memory.c revision 83b964bbf82eb13a8f31bb49ca420787fe01f7a6
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/module.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60
61#include <asm/io.h>
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
68#include "internal.h"
69
70#ifndef CONFIG_NEED_MULTIPLE_NODES
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
91
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 *   as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100					1;
101#else
102					2;
103#endif
104
105static int __init disable_randmaps(char *s)
106{
107	randomize_va_space = 0;
108	return 1;
109}
110__setup("norandmaps", disable_randmaps);
111
112unsigned long zero_pfn __read_mostly;
113unsigned long highest_memmap_pfn __read_mostly;
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121	return 0;
122}
123core_initcall(init_zero_pfn);
124
125
126#if defined(SPLIT_RSS_COUNTING)
127
128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129{
130	int i;
131
132	for (i = 0; i < NR_MM_COUNTERS; i++) {
133		if (task->rss_stat.count[i]) {
134			add_mm_counter(mm, i, task->rss_stat.count[i]);
135			task->rss_stat.count[i] = 0;
136		}
137	}
138	task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143	struct task_struct *task = current;
144
145	if (likely(task->mm == mm))
146		task->rss_stat.count[member] += val;
147	else
148		add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH	(64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157	if (unlikely(task != current))
158		return;
159	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160		__sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165	long val = 0;
166
167	/*
168	 * Don't use task->mm here...for avoiding to use task_get_mm()..
169	 * The caller must guarantee task->mm is not invalid.
170	 */
171	val = atomic_long_read(&mm->rss_stat.count[member]);
172	/*
173	 * counter is updated in asynchronous manner and may go to minus.
174	 * But it's never be expected number for users.
175	 */
176	if (val < 0)
177		return 0;
178	return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183	__sync_task_rss_stat(task, mm);
184}
185#else
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
194#endif
195
196/*
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none.  Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
200 */
201
202void pgd_clear_bad(pgd_t *pgd)
203{
204	pgd_ERROR(*pgd);
205	pgd_clear(pgd);
206}
207
208void pud_clear_bad(pud_t *pud)
209{
210	pud_ERROR(*pud);
211	pud_clear(pud);
212}
213
214void pmd_clear_bad(pmd_t *pmd)
215{
216	pmd_ERROR(*pmd);
217	pmd_clear(pmd);
218}
219
220/*
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
223 */
224static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225			   unsigned long addr)
226{
227	pgtable_t token = pmd_pgtable(*pmd);
228	pmd_clear(pmd);
229	pte_free_tlb(tlb, token, addr);
230	tlb->mm->nr_ptes--;
231}
232
233static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234				unsigned long addr, unsigned long end,
235				unsigned long floor, unsigned long ceiling)
236{
237	pmd_t *pmd;
238	unsigned long next;
239	unsigned long start;
240
241	start = addr;
242	pmd = pmd_offset(pud, addr);
243	do {
244		next = pmd_addr_end(addr, end);
245		if (pmd_none_or_clear_bad(pmd))
246			continue;
247		free_pte_range(tlb, pmd, addr);
248	} while (pmd++, addr = next, addr != end);
249
250	start &= PUD_MASK;
251	if (start < floor)
252		return;
253	if (ceiling) {
254		ceiling &= PUD_MASK;
255		if (!ceiling)
256			return;
257	}
258	if (end - 1 > ceiling - 1)
259		return;
260
261	pmd = pmd_offset(pud, start);
262	pud_clear(pud);
263	pmd_free_tlb(tlb, pmd, start);
264}
265
266static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267				unsigned long addr, unsigned long end,
268				unsigned long floor, unsigned long ceiling)
269{
270	pud_t *pud;
271	unsigned long next;
272	unsigned long start;
273
274	start = addr;
275	pud = pud_offset(pgd, addr);
276	do {
277		next = pud_addr_end(addr, end);
278		if (pud_none_or_clear_bad(pud))
279			continue;
280		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281	} while (pud++, addr = next, addr != end);
282
283	start &= PGDIR_MASK;
284	if (start < floor)
285		return;
286	if (ceiling) {
287		ceiling &= PGDIR_MASK;
288		if (!ceiling)
289			return;
290	}
291	if (end - 1 > ceiling - 1)
292		return;
293
294	pud = pud_offset(pgd, start);
295	pgd_clear(pgd);
296	pud_free_tlb(tlb, pud, start);
297}
298
299/*
300 * This function frees user-level page tables of a process.
301 *
302 * Must be called with pagetable lock held.
303 */
304void free_pgd_range(struct mmu_gather *tlb,
305			unsigned long addr, unsigned long end,
306			unsigned long floor, unsigned long ceiling)
307{
308	pgd_t *pgd;
309	unsigned long next;
310
311	/*
312	 * The next few lines have given us lots of grief...
313	 *
314	 * Why are we testing PMD* at this top level?  Because often
315	 * there will be no work to do at all, and we'd prefer not to
316	 * go all the way down to the bottom just to discover that.
317	 *
318	 * Why all these "- 1"s?  Because 0 represents both the bottom
319	 * of the address space and the top of it (using -1 for the
320	 * top wouldn't help much: the masks would do the wrong thing).
321	 * The rule is that addr 0 and floor 0 refer to the bottom of
322	 * the address space, but end 0 and ceiling 0 refer to the top
323	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324	 * that end 0 case should be mythical).
325	 *
326	 * Wherever addr is brought up or ceiling brought down, we must
327	 * be careful to reject "the opposite 0" before it confuses the
328	 * subsequent tests.  But what about where end is brought down
329	 * by PMD_SIZE below? no, end can't go down to 0 there.
330	 *
331	 * Whereas we round start (addr) and ceiling down, by different
332	 * masks at different levels, in order to test whether a table
333	 * now has no other vmas using it, so can be freed, we don't
334	 * bother to round floor or end up - the tests don't need that.
335	 */
336
337	addr &= PMD_MASK;
338	if (addr < floor) {
339		addr += PMD_SIZE;
340		if (!addr)
341			return;
342	}
343	if (ceiling) {
344		ceiling &= PMD_MASK;
345		if (!ceiling)
346			return;
347	}
348	if (end - 1 > ceiling - 1)
349		end -= PMD_SIZE;
350	if (addr > end - 1)
351		return;
352
353	pgd = pgd_offset(tlb->mm, addr);
354	do {
355		next = pgd_addr_end(addr, end);
356		if (pgd_none_or_clear_bad(pgd))
357			continue;
358		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
359	} while (pgd++, addr = next, addr != end);
360}
361
362void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
363		unsigned long floor, unsigned long ceiling)
364{
365	while (vma) {
366		struct vm_area_struct *next = vma->vm_next;
367		unsigned long addr = vma->vm_start;
368
369		/*
370		 * Hide vma from rmap and truncate_pagecache before freeing
371		 * pgtables
372		 */
373		unlink_anon_vmas(vma);
374		unlink_file_vma(vma);
375
376		if (is_vm_hugetlb_page(vma)) {
377			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
378				floor, next? next->vm_start: ceiling);
379		} else {
380			/*
381			 * Optimization: gather nearby vmas into one call down
382			 */
383			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
384			       && !is_vm_hugetlb_page(next)) {
385				vma = next;
386				next = vma->vm_next;
387				unlink_anon_vmas(vma);
388				unlink_file_vma(vma);
389			}
390			free_pgd_range(tlb, addr, vma->vm_end,
391				floor, next? next->vm_start: ceiling);
392		}
393		vma = next;
394	}
395}
396
397int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
398		pmd_t *pmd, unsigned long address)
399{
400	pgtable_t new = pte_alloc_one(mm, address);
401	int wait_split_huge_page;
402	if (!new)
403		return -ENOMEM;
404
405	/*
406	 * Ensure all pte setup (eg. pte page lock and page clearing) are
407	 * visible before the pte is made visible to other CPUs by being
408	 * put into page tables.
409	 *
410	 * The other side of the story is the pointer chasing in the page
411	 * table walking code (when walking the page table without locking;
412	 * ie. most of the time). Fortunately, these data accesses consist
413	 * of a chain of data-dependent loads, meaning most CPUs (alpha
414	 * being the notable exception) will already guarantee loads are
415	 * seen in-order. See the alpha page table accessors for the
416	 * smp_read_barrier_depends() barriers in page table walking code.
417	 */
418	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
419
420	spin_lock(&mm->page_table_lock);
421	wait_split_huge_page = 0;
422	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
423		mm->nr_ptes++;
424		pmd_populate(mm, pmd, new);
425		new = NULL;
426	} else if (unlikely(pmd_trans_splitting(*pmd)))
427		wait_split_huge_page = 1;
428	spin_unlock(&mm->page_table_lock);
429	if (new)
430		pte_free(mm, new);
431	if (wait_split_huge_page)
432		wait_split_huge_page(vma->anon_vma, pmd);
433	return 0;
434}
435
436int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
437{
438	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
439	if (!new)
440		return -ENOMEM;
441
442	smp_wmb(); /* See comment in __pte_alloc */
443
444	spin_lock(&init_mm.page_table_lock);
445	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
446		pmd_populate_kernel(&init_mm, pmd, new);
447		new = NULL;
448	} else
449		VM_BUG_ON(pmd_trans_splitting(*pmd));
450	spin_unlock(&init_mm.page_table_lock);
451	if (new)
452		pte_free_kernel(&init_mm, new);
453	return 0;
454}
455
456static inline void init_rss_vec(int *rss)
457{
458	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459}
460
461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
462{
463	int i;
464
465	if (current->mm == mm)
466		sync_mm_rss(current, mm);
467	for (i = 0; i < NR_MM_COUNTERS; i++)
468		if (rss[i])
469			add_mm_counter(mm, i, rss[i]);
470}
471
472/*
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
476 *
477 * The calling function must still handle the error.
478 */
479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480			  pte_t pte, struct page *page)
481{
482	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483	pud_t *pud = pud_offset(pgd, addr);
484	pmd_t *pmd = pmd_offset(pud, addr);
485	struct address_space *mapping;
486	pgoff_t index;
487	static unsigned long resume;
488	static unsigned long nr_shown;
489	static unsigned long nr_unshown;
490
491	/*
492	 * Allow a burst of 60 reports, then keep quiet for that minute;
493	 * or allow a steady drip of one report per second.
494	 */
495	if (nr_shown == 60) {
496		if (time_before(jiffies, resume)) {
497			nr_unshown++;
498			return;
499		}
500		if (nr_unshown) {
501			printk(KERN_ALERT
502				"BUG: Bad page map: %lu messages suppressed\n",
503				nr_unshown);
504			nr_unshown = 0;
505		}
506		nr_shown = 0;
507	}
508	if (nr_shown++ == 0)
509		resume = jiffies + 60 * HZ;
510
511	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512	index = linear_page_index(vma, addr);
513
514	printk(KERN_ALERT
515		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
516		current->comm,
517		(long long)pte_val(pte), (long long)pmd_val(*pmd));
518	if (page)
519		dump_page(page);
520	printk(KERN_ALERT
521		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523	/*
524	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
525	 */
526	if (vma->vm_ops)
527		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
528				(unsigned long)vma->vm_ops->fault);
529	if (vma->vm_file && vma->vm_file->f_op)
530		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
531				(unsigned long)vma->vm_file->f_op->mmap);
532	dump_stack();
533	add_taint(TAINT_BAD_PAGE);
534}
535
536static inline int is_cow_mapping(unsigned int flags)
537{
538	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
539}
540
541#ifndef is_zero_pfn
542static inline int is_zero_pfn(unsigned long pfn)
543{
544	return pfn == zero_pfn;
545}
546#endif
547
548#ifndef my_zero_pfn
549static inline unsigned long my_zero_pfn(unsigned long addr)
550{
551	return zero_pfn;
552}
553#endif
554
555/*
556 * vm_normal_page -- This function gets the "struct page" associated with a pte.
557 *
558 * "Special" mappings do not wish to be associated with a "struct page" (either
559 * it doesn't exist, or it exists but they don't want to touch it). In this
560 * case, NULL is returned here. "Normal" mappings do have a struct page.
561 *
562 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
563 * pte bit, in which case this function is trivial. Secondly, an architecture
564 * may not have a spare pte bit, which requires a more complicated scheme,
565 * described below.
566 *
567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
568 * special mapping (even if there are underlying and valid "struct pages").
569 * COWed pages of a VM_PFNMAP are always normal.
570 *
571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
574 * mapping will always honor the rule
575 *
576 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
577 *
578 * And for normal mappings this is false.
579 *
580 * This restricts such mappings to be a linear translation from virtual address
581 * to pfn. To get around this restriction, we allow arbitrary mappings so long
582 * as the vma is not a COW mapping; in that case, we know that all ptes are
583 * special (because none can have been COWed).
584 *
585 *
586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
587 *
588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
589 * page" backing, however the difference is that _all_ pages with a struct
590 * page (that is, those where pfn_valid is true) are refcounted and considered
591 * normal pages by the VM. The disadvantage is that pages are refcounted
592 * (which can be slower and simply not an option for some PFNMAP users). The
593 * advantage is that we don't have to follow the strict linearity rule of
594 * PFNMAP mappings in order to support COWable mappings.
595 *
596 */
597#ifdef __HAVE_ARCH_PTE_SPECIAL
598# define HAVE_PTE_SPECIAL 1
599#else
600# define HAVE_PTE_SPECIAL 0
601#endif
602struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603				pte_t pte)
604{
605	unsigned long pfn = pte_pfn(pte);
606
607	if (HAVE_PTE_SPECIAL) {
608		if (likely(!pte_special(pte)))
609			goto check_pfn;
610		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
611			return NULL;
612		if (!is_zero_pfn(pfn))
613			print_bad_pte(vma, addr, pte, NULL);
614		return NULL;
615	}
616
617	/* !HAVE_PTE_SPECIAL case follows: */
618
619	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620		if (vma->vm_flags & VM_MIXEDMAP) {
621			if (!pfn_valid(pfn))
622				return NULL;
623			goto out;
624		} else {
625			unsigned long off;
626			off = (addr - vma->vm_start) >> PAGE_SHIFT;
627			if (pfn == vma->vm_pgoff + off)
628				return NULL;
629			if (!is_cow_mapping(vma->vm_flags))
630				return NULL;
631		}
632	}
633
634	if (is_zero_pfn(pfn))
635		return NULL;
636check_pfn:
637	if (unlikely(pfn > highest_memmap_pfn)) {
638		print_bad_pte(vma, addr, pte, NULL);
639		return NULL;
640	}
641
642	/*
643	 * NOTE! We still have PageReserved() pages in the page tables.
644	 * eg. VDSO mappings can cause them to exist.
645	 */
646out:
647	return pfn_to_page(pfn);
648}
649
650/*
651 * copy one vm_area from one task to the other. Assumes the page tables
652 * already present in the new task to be cleared in the whole range
653 * covered by this vma.
