memory.c revision 828502d30073036a486d96b1fe051e0f08b6df83
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53#include <linux/memcontrol.h>
54#include <linux/mmu_notifier.h>
55#include <linux/kallsyms.h>
56#include <linux/swapops.h>
57#include <linux/elf.h>
58
59#include <asm/io.h>
60#include <asm/pgalloc.h>
61#include <asm/uaccess.h>
62#include <asm/tlb.h>
63#include <asm/tlbflush.h>
64#include <asm/pgtable.h>
65
66#include "internal.h"
67
68#ifndef CONFIG_NEED_MULTIPLE_NODES
69/* use the per-pgdat data instead for discontigmem - mbligh */
70unsigned long max_mapnr;
71struct page *mem_map;
72
73EXPORT_SYMBOL(max_mapnr);
74EXPORT_SYMBOL(mem_map);
75#endif
76
77unsigned long num_physpages;
78/*
79 * A number of key systems in x86 including ioremap() rely on the assumption
80 * that high_memory defines the upper bound on direct map memory, then end
81 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
82 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
83 * and ZONE_HIGHMEM.
84 */
85void * high_memory;
86
87EXPORT_SYMBOL(num_physpages);
88EXPORT_SYMBOL(high_memory);
89
90/*
91 * Randomize the address space (stacks, mmaps, brk, etc.).
92 *
93 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
94 *   as ancient (libc5 based) binaries can segfault. )
95 */
96int randomize_va_space __read_mostly =
97#ifdef CONFIG_COMPAT_BRK
98					1;
99#else
100					2;
101#endif
102
103static int __init disable_randmaps(char *s)
104{
105	randomize_va_space = 0;
106	return 1;
107}
108__setup("norandmaps", disable_randmaps);
109
110
111/*
112 * If a p?d_bad entry is found while walking page tables, report
113 * the error, before resetting entry to p?d_none.  Usually (but
114 * very seldom) called out from the p?d_none_or_clear_bad macros.
115 */
116
117void pgd_clear_bad(pgd_t *pgd)
118{
119	pgd_ERROR(*pgd);
120	pgd_clear(pgd);
121}
122
123void pud_clear_bad(pud_t *pud)
124{
125	pud_ERROR(*pud);
126	pud_clear(pud);
127}
128
129void pmd_clear_bad(pmd_t *pmd)
130{
131	pmd_ERROR(*pmd);
132	pmd_clear(pmd);
133}
134
135/*
136 * Note: this doesn't free the actual pages themselves. That
137 * has been handled earlier when unmapping all the memory regions.
138 */
139static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
140			   unsigned long addr)
141{
142	pgtable_t token = pmd_pgtable(*pmd);
143	pmd_clear(pmd);
144	pte_free_tlb(tlb, token, addr);
145	tlb->mm->nr_ptes--;
146}
147
148static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
149				unsigned long addr, unsigned long end,
150				unsigned long floor, unsigned long ceiling)
151{
152	pmd_t *pmd;
153	unsigned long next;
154	unsigned long start;
155
156	start = addr;
157	pmd = pmd_offset(pud, addr);
158	do {
159		next = pmd_addr_end(addr, end);
160		if (pmd_none_or_clear_bad(pmd))
161			continue;
162		free_pte_range(tlb, pmd, addr);
163	} while (pmd++, addr = next, addr != end);
164
165	start &= PUD_MASK;
166	if (start < floor)
167		return;
168	if (ceiling) {
169		ceiling &= PUD_MASK;
170		if (!ceiling)
171			return;
172	}
173	if (end - 1 > ceiling - 1)
174		return;
175
176	pmd = pmd_offset(pud, start);
177	pud_clear(pud);
178	pmd_free_tlb(tlb, pmd, start);
179}
180
181static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
182				unsigned long addr, unsigned long end,
183				unsigned long floor, unsigned long ceiling)
184{
185	pud_t *pud;
186	unsigned long next;
187	unsigned long start;
188
189	start = addr;
190	pud = pud_offset(pgd, addr);
191	do {
192		next = pud_addr_end(addr, end);
193		if (pud_none_or_clear_bad(pud))
194			continue;
195		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
196	} while (pud++, addr = next, addr != end);
197
198	start &= PGDIR_MASK;
199	if (start < floor)
200		return;
201	if (ceiling) {
202		ceiling &= PGDIR_MASK;
203		if (!ceiling)
204			return;
205	}
206	if (end - 1 > ceiling - 1)
207		return;
208
209	pud = pud_offset(pgd, start);
210	pgd_clear(pgd);
211	pud_free_tlb(tlb, pud, start);
212}
213
214/*
215 * This function frees user-level page tables of a process.
216 *
217 * Must be called with pagetable lock held.
218 */
219void free_pgd_range(struct mmu_gather *tlb,
220			unsigned long addr, unsigned long end,
221			unsigned long floor, unsigned long ceiling)
222{
223	pgd_t *pgd;
224	unsigned long next;
225	unsigned long start;
226
227	/*
228	 * The next few lines have given us lots of grief...
229	 *
230	 * Why are we testing PMD* at this top level?  Because often
231	 * there will be no work to do at all, and we'd prefer not to
232	 * go all the way down to the bottom just to discover that.
233	 *
234	 * Why all these "- 1"s?  Because 0 represents both the bottom
235	 * of the address space and the top of it (using -1 for the
236	 * top wouldn't help much: the masks would do the wrong thing).
237	 * The rule is that addr 0 and floor 0 refer to the bottom of
238	 * the address space, but end 0 and ceiling 0 refer to the top
239	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
240	 * that end 0 case should be mythical).
241	 *
242	 * Wherever addr is brought up or ceiling brought down, we must
243	 * be careful to reject "the opposite 0" before it confuses the
244	 * subsequent tests.  But what about where end is brought down
245	 * by PMD_SIZE below? no, end can't go down to 0 there.
246	 *
247	 * Whereas we round start (addr) and ceiling down, by different
248	 * masks at different levels, in order to test whether a table
249	 * now has no other vmas using it, so can be freed, we don't
250	 * bother to round floor or end up - the tests don't need that.
251	 */
252
253	addr &= PMD_MASK;
254	if (addr < floor) {
255		addr += PMD_SIZE;
256		if (!addr)
257			return;
258	}
259	if (ceiling) {
260		ceiling &= PMD_MASK;
261		if (!ceiling)
262			return;
263	}
264	if (end - 1 > ceiling - 1)
265		end -= PMD_SIZE;
266	if (addr > end - 1)
267		return;
268
269	start = addr;
270	pgd = pgd_offset(tlb->mm, addr);
271	do {
272		next = pgd_addr_end(addr, end);
273		if (pgd_none_or_clear_bad(pgd))
274			continue;
275		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
276	} while (pgd++, addr = next, addr != end);
277}
278
279void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
280		unsigned long floor, unsigned long ceiling)
281{
282	while (vma) {
283		struct vm_area_struct *next = vma->vm_next;
284		unsigned long addr = vma->vm_start;
285
286		/*
287		 * Hide vma from rmap and vmtruncate before freeing pgtables
288		 */
289		anon_vma_unlink(vma);
290		unlink_file_vma(vma);
291
292		if (is_vm_hugetlb_page(vma)) {
293			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
294				floor, next? next->vm_start: ceiling);
295		} else {
296			/*
297			 * Optimization: gather nearby vmas into one call down
298			 */
299			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
300			       && !is_vm_hugetlb_page(next)) {
301				vma = next;
302				next = vma->vm_next;
303				anon_vma_unlink(vma);
304				unlink_file_vma(vma);
305			}
306			free_pgd_range(tlb, addr, vma->vm_end,
307				floor, next? next->vm_start: ceiling);
308		}
309		vma = next;
310	}
311}
312
313int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
314{
315	pgtable_t new = pte_alloc_one(mm, address);
316	if (!new)
317		return -ENOMEM;
318
319	/*
320	 * Ensure all pte setup (eg. pte page lock and page clearing) are
321	 * visible before the pte is made visible to other CPUs by being
322	 * put into page tables.
323	 *
324	 * The other side of the story is the pointer chasing in the page
325	 * table walking code (when walking the page table without locking;
326	 * ie. most of the time). Fortunately, these data accesses consist
327	 * of a chain of data-dependent loads, meaning most CPUs (alpha
328	 * being the notable exception) will already guarantee loads are
329	 * seen in-order. See the alpha page table accessors for the
330	 * smp_read_barrier_depends() barriers in page table walking code.
331	 */
332	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
333
334	spin_lock(&mm->page_table_lock);
335	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
336		mm->nr_ptes++;
337		pmd_populate(mm, pmd, new);
338		new = NULL;
339	}
340	spin_unlock(&mm->page_table_lock);
341	if (new)
342		pte_free(mm, new);
343	return 0;
344}
345
346int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
347{
348	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
349	if (!new)
350		return -ENOMEM;
351
352	smp_wmb(); /* See comment in __pte_alloc */
353
354	spin_lock(&init_mm.page_table_lock);
355	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
356		pmd_populate_kernel(&init_mm, pmd, new);
357		new = NULL;
358	}
359	spin_unlock(&init_mm.page_table_lock);
360	if (new)
361		pte_free_kernel(&init_mm, new);
362	return 0;
363}
364
365static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
366{
367	if (file_rss)
368		add_mm_counter(mm, file_rss, file_rss);
369	if (anon_rss)
370		add_mm_counter(mm, anon_rss, anon_rss);
371}
372
373/*
374 * This function is called to print an error when a bad pte
375 * is found. For example, we might have a PFN-mapped pte in
376 * a region that doesn't allow it.
377 *
378 * The calling function must still handle the error.
379 */
380static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
381			  pte_t pte, struct page *page)
382{
383	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
384	pud_t *pud = pud_offset(pgd, addr);
385	pmd_t *pmd = pmd_offset(pud, addr);
386	struct address_space *mapping;
387	pgoff_t index;
388	static unsigned long resume;
389	static unsigned long nr_shown;
390	static unsigned long nr_unshown;
391
392	/*
393	 * Allow a burst of 60 reports, then keep quiet for that minute;
394	 * or allow a steady drip of one report per second.
395	 */
396	if (nr_shown == 60) {
397		if (time_before(jiffies, resume)) {
398			nr_unshown++;
399			return;
400		}
401		if (nr_unshown) {
402			printk(KERN_ALERT
403				"BUG: Bad page map: %lu messages suppressed\n",
404				nr_unshown);
405			nr_unshown = 0;
406		}
407		nr_shown = 0;
408	}
409	if (nr_shown++ == 0)
410		resume = jiffies + 60 * HZ;
411
412	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
413	index = linear_page_index(vma, addr);
414
415	printk(KERN_ALERT
416		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
417		current->comm,
418		(long long)pte_val(pte), (long long)pmd_val(*pmd));
419	if (page) {
420		printk(KERN_ALERT
421		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
422		page, (void *)page->flags, page_count(page),
423		page_mapcount(page), page->mapping, page->index);
424	}
425	printk(KERN_ALERT
426		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
427		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
428	/*
429	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
430	 */
431	if (vma->vm_ops)
432		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
433				(unsigned long)vma->vm_ops->fault);
434	if (vma->vm_file && vma->vm_file->f_op)
435		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
436				(unsigned long)vma->vm_file->f_op->mmap);
437	dump_stack();
438	add_taint(TAINT_BAD_PAGE);
439}
440
441static inline int is_cow_mapping(unsigned int flags)
442{
443	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
444}
445
446/*
447 * vm_normal_page -- This function gets the "struct page" associated with a pte.
448 *
449 * "Special" mappings do not wish to be associated with a "struct page" (either
450 * it doesn't exist, or it exists but they don't want to touch it). In this
451 * case, NULL is returned here. "Normal" mappings do have a struct page.
452 *
453 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
454 * pte bit, in which case this function is trivial. Secondly, an architecture
455 * may not have a spare pte bit, which requires a more complicated scheme,
456 * described below.
457 *
458 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
459 * special mapping (even if there are underlying and valid "struct pages").
460 * COWed pages of a VM_PFNMAP are always normal.
461 *
462 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
463 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
464 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
465 * mapping will always honor the rule
466 *
467 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
468 *
469 * And for normal mappings this is false.
470 *
471 * This restricts such mappings to be a linear translation from virtual address
472 * to pfn. To get around this restriction, we allow arbitrary mappings so long
473 * as the vma is not a COW mapping; in that case, we know that all ptes are
474 * special (because none can have been COWed).
475 *
476 *
477 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
478 *
479 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
480 * page" backing, however the difference is that _all_ pages with a struct
481 * page (that is, those where pfn_valid is true) are refcounted and considered
482 * normal pages by the VM. The disadvantage is that pages are refcounted
483 * (which can be slower and simply not an option for some PFNMAP users). The
484 * advantage is that we don't have to follow the strict linearity rule of
485 * PFNMAP mappings in order to support COWable mappings.
