memory.c revision 83c54070ee1a2d05c89793884bea1a03f2851ed4
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53
54#include <asm/pgalloc.h>
55#include <asm/uaccess.h>
56#include <asm/tlb.h>
57#include <asm/tlbflush.h>
58#include <asm/pgtable.h>
59
60#include <linux/swapops.h>
61#include <linux/elf.h>
62
63#ifndef CONFIG_NEED_MULTIPLE_NODES
64/* use the per-pgdat data instead for discontigmem - mbligh */
65unsigned long max_mapnr;
66struct page *mem_map;
67
68EXPORT_SYMBOL(max_mapnr);
69EXPORT_SYMBOL(mem_map);
70#endif
71
72unsigned long num_physpages;
73/*
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
79 */
80void * high_memory;
81
82EXPORT_SYMBOL(num_physpages);
83EXPORT_SYMBOL(high_memory);
84
85int randomize_va_space __read_mostly = 1;
86
87static int __init disable_randmaps(char *s)
88{
89	randomize_va_space = 0;
90	return 1;
91}
92__setup("norandmaps", disable_randmaps);
93
94
95/*
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none.  Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
99 */
100
101void pgd_clear_bad(pgd_t *pgd)
102{
103	pgd_ERROR(*pgd);
104	pgd_clear(pgd);
105}
106
107void pud_clear_bad(pud_t *pud)
108{
109	pud_ERROR(*pud);
110	pud_clear(pud);
111}
112
113void pmd_clear_bad(pmd_t *pmd)
114{
115	pmd_ERROR(*pmd);
116	pmd_clear(pmd);
117}
118
119/*
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
122 */
123static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124{
125	struct page *page = pmd_page(*pmd);
126	pmd_clear(pmd);
127	pte_lock_deinit(page);
128	pte_free_tlb(tlb, page);
129	dec_zone_page_state(page, NR_PAGETABLE);
130	tlb->mm->nr_ptes--;
131}
132
133static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134				unsigned long addr, unsigned long end,
135				unsigned long floor, unsigned long ceiling)
136{
137	pmd_t *pmd;
138	unsigned long next;
139	unsigned long start;
140
141	start = addr;
142	pmd = pmd_offset(pud, addr);
143	do {
144		next = pmd_addr_end(addr, end);
145		if (pmd_none_or_clear_bad(pmd))
146			continue;
147		free_pte_range(tlb, pmd);
148	} while (pmd++, addr = next, addr != end);
149
150	start &= PUD_MASK;
151	if (start < floor)
152		return;
153	if (ceiling) {
154		ceiling &= PUD_MASK;
155		if (!ceiling)
156			return;
157	}
158	if (end - 1 > ceiling - 1)
159		return;
160
161	pmd = pmd_offset(pud, start);
162	pud_clear(pud);
163	pmd_free_tlb(tlb, pmd);
164}
165
166static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167				unsigned long addr, unsigned long end,
168				unsigned long floor, unsigned long ceiling)
169{
170	pud_t *pud;
171	unsigned long next;
172	unsigned long start;
173
174	start = addr;
175	pud = pud_offset(pgd, addr);
176	do {
177		next = pud_addr_end(addr, end);
178		if (pud_none_or_clear_bad(pud))
179			continue;
180		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181	} while (pud++, addr = next, addr != end);
182
183	start &= PGDIR_MASK;
184	if (start < floor)
185		return;
186	if (ceiling) {
187		ceiling &= PGDIR_MASK;
188		if (!ceiling)
189			return;
190	}
191	if (end - 1 > ceiling - 1)
192		return;
193
194	pud = pud_offset(pgd, start);
195	pgd_clear(pgd);
196	pud_free_tlb(tlb, pud);
197}
198
199/*
200 * This function frees user-level page tables of a process.
201 *
202 * Must be called with pagetable lock held.
203 */
204void free_pgd_range(struct mmu_gather **tlb,
205			unsigned long addr, unsigned long end,
206			unsigned long floor, unsigned long ceiling)
207{
208	pgd_t *pgd;
209	unsigned long next;
210	unsigned long start;
211
212	/*
213	 * The next few lines have given us lots of grief...
214	 *
215	 * Why are we testing PMD* at this top level?  Because often
216	 * there will be no work to do at all, and we'd prefer not to
217	 * go all the way down to the bottom just to discover that.
218	 *
219	 * Why all these "- 1"s?  Because 0 represents both the bottom
220	 * of the address space and the top of it (using -1 for the
221	 * top wouldn't help much: the masks would do the wrong thing).
222	 * The rule is that addr 0 and floor 0 refer to the bottom of
223	 * the address space, but end 0 and ceiling 0 refer to the top
224	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225	 * that end 0 case should be mythical).
226	 *
227	 * Wherever addr is brought up or ceiling brought down, we must
228	 * be careful to reject "the opposite 0" before it confuses the
229	 * subsequent tests.  But what about where end is brought down
230	 * by PMD_SIZE below? no, end can't go down to 0 there.
231	 *
232	 * Whereas we round start (addr) and ceiling down, by different
233	 * masks at different levels, in order to test whether a table
234	 * now has no other vmas using it, so can be freed, we don't
235	 * bother to round floor or end up - the tests don't need that.
236	 */
237
238	addr &= PMD_MASK;
239	if (addr < floor) {
240		addr += PMD_SIZE;
241		if (!addr)
242			return;
243	}
244	if (ceiling) {
245		ceiling &= PMD_MASK;
246		if (!ceiling)
247			return;
248	}
249	if (end - 1 > ceiling - 1)
250		end -= PMD_SIZE;
251	if (addr > end - 1)
252		return;
253
254	start = addr;
255	pgd = pgd_offset((*tlb)->mm, addr);
256	do {
257		next = pgd_addr_end(addr, end);
258		if (pgd_none_or_clear_bad(pgd))
259			continue;
260		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261	} while (pgd++, addr = next, addr != end);
262
263	if (!(*tlb)->fullmm)
264		flush_tlb_pgtables((*tlb)->mm, start, end);
265}
266
267void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268		unsigned long floor, unsigned long ceiling)
269{
270	while (vma) {
271		struct vm_area_struct *next = vma->vm_next;
272		unsigned long addr = vma->vm_start;
273
274		/*
275		 * Hide vma from rmap and vmtruncate before freeing pgtables
276		 */
277		anon_vma_unlink(vma);
278		unlink_file_vma(vma);
279
280		if (is_vm_hugetlb_page(vma)) {
281			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282				floor, next? next->vm_start: ceiling);
283		} else {
284			/*
285			 * Optimization: gather nearby vmas into one call down
286			 */
287			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288			       && !is_vm_hugetlb_page(next)) {
289				vma = next;
290				next = vma->vm_next;
291				anon_vma_unlink(vma);
292				unlink_file_vma(vma);
293			}
294			free_pgd_range(tlb, addr, vma->vm_end,
295				floor, next? next->vm_start: ceiling);
296		}
297		vma = next;
298	}
299}
300
301int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
302{
303	struct page *new = pte_alloc_one(mm, address);
304	if (!new)
305		return -ENOMEM;
306
307	pte_lock_init(new);
308	spin_lock(&mm->page_table_lock);
309	if (pmd_present(*pmd)) {	/* Another has populated it */
310		pte_lock_deinit(new);
311		pte_free(new);
312	} else {
313		mm->nr_ptes++;
314		inc_zone_page_state(new, NR_PAGETABLE);
315		pmd_populate(mm, pmd, new);
316	}
317	spin_unlock(&mm->page_table_lock);
318	return 0;
319}
320
321int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
322{
323	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324	if (!new)
325		return -ENOMEM;
326
327	spin_lock(&init_mm.page_table_lock);
328	if (pmd_present(*pmd))		/* Another has populated it */
329		pte_free_kernel(new);
330	else
331		pmd_populate_kernel(&init_mm, pmd, new);
332	spin_unlock(&init_mm.page_table_lock);
333	return 0;
334}
335
336static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
337{
338	if (file_rss)
339		add_mm_counter(mm, file_rss, file_rss);
340	if (anon_rss)
341		add_mm_counter(mm, anon_rss, anon_rss);
342}
343
344/*
345 * This function is called to print an error when a bad pte
346 * is found. For example, we might have a PFN-mapped pte in
347 * a region that doesn't allow it.
348 *
349 * The calling function must still handle the error.
350 */
351void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
352{
353	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354			"vm_flags = %lx, vaddr = %lx\n",
355		(long long)pte_val(pte),
356		(vma->vm_mm == current->mm ? current->comm : "???"),
357		vma->vm_flags, vaddr);
358	dump_stack();
359}
360
361static inline int is_cow_mapping(unsigned int flags)
362{
363	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364}
365
366/*
367 * This function gets the "struct page" associated with a pte.
368 *
369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370 * will have each page table entry just pointing to a raw page frame
371 * number, and as far as the VM layer is concerned, those do not have
372 * pages associated with them - even if the PFN might point to memory
373 * that otherwise is perfectly fine and has a "struct page".
374 *
375 * The way we recognize those mappings is through the rules set up
376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377 * and the vm_pgoff will point to the first PFN mapped: thus every
378 * page that is a raw mapping will always honor the rule
379 *
380 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
381 *
382 * and if that isn't true, the page has been COW'ed (in which case it
383 * _does_ have a "struct page" associated with it even if it is in a
384 * VM_PFNMAP range).
385 */
386struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
387{
388	unsigned long pfn = pte_pfn(pte);
389
390	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392		if (pfn == vma->vm_pgoff + off)
393			return NULL;
394		if (!is_cow_mapping(vma->vm_flags))
395			return NULL;
396	}
397
398	/*
399	 * Add some anal sanity checks for now. Eventually,
400	 * we should just do "return pfn_to_page(pfn)", but
401	 * in the meantime we check that we get a valid pfn,
402	 * and that the resulting page looks ok.
403	 */
404	if (unlikely(!pfn_valid(pfn))) {
405		print_bad_pte(vma, pte, addr);
406		return NULL;
407	}
408
409	/*
410	 * NOTE! We still have PageReserved() pages in the page
411	 * tables.
412	 *
413	 * The PAGE_ZERO() pages and various VDSO mappings can
414	 * cause them to exist.
415	 */
416	return pfn_to_page(pfn);
417}
418
419/*
420 * copy one vm_area from one task to the other. Assumes the page tables
421 * already present in the new task to be cleared in the whole range
422 * covered by this vma.
423 */
424
425static inline void
426copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
427		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
428		unsigned long addr, int *rss)
429{
430	unsigned long vm_flags = vma->vm_flags;
431	pte_t pte = *src_pte;
432	struct page *page;
433
434	/* pte contains position in swap or file, so copy. */
435	if (unlikely(!pte_present(pte))) {
436		if (!pte_file(pte)) {
437			swp_entry_t entry = pte_to_swp_entry(pte);
438
439			swap_duplicate(entry);
440			/* make sure dst_mm is on swapoff's mmlist. */
441			if (unlikely(list_empty(&dst_mm->mmlist))) {
442				spin_lock(&mmlist_lock);
443				if (list_empty(&dst_mm->mmlist))
444					list_add(&dst_mm->mmlist,
445						 &src_mm->mmlist);
446				spin_unlock(&mmlist_lock);
447			}
448			if (is_write_migration_entry(entry) &&
449					is_cow_mapping(vm_flags)) {
450				/*
451				 * COW mappings require pages in both parent
452				 * and child to be set to read.