654 */
655
656static inline unsigned long
657copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
659		unsigned long addr, int *rss)
660{
661	unsigned long vm_flags = vma->vm_flags;
662	pte_t pte = *src_pte;
663	struct page *page;
664
665	/* pte contains position in swap or file, so copy. */
666	if (unlikely(!pte_present(pte))) {
667		if (!pte_file(pte)) {
668			swp_entry_t entry = pte_to_swp_entry(pte);
669
670			if (swap_duplicate(entry) < 0)
671				return entry.val;
672
673			/* make sure dst_mm is on swapoff's mmlist. */
674			if (unlikely(list_empty(&dst_mm->mmlist))) {
675				spin_lock(&mmlist_lock);
676				if (list_empty(&dst_mm->mmlist))
677					list_add(&dst_mm->mmlist,
678						 &src_mm->mmlist);
679				spin_unlock(&mmlist_lock);
680			}
681			if (likely(!non_swap_entry(entry)))
682				rss[MM_SWAPENTS]++;
683			else if (is_write_migration_entry(entry) &&
684					is_cow_mapping(vm_flags)) {
685				/*
686				 * COW mappings require pages in both parent
687				 * and child to be set to read.
688				 */
689				make_migration_entry_read(&entry);
690				pte = swp_entry_to_pte(entry);
691				set_pte_at(src_mm, addr, src_pte, pte);
692			}
693		}
694		goto out_set_pte;
695	}
696
697	/*
698	 * If it's a COW mapping, write protect it both
699	 * in the parent and the child
700	 */
701	if (is_cow_mapping(vm_flags)) {
702		ptep_set_wrprotect(src_mm, addr, src_pte);
703		pte = pte_wrprotect(pte);
704	}
705
706	/*
707	 * If it's a shared mapping, mark it clean in
708	 * the child
709	 */
710	if (vm_flags & VM_SHARED)
711		pte = pte_mkclean(pte);
712	pte = pte_mkold(pte);
713
714	page = vm_normal_page(vma, addr, pte);
715	if (page) {
716		get_page(page);
717		page_dup_rmap(page);
718		if (PageAnon(page))
719			rss[MM_ANONPAGES]++;
720		else
721			rss[MM_FILEPAGES]++;
722	}
723
724out_set_pte:
725	set_pte_at(dst_mm, addr, dst_pte, pte);
726	return 0;
727}
728
729int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
730		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
731		   unsigned long addr, unsigned long end)
732{
733	pte_t *orig_src_pte, *orig_dst_pte;
734	pte_t *src_pte, *dst_pte;
735	spinlock_t *src_ptl, *dst_ptl;
736	int progress = 0;
737	int rss[NR_MM_COUNTERS];
738	swp_entry_t entry = (swp_entry_t){0};
739
740again:
741	init_rss_vec(rss);
742
743	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
744	if (!dst_pte)
745		return -ENOMEM;
746	src_pte = pte_offset_map(src_pmd, addr);
747	src_ptl = pte_lockptr(src_mm, src_pmd);
748	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
749	orig_src_pte = src_pte;
750	orig_dst_pte = dst_pte;
751	arch_enter_lazy_mmu_mode();
752
753	do {
754		/*
755		 * We are holding two locks at this point - either of them
756		 * could generate latencies in another task on another CPU.
757		 */
758		if (progress >= 32) {
759			progress = 0;
760			if (need_resched() ||
761			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
762				break;
763		}
764		if (pte_none(*src_pte)) {
765			progress++;
766			continue;
767		}
768		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
769							vma, addr, rss);
770		if (entry.val)
771			break;
772		progress += 8;
773	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
774
775	arch_leave_lazy_mmu_mode();
776	spin_unlock(src_ptl);
777	pte_unmap(orig_src_pte);
778	add_mm_rss_vec(dst_mm, rss);
779	pte_unmap_unlock(orig_dst_pte, dst_ptl);
780	cond_resched();
781
782	if (entry.val) {
783		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
784			return -ENOMEM;
785		progress = 0;
786	}
787	if (addr != end)
788		goto again;
789	return 0;
790}
791
792static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
794		unsigned long addr, unsigned long end)
795{
796	pmd_t *src_pmd, *dst_pmd;
797	unsigned long next;
798
799	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
800	if (!dst_pmd)
801		return -ENOMEM;
802	src_pmd = pmd_offset(src_pud, addr);
803	do {
804		next = pmd_addr_end(addr, end);
805		if (pmd_trans_huge(*src_pmd)) {
806			int err;
807			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
808			err = copy_huge_pmd(dst_mm, src_mm,
809					    dst_pmd, src_pmd, addr, vma);
810			if (err == -ENOMEM)
811				return -ENOMEM;
812			if (!err)
813				continue;
814			/* fall through */
815		}
816		if (pmd_none_or_clear_bad(src_pmd))
817			continue;
818		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
819						vma, addr, next))
820			return -ENOMEM;
821	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
822	return 0;
823}
824
825static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
826		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
827		unsigned long addr, unsigned long end)
828{
829	pud_t *src_pud, *dst_pud;
830	unsigned long next;
831
832	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
833	if (!dst_pud)
834		return -ENOMEM;
835	src_pud = pud_offset(src_pgd, addr);
836	do {
837		next = pud_addr_end(addr, end);
838		if (pud_none_or_clear_bad(src_pud))
839			continue;
840		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
841						vma, addr, next))
842			return -ENOMEM;
843	} while (dst_pud++, src_pud++, addr = next, addr != end);
844	return 0;
845}
846
847int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848		struct vm_area_struct *vma)
849{
850	pgd_t *src_pgd, *dst_pgd;
851	unsigned long next;
852	unsigned long addr = vma->vm_start;
853	unsigned long end = vma->vm_end;
854	int ret;
855
856	/*
857	 * Don't copy ptes where a page fault will fill them correctly.
858	 * Fork becomes much lighter when there are big shared or private
859	 * readonly mappings. The tradeoff is that copy_page_range is more
860	 * efficient than faulting.
861	 */
862	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
863		if (!vma->anon_vma)
864			return 0;
865	}
866
867	if (is_vm_hugetlb_page(vma))
868		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
869
870	if (unlikely(is_pfn_mapping(vma))) {
871		/*
872		 * We do not free on error cases below as remove_vma
873		 * gets called on error from higher level routine
874		 */
875		ret = track_pfn_vma_copy(vma);
876		if (ret)
877			return ret;
878	}
879
880	/*
881	 * We need to invalidate the secondary MMU mappings only when
882	 * there could be a permission downgrade on the ptes of the
883	 * parent mm. And a permission downgrade will only happen if
884	 * is_cow_mapping() returns true.
885	 */
886	if (is_cow_mapping(vma->vm_flags))
887		mmu_notifier_invalidate_range_start(src_mm, addr, end);
888
889	ret = 0;
890	dst_pgd = pgd_offset(dst_mm, addr);
891	src_pgd = pgd_offset(src_mm, addr);
892	do {
893		next = pgd_addr_end(addr, end);
894		if (pgd_none_or_clear_bad(src_pgd))
895			continue;
896		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
897					    vma, addr, next))) {
898			ret = -ENOMEM;
899			break;
900		}
901	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
902
903	if (is_cow_mapping(vma->vm_flags))
904		mmu_notifier_invalidate_range_end(src_mm,
905						  vma->vm_start, end);
906	return ret;
907}
908
909static unsigned long zap_pte_range(struct mmu_gather *tlb,
910				struct vm_area_struct *vma, pmd_t *pmd,
911				unsigned long addr, unsigned long end,
912				long *zap_work, struct zap_details *details)
913{
914	struct mm_struct *mm = tlb->mm;
915	pte_t *pte;
916	spinlock_t *ptl;
917	int rss[NR_MM_COUNTERS];
918
919	init_rss_vec(rss);
920
921	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
922	arch_enter_lazy_mmu_mode();
923	do {
924		pte_t ptent = *pte;
925		if (pte_none(ptent)) {
926			(*zap_work)--;
927			continue;
928		}
929
930		(*zap_work) -= PAGE_SIZE;
931
932		if (pte_present(ptent)) {
933			struct page *page;
934
935			page = vm_normal_page(vma, addr, ptent);
936			if (unlikely(details) && page) {
937				/*
938				 * unmap_shared_mapping_pages() wants to
939				 * invalidate cache without truncating:
940				 * unmap shared but keep private pages.
941				 */
942				if (details->check_mapping &&
943				    details->check_mapping != page->mapping)
944					continue;
945				/*
946				 * Each page->index must be checked when
947				 * invalidating or truncating nonlinear.
948				 */
949				if (details->nonlinear_vma &&
950				    (page->index < details->first_index ||
951				     page->index > details->last_index))
952					continue;
953			}
954			ptent = ptep_get_and_clear_full(mm, addr, pte,
955							tlb->fullmm);
956			tlb_remove_tlb_entry(tlb, pte, addr);
957			if (unlikely(!page))
958				continue;
959			if (unlikely(details) && details->nonlinear_vma
960			    && linear_page_index(details->nonlinear_vma,
961						addr) != page->index)
962				set_pte_at(mm, addr, pte,
963					   pgoff_to_pte(page->index));
964			if (PageAnon(page))
965				rss[MM_ANONPAGES]--;
966			else {
967				if (pte_dirty(ptent))
968					set_page_dirty(page);
969				if (pte_young(ptent) &&
970				    likely(!VM_SequentialReadHint(vma)))
971					mark_page_accessed(page);
972				rss[MM_FILEPAGES]--;
973			}
974			page_remove_rmap(page);
975			if (unlikely(page_mapcount(page) < 0))
976				print_bad_pte(vma, addr, ptent, page);
977			tlb_remove_page(tlb, page);
978			continue;
979		}
980		/*
981		 * If details->check_mapping, we leave swap entries;
982		 * if details->nonlinear_vma, we leave file entries.
983		 */
984		if (unlikely(details))
985			continue;
986		if (pte_file(ptent)) {
987			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
988				print_bad_pte(vma, addr, ptent, NULL);
989		} else {
990			swp_entry_t entry = pte_to_swp_entry(ptent);
991
992			if (!non_swap_entry(entry))
993				rss[MM_SWAPENTS]--;
994			if (unlikely(!free_swap_and_cache(entry)))
995				print_bad_pte(vma, addr, ptent, NULL);
996		}
997		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
998	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
999
1000	add_mm_rss_vec(mm, rss);
1001	arch_leave_lazy_mmu_mode();
1002	pte_unmap_unlock(pte - 1, ptl);
1003
1004	return addr;
1005}
1006
1007static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1008				struct vm_area_struct *vma, pud_t *pud,
1009				unsigned long addr, unsigned long end,
1010				long *zap_work, struct zap_details *details)
1011{
1012	pmd_t *pmd;
1013	unsigned long next;
1014
1015	pmd = pmd_offset(pud, addr);
1016	do {
1017		next = pmd_addr_end(addr, end);
1018		if (pmd_trans_huge(*pmd)) {
1019			if (next-addr != HPAGE_PMD_SIZE) {
1020				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1021				split_huge_page_pmd(vma->vm_mm, pmd);
1022			} else if (zap_huge_pmd(tlb, vma, pmd)) {
1023				(*zap_work)--;
1024				continue;
1025			}
1026			/* fall through */
1027		}
1028		if (pmd_none_or_clear_bad(pmd)) {
1029			(*zap_work)--;
1030			continue;
1031		}
1032		next = zap_pte_range(tlb, vma, pmd, addr, next,
1033						zap_work, details);
1034	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
1035
1036	return addr;
1037}
1038
1039static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1040				struct vm_area_struct *vma, pgd_t *pgd,
1041				unsigned long addr, unsigned long end,
1042				long *zap_work, struct zap_details *details)
1043{
1044	pud_t *pud;
1045	unsigned long next;
1046
1047	pud = pud_offset(pgd, addr);
1048	do {
1049		next = pud_addr_end(addr, end);
1050		if (pud_none_or_clear_bad(pud)) {
1051			(*zap_work)--;
1052			continue;
1053		}
1054		next = zap_pmd_range(tlb, vma, pud, addr, next,
1055						zap_work, details);
1056	} while (pud++, addr = next, (addr != end && *zap_work > 0));
1057
1058	return addr;
1059}
1060
1061static unsigned long unmap_page_range(struct mmu_gather *tlb,
1062				struct vm_area_struct *vma,
1063				unsigned long addr, unsigned long end,
1064				long *zap_work, struct zap_details *details)
1065{
1066	pgd_t *pgd;
1067	unsigned long next;
1068
1069	if (details && !details->check_mapping && !details->nonlinear_vma)
1070		details = NULL;
1071
1072	BUG_ON(addr >= end);
1073	mem_cgroup_uncharge_start();
1074	tlb_start_vma(tlb, vma);
1075	pgd = pgd_offset(vma->vm_mm, addr);
1076	do {
1077		next = pgd_addr_end(addr, end);
1078		if (pgd_none_or_clear_bad(pgd)) {
1079			(*zap_work)--;
1080			continue;
1081		}
1082		next = zap_pud_range(tlb, vma, pgd, addr, next,
1083						zap_work, details);
1084	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
1085	tlb_end_vma(tlb, vma);
1086	mem_cgroup_uncharge_end();
1087
1088	return addr;
1089}
1090
1091#ifdef CONFIG_PREEMPT
1092# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1093#else
1094/* No preempt: go for improved straight-line efficiency */
1095# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1096#endif
1097
1098/**
1099 * unmap_vmas - unmap a range of memory covered by a list of vma's
1100 * @tlbp: address of the caller's struct mmu_gather
1101 * @vma: the starting vma
1102 * @start_addr: virtual address at which to start unmapping
1103 * @end_addr: virtual address at which to end unmapping
1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1105 * @details: details of nonlinear truncation or shared cache invalidation
1106 *
1107 * Returns the end address of the unmapping (restart addr if interrupted).
1108 *
1109 * Unmap all pages in the vma list.
1110 *
1111 * We aim to not hold locks for too long (for scheduling latency reasons).
1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1113 * return the ending mmu_gather to the caller.
1114 *
1115 * Only addresses between `start' and `end' will be unmapped.
1116 *
1117 * The VMA list must be sorted in ascending virtual address order.
1118 *
1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1120 * range after unmap_vmas() returns.  So the only responsibility here is to
1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1122 * drops the lock and schedules.