486 *
487 */
488#ifdef __HAVE_ARCH_PTE_SPECIAL
489# define HAVE_PTE_SPECIAL 1
490#else
491# define HAVE_PTE_SPECIAL 0
492#endif
493struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
494				pte_t pte)
495{
496	unsigned long pfn = pte_pfn(pte);
497
498	if (HAVE_PTE_SPECIAL) {
499		if (likely(!pte_special(pte)))
500			goto check_pfn;
501		if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
502			print_bad_pte(vma, addr, pte, NULL);
503		return NULL;
504	}
505
506	/* !HAVE_PTE_SPECIAL case follows: */
507
508	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
509		if (vma->vm_flags & VM_MIXEDMAP) {
510			if (!pfn_valid(pfn))
511				return NULL;
512			goto out;
513		} else {
514			unsigned long off;
515			off = (addr - vma->vm_start) >> PAGE_SHIFT;
516			if (pfn == vma->vm_pgoff + off)
517				return NULL;
518			if (!is_cow_mapping(vma->vm_flags))
519				return NULL;
520		}
521	}
522
523check_pfn:
524	if (unlikely(pfn > highest_memmap_pfn)) {
525		print_bad_pte(vma, addr, pte, NULL);
526		return NULL;
527	}
528
529	/*
530	 * NOTE! We still have PageReserved() pages in the page tables.
531	 * eg. VDSO mappings can cause them to exist.
532	 */
533out:
534	return pfn_to_page(pfn);
535}
536
537/*
538 * copy one vm_area from one task to the other. Assumes the page tables
539 * already present in the new task to be cleared in the whole range
540 * covered by this vma.
541 */
542
543static inline void
544copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
545		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
546		unsigned long addr, int *rss)
547{
548	unsigned long vm_flags = vma->vm_flags;
549	pte_t pte = *src_pte;
550	struct page *page;
551
552	/* pte contains position in swap or file, so copy. */
553	if (unlikely(!pte_present(pte))) {
554		if (!pte_file(pte)) {
555			swp_entry_t entry = pte_to_swp_entry(pte);
556
557			swap_duplicate(entry);
558			/* make sure dst_mm is on swapoff's mmlist. */
559			if (unlikely(list_empty(&dst_mm->mmlist))) {
560				spin_lock(&mmlist_lock);
561				if (list_empty(&dst_mm->mmlist))
562					list_add(&dst_mm->mmlist,
563						 &src_mm->mmlist);
564				spin_unlock(&mmlist_lock);
565			}
566			if (is_write_migration_entry(entry) &&
567					is_cow_mapping(vm_flags)) {
568				/*
569				 * COW mappings require pages in both parent
570				 * and child to be set to read.
571				 */
572				make_migration_entry_read(&entry);
573				pte = swp_entry_to_pte(entry);
574				set_pte_at(src_mm, addr, src_pte, pte);
575			}
576		}
577		goto out_set_pte;
578	}
579
580	/*
581	 * If it's a COW mapping, write protect it both
582	 * in the parent and the child
583	 */
584	if (is_cow_mapping(vm_flags)) {
585		ptep_set_wrprotect(src_mm, addr, src_pte);
586		pte = pte_wrprotect(pte);
587	}
588
589	/*
590	 * If it's a shared mapping, mark it clean in
591	 * the child
592	 */
593	if (vm_flags & VM_SHARED)
594		pte = pte_mkclean(pte);
595	pte = pte_mkold(pte);
596
597	page = vm_normal_page(vma, addr, pte);
598	if (page) {
599		get_page(page);
600		page_dup_rmap(page, vma, addr);
601		rss[!!PageAnon(page)]++;
602	}
603
604out_set_pte:
605	set_pte_at(dst_mm, addr, dst_pte, pte);
606}
607
608static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
609		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
610		unsigned long addr, unsigned long end)
611{
612	pte_t *src_pte, *dst_pte;
613	spinlock_t *src_ptl, *dst_ptl;
614	int progress = 0;
615	int rss[2];
616
617again:
618	rss[1] = rss[0] = 0;
619	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
620	if (!dst_pte)
621		return -ENOMEM;
622	src_pte = pte_offset_map_nested(src_pmd, addr);
623	src_ptl = pte_lockptr(src_mm, src_pmd);
624	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
625	arch_enter_lazy_mmu_mode();
626
627	do {
628		/*
629		 * We are holding two locks at this point - either of them
630		 * could generate latencies in another task on another CPU.
631		 */
632		if (progress >= 32) {
633			progress = 0;
634			if (need_resched() ||
635			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
636				break;
637		}
638		if (pte_none(*src_pte)) {
639			progress++;
640			continue;
641		}
642		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
643		progress += 8;
644	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
645
646	arch_leave_lazy_mmu_mode();
647	spin_unlock(src_ptl);
648	pte_unmap_nested(src_pte - 1);
649	add_mm_rss(dst_mm, rss[0], rss[1]);
650	pte_unmap_unlock(dst_pte - 1, dst_ptl);
651	cond_resched();
652	if (addr != end)
653		goto again;
654	return 0;
655}
656
657static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
659		unsigned long addr, unsigned long end)
660{
661	pmd_t *src_pmd, *dst_pmd;
662	unsigned long next;
663
664	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
665	if (!dst_pmd)
666		return -ENOMEM;
667	src_pmd = pmd_offset(src_pud, addr);
668	do {
669		next = pmd_addr_end(addr, end);
670		if (pmd_none_or_clear_bad(src_pmd))
671			continue;
672		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
673						vma, addr, next))
674			return -ENOMEM;
675	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
676	return 0;
677}
678
679static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
680		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
681		unsigned long addr, unsigned long end)
682{
683	pud_t *src_pud, *dst_pud;
684	unsigned long next;
685
686	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
687	if (!dst_pud)
688		return -ENOMEM;
689	src_pud = pud_offset(src_pgd, addr);
690	do {
691		next = pud_addr_end(addr, end);
692		if (pud_none_or_clear_bad(src_pud))
693			continue;
694		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
695						vma, addr, next))
696			return -ENOMEM;
697	} while (dst_pud++, src_pud++, addr = next, addr != end);
698	return 0;
699}
700
701int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702		struct vm_area_struct *vma)
703{
704	pgd_t *src_pgd, *dst_pgd;
705	unsigned long next;
706	unsigned long addr = vma->vm_start;
707	unsigned long end = vma->vm_end;
708	int ret;
709
710	/*
711	 * Don't copy ptes where a page fault will fill them correctly.
712	 * Fork becomes much lighter when there are big shared or private
713	 * readonly mappings. The tradeoff is that copy_page_range is more
714	 * efficient than faulting.
715	 */
716	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
717		if (!vma->anon_vma)
718			return 0;
719	}
720
721	if (is_vm_hugetlb_page(vma))
722		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
723
724	if (unlikely(is_pfn_mapping(vma))) {
725		/*
726		 * We do not free on error cases below as remove_vma
727		 * gets called on error from higher level routine
728		 */
729		ret = track_pfn_vma_copy(vma);
730		if (ret)
731			return ret;
732	}
733
734	/*
735	 * We need to invalidate the secondary MMU mappings only when
736	 * there could be a permission downgrade on the ptes of the
737	 * parent mm. And a permission downgrade will only happen if
738	 * is_cow_mapping() returns true.
739	 */
740	if (is_cow_mapping(vma->vm_flags))
741		mmu_notifier_invalidate_range_start(src_mm, addr, end);
742
743	ret = 0;
744	dst_pgd = pgd_offset(dst_mm, addr);
745	src_pgd = pgd_offset(src_mm, addr);
746	do {
747		next = pgd_addr_end(addr, end);
748		if (pgd_none_or_clear_bad(src_pgd))
749			continue;
750		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
751					    vma, addr, next))) {
752			ret = -ENOMEM;
753			break;
754		}
755	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
756
757	if (is_cow_mapping(vma->vm_flags))
758		mmu_notifier_invalidate_range_end(src_mm,
759						  vma->vm_start, end);
760	return ret;
761}
762
763static unsigned long zap_pte_range(struct mmu_gather *tlb,
764				struct vm_area_struct *vma, pmd_t *pmd,
765				unsigned long addr, unsigned long end,
766				long *zap_work, struct zap_details *details)
767{
768	struct mm_struct *mm = tlb->mm;
769	pte_t *pte;
770	spinlock_t *ptl;
771	int file_rss = 0;
772	int anon_rss = 0;
773
774	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
775	arch_enter_lazy_mmu_mode();
776	do {
777		pte_t ptent = *pte;
778		if (pte_none(ptent)) {
779			(*zap_work)--;
780			continue;
781		}
782
783		(*zap_work) -= PAGE_SIZE;
784
785		if (pte_present(ptent)) {
786			struct page *page;
787
788			page = vm_normal_page(vma, addr, ptent);
789			if (unlikely(details) && page) {
790				/*
791				 * unmap_shared_mapping_pages() wants to
792				 * invalidate cache without truncating:
793				 * unmap shared but keep private pages.
794				 */
795				if (details->check_mapping &&
796				    details->check_mapping != page->mapping)
797					continue;
798				/*
799				 * Each page->index must be checked when
800				 * invalidating or truncating nonlinear.
801				 */
802				if (details->nonlinear_vma &&
803				    (page->index < details->first_index ||
804				     page->index > details->last_index))
805					continue;
806			}
807			ptent = ptep_get_and_clear_full(mm, addr, pte,
808							tlb->fullmm);
809			tlb_remove_tlb_entry(tlb, pte, addr);
810			if (unlikely(!page))
811				continue;
812			if (unlikely(details) && details->nonlinear_vma
813			    && linear_page_index(details->nonlinear_vma,
814						addr) != page->index)
815				set_pte_at(mm, addr, pte,
816					   pgoff_to_pte(page->index));
817			if (PageAnon(page))
818				anon_rss--;
819			else {
820				if (pte_dirty(ptent))
821					set_page_dirty(page);
822				if (pte_young(ptent) &&
823				    likely(!VM_SequentialReadHint(vma)))
824					mark_page_accessed(page);
825				file_rss--;
826			}
827			page_remove_rmap(page);
828			if (unlikely(page_mapcount(page) < 0))
829				print_bad_pte(vma, addr, ptent, page);
830			tlb_remove_page(tlb, page);
831			continue;
832		}
833		/*
834		 * If details->check_mapping, we leave swap entries;
835		 * if details->nonlinear_vma, we leave file entries.
836		 */
837		if (unlikely(details))
838			continue;
839		if (pte_file(ptent)) {
840			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
841				print_bad_pte(vma, addr, ptent, NULL);
842		} else if
843		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
844			print_bad_pte(vma, addr, ptent, NULL);
845		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
846	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
847
848	add_mm_rss(mm, file_rss, anon_rss);
849	arch_leave_lazy_mmu_mode();
850	pte_unmap_unlock(pte - 1, ptl);
851
852	return addr;
853}
854
855static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
856				struct vm_area_struct *vma, pud_t *pud,
857				unsigned long addr, unsigned long end,
858				long *zap_work, struct zap_details *details)
859{
860	pmd_t *pmd;
861	unsigned long next;
862
863	pmd = pmd_offset(pud, addr);
864	do {
865		next = pmd_addr_end(addr, end);
866		if (pmd_none_or_clear_bad(pmd)) {
867			(*zap_work)--;
868			continue;
869		}
870		next = zap_pte_range(tlb, vma, pmd, addr, next,
871						zap_work, details);
872	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
873
874	return addr;
875}
876
877static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
878				struct vm_area_struct *vma, pgd_t *pgd,
879				unsigned long addr, unsigned long end,
880				long *zap_work, struct zap_details *details)
881{
882	pud_t *pud;
883	unsigned long next;
884
885	pud = pud_offset(pgd, addr);
886	do {
887		next = pud_addr_end(addr, end);
888		if (pud_none_or_clear_bad(pud)) {
889			(*zap_work)--;
890			continue;
891		}
892		next = zap_pmd_range(tlb, vma, pud, addr, next,
893						zap_work, details);
894	} while (pud++, addr = next, (addr != end && *zap_work > 0));
895
896	return addr;
897}
898
899static unsigned long unmap_page_range(struct mmu_gather *tlb,
900				struct vm_area_struct *vma,
901				unsigned long addr, unsigned long end,
902				long *zap_work, struct zap_details *details)
903{
904	pgd_t *pgd;
905	unsigned long next;
906
907	if (details && !details->check_mapping && !details->nonlinear_vma)
908		details = NULL;
909
910	BUG_ON(addr >= end);
911	tlb_start_vma(tlb, vma);
912	pgd = pgd_offset(vma->vm_mm, addr);
913	do {
914		next = pgd_addr_end(addr, end);
915		if (pgd_none_or_clear_bad(pgd)) {
916			(*zap_work)--;
917			continue;
918		}
919		next = zap_pud_range(tlb, vma, pgd, addr, next,
920						zap_work, details);
921	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
922	tlb_end_vma(tlb, vma);
923
924	return addr;
925}
926
927#ifdef CONFIG_PREEMPT
928# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
929#else
930/* No preempt: go for improved straight-line efficiency */
931# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
932#endif
933
934/**
935 * unmap_vmas - unmap a range of memory covered by a list of vma's
936 * @tlbp: address of the caller's struct mmu_gather
937 * @vma: the starting vma
938 * @start_addr: virtual address at which to start unmapping
939 * @end_addr: virtual address at which to end unmapping
940 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
941 * @details: details of nonlinear truncation or shared cache invalidation
942 *
943 * Returns the end address of the unmapping (restart addr if interrupted).