453				 */
454				make_migration_entry_read(&entry);
455				pte = swp_entry_to_pte(entry);
456				set_pte_at(src_mm, addr, src_pte, pte);
457			}
458		}
459		goto out_set_pte;
460	}
461
462	/*
463	 * If it's a COW mapping, write protect it both
464	 * in the parent and the child
465	 */
466	if (is_cow_mapping(vm_flags)) {
467		ptep_set_wrprotect(src_mm, addr, src_pte);
468		pte = pte_wrprotect(pte);
469	}
470
471	/*
472	 * If it's a shared mapping, mark it clean in
473	 * the child
474	 */
475	if (vm_flags & VM_SHARED)
476		pte = pte_mkclean(pte);
477	pte = pte_mkold(pte);
478
479	page = vm_normal_page(vma, addr, pte);
480	if (page) {
481		get_page(page);
482		page_dup_rmap(page, vma, addr);
483		rss[!!PageAnon(page)]++;
484	}
485
486out_set_pte:
487	set_pte_at(dst_mm, addr, dst_pte, pte);
488}
489
490static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
492		unsigned long addr, unsigned long end)
493{
494	pte_t *src_pte, *dst_pte;
495	spinlock_t *src_ptl, *dst_ptl;
496	int progress = 0;
497	int rss[2];
498
499again:
500	rss[1] = rss[0] = 0;
501	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
502	if (!dst_pte)
503		return -ENOMEM;
504	src_pte = pte_offset_map_nested(src_pmd, addr);
505	src_ptl = pte_lockptr(src_mm, src_pmd);
506	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
507	arch_enter_lazy_mmu_mode();
508
509	do {
510		/*
511		 * We are holding two locks at this point - either of them
512		 * could generate latencies in another task on another CPU.
513		 */
514		if (progress >= 32) {
515			progress = 0;
516			if (need_resched() ||
517			    need_lockbreak(src_ptl) ||
518			    need_lockbreak(dst_ptl))
519				break;
520		}
521		if (pte_none(*src_pte)) {
522			progress++;
523			continue;
524		}
525		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
526		progress += 8;
527	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
528
529	arch_leave_lazy_mmu_mode();
530	spin_unlock(src_ptl);
531	pte_unmap_nested(src_pte - 1);
532	add_mm_rss(dst_mm, rss[0], rss[1]);
533	pte_unmap_unlock(dst_pte - 1, dst_ptl);
534	cond_resched();
535	if (addr != end)
536		goto again;
537	return 0;
538}
539
540static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
541		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
542		unsigned long addr, unsigned long end)
543{
544	pmd_t *src_pmd, *dst_pmd;
545	unsigned long next;
546
547	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
548	if (!dst_pmd)
549		return -ENOMEM;
550	src_pmd = pmd_offset(src_pud, addr);
551	do {
552		next = pmd_addr_end(addr, end);
553		if (pmd_none_or_clear_bad(src_pmd))
554			continue;
555		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
556						vma, addr, next))
557			return -ENOMEM;
558	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
559	return 0;
560}
561
562static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
563		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
564		unsigned long addr, unsigned long end)
565{
566	pud_t *src_pud, *dst_pud;
567	unsigned long next;
568
569	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
570	if (!dst_pud)
571		return -ENOMEM;
572	src_pud = pud_offset(src_pgd, addr);
573	do {
574		next = pud_addr_end(addr, end);
575		if (pud_none_or_clear_bad(src_pud))
576			continue;
577		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
578						vma, addr, next))
579			return -ENOMEM;
580	} while (dst_pud++, src_pud++, addr = next, addr != end);
581	return 0;
582}
583
584int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585		struct vm_area_struct *vma)
586{
587	pgd_t *src_pgd, *dst_pgd;
588	unsigned long next;
589	unsigned long addr = vma->vm_start;
590	unsigned long end = vma->vm_end;
591
592	/*
593	 * Don't copy ptes where a page fault will fill them correctly.
594	 * Fork becomes much lighter when there are big shared or private
595	 * readonly mappings. The tradeoff is that copy_page_range is more
596	 * efficient than faulting.
597	 */
598	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
599		if (!vma->anon_vma)
600			return 0;
601	}
602
603	if (is_vm_hugetlb_page(vma))
604		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
605
606	dst_pgd = pgd_offset(dst_mm, addr);
607	src_pgd = pgd_offset(src_mm, addr);
608	do {
609		next = pgd_addr_end(addr, end);
610		if (pgd_none_or_clear_bad(src_pgd))
611			continue;
612		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
613						vma, addr, next))
614			return -ENOMEM;
615	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
616	return 0;
617}
618
619static unsigned long zap_pte_range(struct mmu_gather *tlb,
620				struct vm_area_struct *vma, pmd_t *pmd,
621				unsigned long addr, unsigned long end,
622				long *zap_work, struct zap_details *details)
623{
624	struct mm_struct *mm = tlb->mm;
625	pte_t *pte;
626	spinlock_t *ptl;
627	int file_rss = 0;
628	int anon_rss = 0;
629
630	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
631	arch_enter_lazy_mmu_mode();
632	do {
633		pte_t ptent = *pte;
634		if (pte_none(ptent)) {
635			(*zap_work)--;
636			continue;
637		}
638
639		(*zap_work) -= PAGE_SIZE;
640
641		if (pte_present(ptent)) {
642			struct page *page;
643
644			page = vm_normal_page(vma, addr, ptent);
645			if (unlikely(details) && page) {
646				/*
647				 * unmap_shared_mapping_pages() wants to
648				 * invalidate cache without truncating:
649				 * unmap shared but keep private pages.
650				 */
651				if (details->check_mapping &&
652				    details->check_mapping != page->mapping)
653					continue;
654				/*
655				 * Each page->index must be checked when
656				 * invalidating or truncating nonlinear.
657				 */
658				if (details->nonlinear_vma &&
659				    (page->index < details->first_index ||
660				     page->index > details->last_index))
661					continue;
662			}
663			ptent = ptep_get_and_clear_full(mm, addr, pte,
664							tlb->fullmm);
665			tlb_remove_tlb_entry(tlb, pte, addr);
666			if (unlikely(!page))
667				continue;
668			if (unlikely(details) && details->nonlinear_vma
669			    && linear_page_index(details->nonlinear_vma,
670						addr) != page->index)
671				set_pte_at(mm, addr, pte,
672					   pgoff_to_pte(page->index));
673			if (PageAnon(page))
674				anon_rss--;
675			else {
676				if (pte_dirty(ptent))
677					set_page_dirty(page);
678				if (pte_young(ptent))
679					SetPageReferenced(page);
680				file_rss--;
681			}
682			page_remove_rmap(page, vma);
683			tlb_remove_page(tlb, page);
684			continue;
685		}
686		/*
687		 * If details->check_mapping, we leave swap entries;
688		 * if details->nonlinear_vma, we leave file entries.
689		 */
690		if (unlikely(details))
691			continue;
692		if (!pte_file(ptent))
693			free_swap_and_cache(pte_to_swp_entry(ptent));
694		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
695	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
696
697	add_mm_rss(mm, file_rss, anon_rss);
698	arch_leave_lazy_mmu_mode();
699	pte_unmap_unlock(pte - 1, ptl);
700
701	return addr;
702}
703
704static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
705				struct vm_area_struct *vma, pud_t *pud,
706				unsigned long addr, unsigned long end,
707				long *zap_work, struct zap_details *details)
708{
709	pmd_t *pmd;
710	unsigned long next;
711
712	pmd = pmd_offset(pud, addr);
713	do {
714		next = pmd_addr_end(addr, end);
715		if (pmd_none_or_clear_bad(pmd)) {
716			(*zap_work)--;
717			continue;
718		}
719		next = zap_pte_range(tlb, vma, pmd, addr, next,
720						zap_work, details);
721	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
722
723	return addr;
724}
725
726static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
727				struct vm_area_struct *vma, pgd_t *pgd,
728				unsigned long addr, unsigned long end,
729				long *zap_work, struct zap_details *details)
730{
731	pud_t *pud;
732	unsigned long next;
733
734	pud = pud_offset(pgd, addr);
735	do {
736		next = pud_addr_end(addr, end);
737		if (pud_none_or_clear_bad(pud)) {
738			(*zap_work)--;
739			continue;
740		}
741		next = zap_pmd_range(tlb, vma, pud, addr, next,
742						zap_work, details);
743	} while (pud++, addr = next, (addr != end && *zap_work > 0));
744
745	return addr;
746}
747
748static unsigned long unmap_page_range(struct mmu_gather *tlb,
749				struct vm_area_struct *vma,
750				unsigned long addr, unsigned long end,
751				long *zap_work, struct zap_details *details)
752{
753	pgd_t *pgd;
754	unsigned long next;
755
756	if (details && !details->check_mapping && !details->nonlinear_vma)
757		details = NULL;
758
759	BUG_ON(addr >= end);
760	tlb_start_vma(tlb, vma);
761	pgd = pgd_offset(vma->vm_mm, addr);
762	do {
763		next = pgd_addr_end(addr, end);
764		if (pgd_none_or_clear_bad(pgd)) {
765			(*zap_work)--;
766			continue;
767		}
768		next = zap_pud_range(tlb, vma, pgd, addr, next,
769						zap_work, details);
770	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
771	tlb_end_vma(tlb, vma);
772
773	return addr;
774}
775
776#ifdef CONFIG_PREEMPT
777# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
778#else
779/* No preempt: go for improved straight-line efficiency */
780# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
781#endif
782
783/**
784 * unmap_vmas - unmap a range of memory covered by a list of vma's
785 * @tlbp: address of the caller's struct mmu_gather
786 * @vma: the starting vma
787 * @start_addr: virtual address at which to start unmapping
788 * @end_addr: virtual address at which to end unmapping
789 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
790 * @details: details of nonlinear truncation or shared cache invalidation
791 *
792 * Returns the end address of the unmapping (restart addr if interrupted).
793 *
794 * Unmap all pages in the vma list.
795 *
796 * We aim to not hold locks for too long (for scheduling latency reasons).
797 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
798 * return the ending mmu_gather to the caller.
799 *
800 * Only addresses between `start' and `end' will be unmapped.
801 *
802 * The VMA list must be sorted in ascending virtual address order.
803 *
804 * unmap_vmas() assumes that the caller will flush the whole unmapped address
805 * range after unmap_vmas() returns.  So the only responsibility here is to
806 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
807 * drops the lock and schedules.
