memory.c revision 5b23dbe8173c212d6a326e35347b038705603d39
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53
54#include <asm/pgalloc.h>
55#include <asm/uaccess.h>
56#include <asm/tlb.h>
57#include <asm/tlbflush.h>
58#include <asm/pgtable.h>
59
60#include <linux/swapops.h>
61#include <linux/elf.h>
62
63#ifndef CONFIG_NEED_MULTIPLE_NODES
64/* use the per-pgdat data instead for discontigmem - mbligh */
65unsigned long max_mapnr;
66struct page *mem_map;
67
68EXPORT_SYMBOL(max_mapnr);
69EXPORT_SYMBOL(mem_map);
70#endif
71
72unsigned long num_physpages;
73/*
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
79 */
80void * high_memory;
81
82EXPORT_SYMBOL(num_physpages);
83EXPORT_SYMBOL(high_memory);
84
85int randomize_va_space __read_mostly = 1;
86
87static int __init disable_randmaps(char *s)
88{
89	randomize_va_space = 0;
90	return 1;
91}
92__setup("norandmaps", disable_randmaps);
93
94
95/*
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none.  Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
99 */
100
101void pgd_clear_bad(pgd_t *pgd)
102{
103	pgd_ERROR(*pgd);
104	pgd_clear(pgd);
105}
106
107void pud_clear_bad(pud_t *pud)
108{
109	pud_ERROR(*pud);
110	pud_clear(pud);
111}
112
113void pmd_clear_bad(pmd_t *pmd)
114{
115	pmd_ERROR(*pmd);
116	pmd_clear(pmd);
117}
118
119/*
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
122 */
123static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124{
125	struct page *page = pmd_page(*pmd);
126	pmd_clear(pmd);
127	pte_lock_deinit(page);
128	pte_free_tlb(tlb, page);
129	dec_zone_page_state(page, NR_PAGETABLE);
130	tlb->mm->nr_ptes--;
131}
132
133static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134				unsigned long addr, unsigned long end,
135				unsigned long floor, unsigned long ceiling)
136{
137	pmd_t *pmd;
138	unsigned long next;
139	unsigned long start;
140
141	start = addr;
142	pmd = pmd_offset(pud, addr);
143	do {
144		next = pmd_addr_end(addr, end);
145		if (pmd_none_or_clear_bad(pmd))
146			continue;
147		free_pte_range(tlb, pmd);
148	} while (pmd++, addr = next, addr != end);
149
150	start &= PUD_MASK;
151	if (start < floor)
152		return;
153	if (ceiling) {
154		ceiling &= PUD_MASK;
155		if (!ceiling)
156			return;
157	}
158	if (end - 1 > ceiling - 1)
159		return;
160
161	pmd = pmd_offset(pud, start);
162	pud_clear(pud);
163	pmd_free_tlb(tlb, pmd);
164}
165
166static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167				unsigned long addr, unsigned long end,
168				unsigned long floor, unsigned long ceiling)
169{
170	pud_t *pud;
171	unsigned long next;
172	unsigned long start;
173
174	start = addr;
175	pud = pud_offset(pgd, addr);
176	do {
177		next = pud_addr_end(addr, end);
178		if (pud_none_or_clear_bad(pud))
179			continue;
180		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181	} while (pud++, addr = next, addr != end);
182
183	start &= PGDIR_MASK;
184	if (start < floor)
185		return;
186	if (ceiling) {
187		ceiling &= PGDIR_MASK;
188		if (!ceiling)
189			return;
190	}
191	if (end - 1 > ceiling - 1)
192		return;
193
194	pud = pud_offset(pgd, start);
195	pgd_clear(pgd);
196	pud_free_tlb(tlb, pud);
197}
198
199/*
200 * This function frees user-level page tables of a process.
201 *
202 * Must be called with pagetable lock held.
203 */
204void free_pgd_range(struct mmu_gather **tlb,
205			unsigned long addr, unsigned long end,
206			unsigned long floor, unsigned long ceiling)
207{
208	pgd_t *pgd;
209	unsigned long next;
210	unsigned long start;
211
212	/*
213	 * The next few lines have given us lots of grief...
214	 *
215	 * Why are we testing PMD* at this top level?  Because often
216	 * there will be no work to do at all, and we'd prefer not to
217	 * go all the way down to the bottom just to discover that.
218	 *
219	 * Why all these "- 1"s?  Because 0 represents both the bottom
220	 * of the address space and the top of it (using -1 for the
221	 * top wouldn't help much: the masks would do the wrong thing).
222	 * The rule is that addr 0 and floor 0 refer to the bottom of
223	 * the address space, but end 0 and ceiling 0 refer to the top
224	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225	 * that end 0 case should be mythical).
226	 *
227	 * Wherever addr is brought up or ceiling brought down, we must
228	 * be careful to reject "the opposite 0" before it confuses the
229	 * subsequent tests.  But what about where end is brought down
230	 * by PMD_SIZE below? no, end can't go down to 0 there.
231	 *
232	 * Whereas we round start (addr) and ceiling down, by different
233	 * masks at different levels, in order to test whether a table
234	 * now has no other vmas using it, so can be freed, we don't
235	 * bother to round floor or end up - the tests don't need that.
236	 */
237
238	addr &= PMD_MASK;
239	if (addr < floor) {
240		addr += PMD_SIZE;
241		if (!addr)
242			return;
243	}
244	if (ceiling) {
245		ceiling &= PMD_MASK;
246		if (!ceiling)
247			return;
248	}
249	if (end - 1 > ceiling - 1)
250		end -= PMD_SIZE;
251	if (addr > end - 1)
252		return;
253
254	start = addr;
255	pgd = pgd_offset((*tlb)->mm, addr);
256	do {
257		next = pgd_addr_end(addr, end);
258		if (pgd_none_or_clear_bad(pgd))
259			continue;
260		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261	} while (pgd++, addr = next, addr != end);
262}
263
264void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
265		unsigned long floor, unsigned long ceiling)
266{
267	while (vma) {
268		struct vm_area_struct *next = vma->vm_next;
269		unsigned long addr = vma->vm_start;
270
271		/*
272		 * Hide vma from rmap and vmtruncate before freeing pgtables
273		 */
274		anon_vma_unlink(vma);
275		unlink_file_vma(vma);
276
277		if (is_vm_hugetlb_page(vma)) {
278			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
279				floor, next? next->vm_start: ceiling);
280		} else {
281			/*
282			 * Optimization: gather nearby vmas into one call down
283			 */
284			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
285			       && !is_vm_hugetlb_page(next)) {
286				vma = next;
287				next = vma->vm_next;
288				anon_vma_unlink(vma);
289				unlink_file_vma(vma);
290			}
291			free_pgd_range(tlb, addr, vma->vm_end,
292				floor, next? next->vm_start: ceiling);
293		}
294		vma = next;
295	}
296}
297
298int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
299{
300	struct page *new = pte_alloc_one(mm, address);
301	if (!new)
302		return -ENOMEM;
303
304	pte_lock_init(new);
305	spin_lock(&mm->page_table_lock);
306	if (pmd_present(*pmd)) {	/* Another has populated it */
307		pte_lock_deinit(new);
308		pte_free(new);
309	} else {
310		mm->nr_ptes++;
311		inc_zone_page_state(new, NR_PAGETABLE);
312		pmd_populate(mm, pmd, new);
313	}
314	spin_unlock(&mm->page_table_lock);
315	return 0;
316}
317
318int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
319{
320	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
321	if (!new)
322		return -ENOMEM;
323
324	spin_lock(&init_mm.page_table_lock);
325	if (pmd_present(*pmd))		/* Another has populated it */
326		pte_free_kernel(new);
327	else
328		pmd_populate_kernel(&init_mm, pmd, new);
329	spin_unlock(&init_mm.page_table_lock);
330	return 0;
331}
332
333static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
334{
335	if (file_rss)
336		add_mm_counter(mm, file_rss, file_rss);
337	if (anon_rss)
338		add_mm_counter(mm, anon_rss, anon_rss);
339}
340
341/*
342 * This function is called to print an error when a bad pte
343 * is found. For example, we might have a PFN-mapped pte in
344 * a region that doesn't allow it.
345 *
346 * The calling function must still handle the error.
347 */
348void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
349{
350	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
351			"vm_flags = %lx, vaddr = %lx\n",
352		(long long)pte_val(pte),
353		(vma->vm_mm == current->mm ? current->comm : "???"),
354		vma->vm_flags, vaddr);
355	dump_stack();
356}
357
358static inline int is_cow_mapping(unsigned int flags)
359{
360	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
361}
362
363/*
364 * This function gets the "struct page" associated with a pte.
365 *
366 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
367 * will have each page table entry just pointing to a raw page frame
368 * number, and as far as the VM layer is concerned, those do not have
369 * pages associated with them - even if the PFN might point to memory
370 * that otherwise is perfectly fine and has a "struct page".
371 *
372 * The way we recognize those mappings is through the rules set up
373 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
374 * and the vm_pgoff will point to the first PFN mapped: thus every
375 * page that is a raw mapping will always honor the rule
376 *
377 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
378 *
379 * and if that isn't true, the page has been COW'ed (in which case it
380 * _does_ have a "struct page" associated with it even if it is in a
381 * VM_PFNMAP range).
382 */
383struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
384{
385	unsigned long pfn = pte_pfn(pte);
386
387	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
388		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
389		if (pfn == vma->vm_pgoff + off)
390			return NULL;
391		if (!is_cow_mapping(vma->vm_flags))
392			return NULL;
393	}
394
395	/*
396	 * Add some anal sanity checks for now. Eventually,
397	 * we should just do "return pfn_to_page(pfn)", but
398	 * in the meantime we check that we get a valid pfn,
399	 * and that the resulting page looks ok.
400	 */
401	if (unlikely(!pfn_valid(pfn))) {
402		print_bad_pte(vma, pte, addr);
403		return NULL;
404	}
405
406	/*
407	 * NOTE! We still have PageReserved() pages in the page
408	 * tables.
409	 *
410	 * The PAGE_ZERO() pages and various VDSO mappings can
411	 * cause them to exist.
412	 */
413	return pfn_to_page(pfn);
414}
415
416/*
417 * copy one vm_area from one task to the other. Assumes the page tables
418 * already present in the new task to be cleared in the whole range
419 * covered by this vma.