944 *
945 * Unmap all pages in the vma list.
946 *
947 * We aim to not hold locks for too long (for scheduling latency reasons).
948 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
949 * return the ending mmu_gather to the caller.
950 *
951 * Only addresses between `start' and `end' will be unmapped.
952 *
953 * The VMA list must be sorted in ascending virtual address order.
954 *
955 * unmap_vmas() assumes that the caller will flush the whole unmapped address
956 * range after unmap_vmas() returns.  So the only responsibility here is to
957 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
958 * drops the lock and schedules.
959 */
960unsigned long unmap_vmas(struct mmu_gather **tlbp,
961		struct vm_area_struct *vma, unsigned long start_addr,
962		unsigned long end_addr, unsigned long *nr_accounted,
963		struct zap_details *details)
964{
965	long zap_work = ZAP_BLOCK_SIZE;
966	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
967	int tlb_start_valid = 0;
968	unsigned long start = start_addr;
969	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
970	int fullmm = (*tlbp)->fullmm;
971	struct mm_struct *mm = vma->vm_mm;
972
973	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
974	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
975		unsigned long end;
976
977		start = max(vma->vm_start, start_addr);
978		if (start >= vma->vm_end)
979			continue;
980		end = min(vma->vm_end, end_addr);
981		if (end <= vma->vm_start)
982			continue;
983
984		if (vma->vm_flags & VM_ACCOUNT)
985			*nr_accounted += (end - start) >> PAGE_SHIFT;
986
987		if (unlikely(is_pfn_mapping(vma)))
988			untrack_pfn_vma(vma, 0, 0);
989
990		while (start != end) {
991			if (!tlb_start_valid) {
992				tlb_start = start;
993				tlb_start_valid = 1;
994			}
995
996			if (unlikely(is_vm_hugetlb_page(vma))) {
997				/*
998				 * It is undesirable to test vma->vm_file as it
999				 * should be non-null for valid hugetlb area.
1000				 * However, vm_file will be NULL in the error
1001				 * cleanup path of do_mmap_pgoff. When
1002				 * hugetlbfs ->mmap method fails,
1003				 * do_mmap_pgoff() nullifies vma->vm_file
1004				 * before calling this function to clean up.
1005				 * Since no pte has actually been setup, it is
1006				 * safe to do nothing in this case.
1007				 */
1008				if (vma->vm_file) {
1009					unmap_hugepage_range(vma, start, end, NULL);
1010					zap_work -= (end - start) /
1011					pages_per_huge_page(hstate_vma(vma));
1012				}
1013
1014				start = end;
1015			} else
1016				start = unmap_page_range(*tlbp, vma,
1017						start, end, &zap_work, details);
1018
1019			if (zap_work > 0) {
1020				BUG_ON(start != end);
1021				break;
1022			}
1023
1024			tlb_finish_mmu(*tlbp, tlb_start, start);
1025
1026			if (need_resched() ||
1027				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1028				if (i_mmap_lock) {
1029					*tlbp = NULL;
1030					goto out;
1031				}
1032				cond_resched();
1033			}
1034
1035			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1036			tlb_start_valid = 0;
1037			zap_work = ZAP_BLOCK_SIZE;
1038		}
1039	}
1040out:
1041	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1042	return start;	/* which is now the end (or restart) address */
1043}
1044
1045/**
1046 * zap_page_range - remove user pages in a given range
1047 * @vma: vm_area_struct holding the applicable pages
1048 * @address: starting address of pages to zap
1049 * @size: number of bytes to zap
1050 * @details: details of nonlinear truncation or shared cache invalidation
1051 */
1052unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1053		unsigned long size, struct zap_details *details)
1054{
1055	struct mm_struct *mm = vma->vm_mm;
1056	struct mmu_gather *tlb;
1057	unsigned long end = address + size;
1058	unsigned long nr_accounted = 0;
1059
1060	lru_add_drain();
1061	tlb = tlb_gather_mmu(mm, 0);
1062	update_hiwater_rss(mm);
1063	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1064	if (tlb)
1065		tlb_finish_mmu(tlb, address, end);
1066	return end;
1067}
1068
1069/**
1070 * zap_vma_ptes - remove ptes mapping the vma
1071 * @vma: vm_area_struct holding ptes to be zapped
1072 * @address: starting address of pages to zap
1073 * @size: number of bytes to zap
1074 *
1075 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1076 *
1077 * The entire address range must be fully contained within the vma.
1078 *
1079 * Returns 0 if successful.
1080 */
1081int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1082		unsigned long size)
1083{
1084	if (address < vma->vm_start || address + size > vma->vm_end ||
1085	    		!(vma->vm_flags & VM_PFNMAP))
1086		return -1;
1087	zap_page_range(vma, address, size, NULL);
1088	return 0;
1089}
1090EXPORT_SYMBOL_GPL(zap_vma_ptes);
1091
1092/*
1093 * Do a quick page-table lookup for a single page.
1094 */
1095struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1096			unsigned int flags)
1097{
1098	pgd_t *pgd;
1099	pud_t *pud;
1100	pmd_t *pmd;
1101	pte_t *ptep, pte;
1102	spinlock_t *ptl;
1103	struct page *page;
1104	struct mm_struct *mm = vma->vm_mm;
1105
1106	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1107	if (!IS_ERR(page)) {
1108		BUG_ON(flags & FOLL_GET);
1109		goto out;
1110	}
1111
1112	page = NULL;
1113	pgd = pgd_offset(mm, address);
1114	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1115		goto no_page_table;
1116
1117	pud = pud_offset(pgd, address);
1118	if (pud_none(*pud))
1119		goto no_page_table;
1120	if (pud_huge(*pud)) {
1121		BUG_ON(flags & FOLL_GET);
1122		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1123		goto out;
1124	}
1125	if (unlikely(pud_bad(*pud)))
1126		goto no_page_table;
1127
1128	pmd = pmd_offset(pud, address);
1129	if (pmd_none(*pmd))
1130		goto no_page_table;
1131	if (pmd_huge(*pmd)) {
1132		BUG_ON(flags & FOLL_GET);
1133		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1134		goto out;
1135	}
1136	if (unlikely(pmd_bad(*pmd)))
1137		goto no_page_table;
1138
1139	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1140
1141	pte = *ptep;
1142	if (!pte_present(pte))
1143		goto no_page;
1144	if ((flags & FOLL_WRITE) && !pte_write(pte))
1145		goto unlock;
1146	page = vm_normal_page(vma, address, pte);
1147	if (unlikely(!page))
1148		goto bad_page;
1149
1150	if (flags & FOLL_GET)
1151		get_page(page);
1152	if (flags & FOLL_TOUCH) {
1153		if ((flags & FOLL_WRITE) &&
1154		    !pte_dirty(pte) && !PageDirty(page))
1155			set_page_dirty(page);
1156		/*
1157		 * pte_mkyoung() would be more correct here, but atomic care
1158		 * is needed to avoid losing the dirty bit: it is easier to use
1159		 * mark_page_accessed().
1160		 */
1161		mark_page_accessed(page);
1162	}
1163unlock:
1164	pte_unmap_unlock(ptep, ptl);
1165out:
1166	return page;
1167
1168bad_page:
1169	pte_unmap_unlock(ptep, ptl);
1170	return ERR_PTR(-EFAULT);
1171
1172no_page:
1173	pte_unmap_unlock(ptep, ptl);
1174	if (!pte_none(pte))
1175		return page;
1176	/* Fall through to ZERO_PAGE handling */
1177no_page_table:
1178	/*
1179	 * When core dumping an enormous anonymous area that nobody
1180	 * has touched so far, we don't want to allocate page tables.
1181	 */
1182	if (flags & FOLL_ANON) {
1183		page = ZERO_PAGE(0);
1184		if (flags & FOLL_GET)
1185			get_page(page);
1186		BUG_ON(flags & FOLL_WRITE);
1187	}
1188	return page;
1189}
1190
1191/* Can we do the FOLL_ANON optimization? */
1192static inline int use_zero_page(struct vm_area_struct *vma)
1193{
1194	/*
1195	 * We don't want to optimize FOLL_ANON for make_pages_present()
1196	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1197	 * we want to get the page from the page tables to make sure
1198	 * that we serialize and update with any other user of that
1199	 * mapping.
1200	 */
1201	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1202		return 0;
1203	/*
1204	 * And if we have a fault routine, it's not an anonymous region.
1205	 */
1206	return !vma->vm_ops || !vma->vm_ops->fault;
1207}
1208
1209
1210
1211int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1212		     unsigned long start, int nr_pages, int flags,
1213		     struct page **pages, struct vm_area_struct **vmas)
1214{
1215	int i;
1216	unsigned int vm_flags = 0;
1217	int write = !!(flags & GUP_FLAGS_WRITE);
1218	int force = !!(flags & GUP_FLAGS_FORCE);
1219	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1220	int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1221
1222	if (nr_pages <= 0)
1223		return 0;
1224	/*
1225	 * Require read or write permissions.
1226	 * If 'force' is set, we only require the "MAY" flags.
1227	 */
1228	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1229	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1230	i = 0;
1231
1232	do {
1233		struct vm_area_struct *vma;
1234		unsigned int foll_flags;
1235
1236		vma = find_extend_vma(mm, start);
1237		if (!vma && in_gate_area(tsk, start)) {
1238			unsigned long pg = start & PAGE_MASK;
1239			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1240			pgd_t *pgd;
1241			pud_t *pud;
1242			pmd_t *pmd;
1243			pte_t *pte;
1244
1245			/* user gate pages are read-only */
1246			if (!ignore && write)
1247				return i ? : -EFAULT;
1248			if (pg > TASK_SIZE)
1249				pgd = pgd_offset_k(pg);
1250			else
1251				pgd = pgd_offset_gate(mm, pg);
1252			BUG_ON(pgd_none(*pgd));
1253			pud = pud_offset(pgd, pg);
1254			BUG_ON(pud_none(*pud));
1255			pmd = pmd_offset(pud, pg);
1256			if (pmd_none(*pmd))
1257				return i ? : -EFAULT;
1258			pte = pte_offset_map(pmd, pg);
1259			if (pte_none(*pte)) {
1260				pte_unmap(pte);
1261				return i ? : -EFAULT;
1262			}
1263			if (pages) {
1264				struct page *page = vm_normal_page(gate_vma, start, *pte);
1265				pages[i] = page;
1266				if (page)
1267					get_page(page);
1268			}
1269			pte_unmap(pte);
1270			if (vmas)
1271				vmas[i] = gate_vma;
1272			i++;
1273			start += PAGE_SIZE;
1274			nr_pages--;
1275			continue;
1276		}
1277
1278		if (!vma ||
1279		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1280		    (!ignore && !(vm_flags & vma->vm_flags)))
1281			return i ? : -EFAULT;
1282
1283		if (is_vm_hugetlb_page(vma)) {
1284			i = follow_hugetlb_page(mm, vma, pages, vmas,
1285						&start, &nr_pages, i, write);
1286			continue;
1287		}
1288
1289		foll_flags = FOLL_TOUCH;
1290		if (pages)
1291			foll_flags |= FOLL_GET;
1292		if (!write && use_zero_page(vma))
1293			foll_flags |= FOLL_ANON;
1294
1295		do {
1296			struct page *page;
1297
1298			/*
1299			 * If we have a pending SIGKILL, don't keep faulting
1300			 * pages and potentially allocating memory, unless
1301			 * current is handling munlock--e.g., on exit. In
1302			 * that case, we are not allocating memory.  Rather,
1303			 * we're only unlocking already resident/mapped pages.
1304			 */
1305			if (unlikely(!ignore_sigkill &&
1306					fatal_signal_pending(current)))
1307				return i ? i : -ERESTARTSYS;
1308
1309			if (write)
1310				foll_flags |= FOLL_WRITE;
1311
1312			cond_resched();
1313			while (!(page = follow_page(vma, start, foll_flags))) {
1314				int ret;
1315
1316				ret = handle_mm_fault(mm, vma, start,
1317					(foll_flags & FOLL_WRITE) ?
1318					FAULT_FLAG_WRITE : 0);
1319
1320				if (ret & VM_FAULT_ERROR) {
1321					if (ret & VM_FAULT_OOM)
1322						return i ? i : -ENOMEM;
1323					else if (ret & VM_FAULT_SIGBUS)
1324						return i ? i : -EFAULT;
1325					BUG();
1326				}
1327				if (ret & VM_FAULT_MAJOR)
1328					tsk->maj_flt++;
1329				else
1330					tsk->min_flt++;
1331
1332				/*
1333				 * The VM_FAULT_WRITE bit tells us that
1334				 * do_wp_page has broken COW when necessary,
1335				 * even if maybe_mkwrite decided not to set
1336				 * pte_write. We can thus safely do subsequent
1337				 * page lookups as if they were reads. But only
1338				 * do so when looping for pte_write is futile:
1339				 * in some cases userspace may also be wanting
1340				 * to write to the gotten user page, which a
1341				 * read fault here might prevent (a readonly
1342				 * page might get reCOWed by userspace write).