808 */
809unsigned long unmap_vmas(struct mmu_gather **tlbp,
810		struct vm_area_struct *vma, unsigned long start_addr,
811		unsigned long end_addr, unsigned long *nr_accounted,
812		struct zap_details *details)
813{
814	long zap_work = ZAP_BLOCK_SIZE;
815	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
816	int tlb_start_valid = 0;
817	unsigned long start = start_addr;
818	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
819	int fullmm = (*tlbp)->fullmm;
820
821	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
822		unsigned long end;
823
824		start = max(vma->vm_start, start_addr);
825		if (start >= vma->vm_end)
826			continue;
827		end = min(vma->vm_end, end_addr);
828		if (end <= vma->vm_start)
829			continue;
830
831		if (vma->vm_flags & VM_ACCOUNT)
832			*nr_accounted += (end - start) >> PAGE_SHIFT;
833
834		while (start != end) {
835			if (!tlb_start_valid) {
836				tlb_start = start;
837				tlb_start_valid = 1;
838			}
839
840			if (unlikely(is_vm_hugetlb_page(vma))) {
841				unmap_hugepage_range(vma, start, end);
842				zap_work -= (end - start) /
843						(HPAGE_SIZE / PAGE_SIZE);
844				start = end;
845			} else
846				start = unmap_page_range(*tlbp, vma,
847						start, end, &zap_work, details);
848
849			if (zap_work > 0) {
850				BUG_ON(start != end);
851				break;
852			}
853
854			tlb_finish_mmu(*tlbp, tlb_start, start);
855
856			if (need_resched() ||
857				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
858				if (i_mmap_lock) {
859					*tlbp = NULL;
860					goto out;
861				}
862				cond_resched();
863			}
864
865			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
866			tlb_start_valid = 0;
867			zap_work = ZAP_BLOCK_SIZE;
868		}
869	}
870out:
871	return start;	/* which is now the end (or restart) address */
872}
873
874/**
875 * zap_page_range - remove user pages in a given range
876 * @vma: vm_area_struct holding the applicable pages
877 * @address: starting address of pages to zap
878 * @size: number of bytes to zap
879 * @details: details of nonlinear truncation or shared cache invalidation
880 */
881unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
882		unsigned long size, struct zap_details *details)
883{
884	struct mm_struct *mm = vma->vm_mm;
885	struct mmu_gather *tlb;
886	unsigned long end = address + size;
887	unsigned long nr_accounted = 0;
888
889	lru_add_drain();
890	tlb = tlb_gather_mmu(mm, 0);
891	update_hiwater_rss(mm);
892	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
893	if (tlb)
894		tlb_finish_mmu(tlb, address, end);
895	return end;
896}
897
898/*
899 * Do a quick page-table lookup for a single page.
900 */
901struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
902			unsigned int flags)
903{
904	pgd_t *pgd;
905	pud_t *pud;
906	pmd_t *pmd;
907	pte_t *ptep, pte;
908	spinlock_t *ptl;
909	struct page *page;
910	struct mm_struct *mm = vma->vm_mm;
911
912	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
913	if (!IS_ERR(page)) {
914		BUG_ON(flags & FOLL_GET);
915		goto out;
916	}
917
918	page = NULL;
919	pgd = pgd_offset(mm, address);
920	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
921		goto no_page_table;
922
923	pud = pud_offset(pgd, address);
924	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
925		goto no_page_table;
926
927	pmd = pmd_offset(pud, address);
928	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
929		goto no_page_table;
930
931	if (pmd_huge(*pmd)) {
932		BUG_ON(flags & FOLL_GET);
933		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
934		goto out;
935	}
936
937	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
938	if (!ptep)
939		goto out;
940
941	pte = *ptep;
942	if (!pte_present(pte))
943		goto unlock;
944	if ((flags & FOLL_WRITE) && !pte_write(pte))
945		goto unlock;
946	page = vm_normal_page(vma, address, pte);
947	if (unlikely(!page))
948		goto unlock;
949
950	if (flags & FOLL_GET)
951		get_page(page);
952	if (flags & FOLL_TOUCH) {
953		if ((flags & FOLL_WRITE) &&
954		    !pte_dirty(pte) && !PageDirty(page))
955			set_page_dirty(page);
956		mark_page_accessed(page);
957	}
958unlock:
959	pte_unmap_unlock(ptep, ptl);
960out:
961	return page;
962
963no_page_table:
964	/*
965	 * When core dumping an enormous anonymous area that nobody
966	 * has touched so far, we don't want to allocate page tables.
967	 */
968	if (flags & FOLL_ANON) {
969		page = ZERO_PAGE(address);
970		if (flags & FOLL_GET)
971			get_page(page);
972		BUG_ON(flags & FOLL_WRITE);
973	}
974	return page;
975}
976
977int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
978		unsigned long start, int len, int write, int force,
979		struct page **pages, struct vm_area_struct **vmas)
980{
981	int i;
982	unsigned int vm_flags;
983
984	/*
985	 * Require read or write permissions.
986	 * If 'force' is set, we only require the "MAY" flags.
987	 */
988	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
989	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
990	i = 0;
991
992	do {
993		struct vm_area_struct *vma;
994		unsigned int foll_flags;
995
996		vma = find_extend_vma(mm, start);
997		if (!vma && in_gate_area(tsk, start)) {
998			unsigned long pg = start & PAGE_MASK;
999			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1000			pgd_t *pgd;
1001			pud_t *pud;
1002			pmd_t *pmd;
1003			pte_t *pte;
1004			if (write) /* user gate pages are read-only */
1005				return i ? : -EFAULT;
1006			if (pg > TASK_SIZE)
1007				pgd = pgd_offset_k(pg);
1008			else
1009				pgd = pgd_offset_gate(mm, pg);
1010			BUG_ON(pgd_none(*pgd));
1011			pud = pud_offset(pgd, pg);
1012			BUG_ON(pud_none(*pud));
1013			pmd = pmd_offset(pud, pg);
1014			if (pmd_none(*pmd))
1015				return i ? : -EFAULT;
1016			pte = pte_offset_map(pmd, pg);
1017			if (pte_none(*pte)) {
1018				pte_unmap(pte);
1019				return i ? : -EFAULT;
1020			}
1021			if (pages) {
1022				struct page *page = vm_normal_page(gate_vma, start, *pte);
1023				pages[i] = page;
1024				if (page)
1025					get_page(page);
1026			}
1027			pte_unmap(pte);
1028			if (vmas)
1029				vmas[i] = gate_vma;
1030			i++;
1031			start += PAGE_SIZE;
1032			len--;
1033			continue;
1034		}
1035
1036		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1037				|| !(vm_flags & vma->vm_flags))
1038			return i ? : -EFAULT;
1039
1040		if (is_vm_hugetlb_page(vma)) {
1041			i = follow_hugetlb_page(mm, vma, pages, vmas,
1042						&start, &len, i);
1043			continue;
1044		}
1045
1046		foll_flags = FOLL_TOUCH;
1047		if (pages)
1048			foll_flags |= FOLL_GET;
1049		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1050		    (!vma->vm_ops || (!vma->vm_ops->nopage &&
1051					!vma->vm_ops->fault)))
1052			foll_flags |= FOLL_ANON;
1053
1054		do {
1055			struct page *page;
1056
1057			/*
1058			 * If tsk is ooming, cut off its access to large memory
1059			 * allocations. It has a pending SIGKILL, but it can't
1060			 * be processed until returning to user space.
1061			 */
1062			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1063				return -ENOMEM;
1064
1065			if (write)
1066				foll_flags |= FOLL_WRITE;
1067
1068			cond_resched();
1069			while (!(page = follow_page(vma, start, foll_flags))) {
1070				int ret;
1071				ret = handle_mm_fault(mm, vma, start,
1072						foll_flags & FOLL_WRITE);
1073				if (ret & VM_FAULT_ERROR) {
1074					if (ret & VM_FAULT_OOM)
1075						return i ? i : -ENOMEM;
1076					else if (ret & VM_FAULT_SIGBUS)
1077						return i ? i : -EFAULT;
1078					BUG();
1079				}
1080				if (ret & VM_FAULT_MAJOR)
1081					tsk->maj_flt++;
1082				else
1083					tsk->min_flt++;
1084
1085				/*
1086				 * The VM_FAULT_WRITE bit tells us that
1087				 * do_wp_page has broken COW when necessary,
1088				 * even if maybe_mkwrite decided not to set
1089				 * pte_write. We can thus safely do subsequent
1090				 * page lookups as if they were reads.
1091				 */
1092				if (ret & VM_FAULT_WRITE)
1093					foll_flags &= ~FOLL_WRITE;
1094
1095				cond_resched();
1096			}
1097			if (pages) {
1098				pages[i] = page;
1099
1100				flush_anon_page(vma, page, start);
1101				flush_dcache_page(page);
1102			}
1103			if (vmas)
1104				vmas[i] = vma;
1105			i++;
1106			start += PAGE_SIZE;
1107			len--;
1108		} while (len && start < vma->vm_end);
1109	} while (len);
1110	return i;
1111}
1112EXPORT_SYMBOL(get_user_pages);
1113
1114static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1115			unsigned long addr, unsigned long end, pgprot_t prot)
1116{
1117	pte_t *pte;
1118	spinlock_t *ptl;
1119	int err = 0;
1120
1121	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1122	if (!pte)
1123		return -EAGAIN;
1124	arch_enter_lazy_mmu_mode();
1125	do {
1126		struct page *page = ZERO_PAGE(addr);
1127		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1128
1129		if (unlikely(!pte_none(*pte))) {
1130			err = -EEXIST;
1131			pte++;
1132			break;
1133		}
1134		page_cache_get(page);
1135		page_add_file_rmap(page);
1136		inc_mm_counter(mm, file_rss);
1137		set_pte_at(mm, addr, pte, zero_pte);
1138	} while (pte++, addr += PAGE_SIZE, addr != end);
1139	arch_leave_lazy_mmu_mode();
1140	pte_unmap_unlock(pte - 1, ptl);
1141	return err;
1142}
1143
1144static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1145			unsigned long addr, unsigned long end, pgprot_t prot)
1146{
1147	pmd_t *pmd;
1148	unsigned long next;
1149	int err;
1150
1151	pmd = pmd_alloc(mm, pud, addr);
1152	if (!pmd)
1153		return -EAGAIN;
1154	do {
1155		next = pmd_addr_end(addr, end);
1156		err = zeromap_pte_range(mm, pmd, addr, next, prot);
1157		if (err)
1158			break;
1159	} while (pmd++, addr = next, addr != end);
1160	return err;
1161}
1162
1163static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1164			unsigned long addr, unsigned long end, pgprot_t prot)
1165{
1166	pud_t *pud;
1167	unsigned long next;
1168	int err;
1169
1170	pud = pud_alloc(mm, pgd, addr);
1171	if (!pud)
1172		return -EAGAIN;
1173	do {
1174		next = pud_addr_end(addr, end);
1175		err = zeromap_pmd_range(mm, pud, addr, next, prot);
1176		if (err)
1177			break;
1178	} while (pud++, addr = next, addr != end);
1179	return err;
1180}
1181
1182int zeromap_page_range(struct vm_area_struct *vma,
1183			unsigned long addr, unsigned long size, pgprot_t prot)
1184{
1185	pgd_t *pgd;
1186	unsigned long next;
1187	unsigned long end = addr + size;
1188	struct mm_struct *mm = vma->vm_mm;
1189	int err;
1190
1191	BUG_ON(addr >= end);
1192	pgd = pgd_offset(mm, addr);
1193	flush_cache_range(vma, addr, end);
1194	do {
1195		next = pgd_addr_end(addr, end);
1196		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1197		if (err)
1198			break;
1199	} while (pgd++, addr = next, addr != end);
1200	return err;
1201}
1202
1203pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1204{
1205	pgd_t * pgd = pgd_offset(mm, addr);
1206	pud_t * pud = pud_alloc(mm, pgd, addr);
1207	if (pud) {
1208		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1209		if (pmd)
1210			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1211	}
1212	return NULL;
1213}
1214
1215/*
1216 * This is the old fallback for page remapping.