1123 */
1124unsigned long unmap_vmas(struct mmu_gather **tlbp,
1125		struct vm_area_struct *vma, unsigned long start_addr,
1126		unsigned long end_addr, unsigned long *nr_accounted,
1127		struct zap_details *details)
1128{
1129	long zap_work = ZAP_BLOCK_SIZE;
1130	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
1131	int tlb_start_valid = 0;
1132	unsigned long start = start_addr;
1133	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1134	int fullmm = (*tlbp)->fullmm;
1135	struct mm_struct *mm = vma->vm_mm;
1136
1137	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1138	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1139		unsigned long end;
1140
1141		start = max(vma->vm_start, start_addr);
1142		if (start >= vma->vm_end)
1143			continue;
1144		end = min(vma->vm_end, end_addr);
1145		if (end <= vma->vm_start)
1146			continue;
1147
1148		if (vma->vm_flags & VM_ACCOUNT)
1149			*nr_accounted += (end - start) >> PAGE_SHIFT;
1150
1151		if (unlikely(is_pfn_mapping(vma)))
1152			untrack_pfn_vma(vma, 0, 0);
1153
1154		while (start != end) {
1155			if (!tlb_start_valid) {
1156				tlb_start = start;
1157				tlb_start_valid = 1;
1158			}
1159
1160			if (unlikely(is_vm_hugetlb_page(vma))) {
1161				/*
1162				 * It is undesirable to test vma->vm_file as it
1163				 * should be non-null for valid hugetlb area.
1164				 * However, vm_file will be NULL in the error
1165				 * cleanup path of do_mmap_pgoff. When
1166				 * hugetlbfs ->mmap method fails,
1167				 * do_mmap_pgoff() nullifies vma->vm_file
1168				 * before calling this function to clean up.
1169				 * Since no pte has actually been setup, it is
1170				 * safe to do nothing in this case.
1171				 */
1172				if (vma->vm_file) {
1173					unmap_hugepage_range(vma, start, end, NULL);
1174					zap_work -= (end - start) /
1175					pages_per_huge_page(hstate_vma(vma));
1176				}
1177
1178				start = end;
1179			} else
1180				start = unmap_page_range(*tlbp, vma,
1181						start, end, &zap_work, details);
1182
1183			if (zap_work > 0) {
1184				BUG_ON(start != end);
1185				break;
1186			}
1187
1188			tlb_finish_mmu(*tlbp, tlb_start, start);
1189
1190			if (need_resched() ||
1191				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1192				if (i_mmap_lock) {
1193					*tlbp = NULL;
1194					goto out;
1195				}
1196				cond_resched();
1197			}
1198
1199			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1200			tlb_start_valid = 0;
1201			zap_work = ZAP_BLOCK_SIZE;
1202		}
1203	}
1204out:
1205	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1206	return start;	/* which is now the end (or restart) address */
1207}
1208
1209/**
1210 * zap_page_range - remove user pages in a given range
1211 * @vma: vm_area_struct holding the applicable pages
1212 * @address: starting address of pages to zap
1213 * @size: number of bytes to zap
1214 * @details: details of nonlinear truncation or shared cache invalidation
1215 */
1216unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1217		unsigned long size, struct zap_details *details)
1218{
1219	struct mm_struct *mm = vma->vm_mm;
1220	struct mmu_gather *tlb;
1221	unsigned long end = address + size;
1222	unsigned long nr_accounted = 0;
1223
1224	lru_add_drain();
1225	tlb = tlb_gather_mmu(mm, 0);
1226	update_hiwater_rss(mm);
1227	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1228	if (tlb)
1229		tlb_finish_mmu(tlb, address, end);
1230	return end;
1231}
1232
1233/**
1234 * zap_vma_ptes - remove ptes mapping the vma
1235 * @vma: vm_area_struct holding ptes to be zapped
1236 * @address: starting address of pages to zap
1237 * @size: number of bytes to zap
1238 *
1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1240 *
1241 * The entire address range must be fully contained within the vma.
1242 *
1243 * Returns 0 if successful.
1244 */
1245int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1246		unsigned long size)
1247{
1248	if (address < vma->vm_start || address + size > vma->vm_end ||
1249	    		!(vma->vm_flags & VM_PFNMAP))
1250		return -1;
1251	zap_page_range(vma, address, size, NULL);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(zap_vma_ptes);
1255
1256/**
1257 * follow_page - look up a page descriptor from a user-virtual address
1258 * @vma: vm_area_struct mapping @address
1259 * @address: virtual address to look up
1260 * @flags: flags modifying lookup behaviour
1261 *
1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1263 *
1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1265 * an error pointer if there is a mapping to something not represented
1266 * by a page descriptor (see also vm_normal_page()).
1267 */
1268struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1269			unsigned int flags)
1270{
1271	pgd_t *pgd;
1272	pud_t *pud;
1273	pmd_t *pmd;
1274	pte_t *ptep, pte;
1275	spinlock_t *ptl;
1276	struct page *page;
1277	struct mm_struct *mm = vma->vm_mm;
1278
1279	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1280	if (!IS_ERR(page)) {
1281		BUG_ON(flags & FOLL_GET);
1282		goto out;
1283	}
1284
1285	page = NULL;
1286	pgd = pgd_offset(mm, address);
1287	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1288		goto no_page_table;
1289
1290	pud = pud_offset(pgd, address);
1291	if (pud_none(*pud))
1292		goto no_page_table;
1293	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1294		BUG_ON(flags & FOLL_GET);
1295		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1296		goto out;
1297	}
1298	if (unlikely(pud_bad(*pud)))
1299		goto no_page_table;
1300
1301	pmd = pmd_offset(pud, address);
1302	if (pmd_none(*pmd))
1303		goto no_page_table;
1304	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1305		BUG_ON(flags & FOLL_GET);
1306		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1307		goto out;
1308	}
1309	if (pmd_trans_huge(*pmd)) {
1310		if (flags & FOLL_SPLIT) {
1311			split_huge_page_pmd(mm, pmd);
1312			goto split_fallthrough;
1313		}
1314		spin_lock(&mm->page_table_lock);
1315		if (likely(pmd_trans_huge(*pmd))) {
1316			if (unlikely(pmd_trans_splitting(*pmd))) {
1317				spin_unlock(&mm->page_table_lock);
1318				wait_split_huge_page(vma->anon_vma, pmd);
1319			} else {
1320				page = follow_trans_huge_pmd(mm, address,
1321							     pmd, flags);
1322				spin_unlock(&mm->page_table_lock);
1323				goto out;
1324			}
1325		} else
1326			spin_unlock(&mm->page_table_lock);
1327		/* fall through */
1328	}
1329split_fallthrough:
1330	if (unlikely(pmd_bad(*pmd)))
1331		goto no_page_table;
1332
1333	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1334
1335	pte = *ptep;
1336	if (!pte_present(pte))
1337		goto no_page;
1338	if ((flags & FOLL_WRITE) && !pte_write(pte))
1339		goto unlock;
1340
1341	page = vm_normal_page(vma, address, pte);
1342	if (unlikely(!page)) {
1343		if ((flags & FOLL_DUMP) ||
1344		    !is_zero_pfn(pte_pfn(pte)))
1345			goto bad_page;
1346		page = pte_page(pte);
1347	}
1348
1349	if (flags & FOLL_GET)
1350		get_page(page);
1351	if (flags & FOLL_TOUCH) {
1352		if ((flags & FOLL_WRITE) &&
1353		    !pte_dirty(pte) && !PageDirty(page))
1354			set_page_dirty(page);
1355		/*
1356		 * pte_mkyoung() would be more correct here, but atomic care
1357		 * is needed to avoid losing the dirty bit: it is easier to use
1358		 * mark_page_accessed().
1359		 */
1360		mark_page_accessed(page);
1361	}
1362	if (flags & FOLL_MLOCK) {
1363		/*
1364		 * The preliminary mapping check is mainly to avoid the
1365		 * pointless overhead of lock_page on the ZERO_PAGE
1366		 * which might bounce very badly if there is contention.
1367		 *
1368		 * If the page is already locked, we don't need to
1369		 * handle it now - vmscan will handle it later if and
1370		 * when it attempts to reclaim the page.
1371		 */
1372		if (page->mapping && trylock_page(page)) {
1373			lru_add_drain();  /* push cached pages to LRU */
1374			/*
1375			 * Because we lock page here and migration is
1376			 * blocked by the pte's page reference, we need
1377			 * only check for file-cache page truncation.
1378			 */
1379			if (page->mapping)
1380				mlock_vma_page(page);
1381			unlock_page(page);
1382		}
1383	}
1384unlock:
1385	pte_unmap_unlock(ptep, ptl);
1386out:
1387	return page;
1388
1389bad_page:
1390	pte_unmap_unlock(ptep, ptl);
1391	return ERR_PTR(-EFAULT);
1392
1393no_page:
1394	pte_unmap_unlock(ptep, ptl);
1395	if (!pte_none(pte))
1396		return page;
1397
1398no_page_table:
1399	/*
1400	 * When core dumping an enormous anonymous area that nobody
1401	 * has touched so far, we don't want to allocate unnecessary pages or
1402	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1403	 * then get_dump_page() will return NULL to leave a hole in the dump.
1404	 * But we can only make this optimization where a hole would surely
1405	 * be zero-filled if handle_mm_fault() actually did handle it.
1406	 */
1407	if ((flags & FOLL_DUMP) &&
1408	    (!vma->vm_ops || !vma->vm_ops->fault))
1409		return ERR_PTR(-EFAULT);
1410	return page;
1411}
1412
1413/**
1414 * __get_user_pages() - pin user pages in memory
1415 * @tsk:	task_struct of target task
1416 * @mm:		mm_struct of target mm
1417 * @start:	starting user address
1418 * @nr_pages:	number of pages from start to pin
1419 * @gup_flags:	flags modifying pin behaviour
1420 * @pages:	array that receives pointers to the pages pinned.
1421 *		Should be at least nr_pages long. Or NULL, if caller
1422 *		only intends to ensure the pages are faulted in.
1423 * @vmas:	array of pointers to vmas corresponding to each page.
1424 *		Or NULL if the caller does not require them.
1425 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1426 *
1427 * Returns number of pages pinned. This may be fewer than the number
1428 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1429 * were pinned, returns -errno. Each page returned must be released
1430 * with a put_page() call when it is finished with. vmas will only
1431 * remain valid while mmap_sem is held.
1432 *
1433 * Must be called with mmap_sem held for read or write.
1434 *
1435 * __get_user_pages walks a process's page tables and takes a reference to
1436 * each struct page that each user address corresponds to at a given
1437 * instant. That is, it takes the page that would be accessed if a user
1438 * thread accesses the given user virtual address at that instant.
1439 *
1440 * This does not guarantee that the page exists in the user mappings when
1441 * __get_user_pages returns, and there may even be a completely different
1442 * page there in some cases (eg. if mmapped pagecache has been invalidated
1443 * and subsequently re faulted). However it does guarantee that the page
1444 * won't be freed completely. And mostly callers simply care that the page
1445 * contains data that was valid *at some point in time*. Typically, an IO
1446 * or similar operation cannot guarantee anything stronger anyway because
1447 * locks can't be held over the syscall boundary.
1448 *
1449 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1450 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1451 * appropriate) must be called after the page is finished with, and
1452 * before put_page is called.
1453 *
1454 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1455 * or mmap_sem contention, and if waiting is needed to pin all pages,
1456 * *@nonblocking will be set to 0.
1457 *
1458 * In most cases, get_user_pages or get_user_pages_fast should be used
1459 * instead of __get_user_pages. __get_user_pages should be used only if
1460 * you need some special @gup_flags.
1461 */
1462int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1463		     unsigned long start, int nr_pages, unsigned int gup_flags,
1464		     struct page **pages, struct vm_area_struct **vmas,
1465		     int *nonblocking)
1466{
1467	int i;
1468	unsigned long vm_flags;
1469
1470	if (nr_pages <= 0)
1471		return 0;
1472
1473	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1474
1475	/*
1476	 * Require read or write permissions.
1477	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1478	 */
1479	vm_flags  = (gup_flags & FOLL_WRITE) ?
1480			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1481	vm_flags &= (gup_flags & FOLL_FORCE) ?
1482			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1483	i = 0;
1484
1485	do {
1486		struct vm_area_struct *vma;
1487
1488		vma = find_extend_vma(mm, start);
1489		if (!vma && in_gate_area(tsk->mm, start)) {
1490			unsigned long pg = start & PAGE_MASK;
1491			struct vm_area_struct *gate_vma = get_gate_vma(tsk->mm);
1492			pgd_t *pgd;
1493			pud_t *pud;
1494			pmd_t *pmd;
1495			pte_t *pte;
1496
1497			/* user gate pages are read-only */
1498			if (gup_flags & FOLL_WRITE)
1499				return i ? : -EFAULT;
1500			if (pg > TASK_SIZE)
1501				pgd = pgd_offset_k(pg);
1502			else
1503				pgd = pgd_offset_gate(mm, pg);
1504			BUG_ON(pgd_none(*pgd));
1505			pud = pud_offset(pgd, pg);
1506			BUG_ON(pud_none(*pud));
1507			pmd = pmd_offset(pud, pg);
1508			if (pmd_none(*pmd))
1509				return i ? : -EFAULT;
1510			VM_BUG_ON(pmd_trans_huge(*pmd));
1511			pte = pte_offset_map(pmd, pg);
1512			if (pte_none(*pte)) {
1513				pte_unmap(pte);
1514				return i ? : -EFAULT;
1515			}
1516			if (pages) {
1517				struct page *page;
1518
1519				page = vm_normal_page(gate_vma, start, *pte);
1520				if (!page) {
1521					if (!(gup_flags & FOLL_DUMP) &&
1522					     is_zero_pfn(pte_pfn(*pte)))
1523						page = pte_page(*pte);
1524					else {
1525						pte_unmap(pte);
1526						return i ? : -EFAULT;
1527					}
1528				}
1529				pages[i] = page;
1530				get_page(page);
1531			}
1532			pte_unmap(pte);
1533			if (vmas)
1534				vmas[i] = gate_vma;
1535			i++;
1536			start += PAGE_SIZE;
1537			nr_pages--;
1538			continue;
1539		}
1540
1541		if (!vma ||
1542		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1543		    !(vm_flags & vma->vm_flags))
1544			return i ? : -EFAULT;
1545
1546		if (is_vm_hugetlb_page(vma)) {
1547			i = follow_hugetlb_page(mm, vma, pages, vmas,
1548					&start, &nr_pages, i, gup_flags);
1549			continue;
1550		}
1551
1552		do {
1553			struct page *page;
1554			unsigned int foll_flags = gup_flags;
1555
1556			/*
1557			 * If we have a pending SIGKILL, don't keep faulting
1558			 * pages and potentially allocating memory.
