Require read or write permissions.
900	 * If 'force' is set, we only require the "MAY" flags.
901	 */
902	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
903	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
904	i = 0;
905
906	do {
907		struct vm_area_struct *vma;
908		unsigned int foll_flags;
909
910		vma = find_extend_vma(mm, start);
911		if (!vma && in_gate_area(tsk, start)) {
912			unsigned long pg = start & PAGE_MASK;
913			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
914			pgd_t *pgd;
915			pud_t *pud;
916			pmd_t *pmd;
917			pte_t *pte;
918			if (write) /* user gate pages are read-only */
919				return i ? : -EFAULT;
920			if (pg > TASK_SIZE)
921				pgd = pgd_offset_k(pg);
922			else
923				pgd = pgd_offset_gate(mm, pg);
924			BUG_ON(pgd_none(*pgd));
925			pud = pud_offset(pgd, pg);
926			BUG_ON(pud_none(*pud));
927			pmd = pmd_offset(pud, pg);
928			if (pmd_none(*pmd))
929				return i ? : -EFAULT;
930			pte = pte_offset_map(pmd, pg);
931			if (pte_none(*pte)) {
932				pte_unmap(pte);
933				return i ? : -EFAULT;
934			}
935			if (pages) {
936				pages[i] = pte_page(*pte);
937				get_page(pages[i]);
938			}
939			pte_unmap(pte);
940			if (vmas)
941				vmas[i] = gate_vma;
942			i++;
943			start += PAGE_SIZE;
944			len--;
945			continue;
946		}
947
948		if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
949				|| !(vm_flags & vma->vm_flags))
950			return i ? : -EFAULT;
951
952		if (is_vm_hugetlb_page(vma)) {
953			i = follow_hugetlb_page(mm, vma, pages, vmas,
954						&start, &len, i);
955			continue;
956		}
957
958		foll_flags = FOLL_TOUCH;
959		if (pages)
960			foll_flags |= FOLL_GET;
961		if (!write && !(vma->vm_flags & VM_LOCKED) &&
962		    (!vma->vm_ops || !vma->vm_ops->nopage))
963			foll_flags |= FOLL_ANON;
964
965		do {
966			struct page *page;
967
968			if (write)
969				foll_flags |= FOLL_WRITE;
970
971			cond_resched();
972			while (!(page = follow_page(mm, start, foll_flags))) {
973				int ret;
974				ret = __handle_mm_fault(mm, vma, start,
975						foll_flags & FOLL_WRITE);
976				/*
977				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
978				 * broken COW when necessary, even if maybe_mkwrite
979				 * decided not to set pte_write. We can thus safely do
980				 * subsequent page lookups as if they were reads.
981				 */
982				if (ret & VM_FAULT_WRITE)
983					foll_flags &= ~FOLL_WRITE;
984
985				switch (ret & ~VM_FAULT_WRITE) {
986				case VM_FAULT_MINOR:
987					tsk->min_flt++;
988					break;
989				case VM_FAULT_MAJOR:
990					tsk->maj_flt++;
991					break;
992				case VM_FAULT_SIGBUS:
993					return i ? i : -EFAULT;
994				case VM_FAULT_OOM:
995					return i ? i : -ENOMEM;
996				default:
997					BUG();
998				}
999			}
1000			if (pages) {
1001				pages[i] = page;
1002				flush_dcache_page(page);
1003			}
1004			if (vmas)
1005				vmas[i] = vma;
1006			i++;
1007			start += PAGE_SIZE;
1008			len--;
1009		} while (len && start < vma->vm_end);
1010	} while (len);
1011	return i;
1012}
1013EXPORT_SYMBOL(get_user_pages);
1014
1015static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1016			unsigned long addr, unsigned long end, pgprot_t prot)
1017{
1018	pte_t *pte;
1019	spinlock_t *ptl;
1020
1021	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1022	if (!pte)
1023		return -ENOMEM;
1024	do {
1025		struct page *page = ZERO_PAGE(addr);
1026		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1027		page_cache_get(page);
1028		page_add_file_rmap(page);
1029		inc_mm_counter(mm, file_rss);
1030		BUG_ON(!pte_none(*pte));
1031		set_pte_at(mm, addr, pte, zero_pte);
1032	} while (pte++, addr += PAGE_SIZE, addr != end);
1033	pte_unmap_unlock(pte - 1, ptl);
1034	return 0;
1035}
1036
1037static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1038			unsigned long addr, unsigned long end, pgprot_t prot)
1039{
1040	pmd_t *pmd;
1041	unsigned long next;
1042
1043	pmd = pmd_alloc(mm, pud, addr);
1044	if (!pmd)
1045		return -ENOMEM;
1046	do {
1047		next = pmd_addr_end(addr, end);
1048		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1049			return -ENOMEM;
1050	} while (pmd++, addr = next, addr != end);
1051	return 0;
1052}
1053
1054static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1055			unsigned long addr, unsigned long end, pgprot_t prot)
1056{
1057	pud_t *pud;
1058	unsigned long next;
1059
1060	pud = pud_alloc(mm, pgd, addr);
1061	if (!pud)
1062		return -ENOMEM;
1063	do {
1064		next = pud_addr_end(addr, end);
1065		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1066			return -ENOMEM;
1067	} while (pud++, addr = next, addr != end);
1068	return 0;
1069}
1070
1071int zeromap_page_range(struct vm_area_struct *vma,
1072			unsigned long addr, unsigned long size, pgprot_t prot)
1073{
1074	pgd_t *pgd;
1075	unsigned long next;
1076	unsigned long end = addr + size;
1077	struct mm_struct *mm = vma->vm_mm;
1078	int err;
1079
1080	BUG_ON(addr >= end);