1217 *
1218 * For historical reasons, it only allows reserved pages. Only
1219 * old drivers should use this, and they needed to mark their
1220 * pages reserved for the old functions anyway.
1221 */
1222static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1223{
1224	int retval;
1225	pte_t *pte;
1226	spinlock_t *ptl;
1227
1228	retval = -EINVAL;
1229	if (PageAnon(page))
1230		goto out;
1231	retval = -ENOMEM;
1232	flush_dcache_page(page);
1233	pte = get_locked_pte(mm, addr, &ptl);
1234	if (!pte)
1235		goto out;
1236	retval = -EBUSY;
1237	if (!pte_none(*pte))
1238		goto out_unlock;
1239
1240	/* Ok, finally just insert the thing.. */
1241	get_page(page);
1242	inc_mm_counter(mm, file_rss);
1243	page_add_file_rmap(page);
1244	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1245
1246	retval = 0;
1247out_unlock:
1248	pte_unmap_unlock(pte, ptl);
1249out:
1250	return retval;
1251}
1252
1253/**
1254 * vm_insert_page - insert single page into user vma
1255 * @vma: user vma to map to
1256 * @addr: target user address of this page
1257 * @page: source kernel page
1258 *
1259 * This allows drivers to insert individual pages they've allocated
1260 * into a user vma.
1261 *
1262 * The page has to be a nice clean _individual_ kernel allocation.
1263 * If you allocate a compound page, you need to have marked it as
1264 * such (__GFP_COMP), or manually just split the page up yourself
1265 * (see split_page()).
1266 *
1267 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1268 * took an arbitrary page protection parameter. This doesn't allow
1269 * that. Your vma protection will have to be set up correctly, which
1270 * means that if you want a shared writable mapping, you'd better
1271 * ask for a shared writable mapping!
1272 *
1273 * The page does not need to be reserved.
1274 */
1275int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1276{
1277	if (addr < vma->vm_start || addr >= vma->vm_end)
1278		return -EFAULT;
1279	if (!page_count(page))
1280		return -EINVAL;
1281	vma->vm_flags |= VM_INSERTPAGE;
1282	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1283}
1284EXPORT_SYMBOL(vm_insert_page);
1285
1286/**
1287 * vm_insert_pfn - insert single pfn into user vma
1288 * @vma: user vma to map to
1289 * @addr: target user address of this page
1290 * @pfn: source kernel pfn
1291 *
1292 * Similar to vm_inert_page, this allows drivers to insert individual pages
1293 * they've allocated into a user vma. Same comments apply.
1294 *
1295 * This function should only be called from a vm_ops->fault handler, and
1296 * in that case the handler should return NULL.
1297 */
1298int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1299		unsigned long pfn)
1300{
1301	struct mm_struct *mm = vma->vm_mm;
1302	int retval;
1303	pte_t *pte, entry;
1304	spinlock_t *ptl;
1305
1306	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1307	BUG_ON(is_cow_mapping(vma->vm_flags));
1308
1309	retval = -ENOMEM;
1310	pte = get_locked_pte(mm, addr, &ptl);
1311	if (!pte)
1312		goto out;
1313	retval = -EBUSY;
1314	if (!pte_none(*pte))
1315		goto out_unlock;
1316
1317	/* Ok, finally just insert the thing.. */
1318	entry = pfn_pte(pfn, vma->vm_page_prot);
1319	set_pte_at(mm, addr, pte, entry);
1320	update_mmu_cache(vma, addr, entry);
1321
1322	retval = 0;
1323out_unlock:
1324	pte_unmap_unlock(pte, ptl);
1325
1326out:
1327	return retval;
1328}
1329EXPORT_SYMBOL(vm_insert_pfn);
1330
1331/*
1332 * maps a range of physical memory into the requested pages. the old
1333 * mappings are removed. any references to nonexistent pages results
1334 * in null mappings (currently treated as "copy-on-access")
1335 */
1336static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1337			unsigned long addr, unsigned long end,
1338			unsigned long pfn, pgprot_t prot)
1339{
1340	pte_t *pte;
1341	spinlock_t *ptl;
1342
1343	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1344	if (!pte)
1345		return -ENOMEM;
1346	arch_enter_lazy_mmu_mode();
1347	do {
1348		BUG_ON(!pte_none(*pte));
1349		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1350		pfn++;
1351	} while (pte++, addr += PAGE_SIZE, addr != end);
1352	arch_leave_lazy_mmu_mode();
1353	pte_unmap_unlock(pte - 1, ptl);
1354	return 0;
1355}
1356
1357static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1358			unsigned long addr, unsigned long end,
1359			unsigned long pfn, pgprot_t prot)
1360{
1361	pmd_t *pmd;
1362	unsigned long next;
1363
1364	pfn -= addr >> PAGE_SHIFT;
1365	pmd = pmd_alloc(mm, pud, addr);
1366	if (!pmd)
1367		return -ENOMEM;
1368	do {
1369		next = pmd_addr_end(addr, end);
1370		if (remap_pte_range(mm, pmd, addr, next,
1371				pfn + (addr >> PAGE_SHIFT), prot))
1372			return -ENOMEM;
1373	} while (pmd++, addr = next, addr != end);
1374	return 0;
1375}
1376
1377static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1378			unsigned long addr, unsigned long end,
1379			unsigned long pfn, pgprot_t prot)
1380{
1381	pud_t *pud;
1382	unsigned long next;
1383
1384	pfn -= addr >> PAGE_SHIFT;
1385	pud = pud_alloc(mm, pgd, addr);
1386	if (!pud)
1387		return -ENOMEM;
1388	do {
1389		next = pud_addr_end(addr, end);
1390		if (remap_pmd_range(mm, pud, addr, next,
1391				pfn + (addr >> PAGE_SHIFT), prot))
1392			return -ENOMEM;
1393	} while (pud++, addr = next, addr != end);
1394	return 0;
1395}
1396
1397/**
1398 * remap_pfn_range - remap kernel memory to userspace
1399 * @vma: user vma to map to
1400 * @addr: target user address to start at
1401 * @pfn: physical address of kernel memory
1402 * @size: size of map area
1403 * @prot: page protection flags for this mapping
1404 *
1405 *  Note: this is only safe if the mm semaphore is held when called.
1406 */
1407int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1408		    unsigned long pfn, unsigned long size, pgprot_t prot)
1409{
1410	pgd_t *pgd;
1411	unsigned long next;
1412	unsigned long end = addr + PAGE_ALIGN(size);
1413	struct mm_struct *mm = vma->vm_mm;
1414	int err;
1415
1416	/*
1417	 * Physically remapped pages are special. Tell the
1418	 * rest of the world about it:
1419	 *   VM_IO tells people not to look at these pages
1420	 *	(accesses can have side effects).
1421	 *   VM_RESERVED is specified all over the place, because
1422	 *	in 2.4 it kept swapout's vma scan off this vma; but
1423	 *	in 2.6 the LRU scan won't even find its pages, so this
1424	 *	flag means no more than count its pages in reserved_vm,
1425	 * 	and omit it from core dump, even when VM_IO turned off.
1426	 *   VM_PFNMAP tells the core MM that the base pages are just
1427	 *	raw PFN mappings, and do not have a "struct page" associated
1428	 *	with them.
1429	 *
1430	 * There's a horrible special case to handle copy-on-write
1431	 * behaviour that some programs depend on. We mark the "original"
1432	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1433	 */
1434	if (is_cow_mapping(vma->vm_flags)) {
1435		if (addr != vma->vm_start || end != vma->vm_end)
1436			return -EINVAL;
1437		vma->vm_pgoff = pfn;
1438	}
1439
1440	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1441
1442	BUG_ON(addr >= end);
1443	pfn -= addr >> PAGE_SHIFT;
1444	pgd = pgd_offset(mm, addr);
1445	flush_cache_range(vma, addr, end);
1446	do {
1447		next = pgd_addr_end(addr, end);
1448		err = remap_pud_range(mm, pgd, addr, next,
1449				pfn + (addr >> PAGE_SHIFT), prot);
1450		if (err)
1451			break;
1452	} while (pgd++, addr = next, addr != end);
1453	return err;
1454}
1455EXPORT_SYMBOL(remap_pfn_range);
1456
1457static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1458				     unsigned long addr, unsigned long end,
1459				     pte_fn_t fn, void *data)
1460{
1461	pte_t *pte;
1462	int err;
1463	struct page *pmd_page;
1464	spinlock_t *uninitialized_var(ptl);
1465
1466	pte = (mm == &init_mm) ?
1467		pte_alloc_kernel(pmd, addr) :
1468		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1469	if (!pte)
1470		return -ENOMEM;
1471
1472	BUG_ON(pmd_huge(*pmd));
1473
1474	pmd_page = pmd_page(*pmd);
1475
1476	do {
1477		err = fn(pte, pmd_page, addr, data);
1478		if (err)
1479			break;
1480	} while (pte++, addr += PAGE_SIZE, addr != end);
1481
1482	if (mm != &init_mm)
1483		pte_unmap_unlock(pte-1, ptl);
1484	return err;
1485}
1486
1487static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1488				     unsigned long addr, unsigned long end,
1489				     pte_fn_t fn, void *data)
1490{
1491	pmd_t *pmd;
1492	unsigned long next;
1493	int err;
1494
1495	pmd = pmd_alloc(mm, pud, addr);
1496	if (!pmd)
1497		return -ENOMEM;
1498	do {
1499		next = pmd_addr_end(addr, end);
1500		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1501		if (err)
1502			break;
1503	} while (pmd++, addr = next, addr != end);
1504	return err;
1505}
1506
1507static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1508				     unsigned long addr, unsigned long end,
1509				     pte_fn_t fn, void *data)
1510{
1511	pud_t *pud;
1512	unsigned long next;
1513	int err;
1514
1515	pud = pud_alloc(mm, pgd, addr);
1516	if (!pud)
1517		return -ENOMEM;
1518	do {
1519		next = pud_addr_end(addr, end);
1520		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1521		if (err)
1522			break;
1523	} while (pud++, addr = next, addr != end);
1524	return err;
1525}
1526
1527/*
1528 * Scan a region of virtual memory, filling in page tables as necessary
1529 * and calling a provided function on each leaf page table.