1559			 */
1560			if (unlikely(fatal_signal_pending(current)))
1561				return i ? i : -ERESTARTSYS;
1562
1563			cond_resched();
1564			while (!(page = follow_page(vma, start, foll_flags))) {
1565				int ret;
1566				unsigned int fault_flags = 0;
1567
1568				if (foll_flags & FOLL_WRITE)
1569					fault_flags |= FAULT_FLAG_WRITE;
1570				if (nonblocking)
1571					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1572
1573				ret = handle_mm_fault(mm, vma, start,
1574							fault_flags);
1575
1576				if (ret & VM_FAULT_ERROR) {
1577					if (ret & VM_FAULT_OOM)
1578						return i ? i : -ENOMEM;
1579					if (ret & (VM_FAULT_HWPOISON |
1580						   VM_FAULT_HWPOISON_LARGE)) {
1581						if (i)
1582							return i;
1583						else if (gup_flags & FOLL_HWPOISON)
1584							return -EHWPOISON;
1585						else
1586							return -EFAULT;
1587					}
1588					if (ret & VM_FAULT_SIGBUS)
1589						return i ? i : -EFAULT;
1590					BUG();
1591				}
1592				if (ret & VM_FAULT_MAJOR)
1593					tsk->maj_flt++;
1594				else
1595					tsk->min_flt++;
1596
1597				if (ret & VM_FAULT_RETRY) {
1598					*nonblocking = 0;
1599					return i;
1600				}
1601
1602				/*
1603				 * The VM_FAULT_WRITE bit tells us that
1604				 * do_wp_page has broken COW when necessary,
1605				 * even if maybe_mkwrite decided not to set
1606				 * pte_write. We can thus safely do subsequent
1607				 * page lookups as if they were reads. But only
1608				 * do so when looping for pte_write is futile:
1609				 * in some cases userspace may also be wanting
1610				 * to write to the gotten user page, which a
1611				 * read fault here might prevent (a readonly
1612				 * page might get reCOWed by userspace write).
1613				 */
1614				if ((ret & VM_FAULT_WRITE) &&
1615				    !(vma->vm_flags & VM_WRITE))
1616					foll_flags &= ~FOLL_WRITE;
1617
1618				cond_resched();
1619			}
1620			if (IS_ERR(page))
1621				return i ? i : PTR_ERR(page);
1622			if (pages) {
1623				pages[i] = page;
1624
1625				flush_anon_page(vma, page, start);
1626				flush_dcache_page(page);
1627			}
1628			if (vmas)
1629				vmas[i] = vma;
1630			i++;
1631			start += PAGE_SIZE;
1632			nr_pages--;
1633		} while (nr_pages && start < vma->vm_end);
1634	} while (nr_pages);
1635	return i;
1636}
1637EXPORT_SYMBOL(__get_user_pages);
1638
1639/**
1640 * get_user_pages() - pin user pages in memory
1641 * @tsk:	task_struct of target task
1642 * @mm:		mm_struct of target mm
1643 * @start:	starting user address
1644 * @nr_pages:	number of pages from start to pin
1645 * @write:	whether pages will be written to by the caller
1646 * @force:	whether to force write access even if user mapping is
1647 *		readonly. This will result in the page being COWed even
1648 *		in MAP_SHARED mappings. You do not want this.
1649 * @pages:	array that receives pointers to the pages pinned.
1650 *		Should be at least nr_pages long. Or NULL, if caller
1651 *		only intends to ensure the pages are faulted in.
1652 * @vmas:	array of pointers to vmas corresponding to each page.
1653 *		Or NULL if the caller does not require them.
1654 *
1655 * Returns number of pages pinned. This may be fewer than the number
1656 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1657 * were pinned, returns -errno. Each page returned must be released
1658 * with a put_page() call when it is finished with. vmas will only
1659 * remain valid while mmap_sem is held.
1660 *
1661 * Must be called with mmap_sem held for read or write.
1662 *
1663 * get_user_pages walks a process's page tables and takes a reference to
1664 * each struct page that each user address corresponds to at a given
1665 * instant. That is, it takes the page that would be accessed if a user
1666 * thread accesses the given user virtual address at that instant.
1667 *
1668 * This does not guarantee that the page exists in the user mappings when
1669 * get_user_pages returns, and there may even be a completely different
1670 * page there in some cases (eg. if mmapped pagecache has been invalidated
1671 * and subsequently re faulted). However it does guarantee that the page
1672 * won't be freed completely. And mostly callers simply care that the page
1673 * contains data that was valid *at some point in time*. Typically, an IO
1674 * or similar operation cannot guarantee anything stronger anyway because
1675 * locks can't be held over the syscall boundary.
1676 *
1677 * If write=0, the page must not be written to. If the page is written to,
1678 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1679 * after the page is finished with, and before put_page is called.
1680 *
1681 * get_user_pages is typically used for fewer-copy IO operations, to get a
1682 * handle on the memory by some means other than accesses via the user virtual
1683 * addresses. The pages may be submitted for DMA to devices or accessed via
1684 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1685 * use the correct cache flushing APIs.
1686 *
1687 * See also get_user_pages_fast, for performance critical applications.
1688 */
1689int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1690		unsigned long start, int nr_pages, int write, int force,
1691		struct page **pages, struct vm_area_struct **vmas)
1692{
1693	int flags = FOLL_TOUCH;
1694
1695	if (pages)
1696		flags |= FOLL_GET;
1697	if (write)
1698		flags |= FOLL_WRITE;
1699	if (force)
1700		flags |= FOLL_FORCE;
1701
1702	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1703				NULL);
1704}
1705EXPORT_SYMBOL(get_user_pages);
1706
1707/**
1708 * get_dump_page() - pin user page in memory while writing it to core dump
1709 * @addr: user address
1710 *
1711 * Returns struct page pointer of user page pinned for dump,
1712 * to be freed afterwards by page_cache_release() or put_page().
1713 *
1714 * Returns NULL on any kind of failure - a hole must then be inserted into
1715 * the corefile, to preserve alignment with its headers; and also returns
1716 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1717 * allowing a hole to be left in the corefile to save diskspace.
1718 *
1719 * Called without mmap_sem, but after all other threads have been killed.
1720 */
1721#ifdef CONFIG_ELF_CORE
1722struct page *get_dump_page(unsigned long addr)
1723{
1724	struct vm_area_struct *vma;
1725	struct page *page;
1726
1727	if (__get_user_pages(current, current->mm, addr, 1,
1728			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1729			     NULL) < 1)
1730		return NULL;
1731	flush_cache_page(vma, addr, page_to_pfn(page));
1732	return page;
1733}
1734#endif /* CONFIG_ELF_CORE */
1735
1736pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1737			spinlock_t **ptl)
1738{
1739	pgd_t * pgd = pgd_offset(mm, addr);
1740	pud_t * pud = pud_alloc(mm, pgd, addr);
1741	if (pud) {
1742		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1743		if (pmd) {
1744			VM_BUG_ON(pmd_trans_huge(*pmd));
1745			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1746		}
1747	}
1748	return NULL;
1749}
1750
1751/*
1752 * This is the old fallback for page remapping.
1753 *
1754 * For historical reasons, it only allows reserved pages. Only
1755 * old drivers should use this, and they needed to mark their
1756 * pages reserved for the old functions anyway.
1757 */
1758static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1759			struct page *page, pgprot_t prot)
1760{
1761	struct mm_struct *mm = vma->vm_mm;
1762	int retval;
1763	pte_t *pte;
1764	spinlock_t *ptl;
1765
1766	retval = -EINVAL;
1767	if (PageAnon(page))
1768		goto out;
1769	retval = -ENOMEM;
1770	flush_dcache_page(page);
1771	pte = get_locked_pte(mm, addr, &ptl);
1772	if (!pte)
1773		goto out;
1774	retval = -EBUSY;
1775	if (!pte_none(*pte))
1776		goto out_unlock;
1777
1778	/* Ok, finally just insert the thing.. */
1779	get_page(page);
1780	inc_mm_counter_fast(mm, MM_FILEPAGES);
1781	page_add_file_rmap(page);
1782	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1783
1784	retval = 0;
1785	pte_unmap_unlock(pte, ptl);
1786	return retval;
1787out_unlock:
1788	pte_unmap_unlock(pte, ptl);
1789out:
1790	return retval;
1791}
1792
1793/**
1794 * vm_insert_page - insert single page into user vma
1795 * @vma: user vma to map to
1796 * @addr: target user address of this page
1797 * @page: source kernel page
1798 *
1799 * This allows drivers to insert individual pages they've allocated
1800 * into a user vma.
1801 *
1802 * The page has to be a nice clean _individual_ kernel allocation.
1803 * If you allocate a compound page, you need to have marked it as
1804 * such (__GFP_COMP), or manually just split the page up yourself
1805 * (see split_page()).
1806 *
1807 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1808 * took an arbitrary page protection parameter. This doesn't allow
1809 * that. Your vma protection will have to be set up correctly, which
1810 * means that if you want a shared writable mapping, you'd better
1811 * ask for a shared writable mapping!
1812 *
1813 * The page does not need to be reserved.
1814 */
1815int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1816			struct page *page)
1817{
1818	if (addr < vma->vm_start || addr >= vma->vm_end)
1819		return -EFAULT;
1820	if (!page_count(page))
1821		return -EINVAL;
1822	vma->vm_flags |= VM_INSERTPAGE;
1823	return insert_page(vma, addr, page, vma->vm_page_prot);
1824}
1825EXPORT_SYMBOL(vm_insert_page);
1826
1827static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1828			unsigned long pfn, pgprot_t prot)
1829{
1830	struct mm_struct *mm = vma->vm_mm;
1831	int retval;
1832	pte_t *pte, entry;
1833	spinlock_t *ptl;
1834
1835	retval = -ENOMEM;
1836	pte = get_locked_pte(mm, addr, &ptl);
1837	if (!pte)
1838		goto out;
1839	retval = -EBUSY;
1840	if (!pte_none(*pte))
1841		goto out_unlock;
1842
1843	/* Ok, finally just insert the thing.. */
1844	entry = pte_mkspecial(pfn_pte(pfn, prot));
1845	set_pte_at(mm, addr, pte, entry);
1846	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1847
1848	retval = 0;
1849out_unlock:
1850	pte_unmap_unlock(pte, ptl);
1851out:
1852	return retval;
1853}
1854
1855/**
1856 * vm_insert_pfn - insert single pfn into user vma
1857 * @vma: user vma to map to
1858 * @addr: target user address of this page
1859 * @pfn: source kernel pfn
1860 *
1861 * Similar to vm_inert_page, this allows drivers to insert individual pages
1862 * they've allocated into a user vma. Same comments apply.
1863 *
1864 * This function should only be called from a vm_ops->fault handler, and
1865 * in that case the handler should return NULL.
1866 *
1867 * vma cannot be a COW mapping.
1868 *
1869 * As this is called only for pages that do not currently exist, we
1870 * do not need to flush old virtual caches or the TLB.
1871 */
1872int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1873			unsigned long pfn)
1874{
1875	int ret;
1876	pgprot_t pgprot = vma->vm_page_prot;
1877	/*
1878	 * Technically, architectures with pte_special can avoid all these
1879	 * restrictions (same for remap_pfn_range).  However we would like
1880	 * consistency in testing and feature parity among all, so we should
1881	 * try to keep these invariants in place for everybody.
1882	 */
1883	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1884	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1885						(VM_PFNMAP|VM_MIXEDMAP));
1886	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1887	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1888
1889	if (addr < vma->vm_start || addr >= vma->vm_end)
1890		return -EFAULT;
1891	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1892		return -EINVAL;
1893
1894	ret = insert_pfn(vma, addr, pfn, pgprot);
1895
1896	if (ret)
1897		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1898
1899	return ret;
1900}
1901EXPORT_SYMBOL(vm_insert_pfn);
1902
1903int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1904			unsigned long pfn)
1905{
1906	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1907
1908	if (addr < vma->vm_start || addr >= vma->vm_end)
1909		return -EFAULT;
1910
1911	/*
1912	 * If we don't have pte special, then we have to use the pfn_valid()
1913	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1914	 * refcount the page if pfn_valid is true (hence insert_page rather
1915	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1916	 * without pte special, it would there be refcounted as a normal page.
1917	 */
1918	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1919		struct page *page;
1920
1921		page = pfn_to_page(pfn);
1922		return insert_page(vma, addr, page, vma->vm_page_prot);
1923	}
1924	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1925}
1926EXPORT_SYMBOL(vm_insert_mixed);
1927
1928/*
1929 * maps a range of physical memory into the requested pages. the old
1930 * mappings are removed. any references to nonexistent pages results
1931 * in null mappings (currently treated as "copy-on-access")
1932 */
1933static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1934			unsigned long addr, unsigned long end,
1935			unsigned long pfn, pgprot_t prot)
1936{
1937	pte_t *pte;
1938	spinlock_t *ptl;
1939
1940	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1941	if (!pte)
1942		return -ENOMEM;
1943	arch_enter_lazy_mmu_mode();
1944	do {
1945		BUG_ON(!pte_none(*pte));
1946		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1947		pfn++;
1948	} while (pte++, addr += PAGE_SIZE, addr != end);
1949	arch_leave_lazy_mmu_mode();
1950	pte_unmap_unlock(pte - 1, ptl);
1951	return 0;
1952}
1953
1954static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1955			unsigned long addr, unsigned long end,
1956			unsigned long pfn, pgprot_t prot)
1957{
1958	pmd_t *pmd;
1959	unsigned long next;
1960
1961	pfn -= addr >> PAGE_SHIFT;
1962	pmd = pmd_alloc(mm, pud, addr);
1963	if (!pmd)
1964		return -ENOMEM;
1965	VM_BUG_ON(pmd_trans_huge(*pmd));
1966	do {
1967		next = pmd_addr_end(addr, end);
1968		if (remap_pte_range(mm, pmd, addr, next,
1969				pfn + (addr >> PAGE_SHIFT), prot))
1970			return -ENOMEM;
1971	} while (pmd++, addr = next, addr != end);
1972	return 0;
1973}
1974
1975static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1976			unsigned long addr, unsigned long end,
1977			unsigned long pfn, pgprot_t prot)
1978{
1979	pud_t *pud;
1980	unsigned long next;
1981
1982	pfn -= addr >> PAGE_SHIFT;
1983	pud = pud_alloc(mm, pgd, addr);
1984	if (!pud)
1985		return -ENOMEM;
1986	do {
1987		next = pud_addr_end(addr, end);
1988		if (remap_pmd_range(mm, pud, addr, next,
1989				pfn + (addr >> PAGE_SHIFT), prot))
1990			return -ENOMEM;
1991	} while (pud++, addr = next, addr != end);
1992	return 0;
1993}
1994
1995/**
1996 * remap_pfn_range - remap kernel memory to userspace
1997 * @vma: user vma to map to
1998 * @addr: target user address to start at
1999 * @pfn: physical address of kernel memory
2000 * @size: size of map area
2001 * @prot: page protection flags for this mapping
2002 *
2003 *  Note: this is only safe if the mm semaphore is held when called.