1343				 */
1344				if ((ret & VM_FAULT_WRITE) &&
1345				    !(vma->vm_flags & VM_WRITE))
1346					foll_flags &= ~FOLL_WRITE;
1347
1348				cond_resched();
1349			}
1350			if (IS_ERR(page))
1351				return i ? i : PTR_ERR(page);
1352			if (pages) {
1353				pages[i] = page;
1354
1355				flush_anon_page(vma, page, start);
1356				flush_dcache_page(page);
1357			}
1358			if (vmas)
1359				vmas[i] = vma;
1360			i++;
1361			start += PAGE_SIZE;
1362			nr_pages--;
1363		} while (nr_pages && start < vma->vm_end);
1364	} while (nr_pages);
1365	return i;
1366}
1367
1368/**
1369 * get_user_pages() - pin user pages in memory
1370 * @tsk:	task_struct of target task
1371 * @mm:		mm_struct of target mm
1372 * @start:	starting user address
1373 * @nr_pages:	number of pages from start to pin
1374 * @write:	whether pages will be written to by the caller
1375 * @force:	whether to force write access even if user mapping is
1376 *		readonly. This will result in the page being COWed even
1377 *		in MAP_SHARED mappings. You do not want this.
1378 * @pages:	array that receives pointers to the pages pinned.
1379 *		Should be at least nr_pages long. Or NULL, if caller
1380 *		only intends to ensure the pages are faulted in.
1381 * @vmas:	array of pointers to vmas corresponding to each page.
1382 *		Or NULL if the caller does not require them.
1383 *
1384 * Returns number of pages pinned. This may be fewer than the number
1385 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1386 * were pinned, returns -errno. Each page returned must be released
1387 * with a put_page() call when it is finished with. vmas will only
1388 * remain valid while mmap_sem is held.
1389 *
1390 * Must be called with mmap_sem held for read or write.
1391 *
1392 * get_user_pages walks a process's page tables and takes a reference to
1393 * each struct page that each user address corresponds to at a given
1394 * instant. That is, it takes the page that would be accessed if a user
1395 * thread accesses the given user virtual address at that instant.
1396 *
1397 * This does not guarantee that the page exists in the user mappings when
1398 * get_user_pages returns, and there may even be a completely different
1399 * page there in some cases (eg. if mmapped pagecache has been invalidated
1400 * and subsequently re faulted). However it does guarantee that the page
1401 * won't be freed completely. And mostly callers simply care that the page
1402 * contains data that was valid *at some point in time*. Typically, an IO
1403 * or similar operation cannot guarantee anything stronger anyway because
1404 * locks can't be held over the syscall boundary.
1405 *
1406 * If write=0, the page must not be written to. If the page is written to,
1407 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1408 * after the page is finished with, and before put_page is called.
1409 *
1410 * get_user_pages is typically used for fewer-copy IO operations, to get a
1411 * handle on the memory by some means other than accesses via the user virtual
1412 * addresses. The pages may be submitted for DMA to devices or accessed via
1413 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1414 * use the correct cache flushing APIs.
1415 *
1416 * See also get_user_pages_fast, for performance critical applications.
1417 */
1418int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1419		unsigned long start, int nr_pages, int write, int force,
1420		struct page **pages, struct vm_area_struct **vmas)
1421{
1422	int flags = 0;
1423
1424	if (write)
1425		flags |= GUP_FLAGS_WRITE;
1426	if (force)
1427		flags |= GUP_FLAGS_FORCE;
1428
1429	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1430}
1431
1432EXPORT_SYMBOL(get_user_pages);
1433
1434pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1435			spinlock_t **ptl)
1436{
1437	pgd_t * pgd = pgd_offset(mm, addr);
1438	pud_t * pud = pud_alloc(mm, pgd, addr);
1439	if (pud) {
1440		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1441		if (pmd)
1442			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1443	}
1444	return NULL;
1445}
1446
1447/*
1448 * This is the old fallback for page remapping.
1449 *
1450 * For historical reasons, it only allows reserved pages. Only
1451 * old drivers should use this, and they needed to mark their
1452 * pages reserved for the old functions anyway.
1453 */
1454static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1455			struct page *page, pgprot_t prot)
1456{
1457	struct mm_struct *mm = vma->vm_mm;
1458	int retval;
1459	pte_t *pte;
1460	spinlock_t *ptl;
1461
1462	retval = -EINVAL;
1463	if (PageAnon(page))
1464		goto out;
1465	retval = -ENOMEM;
1466	flush_dcache_page(page);
1467	pte = get_locked_pte(mm, addr, &ptl);
1468	if (!pte)
1469		goto out;
1470	retval = -EBUSY;
1471	if (!pte_none(*pte))
1472		goto out_unlock;
1473
1474	/* Ok, finally just insert the thing.. */
1475	get_page(page);
1476	inc_mm_counter(mm, file_rss);
1477	page_add_file_rmap(page);
1478	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1479
1480	retval = 0;
1481	pte_unmap_unlock(pte, ptl);
1482	return retval;
1483out_unlock:
1484	pte_unmap_unlock(pte, ptl);
1485out:
1486	return retval;
1487}
1488
1489/**
1490 * vm_insert_page - insert single page into user vma
1491 * @vma: user vma to map to
1492 * @addr: target user address of this page
1493 * @page: source kernel page
1494 *
1495 * This allows drivers to insert individual pages they've allocated
1496 * into a user vma.
1497 *
1498 * The page has to be a nice clean _individual_ kernel allocation.
1499 * If you allocate a compound page, you need to have marked it as
1500 * such (__GFP_COMP), or manually just split the page up yourself
1501 * (see split_page()).
1502 *
1503 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1504 * took an arbitrary page protection parameter. This doesn't allow
1505 * that. Your vma protection will have to be set up correctly, which
1506 * means that if you want a shared writable mapping, you'd better
1507 * ask for a shared writable mapping!
1508 *
1509 * The page does not need to be reserved.
1510 */
1511int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1512			struct page *page)
1513{
1514	if (addr < vma->vm_start || addr >= vma->vm_end)
1515		return -EFAULT;
1516	if (!page_count(page))
1517		return -EINVAL;
1518	vma->vm_flags |= VM_INSERTPAGE;
1519	return insert_page(vma, addr, page, vma->vm_page_prot);
1520}
1521EXPORT_SYMBOL(vm_insert_page);
1522
1523static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524			unsigned long pfn, pgprot_t prot)
1525{
1526	struct mm_struct *mm = vma->vm_mm;
1527	int retval;
1528	pte_t *pte, entry;
1529	spinlock_t *ptl;
1530
1531	retval = -ENOMEM;
1532	pte = get_locked_pte(mm, addr, &ptl);
1533	if (!pte)
1534		goto out;
1535	retval = -EBUSY;
1536	if (!pte_none(*pte))
1537		goto out_unlock;
1538
1539	/* Ok, finally just insert the thing.. */
1540	entry = pte_mkspecial(pfn_pte(pfn, prot));
1541	set_pte_at(mm, addr, pte, entry);
1542	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1543
1544	retval = 0;
1545out_unlock:
1546	pte_unmap_unlock(pte, ptl);
1547out:
1548	return retval;
1549}
1550
1551/**
1552 * vm_insert_pfn - insert single pfn into user vma
1553 * @vma: user vma to map to
1554 * @addr: target user address of this page
1555 * @pfn: source kernel pfn
1556 *
1557 * Similar to vm_inert_page, this allows drivers to insert individual pages
1558 * they've allocated into a user vma. Same comments apply.
1559 *
1560 * This function should only be called from a vm_ops->fault handler, and
1561 * in that case the handler should return NULL.
1562 *
1563 * vma cannot be a COW mapping.
1564 *
1565 * As this is called only for pages that do not currently exist, we
1566 * do not need to flush old virtual caches or the TLB.
1567 */
1568int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1569			unsigned long pfn)
1570{
1571	int ret;
1572	pgprot_t pgprot = vma->vm_page_prot;
1573	/*
1574	 * Technically, architectures with pte_special can avoid all these
1575	 * restrictions (same for remap_pfn_range).  However we would like
1576	 * consistency in testing and feature parity among all, so we should
1577	 * try to keep these invariants in place for everybody.
1578	 */
1579	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1580	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1581						(VM_PFNMAP|VM_MIXEDMAP));
1582	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1583	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1584
1585	if (addr < vma->vm_start || addr >= vma->vm_end)
1586		return -EFAULT;
1587	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1588		return -EINVAL;
1589
1590	ret = insert_pfn(vma, addr, pfn, pgprot);
1591
1592	if (ret)
1593		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1594
1595	return ret;
1596}
1597EXPORT_SYMBOL(vm_insert_pfn);
1598
1599int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1600			unsigned long pfn)
1601{
1602	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1603
1604	if (addr < vma->vm_start || addr >= vma->vm_end)
1605		return -EFAULT;
1606
1607	/*
1608	 * If we don't have pte special, then we have to use the pfn_valid()
1609	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1610	 * refcount the page if pfn_valid is true (hence insert_page rather
1611	 * than insert_pfn).
1612	 */
1613	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1614		struct page *page;
1615
1616		page = pfn_to_page(pfn);
1617		return insert_page(vma, addr, page, vma->vm_page_prot);
1618	}
1619	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1620}
1621EXPORT_SYMBOL(vm_insert_mixed);
1622
1623/*
1624 * maps a range of physical memory into the requested pages. the old
1625 * mappings are removed. any references to nonexistent pages results
1626 * in null mappings (currently treated as "copy-on-access")
1627 */
1628static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1629			unsigned long addr, unsigned long end,
1630			unsigned long pfn, pgprot_t prot)
1631{
1632	pte_t *pte;
1633	spinlock_t *ptl;
1634
1635	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1636	if (!pte)
1637		return -ENOMEM;
1638	arch_enter_lazy_mmu_mode();
1639	do {
1640		BUG_ON(!pte_none(*pte));
1641		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1642		pfn++;
1643	} while (pte++, addr += PAGE_SIZE, addr != end);
1644	arch_leave_lazy_mmu_mode();
1645	pte_unmap_unlock(pte - 1, ptl);
1646	return 0;
1647}
1648
1649static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1650			unsigned long addr, unsigned long end,
1651			unsigned long pfn, pgprot_t prot)
1652{
1653	pmd_t *pmd;
1654	unsigned long next;
1655
1656	pfn -= addr >> PAGE_SHIFT;
1657	pmd = pmd_alloc(mm, pud, addr);
1658	if (!pmd)
1659		return -ENOMEM;
1660	do {
1661		next = pmd_addr_end(addr, end);
1662		if (remap_pte_range(mm, pmd, addr, next,
1663				pfn + (addr >> PAGE_SHIFT), prot))
1664			return -ENOMEM;
1665	} while (pmd++, addr = next, addr != end);
1666	return 0;
1667}
1668
1669static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1670			unsigned long addr, unsigned long end,
1671			unsigned long pfn, pgprot_t prot)
1672{
1673	pud_t *pud;
1674	unsigned long next;
1675
1676	pfn -= addr >> PAGE_SHIFT;
1677	pud = pud_alloc(mm, pgd, addr);
1678	if (!pud)
1679		return -ENOMEM;
1680	do {
1681		next = pud_addr_end(addr, end);
1682		if (remap_pmd_range(mm, pud, addr, next,
1683				pfn + (addr >> PAGE_SHIFT), prot))
1684			return -ENOMEM;
1685	} while (pud++, addr = next, addr != end);
1686	return 0;
1687}
1688
1689/**
1690 * remap_pfn_range - remap kernel memory to userspace
1691 * @vma: user vma to map to
1692 * @addr: target user address to start at
1693 * @pfn: physical address of kernel memory
1694 * @size: size of map area
1695 * @prot: page protection flags for this mapping
1696 *
1697 *  Note: this is only safe if the mm semaphore is held when called.
1698 */
1699int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1700		    unsigned long pfn, unsigned long size, pgprot_t prot)
1701{
1702	pgd_t *pgd;
1703	unsigned long next;
1704	unsigned long end = addr + PAGE_ALIGN(size);
1705	struct mm_struct *mm = vma->vm_mm;
1706	int err;
1707
1708	/*
1709	 * Physically remapped pages are special. Tell the
1710	 * rest of the world about it:
1711	 *   VM_IO tells people not to look at these pages
1712	 *	(accesses can have side effects).
1713	 *   VM_RESERVED is specified all over the place, because
1714	 *	in 2.4 it kept swapout's vma scan off this vma; but
1715	 *	in 2.6 the LRU scan won't even find its pages, so this
1716	 *	flag means no more than count its pages in reserved_vm,
1717	 * 	and omit it from core dump, even when VM_IO turned off.
1718	 *   VM_PFNMAP tells the core MM that the base pages are just
1719	 *	raw PFN mappings, and do not have a "struct page" associated
1720	 *	with them.