420 */
421
422static inline void
423copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
424		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
425		unsigned long addr, int *rss)
426{
427	unsigned long vm_flags = vma->vm_flags;
428	pte_t pte = *src_pte;
429	struct page *page;
430
431	/* pte contains position in swap or file, so copy. */
432	if (unlikely(!pte_present(pte))) {
433		if (!pte_file(pte)) {
434			swp_entry_t entry = pte_to_swp_entry(pte);
435
436			swap_duplicate(entry);
437			/* make sure dst_mm is on swapoff's mmlist. */
438			if (unlikely(list_empty(&dst_mm->mmlist))) {
439				spin_lock(&mmlist_lock);
440				if (list_empty(&dst_mm->mmlist))
441					list_add(&dst_mm->mmlist,
442						 &src_mm->mmlist);
443				spin_unlock(&mmlist_lock);
444			}
445			if (is_write_migration_entry(entry) &&
446					is_cow_mapping(vm_flags)) {
447				/*
448				 * COW mappings require pages in both parent
449				 * and child to be set to read.
450				 */
451				make_migration_entry_read(&entry);
452				pte = swp_entry_to_pte(entry);
453				set_pte_at(src_mm, addr, src_pte, pte);
454			}
455		}
456		goto out_set_pte;
457	}
458
459	/*
460	 * If it's a COW mapping, write protect it both
461	 * in the parent and the child
462	 */
463	if (is_cow_mapping(vm_flags)) {
464		ptep_set_wrprotect(src_mm, addr, src_pte);
465		pte = pte_wrprotect(pte);
466	}
467
468	/*
469	 * If it's a shared mapping, mark it clean in
470	 * the child
471	 */
472	if (vm_flags & VM_SHARED)
473		pte = pte_mkclean(pte);
474	pte = pte_mkold(pte);
475
476	page = vm_normal_page(vma, addr, pte);
477	if (page) {
478		get_page(page);
479		page_dup_rmap(page, vma, addr);
480		rss[!!PageAnon(page)]++;
481	}
482
483out_set_pte:
484	set_pte_at(dst_mm, addr, dst_pte, pte);
485}
486
487static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
488		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
489		unsigned long addr, unsigned long end)
490{
491	pte_t *src_pte, *dst_pte;
492	spinlock_t *src_ptl, *dst_ptl;
493	int progress = 0;
494	int rss[2];
495
496again:
497	rss[1] = rss[0] = 0;
498	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
499	if (!dst_pte)
500		return -ENOMEM;
501	src_pte = pte_offset_map_nested(src_pmd, addr);
502	src_ptl = pte_lockptr(src_mm, src_pmd);
503	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
504	arch_enter_lazy_mmu_mode();
505
506	do {
507		/*
508		 * We are holding two locks at this point - either of them
509		 * could generate latencies in another task on another CPU.
510		 */
511		if (progress >= 32) {
512			progress = 0;
513			if (need_resched() ||
514			    need_lockbreak(src_ptl) ||
515			    need_lockbreak(dst_ptl))
516				break;
517		}
518		if (pte_none(*src_pte)) {
519			progress++;
520			continue;
521		}
522		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
523		progress += 8;
524	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
525
526	arch_leave_lazy_mmu_mode();
527	spin_unlock(src_ptl);
528	pte_unmap_nested(src_pte - 1);
529	add_mm_rss(dst_mm, rss[0], rss[1]);
530	pte_unmap_unlock(dst_pte - 1, dst_ptl);
531	cond_resched();
532	if (addr != end)
533		goto again;
534	return 0;
535}
536
537static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
538		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
539		unsigned long addr, unsigned long end)
540{
541	pmd_t *src_pmd, *dst_pmd;
542	unsigned long next;
543
544	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
545	if (!dst_pmd)
546		return -ENOMEM;
547	src_pmd = pmd_offset(src_pud, addr);
548	do {
549		next = pmd_addr_end(addr, end);
550		if (pmd_none_or_clear_bad(src_pmd))
551			continue;
552		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
553						vma, addr, next))
554			return -ENOMEM;
555	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
556	return 0;
557}
558
559static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
560		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
561		unsigned long addr, unsigned long end)
562{
563	pud_t *src_pud, *dst_pud;
564	unsigned long next;
565
566	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
567	if (!dst_pud)
568		return -ENOMEM;
569	src_pud = pud_offset(src_pgd, addr);
570	do {
571		next = pud_addr_end(addr, end);
572		if (pud_none_or_clear_bad(src_pud))
573			continue;
574		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
575						vma, addr, next))
576			return -ENOMEM;
577	} while (dst_pud++, src_pud++, addr = next, addr != end);
578	return 0;
579}
580
581int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
582		struct vm_area_struct *vma)
583{
584	pgd_t *src_pgd, *dst_pgd;
585	unsigned long next;
586	unsigned long addr = vma->vm_start;
587	unsigned long end = vma->vm_end;
588
589	/*
590	 * Don't copy ptes where a page fault will fill them correctly.
591	 * Fork becomes much lighter when there are big shared or private
592	 * readonly mappings. The tradeoff is that copy_page_range is more
593	 * efficient than faulting.
594	 */
595	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
596		if (!vma->anon_vma)
597			return 0;
598	}
599
600	if (is_vm_hugetlb_page(vma))
601		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
602
603	dst_pgd = pgd_offset(dst_mm, addr);
604	src_pgd = pgd_offset(src_mm, addr);
605	do {
606		next = pgd_addr_end(addr, end);
607		if (pgd_none_or_clear_bad(src_pgd))
608			continue;
609		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
610						vma, addr, next))
611			return -ENOMEM;
612	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
613	return 0;
614}
615
616static unsigned long zap_pte_range(struct mmu_gather *tlb,
617				struct vm_area_struct *vma, pmd_t *pmd,
618				unsigned long addr, unsigned long end,
619				long *zap_work, struct zap_details *details)
620{
621	struct mm_struct *mm = tlb->mm;
622	pte_t *pte;
623	spinlock_t *ptl;
624	int file_rss = 0;
625	int anon_rss = 0;
626
627	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
628	arch_enter_lazy_mmu_mode();
629	do {
630		pte_t ptent = *pte;
631		if (pte_none(ptent)) {
632			(*zap_work)--;
633			continue;
634		}
635
636		(*zap_work) -= PAGE_SIZE;
637
638		if (pte_present(ptent)) {
639			struct page *page;
640
641			page = vm_normal_page(vma, addr, ptent);
642			if (unlikely(details) && page) {
643				/*
644				 * unmap_shared_mapping_pages() wants to
645				 * invalidate cache without truncating:
646				 * unmap shared but keep private pages.
647				 */
648				if (details->check_mapping &&
649				    details->check_mapping != page->mapping)
650					continue;
651				/*
652				 * Each page->index must be checked when
653				 * invalidating or truncating nonlinear.
654				 */
655				if (details->nonlinear_vma &&
656				    (page->index < details->first_index ||
657				     page->index > details->last_index))
658					continue;
659			}
660			ptent = ptep_get_and_clear_full(mm, addr, pte,
661							tlb->fullmm);
662			tlb_remove_tlb_entry(tlb, pte, addr);
663			if (unlikely(!page))
664				continue;
665			if (unlikely(details) && details->nonlinear_vma
666			    && linear_page_index(details->nonlinear_vma,
667						addr) != page->index)
668				set_pte_at(mm, addr, pte,
669					   pgoff_to_pte(page->index));
670			if (PageAnon(page))
671				anon_rss--;
672			else {
673				if (pte_dirty(ptent))
674					set_page_dirty(page);
675				if (pte_young(ptent))
676					SetPageReferenced(page);
677				file_rss--;
678			}
679			page_remove_rmap(page, vma);
680			tlb_remove_page(tlb, page);
681			continue;
682		}
683		/*
684		 * If details->check_mapping, we leave swap entries;
685		 * if details->nonlinear_vma, we leave file entries.
686		 */
687		if (unlikely(details))
688			continue;
689		if (!pte_file(ptent))
690			free_swap_and_cache(pte_to_swp_entry(ptent));
691		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
692	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
693
694	add_mm_rss(mm, file_rss, anon_rss);
695	arch_leave_lazy_mmu_mode();
696	pte_unmap_unlock(pte - 1, ptl);
697
698	return addr;
699}
700
701static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
702				struct vm_area_struct *vma, pud_t *pud,
703				unsigned long addr, unsigned long end,
704				long *zap_work, struct zap_details *details)
705{
706	pmd_t *pmd;
707	unsigned long next;
708
709	pmd = pmd_offset(pud, addr);
710	do {
711		next = pmd_addr_end(addr, end);
712		if (pmd_none_or_clear_bad(pmd)) {
713			(*zap_work)--;
714			continue;
715		}
716		next = zap_pte_range(tlb, vma, pmd, addr, next,
717						zap_work, details);
718	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
719
720	return addr;
721}
722
723static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
724				struct vm_area_struct *vma, pgd_t *pgd,
725				unsigned long addr, unsigned long end,
726				long *zap_work, struct zap_details *details)
727{
728	pud_t *pud;
729	unsigned long next;
730
731	pud = pud_offset(pgd, addr);
732	do {
733		next = pud_addr_end(addr, end);
734		if (pud_none_or_clear_bad(pud)) {
735			(*zap_work)--;
736			continue;
737		}
738		next = zap_pmd_range(tlb, vma, pud, addr, next,
739						zap_work, details);
740	} while (pud++, addr = next, (addr != end && *zap_work > 0));
741
742	return addr;
743}
744
745static unsigned long unmap_page_range(struct mmu_gather *tlb,
746				struct vm_area_struct *vma,
747				unsigned long addr, unsigned long end,
748				long *zap_work, struct zap_details *details)
749{
750	pgd_t *pgd;
751	unsigned long next;
752
753	if (details && !details->check_mapping && !details->nonlinear_vma)
754		details = NULL;
755
756	BUG_ON(addr >= end);
757	tlb_start_vma(tlb, vma);
758	pgd = pgd_offset(vma->vm_mm, addr);
759	do {
760		next = pgd_addr_end(addr, end);
761		if (pgd_none_or_clear_bad(pgd)) {
762			(*zap_work)--;
763			continue;
764		}
765		next = zap_pud_range(tlb, vma, pgd, addr, next,
766						zap_work, details);
767	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
768	tlb_end_vma(tlb, vma);
769
770	return addr;
771}
772
773#ifdef CONFIG_PREEMPT
774# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
775#else
776/* No preempt: go for improved straight-line efficiency */
777# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
778#endif
779
780/**
781 * unmap_vmas - unmap a range of memory covered by a list of vma's
782 * @tlbp: address of the caller's struct mmu_gather
783 * @vma: the starting vma
784 * @start_addr: virtual address at which to start unmapping
785 * @end_addr: virtual address at which to end unmapping
786 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
787 * @details: details of nonlinear truncation or shared cache invalidation
788 *
789 * Returns the end address of the unmapping (restart addr if interrupted).
