memory.c revision 8f4e2101fd7df9031a754eedb82e2060b51f8c45
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
61#ifndef CONFIG_NEED_MULTIPLE_NODES
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none.  Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93	pgd_ERROR(*pgd);
94	pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99	pud_ERROR(*pud);
100	pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105	pmd_ERROR(*pmd);
106	pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114{
115	struct page *page = pmd_page(*pmd);
116	pmd_clear(pmd);
117	pte_free_tlb(tlb, page);
118	dec_page_state(nr_page_table_pages);
119	tlb->mm->nr_ptes--;
120}
121
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123				unsigned long addr, unsigned long end,
124				unsigned long floor, unsigned long ceiling)
125{
126	pmd_t *pmd;
127	unsigned long next;
128	unsigned long start;
129
130	start = addr;
131	pmd = pmd_offset(pud, addr);
132	do {
133		next = pmd_addr_end(addr, end);
134		if (pmd_none_or_clear_bad(pmd))
135			continue;
136		free_pte_range(tlb, pmd);
137	} while (pmd++, addr = next, addr != end);
138
139	start &= PUD_MASK;
140	if (start < floor)
141		return;
142	if (ceiling) {
143		ceiling &= PUD_MASK;
144		if (!ceiling)
145			return;
146	}
147	if (end - 1 > ceiling - 1)
148		return;
149
150	pmd = pmd_offset(pud, start);
151	pud_clear(pud);
152	pmd_free_tlb(tlb, pmd);
153}
154
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156				unsigned long addr, unsigned long end,
157				unsigned long floor, unsigned long ceiling)
158{
159	pud_t *pud;
160	unsigned long next;
161	unsigned long start;
162
163	start = addr;
164	pud = pud_offset(pgd, addr);
165	do {
166		next = pud_addr_end(addr, end);
167		if (pud_none_or_clear_bad(pud))
168			continue;
169		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170	} while (pud++, addr = next, addr != end);
171
172	start &= PGDIR_MASK;
173	if (start < floor)
174		return;
175	if (ceiling) {
176		ceiling &= PGDIR_MASK;
177		if (!ceiling)
178			return;
179	}
180	if (end - 1 > ceiling - 1)
181		return;
182
183	pud = pud_offset(pgd, start);
184	pgd_clear(pgd);
185	pud_free_tlb(tlb, pud);
186}
187
188/*
189 * This function frees user-level page tables of a process.
190 *
191 * Must be called with pagetable lock held.
192 */
193void free_pgd_range(struct mmu_gather **tlb,
194			unsigned long addr, unsigned long end,
195			unsigned long floor, unsigned long ceiling)
196{
197	pgd_t *pgd;
198	unsigned long next;
199	unsigned long start;
200
201	/*
202	 * The next few lines have given us lots of grief...
203	 *
204	 * Why are we testing PMD* at this top level?  Because often
205	 * there will be no work to do at all, and we'd prefer not to
206	 * go all the way down to the bottom just to discover that.
207	 *
208	 * Why all these "- 1"s?  Because 0 represents both the bottom
209	 * of the address space and the top of it (using -1 for the
210	 * top wouldn't help much: the masks would do the wrong thing).
211	 * The rule is that addr 0 and floor 0 refer to the bottom of
212	 * the address space, but end 0 and ceiling 0 refer to the top
213	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214	 * that end 0 case should be mythical).
215	 *
216	 * Wherever addr is brought up or ceiling brought down, we must
217	 * be careful to reject "the opposite 0" before it confuses the
218	 * subsequent tests.  But what about where end is brought down
219	 * by PMD_SIZE below? no, end can't go down to 0 there.
220	 *
221	 * Whereas we round start (addr) and ceiling down, by different
222	 * masks at different levels, in order to test whether a table
223	 * now has no other vmas using it, so can be freed, we don't
224	 * bother to round floor or end up - the tests don't need that.
225	 */
226
227	addr &= PMD_MASK;
228	if (addr < floor) {
229		addr += PMD_SIZE;
230		if (!addr)
231			return;
232	}
233	if (ceiling) {
234		ceiling &= PMD_MASK;
235		if (!ceiling)
236			return;
237	}
238	if (end - 1 > ceiling - 1)
239		end -= PMD_SIZE;
240	if (addr > end - 1)
241		return;
242
243	start = addr;
244	pgd = pgd_offset((*tlb)->mm, addr);
245	do {
246		next = pgd_addr_end(addr, end);
247		if (pgd_none_or_clear_bad(pgd))
248			continue;
249		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250	} while (pgd++, addr = next, addr != end);
251
252	if (!(*tlb)->fullmm)
253		flush_tlb_pgtables((*tlb)->mm, start, end);
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257		unsigned long floor, unsigned long ceiling)
258{
259	while (vma) {
260		struct vm_area_struct *next = vma->vm_next;
261		unsigned long addr = vma->vm_start;
262
263		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265				floor, next? next->vm_start: ceiling);
266		} else {
267			/*
268			 * Optimization: gather nearby vmas into one call down
269			 */
270			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272							HPAGE_SIZE)) {
273				vma = next;
274				next = vma->vm_next;
275			}
276			free_pgd_range(tlb, addr, vma->vm_end,
277				floor, next? next->vm_start: ceiling);
278		}
279		vma = next;
280	}
281}
282
283int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
284{
285	struct page *new = pte_alloc_one(mm, address);
286	if (!new)
287		return -ENOMEM;
288
289	spin_lock(&mm->page_table_lock);
290	if (pmd_present(*pmd))		/* Another has populated it */
291		pte_free(new);
292	else {
293		mm->nr_ptes++;
294		inc_page_state(nr_page_table_pages);
295		pmd_populate(mm, pmd, new);
296	}
297	spin_unlock(&mm->page_table_lock);
298	return 0;
299}
300
301int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
302{
303	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
304	if (!new)
305		return -ENOMEM;
306
307	spin_lock(&init_mm.page_table_lock);
308	if (pmd_present(*pmd))		/* Another has populated it */
309		pte_free_kernel(new);
310	else
311		pmd_populate_kernel(&init_mm, pmd, new);
312	spin_unlock(&init_mm.page_table_lock);
313	return 0;
314}
315
316static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
317{
318	if (file_rss)
319		add_mm_counter(mm, file_rss, file_rss);
320	if (anon_rss)
321		add_mm_counter(mm, anon_rss, anon_rss);
322}
323
324/*
325 * This function is called to print an error when a pte in a
326 * !VM_RESERVED region is found pointing to an invalid pfn (which
327 * is an error.
328 *
329 * The calling function must still handle the error.
330 */
331void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
332{
333	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
334			"vm_flags = %lx, vaddr = %lx\n",
335		(long long)pte_val(pte),
336		(vma->vm_mm == current->mm ? current->comm : "???"),
337		vma->vm_flags, vaddr);
338	dump_stack();
339}
340
341/*
342 * copy one vm_area from one task to the other. Assumes the page tables
343 * already present in the new task to be cleared in the whole range
344 * covered by this vma.
345 */
346
347static inline void
348copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
349		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
350		unsigned long addr, int *rss)
351{
352	unsigned long vm_flags = vma->vm_flags;
353	pte_t pte = *src_pte;
354	struct page *page;
355	unsigned long pfn;
356
357	/* pte contains position in swap or file, so copy. */
358	if (unlikely(!pte_present(pte))) {
359		if (!pte_file(pte)) {
360			swap_duplicate(pte_to_swp_entry(pte));
361			/* make sure dst_mm is on swapoff's mmlist. */
362			if (unlikely(list_empty(&dst_mm->mmlist))) {
363				spin_lock(&mmlist_lock);
364				list_add(&dst_mm->mmlist, &src_mm->mmlist);
365				spin_unlock(&mmlist_lock);
366			}
367		}
368		goto out_set_pte;
369	}
370
371	/* If the region is VM_RESERVED, the mapping is not
372	 * mapped via rmap - duplicate the pte as is.