1081	pgd = pgd_offset(mm, addr);
1082	flush_cache_range(vma, addr, end);
1083	do {
1084		next = pgd_addr_end(addr, end);
1085		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1086		if (err)
1087			break;
1088	} while (pgd++, addr = next, addr != end);
1089	return err;
1090}
1091
1092/*
1093 * maps a range of physical memory into the requested pages. the old
1094 * mappings are removed. any references to nonexistent pages results
1095 * in null mappings (currently treated as "copy-on-access")
1096 */
1097static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1098			unsigned long addr, unsigned long end,
1099			unsigned long pfn, pgprot_t prot)
1100{
1101	pte_t *pte;
1102	spinlock_t *ptl;
1103
1104	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1105	if (!pte)
1106		return -ENOMEM;
1107	do {
1108		BUG_ON(!pte_none(*pte));
1109		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1110		pfn++;
1111	} while (pte++, addr += PAGE_SIZE, addr != end);
1112	pte_unmap_unlock(pte - 1, ptl);
1113	return 0;
1114}
1115
1116static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1117			unsigned long addr, unsigned long end,
1118			unsigned long pfn, pgprot_t prot)
1119{
1120	pmd_t *pmd;
1121	unsigned long next;
1122
1123	pfn -= addr >> PAGE_SHIFT;
1124	pmd = pmd_alloc(mm, pud, addr);
1125	if (!pmd)
1126		return -ENOMEM;
1127	do {
1128		next = pmd_addr_end(addr, end);
1129		if (remap_pte_range(mm, pmd, addr, next,
1130				pfn + (addr >> PAGE_SHIFT), prot))
1131			return -ENOMEM;
1132	} while (pmd++, addr = next, addr != end);
1133	return 0;
1134}
1135
1136static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1137			unsigned long addr, unsigned long end,
1138			unsigned long pfn, pgprot_t prot)
1139{
1140	pud_t *pud;
1141	unsigned long next;
1142
1143	pfn -= addr >> PAGE_SHIFT;
1144	pud = pud_alloc(mm, pgd, addr);
1145	if (!pud)
1146		return -ENOMEM;
1147	do {
1148		next = pud_addr_end(addr, end);
1149		if (remap_pmd_range(mm, pud, addr, next,
1150				pfn + (addr >> PAGE_SHIFT), prot))
1151			return -ENOMEM;
1152	} while (pud++, addr = next, addr != end);
1153	return 0;
1154}
1155
1156/*  Note: this is only safe if the mm semaphore is held when called. */
1157int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1158		    unsigned long pfn, unsigned long size, pgprot_t prot)
1159{
1160	pgd_t *pgd;
1161	unsigned long next;
1162	unsigned long end = addr + PAGE_ALIGN(size);
1163	struct mm_struct *mm = vma->vm_mm;
1164	int err;
1165
1166	/*
1167	 * Physically remapped pages are special. Tell the
1168	 * rest of the world about it:
1169	 *   VM_IO tells people not to look at these pages
1170	 *	(accesses can have side effects).
1171	 *   VM_RESERVED tells the core MM not to "manage" these pages
1172         *	(e.g. refcount, mapcount, try to swap them out).
1173	 */
1174	vma->vm_flags |= VM_IO | VM_RESERVED;
1175
1176	BUG_ON(addr >= end);
1177	pfn -= addr >> PAGE_SHIFT;
1178	pgd = pgd_offset(mm, addr);
1179	flush_cache_range(vma, addr, end);
1180	do {
1181		next = pgd_addr_end(addr, end);
1182		err = remap_pud_range(mm, pgd, addr, next,
1183				pfn + (addr >> PAGE_SHIFT), prot);
1184		if (err)
1185			break;
1186	} while (pgd++, addr = next, addr != end);
1187	return err;
1188}
1189EXPORT_SYMBOL(remap_pfn_range);
1190
1191/*
1192 * handle_pte_fault chooses page fault handler according to an entry
1193 * which was read non-atomically.  Before making any commitment, on
1194 * those architectures or configurations (e.g. i386 with PAE) which
1195 * might give a mix of unmatched parts, do_swap_page and do_file_page
1196 * must check under lock before unmapping the pte and proceeding
1197 * (but do_wp_page is only called after already making such a check;
1198 * and do_anonymous_page and do_no_page can safely check later on).
1199 */
1200static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1201				pte_t *page_table, pte_t orig_pte)
1202{
1203	int same = 1;
1204#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1205	if (sizeof(pte_t) > sizeof(unsigned long)) {
1206		spinlock_t *ptl = pte_lockptr(mm, pmd);
1207		spin_lock(ptl);
1208		same = pte_same(*page_table, orig_pte);
1209		spin_unlock(ptl);
1210	}
1211#endif
1212	pte_unmap(page_table);
1213	return same;
1214}
1215
1216/*
1217 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1218 * servicing faults for write access.  In the normal case, do always want
1219 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1220 * that do not have writing enabled, when used by access_process_vm.
1221 */
1222static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1223{
1224	if (likely(vma->vm_flags & VM_WRITE))
1225		pte = pte_mkwrite(pte);
1226	return pte;
1227}
1228
1229/*
1230 * This routine handles present pages, when users try to write
1231 * to a shared page. It is done by copying the page to a new address
1232 * and decrementing the shared-page counter for the old page.