1721	 *
1722	 * There's a horrible special case to handle copy-on-write
1723	 * behaviour that some programs depend on. We mark the "original"
1724	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1725	 */
1726	if (addr == vma->vm_start && end == vma->vm_end) {
1727		vma->vm_pgoff = pfn;
1728		vma->vm_flags |= VM_PFN_AT_MMAP;
1729	} else if (is_cow_mapping(vma->vm_flags))
1730		return -EINVAL;
1731
1732	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1733
1734	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1735	if (err) {
1736		/*
1737		 * To indicate that track_pfn related cleanup is not
1738		 * needed from higher level routine calling unmap_vmas
1739		 */
1740		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1741		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1742		return -EINVAL;
1743	}
1744
1745	BUG_ON(addr >= end);
1746	pfn -= addr >> PAGE_SHIFT;
1747	pgd = pgd_offset(mm, addr);
1748	flush_cache_range(vma, addr, end);
1749	do {
1750		next = pgd_addr_end(addr, end);
1751		err = remap_pud_range(mm, pgd, addr, next,
1752				pfn + (addr >> PAGE_SHIFT), prot);
1753		if (err)
1754			break;
1755	} while (pgd++, addr = next, addr != end);
1756
1757	if (err)
1758		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1759
1760	return err;
1761}
1762EXPORT_SYMBOL(remap_pfn_range);
1763
1764static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1765				     unsigned long addr, unsigned long end,
1766				     pte_fn_t fn, void *data)
1767{
1768	pte_t *pte;
1769	int err;
1770	pgtable_t token;
1771	spinlock_t *uninitialized_var(ptl);
1772
1773	pte = (mm == &init_mm) ?
1774		pte_alloc_kernel(pmd, addr) :
1775		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1776	if (!pte)
1777		return -ENOMEM;
1778
1779	BUG_ON(pmd_huge(*pmd));
1780
1781	arch_enter_lazy_mmu_mode();
1782
1783	token = pmd_pgtable(*pmd);
1784
1785	do {
1786		err = fn(pte, token, addr, data);
1787		if (err)
1788			break;
1789	} while (pte++, addr += PAGE_SIZE, addr != end);
1790
1791	arch_leave_lazy_mmu_mode();
1792
1793	if (mm != &init_mm)
1794		pte_unmap_unlock(pte-1, ptl);
1795	return err;
1796}
1797
1798static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1799				     unsigned long addr, unsigned long end,
1800				     pte_fn_t fn, void *data)
1801{
1802	pmd_t *pmd;
1803	unsigned long next;
1804	int err;
1805
1806	BUG_ON(pud_huge(*pud));
1807
1808	pmd = pmd_alloc(mm, pud, addr);
1809	if (!pmd)
1810		return -ENOMEM;
1811	do {
1812		next = pmd_addr_end(addr, end);
1813		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1814		if (err)
1815			break;
1816	} while (pmd++, addr = next, addr != end);
1817	return err;
1818}
1819
1820static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1821				     unsigned long addr, unsigned long end,
1822				     pte_fn_t fn, void *data)
1823{
1824	pud_t *pud;
1825	unsigned long next;
1826	int err;
1827
1828	pud = pud_alloc(mm, pgd, addr);
1829	if (!pud)
1830		return -ENOMEM;
1831	do {
1832		next = pud_addr_end(addr, end);
1833		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1834		if (err)
1835			break;
1836	} while (pud++, addr = next, addr != end);
1837	return err;
1838}
1839
1840/*
1841 * Scan a region of virtual memory, filling in page tables as necessary
1842 * and calling a provided function on each leaf page table.
1843 */
1844int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1845			unsigned long size, pte_fn_t fn, void *data)
1846{
1847	pgd_t *pgd;
1848	unsigned long next;
1849	unsigned long start = addr, end = addr + size;
1850	int err;
1851
1852	BUG_ON(addr >= end);
1853	mmu_notifier_invalidate_range_start(mm, start, end);
1854	pgd = pgd_offset(mm, addr);
1855	do {
1856		next = pgd_addr_end(addr, end);
1857		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1858		if (err)
1859			break;
1860	} while (pgd++, addr = next, addr != end);
1861	mmu_notifier_invalidate_range_end(mm, start, end);
1862	return err;
1863}
1864EXPORT_SYMBOL_GPL(apply_to_page_range);
1865
1866/*
1867 * handle_pte_fault chooses page fault handler according to an entry
1868 * which was read non-atomically.  Before making any commitment, on
1869 * those architectures or configurations (e.g. i386 with PAE) which
1870 * might give a mix of unmatched parts, do_swap_page and do_file_page
1871 * must check under lock before unmapping the pte and proceeding
1872 * (but do_wp_page is only called after already making such a check;
1873 * and do_anonymous_page and do_no_page can safely check later on).
1874 */
1875static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1876				pte_t *page_table, pte_t orig_pte)
1877{
1878	int same = 1;
1879#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1880	if (sizeof(pte_t) > sizeof(unsigned long)) {
1881		spinlock_t *ptl = pte_lockptr(mm, pmd);
1882		spin_lock(ptl);
1883		same = pte_same(*page_table, orig_pte);
1884		spin_unlock(ptl);
1885	}
1886#endif
1887	pte_unmap(page_table);
1888	return same;
1889}
1890
1891/*
1892 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1893 * servicing faults for write access.  In the normal case, do always want
1894 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1895 * that do not have writing enabled, when used by access_process_vm.
1896 */
1897static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1898{
1899	if (likely(vma->vm_flags & VM_WRITE))
1900		pte = pte_mkwrite(pte);
1901	return pte;
1902}
1903
1904static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1905{
1906	/*
1907	 * If the source page was a PFN mapping, we don't have
1908	 * a "struct page" for it. We do a best-effort copy by
1909	 * just copying from the original user address. If that
1910	 * fails, we just zero-fill it. Live with it.
1911	 */
1912	if (unlikely(!src)) {
1913		void *kaddr = kmap_atomic(dst, KM_USER0);
1914		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1915
1916		/*
1917		 * This really shouldn't fail, because the page is there
1918		 * in the page tables. But it might just be unreadable,
1919		 * in which case we just give up and fill the result with
1920		 * zeroes.
1921		 */
1922		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1923			memset(kaddr, 0, PAGE_SIZE);
1924		kunmap_atomic(kaddr, KM_USER0);
1925		flush_dcache_page(dst);
1926	} else
1927		copy_user_highpage(dst, src, va, vma);
1928}
1929
1930/*
1931 * This routine handles present pages, when users try to write
1932 * to a shared page. It is done by copying the page to a new address
1933 * and decrementing the shared-page counter for the old page.
1934 *
1935 * Note that this routine assumes that the protection checks have been
1936 * done by the caller (the low-level page fault routine in most cases).
1937 * Thus we can safely just mark it writable once we've done any necessary
1938 * COW.
1939 *
1940 * We also mark the page dirty at this point even though the page will
1941 * change only once the write actually happens. This avoids a few races,
1942 * and potentially makes it more efficient.
1943 *
1944 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1945 * but allow concurrent faults), with pte both mapped and locked.
1946 * We return with mmap_sem still held, but pte unmapped and unlocked.
1947 */
1948static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1949		unsigned long address, pte_t *page_table, pmd_t *pmd,
1950		spinlock_t *ptl, pte_t orig_pte)
1951{
1952	struct page *old_page, *new_page;
1953	pte_t entry;
1954	int reuse = 0, ret = 0;
1955	int page_mkwrite = 0;
1956	struct page *dirty_page = NULL;
1957
1958	old_page = vm_normal_page(vma, address, orig_pte);
1959	if (!old_page) {
1960		/*
1961		 * VM_MIXEDMAP !pfn_valid() case
1962		 *
1963		 * We should not cow pages in a shared writeable mapping.
1964		 * Just mark the pages writable as we can't do any dirty
1965		 * accounting on raw pfn maps.
1966		 */
1967		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1968				     (VM_WRITE|VM_SHARED))
1969			goto reuse;
1970		goto gotten;
1971	}
1972
1973	/*
1974	 * Take out anonymous pages first, anonymous shared vmas are
1975	 * not dirty accountable.
1976	 */
1977	if (PageAnon(old_page)) {
1978		if (!trylock_page(old_page)) {
1979			page_cache_get(old_page);
1980			pte_unmap_unlock(page_table, ptl);
1981			lock_page(old_page);
1982			page_table = pte_offset_map_lock(mm, pmd, address,
1983							 &ptl);
1984			if (!pte_same(*page_table, orig_pte)) {
1985				unlock_page(old_page);
1986				page_cache_release(old_page);
1987				goto unlock;
1988			}
1989			page_cache_release(old_page);
1990		}
1991		reuse = reuse_swap_page(old_page);
1992		unlock_page(old_page);
1993	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1994					(VM_WRITE|VM_SHARED))) {
1995		/*
1996		 * Only catch write-faults on shared writable pages,
1997		 * read-only shared pages can get COWed by
1998		 * get_user_pages(.write=1, .force=1).
1999		 */
2000		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2001			struct vm_fault vmf;
2002			int tmp;
2003
2004			vmf.virtual_address = (void __user *)(address &
2005								PAGE_MASK);
2006			vmf.pgoff = old_page->index;
2007			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2008			vmf.page = old_page;
2009
2010			/*
2011			 * Notify the address space that the page is about to
2012			 * become writable so that it can prohibit this or wait
2013			 * for the page to get into an appropriate state.
2014			 *
2015			 * We do this without the lock held, so that it can
2016			 * sleep if it needs to.
2017			 */
2018			page_cache_get(old_page);
2019			pte_unmap_unlock(page_table, ptl);
2020
2021			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2022			if (unlikely(tmp &
2023					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2024				ret = tmp;
2025				goto unwritable_page;
2026			}
2027			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2028				lock_page(old_page);
2029				if (!old_page->mapping) {
2030					ret = 0; /* retry the fault */
2031					unlock_page(old_page);
2032					goto unwritable_page;
2033				}
2034			} else
2035				VM_BUG_ON(!PageLocked(old_page));
2036
2037			/*
2038			 * Since we dropped the lock we need to revalidate
2039			 * the PTE as someone else may have changed it.  If
2040			 * they did, we just return, as we can count on the
2041			 * MMU to tell us if they didn't also make it writable.
2042			 */
2043			page_table = pte_offset_map_lock(mm, pmd, address,
2044							 &ptl);
2045			if (!pte_same(*page_table, orig_pte)) {
2046				unlock_page(old_page);
2047				page_cache_release(old_page);
2048				goto unlock;
2049			}
2050
2051			page_mkwrite = 1;
2052		}
2053		dirty_page = old_page;
2054		get_page(dirty_page);
2055		reuse = 1;
2056	}
2057
2058	if (reuse) {
2059reuse:
2060		flush_cache_page(vma, address, pte_pfn(orig_pte));
2061		entry = pte_mkyoung(orig_pte);
2062		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2063		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2064			update_mmu_cache(vma, address, entry);
2065		ret |= VM_FAULT_WRITE;
2066		goto unlock;
2067	}
2068
2069	/*
2070	 * Ok, we need to copy. Oh, well..
2071	 */
2072	page_cache_get(old_page);
2073gotten:
2074	pte_unmap_unlock(page_table, ptl);
2075
2076	if (unlikely(anon_vma_prepare(vma)))
2077		goto oom;
2078	VM_BUG_ON(old_page == ZERO_PAGE(0));
2079	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2080	if (!new_page)
2081		goto oom;
2082	/*
2083	 * Don't let another task, with possibly unlocked vma,
2084	 * keep the mlocked page.
2085	 */
2086	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2087		lock_page(old_page);	/* for LRU manipulation */
2088		clear_page_mlock(old_page);
2089		unlock_page(old_page);
2090	}
2091	cow_user_page(new_page, old_page, address, vma);
2092	__SetPageUptodate(new_page);
2093
2094	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2095		goto oom_free_new;
2096
2097	/*
2098	 * Re-check the pte - we dropped the lock
2099	 */
2100	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2101	if (likely(pte_same(*page_table, orig_pte))) {
2102		if (old_page) {
2103			if (!PageAnon(old_page)) {
2104				dec_mm_counter(mm, file_rss);
2105				inc_mm_counter(mm, anon_rss);
2106			}
2107		} else
2108			inc_mm_counter(mm, anon_rss);
2109		flush_cache_page(vma, address, pte_pfn(orig_pte));
2110		entry = mk_pte(new_page, vma->vm_page_prot);
2111		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2112		/*
2113		 * Clear the pte entry and flush it first, before updating the
2114		 * pte with the new entry. This will avoid a race condition
2115		 * seen in the presence of one thread doing SMC and another
2116		 * thread doing COW.
2117		 */
2118		ptep_clear_flush(vma, address, page_table);
2119		page_add_new_anon_rmap(new_page, vma, address);
2120		/*
2121		 * We call the notify macro here because, when using secondary
2122		 * mmu page tables (such as kvm shadow page tables), we want the
2123		 * new page to be mapped directly into the secondary page table.