2004 */
2005int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2006		    unsigned long pfn, unsigned long size, pgprot_t prot)
2007{
2008	pgd_t *pgd;
2009	unsigned long next;
2010	unsigned long end = addr + PAGE_ALIGN(size);
2011	struct mm_struct *mm = vma->vm_mm;
2012	int err;
2013
2014	/*
2015	 * Physically remapped pages are special. Tell the
2016	 * rest of the world about it:
2017	 *   VM_IO tells people not to look at these pages
2018	 *	(accesses can have side effects).
2019	 *   VM_RESERVED is specified all over the place, because
2020	 *	in 2.4 it kept swapout's vma scan off this vma; but
2021	 *	in 2.6 the LRU scan won't even find its pages, so this
2022	 *	flag means no more than count its pages in reserved_vm,
2023	 * 	and omit it from core dump, even when VM_IO turned off.
2024	 *   VM_PFNMAP tells the core MM that the base pages are just
2025	 *	raw PFN mappings, and do not have a "struct page" associated
2026	 *	with them.
2027	 *
2028	 * There's a horrible special case to handle copy-on-write
2029	 * behaviour that some programs depend on. We mark the "original"
2030	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2031	 */
2032	if (addr == vma->vm_start && end == vma->vm_end) {
2033		vma->vm_pgoff = pfn;
2034		vma->vm_flags |= VM_PFN_AT_MMAP;
2035	} else if (is_cow_mapping(vma->vm_flags))
2036		return -EINVAL;
2037
2038	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2039
2040	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2041	if (err) {
2042		/*
2043		 * To indicate that track_pfn related cleanup is not
2044		 * needed from higher level routine calling unmap_vmas
2045		 */
2046		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2047		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2048		return -EINVAL;
2049	}
2050
2051	BUG_ON(addr >= end);
2052	pfn -= addr >> PAGE_SHIFT;
2053	pgd = pgd_offset(mm, addr);
2054	flush_cache_range(vma, addr, end);
2055	do {
2056		next = pgd_addr_end(addr, end);
2057		err = remap_pud_range(mm, pgd, addr, next,
2058				pfn + (addr >> PAGE_SHIFT), prot);
2059		if (err)
2060			break;
2061	} while (pgd++, addr = next, addr != end);
2062
2063	if (err)
2064		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2065
2066	return err;
2067}
2068EXPORT_SYMBOL(remap_pfn_range);
2069
2070static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2071				     unsigned long addr, unsigned long end,
2072				     pte_fn_t fn, void *data)
2073{
2074	pte_t *pte;
2075	int err;
2076	pgtable_t token;
2077	spinlock_t *uninitialized_var(ptl);
2078
2079	pte = (mm == &init_mm) ?
2080		pte_alloc_kernel(pmd, addr) :
2081		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2082	if (!pte)
2083		return -ENOMEM;
2084
2085	BUG_ON(pmd_huge(*pmd));
2086
2087	arch_enter_lazy_mmu_mode();
2088
2089	token = pmd_pgtable(*pmd);
2090
2091	do {
2092		err = fn(pte++, token, addr, data);
2093		if (err)
2094			break;
2095	} while (addr += PAGE_SIZE, addr != end);
2096
2097	arch_leave_lazy_mmu_mode();
2098
2099	if (mm != &init_mm)
2100		pte_unmap_unlock(pte-1, ptl);
2101	return err;
2102}
2103
2104static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2105				     unsigned long addr, unsigned long end,
2106				     pte_fn_t fn, void *data)
2107{
2108	pmd_t *pmd;
2109	unsigned long next;
2110	int err;
2111
2112	BUG_ON(pud_huge(*pud));
2113
2114	pmd = pmd_alloc(mm, pud, addr);
2115	if (!pmd)
2116		return -ENOMEM;
2117	do {
2118		next = pmd_addr_end(addr, end);
2119		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2120		if (err)
2121			break;
2122	} while (pmd++, addr = next, addr != end);
2123	return err;
2124}
2125
2126static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2127				     unsigned long addr, unsigned long end,
2128				     pte_fn_t fn, void *data)
2129{
2130	pud_t *pud;
2131	unsigned long next;
2132	int err;
2133
2134	pud = pud_alloc(mm, pgd, addr);
2135	if (!pud)
2136		return -ENOMEM;
2137	do {
2138		next = pud_addr_end(addr, end);
2139		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2140		if (err)
2141			break;
2142	} while (pud++, addr = next, addr != end);
2143	return err;
2144}
2145
2146/*
2147 * Scan a region of virtual memory, filling in page tables as necessary
2148 * and calling a provided function on each leaf page table.
2149 */
2150int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2151			unsigned long size, pte_fn_t fn, void *data)
2152{
2153	pgd_t *pgd;
2154	unsigned long next;
2155	unsigned long end = addr + size;
2156	int err;
2157
2158	BUG_ON(addr >= end);
2159	pgd = pgd_offset(mm, addr);
2160	do {
2161		next = pgd_addr_end(addr, end);
2162		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2163		if (err)
2164			break;
2165	} while (pgd++, addr = next, addr != end);
2166
2167	return err;
2168}
2169EXPORT_SYMBOL_GPL(apply_to_page_range);
2170
2171/*
2172 * handle_pte_fault chooses page fault handler according to an entry
2173 * which was read non-atomically.  Before making any commitment, on
2174 * those architectures or configurations (e.g. i386 with PAE) which
2175 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2176 * must check under lock before unmapping the pte and proceeding
2177 * (but do_wp_page is only called after already making such a check;
2178 * and do_anonymous_page can safely check later on).
2179 */
2180static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2181				pte_t *page_table, pte_t orig_pte)
2182{
2183	int same = 1;
2184#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2185	if (sizeof(pte_t) > sizeof(unsigned long)) {
2186		spinlock_t *ptl = pte_lockptr(mm, pmd);
2187		spin_lock(ptl);
2188		same = pte_same(*page_table, orig_pte);
2189		spin_unlock(ptl);
2190	}
2191#endif
2192	pte_unmap(page_table);
2193	return same;
2194}
2195
2196static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2197{
2198	/*
2199	 * If the source page was a PFN mapping, we don't have
2200	 * a "struct page" for it. We do a best-effort copy by
2201	 * just copying from the original user address. If that
2202	 * fails, we just zero-fill it. Live with it.
2203	 */
2204	if (unlikely(!src)) {
2205		void *kaddr = kmap_atomic(dst, KM_USER0);
2206		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2207
2208		/*
2209		 * This really shouldn't fail, because the page is there
2210		 * in the page tables. But it might just be unreadable,
2211		 * in which case we just give up and fill the result with
2212		 * zeroes.
2213		 */
2214		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2215			clear_page(kaddr);
2216		kunmap_atomic(kaddr, KM_USER0);
2217		flush_dcache_page(dst);
2218	} else
2219		copy_user_highpage(dst, src, va, vma);
2220}
2221
2222/*
2223 * This routine handles present pages, when users try to write
2224 * to a shared page. It is done by copying the page to a new address
2225 * and decrementing the shared-page counter for the old page.
2226 *
2227 * Note that this routine assumes that the protection checks have been
2228 * done by the caller (the low-level page fault routine in most cases).
2229 * Thus we can safely just mark it writable once we've done any necessary
2230 * COW.
2231 *
2232 * We also mark the page dirty at this point even though the page will
2233 * change only once the write actually happens. This avoids a few races,
2234 * and potentially makes it more efficient.
2235 *
2236 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2237 * but allow concurrent faults), with pte both mapped and locked.
2238 * We return with mmap_sem still held, but pte unmapped and unlocked.
2239 */
2240static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2241		unsigned long address, pte_t *page_table, pmd_t *pmd,
2242		spinlock_t *ptl, pte_t orig_pte)
2243	__releases(ptl)
2244{
2245	struct page *old_page, *new_page;
2246	pte_t entry;
2247	int ret = 0;
2248	int page_mkwrite = 0;
2249	struct page *dirty_page = NULL;
2250
2251	old_page = vm_normal_page(vma, address, orig_pte);
2252	if (!old_page) {
2253		/*
2254		 * VM_MIXEDMAP !pfn_valid() case
2255		 *
2256		 * We should not cow pages in a shared writeable mapping.
2257		 * Just mark the pages writable as we can't do any dirty
2258		 * accounting on raw pfn maps.
2259		 */
2260		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2261				     (VM_WRITE|VM_SHARED))
2262			goto reuse;
2263		goto gotten;
2264	}
2265
2266	/*
2267	 * Take out anonymous pages first, anonymous shared vmas are
2268	 * not dirty accountable.
2269	 */
2270	if (PageAnon(old_page) && !PageKsm(old_page)) {
2271		if (!trylock_page(old_page)) {
2272			page_cache_get(old_page);
2273			pte_unmap_unlock(page_table, ptl);
2274			lock_page(old_page);
2275			page_table = pte_offset_map_lock(mm, pmd, address,
2276							 &ptl);
2277			if (!pte_same(*page_table, orig_pte)) {
2278				unlock_page(old_page);
2279				goto unlock;
2280			}
2281			page_cache_release(old_page);
2282		}
2283		if (reuse_swap_page(old_page)) {
2284			/*
2285			 * The page is all ours.  Move it to our anon_vma so
2286			 * the rmap code will not search our parent or siblings.
2287			 * Protected against the rmap code by the page lock.
2288			 */
2289			page_move_anon_rmap(old_page, vma, address);
2290			unlock_page(old_page);
2291			goto reuse;
2292		}
2293		unlock_page(old_page);
2294	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2295					(VM_WRITE|VM_SHARED))) {
2296		/*
2297		 * Only catch write-faults on shared writable pages,
2298		 * read-only shared pages can get COWed by
2299		 * get_user_pages(.write=1, .force=1).
2300		 */
2301		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2302			struct vm_fault vmf;
2303			int tmp;
2304
2305			vmf.virtual_address = (void __user *)(address &
2306								PAGE_MASK);
2307			vmf.pgoff = old_page->index;
2308			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2309			vmf.page = old_page;
2310
2311			/*
2312			 * Notify the address space that the page is about to
2313			 * become writable so that it can prohibit this or wait
2314			 * for the page to get into an appropriate state.
2315			 *
2316			 * We do this without the lock held, so that it can
2317			 * sleep if it needs to.
2318			 */
2319			page_cache_get(old_page);
2320			pte_unmap_unlock(page_table, ptl);
2321
2322			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2323			if (unlikely(tmp &
2324					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2325				ret = tmp;
2326				goto unwritable_page;
2327			}
2328			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2329				lock_page(old_page);
2330				if (!old_page->mapping) {
2331					ret = 0; /* retry the fault */
2332					unlock_page(old_page);
2333					goto unwritable_page;
2334				}
2335			} else
2336				VM_BUG_ON(!PageLocked(old_page));
2337
2338			/*
2339			 * Since we dropped the lock we need to revalidate
2340			 * the PTE as someone else may have changed it.  If
2341			 * they did, we just return, as we can count on the
2342			 * MMU to tell us if they didn't also make it writable.
2343			 */
2344			page_table = pte_offset_map_lock(mm, pmd, address,
2345							 &ptl);
2346			if (!pte_same(*page_table, orig_pte)) {
2347				unlock_page(old_page);
2348				goto unlock;
2349			}
2350
2351			page_mkwrite = 1;
2352		}
2353		dirty_page = old_page;
2354		get_page(dirty_page);
2355
2356reuse:
2357		flush_cache_page(vma, address, pte_pfn(orig_pte));
2358		entry = pte_mkyoung(orig_pte);
2359		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2361			update_mmu_cache(vma, address, page_table);
2362		pte_unmap_unlock(page_table, ptl);
2363		ret |= VM_FAULT_WRITE;
2364
2365		if (!dirty_page)
2366			return ret;
2367
2368		/*
2369		 * Yes, Virginia, this is actually required to prevent a race
2370		 * with clear_page_dirty_for_io() from clearing the page dirty
2371		 * bit after it clear all dirty ptes, but before a racing
2372		 * do_wp_page installs a dirty pte.
2373		 *
2374		 * __do_fault is protected similarly.
2375		 */
2376		if (!page_mkwrite) {
2377			wait_on_page_locked(dirty_page);
2378			set_page_dirty_balance(dirty_page, page_mkwrite);
2379		}
2380		put_page(dirty_page);
2381		if (page_mkwrite) {
2382			struct address_space *mapping = dirty_page->mapping;
2383
2384			set_page_dirty(dirty_page);
2385			unlock_page(dirty_page);
2386			page_cache_release(dirty_page);
2387			if (mapping)	{
2388				/*
2389				 * Some device drivers do not set page.mapping
2390				 * but still dirty their pages
2391				 */
2392				balance_dirty_pages_ratelimited(mapping);
2393			}
2394		}
2395
2396		/* file_update_time outside page_lock */
2397		if (vma->vm_file)
2398			file_update_time(vma->vm_file);
2399
2400		return ret;
2401	}
2402
2403	/*
2404	 * Ok, we need to copy. Oh, well..
2405	 */
2406	page_cache_get(old_page);
2407gotten:
2408	pte_unmap_unlock(page_table, ptl);
2409
2410	if (unlikely(anon_vma_prepare(vma)))
2411		goto oom;
2412
2413	if (is_zero_pfn(pte_pfn(orig_pte))) {
2414		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2415		if (!new_page)
2416			goto oom;
2417	} else {
2418		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2419		if (!new_page)
2420			goto oom;
2421		cow_user_page(new_page, old_page, address, vma);
2422	}
2423	__SetPageUptodate(new_page);
2424
2425	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2426		goto oom_free_new;
2427
2428	/*
2429	 * Re-check the pte - we dropped the lock
2430	 */
2431	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2432	if (likely(pte_same(*page_table, orig_pte))) {
2433		if (old_page) {
2434			if (!PageAnon(old_page)) {
2435				dec_mm_counter_fast(mm, MM_FILEPAGES);
2436				inc_mm_counter_fast(mm, MM_ANONPAGES);
2437			}
2438		} else
2439			inc_mm_counter_fast(mm, MM_ANONPAGES);
2440		flush_cache_page(vma, address, pte_pfn(orig_pte));
2441		entry = mk_pte(new_page, vma->vm_page_prot);
2442		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2443		/*
2444		 * Clear the pte entry and flush it first, before updating the
2445		 * pte with the new entry. This will avoid a race condition
2446		 * seen in the presence of one thread doing SMC and another
2447		 * thread doing COW.
2448		 */
2449		ptep_clear_flush(vma, address, page_table);
2450		page_add_new_anon_rmap(new_page, vma, address);
2451		/*
2452		 * We call the notify macro here because, when using secondary
2453		 * mmu page tables (such as kvm shadow page tables), we want the
2454		 * new page to be mapped directly into the secondary page table.