1233 *
1234 * Note that this routine assumes that the protection checks have been
1235 * done by the caller (the low-level page fault routine in most cases).
1236 * Thus we can safely just mark it writable once we've done any necessary
1237 * COW.
1238 *
1239 * We also mark the page dirty at this point even though the page will
1240 * change only once the write actually happens. This avoids a few races,
1241 * and potentially makes it more efficient.
1242 *
1243 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1244 * but allow concurrent faults), with pte both mapped and locked.
1245 * We return with mmap_sem still held, but pte unmapped and unlocked.
1246 */
1247static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1248		unsigned long address, pte_t *page_table, pmd_t *pmd,
1249		spinlock_t *ptl, pte_t orig_pte)
1250{
1251	struct page *old_page, *new_page;
1252	unsigned long pfn = pte_pfn(orig_pte);
1253	pte_t entry;
1254	int ret = VM_FAULT_MINOR;
1255
1256	BUG_ON(vma->vm_flags & VM_RESERVED);
1257
1258	if (unlikely(!pfn_valid(pfn))) {
1259		/*
1260		 * Page table corrupted: show pte and kill process.
1261		 */
1262		print_bad_pte(vma, orig_pte, address);
1263		ret = VM_FAULT_OOM;
1264		goto unlock;
1265	}
1266	old_page = pfn_to_page(pfn);
1267
1268	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1269		int reuse = can_share_swap_page(old_page);
1270		unlock_page(old_page);
1271		if (reuse) {
1272			flush_cache_page(vma, address, pfn);
1273			entry = pte_mkyoung(orig_pte);
1274			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1275			ptep_set_access_flags(vma, address, page_table, entry, 1);
1276			update_mmu_cache(vma, address, entry);
1277			lazy_mmu_prot_update(entry);
1278			ret |= VM_FAULT_WRITE;
1279			goto unlock;
1280		}
1281	}
1282
1283	/*
1284	 * Ok, we need to copy. Oh, well..
1285	 */
1286	page_cache_get(old_page);
1287	pte_unmap_unlock(page_table, ptl);
1288
1289	if (unlikely(anon_vma_prepare(vma)))
1290		goto oom;
1291	if (old_page == ZERO_PAGE(address)) {
1292		new_page = alloc_zeroed_user_highpage(vma, address);
1293		if (!new_page)
1294			goto oom;
1295	} else {
1296		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1297		if (!new_page)
1298			goto oom;
1299		copy_user_highpage(new_page, old_page, address);
1300	}
1301
1302	/*
1303	 * Re-check the pte - we dropped the lock
1304	 */
1305	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1306	if (likely(pte_same(*page_table, orig_pte))) {
1307		page_remove_rmap(old_page);
1308		if (!PageAnon(old_page)) {
1309			inc_mm_counter(mm, anon_rss);
1310			dec_mm_counter(mm, file_rss);
1311		}
1312		flush_cache_page(vma, address, pfn);
1313		entry = mk_pte(new_page, vma->vm_page_prot);
1314		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1315		ptep_establish(vma, address, page_table, entry);
1316		update_mmu_cache(vma, address, entry);
1317		lazy_mmu_prot_update(entry);
1318		lru_cache_add_active(new_page);
1319		page_add_anon_rmap(new_page, vma, address);
1320
1321		/* Free the old page.. */
1322		new_page = old_page;
1323		ret |= VM_FAULT_WRITE;
1324	}
1325	page_cache_release(new_page);
1326	page_cache_release(old_page);
1327unlock:
1328	pte_unmap_unlock(page_table, ptl);
1329	return ret;
1330oom:
1331	page_cache_release(old_page);
1332	return VM_FAULT_OOM;
1333}
1334
1335/*
1336 * Helper functions for unmap_mapping_range().
1337 *
1338 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1339 *
1340 * We have to restart searching the prio_tree whenever we drop the lock,
1341 * since the iterator is only valid while the lock is held, and anyway
1342 * a later vma might be split and reinserted earlier while lock dropped.
1343 *
1344 * The list of nonlinear vmas could be handled more efficiently, using
1345 * a placeholder, but handle it in the same way until a need is shown.
1346 * It is important to search the prio_tree before nonlinear list: a vma
1347 * may become nonlinear and be shifted from prio_tree to nonlinear list
1348 * while the lock is dropped; but never shifted from list to prio_tree.
1349 *
1350 * In order to make forward progress despite restarting the search,
1351 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1352 * quickly skip it next time around.  Since the prio_tree search only
1353 * shows us those vmas affected by unmapping the range in question, we
1354 * can't efficiently keep all vmas in step with mapping->truncate_count:
1355 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1356 * mapping->truncate_count and vma->vm_truncate_count are protected by
1357 * i_mmap_lock.
1358 *
1359 * In order to make forward progress despite repeatedly restarting some
1360 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1361 * and restart from that address when we reach that vma again.  It might
1362 * have been split or merged, shrunk or extended, but never shifted: so
1363 * restart_addr remains valid so long as it remains in the vma's range.
1364 * unmap_mapping_range forces truncate_count to leap over page-aligned
1365 * values so we can save vma's restart_addr in its truncate_count field.