2124		 */
2125		set_pte_at_notify(mm, address, page_table, entry);
2126		update_mmu_cache(vma, address, entry);
2127		if (old_page) {
2128			/*
2129			 * Only after switching the pte to the new page may
2130			 * we remove the mapcount here. Otherwise another
2131			 * process may come and find the rmap count decremented
2132			 * before the pte is switched to the new page, and
2133			 * "reuse" the old page writing into it while our pte
2134			 * here still points into it and can be read by other
2135			 * threads.
2136			 *
2137			 * The critical issue is to order this
2138			 * page_remove_rmap with the ptp_clear_flush above.
2139			 * Those stores are ordered by (if nothing else,)
2140			 * the barrier present in the atomic_add_negative
2141			 * in page_remove_rmap.
2142			 *
2143			 * Then the TLB flush in ptep_clear_flush ensures that
2144			 * no process can access the old page before the
2145			 * decremented mapcount is visible. And the old page
2146			 * cannot be reused until after the decremented
2147			 * mapcount is visible. So transitively, TLBs to
2148			 * old page will be flushed before it can be reused.
2149			 */
2150			page_remove_rmap(old_page);
2151		}
2152
2153		/* Free the old page.. */
2154		new_page = old_page;
2155		ret |= VM_FAULT_WRITE;
2156	} else
2157		mem_cgroup_uncharge_page(new_page);
2158
2159	if (new_page)
2160		page_cache_release(new_page);
2161	if (old_page)
2162		page_cache_release(old_page);
2163unlock:
2164	pte_unmap_unlock(page_table, ptl);
2165	if (dirty_page) {
2166		/*
2167		 * Yes, Virginia, this is actually required to prevent a race
2168		 * with clear_page_dirty_for_io() from clearing the page dirty
2169		 * bit after it clear all dirty ptes, but before a racing
2170		 * do_wp_page installs a dirty pte.
2171		 *
2172		 * do_no_page is protected similarly.
2173		 */
2174		if (!page_mkwrite) {
2175			wait_on_page_locked(dirty_page);
2176			set_page_dirty_balance(dirty_page, page_mkwrite);
2177		}
2178		put_page(dirty_page);
2179		if (page_mkwrite) {
2180			struct address_space *mapping = dirty_page->mapping;
2181
2182			set_page_dirty(dirty_page);
2183			unlock_page(dirty_page);
2184			page_cache_release(dirty_page);
2185			if (mapping)	{
2186				/*
2187				 * Some device drivers do not set page.mapping
2188				 * but still dirty their pages
2189				 */
2190				balance_dirty_pages_ratelimited(mapping);
2191			}
2192		}
2193
2194		/* file_update_time outside page_lock */
2195		if (vma->vm_file)
2196			file_update_time(vma->vm_file);
2197	}
2198	return ret;
2199oom_free_new:
2200	page_cache_release(new_page);
2201oom:
2202	if (old_page) {
2203		if (page_mkwrite) {
2204			unlock_page(old_page);
2205			page_cache_release(old_page);
2206		}
2207		page_cache_release(old_page);
2208	}
2209	return VM_FAULT_OOM;
2210
2211unwritable_page:
2212	page_cache_release(old_page);
2213	return ret;
2214}
2215
2216/*
2217 * Helper functions for unmap_mapping_range().
2218 *
2219 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2220 *
2221 * We have to restart searching the prio_tree whenever we drop the lock,
2222 * since the iterator is only valid while the lock is held, and anyway
2223 * a later vma might be split and reinserted earlier while lock dropped.
2224 *
2225 * The list of nonlinear vmas could be handled more efficiently, using
2226 * a placeholder, but handle it in the same way until a need is shown.
2227 * It is important to search the prio_tree before nonlinear list: a vma
2228 * may become nonlinear and be shifted from prio_tree to nonlinear list
2229 * while the lock is dropped; but never shifted from list to prio_tree.
2230 *
2231 * In order to make forward progress despite restarting the search,
2232 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2233 * quickly skip it next time around.  Since the prio_tree search only
2234 * shows us those vmas affected by unmapping the range in question, we
2235 * can't efficiently keep all vmas in step with mapping->truncate_count:
2236 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2237 * mapping->truncate_count and vma->vm_truncate_count are protected by
2238 * i_mmap_lock.
2239 *
2240 * In order to make forward progress despite repeatedly restarting some
2241 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2242 * and restart from that address when we reach that vma again.  It might
2243 * have been split or merged, shrunk or extended, but never shifted: so
2244 * restart_addr remains valid so long as it remains in the vma's range.
2245 * unmap_mapping_range forces truncate_count to leap over page-aligned
2246 * values so we can save vma's restart_addr in its truncate_count field.
2247 */
2248#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2249
2250static void reset_vma_truncate_counts(struct address_space *mapping)
2251{
2252	struct vm_area_struct *vma;
2253	struct prio_tree_iter iter;
2254
2255	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2256		vma->vm_truncate_count = 0;
2257	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2258		vma->vm_truncate_count = 0;
2259}
2260
2261static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2262		unsigned long start_addr, unsigned long end_addr,
2263		struct zap_details *details)
2264{
2265	unsigned long restart_addr;
2266	int need_break;
2267
2268	/*
2269	 * files that support invalidating or truncating portions of the
2270	 * file from under mmaped areas must have their ->fault function
2271	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2272	 * This provides synchronisation against concurrent unmapping here.
2273	 */
2274
2275again:
2276	restart_addr = vma->vm_truncate_count;
2277	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2278		start_addr = restart_addr;
2279		if (start_addr >= end_addr) {
2280			/* Top of vma has been split off since last time */
2281			vma->vm_truncate_count = details->truncate_count;
2282			return 0;
2283		}
2284	}
2285
2286	restart_addr = zap_page_range(vma, start_addr,
2287					end_addr - start_addr, details);
2288	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2289
2290	if (restart_addr >= end_addr) {
2291		/* We have now completed this vma: mark it so */
2292		vma->vm_truncate_count = details->truncate_count;
2293		if (!need_break)
2294			return 0;
2295	} else {
2296		/* Note restart_addr in vma's truncate_count field */
2297		vma->vm_truncate_count = restart_addr;
2298		if (!need_break)
2299			goto again;
2300	}
2301
2302	spin_unlock(details->i_mmap_lock);
2303	cond_resched();
2304	spin_lock(details->i_mmap_lock);
2305	return -EINTR;
2306}
2307
2308static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2309					    struct zap_details *details)
2310{
2311	struct vm_area_struct *vma;
2312	struct prio_tree_iter iter;
2313	pgoff_t vba, vea, zba, zea;
2314
2315restart:
2316	vma_prio_tree_foreach(vma, &iter, root,
2317			details->first_index, details->last_index) {
2318		/* Skip quickly over those we have already dealt with */
2319		if (vma->vm_truncate_count == details->truncate_count)
2320			continue;
2321
2322		vba = vma->vm_pgoff;
2323		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2324		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2325		zba = details->first_index;
2326		if (zba < vba)
2327			zba = vba;
2328		zea = details->last_index;
2329		if (zea > vea)
2330			zea = vea;
2331
2332		if (unmap_mapping_range_vma(vma,
2333			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2334			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2335				details) < 0)
2336			goto restart;
2337	}
2338}
2339
2340static inline void unmap_mapping_range_list(struct list_head *head,
2341					    struct zap_details *details)
2342{
2343	struct vm_area_struct *vma;
2344
2345	/*
2346	 * In nonlinear VMAs there is no correspondence between virtual address
2347	 * offset and file offset.  So we must perform an exhaustive search
2348	 * across *all* the pages in each nonlinear VMA, not just the pages
2349	 * whose virtual address lies outside the file truncation point.
2350	 */
2351restart:
2352	list_for_each_entry(vma, head, shared.vm_set.list) {
2353		/* Skip quickly over those we have already dealt with */
2354		if (vma->vm_truncate_count == details->truncate_count)
2355			continue;
2356		details->nonlinear_vma = vma;
2357		if (unmap_mapping_range_vma(vma, vma->vm_start,
2358					vma->vm_end, details) < 0)
2359			goto restart;
2360	}
2361}
2362
2363/**
2364 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2365 * @mapping: the address space containing mmaps to be unmapped.
2366 * @holebegin: byte in first page to unmap, relative to the start of
2367 * the underlying file.  This will be rounded down to a PAGE_SIZE
2368 * boundary.  Note that this is different from vmtruncate(), which
2369 * must keep the partial page.  In contrast, we must get rid of
2370 * partial pages.
2371 * @holelen: size of prospective hole in bytes.  This will be rounded
2372 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2373 * end of the file.
2374 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2375 * but 0 when invalidating pagecache, don't throw away private data.
2376 */
2377void unmap_mapping_range(struct address_space *mapping,
2378		loff_t const holebegin, loff_t const holelen, int even_cows)
2379{
2380	struct zap_details details;
2381	pgoff_t hba = holebegin >> PAGE_SHIFT;
2382	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2383
2384	/* Check for overflow. */
2385	if (sizeof(holelen) > sizeof(hlen)) {
2386		long long holeend =
2387			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2388		if (holeend & ~(long long)ULONG_MAX)
2389			hlen = ULONG_MAX - hba + 1;
2390	}
2391
2392	details.check_mapping = even_cows? NULL: mapping;
2393	details.nonlinear_vma = NULL;
2394	details.first_index = hba;
2395	details.last_index = hba + hlen - 1;
2396	if (details.last_index < details.first_index)
2397		details.last_index = ULONG_MAX;
2398	details.i_mmap_lock = &mapping->i_mmap_lock;
2399
2400	spin_lock(&mapping->i_mmap_lock);
2401
2402	/* Protect against endless unmapping loops */
2403	mapping->truncate_count++;
2404	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2405		if (mapping->truncate_count == 0)
2406			reset_vma_truncate_counts(mapping);
2407		mapping->truncate_count++;
2408	}
2409	details.truncate_count = mapping->truncate_count;
2410
2411	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2412		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2413	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2414		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2415	spin_unlock(&mapping->i_mmap_lock);
2416}
2417EXPORT_SYMBOL(unmap_mapping_range);
2418
2419/**
2420 * vmtruncate - unmap mappings "freed" by truncate() syscall
2421 * @inode: inode of the file used
2422 * @offset: file offset to start truncating
2423 *
2424 * NOTE! We have to be ready to update the memory sharing
2425 * between the file and the memory map for a potential last
2426 * incomplete page.  Ugly, but necessary.
2427 */
2428int vmtruncate(struct inode * inode, loff_t offset)
2429{
2430	if (inode->i_size < offset) {
2431		unsigned long limit;
2432
2433		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2434		if (limit != RLIM_INFINITY && offset > limit)
2435			goto out_sig;
2436		if (offset > inode->i_sb->s_maxbytes)
2437			goto out_big;
2438		i_size_write(inode, offset);
2439	} else {
2440		struct address_space *mapping = inode->i_mapping;
2441
2442		/*
2443		 * truncation of in-use swapfiles is disallowed - it would
2444		 * cause subsequent swapout to scribble on the now-freed
2445		 * blocks.
2446		 */
2447		if (IS_SWAPFILE(inode))
2448			return -ETXTBSY;
2449		i_size_write(inode, offset);
2450
2451		/*
2452		 * unmap_mapping_range is called twice, first simply for
2453		 * efficiency so that truncate_inode_pages does fewer
2454		 * single-page unmaps.  However after this first call, and
2455		 * before truncate_inode_pages finishes, it is possible for
2456		 * private pages to be COWed, which remain after
2457		 * truncate_inode_pages finishes, hence the second
2458		 * unmap_mapping_range call must be made for correctness.
2459		 */
2460		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2461		truncate_inode_pages(mapping, offset);
2462		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2463	}
2464
2465	if (inode->i_op->truncate)
2466		inode->i_op->truncate(inode);
2467	return 0;
2468
2469out_sig:
2470	send_sig(SIGXFSZ, current, 0);
2471out_big:
2472	return -EFBIG;
2473}
2474EXPORT_SYMBOL(vmtruncate);
2475
2476int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2477{
2478	struct address_space *mapping = inode->i_mapping;
2479
2480	/*
2481	 * If the underlying filesystem is not going to provide
2482	 * a way to truncate a range of blocks (punch a hole) -
2483	 * we should return failure right now.
2484	 */
2485	if (!inode->i_op->truncate_range)
2486		return -ENOSYS;
2487
2488	mutex_lock(&inode->i_mutex);
2489	down_write(&inode->i_alloc_sem);
2490	unmap_mapping_range(mapping, offset, (end - offset), 1);
2491	truncate_inode_pages_range(mapping, offset, end);
2492	unmap_mapping_range(mapping, offset, (end - offset), 1);
2493	inode->i_op->truncate_range(inode, offset, end);
2494	up_write(&inode->i_alloc_sem);
2495	mutex_unlock(&inode->i_mutex);
2496
2497	return 0;
2498}
2499
2500/*
2501 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2502 * but allow concurrent faults), and pte mapped but not yet locked.
2503 * We return with mmap_sem still held, but pte unmapped and unlocked.