790 *
791 * Unmap all pages in the vma list.
792 *
793 * We aim to not hold locks for too long (for scheduling latency reasons).
794 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
795 * return the ending mmu_gather to the caller.
796 *
797 * Only addresses between `start' and `end' will be unmapped.
798 *
799 * The VMA list must be sorted in ascending virtual address order.
800 *
801 * unmap_vmas() assumes that the caller will flush the whole unmapped address
802 * range after unmap_vmas() returns.  So the only responsibility here is to
803 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
804 * drops the lock and schedules.
805 */
806unsigned long unmap_vmas(struct mmu_gather **tlbp,
807		struct vm_area_struct *vma, unsigned long start_addr,
808		unsigned long end_addr, unsigned long *nr_accounted,
809		struct zap_details *details)
810{
811	long zap_work = ZAP_BLOCK_SIZE;
812	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
813	int tlb_start_valid = 0;
814	unsigned long start = start_addr;
815	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
816	int fullmm = (*tlbp)->fullmm;
817
818	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
819		unsigned long end;
820
821		start = max(vma->vm_start, start_addr);
822		if (start >= vma->vm_end)
823			continue;
824		end = min(vma->vm_end, end_addr);
825		if (end <= vma->vm_start)
826			continue;
827
828		if (vma->vm_flags & VM_ACCOUNT)
829			*nr_accounted += (end - start) >> PAGE_SHIFT;
830
831		while (start != end) {
832			if (!tlb_start_valid) {
833				tlb_start = start;
834				tlb_start_valid = 1;
835			}
836
837			if (unlikely(is_vm_hugetlb_page(vma))) {
838				unmap_hugepage_range(vma, start, end);
839				zap_work -= (end - start) /
840						(HPAGE_SIZE / PAGE_SIZE);
841				start = end;
842			} else
843				start = unmap_page_range(*tlbp, vma,
844						start, end, &zap_work, details);
845
846			if (zap_work > 0) {
847				BUG_ON(start != end);
848				break;
849			}
850
851			tlb_finish_mmu(*tlbp, tlb_start, start);
852
853			if (need_resched() ||
854				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
855				if (i_mmap_lock) {
856					*tlbp = NULL;
857					goto out;
858				}
859				cond_resched();
860			}
861
862			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
863			tlb_start_valid = 0;
864			zap_work = ZAP_BLOCK_SIZE;
865		}
866	}
867out:
868	return start;	/* which is now the end (or restart) address */
869}
870
871/**
872 * zap_page_range - remove user pages in a given range
873 * @vma: vm_area_struct holding the applicable pages
874 * @address: starting address of pages to zap
875 * @size: number of bytes to zap
876 * @details: details of nonlinear truncation or shared cache invalidation
877 */
878unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
879		unsigned long size, struct zap_details *details)
880{
881	struct mm_struct *mm = vma->vm_mm;
882	struct mmu_gather *tlb;
883	unsigned long end = address + size;
884	unsigned long nr_accounted = 0;
885
886	lru_add_drain();
887	tlb = tlb_gather_mmu(mm, 0);
888	update_hiwater_rss(mm);
889	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
890	if (tlb)
891		tlb_finish_mmu(tlb, address, end);
892	return end;
893}
894
895/*
896 * Do a quick page-table lookup for a single page.
897 */
898struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
899			unsigned int flags)
900{
901	pgd_t *pgd;
902	pud_t *pud;
903	pmd_t *pmd;
904	pte_t *ptep, pte;
905	spinlock_t *ptl;
906	struct page *page;
907	struct mm_struct *mm = vma->vm_mm;
908
909	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
910	if (!IS_ERR(page)) {
911		BUG_ON(flags & FOLL_GET);
912		goto out;
913	}
914
915	page = NULL;
916	pgd = pgd_offset(mm, address);
917	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
918		goto no_page_table;
919
920	pud = pud_offset(pgd, address);
921	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
922		goto no_page_table;
923
924	pmd = pmd_offset(pud, address);
925	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
926		goto no_page_table;
927
928	if (pmd_huge(*pmd)) {
929		BUG_ON(flags & FOLL_GET);
930		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
931		goto out;
932	}
933
934	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
935	if (!ptep)
936		goto out;
937
938	pte = *ptep;
939	if (!pte_present(pte))
940		goto unlock;
941	if ((flags & FOLL_WRITE) && !pte_write(pte))
942		goto unlock;
943	page = vm_normal_page(vma, address, pte);
944	if (unlikely(!page))
945		goto unlock;
946
947	if (flags & FOLL_GET)
948		get_page(page);
949	if (flags & FOLL_TOUCH) {
950		if ((flags & FOLL_WRITE) &&
951		    !pte_dirty(pte) && !PageDirty(page))
952			set_page_dirty(page);
953		mark_page_accessed(page);
954	}
955unlock:
956	pte_unmap_unlock(ptep, ptl);
957out:
958	return page;
959
960no_page_table:
961	/*
962	 * When core dumping an enormous anonymous area that nobody
963	 * has touched so far, we don't want to allocate page tables.
964	 */
965	if (flags & FOLL_ANON) {
966		page = ZERO_PAGE(0);
967		if (flags & FOLL_GET)
968			get_page(page);
969		BUG_ON(flags & FOLL_WRITE);
970	}
971	return page;
972}
973
974int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
975		unsigned long start, int len, int write, int force,
976		struct page **pages, struct vm_area_struct **vmas)
977{
978	int i;
979	unsigned int vm_flags;
980
981	/*
982	 * Require read or write permissions.
983	 * If 'force' is set, we only require the "MAY" flags.
984	 */
985	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
986	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
987	i = 0;
988
989	do {
990		struct vm_area_struct *vma;
991		unsigned int foll_flags;
992
993		vma = find_extend_vma(mm, start);
994		if (!vma && in_gate_area(tsk, start)) {
995			unsigned long pg = start & PAGE_MASK;
996			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
997			pgd_t *pgd;
998			pud_t *pud;
999			pmd_t *pmd;
1000			pte_t *pte;
1001			if (write) /* user gate pages are read-only */
1002				return i ? : -EFAULT;
1003			if (pg > TASK_SIZE)
1004				pgd = pgd_offset_k(pg);
1005			else
1006				pgd = pgd_offset_gate(mm, pg);
1007			BUG_ON(pgd_none(*pgd));
1008			pud = pud_offset(pgd, pg);
1009			BUG_ON(pud_none(*pud));
1010			pmd = pmd_offset(pud, pg);
1011			if (pmd_none(*pmd))
1012				return i ? : -EFAULT;
1013			pte = pte_offset_map(pmd, pg);
1014			if (pte_none(*pte)) {
1015				pte_unmap(pte);
1016				return i ? : -EFAULT;
1017			}
1018			if (pages) {
1019				struct page *page = vm_normal_page(gate_vma, start, *pte);
1020				pages[i] = page;
1021				if (page)
1022					get_page(page);
1023			}
1024			pte_unmap(pte);
1025			if (vmas)
1026				vmas[i] = gate_vma;
1027			i++;
1028			start += PAGE_SIZE;
1029			len--;
1030			continue;
1031		}
1032
1033		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1034				|| !(vm_flags & vma->vm_flags))
1035			return i ? : -EFAULT;
1036
1037		if (is_vm_hugetlb_page(vma)) {
1038			i = follow_hugetlb_page(mm, vma, pages, vmas,
1039						&start, &len, i, write);
1040			continue;
1041		}
1042
1043		foll_flags = FOLL_TOUCH;
1044		if (pages)
1045			foll_flags |= FOLL_GET;
1046		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1047		    (!vma->vm_ops || (!vma->vm_ops->nopage &&
1048					!vma->vm_ops->fault)))
1049			foll_flags |= FOLL_ANON;
1050
1051		do {
1052			struct page *page;
1053
1054			/*
1055			 * If tsk is ooming, cut off its access to large memory
1056			 * allocations. It has a pending SIGKILL, but it can't
1057			 * be processed until returning to user space.
1058			 */
1059			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1060				return -ENOMEM;
1061
1062			if (write)
1063				foll_flags |= FOLL_WRITE;
1064
1065			cond_resched();
1066			while (!(page = follow_page(vma, start, foll_flags))) {
1067				int ret;
1068				ret = handle_mm_fault(mm, vma, start,
1069						foll_flags & FOLL_WRITE);
1070				if (ret & VM_FAULT_ERROR) {
1071					if (ret & VM_FAULT_OOM)
1072						return i ? i : -ENOMEM;
1073					else if (ret & VM_FAULT_SIGBUS)
1074						return i ? i : -EFAULT;
1075					BUG();
1076				}
1077				if (ret & VM_FAULT_MAJOR)
1078					tsk->maj_flt++;
1079				else
1080					tsk->min_flt++;
1081
1082				/*
1083				 * The VM_FAULT_WRITE bit tells us that
1084				 * do_wp_page has broken COW when necessary,
1085				 * even if maybe_mkwrite decided not to set
1086				 * pte_write. We can thus safely do subsequent
1087				 * page lookups as if they were reads.
1088				 */
1089				if (ret & VM_FAULT_WRITE)
1090					foll_flags &= ~FOLL_WRITE;
1091
1092				cond_resched();
1093			}
1094			if (pages) {
1095				pages[i] = page;
1096
1097				flush_anon_page(vma, page, start);
1098				flush_dcache_page(page);
1099			}
1100			if (vmas)
1101				vmas[i] = vma;
1102			i++;
1103			start += PAGE_SIZE;
1104			len--;
1105		} while (len && start < vma->vm_end);
1106	} while (len);
1107	return i;
1108}
1109EXPORT_SYMBOL(get_user_pages);
1110
1111pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1112{
1113	pgd_t * pgd = pgd_offset(mm, addr);
1114	pud_t * pud = pud_alloc(mm, pgd, addr);
1115	if (pud) {
1116		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1117		if (pmd)
1118			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1119	}
1120	return NULL;
1121}
1122
1123/*
1124 * This is the old fallback for page remapping.
1125 *
1126 * For historical reasons, it only allows reserved pages. Only
1127 * old drivers should use this, and they needed to mark their
1128 * pages reserved for the old functions anyway.