1366 */
1367#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1368
1369static void reset_vma_truncate_counts(struct address_space *mapping)
1370{
1371	struct vm_area_struct *vma;
1372	struct prio_tree_iter iter;
1373
1374	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1375		vma->vm_truncate_count = 0;
1376	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1377		vma->vm_truncate_count = 0;
1378}
1379
1380static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1381		unsigned long start_addr, unsigned long end_addr,
1382		struct zap_details *details)
1383{
1384	unsigned long restart_addr;
1385	int need_break;
1386
1387again:
1388	restart_addr = vma->vm_truncate_count;
1389	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1390		start_addr = restart_addr;
1391		if (start_addr >= end_addr) {
1392			/* Top of vma has been split off since last time */
1393			vma->vm_truncate_count = details->truncate_count;
1394			return 0;
1395		}
1396	}
1397
1398	restart_addr = zap_page_range(vma, start_addr,
1399					end_addr - start_addr, details);
1400	need_break = need_resched() ||
1401			need_lockbreak(details->i_mmap_lock);
1402
1403	if (restart_addr >= end_addr) {
1404		/* We have now completed this vma: mark it so */
1405		vma->vm_truncate_count = details->truncate_count;
1406		if (!need_break)
1407			return 0;
1408	} else {
1409		/* Note restart_addr in vma's truncate_count field */
1410		vma->vm_truncate_count = restart_addr;
1411		if (!need_break)
1412			goto again;
1413	}
1414
1415	spin_unlock(details->i_mmap_lock);
1416	cond_resched();
1417	spin_lock(details->i_mmap_lock);
1418	return -EINTR;
1419}
1420
1421static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1422					    struct zap_details *details)
1423{
1424	struct vm_area_struct *vma;
1425	struct prio_tree_iter iter;
1426	pgoff_t vba, vea, zba, zea;
1427
1428restart:
1429	vma_prio_tree_foreach(vma, &iter, root,
1430			details->first_index, details->last_index) {
1431		/* Skip quickly over those we have already dealt with */
1432		if (vma->vm_truncate_count == details->truncate_count)
1433			continue;
1434
1435		vba = vma->vm_pgoff;
1436		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1437		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1438		zba = details->first_index;
1439		if (zba < vba)
1440			zba = vba;
1441		zea = details->last_index;
1442		if (zea > vea)
1443			zea = vea;
1444
1445		if (unmap_mapping_range_vma(vma,
1446			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1447			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1448				details) < 0)
1449			goto restart;
1450	}
1451}
1452
1453static inline void unmap_mapping_range_list(struct list_head *head,
1454					    struct zap_details *details)
1455{
1456	struct vm_area_struct *vma;
1457
1458	/*
1459	 * In nonlinear VMAs there is no correspondence between virtual address
1460	 * offset and file offset.  So we must perform an exhaustive search
1461	 * across *all* the pages in each nonlinear VMA, not just the pages
1462	 * whose virtual address lies outside the file truncation point.
1463	 */
1464restart:
1465	list_for_each_entry(vma, head, shared.vm_set.list) {
1466		/* Skip quickly over those we have already dealt with */
1467		if (vma->vm_truncate_count == details->truncate_count)
1468			continue;
1469		details->nonlinear_vma = vma;
1470		if (unmap_mapping_range_vma(vma, vma->vm_start,
1471					vma->vm_end, details) < 0)
1472			goto restart;
1473	}
1474}
1475
1476/**
1477 * unmap_mapping_range - unmap the portion of all mmaps
1478 * in the specified address_space corresponding to the specified
1479 * page range in the underlying file.
1480 * @mapping: the address space containing mmaps to be unmapped.
1481 * @holebegin: byte in first page to unmap, relative to the start of
1482 * the underlying file.  This will be rounded down to a PAGE_SIZE
1483 * boundary.  Note that this is different from vmtruncate(), which
1484 * must keep the partial page.  In contrast, we must get rid of
1485 * partial pages.
1486 * @holelen: size of prospective hole in bytes.  This will be rounded
1487 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1488 * end of the file.
1489 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1490 * but 0 when invalidating pagecache, don't throw away private data.
1491 */
1492void unmap_mapping_range(struct address_space *mapping,
1493		loff_t const holebegin, loff_t const holelen, int even_cows)
1494{
1495	struct zap_details details;
1496	pgoff_t hba = holebegin >> PAGE_SHIFT;
1497	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1498
1499	/* Check for overflow. */
1500	if (sizeof(holelen) > sizeof(hlen)) {
1501		long long holeend =
1502			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1503		if (holeend & ~(long long)ULONG_MAX)
1504			hlen = ULONG_MAX - hba + 1;
1505	}
1506
1507	details.check_mapping = even_cows? NULL: mapping;
1508	details.nonlinear_vma = NULL;
1509	details.first_index = hba;
1510	details.last_index = hba + hlen - 1;
1511	if (details.last_index < details.first_index)
1512		details.last_index = ULONG_MAX;
1513	details.i_mmap_lock = &mapping->i_mmap_lock;
1514
1515	spin_lock(&mapping->i_mmap_lock);
1516
1517	/* serialize i_size write against truncate_count write */
1518	smp_wmb();
1519	/* Protect against page faults, and endless unmapping loops */
1520	mapping->truncate_count++;
1521	/*
1522	 * For archs where spin_lock has inclusive semantics like ia64
1523	 * this smp_mb() will prevent to read pagetable contents
1524	 * before the truncate_count increment is visible to
1525	 * other cpus.
1526	 */
1527	smp_mb();
1528	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1529		if (mapping->truncate_count == 0)
1530			reset_vma_truncate_counts(mapping);
1531		mapping->truncate_count++;
1532	}
1533	details.truncate_count = mapping->truncate_count;
1534
1535	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1536		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1537	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1538		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1539	spin_unlock(&mapping->i_mmap_lock);
1540}
1541EXPORT_SYMBOL(unmap_mapping_range);
1542
1543/*
1544 * Handle all mappings that got truncated by a "truncate()"
1545 * system call.