1530 */
1531int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1532			unsigned long size, pte_fn_t fn, void *data)
1533{
1534	pgd_t *pgd;
1535	unsigned long next;
1536	unsigned long end = addr + size;
1537	int err;
1538
1539	BUG_ON(addr >= end);
1540	pgd = pgd_offset(mm, addr);
1541	do {
1542		next = pgd_addr_end(addr, end);
1543		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1544		if (err)
1545			break;
1546	} while (pgd++, addr = next, addr != end);
1547	return err;
1548}
1549EXPORT_SYMBOL_GPL(apply_to_page_range);
1550
1551/*
1552 * handle_pte_fault chooses page fault handler according to an entry
1553 * which was read non-atomically.  Before making any commitment, on
1554 * those architectures or configurations (e.g. i386 with PAE) which
1555 * might give a mix of unmatched parts, do_swap_page and do_file_page
1556 * must check under lock before unmapping the pte and proceeding
1557 * (but do_wp_page is only called after already making such a check;
1558 * and do_anonymous_page and do_no_page can safely check later on).
1559 */
1560static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1561				pte_t *page_table, pte_t orig_pte)
1562{
1563	int same = 1;
1564#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1565	if (sizeof(pte_t) > sizeof(unsigned long)) {
1566		spinlock_t *ptl = pte_lockptr(mm, pmd);
1567		spin_lock(ptl);
1568		same = pte_same(*page_table, orig_pte);
1569		spin_unlock(ptl);
1570	}
1571#endif
1572	pte_unmap(page_table);
1573	return same;
1574}
1575
1576/*
1577 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1578 * servicing faults for write access.  In the normal case, do always want
1579 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1580 * that do not have writing enabled, when used by access_process_vm.
1581 */
1582static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1583{
1584	if (likely(vma->vm_flags & VM_WRITE))
1585		pte = pte_mkwrite(pte);
1586	return pte;
1587}
1588
1589static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1590{
1591	/*
1592	 * If the source page was a PFN mapping, we don't have
1593	 * a "struct page" for it. We do a best-effort copy by
1594	 * just copying from the original user address. If that
1595	 * fails, we just zero-fill it. Live with it.
1596	 */
1597	if (unlikely(!src)) {
1598		void *kaddr = kmap_atomic(dst, KM_USER0);
1599		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1600
1601		/*
1602		 * This really shouldn't fail, because the page is there
1603		 * in the page tables. But it might just be unreadable,
1604		 * in which case we just give up and fill the result with
1605		 * zeroes.
1606		 */
1607		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1608			memset(kaddr, 0, PAGE_SIZE);
1609		kunmap_atomic(kaddr, KM_USER0);
1610		flush_dcache_page(dst);
1611		return;
1612
1613	}
1614	copy_user_highpage(dst, src, va, vma);
1615}
1616
1617/*
1618 * This routine handles present pages, when users try to write
1619 * to a shared page. It is done by copying the page to a new address
1620 * and decrementing the shared-page counter for the old page.
1621 *
1622 * Note that this routine assumes that the protection checks have been
1623 * done by the caller (the low-level page fault routine in most cases).
1624 * Thus we can safely just mark it writable once we've done any necessary
1625 * COW.
1626 *
1627 * We also mark the page dirty at this point even though the page will
1628 * change only once the write actually happens. This avoids a few races,
1629 * and potentially makes it more efficient.
1630 *
1631 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1632 * but allow concurrent faults), with pte both mapped and locked.
1633 * We return with mmap_sem still held, but pte unmapped and unlocked.
1634 */
1635static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1636		unsigned long address, pte_t *page_table, pmd_t *pmd,
1637		spinlock_t *ptl, pte_t orig_pte)
1638{
1639	struct page *old_page, *new_page;
1640	pte_t entry;
1641	int reuse = 0, ret = 0;
1642	struct page *dirty_page = NULL;
1643
1644	old_page = vm_normal_page(vma, address, orig_pte);
1645	if (!old_page)
1646		goto gotten;
1647
1648	/*
1649	 * Take out anonymous pages first, anonymous shared vmas are
1650	 * not dirty accountable.
1651	 */
1652	if (PageAnon(old_page)) {
1653		if (!TestSetPageLocked(old_page)) {
1654			reuse = can_share_swap_page(old_page);
1655			unlock_page(old_page);
1656		}
1657	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1658					(VM_WRITE|VM_SHARED))) {
1659		/*
1660		 * Only catch write-faults on shared writable pages,
1661		 * read-only shared pages can get COWed by
1662		 * get_user_pages(.write=1, .force=1).
1663		 */
1664		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1665			/*
1666			 * Notify the address space that the page is about to
1667			 * become writable so that it can prohibit this or wait
1668			 * for the page to get into an appropriate state.
1669			 *
1670			 * We do this without the lock held, so that it can
1671			 * sleep if it needs to.
1672			 */
1673			page_cache_get(old_page);
1674			pte_unmap_unlock(page_table, ptl);
1675
1676			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1677				goto unwritable_page;
1678
1679			/*
1680			 * Since we dropped the lock we need to revalidate
1681			 * the PTE as someone else may have changed it.  If
1682			 * they did, we just return, as we can count on the
1683			 * MMU to tell us if they didn't also make it writable.
1684			 */
1685			page_table = pte_offset_map_lock(mm, pmd, address,
1686							 &ptl);
1687			page_cache_release(old_page);
1688			if (!pte_same(*page_table, orig_pte))
1689				goto unlock;
1690		}
1691		dirty_page = old_page;
1692		get_page(dirty_page);
1693		reuse = 1;
1694	}
1695
1696	if (reuse) {
1697		flush_cache_page(vma, address, pte_pfn(orig_pte));
1698		entry = pte_mkyoung(orig_pte);
1699		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1700		if (ptep_set_access_flags(vma, address, page_table, entry,1)) {
1701			update_mmu_cache(vma, address, entry);
1702			lazy_mmu_prot_update(entry);
1703		}
1704		ret |= VM_FAULT_WRITE;
1705		goto unlock;
1706	}
1707
1708	/*
1709	 * Ok, we need to copy. Oh, well..
1710	 */
1711	page_cache_get(old_page);
1712gotten:
1713	pte_unmap_unlock(page_table, ptl);
1714
1715	if (unlikely(anon_vma_prepare(vma)))
1716		goto oom;
1717	if (old_page == ZERO_PAGE(address)) {
1718		new_page = alloc_zeroed_user_highpage_movable(vma, address);
1719		if (!new_page)
1720			goto oom;
1721	} else {
1722		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1723		if (!new_page)
1724			goto oom;
1725		cow_user_page(new_page, old_page, address, vma);
1726	}
1727
1728	/*
1729	 * Re-check the pte - we dropped the lock
1730	 */
1731	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1732	if (likely(pte_same(*page_table, orig_pte))) {
1733		if (old_page) {
1734			page_remove_rmap(old_page, vma);
1735			if (!PageAnon(old_page)) {
1736				dec_mm_counter(mm, file_rss);
1737				inc_mm_counter(mm, anon_rss);
1738			}
1739		} else
1740			inc_mm_counter(mm, anon_rss);
1741		flush_cache_page(vma, address, pte_pfn(orig_pte));
1742		entry = mk_pte(new_page, vma->vm_page_prot);
1743		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1744		lazy_mmu_prot_update(entry);
1745		/*
1746		 * Clear the pte entry and flush it first, before updating the
1747		 * pte with the new entry. This will avoid a race condition
1748		 * seen in the presence of one thread doing SMC and another
1749		 * thread doing COW.
1750		 */
1751		ptep_clear_flush(vma, address, page_table);
1752		set_pte_at(mm, address, page_table, entry);
1753		update_mmu_cache(vma, address, entry);
1754		lru_cache_add_active(new_page);
1755		page_add_new_anon_rmap(new_page, vma, address);
1756
1757		/* Free the old page.. */
1758		new_page = old_page;
1759		ret |= VM_FAULT_WRITE;
1760	}
1761	if (new_page)
1762		page_cache_release(new_page);
1763	if (old_page)
1764		page_cache_release(old_page);
1765unlock:
1766	pte_unmap_unlock(page_table, ptl);
1767	if (dirty_page) {
1768		set_page_dirty_balance(dirty_page);
1769		put_page(dirty_page);
1770	}
1771	return ret;
1772oom:
1773	if (old_page)
1774		page_cache_release(old_page);
1775	return VM_FAULT_OOM;
1776
1777unwritable_page:
1778	page_cache_release(old_page);
1779	return VM_FAULT_SIGBUS;
1780}
1781
1782/*
1783 * Helper functions for unmap_mapping_range().
1784 *
1785 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1786 *
1787 * We have to restart searching the prio_tree whenever we drop the lock,
1788 * since the iterator is only valid while the lock is held, and anyway
1789 * a later vma might be split and reinserted earlier while lock dropped.
1790 *
1791 * The list of nonlinear vmas could be handled more efficiently, using
1792 * a placeholder, but handle it in the same way until a need is shown.
1793 * It is important to search the prio_tree before nonlinear list: a vma
1794 * may become nonlinear and be shifted from prio_tree to nonlinear list
1795 * while the lock is dropped; but never shifted from list to prio_tree.
1796 *
1797 * In order to make forward progress despite restarting the search,
1798 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1799 * quickly skip it next time around.  Since the prio_tree search only
1800 * shows us those vmas affected by unmapping the range in question, we
1801 * can't efficiently keep all vmas in step with mapping->truncate_count:
1802 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1803 * mapping->truncate_count and vma->vm_truncate_count are protected by
1804 * i_mmap_lock.
1805 *
1806 * In order to make forward progress despite repeatedly restarting some
1807 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1808 * and restart from that address when we reach that vma again.  It might
1809 * have been split or merged, shrunk or extended, but never shifted: so
1810 * restart_addr remains valid so long as it remains in the vma's range.
1811 * unmap_mapping_range forces truncate_count to leap over page-aligned
1812 * values so we can save vma's restart_addr in its truncate_count field.
1813 */
1814#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1815
1816static void reset_vma_truncate_counts(struct address_space *mapping)
1817{
1818	struct vm_area_struct *vma;
1819	struct prio_tree_iter iter;
1820
1821	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1822		vma->vm_truncate_count = 0;
1823	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1824		vma->vm_truncate_count = 0;
1825}
1826
1827static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1828		unsigned long start_addr, unsigned long end_addr,
1829		struct zap_details *details)
1830{
1831	unsigned long restart_addr;
1832	int need_break;
1833
1834	/*
1835	 * files that support invalidating or truncating portions of the
1836	 * file from under mmaped areas must have their ->fault function
1837	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1838	 * This provides synchronisation against concurrent unmapping here.