1129 */
1130static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1131{
1132	int retval;
1133	pte_t *pte;
1134	spinlock_t *ptl;
1135
1136	retval = -EINVAL;
1137	if (PageAnon(page))
1138		goto out;
1139	retval = -ENOMEM;
1140	flush_dcache_page(page);
1141	pte = get_locked_pte(mm, addr, &ptl);
1142	if (!pte)
1143		goto out;
1144	retval = -EBUSY;
1145	if (!pte_none(*pte))
1146		goto out_unlock;
1147
1148	/* Ok, finally just insert the thing.. */
1149	get_page(page);
1150	inc_mm_counter(mm, file_rss);
1151	page_add_file_rmap(page);
1152	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1153
1154	retval = 0;
1155out_unlock:
1156	pte_unmap_unlock(pte, ptl);
1157out:
1158	return retval;
1159}
1160
1161/**
1162 * vm_insert_page - insert single page into user vma
1163 * @vma: user vma to map to
1164 * @addr: target user address of this page
1165 * @page: source kernel page
1166 *
1167 * This allows drivers to insert individual pages they've allocated
1168 * into a user vma.
1169 *
1170 * The page has to be a nice clean _individual_ kernel allocation.
1171 * If you allocate a compound page, you need to have marked it as
1172 * such (__GFP_COMP), or manually just split the page up yourself
1173 * (see split_page()).
1174 *
1175 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1176 * took an arbitrary page protection parameter. This doesn't allow
1177 * that. Your vma protection will have to be set up correctly, which
1178 * means that if you want a shared writable mapping, you'd better
1179 * ask for a shared writable mapping!
1180 *
1181 * The page does not need to be reserved.
1182 */
1183int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1184{
1185	if (addr < vma->vm_start || addr >= vma->vm_end)
1186		return -EFAULT;
1187	if (!page_count(page))
1188		return -EINVAL;
1189	vma->vm_flags |= VM_INSERTPAGE;
1190	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1191}
1192EXPORT_SYMBOL(vm_insert_page);
1193
1194/**
1195 * vm_insert_pfn - insert single pfn into user vma
1196 * @vma: user vma to map to
1197 * @addr: target user address of this page
1198 * @pfn: source kernel pfn
1199 *
1200 * Similar to vm_inert_page, this allows drivers to insert individual pages
1201 * they've allocated into a user vma. Same comments apply.
1202 *
1203 * This function should only be called from a vm_ops->fault handler, and
1204 * in that case the handler should return NULL.
1205 */
1206int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1207		unsigned long pfn)
1208{
1209	struct mm_struct *mm = vma->vm_mm;
1210	int retval;
1211	pte_t *pte, entry;
1212	spinlock_t *ptl;
1213
1214	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1215	BUG_ON(is_cow_mapping(vma->vm_flags));
1216
1217	retval = -ENOMEM;
1218	pte = get_locked_pte(mm, addr, &ptl);
1219	if (!pte)
1220		goto out;
1221	retval = -EBUSY;
1222	if (!pte_none(*pte))
1223		goto out_unlock;
1224
1225	/* Ok, finally just insert the thing.. */
1226	entry = pfn_pte(pfn, vma->vm_page_prot);
1227	set_pte_at(mm, addr, pte, entry);
1228	update_mmu_cache(vma, addr, entry);
1229
1230	retval = 0;
1231out_unlock:
1232	pte_unmap_unlock(pte, ptl);
1233
1234out:
1235	return retval;
1236}
1237EXPORT_SYMBOL(vm_insert_pfn);
1238
1239/*
1240 * maps a range of physical memory into the requested pages. the old
1241 * mappings are removed. any references to nonexistent pages results
1242 * in null mappings (currently treated as "copy-on-access")
1243 */
1244static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1245			unsigned long addr, unsigned long end,
1246			unsigned long pfn, pgprot_t prot)
1247{
1248	pte_t *pte;
1249	spinlock_t *ptl;
1250
1251	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1252	if (!pte)
1253		return -ENOMEM;
1254	arch_enter_lazy_mmu_mode();
1255	do {
1256		BUG_ON(!pte_none(*pte));
1257		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1258		pfn++;
1259	} while (pte++, addr += PAGE_SIZE, addr != end);
1260	arch_leave_lazy_mmu_mode();
1261	pte_unmap_unlock(pte - 1, ptl);
1262	return 0;
1263}
1264
1265static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1266			unsigned long addr, unsigned long end,
1267			unsigned long pfn, pgprot_t prot)
1268{
1269	pmd_t *pmd;
1270	unsigned long next;
1271
1272	pfn -= addr >> PAGE_SHIFT;
1273	pmd = pmd_alloc(mm, pud, addr);
1274	if (!pmd)
1275		return -ENOMEM;
1276	do {
1277		next = pmd_addr_end(addr, end);
1278		if (remap_pte_range(mm, pmd, addr, next,
1279				pfn + (addr >> PAGE_SHIFT), prot))
1280			return -ENOMEM;
1281	} while (pmd++, addr = next, addr != end);
1282	return 0;
1283}
1284
1285static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1286			unsigned long addr, unsigned long end,
1287			unsigned long pfn, pgprot_t prot)
1288{
1289	pud_t *pud;
1290	unsigned long next;
1291
1292	pfn -= addr >> PAGE_SHIFT;
1293	pud = pud_alloc(mm, pgd, addr);
1294	if (!pud)
1295		return -ENOMEM;
1296	do {
1297		next = pud_addr_end(addr, end);
1298		if (remap_pmd_range(mm, pud, addr, next,
1299				pfn + (addr >> PAGE_SHIFT), prot))
1300			return -ENOMEM;
1301	} while (pud++, addr = next, addr != end);
1302	return 0;
1303}
1304
1305/**
1306 * remap_pfn_range - remap kernel memory to userspace
1307 * @vma: user vma to map to
1308 * @addr: target user address to start at
1309 * @pfn: physical address of kernel memory
1310 * @size: size of map area
1311 * @prot: page protection flags for this mapping
1312 *
1313 *  Note: this is only safe if the mm semaphore is held when called.
1314 */
1315int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1316		    unsigned long pfn, unsigned long size, pgprot_t prot)
1317{
1318	pgd_t *pgd;
1319	unsigned long next;
1320	unsigned long end = addr + PAGE_ALIGN(size);
1321	struct mm_struct *mm = vma->vm_mm;
1322	int err;
1323
1324	/*
1325	 * Physically remapped pages are special. Tell the
1326	 * rest of the world about it:
1327	 *   VM_IO tells people not to look at these pages
1328	 *	(accesses can have side effects).
1329	 *   VM_RESERVED is specified all over the place, because
1330	 *	in 2.4 it kept swapout's vma scan off this vma; but
1331	 *	in 2.6 the LRU scan won't even find its pages, so this
1332	 *	flag means no more than count its pages in reserved_vm,
1333	 * 	and omit it from core dump, even when VM_IO turned off.
1334	 *   VM_PFNMAP tells the core MM that the base pages are just
1335	 *	raw PFN mappings, and do not have a "struct page" associated
1336	 *	with them.
1337	 *
1338	 * There's a horrible special case to handle copy-on-write
1339	 * behaviour that some programs depend on. We mark the "original"
1340	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1341	 */
1342	if (is_cow_mapping(vma->vm_flags)) {
1343		if (addr != vma->vm_start || end != vma->vm_end)
1344			return -EINVAL;
1345		vma->vm_pgoff = pfn;
1346	}
1347
1348	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1349
1350	BUG_ON(addr >= end);
1351	pfn -= addr >> PAGE_SHIFT;
1352	pgd = pgd_offset(mm, addr);
1353	flush_cache_range(vma, addr, end);
1354	do {
1355		next = pgd_addr_end(addr, end);
1356		err = remap_pud_range(mm, pgd, addr, next,
1357				pfn + (addr >> PAGE_SHIFT), prot);
1358		if (err)
1359			break;
1360	} while (pgd++, addr = next, addr != end);
1361	return err;
1362}
1363EXPORT_SYMBOL(remap_pfn_range);
1364
1365static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1366				     unsigned long addr, unsigned long end,
1367				     pte_fn_t fn, void *data)
1368{
1369	pte_t *pte;
1370	int err;
1371	struct page *pmd_page;
1372	spinlock_t *uninitialized_var(ptl);
1373
1374	pte = (mm == &init_mm) ?
1375		pte_alloc_kernel(pmd, addr) :
1376		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1377	if (!pte)
1378		return -ENOMEM;
1379
1380	BUG_ON(pmd_huge(*pmd));
1381
1382	pmd_page = pmd_page(*pmd);
1383
1384	do {
1385		err = fn(pte, pmd_page, addr, data);
1386		if (err)
1387			break;
1388	} while (pte++, addr += PAGE_SIZE, addr != end);
1389
1390	if (mm != &init_mm)
1391		pte_unmap_unlock(pte-1, ptl);
1392	return err;
1393}
1394
1395static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1396				     unsigned long addr, unsigned long end,
1397				     pte_fn_t fn, void *data)
1398{
1399	pmd_t *pmd;
1400	unsigned long next;
1401	int err;
1402
1403	pmd = pmd_alloc(mm, pud, addr);
1404	if (!pmd)
1405		return -ENOMEM;
1406	do {
1407		next = pmd_addr_end(addr, end);
1408		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1409		if (err)
1410			break;
1411	} while (pmd++, addr = next, addr != end);
1412	return err;
1413}
1414
1415static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1416				     unsigned long addr, unsigned long end,
1417				     pte_fn_t fn, void *data)
1418{
1419	pud_t *pud;
1420	unsigned long next;
1421	int err;
1422
1423	pud = pud_alloc(mm, pgd, addr);
1424	if (!pud)
1425		return -ENOMEM;
1426	do {
1427		next = pud_addr_end(addr, end);
1428		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1429		if (err)
1430			break;
1431	} while (pud++, addr = next, addr != end);
1432	return err;
1433}
1434
1435/*
1436 * Scan a region of virtual memory, filling in page tables as necessary
1437 * and calling a provided function on each leaf page table.
1438 */
1439int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1440			unsigned long size, pte_fn_t fn, void *data)
1441{
1442	pgd_t *pgd;
1443	unsigned long next;
1444	unsigned long end = addr + size;
1445	int err;
1446
1447	BUG_ON(addr >= end);
1448	pgd = pgd_offset(mm, addr);
1449	do {
1450		next = pgd_addr_end(addr, end);
1451		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1452		if (err)
1453			break;
1454	} while (pgd++, addr = next, addr != end);
1455	return err;
1456}
1457EXPORT_SYMBOL_GPL(apply_to_page_range);
1458
1459/*
1460 * handle_pte_fault chooses page fault handler according to an entry
1461 * which was read non-atomically.  Before making any commitment, on
1462 * those architectures or configurations (e.g. i386 with PAE) which
1463 * might give a mix of unmatched parts, do_swap_page and do_file_page
1464 * must check under lock before unmapping the pte and proceeding
1465 * (but do_wp_page is only called after already making such a check;
1466 * and do_anonymous_page and do_no_page can safely check later on).