1546 *
1547 * NOTE! We have to be ready to update the memory sharing
1548 * between the file and the memory map for a potential last
1549 * incomplete page.  Ugly, but necessary.
1550 */
1551int vmtruncate(struct inode * inode, loff_t offset)
1552{
1553	struct address_space *mapping = inode->i_mapping;
1554	unsigned long limit;
1555
1556	if (inode->i_size < offset)
1557		goto do_expand;
1558	/*
1559	 * truncation of in-use swapfiles is disallowed - it would cause
1560	 * subsequent swapout to scribble on the now-freed blocks.
1561	 */
1562	if (IS_SWAPFILE(inode))
1563		goto out_busy;
1564	i_size_write(inode, offset);
1565	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1566	truncate_inode_pages(mapping, offset);
1567	goto out_truncate;
1568
1569do_expand:
1570	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1571	if (limit != RLIM_INFINITY && offset > limit)
1572		goto out_sig;
1573	if (offset > inode->i_sb->s_maxbytes)
1574		goto out_big;
1575	i_size_write(inode, offset);
1576
1577out_truncate:
1578	if (inode->i_op && inode->i_op->truncate)
1579		inode->i_op->truncate(inode);
1580	return 0;
1581out_sig:
1582	send_sig(SIGXFSZ, current, 0);
1583out_big:
1584	return -EFBIG;
1585out_busy:
1586	return -ETXTBSY;
1587}
1588
1589EXPORT_SYMBOL(vmtruncate);
1590
1591/*
1592 * Primitive swap readahead code. We simply read an aligned block of
1593 * (1 << page_cluster) entries in the swap area. This method is chosen
1594 * because it doesn't cost us any seek time.  We also make sure to queue
1595 * the 'original' request together with the readahead ones...
1596 *
1597 * This has been extended to use the NUMA policies from the mm triggering
1598 * the readahead.
1599 *
1600 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1601 */
1602void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1603{
1604#ifdef CONFIG_NUMA
1605	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1606#endif
1607	int i, num;
1608	struct page *new_page;
1609	unsigned long offset;
1610
1611	/*
1612	 * Get the number of handles we should do readahead io to.
1613	 */
1614	num = valid_swaphandles(entry, &offset);
1615	for (i = 0; i < num; offset++, i++) {
1616		/* Ok, do the async read-ahead now */
1617		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1618							   offset), vma, addr);
1619		if (!new_page)
1620			break;
1621		page_cache_release(new_page);
1622#ifdef CONFIG_NUMA
1623		/*
1624		 * Find the next applicable VMA for the NUMA policy.
1625		 */
1626		addr += PAGE_SIZE;
1627		if (addr == 0)
1628			vma = NULL;
1629		if (vma) {
1630			if (addr >= vma->vm_end) {
1631				vma = next_vma;
1632				next_vma = vma ? vma->vm_next : NULL;
1633			}
1634			if (vma && addr < vma->vm_start)
1635				vma = NULL;
1636		} else {
1637			if (next_vma && addr >= next_vma->vm_start) {
1638				vma = next_vma;
1639				next_vma = vma->vm_next;
1640			}
1641		}
1642#endif
1643	}
1644	lru_add_drain();	/* Push any new pages onto the LRU now */
1645}
1646
1647/*
1648 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1649 * but allow concurrent faults), and pte mapped but not yet locked.
1650 * We return with mmap_sem still held, but pte unmapped and unlocked.
1651 */
1652static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1653		unsigned long address, pte_t *page_table, pmd_t *pmd,
1654		int write_access, pte_t orig_pte)
1655{
1656	spinlock_t *ptl;
1657	struct page *page;
1658	swp_entry_t entry;
1659	pte_t pte;
1660	int ret = VM_FAULT_MINOR;
1661
1662	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1663		goto out;
1664
1665	entry = pte_to_swp_entry(orig_pte);
1666	page = lookup_swap_cache(entry);
1667	if (!page) {
1668 		swapin_readahead(entry, address, vma);
1669 		page = read_swap_cache_async(entry, vma, address);
1670		if (!page) {
1671			/*
1672			 * Back out if somebody else faulted in this pte
1673			 * while we released the pte lock.
1674			 */
1675			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1676			if (likely(pte_same(*page_table, orig_pte)))
1677				ret = VM_FAULT_OOM;
1678			goto unlock;
1679		}
1680
1681		/* Had to read the page from swap area: Major fault */
1682		ret = VM_FAULT_MAJOR;
1683		inc_page_state(pgmajfault);
1684		grab_swap_token();
1685	}
1686
1687	mark_page_accessed(page);
1688	lock_page(page);
1689
1690	/*
1691	 * Back out if somebody else already faulted in this pte.