373	 */
374	if (vm_flags & VM_RESERVED)
375		goto out_set_pte;
376
377	pfn = pte_pfn(pte);
378	/* If the pte points outside of valid memory but
379	 * the region is not VM_RESERVED, we have a problem.
380	 */
381	if (unlikely(!pfn_valid(pfn))) {
382		print_bad_pte(vma, pte, addr);
383		goto out_set_pte; /* try to do something sane */
384	}
385
386	page = pfn_to_page(pfn);
387
388	/*
389	 * If it's a COW mapping, write protect it both
390	 * in the parent and the child
391	 */
392	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
393		ptep_set_wrprotect(src_mm, addr, src_pte);
394		pte = *src_pte;
395	}
396
397	/*
398	 * If it's a shared mapping, mark it clean in
399	 * the child
400	 */
401	if (vm_flags & VM_SHARED)
402		pte = pte_mkclean(pte);
403	pte = pte_mkold(pte);
404	get_page(page);
405	page_dup_rmap(page);
406	rss[!!PageAnon(page)]++;
407
408out_set_pte:
409	set_pte_at(dst_mm, addr, dst_pte, pte);
410}
411
412static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
413		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
414		unsigned long addr, unsigned long end)
415{
416	pte_t *src_pte, *dst_pte;
417	spinlock_t *src_ptl, *dst_ptl;
418	int progress = 0;
419	int rss[2];
420
421again:
422	rss[1] = rss[0] = 0;
423	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
424	if (!dst_pte)
425		return -ENOMEM;
426	src_pte = pte_offset_map_nested(src_pmd, addr);
427	src_ptl = &src_mm->page_table_lock;
428	spin_lock(src_ptl);
429
430	do {
431		/*
432		 * We are holding two locks at this point - either of them
433		 * could generate latencies in another task on another CPU.
434		 */
435		if (progress >= 32) {
436			progress = 0;
437			if (need_resched() ||
438			    need_lockbreak(src_ptl) ||
439			    need_lockbreak(dst_ptl))
440				break;
441		}
442		if (pte_none(*src_pte)) {
443			progress++;
444			continue;
445		}
446		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
447		progress += 8;
448	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
449
450	spin_unlock(src_ptl);
451	pte_unmap_nested(src_pte - 1);
452	add_mm_rss(dst_mm, rss[0], rss[1]);
453	pte_unmap_unlock(dst_pte - 1, dst_ptl);
454	cond_resched();
455	if (addr != end)
456		goto again;
457	return 0;
458}
459
460static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
461		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
462		unsigned long addr, unsigned long end)
463{
464	pmd_t *src_pmd, *dst_pmd;
465	unsigned long next;
466
467	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
468	if (!dst_pmd)
469		return -ENOMEM;
470	src_pmd = pmd_offset(src_pud, addr);
471	do {
472		next = pmd_addr_end(addr, end);
473		if (pmd_none_or_clear_bad(src_pmd))
474			continue;
475		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
476						vma, addr, next))
477			return -ENOMEM;
478	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
479	return 0;
480}
481
482static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
483		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
484		unsigned long addr, unsigned long end)
485{
486	pud_t *src_pud, *dst_pud;
487	unsigned long next;
488
489	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
490	if (!dst_pud)
491		return -ENOMEM;
492	src_pud = pud_offset(src_pgd, addr);
493	do {
494		next = pud_addr_end(addr, end);
495		if (pud_none_or_clear_bad(src_pud))
496			continue;
497		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
498						vma, addr, next))
499			return -ENOMEM;
500	} while (dst_pud++, src_pud++, addr = next, addr != end);
501	return 0;
502}
503
504int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
505		struct vm_area_struct *vma)
506{
507	pgd_t *src_pgd, *dst_pgd;
508	unsigned long next;
509	unsigned long addr = vma->vm_start;
510	unsigned long end = vma->vm_end;
511
512	/*
513	 * Don't copy ptes where a page fault will fill them correctly.
514	 * Fork becomes much lighter when there are big shared or private
515	 * readonly mappings. The tradeoff is that copy_page_range is more
516	 * efficient than faulting.
517	 */
518	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
519		if (!vma->anon_vma)
520			return 0;
521	}
522
523	if (is_vm_hugetlb_page(vma))
524		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
525
526	dst_pgd = pgd_offset(dst_mm, addr);
527	src_pgd = pgd_offset(src_mm, addr);
528	do {
529		next = pgd_addr_end(addr, end);
530		if (pgd_none_or_clear_bad(src_pgd))
531			continue;
532		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
533						vma, addr, next))
534			return -ENOMEM;
535	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
536	return 0;
537}
538
539static void zap_pte_range(struct mmu_gather *tlb,
540				struct vm_area_struct *vma, pmd_t *pmd,
541				unsigned long addr, unsigned long end,
542				struct zap_details *details)
543{
544	struct mm_struct *mm = tlb->mm;
545	pte_t *pte;
546	int file_rss = 0;
547	int anon_rss = 0;
548
549	pte = pte_offset_map(pmd, addr);
550	do {
551		pte_t ptent = *pte;
552		if (pte_none(ptent))
553			continue;
554		if (pte_present(ptent)) {
555			struct page *page = NULL;
556			if (!(vma->vm_flags & VM_RESERVED)) {
557				unsigned long pfn = pte_pfn(ptent);
558				if (unlikely(!pfn_valid(pfn)))
559					print_bad_pte(vma, ptent, addr);
560				else
561					page = pfn_to_page(pfn);
562			}
563			if (unlikely(details) && page) {
564				/*
565				 * unmap_shared_mapping_pages() wants to
566				 * invalidate cache without truncating:
567				 * unmap shared but keep private pages.
568				 */
569				if (details->check_mapping &&
570				    details->check_mapping != page->mapping)
571					continue;
572				/*
573				 * Each page->index must be checked when
574				 * invalidating or truncating nonlinear.
575				 */
576				if (details->nonlinear_vma &&
577				    (page->index < details->first_index ||
578				     page->index > details->last_index))
579					continue;
580			}
581			ptent = ptep_get_and_clear_full(mm, addr, pte,
582							tlb->fullmm);
583			tlb_remove_tlb_entry(tlb, pte, addr);
584			if (unlikely(!page))
585				continue;
586			if (unlikely(details) && details->nonlinear_vma
587			    && linear_page_index(details->nonlinear_vma,
588						addr) != page->index)
589				set_pte_at(mm, addr, pte,
590					   pgoff_to_pte(page->index));
591			if (PageAnon(page))
592				anon_rss--;
593			else {
594				if (pte_dirty(ptent))
595					set_page_dirty(page);
596				if (pte_young(ptent))
597					mark_page_accessed(page);
598				file_rss--;
599			}
600			page_remove_rmap(page);
601			tlb_remove_page(tlb, page);
602			continue;
603		}
604		/*
605		 * If details->check_mapping, we leave swap entries;
606		 * if details->nonlinear_vma, we leave file entries.