1467 */
1468static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1469				pte_t *page_table, pte_t orig_pte)
1470{
1471	int same = 1;
1472#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1473	if (sizeof(pte_t) > sizeof(unsigned long)) {
1474		spinlock_t *ptl = pte_lockptr(mm, pmd);
1475		spin_lock(ptl);
1476		same = pte_same(*page_table, orig_pte);
1477		spin_unlock(ptl);
1478	}
1479#endif
1480	pte_unmap(page_table);
1481	return same;
1482}
1483
1484/*
1485 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1486 * servicing faults for write access.  In the normal case, do always want
1487 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1488 * that do not have writing enabled, when used by access_process_vm.
1489 */
1490static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1491{
1492	if (likely(vma->vm_flags & VM_WRITE))
1493		pte = pte_mkwrite(pte);
1494	return pte;
1495}
1496
1497static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1498{
1499	/*
1500	 * If the source page was a PFN mapping, we don't have
1501	 * a "struct page" for it. We do a best-effort copy by
1502	 * just copying from the original user address. If that
1503	 * fails, we just zero-fill it. Live with it.
1504	 */
1505	if (unlikely(!src)) {
1506		void *kaddr = kmap_atomic(dst, KM_USER0);
1507		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1508
1509		/*
1510		 * This really shouldn't fail, because the page is there
1511		 * in the page tables. But it might just be unreadable,
1512		 * in which case we just give up and fill the result with
1513		 * zeroes.
1514		 */
1515		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1516			memset(kaddr, 0, PAGE_SIZE);
1517		kunmap_atomic(kaddr, KM_USER0);
1518		flush_dcache_page(dst);
1519		return;
1520
1521	}
1522	copy_user_highpage(dst, src, va, vma);
1523}
1524
1525/*
1526 * This routine handles present pages, when users try to write
1527 * to a shared page. It is done by copying the page to a new address
1528 * and decrementing the shared-page counter for the old page.
1529 *
1530 * Note that this routine assumes that the protection checks have been
1531 * done by the caller (the low-level page fault routine in most cases).
1532 * Thus we can safely just mark it writable once we've done any necessary
1533 * COW.
1534 *
1535 * We also mark the page dirty at this point even though the page will
1536 * change only once the write actually happens. This avoids a few races,
1537 * and potentially makes it more efficient.
1538 *
1539 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1540 * but allow concurrent faults), with pte both mapped and locked.
1541 * We return with mmap_sem still held, but pte unmapped and unlocked.
1542 */
1543static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1544		unsigned long address, pte_t *page_table, pmd_t *pmd,
1545		spinlock_t *ptl, pte_t orig_pte)
1546{
1547	struct page *old_page, *new_page;
1548	pte_t entry;
1549	int reuse = 0, ret = 0;
1550	int page_mkwrite = 0;
1551	struct page *dirty_page = NULL;
1552
1553	old_page = vm_normal_page(vma, address, orig_pte);
1554	if (!old_page)
1555		goto gotten;
1556
1557	/*
1558	 * Take out anonymous pages first, anonymous shared vmas are
1559	 * not dirty accountable.
1560	 */
1561	if (PageAnon(old_page)) {
1562		if (!TestSetPageLocked(old_page)) {
1563			reuse = can_share_swap_page(old_page);
1564			unlock_page(old_page);
1565		}
1566	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1567					(VM_WRITE|VM_SHARED))) {
1568		/*
1569		 * Only catch write-faults on shared writable pages,
1570		 * read-only shared pages can get COWed by
1571		 * get_user_pages(.write=1, .force=1).
1572		 */
1573		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1574			/*
1575			 * Notify the address space that the page is about to
1576			 * become writable so that it can prohibit this or wait
1577			 * for the page to get into an appropriate state.
1578			 *
1579			 * We do this without the lock held, so that it can
1580			 * sleep if it needs to.
1581			 */
1582			page_cache_get(old_page);
1583			pte_unmap_unlock(page_table, ptl);
1584
1585			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1586				goto unwritable_page;
1587
1588			/*
1589			 * Since we dropped the lock we need to revalidate
1590			 * the PTE as someone else may have changed it.  If
1591			 * they did, we just return, as we can count on the
1592			 * MMU to tell us if they didn't also make it writable.
1593			 */
1594			page_table = pte_offset_map_lock(mm, pmd, address,
1595							 &ptl);
1596			page_cache_release(old_page);
1597			if (!pte_same(*page_table, orig_pte))
1598				goto unlock;
1599
1600			page_mkwrite = 1;
1601		}
1602		dirty_page = old_page;
1603		get_page(dirty_page);
1604		reuse = 1;
1605	}
1606
1607	if (reuse) {
1608		flush_cache_page(vma, address, pte_pfn(orig_pte));
1609		entry = pte_mkyoung(orig_pte);
1610		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1611		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1612			update_mmu_cache(vma, address, entry);
1613		ret |= VM_FAULT_WRITE;
1614		goto unlock;
1615	}
1616
1617	/*
1618	 * Ok, we need to copy. Oh, well..
1619	 */
1620	page_cache_get(old_page);
1621gotten:
1622	pte_unmap_unlock(page_table, ptl);
1623
1624	if (unlikely(anon_vma_prepare(vma)))
1625		goto oom;
1626	VM_BUG_ON(old_page == ZERO_PAGE(0));
1627	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1628	if (!new_page)
1629		goto oom;
1630	cow_user_page(new_page, old_page, address, vma);
1631
1632	/*
1633	 * Re-check the pte - we dropped the lock
1634	 */
1635	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1636	if (likely(pte_same(*page_table, orig_pte))) {
1637		if (old_page) {
1638			page_remove_rmap(old_page, vma);
1639			if (!PageAnon(old_page)) {
1640				dec_mm_counter(mm, file_rss);
1641				inc_mm_counter(mm, anon_rss);
1642			}
1643		} else
1644			inc_mm_counter(mm, anon_rss);
1645		flush_cache_page(vma, address, pte_pfn(orig_pte));
1646		entry = mk_pte(new_page, vma->vm_page_prot);
1647		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1648		/*
1649		 * Clear the pte entry and flush it first, before updating the
1650		 * pte with the new entry. This will avoid a race condition
1651		 * seen in the presence of one thread doing SMC and another
1652		 * thread doing COW.
1653		 */
1654		ptep_clear_flush(vma, address, page_table);
1655		set_pte_at(mm, address, page_table, entry);
1656		update_mmu_cache(vma, address, entry);
1657		lru_cache_add_active(new_page);
1658		page_add_new_anon_rmap(new_page, vma, address);
1659
1660		/* Free the old page.. */
1661		new_page = old_page;
1662		ret |= VM_FAULT_WRITE;
1663	}
1664	if (new_page)
1665		page_cache_release(new_page);
1666	if (old_page)
1667		page_cache_release(old_page);
1668unlock:
1669	pte_unmap_unlock(page_table, ptl);
1670	if (dirty_page) {
1671		/*
1672		 * Yes, Virginia, this is actually required to prevent a race
1673		 * with clear_page_dirty_for_io() from clearing the page dirty
1674		 * bit after it clear all dirty ptes, but before a racing
1675		 * do_wp_page installs a dirty pte.
1676		 *
1677		 * do_no_page is protected similarly.
1678		 */
1679		wait_on_page_locked(dirty_page);
1680		set_page_dirty_balance(dirty_page, page_mkwrite);
1681		put_page(dirty_page);
1682	}
1683	return ret;
1684oom:
1685	if (old_page)
1686		page_cache_release(old_page);
1687	return VM_FAULT_OOM;
1688
1689unwritable_page:
1690	page_cache_release(old_page);
1691	return VM_FAULT_SIGBUS;
1692}
1693
1694/*
1695 * Helper functions for unmap_mapping_range().
1696 *
1697 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1698 *
1699 * We have to restart searching the prio_tree whenever we drop the lock,
1700 * since the iterator is only valid while the lock is held, and anyway
1701 * a later vma might be split and reinserted earlier while lock dropped.
1702 *
1703 * The list of nonlinear vmas could be handled more efficiently, using
1704 * a placeholder, but handle it in the same way until a need is shown.
1705 * It is important to search the prio_tree before nonlinear list: a vma
1706 * may become nonlinear and be shifted from prio_tree to nonlinear list
1707 * while the lock is dropped; but never shifted from list to prio_tree.
1708 *
1709 * In order to make forward progress despite restarting the search,
1710 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1711 * quickly skip it next time around.  Since the prio_tree search only
1712 * shows us those vmas affected by unmapping the range in question, we
1713 * can't efficiently keep all vmas in step with mapping->truncate_count:
1714 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1715 * mapping->truncate_count and vma->vm_truncate_count are protected by
1716 * i_mmap_lock.
1717 *
1718 * In order to make forward progress despite repeatedly restarting some
1719 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1720 * and restart from that address when we reach that vma again.  It might
1721 * have been split or merged, shrunk or extended, but never shifted: so
1722 * restart_addr remains valid so long as it remains in the vma's range.
1723 * unmap_mapping_range forces truncate_count to leap over page-aligned
1724 * values so we can save vma's restart_addr in its truncate_count field.
1725 */
1726#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1727
1728static void reset_vma_truncate_counts(struct address_space *mapping)
1729{
1730	struct vm_area_struct *vma;
1731	struct prio_tree_iter iter;
1732
1733	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1734		vma->vm_truncate_count = 0;
1735	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1736		vma->vm_truncate_count = 0;
1737}
1738
1739static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1740		unsigned long start_addr, unsigned long end_addr,
1741		struct zap_details *details)
1742{
1743	unsigned long restart_addr;
1744	int need_break;
1745
1746	/*
1747	 * files that support invalidating or truncating portions of the
1748	 * file from under mmaped areas must have their ->fault function
1749	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1750	 * This provides synchronisation against concurrent unmapping here.