1692	 */
1693	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1694	if (unlikely(!pte_same(*page_table, orig_pte)))
1695		goto out_nomap;
1696
1697	if (unlikely(!PageUptodate(page))) {
1698		ret = VM_FAULT_SIGBUS;
1699		goto out_nomap;
1700	}
1701
1702	/* The page isn't present yet, go ahead with the fault. */
1703
1704	inc_mm_counter(mm, anon_rss);
1705	pte = mk_pte(page, vma->vm_page_prot);
1706	if (write_access && can_share_swap_page(page)) {
1707		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1708		write_access = 0;
1709	}
1710
1711	flush_icache_page(vma, page);
1712	set_pte_at(mm, address, page_table, pte);
1713	page_add_anon_rmap(page, vma, address);
1714
1715	swap_free(entry);
1716	if (vm_swap_full())
1717		remove_exclusive_swap_page(page);
1718	unlock_page(page);
1719
1720	if (write_access) {
1721		if (do_wp_page(mm, vma, address,
1722				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1723			ret = VM_FAULT_OOM;
1724		goto out;
1725	}
1726
1727	/* No need to invalidate - it was non-present before */
1728	update_mmu_cache(vma, address, pte);
1729	lazy_mmu_prot_update(pte);
1730unlock:
1731	pte_unmap_unlock(page_table, ptl);
1732out:
1733	return ret;
1734out_nomap:
1735	pte_unmap_unlock(page_table, ptl);
1736	unlock_page(page);
1737	page_cache_release(page);
1738	return ret;
1739}
1740
1741/*
1742 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1743 * but allow concurrent faults), and pte mapped but not yet locked.
1744 * We return with mmap_sem still held, but pte unmapped and unlocked.
1745 */
1746static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1747		unsigned long address, pte_t *page_table, pmd_t *pmd,
1748		int write_access)
1749{
1750	struct page *page;
1751	spinlock_t *ptl;
1752	pte_t entry;
1753
1754	if (write_access) {
1755		/* Allocate our own private page. */
1756		pte_unmap(page_table);
1757
1758		if (unlikely(anon_vma_prepare(vma)))
1759			goto oom;
1760		page = alloc_zeroed_user_highpage(vma, address);
1761		if (!page)
1762			goto oom;
1763
1764		entry = mk_pte(page, vma->vm_page_prot);
1765		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1766
1767		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1768		if (!pte_none(*page_table))
1769			goto release;
1770		inc_mm_counter(mm, anon_rss);
1771		lru_cache_add_active(page);
1772		SetPageReferenced(page);
1773		page_add_anon_rmap(page, vma, address);
1774	} else {
1775		/* Map the ZERO_PAGE - vm_page_prot is readonly */
1776		page = ZERO_PAGE(address);
1777		page_cache_get(page);
1778		entry = mk_pte(page, vma->vm_page_prot);
1779
1780		ptl = pte_lockptr(mm, pmd);
1781		spin_lock(ptl);
1782		if (!pte_none(*page_table))
1783			goto release;
1784		inc_mm_counter(mm, file_rss);
1785		page_add_file_rmap(page);
1786	}
1787
1788	set_pte_at(mm, address, page_table, entry);
1789
1790	/* No need to invalidate - it was non-present before */
1791	update_mmu_cache(vma, address, entry);
1792	lazy_mmu_prot_update(entry);
1793unlock:
1794	pte_unmap_unlock(page_table, ptl);
1795	return VM_FAULT_MINOR;
1796release:
1797	page_cache_release(page);
1798	goto unlock;
1799oom:
1800	return VM_FAULT_OOM;
1801}
1802
1803/*
1804 * do_no_page() tries to create a new page mapping. It aggressively
1805 * tries to share with existing pages, but makes a separate copy if
1806 * the "write_access" parameter is true in order to avoid the next
1807 * page fault.
1808 *
1809 * As this is called only for pages that do not currently exist, we
1810 * do not need to flush old virtual caches or the TLB.
1811 *
1812 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1813 * but allow concurrent faults), and pte mapped but not yet locked.
1814 * We return with mmap_sem still held, but pte unmapped and unlocked.
1815 */
1816static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1817		unsigned long address, pte_t *page_table, pmd_t *pmd,
1818		int write_access)
1819{
1820	spinlock_t *ptl;
1821	struct page *new_page;
1822	struct address_space *mapping = NULL;
1823	pte_t entry;
1824	unsigned int sequence = 0;
1825	int ret = VM_FAULT_MINOR;
1826	int anon = 0;
1827
1828	pte_unmap(page_table);
1829
1830	if (vma->vm_file) {
1831		mapping = vma->vm_file->f_mapping;
1832		sequence = mapping->truncate_count;
1833		smp_rmb(); /* serializes i_size against truncate_count */
1834	}
1835retry:
1836	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1837	/*
1838	 * No smp_rmb is needed here as long as there's a full
1839	 * spin_lock/unlock sequence inside the ->nopage callback
1840	 * (for the pagecache lookup) that acts as an implicit
1841	 * smp_mb() and prevents the i_size read to happen
1842	 * after the next truncate_count read.
1843	 */
1844
1845	/* no page was available -- either SIGBUS or OOM */
1846	if (new_page == NOPAGE_SIGBUS)
1847		return VM_FAULT_SIGBUS;
1848	if (new_page == NOPAGE_OOM)
1849		return VM_FAULT_OOM;
1850
1851	/*
1852	 * Should we do an early C-O-W break?
1853	 */
1854	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1855		struct page *page;
1856
1857		if (unlikely(anon_vma_prepare(vma)))
1858			goto oom;
1859		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1860		if (!page)
1861			goto oom;
1862		copy_user_highpage(page, new_page, address);
1863		page_cache_release(new_page);
1864		new_page = page;
1865		anon = 1;
1866	}
1867
1868	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1869	/*
1870	 * For a file-backed vma, someone could have truncated or otherwise
1871	 * invalidated this page.  If unmap_mapping_range got called,
1872	 * retry getting the page.