2455		 */
2456		set_pte_at_notify(mm, address, page_table, entry);
2457		update_mmu_cache(vma, address, page_table);
2458		if (old_page) {
2459			/*
2460			 * Only after switching the pte to the new page may
2461			 * we remove the mapcount here. Otherwise another
2462			 * process may come and find the rmap count decremented
2463			 * before the pte is switched to the new page, and
2464			 * "reuse" the old page writing into it while our pte
2465			 * here still points into it and can be read by other
2466			 * threads.
2467			 *
2468			 * The critical issue is to order this
2469			 * page_remove_rmap with the ptp_clear_flush above.
2470			 * Those stores are ordered by (if nothing else,)
2471			 * the barrier present in the atomic_add_negative
2472			 * in page_remove_rmap.
2473			 *
2474			 * Then the TLB flush in ptep_clear_flush ensures that
2475			 * no process can access the old page before the
2476			 * decremented mapcount is visible. And the old page
2477			 * cannot be reused until after the decremented
2478			 * mapcount is visible. So transitively, TLBs to
2479			 * old page will be flushed before it can be reused.
2480			 */
2481			page_remove_rmap(old_page);
2482		}
2483
2484		/* Free the old page.. */
2485		new_page = old_page;
2486		ret |= VM_FAULT_WRITE;
2487	} else
2488		mem_cgroup_uncharge_page(new_page);
2489
2490	if (new_page)
2491		page_cache_release(new_page);
2492unlock:
2493	pte_unmap_unlock(page_table, ptl);
2494	if (old_page) {
2495		/*
2496		 * Don't let another task, with possibly unlocked vma,
2497		 * keep the mlocked page.
2498		 */
2499		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2500			lock_page(old_page);	/* LRU manipulation */
2501			munlock_vma_page(old_page);
2502			unlock_page(old_page);
2503		}
2504		page_cache_release(old_page);
2505	}
2506	return ret;
2507oom_free_new:
2508	page_cache_release(new_page);
2509oom:
2510	if (old_page) {
2511		if (page_mkwrite) {
2512			unlock_page(old_page);
2513			page_cache_release(old_page);
2514		}
2515		page_cache_release(old_page);
2516	}
2517	return VM_FAULT_OOM;
2518
2519unwritable_page:
2520	page_cache_release(old_page);
2521	return ret;
2522}
2523
2524/*
2525 * Helper functions for unmap_mapping_range().
2526 *
2527 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2528 *
2529 * We have to restart searching the prio_tree whenever we drop the lock,
2530 * since the iterator is only valid while the lock is held, and anyway
2531 * a later vma might be split and reinserted earlier while lock dropped.
2532 *
2533 * The list of nonlinear vmas could be handled more efficiently, using
2534 * a placeholder, but handle it in the same way until a need is shown.
2535 * It is important to search the prio_tree before nonlinear list: a vma
2536 * may become nonlinear and be shifted from prio_tree to nonlinear list
2537 * while the lock is dropped; but never shifted from list to prio_tree.
2538 *
2539 * In order to make forward progress despite restarting the search,
2540 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2541 * quickly skip it next time around.  Since the prio_tree search only
2542 * shows us those vmas affected by unmapping the range in question, we
2543 * can't efficiently keep all vmas in step with mapping->truncate_count:
2544 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2545 * mapping->truncate_count and vma->vm_truncate_count are protected by
2546 * i_mmap_lock.
2547 *
2548 * In order to make forward progress despite repeatedly restarting some
2549 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2550 * and restart from that address when we reach that vma again.  It might
2551 * have been split or merged, shrunk or extended, but never shifted: so
2552 * restart_addr remains valid so long as it remains in the vma's range.
2553 * unmap_mapping_range forces truncate_count to leap over page-aligned
2554 * values so we can save vma's restart_addr in its truncate_count field.
2555 */
2556#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2557
2558static void reset_vma_truncate_counts(struct address_space *mapping)
2559{
2560	struct vm_area_struct *vma;
2561	struct prio_tree_iter iter;
2562
2563	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2564		vma->vm_truncate_count = 0;
2565	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2566		vma->vm_truncate_count = 0;
2567}
2568
2569static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2570		unsigned long start_addr, unsigned long end_addr,
2571		struct zap_details *details)
2572{
2573	unsigned long restart_addr;
2574	int need_break;
2575
2576	/*
2577	 * files that support invalidating or truncating portions of the
2578	 * file from under mmaped areas must have their ->fault function
2579	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2580	 * This provides synchronisation against concurrent unmapping here.
2581	 */
2582
2583again:
2584	restart_addr = vma->vm_truncate_count;
2585	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2586		start_addr = restart_addr;
2587		if (start_addr >= end_addr) {
2588			/* Top of vma has been split off since last time */
2589			vma->vm_truncate_count = details->truncate_count;
2590			return 0;
2591		}
2592	}
2593
2594	restart_addr = zap_page_range(vma, start_addr,
2595					end_addr - start_addr, details);
2596	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2597
2598	if (restart_addr >= end_addr) {
2599		/* We have now completed this vma: mark it so */
2600		vma->vm_truncate_count = details->truncate_count;
2601		if (!need_break)
2602			return 0;
2603	} else {
2604		/* Note restart_addr in vma's truncate_count field */
2605		vma->vm_truncate_count = restart_addr;
2606		if (!need_break)
2607			goto again;
2608	}
2609
2610	spin_unlock(details->i_mmap_lock);
2611	cond_resched();
2612	spin_lock(details->i_mmap_lock);
2613	return -EINTR;
2614}
2615
2616static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2617					    struct zap_details *details)
2618{
2619	struct vm_area_struct *vma;
2620	struct prio_tree_iter iter;
2621	pgoff_t vba, vea, zba, zea;
2622
2623restart:
2624	vma_prio_tree_foreach(vma, &iter, root,
2625			details->first_index, details->last_index) {
2626		/* Skip quickly over those we have already dealt with */
2627		if (vma->vm_truncate_count == details->truncate_count)
2628			continue;
2629
2630		vba = vma->vm_pgoff;
2631		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2632		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2633		zba = details->first_index;
2634		if (zba < vba)
2635			zba = vba;
2636		zea = details->last_index;
2637		if (zea > vea)
2638			zea = vea;
2639
2640		if (unmap_mapping_range_vma(vma,
2641			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2642			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2643				details) < 0)
2644			goto restart;
2645	}
2646}
2647
2648static inline void unmap_mapping_range_list(struct list_head *head,
2649					    struct zap_details *details)
2650{
2651	struct vm_area_struct *vma;
2652
2653	/*
2654	 * In nonlinear VMAs there is no correspondence between virtual address
2655	 * offset and file offset.  So we must perform an exhaustive search
2656	 * across *all* the pages in each nonlinear VMA, not just the pages
2657	 * whose virtual address lies outside the file truncation point.
2658	 */
2659restart:
2660	list_for_each_entry(vma, head, shared.vm_set.list) {
2661		/* Skip quickly over those we have already dealt with */
2662		if (vma->vm_truncate_count == details->truncate_count)
2663			continue;
2664		details->nonlinear_vma = vma;
2665		if (unmap_mapping_range_vma(vma, vma->vm_start,
2666					vma->vm_end, details) < 0)
2667			goto restart;
2668	}
2669}
2670
2671/**
2672 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2673 * @mapping: the address space containing mmaps to be unmapped.
2674 * @holebegin: byte in first page to unmap, relative to the start of
2675 * the underlying file.  This will be rounded down to a PAGE_SIZE
2676 * boundary.  Note that this is different from truncate_pagecache(), which
2677 * must keep the partial page.  In contrast, we must get rid of
2678 * partial pages.
2679 * @holelen: size of prospective hole in bytes.  This will be rounded
2680 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2681 * end of the file.
2682 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2683 * but 0 when invalidating pagecache, don't throw away private data.
2684 */
2685void unmap_mapping_range(struct address_space *mapping,
2686		loff_t const holebegin, loff_t const holelen, int even_cows)
2687{
2688	struct zap_details details;
2689	pgoff_t hba = holebegin >> PAGE_SHIFT;
2690	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2691
2692	/* Check for overflow. */
2693	if (sizeof(holelen) > sizeof(hlen)) {
2694		long long holeend =
2695			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2696		if (holeend & ~(long long)ULONG_MAX)
2697			hlen = ULONG_MAX - hba + 1;
2698	}
2699
2700	details.check_mapping = even_cows? NULL: mapping;
2701	details.nonlinear_vma = NULL;
2702	details.first_index = hba;
2703	details.last_index = hba + hlen - 1;
2704	if (details.last_index < details.first_index)
2705		details.last_index = ULONG_MAX;
2706	details.i_mmap_lock = &mapping->i_mmap_lock;
2707
2708	mutex_lock(&mapping->unmap_mutex);
2709	spin_lock(&mapping->i_mmap_lock);
2710
2711	/* Protect against endless unmapping loops */
2712	mapping->truncate_count++;
2713	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2714		if (mapping->truncate_count == 0)
2715			reset_vma_truncate_counts(mapping);
2716		mapping->truncate_count++;
2717	}
2718	details.truncate_count = mapping->truncate_count;
2719
2720	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2721		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2722	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2723		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2724	spin_unlock(&mapping->i_mmap_lock);
2725	mutex_unlock(&mapping->unmap_mutex);
2726}
2727EXPORT_SYMBOL(unmap_mapping_range);
2728
2729int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2730{
2731	struct address_space *mapping = inode->i_mapping;
2732
2733	/*
2734	 * If the underlying filesystem is not going to provide
2735	 * a way to truncate a range of blocks (punch a hole) -
2736	 * we should return failure right now.
2737	 */
2738	if (!inode->i_op->truncate_range)
2739		return -ENOSYS;
2740
2741	mutex_lock(&inode->i_mutex);
2742	down_write(&inode->i_alloc_sem);
2743	unmap_mapping_range(mapping, offset, (end - offset), 1);
2744	truncate_inode_pages_range(mapping, offset, end);
2745	unmap_mapping_range(mapping, offset, (end - offset), 1);
2746	inode->i_op->truncate_range(inode, offset, end);
2747	up_write(&inode->i_alloc_sem);
2748	mutex_unlock(&inode->i_mutex);
2749
2750	return 0;
2751}
2752
2753/*
2754 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2755 * but allow concurrent faults), and pte mapped but not yet locked.
2756 * We return with mmap_sem still held, but pte unmapped and unlocked.
2757 */
2758static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2759		unsigned long address, pte_t *page_table, pmd_t *pmd,
2760		unsigned int flags, pte_t orig_pte)
2761{
2762	spinlock_t *ptl;
2763	struct page *page, *swapcache = NULL;
2764	swp_entry_t entry;
2765	pte_t pte;
2766	int locked;
2767	struct mem_cgroup *ptr = NULL;
2768	int exclusive = 0;
2769	int ret = 0;
2770
2771	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2772		goto out;
2773
2774	entry = pte_to_swp_entry(orig_pte);
2775	if (unlikely(non_swap_entry(entry))) {
2776		if (is_migration_entry(entry)) {
2777			migration_entry_wait(mm, pmd, address);
2778		} else if (is_hwpoison_entry(entry)) {
2779			ret = VM_FAULT_HWPOISON;
2780		} else {
2781			print_bad_pte(vma, address, orig_pte, NULL);
2782			ret = VM_FAULT_SIGBUS;
2783		}
2784		goto out;
2785	}
2786	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2787	page = lookup_swap_cache(entry);
2788	if (!page) {
2789		grab_swap_token(mm); /* Contend for token _before_ read-in */
2790		page = swapin_readahead(entry,
2791					GFP_HIGHUSER_MOVABLE, vma, address);
2792		if (!page) {
2793			/*
2794			 * Back out if somebody else faulted in this pte
2795			 * while we released the pte lock.
2796			 */
2797			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2798			if (likely(pte_same(*page_table, orig_pte)))
2799				ret = VM_FAULT_OOM;
2800			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2801			goto unlock;
2802		}
2803
2804		/* Had to read the page from swap area: Major fault */
2805		ret = VM_FAULT_MAJOR;
2806		count_vm_event(PGMAJFAULT);
2807	} else if (PageHWPoison(page)) {
2808		/*
2809		 * hwpoisoned dirty swapcache pages are kept for killing
2810		 * owner processes (which may be unknown at hwpoison time)
2811		 */
2812		ret = VM_FAULT_HWPOISON;
2813		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2814		goto out_release;
2815	}
2816
2817	locked = lock_page_or_retry(page, mm, flags);
2818	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2819	if (!locked) {
2820		ret |= VM_FAULT_RETRY;
2821		goto out_release;
2822	}
2823
2824	/*
2825	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2826	 * release the swapcache from under us.  The page pin, and pte_same
2827	 * test below, are not enough to exclude that.  Even if it is still
2828	 * swapcache, we need to check that the page's swap has not changed.
2829	 */
2830	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2831		goto out_page;
2832
2833	if (ksm_might_need_to_copy(page, vma, address)) {
2834		swapcache = page;
2835		page = ksm_does_need_to_copy(page, vma, address);
2836
2837		if (unlikely(!page)) {
2838			ret = VM_FAULT_OOM;
2839			page = swapcache;
2840			swapcache = NULL;
2841			goto out_page;
2842		}
2843	}
2844
2845	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2846		ret = VM_FAULT_OOM;
2847		goto out_page;
2848	}
2849
2850	/*
2851	 * Back out if somebody else already faulted in this pte.
2852	 */
2853	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2854	if (unlikely(!pte_same(*page_table, orig_pte)))
2855		goto out_nomap;
2856
2857	if (unlikely(!PageUptodate(page))) {
2858		ret = VM_FAULT_SIGBUS;
2859		goto out_nomap;
2860	}
2861
2862	/*
2863	 * The page isn't present yet, go ahead with the fault.
2864	 *
2865	 * Be careful about the sequence of operations here.
2866	 * To get its accounting right, reuse_swap_page() must be called
2867	 * while the page is counted on swap but not yet in mapcount i.e.
2868	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2869	 * must be called after the swap_free(), or it will never succeed.
2870	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2871	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2872	 * in page->private. In this case, a record in swap_cgroup  is silently
2873	 * discarded at swap_free().