607		 */
608		if (unlikely(details))
609			continue;
610		if (!pte_file(ptent))
611			free_swap_and_cache(pte_to_swp_entry(ptent));
612		pte_clear_full(mm, addr, pte, tlb->fullmm);
613	} while (pte++, addr += PAGE_SIZE, addr != end);
614
615	add_mm_rss(mm, file_rss, anon_rss);
616	pte_unmap(pte - 1);
617}
618
619static inline void zap_pmd_range(struct mmu_gather *tlb,
620				struct vm_area_struct *vma, pud_t *pud,
621				unsigned long addr, unsigned long end,
622				struct zap_details *details)
623{
624	pmd_t *pmd;
625	unsigned long next;
626
627	pmd = pmd_offset(pud, addr);
628	do {
629		next = pmd_addr_end(addr, end);
630		if (pmd_none_or_clear_bad(pmd))
631			continue;
632		zap_pte_range(tlb, vma, pmd, addr, next, details);
633	} while (pmd++, addr = next, addr != end);
634}
635
636static inline void zap_pud_range(struct mmu_gather *tlb,
637				struct vm_area_struct *vma, pgd_t *pgd,
638				unsigned long addr, unsigned long end,
639				struct zap_details *details)
640{
641	pud_t *pud;
642	unsigned long next;
643
644	pud = pud_offset(pgd, addr);
645	do {
646		next = pud_addr_end(addr, end);
647		if (pud_none_or_clear_bad(pud))
648			continue;
649		zap_pmd_range(tlb, vma, pud, addr, next, details);
650	} while (pud++, addr = next, addr != end);
651}
652
653static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
654				unsigned long addr, unsigned long end,
655				struct zap_details *details)
656{
657	pgd_t *pgd;
658	unsigned long next;
659
660	if (details && !details->check_mapping && !details->nonlinear_vma)
661		details = NULL;
662
663	BUG_ON(addr >= end);
664	tlb_start_vma(tlb, vma);
665	pgd = pgd_offset(vma->vm_mm, addr);
666	do {
667		next = pgd_addr_end(addr, end);
668		if (pgd_none_or_clear_bad(pgd))
669			continue;
670		zap_pud_range(tlb, vma, pgd, addr, next, details);
671	} while (pgd++, addr = next, addr != end);
672	tlb_end_vma(tlb, vma);
673}
674
675#ifdef CONFIG_PREEMPT
676# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
677#else
678/* No preempt: go for improved straight-line efficiency */
679# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
680#endif
681
682/**
683 * unmap_vmas - unmap a range of memory covered by a list of vma's
684 * @tlbp: address of the caller's struct mmu_gather
685 * @mm: the controlling mm_struct
686 * @vma: the starting vma
687 * @start_addr: virtual address at which to start unmapping
688 * @end_addr: virtual address at which to end unmapping
689 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
690 * @details: details of nonlinear truncation or shared cache invalidation
691 *
692 * Returns the end address of the unmapping (restart addr if interrupted).
693 *
694 * Unmap all pages in the vma list.  Called under page_table_lock.
695 *
696 * We aim to not hold page_table_lock for too long (for scheduling latency
697 * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
698 * return the ending mmu_gather to the caller.
699 *
700 * Only addresses between `start' and `end' will be unmapped.
701 *
702 * The VMA list must be sorted in ascending virtual address order.
703 *
704 * unmap_vmas() assumes that the caller will flush the whole unmapped address
705 * range after unmap_vmas() returns.  So the only responsibility here is to
706 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
707 * drops the lock and schedules.
708 */
709unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
710		struct vm_area_struct *vma, unsigned long start_addr,
711		unsigned long end_addr, unsigned long *nr_accounted,
712		struct zap_details *details)
713{
714	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
715	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
716	int tlb_start_valid = 0;
717	unsigned long start = start_addr;
718	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
719	int fullmm = (*tlbp)->fullmm;
720
721	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
722		unsigned long end;
723
724		start = max(vma->vm_start, start_addr);
725		if (start >= vma->vm_end)
726			continue;
727		end = min(vma->vm_end, end_addr);
728		if (end <= vma->vm_start)
729			continue;
730
731		if (vma->vm_flags & VM_ACCOUNT)
732			*nr_accounted += (end - start) >> PAGE_SHIFT;
733
734		while (start != end) {
735			unsigned long block;
736
737			if (!tlb_start_valid) {
738				tlb_start = start;
739				tlb_start_valid = 1;
740			}
741
742			if (is_vm_hugetlb_page(vma)) {
743				block = end - start;
744				unmap_hugepage_range(vma, start, end);
745			} else {
746				block = min(zap_bytes, end - start);
747				unmap_page_range(*tlbp, vma, start,
748						start + block, details);
749			}
750
751			start += block;
752			zap_bytes -= block;
753			if ((long)zap_bytes > 0)
754				continue;
755
756			tlb_finish_mmu(*tlbp, tlb_start, start);
757
758			if (need_resched() ||
759				need_lockbreak(&mm->page_table_lock) ||
760				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
761				if (i_mmap_lock) {
762					/* must reset count of rss freed */
763					*tlbp = tlb_gather_mmu(mm, fullmm);
764					goto out;
765				}
766				spin_unlock(&mm->page_table_lock);
767				cond_resched();
768				spin_lock(&mm->page_table_lock);
769			}
770
771			*tlbp = tlb_gather_mmu(mm, fullmm);
772			tlb_start_valid = 0;
773			zap_bytes = ZAP_BLOCK_SIZE;
774		}
775	}
776out:
777	return start;	/* which is now the end (or restart) address */
778}
779
780/**
781 * zap_page_range - remove user pages in a given range
782 * @vma: vm_area_struct holding the applicable pages
783 * @address: starting address of pages to zap
784 * @size: number of bytes to zap
785 * @details: details of nonlinear truncation or shared cache invalidation
786 */
787unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
788		unsigned long size, struct zap_details *details)
789{
790	struct mm_struct *mm = vma->vm_mm;
791	struct mmu_gather *tlb;
792	unsigned long end = address + size;
793	unsigned long nr_accounted = 0;
794
795	if (is_vm_hugetlb_page(vma)) {
796		zap_hugepage_range(vma, address, size);
797		return end;
798	}
799
800	lru_add_drain();
801	spin_lock(&mm->page_table_lock);
802	tlb = tlb_gather_mmu(mm, 0);
803	update_hiwater_rss(mm);
804	end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
805	tlb_finish_mmu(tlb, address, end);
806	spin_unlock(&mm->page_table_lock);
807	return end;
808}
809
810/*
811 * Do a quick page-table lookup for a single page.
812 * mm->page_table_lock must be held.
813 */
814static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
815			int read, int write, int accessed)
816{
817	pgd_t *pgd;
818	pud_t *pud;
819	pmd_t *pmd;
820	pte_t *ptep, pte;
821	unsigned long pfn;
822	struct page *page;
823
824	page = follow_huge_addr(mm, address, write);
825	if (! IS_ERR(page))
826		return page;
827
828	pgd = pgd_offset(mm, address);
829	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
830		goto out;
831
832	pud = pud_offset(pgd, address);
833	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
834		goto out;
835
836	pmd = pmd_offset(pud, address);
837	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
838		goto out;
839	if (pmd_huge(*pmd))
840		return follow_huge_pmd(mm, address, pmd, write);
841
842	ptep = pte_offset_map(pmd, address);
843	if (!ptep)
844		goto out;
845
846	pte = *ptep;
847	pte_unmap(ptep);
848	if (pte_present(pte)) {
849		if (write && !pte_write(pte))
850			goto out;
851		if (read && !pte_read(pte))
852			goto out;
853		pfn = pte_pfn(pte);
854		if (pfn_valid(pfn)) {
855			page = pfn_to_page(pfn);
856			if (accessed) {
857				if (write && !pte_dirty(pte) &&!PageDirty(page))
858					set_page_dirty(page);
859				mark_page_accessed(page);
860			}
861			return page;
862		}
863	}
864
865out:
866	return NULL;
867}
868
869inline struct page *
870follow_page(struct mm_struct *mm, unsigned long address, int write)
871{
872	return __follow_page(mm, address, 0, write, 1);
873}
874
875/*
876 * check_user_page_readable() can be called frm niterrupt context by oprofile,
877 * so we need to avoid taking any non-irq-safe locks
878 */
879int check_user_page_readable(struct mm_struct *mm, unsigned long address)
880{
881	return __follow_page(mm, address, 1, 0, 0) != NULL;
882}
883EXPORT_SYMBOL(check_user_page_readable);
884
885static inline int
886untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
887			 unsigned long address)
888{
889	pgd_t *pgd;
890	pud_t *pud;
891	pmd_t *pmd;
892
893	/* Check if the vma is for an anonymous mapping. */
894	if (vma->vm_ops && vma->vm_ops->nopage)
895		return 0;
896
897	/* Check if page directory entry exists. */
898	pgd = pgd_offset(mm, address);
899	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
900		return 1;
901
902	pud = pud_offset(pgd, address);
903	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
904		return 1;
905
906	/* Check if page middle directory entry exists. */
907	pmd = pmd_offset(pud, address);
908	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
909		return 1;
910
911	/* There is a pte slot for 'address' in 'mm'. */
912	return 0;
913}
914
915int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
916		unsigned long start, int len, int write, int force,
917		struct page **pages, struct vm_area_struct **vmas)
918{
919	int i;
920	unsigned int flags;
921
922	/*
923	 * Require read or write permissions.