1751	 */
1752
1753again:
1754	restart_addr = vma->vm_truncate_count;
1755	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1756		start_addr = restart_addr;
1757		if (start_addr >= end_addr) {
1758			/* Top of vma has been split off since last time */
1759			vma->vm_truncate_count = details->truncate_count;
1760			return 0;
1761		}
1762	}
1763
1764	restart_addr = zap_page_range(vma, start_addr,
1765					end_addr - start_addr, details);
1766	need_break = need_resched() ||
1767			need_lockbreak(details->i_mmap_lock);
1768
1769	if (restart_addr >= end_addr) {
1770		/* We have now completed this vma: mark it so */
1771		vma->vm_truncate_count = details->truncate_count;
1772		if (!need_break)
1773			return 0;
1774	} else {
1775		/* Note restart_addr in vma's truncate_count field */
1776		vma->vm_truncate_count = restart_addr;
1777		if (!need_break)
1778			goto again;
1779	}
1780
1781	spin_unlock(details->i_mmap_lock);
1782	cond_resched();
1783	spin_lock(details->i_mmap_lock);
1784	return -EINTR;
1785}
1786
1787static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1788					    struct zap_details *details)
1789{
1790	struct vm_area_struct *vma;
1791	struct prio_tree_iter iter;
1792	pgoff_t vba, vea, zba, zea;
1793
1794restart:
1795	vma_prio_tree_foreach(vma, &iter, root,
1796			details->first_index, details->last_index) {
1797		/* Skip quickly over those we have already dealt with */
1798		if (vma->vm_truncate_count == details->truncate_count)
1799			continue;
1800
1801		vba = vma->vm_pgoff;
1802		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1803		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1804		zba = details->first_index;
1805		if (zba < vba)
1806			zba = vba;
1807		zea = details->last_index;
1808		if (zea > vea)
1809			zea = vea;
1810
1811		if (unmap_mapping_range_vma(vma,
1812			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1813			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1814				details) < 0)
1815			goto restart;
1816	}
1817}
1818
1819static inline void unmap_mapping_range_list(struct list_head *head,
1820					    struct zap_details *details)
1821{
1822	struct vm_area_struct *vma;
1823
1824	/*
1825	 * In nonlinear VMAs there is no correspondence between virtual address
1826	 * offset and file offset.  So we must perform an exhaustive search
1827	 * across *all* the pages in each nonlinear VMA, not just the pages
1828	 * whose virtual address lies outside the file truncation point.
1829	 */
1830restart:
1831	list_for_each_entry(vma, head, shared.vm_set.list) {
1832		/* Skip quickly over those we have already dealt with */
1833		if (vma->vm_truncate_count == details->truncate_count)
1834			continue;
1835		details->nonlinear_vma = vma;
1836		if (unmap_mapping_range_vma(vma, vma->vm_start,
1837					vma->vm_end, details) < 0)
1838			goto restart;
1839	}
1840}
1841
1842/**
1843 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1844 * @mapping: the address space containing mmaps to be unmapped.
1845 * @holebegin: byte in first page to unmap, relative to the start of
1846 * the underlying file.  This will be rounded down to a PAGE_SIZE
1847 * boundary.  Note that this is different from vmtruncate(), which
1848 * must keep the partial page.  In contrast, we must get rid of
1849 * partial pages.
1850 * @holelen: size of prospective hole in bytes.  This will be rounded
1851 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1852 * end of the file.
1853 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1854 * but 0 when invalidating pagecache, don't throw away private data.
1855 */
1856void unmap_mapping_range(struct address_space *mapping,
1857		loff_t const holebegin, loff_t const holelen, int even_cows)
1858{
1859	struct zap_details details;
1860	pgoff_t hba = holebegin >> PAGE_SHIFT;
1861	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1862
1863	/* Check for overflow. */
1864	if (sizeof(holelen) > sizeof(hlen)) {
1865		long long holeend =
1866			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1867		if (holeend & ~(long long)ULONG_MAX)
1868			hlen = ULONG_MAX - hba + 1;
1869	}
1870
1871	details.check_mapping = even_cows? NULL: mapping;
1872	details.nonlinear_vma = NULL;
1873	details.first_index = hba;
1874	details.last_index = hba + hlen - 1;
1875	if (details.last_index < details.first_index)
1876		details.last_index = ULONG_MAX;
1877	details.i_mmap_lock = &mapping->i_mmap_lock;
1878
1879	spin_lock(&mapping->i_mmap_lock);
1880
1881	/* Protect against endless unmapping loops */
1882	mapping->truncate_count++;
1883	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1884		if (mapping->truncate_count == 0)
1885			reset_vma_truncate_counts(mapping);
1886		mapping->truncate_count++;
1887	}
1888	details.truncate_count = mapping->truncate_count;
1889
1890	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1891		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1892	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1893		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1894	spin_unlock(&mapping->i_mmap_lock);
1895}
1896EXPORT_SYMBOL(unmap_mapping_range);
1897
1898/**
1899 * vmtruncate - unmap mappings "freed" by truncate() syscall
1900 * @inode: inode of the file used
1901 * @offset: file offset to start truncating
1902 *
1903 * NOTE! We have to be ready to update the memory sharing
1904 * between the file and the memory map for a potential last
1905 * incomplete page.  Ugly, but necessary.
1906 */
1907int vmtruncate(struct inode * inode, loff_t offset)
1908{
1909	struct address_space *mapping = inode->i_mapping;
1910	unsigned long limit;
1911
1912	if (inode->i_size < offset)
1913		goto do_expand;
1914	/*
1915	 * truncation of in-use swapfiles is disallowed - it would cause
1916	 * subsequent swapout to scribble on the now-freed blocks.
1917	 */
1918	if (IS_SWAPFILE(inode))
1919		goto out_busy;
1920	i_size_write(inode, offset);
1921
1922	/*
1923	 * unmap_mapping_range is called twice, first simply for efficiency
1924	 * so that truncate_inode_pages does fewer single-page unmaps. However
1925	 * after this first call, and before truncate_inode_pages finishes,
1926	 * it is possible for private pages to be COWed, which remain after
1927	 * truncate_inode_pages finishes, hence the second unmap_mapping_range
1928	 * call must be made for correctness.
1929	 */
1930	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1931	truncate_inode_pages(mapping, offset);
1932	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1933	goto out_truncate;
1934
1935do_expand:
1936	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1937	if (limit != RLIM_INFINITY && offset > limit)
1938		goto out_sig;
1939	if (offset > inode->i_sb->s_maxbytes)
1940		goto out_big;
1941	i_size_write(inode, offset);
1942
1943out_truncate:
1944	if (inode->i_op && inode->i_op->truncate)
1945		inode->i_op->truncate(inode);
1946	return 0;
1947out_sig:
1948	send_sig(SIGXFSZ, current, 0);
1949out_big:
1950	return -EFBIG;
1951out_busy:
1952	return -ETXTBSY;
1953}
1954EXPORT_SYMBOL(vmtruncate);
1955
1956int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1957{
1958	struct address_space *mapping = inode->i_mapping;
1959
1960	/*
1961	 * If the underlying filesystem is not going to provide
1962	 * a way to truncate a range of blocks (punch a hole) -
1963	 * we should return failure right now.
1964	 */
1965	if (!inode->i_op || !inode->i_op->truncate_range)
1966		return -ENOSYS;
1967
1968	mutex_lock(&inode->i_mutex);
1969	down_write(&inode->i_alloc_sem);
1970	unmap_mapping_range(mapping, offset, (end - offset), 1);
1971	truncate_inode_pages_range(mapping, offset, end);
1972	unmap_mapping_range(mapping, offset, (end - offset), 1);
1973	inode->i_op->truncate_range(inode, offset, end);
1974	up_write(&inode->i_alloc_sem);
1975	mutex_unlock(&inode->i_mutex);
1976
1977	return 0;
1978}
1979
1980/**
1981 * swapin_readahead - swap in pages in hope we need them soon
1982 * @entry: swap entry of this memory
1983 * @addr: address to start
1984 * @vma: user vma this addresses belong to
1985 *
1986 * Primitive swap readahead code. We simply read an aligned block of
1987 * (1 << page_cluster) entries in the swap area. This method is chosen
1988 * because it doesn't cost us any seek time.  We also make sure to queue
1989 * the 'original' request together with the readahead ones...
1990 *
1991 * This has been extended to use the NUMA policies from the mm triggering
1992 * the readahead.
1993 *
1994 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1995 */
1996void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1997{
1998#ifdef CONFIG_NUMA
1999	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2000#endif
2001	int i, num;
2002	struct page *new_page;
2003	unsigned long offset;
2004
2005	/*
2006	 * Get the number of handles we should do readahead io to.
2007	 */
2008	num = valid_swaphandles(entry, &offset);
2009	for (i = 0; i < num; offset++, i++) {
2010		/* Ok, do the async read-ahead now */
2011		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2012							   offset), vma, addr);
2013		if (!new_page)
2014			break;
2015		page_cache_release(new_page);
2016#ifdef CONFIG_NUMA
2017		/*
2018		 * Find the next applicable VMA for the NUMA policy.
2019		 */
2020		addr += PAGE_SIZE;
2021		if (addr == 0)
2022			vma = NULL;
2023		if (vma) {
2024			if (addr >= vma->vm_end) {
2025				vma = next_vma;
2026				next_vma = vma ? vma->vm_next : NULL;
2027			}
2028			if (vma && addr < vma->vm_start)
2029				vma = NULL;
2030		} else {
2031			if (next_vma && addr >= next_vma->vm_start) {
2032				vma = next_vma;
2033				next_vma = vma->vm_next;
2034			}
2035		}
2036#endif
2037	}
2038	lru_add_drain();	/* Push any new pages onto the LRU now */
2039}
2040
2041/*
2042 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2043 * but allow concurrent faults), and pte mapped but not yet locked.
2044 * We return with mmap_sem still held, but pte unmapped and unlocked.
2045 */
2046static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2047		unsigned long address, pte_t *page_table, pmd_t *pmd,
2048		int write_access, pte_t orig_pte)
2049{
2050	spinlock_t *ptl;
2051	struct page *page;
2052	swp_entry_t entry;
2053	pte_t pte;
2054	int ret = 0;
2055
2056	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2057		goto out;
2058
2059	entry = pte_to_swp_entry(orig_pte);
2060	if (is_migration_entry(entry)) {
2061		migration_entry_wait(mm, pmd, address);
2062		goto out;
2063	}
2064	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2065	page = lookup_swap_cache(entry);
2066	if (!page) {
2067		grab_swap_token(); /* Contend for token _before_ read-in */
2068 		swapin_readahead(entry, address, vma);
2069 		page = read_swap_cache_async(entry, vma, address);
2070		if (!page) {
2071			/*
2072			 * Back out if somebody else faulted in this pte
2073			 * while we released the pte lock.
2074			 */
2075			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2076			if (likely(pte_same(*page_table, orig_pte)))
2077				ret = VM_FAULT_OOM;
2078			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2079			goto unlock;
2080		}
2081
2082		/* Had to read the page from swap area: Major fault */
2083		ret = VM_FAULT_MAJOR;
2084		count_vm_event(PGMAJFAULT);
2085	}
2086
2087	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2088	mark_page_accessed(page);
2089	lock_page(page);
2090
2091	/*
2092	 * Back out if somebody else already faulted in this pte.