2874	 */
2875
2876	inc_mm_counter_fast(mm, MM_ANONPAGES);
2877	dec_mm_counter_fast(mm, MM_SWAPENTS);
2878	pte = mk_pte(page, vma->vm_page_prot);
2879	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2880		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2881		flags &= ~FAULT_FLAG_WRITE;
2882		ret |= VM_FAULT_WRITE;
2883		exclusive = 1;
2884	}
2885	flush_icache_page(vma, page);
2886	set_pte_at(mm, address, page_table, pte);
2887	do_page_add_anon_rmap(page, vma, address, exclusive);
2888	/* It's better to call commit-charge after rmap is established */
2889	mem_cgroup_commit_charge_swapin(page, ptr);
2890
2891	swap_free(entry);
2892	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2893		try_to_free_swap(page);
2894	unlock_page(page);
2895	if (swapcache) {
2896		/*
2897		 * Hold the lock to avoid the swap entry to be reused
2898		 * until we take the PT lock for the pte_same() check
2899		 * (to avoid false positives from pte_same). For
2900		 * further safety release the lock after the swap_free
2901		 * so that the swap count won't change under a
2902		 * parallel locked swapcache.
2903		 */
2904		unlock_page(swapcache);
2905		page_cache_release(swapcache);
2906	}
2907
2908	if (flags & FAULT_FLAG_WRITE) {
2909		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2910		if (ret & VM_FAULT_ERROR)
2911			ret &= VM_FAULT_ERROR;
2912		goto out;
2913	}
2914
2915	/* No need to invalidate - it was non-present before */
2916	update_mmu_cache(vma, address, page_table);
2917unlock:
2918	pte_unmap_unlock(page_table, ptl);
2919out:
2920	return ret;
2921out_nomap:
2922	mem_cgroup_cancel_charge_swapin(ptr);
2923	pte_unmap_unlock(page_table, ptl);
2924out_page:
2925	unlock_page(page);
2926out_release:
2927	page_cache_release(page);
2928	if (swapcache) {
2929		unlock_page(swapcache);
2930		page_cache_release(swapcache);
2931	}
2932	return ret;
2933}
2934
2935/*
2936 * This is like a special single-page "expand_{down|up}wards()",
2937 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2938 * doesn't hit another vma.
2939 */
2940static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2941{
2942	address &= PAGE_MASK;
2943	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2944		struct vm_area_struct *prev = vma->vm_prev;
2945
2946		/*
2947		 * Is there a mapping abutting this one below?
2948		 *
2949		 * That's only ok if it's the same stack mapping
2950		 * that has gotten split..
2951		 */
2952		if (prev && prev->vm_end == address)
2953			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2954
2955		expand_stack(vma, address - PAGE_SIZE);
2956	}
2957	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2958		struct vm_area_struct *next = vma->vm_next;
2959
2960		/* As VM_GROWSDOWN but s/below/above/ */
2961		if (next && next->vm_start == address + PAGE_SIZE)
2962			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2963
2964		expand_upwards(vma, address + PAGE_SIZE);
2965	}
2966	return 0;
2967}
2968
2969/*
2970 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2971 * but allow concurrent faults), and pte mapped but not yet locked.
2972 * We return with mmap_sem still held, but pte unmapped and unlocked.
2973 */
2974static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2975		unsigned long address, pte_t *page_table, pmd_t *pmd,
2976		unsigned int flags)
2977{
2978	struct page *page;
2979	spinlock_t *ptl;
2980	pte_t entry;
2981
2982	pte_unmap(page_table);
2983
2984	/* Check if we need to add a guard page to the stack */
2985	if (check_stack_guard_page(vma, address) < 0)
2986		return VM_FAULT_SIGBUS;
2987
2988	/* Use the zero-page for reads */
2989	if (!(flags & FAULT_FLAG_WRITE)) {
2990		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2991						vma->vm_page_prot));
2992		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2993		if (!pte_none(*page_table))
2994			goto unlock;
2995		goto setpte;
2996	}
2997
2998	/* Allocate our own private page. */
2999	if (unlikely(anon_vma_prepare(vma)))
3000		goto oom;
3001	page = alloc_zeroed_user_highpage_movable(vma, address);
3002	if (!page)
3003		goto oom;
3004	__SetPageUptodate(page);
3005
3006	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3007		goto oom_free_page;
3008
3009	entry = mk_pte(page, vma->vm_page_prot);
3010	if (vma->vm_flags & VM_WRITE)
3011		entry = pte_mkwrite(pte_mkdirty(entry));
3012
3013	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3014	if (!pte_none(*page_table))
3015		goto release;
3016
3017	inc_mm_counter_fast(mm, MM_ANONPAGES);
3018	page_add_new_anon_rmap(page, vma, address);
3019setpte:
3020	set_pte_at(mm, address, page_table, entry);
3021
3022	/* No need to invalidate - it was non-present before */
3023	update_mmu_cache(vma, address, page_table);
3024unlock:
3025	pte_unmap_unlock(page_table, ptl);
3026	return 0;
3027release:
3028	mem_cgroup_uncharge_page(page);
3029	page_cache_release(page);
3030	goto unlock;
3031oom_free_page:
3032	page_cache_release(page);
3033oom:
3034	return VM_FAULT_OOM;
3035}
3036
3037/*
3038 * __do_fault() tries to create a new page mapping. It aggressively
3039 * tries to share with existing pages, but makes a separate copy if
3040 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3041 * the next page fault.
3042 *
3043 * As this is called only for pages that do not currently exist, we
3044 * do not need to flush old virtual caches or the TLB.
3045 *
3046 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3047 * but allow concurrent faults), and pte neither mapped nor locked.
3048 * We return with mmap_sem still held, but pte unmapped and unlocked.
3049 */
3050static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3051		unsigned long address, pmd_t *pmd,
3052		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3053{
3054	pte_t *page_table;
3055	spinlock_t *ptl;
3056	struct page *page;
3057	pte_t entry;
3058	int anon = 0;
3059	int charged = 0;
3060	struct page *dirty_page = NULL;
3061	struct vm_fault vmf;
3062	int ret;
3063	int page_mkwrite = 0;
3064
3065	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3066	vmf.pgoff = pgoff;
3067	vmf.flags = flags;
3068	vmf.page = NULL;
3069
3070	ret = vma->vm_ops->fault(vma, &vmf);
3071	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3072			    VM_FAULT_RETRY)))
3073		return ret;
3074
3075	if (unlikely(PageHWPoison(vmf.page))) {
3076		if (ret & VM_FAULT_LOCKED)
3077			unlock_page(vmf.page);
3078		return VM_FAULT_HWPOISON;
3079	}
3080
3081	/*
3082	 * For consistency in subsequent calls, make the faulted page always
3083	 * locked.
3084	 */
3085	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3086		lock_page(vmf.page);
3087	else
3088		VM_BUG_ON(!PageLocked(vmf.page));
3089
3090	/*
3091	 * Should we do an early C-O-W break?
3092	 */
3093	page = vmf.page;
3094	if (flags & FAULT_FLAG_WRITE) {
3095		if (!(vma->vm_flags & VM_SHARED)) {
3096			anon = 1;
3097			if (unlikely(anon_vma_prepare(vma))) {
3098				ret = VM_FAULT_OOM;
3099				goto out;
3100			}
3101			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3102						vma, address);
3103			if (!page) {
3104				ret = VM_FAULT_OOM;
3105				goto out;
3106			}
3107			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3108				ret = VM_FAULT_OOM;
3109				page_cache_release(page);
3110				goto out;
3111			}
3112			charged = 1;
3113			copy_user_highpage(page, vmf.page, address, vma);
3114			__SetPageUptodate(page);
3115		} else {
3116			/*
3117			 * If the page will be shareable, see if the backing
3118			 * address space wants to know that the page is about
3119			 * to become writable
3120			 */
3121			if (vma->vm_ops->page_mkwrite) {
3122				int tmp;
3123
3124				unlock_page(page);
3125				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3126				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3127				if (unlikely(tmp &
3128					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3129					ret = tmp;
3130					goto unwritable_page;
3131				}
3132				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3133					lock_page(page);
3134					if (!page->mapping) {
3135						ret = 0; /* retry the fault */
3136						unlock_page(page);
3137						goto unwritable_page;
3138					}
3139				} else
3140					VM_BUG_ON(!PageLocked(page));
3141				page_mkwrite = 1;
3142			}
3143		}
3144
3145	}
3146
3147	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3148
3149	/*
3150	 * This silly early PAGE_DIRTY setting removes a race
3151	 * due to the bad i386 page protection. But it's valid
3152	 * for other architectures too.
3153	 *
3154	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3155	 * an exclusive copy of the page, or this is a shared mapping,
3156	 * so we can make it writable and dirty to avoid having to
3157	 * handle that later.
3158	 */
3159	/* Only go through if we didn't race with anybody else... */
3160	if (likely(pte_same(*page_table, orig_pte))) {
3161		flush_icache_page(vma, page);
3162		entry = mk_pte(page, vma->vm_page_prot);
3163		if (flags & FAULT_FLAG_WRITE)
3164			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3165		if (anon) {
3166			inc_mm_counter_fast(mm, MM_ANONPAGES);
3167			page_add_new_anon_rmap(page, vma, address);
3168		} else {
3169			inc_mm_counter_fast(mm, MM_FILEPAGES);
3170			page_add_file_rmap(page);
3171			if (flags & FAULT_FLAG_WRITE) {
3172				dirty_page = page;
3173				get_page(dirty_page);
3174			}
3175		}
3176		set_pte_at(mm, address, page_table, entry);
3177
3178		/* no need to invalidate: a not-present page won't be cached */
3179		update_mmu_cache(vma, address, page_table);
3180	} else {
3181		if (charged)
3182			mem_cgroup_uncharge_page(page);
3183		if (anon)
3184			page_cache_release(page);
3185		else
3186			anon = 1; /* no anon but release faulted_page */
3187	}
3188
3189	pte_unmap_unlock(page_table, ptl);
3190
3191out:
3192	if (dirty_page) {
3193		struct address_space *mapping = page->mapping;
3194
3195		if (set_page_dirty(dirty_page))
3196			page_mkwrite = 1;
3197		unlock_page(dirty_page);
3198		put_page(dirty_page);
3199		if (page_mkwrite && mapping) {
3200			/*
3201			 * Some device drivers do not set page.mapping but still
3202			 * dirty their pages
3203			 */
3204			balance_dirty_pages_ratelimited(mapping);
3205		}
3206
3207		/* file_update_time outside page_lock */
3208		if (vma->vm_file)
3209			file_update_time(vma->vm_file);
3210	} else {
3211		unlock_page(vmf.page);
3212		if (anon)
3213			page_cache_release(vmf.page);
3214	}
3215
3216	return ret;
3217
3218unwritable_page:
3219	page_cache_release(page);
3220	return ret;
3221}
3222
3223static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3224		unsigned long address, pte_t *page_table, pmd_t *pmd,
3225		unsigned int flags, pte_t orig_pte)
3226{
3227	pgoff_t pgoff = (((address & PAGE_MASK)
3228			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3229
3230	pte_unmap(page_table);
3231	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3232}
3233
3234/*
3235 * Fault of a previously existing named mapping. Repopulate the pte
3236 * from the encoded file_pte if possible. This enables swappable
3237 * nonlinear vmas.
3238 *
3239 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3240 * but allow concurrent faults), and pte mapped but not yet locked.
3241 * We return with mmap_sem still held, but pte unmapped and unlocked.
3242 */
3243static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3244		unsigned long address, pte_t *page_table, pmd_t *pmd,
3245		unsigned int flags, pte_t orig_pte)
3246{
3247	pgoff_t pgoff;
3248
3249	flags |= FAULT_FLAG_NONLINEAR;
3250
3251	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3252		return 0;
3253
3254	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3255		/*
3256		 * Page table corrupted: show pte and kill process.
3257		 */
3258		print_bad_pte(vma, address, orig_pte, NULL);
3259		return VM_FAULT_SIGBUS;
3260	}
3261
3262	pgoff = pte_to_pgoff(orig_pte);
3263	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3264}
3265
3266/*
3267 * These routines also need to handle stuff like marking pages dirty
3268 * and/or accessed for architectures that don't do it in hardware (most
3269 * RISC architectures).  The early dirtying is also good on the i386.
3270 *
3271 * There is also a hook called "update_mmu_cache()" that architectures
3272 * with external mmu caches can use to update those (ie the Sparc or
3273 * PowerPC hashed page tables that act as extended TLBs).
3274 *
3275 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3276 * but allow concurrent faults), and pte mapped but not yet locked.
3277 * We return with mmap_sem still held, but pte unmapped and unlocked.
3278 */
3279int handle_pte_fault(struct mm_struct *mm,
3280		     struct vm_area_struct *vma, unsigned long address,
3281		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3282{
3283	pte_t entry;
3284	spinlock_t *ptl;
3285
3286	entry = *pte;
3287	if (!pte_present(entry)) {
3288		if (pte_none(entry)) {
3289			if (vma->vm_ops) {
3290				if (likely(vma->vm_ops->fault))
3291					return do_linear_fault(mm, vma, address,
3292						pte, pmd, flags, entry);
3293			}
3294			return do_anonymous_page(mm, vma, address,
3295						 pte, pmd, flags);
3296		}
3297		if (pte_file(entry))
3298			return do_nonlinear_fault(mm, vma, address,
3299					pte, pmd, flags, entry);
3300		return do_swap_page(mm, vma, address,
3301					pte, pmd, flags, entry);
3302	}
3303
3304	ptl = pte_lockptr(mm, pmd);
3305	spin_lock(ptl);
3306	if (unlikely(!pte_same(*pte, entry)))
3307		goto unlock;
3308	if (flags & FAULT_FLAG_WRITE) {
3309		if (!pte_write(entry))
3310			return do_wp_page(mm, vma, address,
3311					pte, pmd, ptl, entry);
3312		entry = pte_mkdirty(entry);
3313	}
3314	entry = pte_mkyoung(entry);
3315	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3316		update_mmu_cache(vma, address, pte);
3317	} else {
3318		/*
3319		 * This is needed only for protection faults but the arch code
3320		 * is not yet telling us if this is a protection fault or not.
3321		 * This still avoids useless tlb flushes for .text page faults
3322		 * with threads.
3323		 */
3324		if (flags & FAULT_FLAG_WRITE)
3325			flush_tlb_fix_spurious_fault(vma, address);
3326	}
3327unlock:
3328	pte_unmap_unlock(pte, ptl);
3329	return 0;
3330}
3331
3332/*
3333 * By the time we get here, we already hold the mm semaphore
3334 */
3335int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3336		unsigned long address, unsigned int flags)
3337{
3338	pgd_t *pgd;
3339	pud_t *pud;
3340	pmd_t *pmd;
3341	pte_t *pte;
3342
3343	__set_current_state(TASK_RUNNING);
3344
3345	count_vm_event(PGFAULT);
3346
3347	/* do counter updates before entering really critical section. */
3348	check_sync_rss_stat(current);
3349
3350	if (unlikely(is_vm_hugetlb_page(vma)))
3351		return hugetlb_fault(mm, vma, address, flags);
3352
3353	pgd = pgd_offset(mm, address);
3354	pud = pud_alloc(mm, pgd, address);
3355	if (!pud)
3356		return VM_FAULT_OOM;
3357	pmd = pmd_alloc(mm, pud, address);
3358	if (!pmd)
3359		return VM_FAULT_OOM;
3360	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3361		if (!vma->vm_ops)
3362			return do_huge_pmd_anonymous_page(mm, vma, address,
3363							  pmd, flags);
3364	} else {
3365		pmd_t orig_pmd = *pmd;
3366		barrier();
3367		if (pmd_trans_huge(orig_pmd)) {
3368			if (flags & FAULT_FLAG_WRITE &&
3369			    !pmd_write(orig_pmd) &&
3370			    !pmd_trans_splitting(orig_pmd))
3371				return do_huge_pmd_wp_page(mm, vma, address,
3372							   pmd, orig_pmd);
3373			return 0;
3374		}
3375	}
3376
3377	/*
3378	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3379	 * run pte_offset_map on the pmd, if an huge pmd could
3380	 * materialize from under us from a different thread.