924	 * If 'force' is set, we only require the "MAY" flags.
925	 */
926	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
927	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
928	i = 0;
929
930	do {
931		struct vm_area_struct *	vma;
932
933		vma = find_extend_vma(mm, start);
934		if (!vma && in_gate_area(tsk, start)) {
935			unsigned long pg = start & PAGE_MASK;
936			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
937			pgd_t *pgd;
938			pud_t *pud;
939			pmd_t *pmd;
940			pte_t *pte;
941			if (write) /* user gate pages are read-only */
942				return i ? : -EFAULT;
943			if (pg > TASK_SIZE)
944				pgd = pgd_offset_k(pg);
945			else
946				pgd = pgd_offset_gate(mm, pg);
947			BUG_ON(pgd_none(*pgd));
948			pud = pud_offset(pgd, pg);
949			BUG_ON(pud_none(*pud));
950			pmd = pmd_offset(pud, pg);
951			if (pmd_none(*pmd))
952				return i ? : -EFAULT;
953			pte = pte_offset_map(pmd, pg);
954			if (pte_none(*pte)) {
955				pte_unmap(pte);
956				return i ? : -EFAULT;
957			}
958			if (pages) {
959				pages[i] = pte_page(*pte);
960				get_page(pages[i]);
961			}
962			pte_unmap(pte);
963			if (vmas)
964				vmas[i] = gate_vma;
965			i++;
966			start += PAGE_SIZE;
967			len--;
968			continue;
969		}
970
971		if (!vma || (vma->vm_flags & (VM_IO | VM_RESERVED))
972				|| !(flags & vma->vm_flags))
973			return i ? : -EFAULT;
974
975		if (is_vm_hugetlb_page(vma)) {
976			i = follow_hugetlb_page(mm, vma, pages, vmas,
977						&start, &len, i);
978			continue;
979		}
980		spin_lock(&mm->page_table_lock);
981		do {
982			int write_access = write;
983			struct page *page;
984
985			cond_resched_lock(&mm->page_table_lock);
986			while (!(page = follow_page(mm, start, write_access))) {
987				int ret;
988
989				/*
990				 * Shortcut for anonymous pages. We don't want
991				 * to force the creation of pages tables for
992				 * insanely big anonymously mapped areas that
993				 * nobody touched so far. This is important
994				 * for doing a core dump for these mappings.
995				 */
996				if (!write && untouched_anonymous_page(mm,vma,start)) {
997					page = ZERO_PAGE(start);
998					break;
999				}
1000				spin_unlock(&mm->page_table_lock);
1001				ret = __handle_mm_fault(mm, vma, start, write_access);
1002
1003				/*
1004				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1005				 * broken COW when necessary, even if maybe_mkwrite
1006				 * decided not to set pte_write. We can thus safely do
1007				 * subsequent page lookups as if they were reads.
1008				 */
1009				if (ret & VM_FAULT_WRITE)
1010					write_access = 0;
1011
1012				switch (ret & ~VM_FAULT_WRITE) {
1013				case VM_FAULT_MINOR:
1014					tsk->min_flt++;
1015					break;
1016				case VM_FAULT_MAJOR:
1017					tsk->maj_flt++;
1018					break;
1019				case VM_FAULT_SIGBUS:
1020					return i ? i : -EFAULT;
1021				case VM_FAULT_OOM:
1022					return i ? i : -ENOMEM;
1023				default:
1024					BUG();
1025				}
1026				spin_lock(&mm->page_table_lock);
1027			}
1028			if (pages) {
1029				pages[i] = page;
1030				flush_dcache_page(page);
1031				page_cache_get(page);
1032			}
1033			if (vmas)
1034				vmas[i] = vma;
1035			i++;
1036			start += PAGE_SIZE;
1037			len--;
1038		} while (len && start < vma->vm_end);
1039		spin_unlock(&mm->page_table_lock);
1040	} while (len);
1041	return i;
1042}
1043EXPORT_SYMBOL(get_user_pages);
1044
1045static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1046			unsigned long addr, unsigned long end, pgprot_t prot)
1047{
1048	pte_t *pte;
1049	spinlock_t *ptl;
1050
1051	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1052	if (!pte)
1053		return -ENOMEM;
1054	do {
1055		struct page *page = ZERO_PAGE(addr);
1056		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1057		page_cache_get(page);
1058		page_add_file_rmap(page);
1059		inc_mm_counter(mm, file_rss);
1060		BUG_ON(!pte_none(*pte));
1061		set_pte_at(mm, addr, pte, zero_pte);
1062	} while (pte++, addr += PAGE_SIZE, addr != end);
1063	pte_unmap_unlock(pte - 1, ptl);
1064	return 0;
1065}
1066
1067static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1068			unsigned long addr, unsigned long end, pgprot_t prot)
1069{
1070	pmd_t *pmd;
1071	unsigned long next;
1072
1073	pmd = pmd_alloc(mm, pud, addr);
1074	if (!pmd)
1075		return -ENOMEM;
1076	do {
1077		next = pmd_addr_end(addr, end);
1078		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1079			return -ENOMEM;
1080	} while (pmd++, addr = next, addr != end);
1081	return 0;
1082}
1083
1084static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1085			unsigned long addr, unsigned long end, pgprot_t prot)
1086{
1087	pud_t *pud;
1088	unsigned long next;
1089
1090	pud = pud_alloc(mm, pgd, addr);
1091	if (!pud)
1092		return -ENOMEM;
1093	do {
1094		next = pud_addr_end(addr, end);
1095		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1096			return -ENOMEM;
1097	} while (pud++, addr = next, addr != end);
1098	return 0;
1099}
1100
1101int zeromap_page_range(struct vm_area_struct *vma,
1102			unsigned long addr, unsigned long size, pgprot_t prot)
1103{
1104	pgd_t *pgd;
1105	unsigned long next;
1106	unsigned long end = addr + size;
1107	struct mm_struct *mm = vma->vm_mm;
1108	int err;
1109
1110	BUG_ON(addr >= end);
1111	pgd = pgd_offset(mm, addr);
1112	flush_cache_range(vma, addr, end);
1113	do {
1114		next = pgd_addr_end(addr, end);
1115		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1116		if (err)
1117			break;
1118	} while (pgd++, addr = next, addr != end);
1119	return err;
1120}
1121
1122/*
1123 * maps a range of physical memory into the requested pages. the old
1124 * mappings are removed. any references to nonexistent pages results
1125 * in null mappings (currently treated as "copy-on-access")
1126 */
1127static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1128			unsigned long addr, unsigned long end,
1129			unsigned long pfn, pgprot_t prot)
1130{
1131	pte_t *pte;
1132	spinlock_t *ptl;
1133
1134	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1135	if (!pte)
1136		return -ENOMEM;
1137	do {
1138		BUG_ON(!pte_none(*pte));
1139		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1140		pfn++;
1141	} while (pte++, addr += PAGE_SIZE, addr != end);
1142	pte_unmap_unlock(pte - 1, ptl);
1143	return 0;
1144}
1145
1146static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1147			unsigned long addr, unsigned long end,
1148			unsigned long pfn, pgprot_t prot)
1149{
1150	pmd_t *pmd;
1151	unsigned long next;
1152
1153	pfn -= addr >> PAGE_SHIFT;
1154	pmd = pmd_alloc(mm, pud, addr);
1155	if (!pmd)
1156		return -ENOMEM;
1157	do {
1158		next = pmd_addr_end(addr, end);
1159		if (remap_pte_range(mm, pmd, addr, next,
1160				pfn + (addr >> PAGE_SHIFT), prot))
1161			return -ENOMEM;
1162	} while (pmd++, addr = next, addr != end);
1163	return 0;
1164}
1165
1166static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1167			unsigned long addr, unsigned long end,
1168			unsigned long pfn, pgprot_t prot)
1169{
1170	pud_t *pud;
1171	unsigned long next;
1172
1173	pfn -= addr >> PAGE_SHIFT;
1174	pud = pud_alloc(mm, pgd, addr);
1175	if (!pud)
1176		return -ENOMEM;
1177	do {
1178		next = pud_addr_end(addr, end);
1179		if (remap_pmd_range(mm, pud, addr, next,
1180				pfn + (addr >> PAGE_SHIFT), prot))
1181			return -ENOMEM;
1182	} while (pud++, addr = next, addr != end);
1183	return 0;
1184}
1185
1186/*  Note: this is only safe if the mm semaphore is held when called. */
1187int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1188		    unsigned long pfn, unsigned long size, pgprot_t prot)
1189{
1190	pgd_t *pgd;
1191	unsigned long next;
1192	unsigned long end = addr + PAGE_ALIGN(size);
1193	struct mm_struct *mm = vma->vm_mm;
1194	int err;
1195
1196	/*
1197	 * Physically remapped pages are special. Tell the
1198	 * rest of the world about it:
1199	 *   VM_IO tells people not to look at these pages
1200	 *	(accesses can have side effects).