2093	 */
2094	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2095	if (unlikely(!pte_same(*page_table, orig_pte)))
2096		goto out_nomap;
2097
2098	if (unlikely(!PageUptodate(page))) {
2099		ret = VM_FAULT_SIGBUS;
2100		goto out_nomap;
2101	}
2102
2103	/* The page isn't present yet, go ahead with the fault. */
2104
2105	inc_mm_counter(mm, anon_rss);
2106	pte = mk_pte(page, vma->vm_page_prot);
2107	if (write_access && can_share_swap_page(page)) {
2108		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2109		write_access = 0;
2110	}
2111
2112	flush_icache_page(vma, page);
2113	set_pte_at(mm, address, page_table, pte);
2114	page_add_anon_rmap(page, vma, address);
2115
2116	swap_free(entry);
2117	if (vm_swap_full())
2118		remove_exclusive_swap_page(page);
2119	unlock_page(page);
2120
2121	if (write_access) {
2122		/* XXX: We could OR the do_wp_page code with this one? */
2123		if (do_wp_page(mm, vma, address,
2124				page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2125			ret = VM_FAULT_OOM;
2126		goto out;
2127	}
2128
2129	/* No need to invalidate - it was non-present before */
2130	update_mmu_cache(vma, address, pte);
2131unlock:
2132	pte_unmap_unlock(page_table, ptl);
2133out:
2134	return ret;
2135out_nomap:
2136	pte_unmap_unlock(page_table, ptl);
2137	unlock_page(page);
2138	page_cache_release(page);
2139	return ret;
2140}
2141
2142/*
2143 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2144 * but allow concurrent faults), and pte mapped but not yet locked.
2145 * We return with mmap_sem still held, but pte unmapped and unlocked.
2146 */
2147static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2148		unsigned long address, pte_t *page_table, pmd_t *pmd,
2149		int write_access)
2150{
2151	struct page *page;
2152	spinlock_t *ptl;
2153	pte_t entry;
2154
2155	/* Allocate our own private page. */
2156	pte_unmap(page_table);
2157
2158	if (unlikely(anon_vma_prepare(vma)))
2159		goto oom;
2160	page = alloc_zeroed_user_highpage_movable(vma, address);
2161	if (!page)
2162		goto oom;
2163
2164	entry = mk_pte(page, vma->vm_page_prot);
2165	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2166
2167	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2168	if (!pte_none(*page_table))
2169		goto release;
2170	inc_mm_counter(mm, anon_rss);
2171	lru_cache_add_active(page);
2172	page_add_new_anon_rmap(page, vma, address);
2173	set_pte_at(mm, address, page_table, entry);
2174
2175	/* No need to invalidate - it was non-present before */
2176	update_mmu_cache(vma, address, entry);
2177unlock:
2178	pte_unmap_unlock(page_table, ptl);
2179	return 0;
2180release:
2181	page_cache_release(page);
2182	goto unlock;
2183oom:
2184	return VM_FAULT_OOM;
2185}
2186
2187/*
2188 * __do_fault() tries to create a new page mapping. It aggressively
2189 * tries to share with existing pages, but makes a separate copy if
2190 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2191 * the next page fault.
2192 *
2193 * As this is called only for pages that do not currently exist, we
2194 * do not need to flush old virtual caches or the TLB.
2195 *
2196 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2197 * but allow concurrent faults), and pte neither mapped nor locked.
2198 * We return with mmap_sem still held, but pte unmapped and unlocked.
2199 */
2200static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2201		unsigned long address, pmd_t *pmd,
2202		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2203{
2204	pte_t *page_table;
2205	spinlock_t *ptl;
2206	struct page *page;
2207	pte_t entry;
2208	int anon = 0;
2209	struct page *dirty_page = NULL;
2210	struct vm_fault vmf;
2211	int ret;
2212	int page_mkwrite = 0;
2213
2214	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2215	vmf.pgoff = pgoff;
2216	vmf.flags = flags;
2217	vmf.page = NULL;
2218
2219	BUG_ON(vma->vm_flags & VM_PFNMAP);
2220
2221	if (likely(vma->vm_ops->fault)) {
2222		ret = vma->vm_ops->fault(vma, &vmf);
2223		if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2224			return ret;
2225	} else {
2226		/* Legacy ->nopage path */
2227		ret = 0;
2228		vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2229		/* no page was available -- either SIGBUS or OOM */
2230		if (unlikely(vmf.page == NOPAGE_SIGBUS))
2231			return VM_FAULT_SIGBUS;
2232		else if (unlikely(vmf.page == NOPAGE_OOM))
2233			return VM_FAULT_OOM;
2234	}
2235
2236	/*
2237	 * For consistency in subsequent calls, make the faulted page always
2238	 * locked.
2239	 */
2240	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2241		lock_page(vmf.page);
2242	else
2243		VM_BUG_ON(!PageLocked(vmf.page));
2244
2245	/*
2246	 * Should we do an early C-O-W break?
2247	 */
2248	page = vmf.page;
2249	if (flags & FAULT_FLAG_WRITE) {
2250		if (!(vma->vm_flags & VM_SHARED)) {
2251			anon = 1;
2252			if (unlikely(anon_vma_prepare(vma))) {
2253				ret = VM_FAULT_OOM;
2254				goto out;
2255			}
2256			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2257						vma, address);
2258			if (!page) {
2259				ret = VM_FAULT_OOM;
2260				goto out;
2261			}
2262			copy_user_highpage(page, vmf.page, address, vma);
2263		} else {
2264			/*
2265			 * If the page will be shareable, see if the backing
2266			 * address space wants to know that the page is about
2267			 * to become writable
2268			 */
2269			if (vma->vm_ops->page_mkwrite) {
2270				unlock_page(page);
2271				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2272					ret = VM_FAULT_SIGBUS;
2273					anon = 1; /* no anon but release vmf.page */
2274					goto out_unlocked;
2275				}
2276				lock_page(page);
2277				/*
2278				 * XXX: this is not quite right (racy vs
2279				 * invalidate) to unlock and relock the page
2280				 * like this, however a better fix requires
2281				 * reworking page_mkwrite locking API, which
2282				 * is better done later.
2283				 */
2284				if (!page->mapping) {
2285					ret = 0;
2286					anon = 1; /* no anon but release vmf.page */
2287					goto out;
2288				}
2289				page_mkwrite = 1;
2290			}
2291		}
2292
2293	}
2294
2295	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2296
2297	/*
2298	 * This silly early PAGE_DIRTY setting removes a race
2299	 * due to the bad i386 page protection. But it's valid
2300	 * for other architectures too.
2301	 *
2302	 * Note that if write_access is true, we either now have
2303	 * an exclusive copy of the page, or this is a shared mapping,
2304	 * so we can make it writable and dirty to avoid having to
2305	 * handle that later.
2306	 */
2307	/* Only go through if we didn't race with anybody else... */
2308	if (likely(pte_same(*page_table, orig_pte))) {
2309		flush_icache_page(vma, page);
2310		entry = mk_pte(page, vma->vm_page_prot);
2311		if (flags & FAULT_FLAG_WRITE)
2312			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2313		set_pte_at(mm, address, page_table, entry);
2314		if (anon) {
2315                        inc_mm_counter(mm, anon_rss);
2316                        lru_cache_add_active(page);
2317                        page_add_new_anon_rmap(page, vma, address);
2318		} else {
2319			inc_mm_counter(mm, file_rss);
2320			page_add_file_rmap(page);
2321			if (flags & FAULT_FLAG_WRITE) {
2322				dirty_page = page;
2323				get_page(dirty_page);
2324			}
2325		}
2326
2327		/* no need to invalidate: a not-present page won't be cached */
2328		update_mmu_cache(vma, address, entry);
2329	} else {
2330		if (anon)
2331			page_cache_release(page);
2332		else
2333			anon = 1; /* no anon but release faulted_page */
2334	}
2335
2336	pte_unmap_unlock(page_table, ptl);
2337
2338out:
2339	unlock_page(vmf.page);
2340out_unlocked:
2341	if (anon)
2342		page_cache_release(vmf.page);
2343	else if (dirty_page) {
2344		set_page_dirty_balance(dirty_page, page_mkwrite);
2345		put_page(dirty_page);
2346	}
2347
2348	return ret;
2349}
2350
2351static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2352		unsigned long address, pte_t *page_table, pmd_t *pmd,
2353		int write_access, pte_t orig_pte)
2354{
2355	pgoff_t pgoff = (((address & PAGE_MASK)
2356			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2357	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2358
2359	pte_unmap(page_table);
2360	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2361}
2362
2363
2364/*
2365 * do_no_pfn() tries to create a new page mapping for a page without
2366 * a struct_page backing it
2367 *
2368 * As this is called only for pages that do not currently exist, we
2369 * do not need to flush old virtual caches or the TLB.
2370 *
2371 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2372 * but allow concurrent faults), and pte mapped but not yet locked.
2373 * We return with mmap_sem still held, but pte unmapped and unlocked.
2374 *
2375 * It is expected that the ->nopfn handler always returns the same pfn
2376 * for a given virtual mapping.
2377 *
2378 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2379 */
2380static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2381		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2382		     int write_access)
2383{
2384	spinlock_t *ptl;
2385	pte_t entry;
2386	unsigned long pfn;
2387
2388	pte_unmap(page_table);
2389	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2390	BUG_ON(is_cow_mapping(vma->vm_flags));
2391
2392	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2393	if (unlikely(pfn == NOPFN_OOM))
2394		return VM_FAULT_OOM;
2395	else if (unlikely(pfn == NOPFN_SIGBUS))
2396		return VM_FAULT_SIGBUS;
2397	else if (unlikely(pfn == NOPFN_REFAULT))
2398		return 0;
2399
2400	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2401
2402	/* Only go through if we didn't race with anybody else... */
2403	if (pte_none(*page_table)) {
2404		entry = pfn_pte(pfn, vma->vm_page_prot);
2405		if (write_access)
2406			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2407		set_pte_at(mm, address, page_table, entry);
2408	}
2409	pte_unmap_unlock(page_table, ptl);
2410	return 0;
2411}
2412
2413/*
2414 * Fault of a previously existing named mapping. Repopulate the pte
2415 * from the encoded file_pte if possible. This enables swappable
2416 * nonlinear vmas.
2417 *
2418 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2419 * but allow concurrent faults), and pte mapped but not yet locked.
2420 * We return with mmap_sem still held, but pte unmapped and unlocked.