1839	 */
1840
1841again:
1842	restart_addr = vma->vm_truncate_count;
1843	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1844		start_addr = restart_addr;
1845		if (start_addr >= end_addr) {
1846			/* Top of vma has been split off since last time */
1847			vma->vm_truncate_count = details->truncate_count;
1848			return 0;
1849		}
1850	}
1851
1852	restart_addr = zap_page_range(vma, start_addr,
1853					end_addr - start_addr, details);
1854	need_break = need_resched() ||
1855			need_lockbreak(details->i_mmap_lock);
1856
1857	if (restart_addr >= end_addr) {
1858		/* We have now completed this vma: mark it so */
1859		vma->vm_truncate_count = details->truncate_count;
1860		if (!need_break)
1861			return 0;
1862	} else {
1863		/* Note restart_addr in vma's truncate_count field */
1864		vma->vm_truncate_count = restart_addr;
1865		if (!need_break)
1866			goto again;
1867	}
1868
1869	spin_unlock(details->i_mmap_lock);
1870	cond_resched();
1871	spin_lock(details->i_mmap_lock);
1872	return -EINTR;
1873}
1874
1875static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1876					    struct zap_details *details)
1877{
1878	struct vm_area_struct *vma;
1879	struct prio_tree_iter iter;
1880	pgoff_t vba, vea, zba, zea;
1881
1882restart:
1883	vma_prio_tree_foreach(vma, &iter, root,
1884			details->first_index, details->last_index) {
1885		/* Skip quickly over those we have already dealt with */
1886		if (vma->vm_truncate_count == details->truncate_count)
1887			continue;
1888
1889		vba = vma->vm_pgoff;
1890		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1891		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1892		zba = details->first_index;
1893		if (zba < vba)
1894			zba = vba;
1895		zea = details->last_index;
1896		if (zea > vea)
1897			zea = vea;
1898
1899		if (unmap_mapping_range_vma(vma,
1900			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1901			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1902				details) < 0)
1903			goto restart;
1904	}
1905}
1906
1907static inline void unmap_mapping_range_list(struct list_head *head,
1908					    struct zap_details *details)
1909{
1910	struct vm_area_struct *vma;
1911
1912	/*
1913	 * In nonlinear VMAs there is no correspondence between virtual address
1914	 * offset and file offset.  So we must perform an exhaustive search
1915	 * across *all* the pages in each nonlinear VMA, not just the pages
1916	 * whose virtual address lies outside the file truncation point.
1917	 */
1918restart:
1919	list_for_each_entry(vma, head, shared.vm_set.list) {
1920		/* Skip quickly over those we have already dealt with */
1921		if (vma->vm_truncate_count == details->truncate_count)
1922			continue;
1923		details->nonlinear_vma = vma;
1924		if (unmap_mapping_range_vma(vma, vma->vm_start,
1925					vma->vm_end, details) < 0)
1926			goto restart;
1927	}
1928}
1929
1930/**
1931 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1932 * @mapping: the address space containing mmaps to be unmapped.
1933 * @holebegin: byte in first page to unmap, relative to the start of
1934 * the underlying file.  This will be rounded down to a PAGE_SIZE
1935 * boundary.  Note that this is different from vmtruncate(), which
1936 * must keep the partial page.  In contrast, we must get rid of
1937 * partial pages.
1938 * @holelen: size of prospective hole in bytes.  This will be rounded
1939 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1940 * end of the file.
1941 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1942 * but 0 when invalidating pagecache, don't throw away private data.
1943 */
1944void unmap_mapping_range(struct address_space *mapping,
1945		loff_t const holebegin, loff_t const holelen, int even_cows)
1946{
1947	struct zap_details details;
1948	pgoff_t hba = holebegin >> PAGE_SHIFT;
1949	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1950
1951	/* Check for overflow. */
1952	if (sizeof(holelen) > sizeof(hlen)) {
1953		long long holeend =
1954			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1955		if (holeend & ~(long long)ULONG_MAX)
1956			hlen = ULONG_MAX - hba + 1;
1957	}
1958
1959	details.check_mapping = even_cows? NULL: mapping;
1960	details.nonlinear_vma = NULL;
1961	details.first_index = hba;
1962	details.last_index = hba + hlen - 1;
1963	if (details.last_index < details.first_index)
1964		details.last_index = ULONG_MAX;
1965	details.i_mmap_lock = &mapping->i_mmap_lock;
1966
1967	spin_lock(&mapping->i_mmap_lock);
1968
1969	/* Protect against endless unmapping loops */
1970	mapping->truncate_count++;
1971	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1972		if (mapping->truncate_count == 0)
1973			reset_vma_truncate_counts(mapping);
1974		mapping->truncate_count++;
1975	}
1976	details.truncate_count = mapping->truncate_count;
1977
1978	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1979		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1980	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1981		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1982	spin_unlock(&mapping->i_mmap_lock);
1983}
1984EXPORT_SYMBOL(unmap_mapping_range);
1985
1986/**
1987 * vmtruncate - unmap mappings "freed" by truncate() syscall
1988 * @inode: inode of the file used
1989 * @offset: file offset to start truncating
1990 *
1991 * NOTE! We have to be ready to update the memory sharing
1992 * between the file and the memory map for a potential last
1993 * incomplete page.  Ugly, but necessary.
1994 */
1995int vmtruncate(struct inode * inode, loff_t offset)
1996{
1997	struct address_space *mapping = inode->i_mapping;
1998	unsigned long limit;
1999
2000	if (inode->i_size < offset)
2001		goto do_expand;
2002	/*
2003	 * truncation of in-use swapfiles is disallowed - it would cause
2004	 * subsequent swapout to scribble on the now-freed blocks.
2005	 */
2006	if (IS_SWAPFILE(inode))
2007		goto out_busy;
2008	i_size_write(inode, offset);
2009
2010	/*
2011	 * unmap_mapping_range is called twice, first simply for efficiency
2012	 * so that truncate_inode_pages does fewer single-page unmaps. However
2013	 * after this first call, and before truncate_inode_pages finishes,
2014	 * it is possible for private pages to be COWed, which remain after
2015	 * truncate_inode_pages finishes, hence the second unmap_mapping_range
2016	 * call must be made for correctness.
2017	 */
2018	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2019	truncate_inode_pages(mapping, offset);
2020	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2021	goto out_truncate;
2022
2023do_expand:
2024	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2025	if (limit != RLIM_INFINITY && offset > limit)
2026		goto out_sig;
2027	if (offset > inode->i_sb->s_maxbytes)
2028		goto out_big;
2029	i_size_write(inode, offset);
2030
2031out_truncate:
2032	if (inode->i_op && inode->i_op->truncate)
2033		inode->i_op->truncate(inode);
2034	return 0;
2035out_sig:
2036	send_sig(SIGXFSZ, current, 0);
2037out_big:
2038	return -EFBIG;
2039out_busy:
2040	return -ETXTBSY;
2041}
2042EXPORT_SYMBOL(vmtruncate);
2043
2044int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2045{
2046	struct address_space *mapping = inode->i_mapping;
2047
2048	/*
2049	 * If the underlying filesystem is not going to provide
2050	 * a way to truncate a range of blocks (punch a hole) -
2051	 * we should return failure right now.
2052	 */
2053	if (!inode->i_op || !inode->i_op->truncate_range)
2054		return -ENOSYS;
2055
2056	mutex_lock(&inode->i_mutex);
2057	down_write(&inode->i_alloc_sem);
2058	unmap_mapping_range(mapping, offset, (end - offset), 1);
2059	truncate_inode_pages_range(mapping, offset, end);
2060	unmap_mapping_range(mapping, offset, (end - offset), 1);
2061	inode->i_op->truncate_range(inode, offset, end);
2062	up_write(&inode->i_alloc_sem);
2063	mutex_unlock(&inode->i_mutex);
2064
2065	return 0;
2066}
2067
2068/**
2069 * swapin_readahead - swap in pages in hope we need them soon
2070 * @entry: swap entry of this memory
2071 * @addr: address to start
2072 * @vma: user vma this addresses belong to
2073 *
2074 * Primitive swap readahead code. We simply read an aligned block of
2075 * (1 << page_cluster) entries in the swap area. This method is chosen
2076 * because it doesn't cost us any seek time.  We also make sure to queue
2077 * the 'original' request together with the readahead ones...
2078 *
2079 * This has been extended to use the NUMA policies from the mm triggering
2080 * the readahead.
2081 *
2082 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2083 */
2084void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2085{
2086#ifdef CONFIG_NUMA
2087	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2088#endif
2089	int i, num;
2090	struct page *new_page;
2091	unsigned long offset;
2092
2093	/*
2094	 * Get the number of handles we should do readahead io to.
2095	 */
2096	num = valid_swaphandles(entry, &offset);
2097	for (i = 0; i < num; offset++, i++) {
2098		/* Ok, do the async read-ahead now */
2099		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2100							   offset), vma, addr);
2101		if (!new_page)
2102			break;
2103		page_cache_release(new_page);
2104#ifdef CONFIG_NUMA
2105		/*
2106		 * Find the next applicable VMA for the NUMA policy.
2107		 */
2108		addr += PAGE_SIZE;
2109		if (addr == 0)
2110			vma = NULL;
2111		if (vma) {
2112			if (addr >= vma->vm_end) {
2113				vma = next_vma;
2114				next_vma = vma ? vma->vm_next : NULL;
2115			}
2116			if (vma && addr < vma->vm_start)
2117				vma = NULL;
2118		} else {
2119			if (next_vma && addr >= next_vma->vm_start) {
2120				vma = next_vma;
2121				next_vma = vma->vm_next;
2122			}
2123		}
2124#endif
2125	}
2126	lru_add_drain();	/* Push any new pages onto the LRU now */
2127}
2128
2129/*
2130 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2131 * but allow concurrent faults), and pte mapped but not yet locked.
2132 * We return with mmap_sem still held, but pte unmapped and unlocked.
2133 */
2134static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2135		unsigned long address, pte_t *page_table, pmd_t *pmd,
2136		int write_access, pte_t orig_pte)
2137{
2138	spinlock_t *ptl;
2139	struct page *page;
2140	swp_entry_t entry;
2141	pte_t pte;
2142	int ret = 0;
2143
2144	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2145		goto out;
2146
2147	entry = pte_to_swp_entry(orig_pte);
2148	if (is_migration_entry(entry)) {
2149		migration_entry_wait(mm, pmd, address);
2150		goto out;
2151	}
2152	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2153	page = lookup_swap_cache(entry);
2154	if (!page) {
2155		grab_swap_token(); /* Contend for token _before_ read-in */
2156 		swapin_readahead(entry, address, vma);
2157 		page = read_swap_cache_async(entry, vma, address);
2158		if (!page) {
2159			/*
2160			 * Back out if somebody else faulted in this pte
2161			 * while we released the pte lock.
2162			 */
2163			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2164			if (likely(pte_same(*page_table, orig_pte)))
2165				ret = VM_FAULT_OOM;
2166			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2167			goto unlock;
2168		}
2169
2170		/* Had to read the page from swap area: Major fault */
2171		ret = VM_FAULT_MAJOR;
2172		count_vm_event(PGMAJFAULT);
2173	}
2174
2175	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2176	mark_page_accessed(page);
2177	lock_page(page);
2178
2179	/*
2180	 * Back out if somebody else already faulted in this pte.