1201	 *   VM_RESERVED tells the core MM not to "manage" these pages
1202         *	(e.g. refcount, mapcount, try to swap them out).
1203	 */
1204	vma->vm_flags |= VM_IO | VM_RESERVED;
1205
1206	BUG_ON(addr >= end);
1207	pfn -= addr >> PAGE_SHIFT;
1208	pgd = pgd_offset(mm, addr);
1209	flush_cache_range(vma, addr, end);
1210	do {
1211		next = pgd_addr_end(addr, end);
1212		err = remap_pud_range(mm, pgd, addr, next,
1213				pfn + (addr >> PAGE_SHIFT), prot);
1214		if (err)
1215			break;
1216	} while (pgd++, addr = next, addr != end);
1217	return err;
1218}
1219EXPORT_SYMBOL(remap_pfn_range);
1220
1221/*
1222 * handle_pte_fault chooses page fault handler according to an entry
1223 * which was read non-atomically.  Before making any commitment, on
1224 * those architectures or configurations (e.g. i386 with PAE) which
1225 * might give a mix of unmatched parts, do_swap_page and do_file_page
1226 * must check under lock before unmapping the pte and proceeding
1227 * (but do_wp_page is only called after already making such a check;
1228 * and do_anonymous_page and do_no_page can safely check later on).
1229 */
1230static inline int pte_unmap_same(struct mm_struct *mm,
1231				pte_t *page_table, pte_t orig_pte)
1232{
1233	int same = 1;
1234#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1235	if (sizeof(pte_t) > sizeof(unsigned long)) {
1236		spin_lock(&mm->page_table_lock);
1237		same = pte_same(*page_table, orig_pte);
1238		spin_unlock(&mm->page_table_lock);
1239	}
1240#endif
1241	pte_unmap(page_table);
1242	return same;
1243}
1244
1245/*
1246 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1247 * servicing faults for write access.  In the normal case, do always want
1248 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1249 * that do not have writing enabled, when used by access_process_vm.
1250 */
1251static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1252{
1253	if (likely(vma->vm_flags & VM_WRITE))
1254		pte = pte_mkwrite(pte);
1255	return pte;
1256}
1257
1258/*
1259 * This routine handles present pages, when users try to write
1260 * to a shared page. It is done by copying the page to a new address
1261 * and decrementing the shared-page counter for the old page.
1262 *
1263 * Note that this routine assumes that the protection checks have been
1264 * done by the caller (the low-level page fault routine in most cases).
1265 * Thus we can safely just mark it writable once we've done any necessary
1266 * COW.
1267 *
1268 * We also mark the page dirty at this point even though the page will
1269 * change only once the write actually happens. This avoids a few races,
1270 * and potentially makes it more efficient.
1271 *
1272 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1273 * but allow concurrent faults), with pte both mapped and locked.
1274 * We return with mmap_sem still held, but pte unmapped and unlocked.
1275 */
1276static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277		unsigned long address, pte_t *page_table, pmd_t *pmd,
1278		spinlock_t *ptl, pte_t orig_pte)
1279{
1280	struct page *old_page, *new_page;
1281	unsigned long pfn = pte_pfn(orig_pte);
1282	pte_t entry;
1283	int ret = VM_FAULT_MINOR;
1284
1285	BUG_ON(vma->vm_flags & VM_RESERVED);
1286
1287	if (unlikely(!pfn_valid(pfn))) {
1288		/*
1289		 * Page table corrupted: show pte and kill process.
1290		 */
1291		print_bad_pte(vma, orig_pte, address);
1292		ret = VM_FAULT_OOM;
1293		goto unlock;
1294	}
1295	old_page = pfn_to_page(pfn);
1296
1297	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1298		int reuse = can_share_swap_page(old_page);
1299		unlock_page(old_page);
1300		if (reuse) {
1301			flush_cache_page(vma, address, pfn);
1302			entry = pte_mkyoung(orig_pte);
1303			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1304			ptep_set_access_flags(vma, address, page_table, entry, 1);
1305			update_mmu_cache(vma, address, entry);
1306			lazy_mmu_prot_update(entry);
1307			ret |= VM_FAULT_WRITE;
1308			goto unlock;
1309		}
1310	}
1311
1312	/*
1313	 * Ok, we need to copy. Oh, well..
1314	 */
1315	page_cache_get(old_page);
1316	pte_unmap_unlock(page_table, ptl);
1317
1318	if (unlikely(anon_vma_prepare(vma)))
1319		goto oom;
1320	if (old_page == ZERO_PAGE(address)) {
1321		new_page = alloc_zeroed_user_highpage(vma, address);
1322		if (!new_page)
1323			goto oom;
1324	} else {
1325		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1326		if (!new_page)
1327			goto oom;
1328		copy_user_highpage(new_page, old_page, address);
1329	}
1330
1331	/*
1332	 * Re-check the pte - we dropped the lock
1333	 */
1334	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1335	if (likely(pte_same(*page_table, orig_pte))) {
1336		page_remove_rmap(old_page);
1337		if (!PageAnon(old_page)) {
1338			inc_mm_counter(mm, anon_rss);
1339			dec_mm_counter(mm, file_rss);
1340		}
1341		flush_cache_page(vma, address, pfn);
1342		entry = mk_pte(new_page, vma->vm_page_prot);
1343		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1344		ptep_establish(vma, address, page_table, entry);
1345		update_mmu_cache(vma, address, entry);
1346		lazy_mmu_prot_update(entry);
1347		lru_cache_add_active(new_page);
1348		page_add_anon_rmap(new_page, vma, address);
1349
1350		/* Free the old page.. */
1351		new_page = old_page;
1352		ret |= VM_FAULT_WRITE;
1353	}
1354	page_cache_release(new_page);
1355	page_cache_release(old_page);
1356unlock:
1357	pte_unmap_unlock(page_table, ptl);
1358	return ret;
1359oom:
1360	page_cache_release(old_page);
1361	return VM_FAULT_OOM;
1362}
1363
1364/*
1365 * Helper functions for unmap_mapping_range().
1366 *
1367 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1368 *
1369 * We have to restart searching the prio_tree whenever we drop the lock,
1370 * since the iterator is only valid while the lock is held, and anyway
1371 * a later vma might be split and reinserted earlier while lock dropped.