3381	 */
3382	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
3383		return VM_FAULT_OOM;
3384	/* if an huge pmd materialized from under us just retry later */
3385	if (unlikely(pmd_trans_huge(*pmd)))
3386		return 0;
3387	/*
3388	 * A regular pmd is established and it can't morph into a huge pmd
3389	 * from under us anymore at this point because we hold the mmap_sem
3390	 * read mode and khugepaged takes it in write mode. So now it's
3391	 * safe to run pte_offset_map().
3392	 */
3393	pte = pte_offset_map(pmd, address);
3394
3395	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3396}
3397
3398#ifndef __PAGETABLE_PUD_FOLDED
3399/*
3400 * Allocate page upper directory.
3401 * We've already handled the fast-path in-line.
3402 */
3403int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3404{
3405	pud_t *new = pud_alloc_one(mm, address);
3406	if (!new)
3407		return -ENOMEM;
3408
3409	smp_wmb(); /* See comment in __pte_alloc */
3410
3411	spin_lock(&mm->page_table_lock);
3412	if (pgd_present(*pgd))		/* Another has populated it */
3413		pud_free(mm, new);
3414	else
3415		pgd_populate(mm, pgd, new);
3416	spin_unlock(&mm->page_table_lock);
3417	return 0;
3418}
3419#endif /* __PAGETABLE_PUD_FOLDED */
3420
3421#ifndef __PAGETABLE_PMD_FOLDED
3422/*
3423 * Allocate page middle directory.
3424 * We've already handled the fast-path in-line.
3425 */
3426int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3427{
3428	pmd_t *new = pmd_alloc_one(mm, address);
3429	if (!new)
3430		return -ENOMEM;
3431
3432	smp_wmb(); /* See comment in __pte_alloc */
3433
3434	spin_lock(&mm->page_table_lock);
3435#ifndef __ARCH_HAS_4LEVEL_HACK
3436	if (pud_present(*pud))		/* Another has populated it */
3437		pmd_free(mm, new);
3438	else
3439		pud_populate(mm, pud, new);
3440#else
3441	if (pgd_present(*pud))		/* Another has populated it */
3442		pmd_free(mm, new);
3443	else
3444		pgd_populate(mm, pud, new);
3445#endif /* __ARCH_HAS_4LEVEL_HACK */
3446	spin_unlock(&mm->page_table_lock);
3447	return 0;
3448}
3449#endif /* __PAGETABLE_PMD_FOLDED */
3450
3451int make_pages_present(unsigned long addr, unsigned long end)
3452{
3453	int ret, len, write;
3454	struct vm_area_struct * vma;
3455
3456	vma = find_vma(current->mm, addr);
3457	if (!vma)
3458		return -ENOMEM;
3459	/*
3460	 * We want to touch writable mappings with a write fault in order
3461	 * to break COW, except for shared mappings because these don't COW
3462	 * and we would not want to dirty them for nothing.
3463	 */
3464	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3465	BUG_ON(addr >= end);
3466	BUG_ON(end > vma->vm_end);
3467	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3468	ret = get_user_pages(current, current->mm, addr,
3469			len, write, 0, NULL, NULL);
3470	if (ret < 0)
3471		return ret;
3472	return ret == len ? 0 : -EFAULT;
3473}
3474
3475#if !defined(__HAVE_ARCH_GATE_AREA)
3476
3477#if defined(AT_SYSINFO_EHDR)
3478static struct vm_area_struct gate_vma;
3479
3480static int __init gate_vma_init(void)
3481{
3482	gate_vma.vm_mm = NULL;
3483	gate_vma.vm_start = FIXADDR_USER_START;
3484	gate_vma.vm_end = FIXADDR_USER_END;
3485	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3486	gate_vma.vm_page_prot = __P101;
3487	/*
3488	 * Make sure the vDSO gets into every core dump.
3489	 * Dumping its contents makes post-mortem fully interpretable later
3490	 * without matching up the same kernel and hardware config to see
3491	 * what PC values meant.
3492	 */
3493	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3494	return 0;
3495}
3496__initcall(gate_vma_init);
3497#endif
3498
3499struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3500{
3501#ifdef AT_SYSINFO_EHDR
3502	return &gate_vma;
3503#else
3504	return NULL;
3505#endif
3506}
3507
3508int in_gate_area_no_task(unsigned long addr)
3509{
3510#ifdef AT_SYSINFO_EHDR
3511	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3512		return 1;
3513#endif
3514	return 0;
3515}
3516
3517#endif	/* __HAVE_ARCH_GATE_AREA */
3518
3519static int __follow_pte(struct mm_struct *mm, unsigned long address,
3520		pte_t **ptepp, spinlock_t **ptlp)
3521{
3522	pgd_t *pgd;
3523	pud_t *pud;
3524	pmd_t *pmd;
3525	pte_t *ptep;
3526
3527	pgd = pgd_offset(mm, address);
3528	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3529		goto out;
3530
3531	pud = pud_offset(pgd, address);
3532	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3533		goto out;
3534
3535	pmd = pmd_offset(pud, address);
3536	VM_BUG_ON(pmd_trans_huge(*pmd));
3537	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3538		goto out;
3539
3540	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3541	if (pmd_huge(*pmd))
3542		goto out;
3543
3544	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3545	if (!ptep)
3546		goto out;
3547	if (!pte_present(*ptep))
3548		goto unlock;
3549	*ptepp = ptep;
3550	return 0;
3551unlock:
3552	pte_unmap_unlock(ptep, *ptlp);
3553out:
3554	return -EINVAL;
3555}
3556
3557static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3558			     pte_t **ptepp, spinlock_t **ptlp)
3559{
3560	int res;
3561
3562	/* (void) is needed to make gcc happy */
3563	(void) __cond_lock(*ptlp,
3564			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3565	return res;
3566}
3567
3568/**
3569 * follow_pfn - look up PFN at a user virtual address
3570 * @vma: memory mapping
3571 * @address: user virtual address
3572 * @pfn: location to store found PFN
3573 *
3574 * Only IO mappings and raw PFN mappings are allowed.
3575 *
3576 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3577 */
3578int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3579	unsigned long *pfn)
3580{
3581	int ret = -EINVAL;
3582	spinlock_t *ptl;
3583	pte_t *ptep;
3584
3585	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3586		return ret;
3587
3588	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3589	if (ret)
3590		return ret;
3591	*pfn = pte_pfn(*ptep);
3592	pte_unmap_unlock(ptep, ptl);
3593	return 0;
3594}
3595EXPORT_SYMBOL(follow_pfn);
3596
3597#ifdef CONFIG_HAVE_IOREMAP_PROT
3598int follow_phys(struct vm_area_struct *vma,
3599		unsigned long address, unsigned int flags,
3600		unsigned long *prot, resource_size_t *phys)
3601{
3602	int ret = -EINVAL;
3603	pte_t *ptep, pte;
3604	spinlock_t *ptl;
3605
3606	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3607		goto out;
3608
3609	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3610		goto out;
3611	pte = *ptep;
3612
3613	if ((flags & FOLL_WRITE) && !pte_write(pte))
3614		goto unlock;
3615
3616	*prot = pgprot_val(pte_pgprot(pte));
3617	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3618
3619	ret = 0;
3620unlock:
3621	pte_unmap_unlock(ptep, ptl);
3622out:
3623	return ret;
3624}
3625
3626int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3627			void *buf, int len, int write)
3628{
3629	resource_size_t phys_addr;
3630	unsigned long prot = 0;
3631	void __iomem *maddr;
3632	int offset = addr & (PAGE_SIZE-1);
3633
3634	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3635		return -EINVAL;
3636
3637	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3638	if (write)
3639		memcpy_toio(maddr + offset, buf, len);
3640	else
3641		memcpy_fromio(buf, maddr + offset, len);
3642	iounmap(maddr);
3643
3644	return len;
3645}
3646#endif
3647
3648/*
3649 * Access another process' address space.
3650 * Source/target buffer must be kernel space,
3651 * Do not walk the page table directly, use get_user_pages
3652 */
3653int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3654{
3655	struct mm_struct *mm;
3656	struct vm_area_struct *vma;
3657	void *old_buf = buf;
3658
3659	mm = get_task_mm(tsk);
3660	if (!mm)
3661		return 0;
3662
3663	down_read(&mm->mmap_sem);
3664	/* ignore errors, just check how much was successfully transferred */
3665	while (len) {
3666		int bytes, ret, offset;
3667		void *maddr;
3668		struct page *page = NULL;
3669
3670		ret = get_user_pages(tsk, mm, addr, 1,
3671				write, 1, &page, &vma);
3672		if (ret <= 0) {
3673			/*
3674			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3675			 * we can access using slightly different code.
3676			 */
3677#ifdef CONFIG_HAVE_IOREMAP_PROT
3678			vma = find_vma(mm, addr);
3679			if (!vma)
3680				break;
3681			if (vma->vm_ops && vma->vm_ops->access)
3682				ret = vma->vm_ops->access(vma, addr, buf,
3683							  len, write);
3684			if (ret <= 0)
3685#endif
3686				break;
3687			bytes = ret;
3688		} else {
3689			bytes = len;
3690			offset = addr & (PAGE_SIZE-1);
3691			if (bytes > PAGE_SIZE-offset)
3692				bytes = PAGE_SIZE-offset;
3693
3694			maddr = kmap(page);
3695			if (write) {
3696				copy_to_user_page(vma, page, addr,
3697						  maddr + offset, buf, bytes);
3698				set_page_dirty_lock(page);
3699			} else {
3700				copy_from_user_page(vma, page, addr,
3701						    buf, maddr + offset, bytes);
3702			}
3703			kunmap(page);
3704			page_cache_release(page);
3705		}
3706		len -= bytes;
3707		buf += bytes;
3708		addr += bytes;
3709	}
3710	up_read(&mm->mmap_sem);
3711	mmput(mm);
3712
3713	return buf - old_buf;
3714}
3715
3716/*
3717 * Print the name of a VMA.
3718 */
3719void print_vma_addr(char *prefix, unsigned long ip)
3720{
3721	struct mm_struct *mm = current->mm;
3722	struct vm_area_struct *vma;
3723
3724	/*
3725	 * Do not print if we are in atomic
3726	 * contexts (in exception stacks, etc.):
3727	 */
3728	if (preempt_count())
3729		return;
3730
3731	down_read(&mm->mmap_sem);
3732	vma = find_vma(mm, ip);
3733	if (vma && vma->vm_file) {
3734		struct file *f = vma->vm_file;
3735		char *buf = (char *)__get_free_page(GFP_KERNEL);
3736		if (buf) {
3737			char *p, *s;
3738
3739			p = d_path(&f->f_path, buf, PAGE_SIZE);
3740			if (IS_ERR(p))
3741				p = "?";
3742			s = strrchr(p, '/');
3743			if (s)
3744				p = s+1;
3745			printk("%s%s[%lx+%lx]", prefix, p,
3746					vma->vm_start,
3747					vma->vm_end - vma->vm_start);
3748			free_page((unsigned long)buf);
3749		}
3750	}
3751	up_read(&current->mm->mmap_sem);
3752}
3753
3754#ifdef CONFIG_PROVE_LOCKING
3755void might_fault(void)
3756{
3757	/*
3758	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3759	 * holding the mmap_sem, this is safe because kernel memory doesn't
3760	 * get paged out, therefore we'll never actually fault, and the
3761	 * below annotations will generate false positives.
3762	 */
3763	if (segment_eq(get_fs(), KERNEL_DS))
3764		return;
3765
3766	might_sleep();
3767	/*
3768	 * it would be nicer only to annotate paths which are not under
3769	 * pagefault_disable, however that requires a larger audit and
3770	 * providing helpers like get_user_atomic.
3771	 */
3772	if (!in_atomic() && current->mm)
3773		might_lock_read(&current->mm->mmap_sem);
3774}
3775EXPORT_SYMBOL(might_fault);
3776#endif
3777
3778#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3779static void clear_gigantic_page(struct page *page,
3780				unsigned long addr,
3781				unsigned int pages_per_huge_page)
3782{
3783	int i;
3784	struct page *p = page;
3785
3786	might_sleep();
3787	for (i = 0; i < pages_per_huge_page;
3788	     i++, p = mem_map_next(p, page, i)) {
3789		cond_resched();
3790		clear_user_highpage(p, addr + i * PAGE_SIZE);
3791	}
3792}
3793void clear_huge_page(struct page *page,
3794		     unsigned long addr, unsigned int pages_per_huge_page)
3795{
3796	int i;
3797
3798	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3799		clear_gigantic_page(page, addr, pages_per_huge_page);
3800		return;
3801	}
3802
3803	might_sleep();
3804	for (i = 0; i < pages_per_huge_page; i++) {
3805		cond_resched();
3806		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3807	}
3808}
3809
3810static void copy_user_gigantic_page(struct page *dst, struct page *src,
3811				    unsigned long addr,
3812				    struct vm_area_struct *vma,
3813				    unsigned int pages_per_huge_page)
3814{
3815	int i;
3816	struct page *dst_base = dst;
3817	struct page *src_base = src;
3818
3819	for (i = 0; i < pages_per_huge_page; ) {
3820		cond_resched();
3821		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3822
3823		i++;
3824		dst = mem_map_next(dst, dst_base, i);
3825		src = mem_map_next(src, src_base, i);
3826	}
3827}
3828
3829void copy_user_huge_page(struct page *dst, struct page *src,
3830			 unsigned long addr, struct vm_area_struct *vma,
3831			 unsigned int pages_per_huge_page)
3832{
3833	int i;
3834
3835	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3836		copy_user_gigantic_page(dst, src, addr, vma,
3837					pages_per_huge_page);
3838		return;
3839	}
3840
3841	might_sleep();
3842	for (i = 0; i < pages_per_huge_page; i++) {
3843		cond_resched();
3844		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3845	}
3846}
3847#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3848