2181	 */
2182	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2183	if (unlikely(!pte_same(*page_table, orig_pte)))
2184		goto out_nomap;
2185
2186	if (unlikely(!PageUptodate(page))) {
2187		ret = VM_FAULT_SIGBUS;
2188		goto out_nomap;
2189	}
2190
2191	/* The page isn't present yet, go ahead with the fault. */
2192
2193	inc_mm_counter(mm, anon_rss);
2194	pte = mk_pte(page, vma->vm_page_prot);
2195	if (write_access && can_share_swap_page(page)) {
2196		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2197		write_access = 0;
2198	}
2199
2200	flush_icache_page(vma, page);
2201	set_pte_at(mm, address, page_table, pte);
2202	page_add_anon_rmap(page, vma, address);
2203
2204	swap_free(entry);
2205	if (vm_swap_full())
2206		remove_exclusive_swap_page(page);
2207	unlock_page(page);
2208
2209	if (write_access) {
2210		/* XXX: We could OR the do_wp_page code with this one? */
2211		if (do_wp_page(mm, vma, address,
2212				page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2213			ret = VM_FAULT_OOM;
2214		goto out;
2215	}
2216
2217	/* No need to invalidate - it was non-present before */
2218	update_mmu_cache(vma, address, pte);
2219unlock:
2220	pte_unmap_unlock(page_table, ptl);
2221out:
2222	return ret;
2223out_nomap:
2224	pte_unmap_unlock(page_table, ptl);
2225	unlock_page(page);
2226	page_cache_release(page);
2227	return ret;
2228}
2229
2230/*
2231 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2232 * but allow concurrent faults), and pte mapped but not yet locked.
2233 * We return with mmap_sem still held, but pte unmapped and unlocked.
2234 */
2235static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2236		unsigned long address, pte_t *page_table, pmd_t *pmd,
2237		int write_access)
2238{
2239	struct page *page;
2240	spinlock_t *ptl;
2241	pte_t entry;
2242
2243	if (write_access) {
2244		/* Allocate our own private page. */
2245		pte_unmap(page_table);
2246
2247		if (unlikely(anon_vma_prepare(vma)))
2248			goto oom;
2249		page = alloc_zeroed_user_highpage_movable(vma, address);
2250		if (!page)
2251			goto oom;
2252
2253		entry = mk_pte(page, vma->vm_page_prot);
2254		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2255
2256		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2257		if (!pte_none(*page_table))
2258			goto release;
2259		inc_mm_counter(mm, anon_rss);
2260		lru_cache_add_active(page);
2261		page_add_new_anon_rmap(page, vma, address);
2262	} else {
2263		/* Map the ZERO_PAGE - vm_page_prot is readonly */
2264		page = ZERO_PAGE(address);
2265		page_cache_get(page);
2266		entry = mk_pte(page, vma->vm_page_prot);
2267
2268		ptl = pte_lockptr(mm, pmd);
2269		spin_lock(ptl);
2270		if (!pte_none(*page_table))
2271			goto release;
2272		inc_mm_counter(mm, file_rss);
2273		page_add_file_rmap(page);
2274	}
2275
2276	set_pte_at(mm, address, page_table, entry);
2277
2278	/* No need to invalidate - it was non-present before */
2279	update_mmu_cache(vma, address, entry);
2280	lazy_mmu_prot_update(entry);
2281unlock:
2282	pte_unmap_unlock(page_table, ptl);
2283	return 0;
2284release:
2285	page_cache_release(page);
2286	goto unlock;
2287oom:
2288	return VM_FAULT_OOM;
2289}
2290
2291/*
2292 * __do_fault() tries to create a new page mapping. It aggressively
2293 * tries to share with existing pages, but makes a separate copy if
2294 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2295 * the next page fault.
2296 *
2297 * As this is called only for pages that do not currently exist, we
2298 * do not need to flush old virtual caches or the TLB.
2299 *
2300 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2301 * but allow concurrent faults), and pte mapped but not yet locked.
2302 * We return with mmap_sem still held, but pte unmapped and unlocked.
2303 */
2304static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2305		unsigned long address, pte_t *page_table, pmd_t *pmd,
2306		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2307{
2308	spinlock_t *ptl;
2309	struct page *page;
2310	pte_t entry;
2311	int anon = 0;
2312	struct page *dirty_page = NULL;
2313	struct vm_fault vmf;
2314	int ret;
2315
2316	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2317	vmf.pgoff = pgoff;
2318	vmf.flags = flags;
2319	vmf.page = NULL;
2320
2321	pte_unmap(page_table);
2322	BUG_ON(vma->vm_flags & VM_PFNMAP);
2323
2324	if (likely(vma->vm_ops->fault)) {
2325		ret = vma->vm_ops->fault(vma, &vmf);
2326		if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2327			return ret;
2328	} else {
2329		/* Legacy ->nopage path */
2330		ret = 0;
2331		vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2332		/* no page was available -- either SIGBUS or OOM */
2333		if (unlikely(vmf.page == NOPAGE_SIGBUS))
2334			return VM_FAULT_SIGBUS;
2335		else if (unlikely(vmf.page == NOPAGE_OOM))
2336			return VM_FAULT_OOM;
2337	}
2338
2339	/*
2340	 * For consistency in subsequent calls, make the faulted page always
2341	 * locked.
2342	 */
2343	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2344		lock_page(vmf.page);
2345	else
2346		VM_BUG_ON(!PageLocked(vmf.page));
2347
2348	/*
2349	 * Should we do an early C-O-W break?
2350	 */
2351	page = vmf.page;
2352	if (flags & FAULT_FLAG_WRITE) {
2353		if (!(vma->vm_flags & VM_SHARED)) {
2354			anon = 1;
2355			if (unlikely(anon_vma_prepare(vma))) {
2356				ret = VM_FAULT_OOM;
2357				goto out;
2358			}
2359			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2360						vma, address);
2361			if (!page) {
2362				ret = VM_FAULT_OOM;
2363				goto out;
2364			}
2365			copy_user_highpage(page, vmf.page, address, vma);
2366		} else {
2367			/*
2368			 * If the page will be shareable, see if the backing
2369			 * address space wants to know that the page is about
2370			 * to become writable
2371			 */
2372			if (vma->vm_ops->page_mkwrite) {
2373				unlock_page(page);
2374				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2375					ret = VM_FAULT_SIGBUS;
2376					anon = 1; /* no anon but release vmf.page */
2377					goto out_unlocked;
2378				}
2379				lock_page(page);
2380				/*
2381				 * XXX: this is not quite right (racy vs
2382				 * invalidate) to unlock and relock the page
2383				 * like this, however a better fix requires
2384				 * reworking page_mkwrite locking API, which
2385				 * is better done later.
2386				 */
2387				if (!page->mapping) {
2388					ret = 0;
2389					anon = 1; /* no anon but release vmf.page */
2390					goto out;
2391				}
2392			}
2393		}
2394
2395	}
2396
2397	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2398
2399	/*
2400	 * This silly early PAGE_DIRTY setting removes a race
2401	 * due to the bad i386 page protection. But it's valid
2402	 * for other architectures too.
2403	 *
2404	 * Note that if write_access is true, we either now have
2405	 * an exclusive copy of the page, or this is a shared mapping,
2406	 * so we can make it writable and dirty to avoid having to
2407	 * handle that later.
2408	 */
2409	/* Only go through if we didn't race with anybody else... */
2410	if (likely(pte_same(*page_table, orig_pte))) {
2411		flush_icache_page(vma, page);
2412		entry = mk_pte(page, vma->vm_page_prot);
2413		if (flags & FAULT_FLAG_WRITE)
2414			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2415		set_pte_at(mm, address, page_table, entry);
2416		if (anon) {
2417                        inc_mm_counter(mm, anon_rss);
2418                        lru_cache_add_active(page);
2419                        page_add_new_anon_rmap(page, vma, address);
2420		} else {
2421			inc_mm_counter(mm, file_rss);
2422			page_add_file_rmap(page);
2423			if (flags & FAULT_FLAG_WRITE) {
2424				dirty_page = page;
2425				get_page(dirty_page);
2426			}
2427		}
2428
2429		/* no need to invalidate: a not-present page won't be cached */
2430		update_mmu_cache(vma, address, entry);
2431		lazy_mmu_prot_update(entry);
2432	} else {
2433		if (anon)
2434			page_cache_release(page);
2435		else
2436			anon = 1; /* no anon but release faulted_page */
2437	}
2438
2439	pte_unmap_unlock(page_table, ptl);
2440
2441out:
2442	unlock_page(vmf.page);
2443out_unlocked:
2444	if (anon)
2445		page_cache_release(vmf.page);
2446	else if (dirty_page) {
2447		set_page_dirty_balance(dirty_page);
2448		put_page(dirty_page);
2449	}
2450
2451	return ret;
2452}
2453
2454static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2455		unsigned long address, pte_t *page_table, pmd_t *pmd,
2456		int write_access, pte_t orig_pte)
2457{
2458	pgoff_t pgoff = (((address & PAGE_MASK)
2459			- vma->vm_start) >> PAGE_CACHE_SHIFT) + vma->vm_pgoff;
2460	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2461
2462	return __do_fault(mm, vma, address, page_table, pmd, pgoff,
2463							flags, orig_pte);
2464}
2465
2466
2467/*
2468 * do_no_pfn() tries to create a new page mapping for a page without
2469 * a struct_page backing it
2470 *
2471 * As this is called only for pages that do not currently exist, we
2472 * do not need to flush old virtual caches or the TLB.
2473 *
2474 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2475 * but allow concurrent faults), and pte mapped but not yet locked.
2476 * We return with mmap_sem still held, but pte unmapped and unlocked.
2477 *
2478 * It is expected that the ->nopfn handler always returns the same pfn
2479 * for a given virtual mapping.
2480 *
2481 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2482 */
2483static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2484		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2485		     int write_access)
2486{
2487	spinlock_t *ptl;
2488	pte_t entry;
2489	unsigned long pfn;
2490
2491	pte_unmap(page_table);
2492	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2493	BUG_ON(is_cow_mapping(vma->vm_flags));
2494
2495	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2496	if (unlikely(pfn == NOPFN_OOM))
2497		return VM_FAULT_OOM;
2498	else if (unlikely(pfn == NOPFN_SIGBUS))
2499		return VM_FAULT_SIGBUS;
2500	else if (unlikely(pfn == NOPFN_REFAULT))
2501		return 0;
2502
2503	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2504
2505	/* Only go through if we didn't race with anybody else... */
2506	if (pte_none(*page_table)) {
2507		entry = pfn_pte(pfn, vma->vm_page_prot);
2508		if (write_access)
2509			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2510		set_pte_at(mm, address, page_table, entry);
2511	}
2512	pte_unmap_unlock(page_table, ptl);
2513	return 0;
2514}
2515
2516/*
2517 * Fault of a previously existing named mapping. Repopulate the pte
2518 * from the encoded file_pte if possible. This enables swappable
2519 * nonlinear vmas.
2520 *
2521 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2522 * but allow concurrent faults), and pte mapped but not yet locked.