1873	 */
1874	if (mapping && unlikely(sequence != mapping->truncate_count)) {
1875		pte_unmap_unlock(page_table, ptl);
1876		page_cache_release(new_page);
1877		cond_resched();
1878		sequence = mapping->truncate_count;
1879		smp_rmb();
1880		goto retry;
1881	}
1882
1883	/*
1884	 * This silly early PAGE_DIRTY setting removes a race
1885	 * due to the bad i386 page protection. But it's valid
1886	 * for other architectures too.
1887	 *
1888	 * Note that if write_access is true, we either now have
1889	 * an exclusive copy of the page, or this is a shared mapping,
1890	 * so we can make it writable and dirty to avoid having to
1891	 * handle that later.
1892	 */
1893	/* Only go through if we didn't race with anybody else... */
1894	if (pte_none(*page_table)) {
1895		flush_icache_page(vma, new_page);
1896		entry = mk_pte(new_page, vma->vm_page_prot);
1897		if (write_access)
1898			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1899		set_pte_at(mm, address, page_table, entry);
1900		if (anon) {
1901			inc_mm_counter(mm, anon_rss);
1902			lru_cache_add_active(new_page);
1903			page_add_anon_rmap(new_page, vma, address);
1904		} else if (!(vma->vm_flags & VM_RESERVED)) {
1905			inc_mm_counter(mm, file_rss);
1906			page_add_file_rmap(new_page);
1907		}
1908	} else {
1909		/* One of our sibling threads was faster, back out. */
1910		page_cache_release(new_page);
1911		goto unlock;
1912	}
1913
1914	/* no need to invalidate: a not-present page shouldn't be cached */
1915	update_mmu_cache(vma, address, entry);
1916	lazy_mmu_prot_update(entry);
1917unlock:
1918	pte_unmap_unlock(page_table, ptl);
1919	return ret;
1920oom:
1921	page_cache_release(new_page);
1922	return VM_FAULT_OOM;
1923}
1924
1925/*
1926 * Fault of a previously existing named mapping. Repopulate the pte
1927 * from the encoded file_pte if possible. This enables swappable
1928 * nonlinear vmas.
1929 *
1930 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1931 * but allow concurrent faults), and pte mapped but not yet locked.
1932 * We return with mmap_sem still held, but pte unmapped and unlocked.
1933 */
1934static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1935		unsigned long address, pte_t *page_table, pmd_t *pmd,
1936		int write_access, pte_t orig_pte)
1937{
1938	pgoff_t pgoff;
1939	int err;
1940
1941	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1942		return VM_FAULT_MINOR;
1943
1944	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1945		/*
1946		 * Page table corrupted: show pte and kill process.
1947		 */
1948		print_bad_pte(vma, orig_pte, address);
1949		return VM_FAULT_OOM;
1950	}
1951	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
1952
1953	pgoff = pte_to_pgoff(orig_pte);
1954	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1955					vma->vm_page_prot, pgoff, 0);
1956	if (err == -ENOMEM)
1957		return VM_FAULT_OOM;
1958	if (err)
1959		return VM_FAULT_SIGBUS;
1960	return VM_FAULT_MAJOR;
1961}
1962
1963/*
1964 * These routines also need to handle stuff like marking pages dirty
1965 * and/or accessed for architectures that don't do it in hardware (most
1966 * RISC architectures).  The early dirtying is also good on the i386.
1967 *
1968 * There is also a hook called "update_mmu_cache()" that architectures
1969 * with external mmu caches can use to update those (ie the Sparc or
1970 * PowerPC hashed page tables that act as extended TLBs).
1971 *
1972 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1973 * but allow concurrent faults), and pte mapped but not yet locked.
1974 * We return with mmap_sem still held, but pte unmapped and unlocked.
1975 */
1976static inline int handle_pte_fault(struct mm_struct *mm,
1977		struct vm_area_struct *vma, unsigned long address,
1978		pte_t *pte, pmd_t *pmd, int write_access)
1979{
1980	pte_t entry;
1981	spinlock_t *ptl;
1982
1983	entry = *pte;
1984	if (!pte_present(entry)) {
1985		if (pte_none(entry)) {
1986			if (!vma->vm_ops || !vma->vm_ops->nopage)
1987				return do_anonymous_page(mm, vma, address,
1988					pte, pmd, write_access);
1989			return do_no_page(mm, vma, address,
1990					pte, pmd, write_access);
1991		}
1992		if (pte_file(entry))
1993			return do_file_page(mm, vma, address,
1994					pte, pmd, write_access, entry);
1995		return do_swap_page(mm, vma, address,
1996					pte, pmd, write_access, entry);
1997	}
1998
1999	ptl = pte_lockptr(mm, pmd);
2000	spin_lock(ptl);
2001	if (unlikely(!pte_same(*pte, entry)))
2002		goto unlock;
2003	if (write_access) {
2004		if (!pte_write(entry))
2005			return do_wp_page(mm, vma, address,
2006					pte, pmd, ptl, entry);
2007		entry = pte_mkdirty(entry);
2008	}
2009	entry = pte_mkyoung(entry);
2010	ptep_set_access_flags(vma, address, pte, entry, write_access);
2011	update_mmu_cache(vma, address, entry);
2012	lazy_mmu_prot_update(entry);
2013unlock:
2014	pte_unmap_unlock(pte, ptl);
2015	return VM_FAULT_MINOR;
2016}
2017
2018/*
2019 * By the time we get here, we already hold the mm semaphore
2020 */
2021int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2022		unsigned long address, int write_access)
2023{
2024	pgd_t *pgd;
2025	pud_t *pud;
2026	pmd_t *pmd;
2027	pte_t *pte;
2028
2029	__set_current_state(TASK_RUNNING);
2030
2031	inc_page_state(pgfault);
2032
2033	if (unlikely(is_vm_hugetlb_page(vma)))
2034		return hugetlb_fault(mm, vma, address, write_access);
2035
2036	pgd = pgd_offset(mm, address);
2037	pud = pud_alloc(mm, pgd, address);
2038	if (!pud)
2039		return VM_FAULT_OOM;
2040	pmd = pmd_alloc(mm, pud, address);
2041	if (!pmd)
2042		return VM_FAULT_OOM;
2043	pte = pte_alloc_map(mm, pmd, address);
2044	if (!pte)
2045		return VM_FAULT_OOM;
2046
2047	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2048}
2049
2050#ifndef __PAGETABLE_PUD_FOLDED
2051/*
2052 * Allocate page upper directory.