1372 *
1373 * The list of nonlinear vmas could be handled more efficiently, using
1374 * a placeholder, but handle it in the same way until a need is shown.
1375 * It is important to search the prio_tree before nonlinear list: a vma
1376 * may become nonlinear and be shifted from prio_tree to nonlinear list
1377 * while the lock is dropped; but never shifted from list to prio_tree.
1378 *
1379 * In order to make forward progress despite restarting the search,
1380 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1381 * quickly skip it next time around.  Since the prio_tree search only
1382 * shows us those vmas affected by unmapping the range in question, we
1383 * can't efficiently keep all vmas in step with mapping->truncate_count:
1384 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1385 * mapping->truncate_count and vma->vm_truncate_count are protected by
1386 * i_mmap_lock.
1387 *
1388 * In order to make forward progress despite repeatedly restarting some
1389 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1390 * and restart from that address when we reach that vma again.  It might
1391 * have been split or merged, shrunk or extended, but never shifted: so
1392 * restart_addr remains valid so long as it remains in the vma's range.
1393 * unmap_mapping_range forces truncate_count to leap over page-aligned
1394 * values so we can save vma's restart_addr in its truncate_count field.
1395 */
1396#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1397
1398static void reset_vma_truncate_counts(struct address_space *mapping)
1399{
1400	struct vm_area_struct *vma;
1401	struct prio_tree_iter iter;
1402
1403	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1404		vma->vm_truncate_count = 0;
1405	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1406		vma->vm_truncate_count = 0;
1407}
1408
1409static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1410		unsigned long start_addr, unsigned long end_addr,
1411		struct zap_details *details)
1412{
1413	unsigned long restart_addr;
1414	int need_break;
1415
1416again:
1417	restart_addr = vma->vm_truncate_count;
1418	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1419		start_addr = restart_addr;
1420		if (start_addr >= end_addr) {
1421			/* Top of vma has been split off since last time */
1422			vma->vm_truncate_count = details->truncate_count;
1423			return 0;
1424		}
1425	}
1426
1427	restart_addr = zap_page_range(vma, start_addr,
1428					end_addr - start_addr, details);
1429
1430	/*
1431	 * We cannot rely on the break test in unmap_vmas:
1432	 * on the one hand, we don't want to restart our loop
1433	 * just because that broke out for the page_table_lock;
1434	 * on the other hand, it does no test when vma is small.
1435	 */
1436	need_break = need_resched() ||
1437			need_lockbreak(details->i_mmap_lock);
1438
1439	if (restart_addr >= end_addr) {
1440		/* We have now completed this vma: mark it so */
1441		vma->vm_truncate_count = details->truncate_count;
1442		if (!need_break)
1443			return 0;
1444	} else {
1445		/* Note restart_addr in vma's truncate_count field */
1446		vma->vm_truncate_count = restart_addr;
1447		if (!need_break)
1448			goto again;
1449	}
1450
1451	spin_unlock(details->i_mmap_lock);
1452	cond_resched();
1453	spin_lock(details->i_mmap_lock);
1454	return -EINTR;
1455}
1456
1457static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1458					    struct zap_details *details)
1459{
1460	struct vm_area_struct *vma;
1461	struct prio_tree_iter iter;
1462	pgoff_t vba, vea, zba, zea;
1463
1464restart:
1465	vma_prio_tree_foreach(vma, &iter, root,
1466			details->first_index, details->last_index) {
1467		/* Skip quickly over those we have already dealt with */
1468		if (vma->vm_truncate_count == details->truncate_count)
1469			continue;
1470
1471		vba = vma->vm_pgoff;
1472		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1473		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1474		zba = details->first_index;
1475		if (zba < vba)
1476			zba = vba;
1477		zea = details->last_index;
1478		if (zea > vea)
1479			zea = vea;
1480
1481		if (unmap_mapping_range_vma(vma,
1482			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1483			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1484				details) < 0)
1485			goto restart;
1486	}
1487}
1488
1489static inline void unmap_mapping_range_list(struct list_head *head,
1490					    struct zap_details *details)
1491{
1492	struct vm_area_struct *vma;
1493
1494	/*
1495	 * In nonlinear VMAs there is no correspondence between virtual address
1496	 * offset and file offset.  So we must perform an exhaustive search
1497	 * across *all* the pages in each nonlinear VMA, not just the pages
1498	 * whose virtual address lies outside the file truncation point.
1499	 */
1500restart:
1501	list_for_each_entry(vma, head, shared.vm_set.list) {
1502		/* Skip quickly over those we have already dealt with */
1503		if (vma->vm_truncate_count == details->truncate_count)
1504			continue;
1505		details->nonlinear_vma = vma;
1506		if (unmap_mapping_range_vma(vma, vma->vm_start,
1507					vma->vm_end, details) < 0)
1508			goto restart;
1509	}
1510}
1511
1512/**
1513 * unmap_mapping_range - unmap the portion of all mmaps
1514 * in the specified address_space corresponding to the specified
1515 * page range in the underlying file.
1516 * @mapping: the address space containing mmaps to be unmapped.
1517 * @holebegin: byte in first page to unmap, relative to the start of
1518 * the underlying file.  This will be rounded down to a PAGE_SIZE
1519 * boundary.  Note that this is different from vmtruncate(), which
1520 * must keep the partial page.  In contrast, we must get rid of
1521 * partial pages.
1522 * @holelen: size of prospective hole in bytes.  This will be rounded
1523 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1524 * end of the file.
1525 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1526 * but 0 when invalidating pagecache, don't throw away private data.
1527 */
1528void unmap_mapping_range(struct address_space *mapping,
1529		loff_t const holebegin, loff_t const holelen, int even_cows)
1530{
1531	struct zap_details details;
1532	pgoff_t hba = holebegin >> PAGE_SHIFT;
1533	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1534
1535	/* Check for overflow. */
1536	if (sizeof(holelen) > sizeof(hlen)) {
1537		long long holeend =
1538			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1539		if (holeend & ~(long long)ULONG_MAX)
1540			hlen = ULONG_MAX - hba + 1;
1541	}
1542
1543	details.check_mapping = even_cows? NULL: mapping;
1544	details.nonlinear_vma = NULL;
1545	details.first_index = hba;
1546	details.last_index = hba + hlen - 1;
1547	if (details.last_index < details.first_index)
1548		details.last_index = ULONG_MAX;
1549	details.i_mmap_lock = &mapping->i_mmap_lock;
1550
1551	spin_lock(&mapping->i_mmap_lock);
1552
1553	/* serialize i_size write against truncate_count write */
1554	smp_wmb();
1555	/* Protect against page faults, and endless unmapping loops */
1556	mapping->truncate_count++;
1557	/*
1558	 * For archs where spin_lock has inclusive semantics like ia64
1559	 * this smp_mb() will prevent to read pagetable contents
1560	 * before the truncate_count increment is visible to
1561	 * other cpus.
1562	 */
1563	smp_mb();
1564	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1565		if (mapping->truncate_count == 0)
1566			reset_vma_truncate_counts(mapping);
1567		mapping->truncate_count++;
1568	}
1569	details.truncate_count = mapping->truncate_count;
1570
1571	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1572		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1573	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1574		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1575	spin_unlock(&mapping->i_mmap_lock);
1576}
1577EXPORT_SYMBOL(unmap_mapping_range);
1578
1579/*
1580 * Handle all mappings that got truncated by a "truncate()"
1581 * system call.
1582 *
1583 * NOTE! We have to be ready to update the memory sharing
1584 * between the file and the memory map for a potential last
1585 * incomplete page.  Ugly, but necessary.
1586 */
1587int vmtruncate(struct inode * inode, loff_t offset)
1588{
1589	struct address_space *mapping = inode->i_mapping;
1590	unsigned long limit;
1591
1592	if (inode->i_size < offset)
1593		goto do_expand;
1594	/*
1595	 * truncation of in-use swapfiles is disallowed - it would cause
1596	 * subsequent swapout to scribble on the now-freed blocks.