2504 */
2505static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2506		unsigned long address, pte_t *page_table, pmd_t *pmd,
2507		unsigned int flags, pte_t orig_pte)
2508{
2509	spinlock_t *ptl;
2510	struct page *page;
2511	swp_entry_t entry;
2512	pte_t pte;
2513	struct mem_cgroup *ptr = NULL;
2514	int ret = 0;
2515
2516	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2517		goto out;
2518
2519	entry = pte_to_swp_entry(orig_pte);
2520	if (is_migration_entry(entry)) {
2521		migration_entry_wait(mm, pmd, address);
2522		goto out;
2523	}
2524	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2525	page = lookup_swap_cache(entry);
2526	if (!page) {
2527		grab_swap_token(mm); /* Contend for token _before_ read-in */
2528		page = swapin_readahead(entry,
2529					GFP_HIGHUSER_MOVABLE, vma, address);
2530		if (!page) {
2531			/*
2532			 * Back out if somebody else faulted in this pte
2533			 * while we released the pte lock.
2534			 */
2535			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2536			if (likely(pte_same(*page_table, orig_pte)))
2537				ret = VM_FAULT_OOM;
2538			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2539			goto unlock;
2540		}
2541
2542		/* Had to read the page from swap area: Major fault */
2543		ret = VM_FAULT_MAJOR;
2544		count_vm_event(PGMAJFAULT);
2545	}
2546
2547	lock_page(page);
2548	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2549
2550	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2551		ret = VM_FAULT_OOM;
2552		goto out_page;
2553	}
2554
2555	/*
2556	 * Back out if somebody else already faulted in this pte.
2557	 */
2558	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2559	if (unlikely(!pte_same(*page_table, orig_pte)))
2560		goto out_nomap;
2561
2562	if (unlikely(!PageUptodate(page))) {
2563		ret = VM_FAULT_SIGBUS;
2564		goto out_nomap;
2565	}
2566
2567	/*
2568	 * The page isn't present yet, go ahead with the fault.
2569	 *
2570	 * Be careful about the sequence of operations here.
2571	 * To get its accounting right, reuse_swap_page() must be called
2572	 * while the page is counted on swap but not yet in mapcount i.e.
2573	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2574	 * must be called after the swap_free(), or it will never succeed.
2575	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2576	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2577	 * in page->private. In this case, a record in swap_cgroup  is silently
2578	 * discarded at swap_free().
2579	 */
2580
2581	inc_mm_counter(mm, anon_rss);
2582	pte = mk_pte(page, vma->vm_page_prot);
2583	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2584		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2585		flags &= ~FAULT_FLAG_WRITE;
2586	}
2587	flush_icache_page(vma, page);
2588	set_pte_at(mm, address, page_table, pte);
2589	page_add_anon_rmap(page, vma, address);
2590	/* It's better to call commit-charge after rmap is established */
2591	mem_cgroup_commit_charge_swapin(page, ptr);
2592
2593	swap_free(entry);
2594	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2595		try_to_free_swap(page);
2596	unlock_page(page);
2597
2598	if (flags & FAULT_FLAG_WRITE) {
2599		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2600		if (ret & VM_FAULT_ERROR)
2601			ret &= VM_FAULT_ERROR;
2602		goto out;
2603	}
2604
2605	/* No need to invalidate - it was non-present before */
2606	update_mmu_cache(vma, address, pte);
2607unlock:
2608	pte_unmap_unlock(page_table, ptl);
2609out:
2610	return ret;
2611out_nomap:
2612	mem_cgroup_cancel_charge_swapin(ptr);
2613	pte_unmap_unlock(page_table, ptl);
2614out_page:
2615	unlock_page(page);
2616	page_cache_release(page);
2617	return ret;
2618}
2619
2620/*
2621 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2622 * but allow concurrent faults), and pte mapped but not yet locked.
2623 * We return with mmap_sem still held, but pte unmapped and unlocked.
2624 */
2625static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2626		unsigned long address, pte_t *page_table, pmd_t *pmd,
2627		unsigned int flags)
2628{
2629	struct page *page;
2630	spinlock_t *ptl;
2631	pte_t entry;
2632
2633	/* Allocate our own private page. */
2634	pte_unmap(page_table);
2635
2636	if (unlikely(anon_vma_prepare(vma)))
2637		goto oom;
2638	page = alloc_zeroed_user_highpage_movable(vma, address);
2639	if (!page)
2640		goto oom;
2641	__SetPageUptodate(page);
2642
2643	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2644		goto oom_free_page;
2645
2646	entry = mk_pte(page, vma->vm_page_prot);
2647	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2648
2649	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2650	if (!pte_none(*page_table))
2651		goto release;
2652	inc_mm_counter(mm, anon_rss);
2653	page_add_new_anon_rmap(page, vma, address);
2654	set_pte_at(mm, address, page_table, entry);
2655
2656	/* No need to invalidate - it was non-present before */
2657	update_mmu_cache(vma, address, entry);
2658unlock:
2659	pte_unmap_unlock(page_table, ptl);
2660	return 0;
2661release:
2662	mem_cgroup_uncharge_page(page);
2663	page_cache_release(page);
2664	goto unlock;
2665oom_free_page:
2666	page_cache_release(page);
2667oom:
2668	return VM_FAULT_OOM;
2669}
2670
2671/*
2672 * __do_fault() tries to create a new page mapping. It aggressively
2673 * tries to share with existing pages, but makes a separate copy if
2674 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2675 * the next page fault.
2676 *
2677 * As this is called only for pages that do not currently exist, we
2678 * do not need to flush old virtual caches or the TLB.
2679 *
2680 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2681 * but allow concurrent faults), and pte neither mapped nor locked.
2682 * We return with mmap_sem still held, but pte unmapped and unlocked.
2683 */
2684static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2685		unsigned long address, pmd_t *pmd,
2686		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2687{
2688	pte_t *page_table;
2689	spinlock_t *ptl;
2690	struct page *page;
2691	pte_t entry;
2692	int anon = 0;
2693	int charged = 0;
2694	struct page *dirty_page = NULL;
2695	struct vm_fault vmf;
2696	int ret;
2697	int page_mkwrite = 0;
2698
2699	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2700	vmf.pgoff = pgoff;
2701	vmf.flags = flags;
2702	vmf.page = NULL;
2703
2704	ret = vma->vm_ops->fault(vma, &vmf);
2705	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2706		return ret;
2707
2708	/*
2709	 * For consistency in subsequent calls, make the faulted page always
2710	 * locked.
2711	 */
2712	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2713		lock_page(vmf.page);
2714	else
2715		VM_BUG_ON(!PageLocked(vmf.page));
2716
2717	/*
2718	 * Should we do an early C-O-W break?
2719	 */
2720	page = vmf.page;
2721	if (flags & FAULT_FLAG_WRITE) {
2722		if (!(vma->vm_flags & VM_SHARED)) {
2723			anon = 1;
2724			if (unlikely(anon_vma_prepare(vma))) {
2725				ret = VM_FAULT_OOM;
2726				goto out;
2727			}
2728			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2729						vma, address);
2730			if (!page) {
2731				ret = VM_FAULT_OOM;
2732				goto out;
2733			}
2734			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2735				ret = VM_FAULT_OOM;
2736				page_cache_release(page);
2737				goto out;
2738			}
2739			charged = 1;
2740			/*
2741			 * Don't let another task, with possibly unlocked vma,
2742			 * keep the mlocked page.
2743			 */
2744			if (vma->vm_flags & VM_LOCKED)
2745				clear_page_mlock(vmf.page);
2746			copy_user_highpage(page, vmf.page, address, vma);
2747			__SetPageUptodate(page);
2748		} else {
2749			/*
2750			 * If the page will be shareable, see if the backing
2751			 * address space wants to know that the page is about
2752			 * to become writable
2753			 */
2754			if (vma->vm_ops->page_mkwrite) {
2755				int tmp;
2756
2757				unlock_page(page);
2758				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2759				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2760				if (unlikely(tmp &
2761					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2762					ret = tmp;
2763					goto unwritable_page;
2764				}
2765				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2766					lock_page(page);
2767					if (!page->mapping) {
2768						ret = 0; /* retry the fault */
2769						unlock_page(page);
2770						goto unwritable_page;
2771					}
2772				} else
2773					VM_BUG_ON(!PageLocked(page));
2774				page_mkwrite = 1;
2775			}
2776		}
2777
2778	}
2779
2780	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2781
2782	/*
2783	 * This silly early PAGE_DIRTY setting removes a race
2784	 * due to the bad i386 page protection. But it's valid
2785	 * for other architectures too.
2786	 *
2787	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2788	 * an exclusive copy of the page, or this is a shared mapping,
2789	 * so we can make it writable and dirty to avoid having to
2790	 * handle that later.
2791	 */
2792	/* Only go through if we didn't race with anybody else... */
2793	if (likely(pte_same(*page_table, orig_pte))) {
2794		flush_icache_page(vma, page);
2795		entry = mk_pte(page, vma->vm_page_prot);
2796		if (flags & FAULT_FLAG_WRITE)
2797			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2798		if (anon) {
2799			inc_mm_counter(mm, anon_rss);
2800			page_add_new_anon_rmap(page, vma, address);
2801		} else {
2802			inc_mm_counter(mm, file_rss);
2803			page_add_file_rmap(page);
2804			if (flags & FAULT_FLAG_WRITE) {
2805				dirty_page = page;
2806				get_page(dirty_page);
2807			}
2808		}
2809		set_pte_at(mm, address, page_table, entry);
2810
2811		/* no need to invalidate: a not-present page won't be cached */
2812		update_mmu_cache(vma, address, entry);
2813	} else {
2814		if (charged)
2815			mem_cgroup_uncharge_page(page);
2816		if (anon)
2817			page_cache_release(page);
2818		else
2819			anon = 1; /* no anon but release faulted_page */
2820	}
2821
2822	pte_unmap_unlock(page_table, ptl);
2823
2824out:
2825	if (dirty_page) {
2826		struct address_space *mapping = page->mapping;
2827
2828		if (set_page_dirty(dirty_page))
2829			page_mkwrite = 1;
2830		unlock_page(dirty_page);
2831		put_page(dirty_page);
2832		if (page_mkwrite && mapping) {
2833			/*
2834			 * Some device drivers do not set page.mapping but still
2835			 * dirty their pages
2836			 */
2837			balance_dirty_pages_ratelimited(mapping);
2838		}
2839
2840		/* file_update_time outside page_lock */
2841		if (vma->vm_file)
2842			file_update_time(vma->vm_file);
2843	} else {
2844		unlock_page(vmf.page);
2845		if (anon)
2846			page_cache_release(vmf.page);
2847	}
2848
2849	return ret;
2850
2851unwritable_page:
2852	page_cache_release(page);
2853	return ret;
2854}
2855
2856static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2857		unsigned long address, pte_t *page_table, pmd_t *pmd,
2858		unsigned int flags, pte_t orig_pte)
2859{
2860	pgoff_t pgoff = (((address & PAGE_MASK)
2861			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2862
2863	pte_unmap(page_table);
2864	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2865}
2866
2867/*
2868 * Fault of a previously existing named mapping. Repopulate the pte
2869 * from the encoded file_pte if possible. This enables swappable
2870 * nonlinear vmas.
2871 *
2872 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2873 * but allow concurrent faults), and pte mapped but not yet locked.
2874 * We return with mmap_sem still held, but pte unmapped and unlocked.
2875 */
2876static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2877		unsigned long address, pte_t *page_table, pmd_t *pmd,
2878		unsigned int flags, pte_t orig_pte)
2879{
2880	pgoff_t pgoff;
2881
2882	flags |= FAULT_FLAG_NONLINEAR;
2883
2884	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2885		return 0;
2886
2887	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2888		/*
2889		 * Page table corrupted: show pte and kill process.
2890		 */
2891		print_bad_pte(vma, address, orig_pte, NULL);
2892		return VM_FAULT_OOM;
2893	}
2894
2895	pgoff = pte_to_pgoff(orig_pte);
2896	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2897}
2898
2899/*
2900 * These routines also need to handle stuff like marking pages dirty
2901 * and/or accessed for architectures that don't do it in hardware (most
2902 * RISC architectures).  The early dirtying is also good on the i386.
2903 *
2904 * There is also a hook called "update_mmu_cache()" that architectures
2905 * with external mmu caches can use to update those (ie the Sparc or
2906 * PowerPC hashed page tables that act as extended TLBs).
2907 *
2908 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2909 * but allow concurrent faults), and pte mapped but not yet locked.
2910 * We return with mmap_sem still held, but pte unmapped and unlocked.