2053 * We've already handled the fast-path in-line.
2054 */
2055int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2056{
2057	pud_t *new = pud_alloc_one(mm, address);
2058	if (!new)
2059		return -ENOMEM;
2060
2061	spin_lock(&mm->page_table_lock);
2062	if (pgd_present(*pgd))		/* Another has populated it */
2063		pud_free(new);
2064	else
2065		pgd_populate(mm, pgd, new);
2066	spin_unlock(&mm->page_table_lock);
2067	return 0;
2068}
2069#endif /* __PAGETABLE_PUD_FOLDED */
2070
2071#ifndef __PAGETABLE_PMD_FOLDED
2072/*
2073 * Allocate page middle directory.
2074 * We've already handled the fast-path in-line.
2075 */
2076int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2077{
2078	pmd_t *new = pmd_alloc_one(mm, address);
2079	if (!new)
2080		return -ENOMEM;
2081
2082	spin_lock(&mm->page_table_lock);
2083#ifndef __ARCH_HAS_4LEVEL_HACK
2084	if (pud_present(*pud))		/* Another has populated it */
2085		pmd_free(new);
2086	else
2087		pud_populate(mm, pud, new);
2088#else
2089	if (pgd_present(*pud))		/* Another has populated it */
2090		pmd_free(new);
2091	else
2092		pgd_populate(mm, pud, new);
2093#endif /* __ARCH_HAS_4LEVEL_HACK */
2094	spin_unlock(&mm->page_table_lock);
2095	return 0;
2096}
2097#endif /* __PAGETABLE_PMD_FOLDED */
2098
2099int make_pages_present(unsigned long addr, unsigned long end)
2100{
2101	int ret, len, write;
2102	struct vm_area_struct * vma;
2103
2104	vma = find_vma(current->mm, addr);
2105	if (!vma)
2106		return -1;
2107	write = (vma->vm_flags & VM_WRITE) != 0;
2108	if (addr >= end)
2109		BUG();
2110	if (end > vma->vm_end)
2111		BUG();
2112	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2113	ret = get_user_pages(current, current->mm, addr,
2114			len, write, 0, NULL, NULL);
2115	if (ret < 0)
2116		return ret;
2117	return ret == len ? 0 : -1;
2118}
2119
2120/*
2121 * Map a vmalloc()-space virtual address to the physical page.
2122 */
2123struct page * vmalloc_to_page(void * vmalloc_addr)
2124{
2125	unsigned long addr = (unsigned long) vmalloc_addr;
2126	struct page *page = NULL;
2127	pgd_t *pgd = pgd_offset_k(addr);
2128	pud_t *pud;
2129	pmd_t *pmd;
2130	pte_t *ptep, pte;
2131
2132	if (!pgd_none(*pgd)) {
2133		pud = pud_offset(pgd, addr);
2134		if (!pud_none(*pud)) {
2135			pmd = pmd_offset(pud, addr);
2136			if (!pmd_none(*pmd)) {
2137				ptep = pte_offset_map(pmd, addr);
2138				pte = *ptep;
2139				if (pte_present(pte))
2140					page = pte_page(pte);
2141				pte_unmap(ptep);
2142			}
2143		}
2144	}
2145	return page;
2146}
2147
2148EXPORT_SYMBOL(vmalloc_to_page);
2149
2150/*
2151 * Map a vmalloc()-space virtual address to the physical page frame number.
2152 */
2153unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2154{
2155	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2156}
2157
2158EXPORT_SYMBOL(vmalloc_to_pfn);
2159
2160#if !defined(__HAVE_ARCH_GATE_AREA)
2161
2162#if defined(AT_SYSINFO_EHDR)
2163static struct vm_area_struct gate_vma;
2164
2165static int __init gate_vma_init(void)
2166{
2167	gate_vma.vm_mm = NULL;
2168	gate_vma.vm_start = FIXADDR_USER_START;
2169	gate_vma.vm_end = FIXADDR_USER_END;
2170	gate_vma.vm_page_prot = PAGE_READONLY;
2171	gate_vma.vm_flags = VM_RESERVED;
2172	return 0;
2173}
2174__initcall(gate_vma_init);
2175#endif
2176
2177struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2178{
2179#ifdef AT_SYSINFO_EHDR
2180	return &gate_vma;
2181#else
2182	return NULL;
2183#endif
2184}
2185
2186int in_gate_area_no_task(unsigned long addr)
2187{
2188#ifdef AT_SYSINFO_EHDR
2189	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2190		return 1;
2191#endif
2192	return 0;
2193}
2194
2195#endif	/* __HAVE_ARCH_GATE_AREA */
2196