2421 */
2422static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2423		unsigned long address, pte_t *page_table, pmd_t *pmd,
2424		int write_access, pte_t orig_pte)
2425{
2426	unsigned int flags = FAULT_FLAG_NONLINEAR |
2427				(write_access ? FAULT_FLAG_WRITE : 0);
2428	pgoff_t pgoff;
2429
2430	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2431		return 0;
2432
2433	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2434			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2435		/*
2436		 * Page table corrupted: show pte and kill process.
2437		 */
2438		print_bad_pte(vma, orig_pte, address);
2439		return VM_FAULT_OOM;
2440	}
2441
2442	pgoff = pte_to_pgoff(orig_pte);
2443	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2444}
2445
2446/*
2447 * These routines also need to handle stuff like marking pages dirty
2448 * and/or accessed for architectures that don't do it in hardware (most
2449 * RISC architectures).  The early dirtying is also good on the i386.
2450 *
2451 * There is also a hook called "update_mmu_cache()" that architectures
2452 * with external mmu caches can use to update those (ie the Sparc or
2453 * PowerPC hashed page tables that act as extended TLBs).
2454 *
2455 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2456 * but allow concurrent faults), and pte mapped but not yet locked.
2457 * We return with mmap_sem still held, but pte unmapped and unlocked.
2458 */
2459static inline int handle_pte_fault(struct mm_struct *mm,
2460		struct vm_area_struct *vma, unsigned long address,
2461		pte_t *pte, pmd_t *pmd, int write_access)
2462{
2463	pte_t entry;
2464	spinlock_t *ptl;
2465
2466	entry = *pte;
2467	if (!pte_present(entry)) {
2468		if (pte_none(entry)) {
2469			if (vma->vm_ops) {
2470				if (vma->vm_ops->fault || vma->vm_ops->nopage)
2471					return do_linear_fault(mm, vma, address,
2472						pte, pmd, write_access, entry);
2473				if (unlikely(vma->vm_ops->nopfn))
2474					return do_no_pfn(mm, vma, address, pte,
2475							 pmd, write_access);
2476			}
2477			return do_anonymous_page(mm, vma, address,
2478						 pte, pmd, write_access);
2479		}
2480		if (pte_file(entry))
2481			return do_nonlinear_fault(mm, vma, address,
2482					pte, pmd, write_access, entry);
2483		return do_swap_page(mm, vma, address,
2484					pte, pmd, write_access, entry);
2485	}
2486
2487	ptl = pte_lockptr(mm, pmd);
2488	spin_lock(ptl);
2489	if (unlikely(!pte_same(*pte, entry)))
2490		goto unlock;
2491	if (write_access) {
2492		if (!pte_write(entry))
2493			return do_wp_page(mm, vma, address,
2494					pte, pmd, ptl, entry);
2495		entry = pte_mkdirty(entry);
2496	}
2497	entry = pte_mkyoung(entry);
2498	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2499		update_mmu_cache(vma, address, entry);
2500	} else {
2501		/*
2502		 * This is needed only for protection faults but the arch code
2503		 * is not yet telling us if this is a protection fault or not.
2504		 * This still avoids useless tlb flushes for .text page faults
2505		 * with threads.
2506		 */
2507		if (write_access)
2508			flush_tlb_page(vma, address);
2509	}
2510unlock:
2511	pte_unmap_unlock(pte, ptl);
2512	return 0;
2513}
2514
2515/*
2516 * By the time we get here, we already hold the mm semaphore
2517 */
2518int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2519		unsigned long address, int write_access)
2520{
2521	pgd_t *pgd;
2522	pud_t *pud;
2523	pmd_t *pmd;
2524	pte_t *pte;
2525
2526	__set_current_state(TASK_RUNNING);
2527
2528	count_vm_event(PGFAULT);
2529
2530	if (unlikely(is_vm_hugetlb_page(vma)))
2531		return hugetlb_fault(mm, vma, address, write_access);
2532
2533	pgd = pgd_offset(mm, address);
2534	pud = pud_alloc(mm, pgd, address);
2535	if (!pud)
2536		return VM_FAULT_OOM;
2537	pmd = pmd_alloc(mm, pud, address);
2538	if (!pmd)
2539		return VM_FAULT_OOM;
2540	pte = pte_alloc_map(mm, pmd, address);
2541	if (!pte)
2542		return VM_FAULT_OOM;
2543
2544	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2545}
2546
2547#ifndef __PAGETABLE_PUD_FOLDED
2548/*
2549 * Allocate page upper directory.
2550 * We've already handled the fast-path in-line.
2551 */
2552int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2553{
2554	pud_t *new = pud_alloc_one(mm, address);
2555	if (!new)
2556		return -ENOMEM;
2557
2558	spin_lock(&mm->page_table_lock);
2559	if (pgd_present(*pgd))		/* Another has populated it */
2560		pud_free(new);
2561	else
2562		pgd_populate(mm, pgd, new);
2563	spin_unlock(&mm->page_table_lock);
2564	return 0;
2565}
2566#endif /* __PAGETABLE_PUD_FOLDED */
2567
2568#ifndef __PAGETABLE_PMD_FOLDED
2569/*
2570 * Allocate page middle directory.
2571 * We've already handled the fast-path in-line.
2572 */
2573int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2574{
2575	pmd_t *new = pmd_alloc_one(mm, address);
2576	if (!new)
2577		return -ENOMEM;
2578
2579	spin_lock(&mm->page_table_lock);
2580#ifndef __ARCH_HAS_4LEVEL_HACK
2581	if (pud_present(*pud))		/* Another has populated it */
2582		pmd_free(new);
2583	else
2584		pud_populate(mm, pud, new);
2585#else
2586	if (pgd_present(*pud))		/* Another has populated it */
2587		pmd_free(new);
2588	else
2589		pgd_populate(mm, pud, new);
2590#endif /* __ARCH_HAS_4LEVEL_HACK */
2591	spin_unlock(&mm->page_table_lock);
2592	return 0;
2593}
2594#endif /* __PAGETABLE_PMD_FOLDED */
2595
2596int make_pages_present(unsigned long addr, unsigned long end)
2597{
2598	int ret, len, write;
2599	struct vm_area_struct * vma;
2600
2601	vma = find_vma(current->mm, addr);
2602	if (!vma)
2603		return -1;
2604	write = (vma->vm_flags & VM_WRITE) != 0;
2605	BUG_ON(addr >= end);
2606	BUG_ON(end > vma->vm_end);
2607	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2608	ret = get_user_pages(current, current->mm, addr,
2609			len, write, 0, NULL, NULL);
2610	if (ret < 0)
2611		return ret;
2612	return ret == len ? 0 : -1;
2613}
2614
2615/*
2616 * Map a vmalloc()-space virtual address to the physical page.
2617 */
2618struct page * vmalloc_to_page(void * vmalloc_addr)
2619{
2620	unsigned long addr = (unsigned long) vmalloc_addr;
2621	struct page *page = NULL;
2622	pgd_t *pgd = pgd_offset_k(addr);
2623	pud_t *pud;
2624	pmd_t *pmd;
2625	pte_t *ptep, pte;
2626
2627	if (!pgd_none(*pgd)) {
2628		pud = pud_offset(pgd, addr);
2629		if (!pud_none(*pud)) {
2630			pmd = pmd_offset(pud, addr);
2631			if (!pmd_none(*pmd)) {
2632				ptep = pte_offset_map(pmd, addr);
2633				pte = *ptep;
2634				if (pte_present(pte))
2635					page = pte_page(pte);
2636				pte_unmap(ptep);
2637			}
2638		}
2639	}
2640	return page;
2641}
2642
2643EXPORT_SYMBOL(vmalloc_to_page);
2644
2645/*
2646 * Map a vmalloc()-space virtual address to the physical page frame number.
2647 */
2648unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2649{
2650	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2651}
2652
2653EXPORT_SYMBOL(vmalloc_to_pfn);
2654
2655#if !defined(__HAVE_ARCH_GATE_AREA)
2656
2657#if defined(AT_SYSINFO_EHDR)
2658static struct vm_area_struct gate_vma;
2659
2660static int __init gate_vma_init(void)
2661{
2662	gate_vma.vm_mm = NULL;
2663	gate_vma.vm_start = FIXADDR_USER_START;
2664	gate_vma.vm_end = FIXADDR_USER_END;
2665	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2666	gate_vma.vm_page_prot = __P101;
2667	/*
2668	 * Make sure the vDSO gets into every core dump.
2669	 * Dumping its contents makes post-mortem fully interpretable later
2670	 * without matching up the same kernel and hardware config to see
2671	 * what PC values meant.
2672	 */
2673	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2674	return 0;
2675}
2676__initcall(gate_vma_init);
2677#endif
2678
2679struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2680{
2681#ifdef AT_SYSINFO_EHDR
2682	return &gate_vma;
2683#else
2684	return NULL;
2685#endif
2686}
2687
2688int in_gate_area_no_task(unsigned long addr)
2689{
2690#ifdef AT_SYSINFO_EHDR
2691	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2692		return 1;
2693#endif
2694	return 0;
2695}
2696
2697#endif	/* __HAVE_ARCH_GATE_AREA */
2698
2699/*
2700 * Access another process' address space.
2701 * Source/target buffer must be kernel space,
2702 * Do not walk the page table directly, use get_user_pages
2703 */
2704int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2705{
2706	struct mm_struct *mm;
2707	struct vm_area_struct *vma;
2708	struct page *page;
2709	void *old_buf = buf;
2710
2711	mm = get_task_mm(tsk);
2712	if (!mm)
2713		return 0;
2714
2715	down_read(&mm->mmap_sem);
2716	/* ignore errors, just check how much was successfully transferred */
2717	while (len) {
2718		int bytes, ret, offset;
2719		void *maddr;
2720
2721		ret = get_user_pages(tsk, mm, addr, 1,
2722				write, 1, &page, &vma);
2723		if (ret <= 0)
2724			break;
2725
2726		bytes = len;
2727		offset = addr & (PAGE_SIZE-1);
2728		if (bytes > PAGE_SIZE-offset)
2729			bytes = PAGE_SIZE-offset;
2730
2731		maddr = kmap(page);
2732		if (write) {
2733			copy_to_user_page(vma, page, addr,
2734					  maddr + offset, buf, bytes);
2735			set_page_dirty_lock(page);
2736		} else {
2737			copy_from_user_page(vma, page, addr,
2738					    buf, maddr + offset, bytes);
2739		}
2740		kunmap(page);
2741		page_cache_release(page);
2742		len -= bytes;
2743		buf += bytes;
2744		addr += bytes;
2745	}
2746	up_read(&mm->mmap_sem);
2747	mmput(mm);
2748
2749	return buf - old_buf;
2750}
2751