2911 */
2912static inline int handle_pte_fault(struct mm_struct *mm,
2913		struct vm_area_struct *vma, unsigned long address,
2914		pte_t *pte, pmd_t *pmd, unsigned int flags)
2915{
2916	pte_t entry;
2917	spinlock_t *ptl;
2918
2919	entry = *pte;
2920	if (!pte_present(entry)) {
2921		if (pte_none(entry)) {
2922			if (vma->vm_ops) {
2923				if (likely(vma->vm_ops->fault))
2924					return do_linear_fault(mm, vma, address,
2925						pte, pmd, flags, entry);
2926			}
2927			return do_anonymous_page(mm, vma, address,
2928						 pte, pmd, flags);
2929		}
2930		if (pte_file(entry))
2931			return do_nonlinear_fault(mm, vma, address,
2932					pte, pmd, flags, entry);
2933		return do_swap_page(mm, vma, address,
2934					pte, pmd, flags, entry);
2935	}
2936
2937	ptl = pte_lockptr(mm, pmd);
2938	spin_lock(ptl);
2939	if (unlikely(!pte_same(*pte, entry)))
2940		goto unlock;
2941	if (flags & FAULT_FLAG_WRITE) {
2942		if (!pte_write(entry))
2943			return do_wp_page(mm, vma, address,
2944					pte, pmd, ptl, entry);
2945		entry = pte_mkdirty(entry);
2946	}
2947	entry = pte_mkyoung(entry);
2948	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2949		update_mmu_cache(vma, address, entry);
2950	} else {
2951		/*
2952		 * This is needed only for protection faults but the arch code
2953		 * is not yet telling us if this is a protection fault or not.
2954		 * This still avoids useless tlb flushes for .text page faults
2955		 * with threads.
2956		 */
2957		if (flags & FAULT_FLAG_WRITE)
2958			flush_tlb_page(vma, address);
2959	}
2960unlock:
2961	pte_unmap_unlock(pte, ptl);
2962	return 0;
2963}
2964
2965/*
2966 * By the time we get here, we already hold the mm semaphore
2967 */
2968int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2969		unsigned long address, unsigned int flags)
2970{
2971	pgd_t *pgd;
2972	pud_t *pud;
2973	pmd_t *pmd;
2974	pte_t *pte;
2975
2976	__set_current_state(TASK_RUNNING);
2977
2978	count_vm_event(PGFAULT);
2979
2980	if (unlikely(is_vm_hugetlb_page(vma)))
2981		return hugetlb_fault(mm, vma, address, flags);
2982
2983	pgd = pgd_offset(mm, address);
2984	pud = pud_alloc(mm, pgd, address);
2985	if (!pud)
2986		return VM_FAULT_OOM;
2987	pmd = pmd_alloc(mm, pud, address);
2988	if (!pmd)
2989		return VM_FAULT_OOM;
2990	pte = pte_alloc_map(mm, pmd, address);
2991	if (!pte)
2992		return VM_FAULT_OOM;
2993
2994	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
2995}
2996
2997#ifndef __PAGETABLE_PUD_FOLDED
2998/*
2999 * Allocate page upper directory.
3000 * We've already handled the fast-path in-line.
3001 */
3002int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3003{
3004	pud_t *new = pud_alloc_one(mm, address);
3005	if (!new)
3006		return -ENOMEM;
3007
3008	smp_wmb(); /* See comment in __pte_alloc */
3009
3010	spin_lock(&mm->page_table_lock);
3011	if (pgd_present(*pgd))		/* Another has populated it */
3012		pud_free(mm, new);
3013	else
3014		pgd_populate(mm, pgd, new);
3015	spin_unlock(&mm->page_table_lock);
3016	return 0;
3017}
3018#endif /* __PAGETABLE_PUD_FOLDED */
3019
3020#ifndef __PAGETABLE_PMD_FOLDED
3021/*
3022 * Allocate page middle directory.
3023 * We've already handled the fast-path in-line.
3024 */
3025int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3026{
3027	pmd_t *new = pmd_alloc_one(mm, address);
3028	if (!new)
3029		return -ENOMEM;
3030
3031	smp_wmb(); /* See comment in __pte_alloc */
3032
3033	spin_lock(&mm->page_table_lock);
3034#ifndef __ARCH_HAS_4LEVEL_HACK
3035	if (pud_present(*pud))		/* Another has populated it */
3036		pmd_free(mm, new);
3037	else
3038		pud_populate(mm, pud, new);
3039#else
3040	if (pgd_present(*pud))		/* Another has populated it */
3041		pmd_free(mm, new);
3042	else
3043		pgd_populate(mm, pud, new);
3044#endif /* __ARCH_HAS_4LEVEL_HACK */
3045	spin_unlock(&mm->page_table_lock);
3046	return 0;
3047}
3048#endif /* __PAGETABLE_PMD_FOLDED */
3049
3050int make_pages_present(unsigned long addr, unsigned long end)
3051{
3052	int ret, len, write;
3053	struct vm_area_struct * vma;
3054
3055	vma = find_vma(current->mm, addr);
3056	if (!vma)
3057		return -ENOMEM;
3058	write = (vma->vm_flags & VM_WRITE) != 0;
3059	BUG_ON(addr >= end);
3060	BUG_ON(end > vma->vm_end);
3061	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3062	ret = get_user_pages(current, current->mm, addr,
3063			len, write, 0, NULL, NULL);
3064	if (ret < 0)
3065		return ret;
3066	return ret == len ? 0 : -EFAULT;
3067}
3068
3069#if !defined(__HAVE_ARCH_GATE_AREA)
3070
3071#if defined(AT_SYSINFO_EHDR)
3072static struct vm_area_struct gate_vma;
3073
3074static int __init gate_vma_init(void)
3075{
3076	gate_vma.vm_mm = NULL;
3077	gate_vma.vm_start = FIXADDR_USER_START;
3078	gate_vma.vm_end = FIXADDR_USER_END;
3079	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3080	gate_vma.vm_page_prot = __P101;
3081	/*
3082	 * Make sure the vDSO gets into every core dump.
3083	 * Dumping its contents makes post-mortem fully interpretable later
3084	 * without matching up the same kernel and hardware config to see
3085	 * what PC values meant.
3086	 */
3087	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3088	return 0;
3089}
3090__initcall(gate_vma_init);
3091#endif
3092
3093struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3094{
3095#ifdef AT_SYSINFO_EHDR
3096	return &gate_vma;
3097#else
3098	return NULL;
3099#endif
3100}
3101
3102int in_gate_area_no_task(unsigned long addr)
3103{
3104#ifdef AT_SYSINFO_EHDR
3105	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3106		return 1;
3107#endif
3108	return 0;
3109}
3110
3111#endif	/* __HAVE_ARCH_GATE_AREA */
3112
3113static int follow_pte(struct mm_struct *mm, unsigned long address,
3114		pte_t **ptepp, spinlock_t **ptlp)
3115{
3116	pgd_t *pgd;
3117	pud_t *pud;
3118	pmd_t *pmd;
3119	pte_t *ptep;
3120
3121	pgd = pgd_offset(mm, address);
3122	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3123		goto out;
3124
3125	pud = pud_offset(pgd, address);
3126	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3127		goto out;
3128
3129	pmd = pmd_offset(pud, address);
3130	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3131		goto out;
3132
3133	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3134	if (pmd_huge(*pmd))
3135		goto out;
3136
3137	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3138	if (!ptep)
3139		goto out;
3140	if (!pte_present(*ptep))
3141		goto unlock;
3142	*ptepp = ptep;
3143	return 0;
3144unlock:
3145	pte_unmap_unlock(ptep, *ptlp);
3146out:
3147	return -EINVAL;
3148}
3149
3150/**
3151 * follow_pfn - look up PFN at a user virtual address
3152 * @vma: memory mapping
3153 * @address: user virtual address
3154 * @pfn: location to store found PFN
3155 *
3156 * Only IO mappings and raw PFN mappings are allowed.
3157 *
3158 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3159 */
3160int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3161	unsigned long *pfn)
3162{
3163	int ret = -EINVAL;
3164	spinlock_t *ptl;
3165	pte_t *ptep;
3166
3167	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3168		return ret;
3169
3170	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3171	if (ret)
3172		return ret;
3173	*pfn = pte_pfn(*ptep);
3174	pte_unmap_unlock(ptep, ptl);
3175	return 0;
3176}
3177EXPORT_SYMBOL(follow_pfn);
3178
3179#ifdef CONFIG_HAVE_IOREMAP_PROT
3180int follow_phys(struct vm_area_struct *vma,
3181		unsigned long address, unsigned int flags,
3182		unsigned long *prot, resource_size_t *phys)
3183{
3184	int ret = -EINVAL;
3185	pte_t *ptep, pte;
3186	spinlock_t *ptl;
3187
3188	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3189		goto out;
3190
3191	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3192		goto out;
3193	pte = *ptep;
3194
3195	if ((flags & FOLL_WRITE) && !pte_write(pte))
3196		goto unlock;
3197
3198	*prot = pgprot_val(pte_pgprot(pte));
3199	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3200
3201	ret = 0;
3202unlock:
3203	pte_unmap_unlock(ptep, ptl);
3204out:
3205	return ret;
3206}
3207
3208int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3209			void *buf, int len, int write)
3210{
3211	resource_size_t phys_addr;
3212	unsigned long prot = 0;
3213	void __iomem *maddr;
3214	int offset = addr & (PAGE_SIZE-1);
3215
3216	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3217		return -EINVAL;
3218
3219	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3220	if (write)
3221		memcpy_toio(maddr + offset, buf, len);
3222	else
3223		memcpy_fromio(buf, maddr + offset, len);
3224	iounmap(maddr);
3225
3226	return len;
3227}
3228#endif
3229
3230/*
3231 * Access another process' address space.
3232 * Source/target buffer must be kernel space,
3233 * Do not walk the page table directly, use get_user_pages
3234 */
3235int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3236{
3237	struct mm_struct *mm;
3238	struct vm_area_struct *vma;
3239	void *old_buf = buf;
3240
3241	mm = get_task_mm(tsk);
3242	if (!mm)
3243		return 0;
3244
3245	down_read(&mm->mmap_sem);
3246	/* ignore errors, just check how much was successfully transferred */
3247	while (len) {
3248		int bytes, ret, offset;
3249		void *maddr;
3250		struct page *page = NULL;
3251
3252		ret = get_user_pages(tsk, mm, addr, 1,
3253				write, 1, &page, &vma);
3254		if (ret <= 0) {
3255			/*
3256			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3257			 * we can access using slightly different code.
3258			 */
3259#ifdef CONFIG_HAVE_IOREMAP_PROT
3260			vma = find_vma(mm, addr);
3261			if (!vma)
3262				break;
3263			if (vma->vm_ops && vma->vm_ops->access)
3264				ret = vma->vm_ops->access(vma, addr, buf,
3265							  len, write);
3266			if (ret <= 0)
3267#endif
3268				break;
3269			bytes = ret;
3270		} else {
3271			bytes = len;
3272			offset = addr & (PAGE_SIZE-1);
3273			if (bytes > PAGE_SIZE-offset)
3274				bytes = PAGE_SIZE-offset;
3275
3276			maddr = kmap(page);
3277			if (write) {
3278				copy_to_user_page(vma, page, addr,
3279						  maddr + offset, buf, bytes);
3280				set_page_dirty_lock(page);
3281			} else {
3282				copy_from_user_page(vma, page, addr,
3283						    buf, maddr + offset, bytes);
3284			}
3285			kunmap(page);
3286			page_cache_release(page);
3287		}
3288		len -= bytes;
3289		buf += bytes;
3290		addr += bytes;
3291	}
3292	up_read(&mm->mmap_sem);
3293	mmput(mm);
3294
3295	return buf - old_buf;
3296}
3297
3298/*
3299 * Print the name of a VMA.
3300 */
3301void print_vma_addr(char *prefix, unsigned long ip)
3302{
3303	struct mm_struct *mm = current->mm;
3304	struct vm_area_struct *vma;
3305
3306	/*
3307	 * Do not print if we are in atomic
3308	 * contexts (in exception stacks, etc.):
3309	 */
3310	if (preempt_count())
3311		return;
3312
3313	down_read(&mm->mmap_sem);
3314	vma = find_vma(mm, ip);
3315	if (vma && vma->vm_file) {
3316		struct file *f = vma->vm_file;
3317		char *buf = (char *)__get_free_page(GFP_KERNEL);
3318		if (buf) {
3319			char *p, *s;
3320
3321			p = d_path(&f->f_path, buf, PAGE_SIZE);
3322			if (IS_ERR(p))
3323				p = "?";
3324			s = strrchr(p, '/');
3325			if (s)
3326				p = s+1;
3327			printk("%s%s[%lx+%lx]", prefix, p,
3328					vma->vm_start,
3329					vma->vm_end - vma->vm_start);
3330			free_page((unsigned long)buf);
3331		}
3332	}
3333	up_read(&current->mm->mmap_sem);
3334}
3335
3336#ifdef CONFIG_PROVE_LOCKING
3337void might_fault(void)
3338{
3339	/*
3340	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3341	 * holding the mmap_sem, this is safe because kernel memory doesn't
3342	 * get paged out, therefore we'll never actually fault, and the
3343	 * below annotations will generate false positives.
3344	 */
3345	if (segment_eq(get_fs(), KERNEL_DS))
3346		return;
3347
3348	might_sleep();
3349	/*
3350	 * it would be nicer only to annotate paths which are not under
3351	 * pagefault_disable, however that requires a larger audit and
3352	 * providing helpers like get_user_atomic.
3353	 */
3354	if (!in_atomic() && current->mm)
3355		might_lock_read(&current->mm->mmap_sem);
3356}
3357EXPORT_SYMBOL(might_fault);
3358#endif
3359