1597	 */
1598	if (IS_SWAPFILE(inode))
1599		goto out_busy;
1600	i_size_write(inode, offset);
1601	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1602	truncate_inode_pages(mapping, offset);
1603	goto out_truncate;
1604
1605do_expand:
1606	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1607	if (limit != RLIM_INFINITY && offset > limit)
1608		goto out_sig;
1609	if (offset > inode->i_sb->s_maxbytes)
1610		goto out_big;
1611	i_size_write(inode, offset);
1612
1613out_truncate:
1614	if (inode->i_op && inode->i_op->truncate)
1615		inode->i_op->truncate(inode);
1616	return 0;
1617out_sig:
1618	send_sig(SIGXFSZ, current, 0);
1619out_big:
1620	return -EFBIG;
1621out_busy:
1622	return -ETXTBSY;
1623}
1624
1625EXPORT_SYMBOL(vmtruncate);
1626
1627/*
1628 * Primitive swap readahead code. We simply read an aligned block of
1629 * (1 << page_cluster) entries in the swap area. This method is chosen
1630 * because it doesn't cost us any seek time.  We also make sure to queue
1631 * the 'original' request together with the readahead ones...
1632 *
1633 * This has been extended to use the NUMA policies from the mm triggering
1634 * the readahead.
1635 *
1636 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1637 */
1638void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1639{
1640#ifdef CONFIG_NUMA
1641	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1642#endif
1643	int i, num;
1644	struct page *new_page;
1645	unsigned long offset;
1646
1647	/*
1648	 * Get the number of handles we should do readahead io to.
1649	 */
1650	num = valid_swaphandles(entry, &offset);
1651	for (i = 0; i < num; offset++, i++) {
1652		/* Ok, do the async read-ahead now */
1653		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1654							   offset), vma, addr);
1655		if (!new_page)
1656			break;
1657		page_cache_release(new_page);
1658#ifdef CONFIG_NUMA
1659		/*
1660		 * Find the next applicable VMA for the NUMA policy.
1661		 */
1662		addr += PAGE_SIZE;
1663		if (addr == 0)
1664			vma = NULL;
1665		if (vma) {
1666			if (addr >= vma->vm_end) {
1667				vma = next_vma;
1668				next_vma = vma ? vma->vm_next : NULL;
1669			}
1670			if (vma && addr < vma->vm_start)
1671				vma = NULL;
1672		} else {
1673			if (next_vma && addr >= next_vma->vm_start) {
1674				vma = next_vma;
1675				next_vma = vma->vm_next;
1676			}
1677		}
1678#endif
1679	}
1680	lru_add_drain();	/* Push any new pages onto the LRU now */
1681}
1682
1683/*
1684 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1685 * but allow concurrent faults), and pte mapped but not yet locked.
1686 * We return with mmap_sem still held, but pte unmapped and unlocked.
1687 */
1688static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1689		unsigned long address, pte_t *page_table, pmd_t *pmd,
1690		int write_access, pte_t orig_pte)
1691{
1692	spinlock_t *ptl;
1693	struct page *page;
1694	swp_entry_t entry;
1695	pte_t pte;
1696	int ret = VM_FAULT_MINOR;
1697
1698	if (!pte_unmap_same(mm, page_table, orig_pte))
1699		goto out;
1700
1701	entry = pte_to_swp_entry(orig_pte);
1702	page = lookup_swap_cache(entry);
1703	if (!page) {
1704 		swapin_readahead(entry, address, vma);
1705 		page = read_swap_cache_async(entry, vma, address);
1706		if (!page) {
1707			/*
1708			 * Back out if somebody else faulted in this pte
1709			 * while we released the pte lock.
1710			 */
1711			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1712			if (likely(pte_same(*page_table, orig_pte)))
1713				ret = VM_FAULT_OOM;
1714			goto unlock;
1715		}
1716
1717		/* Had to read the page from swap area: Major fault */
1718		ret = VM_FAULT_MAJOR;
1719		inc_page_state(pgmajfault);
1720		grab_swap_token();
1721	}
1722
1723	mark_page_accessed(page);
1724	lock_page(page);
1725
1726	/*
1727	 * Back out if somebody else already faulted in this pte.
1728	 */
1729	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1730	if (unlikely(!pte_same(*page_table, orig_pte)))
1731		goto out_nomap;
1732
1733	if (unlikely(!PageUptodate(page))) {
1734		ret = VM_FAULT_SIGBUS;
1735		goto out_nomap;
1736	}
1737
1738	/* The page isn't present yet, go ahead with the fault. */
1739
1740	inc_mm_counter(mm, anon_rss);
1741	pte = mk_pte(page, vma->vm_page_prot);
1742	if (write_access && can_share_swap_page(page)) {
1743		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1744		write_access = 0;
1745	}
1746
1747	flush_icache_page(vma, page);
1748	set_pte_at(mm, address, page_table, pte);
1749	page_add_anon_rmap(page, vma, address);
1750
1751	swap_free(entry);
1752	if (vm_swap_full())
1753		remove_exclusive_swap_page(page);
1754	unlock_page(page);
1755
1756	if (write_access) {
1757		if (do_wp_page(mm, vma, address,
1758				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1759			ret = VM_FAULT_OOM;
1760		goto out;
1761	}
1762
1763	/* No need to invalidate - it was non-present before */
1764	update_mmu_cache(vma, address, pte);
1765	lazy_mmu_prot_update(pte);
1766unlock:
1767	pte_unmap_unlock(page_table, ptl);
1768out:
1769	return ret;
1770out_nomap:
1771	pte_unmap_unlock(page_table, ptl);
1772	unlock_page(page);
1773	page_cache_release(page);
1774	return ret;
1775}
1776
1777/*
1778 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1779 * but allow concurrent faults), and pte mapped but not yet locked.
1780 * We return with mmap_sem still held, but pte unmapped and unlocked.
1781 */
1782static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1783		unsigned long address, pte_t *page_table, pmd_t *pmd,
1784		int write_access)
1785{
1786	struct page *page;
1787	spinlock_t *ptl;
1788	pte_t entry;
1789
1790	if (write_access) {
1791		/* Allocate our own private page. */
1792		pte_unmap(page_table);
1793
1794		if (unlikely(anon_vma_prepare(vma)))
1795			goto oom;
1796		page = alloc_zeroed_user_highpage(vma, address);
1797		if (!page)
1798			goto oom;
1799
1800		entry = mk_pte(page, vma->vm_page_prot);
1801		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1802
1803		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1804		if (!pte_none(*page_table))
1805			goto release;
1806		inc_mm_counter(mm, anon_rss);
1807		lru_cache_add_active(page);
1808		SetPageReferenced(page);
1809		page_add_anon_rmap(page, vma, address);
1810	} else {
1811		/* Map the ZERO_PAGE - vm_page_prot is readonly */
1812		page = ZERO_PAGE(address);
1813		page_cache_get(page);
1814		entry = mk_pte(page, vma->vm_page_prot);
1815
1816		ptl = &mm->page_table_lock;
1817		spin_lock(ptl);
1818		if (!pte_none(*page_table))
1819			goto release;
1820		inc_mm_counter(mm, file_rss);
1821		page_add_file_rmap(page);
1822	}
1823
1824	set_pte_at(mm, address, page_table, entry);
1825
1826	/* No need to invalidate - it was non-present before */
1827	update_mmu_cache(vma, address, entry);
1828	lazy_mmu_prot_update(entry);
1829unlock:
1830	pte_unmap_unlock(page_table, ptl);
1831	return VM_FAULT_MINOR;
1832release:
1833	page_cache_release(page);
1834	goto unlock;
1835oom:
1836	return VM_FAULT_OOM;
1837}
1838
1839/*
1840 * do_no_page() tries to create a new page mapping. It aggressively
1841 * tries to share with existing pages, but makes a separate copy if
1842 * the "write_access" parameter is true in order to avoid the next
1843 * page fault.