2523 * We return with mmap_sem still held, but pte unmapped and unlocked.
2524 */
2525static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2526		unsigned long address, pte_t *page_table, pmd_t *pmd,
2527		int write_access, pte_t orig_pte)
2528{
2529	unsigned int flags = FAULT_FLAG_NONLINEAR |
2530				(write_access ? FAULT_FLAG_WRITE : 0);
2531	pgoff_t pgoff;
2532
2533	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2534		return 0;
2535
2536	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2537			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2538		/*
2539		 * Page table corrupted: show pte and kill process.
2540		 */
2541		print_bad_pte(vma, orig_pte, address);
2542		return VM_FAULT_OOM;
2543	}
2544
2545	pgoff = pte_to_pgoff(orig_pte);
2546
2547	return __do_fault(mm, vma, address, page_table, pmd, pgoff,
2548							flags, orig_pte);
2549}
2550
2551/*
2552 * These routines also need to handle stuff like marking pages dirty
2553 * and/or accessed for architectures that don't do it in hardware (most
2554 * RISC architectures).  The early dirtying is also good on the i386.
2555 *
2556 * There is also a hook called "update_mmu_cache()" that architectures
2557 * with external mmu caches can use to update those (ie the Sparc or
2558 * PowerPC hashed page tables that act as extended TLBs).
2559 *
2560 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2561 * but allow concurrent faults), and pte mapped but not yet locked.
2562 * We return with mmap_sem still held, but pte unmapped and unlocked.
2563 */
2564static inline int handle_pte_fault(struct mm_struct *mm,
2565		struct vm_area_struct *vma, unsigned long address,
2566		pte_t *pte, pmd_t *pmd, int write_access)
2567{
2568	pte_t entry;
2569	spinlock_t *ptl;
2570
2571	entry = *pte;
2572	if (!pte_present(entry)) {
2573		if (pte_none(entry)) {
2574			if (vma->vm_ops) {
2575				if (vma->vm_ops->fault || vma->vm_ops->nopage)
2576					return do_linear_fault(mm, vma, address,
2577						pte, pmd, write_access, entry);
2578				if (unlikely(vma->vm_ops->nopfn))
2579					return do_no_pfn(mm, vma, address, pte,
2580							 pmd, write_access);
2581			}
2582			return do_anonymous_page(mm, vma, address,
2583						 pte, pmd, write_access);
2584		}
2585		if (pte_file(entry))
2586			return do_nonlinear_fault(mm, vma, address,
2587					pte, pmd, write_access, entry);
2588		return do_swap_page(mm, vma, address,
2589					pte, pmd, write_access, entry);
2590	}
2591
2592	ptl = pte_lockptr(mm, pmd);
2593	spin_lock(ptl);
2594	if (unlikely(!pte_same(*pte, entry)))
2595		goto unlock;
2596	if (write_access) {
2597		if (!pte_write(entry))
2598			return do_wp_page(mm, vma, address,
2599					pte, pmd, ptl, entry);
2600		entry = pte_mkdirty(entry);
2601	}
2602	entry = pte_mkyoung(entry);
2603	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2604		update_mmu_cache(vma, address, entry);
2605		lazy_mmu_prot_update(entry);
2606	} else {
2607		/*
2608		 * This is needed only for protection faults but the arch code
2609		 * is not yet telling us if this is a protection fault or not.
2610		 * This still avoids useless tlb flushes for .text page faults
2611		 * with threads.
2612		 */
2613		if (write_access)
2614			flush_tlb_page(vma, address);
2615	}
2616unlock:
2617	pte_unmap_unlock(pte, ptl);
2618	return 0;
2619}
2620
2621/*
2622 * By the time we get here, we already hold the mm semaphore
2623 */
2624int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2625		unsigned long address, int write_access)
2626{
2627	pgd_t *pgd;
2628	pud_t *pud;
2629	pmd_t *pmd;
2630	pte_t *pte;
2631
2632	__set_current_state(TASK_RUNNING);
2633
2634	count_vm_event(PGFAULT);
2635
2636	if (unlikely(is_vm_hugetlb_page(vma)))
2637		return hugetlb_fault(mm, vma, address, write_access);
2638
2639	pgd = pgd_offset(mm, address);
2640	pud = pud_alloc(mm, pgd, address);
2641	if (!pud)
2642		return VM_FAULT_OOM;
2643	pmd = pmd_alloc(mm, pud, address);
2644	if (!pmd)
2645		return VM_FAULT_OOM;
2646	pte = pte_alloc_map(mm, pmd, address);
2647	if (!pte)
2648		return VM_FAULT_OOM;
2649
2650	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2651}
2652
2653EXPORT_SYMBOL_GPL(handle_mm_fault);
2654
2655#ifndef __PAGETABLE_PUD_FOLDED
2656/*
2657 * Allocate page upper directory.
2658 * We've already handled the fast-path in-line.
2659 */
2660int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2661{
2662	pud_t *new = pud_alloc_one(mm, address);
2663	if (!new)
2664		return -ENOMEM;
2665
2666	spin_lock(&mm->page_table_lock);
2667	if (pgd_present(*pgd))		/* Another has populated it */
2668		pud_free(new);
2669	else
2670		pgd_populate(mm, pgd, new);
2671	spin_unlock(&mm->page_table_lock);
2672	return 0;
2673}
2674#endif /* __PAGETABLE_PUD_FOLDED */
2675
2676#ifndef __PAGETABLE_PMD_FOLDED
2677/*
2678 * Allocate page middle directory.
2679 * We've already handled the fast-path in-line.
2680 */
2681int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2682{
2683	pmd_t *new = pmd_alloc_one(mm, address);
2684	if (!new)
2685		return -ENOMEM;
2686
2687	spin_lock(&mm->page_table_lock);
2688#ifndef __ARCH_HAS_4LEVEL_HACK
2689	if (pud_present(*pud))		/* Another has populated it */
2690		pmd_free(new);
2691	else
2692		pud_populate(mm, pud, new);
2693#else
2694	if (pgd_present(*pud))		/* Another has populated it */
2695		pmd_free(new);
2696	else
2697		pgd_populate(mm, pud, new);
2698#endif /* __ARCH_HAS_4LEVEL_HACK */
2699	spin_unlock(&mm->page_table_lock);
2700	return 0;
2701}
2702#endif /* __PAGETABLE_PMD_FOLDED */
2703
2704int make_pages_present(unsigned long addr, unsigned long end)
2705{
2706	int ret, len, write;
2707	struct vm_area_struct * vma;
2708
2709	vma = find_vma(current->mm, addr);
2710	if (!vma)
2711		return -1;
2712	write = (vma->vm_flags & VM_WRITE) != 0;
2713	BUG_ON(addr >= end);
2714	BUG_ON(end > vma->vm_end);
2715	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2716	ret = get_user_pages(current, current->mm, addr,
2717			len, write, 0, NULL, NULL);
2718	if (ret < 0)
2719		return ret;
2720	return ret == len ? 0 : -1;
2721}
2722
2723/*
2724 * Map a vmalloc()-space virtual address to the physical page.
2725 */
2726struct page * vmalloc_to_page(void * vmalloc_addr)
2727{
2728	unsigned long addr = (unsigned long) vmalloc_addr;
2729	struct page *page = NULL;
2730	pgd_t *pgd = pgd_offset_k(addr);
2731	pud_t *pud;
2732	pmd_t *pmd;
2733	pte_t *ptep, pte;
2734
2735	if (!pgd_none(*pgd)) {
2736		pud = pud_offset(pgd, addr);
2737		if (!pud_none(*pud)) {
2738			pmd = pmd_offset(pud, addr);
2739			if (!pmd_none(*pmd)) {
2740				ptep = pte_offset_map(pmd, addr);
2741				pte = *ptep;
2742				if (pte_present(pte))
2743					page = pte_page(pte);
2744				pte_unmap(ptep);
2745			}
2746		}
2747	}
2748	return page;
2749}
2750
2751EXPORT_SYMBOL(vmalloc_to_page);
2752
2753/*
2754 * Map a vmalloc()-space virtual address to the physical page frame number.
2755 */
2756unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2757{
2758	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2759}
2760
2761EXPORT_SYMBOL(vmalloc_to_pfn);
2762
2763#if !defined(__HAVE_ARCH_GATE_AREA)
2764
2765#if defined(AT_SYSINFO_EHDR)
2766static struct vm_area_struct gate_vma;
2767
2768static int __init gate_vma_init(void)
2769{
2770	gate_vma.vm_mm = NULL;
2771	gate_vma.vm_start = FIXADDR_USER_START;
2772	gate_vma.vm_end = FIXADDR_USER_END;
2773	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2774	gate_vma.vm_page_prot = __P101;
2775	/*
2776	 * Make sure the vDSO gets into every core dump.
2777	 * Dumping its contents makes post-mortem fully interpretable later
2778	 * without matching up the same kernel and hardware config to see
2779	 * what PC values meant.
2780	 */
2781	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2782	return 0;
2783}
2784__initcall(gate_vma_init);
2785#endif
2786
2787struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2788{
2789#ifdef AT_SYSINFO_EHDR
2790	return &gate_vma;
2791#else
2792	return NULL;
2793#endif
2794}
2795
2796int in_gate_area_no_task(unsigned long addr)
2797{
2798#ifdef AT_SYSINFO_EHDR
2799	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2800		return 1;
2801#endif
2802	return 0;
2803}
2804
2805#endif	/* __HAVE_ARCH_GATE_AREA */
2806
2807/*
2808 * Access another process' address space.
2809 * Source/target buffer must be kernel space,
2810 * Do not walk the page table directly, use get_user_pages
2811 */
2812int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2813{
2814	struct mm_struct *mm;
2815	struct vm_area_struct *vma;
2816	struct page *page;
2817	void *old_buf = buf;
2818
2819	mm = get_task_mm(tsk);
2820	if (!mm)
2821		return 0;
2822
2823	down_read(&mm->mmap_sem);
2824	/* ignore errors, just check how much was sucessfully transfered */
2825	while (len) {
2826		int bytes, ret, offset;
2827		void *maddr;
2828
2829		ret = get_user_pages(tsk, mm, addr, 1,
2830				write, 1, &page, &vma);
2831		if (ret <= 0)
2832			break;
2833
2834		bytes = len;
2835		offset = addr & (PAGE_SIZE-1);
2836		if (bytes > PAGE_SIZE-offset)
2837			bytes = PAGE_SIZE-offset;
2838
2839		maddr = kmap(page);
2840		if (write) {
2841			copy_to_user_page(vma, page, addr,
2842					  maddr + offset, buf, bytes);
2843			set_page_dirty_lock(page);
2844		} else {
2845			copy_from_user_page(vma, page, addr,
2846					    buf, maddr + offset, bytes);
2847		}
2848		kunmap(page);
2849		page_cache_release(page);
2850		len -= bytes;
2851		buf += bytes;
2852		addr += bytes;
2853	}
2854	up_read(&mm->mmap_sem);
2855	mmput(mm);
2856
2857	return buf - old_buf;
2858}
2859