1844 *
1845 * As this is called only for pages that do not currently exist, we
1846 * do not need to flush old virtual caches or the TLB.
1847 *
1848 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1849 * but allow concurrent faults), and pte mapped but not yet locked.
1850 * We return with mmap_sem still held, but pte unmapped and unlocked.
1851 */
1852static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1853		unsigned long address, pte_t *page_table, pmd_t *pmd,
1854		int write_access)
1855{
1856	spinlock_t *ptl;
1857	struct page *new_page;
1858	struct address_space *mapping = NULL;
1859	pte_t entry;
1860	unsigned int sequence = 0;
1861	int ret = VM_FAULT_MINOR;
1862	int anon = 0;
1863
1864	pte_unmap(page_table);
1865
1866	if (vma->vm_file) {
1867		mapping = vma->vm_file->f_mapping;
1868		sequence = mapping->truncate_count;
1869		smp_rmb(); /* serializes i_size against truncate_count */
1870	}
1871retry:
1872	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1873	/*
1874	 * No smp_rmb is needed here as long as there's a full
1875	 * spin_lock/unlock sequence inside the ->nopage callback
1876	 * (for the pagecache lookup) that acts as an implicit
1877	 * smp_mb() and prevents the i_size read to happen
1878	 * after the next truncate_count read.
1879	 */
1880
1881	/* no page was available -- either SIGBUS or OOM */
1882	if (new_page == NOPAGE_SIGBUS)
1883		return VM_FAULT_SIGBUS;
1884	if (new_page == NOPAGE_OOM)
1885		return VM_FAULT_OOM;
1886
1887	/*
1888	 * Should we do an early C-O-W break?
1889	 */
1890	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1891		struct page *page;
1892
1893		if (unlikely(anon_vma_prepare(vma)))
1894			goto oom;
1895		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1896		if (!page)
1897			goto oom;
1898		copy_user_highpage(page, new_page, address);
1899		page_cache_release(new_page);
1900		new_page = page;
1901		anon = 1;
1902	}
1903
1904	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1905	/*
1906	 * For a file-backed vma, someone could have truncated or otherwise
1907	 * invalidated this page.  If unmap_mapping_range got called,
1908	 * retry getting the page.
1909	 */
1910	if (mapping && unlikely(sequence != mapping->truncate_count)) {
1911		pte_unmap_unlock(page_table, ptl);
1912		page_cache_release(new_page);
1913		cond_resched();
1914		sequence = mapping->truncate_count;
1915		smp_rmb();
1916		goto retry;
1917	}
1918
1919	/*
1920	 * This silly early PAGE_DIRTY setting removes a race
1921	 * due to the bad i386 page protection. But it's valid
1922	 * for other architectures too.
1923	 *
1924	 * Note that if write_access is true, we either now have
1925	 * an exclusive copy of the page, or this is a shared mapping,
1926	 * so we can make it writable and dirty to avoid having to
1927	 * handle that later.
1928	 */
1929	/* Only go through if we didn't race with anybody else... */
1930	if (pte_none(*page_table)) {
1931		flush_icache_page(vma, new_page);
1932		entry = mk_pte(new_page, vma->vm_page_prot);
1933		if (write_access)
1934			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1935		set_pte_at(mm, address, page_table, entry);
1936		if (anon) {
1937			inc_mm_counter(mm, anon_rss);
1938			lru_cache_add_active(new_page);
1939			page_add_anon_rmap(new_page, vma, address);
1940		} else if (!(vma->vm_flags & VM_RESERVED)) {
1941			inc_mm_counter(mm, file_rss);
1942			page_add_file_rmap(new_page);
1943		}
1944	} else {
1945		/* One of our sibling threads was faster, back out. */
1946		page_cache_release(new_page);
1947		goto unlock;
1948	}
1949
1950	/* no need to invalidate: a not-present page shouldn't be cached */
1951	update_mmu_cache(vma, address, entry);
1952	lazy_mmu_prot_update(entry);
1953unlock:
1954	pte_unmap_unlock(page_table, ptl);
1955	return ret;
1956oom:
1957	page_cache_release(new_page);
1958	return VM_FAULT_OOM;
1959}
1960
1961/*
1962 * Fault of a previously existing named mapping. Repopulate the pte
1963 * from the encoded file_pte if possible. This enables swappable
1964 * nonlinear vmas.
1965 *
1966 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1967 * but allow concurrent faults), and pte mapped but not yet locked.
1968 * We return with mmap_sem still held, but pte unmapped and unlocked.
1969 */
1970static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1971		unsigned long address, pte_t *page_table, pmd_t *pmd,
1972		int write_access, pte_t orig_pte)
1973{
1974	pgoff_t pgoff;
1975	int err;
1976
1977	if (!pte_unmap_same(mm, page_table, orig_pte))
1978		return VM_FAULT_MINOR;
1979
1980	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1981		/*
1982		 * Page table corrupted: show pte and kill process.
1983		 */
1984		print_bad_pte(vma, orig_pte, address);
1985		return VM_FAULT_OOM;
1986	}
1987	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
1988
1989	pgoff = pte_to_pgoff(orig_pte);
1990	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1991					vma->vm_page_prot, pgoff, 0);
1992	if (err == -ENOMEM)
1993		return VM_FAULT_OOM;
1994	if (err)
1995		return VM_FAULT_SIGBUS;
1996	return VM_FAULT_MAJOR;
1997}
1998
1999/*
2000 * These routines also need to handle stuff like marking pages dirty
2001 * and/or accessed for architectures that don't do it in hardware (most
2002 * RISC architectures).  The early dirtying is also good on the i386.
2003 *
2004 * There is also a hook called "update_mmu_cache()" that architectures
2005 * with external mmu caches can use to update those (ie the Sparc or
2006 * PowerPC hashed page tables that act as extended TLBs).
2007 *
2008 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2009 * but allow concurrent faults), and pte mapped but not yet locked.
2010 * We return with mmap_sem still held, but pte unmapped and unlocked.
2011 */
2012static inline int handle_pte_fault(struct mm_struct *mm,
2013		struct vm_area_struct *vma, unsigned long address,
2014		pte_t *pte, pmd_t *pmd, int write_access)
2015{
2016	pte_t entry;
2017	spinlock_t *ptl;
2018
2019	entry = *pte;
2020	if (!pte_present(entry)) {
2021		if (pte_none(entry)) {
2022			if (!vma->vm_ops || !vma->vm_ops->nopage)
2023				return do_anonymous_page(mm, vma, address,
2024					pte, pmd, write_access);
2025			return do_no_page(mm, vma, address,
2026					pte, pmd, write_access);
2027		}
2028		if (pte_file(entry))
2029			return do_file_page(mm, vma, address,
2030					pte, pmd, write_access, entry);
2031		return do_swap_page(mm, vma, address,
2032					pte, pmd, write_access, entry);
2033	}
2034
2035	ptl = &mm->page_table_lock;
2036	spin_lock(ptl);
2037	if (unlikely(!pte_same(*pte, entry)))
2038		goto unlock;
2039	if (write_access) {
2040		if (!pte_write(entry))
2041			return do_wp_page(mm, vma, address,
2042					pte, pmd, ptl, entry);
2043		entry = pte_mkdirty(entry);
2044	}
2045	entry = pte_mkyoung(entry);
2046	ptep_set_access_flags(vma, address, pte, entry, write_access);
2047	update_mmu_cache(vma, address, entry);
2048	lazy_mmu_prot_update(entry);
2049unlock:
2050	pte_unmap_unlock(pte, ptl);
2051	return VM_FAULT_MINOR;
2052}
2053
2054/*
2055 * By the time we get here, we already hold the mm semaphore
2056 */
2057int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2058		unsigned long address, int write_access)
2059{
2060	pgd_t *pgd;
2061	pud_t *pud;
2062	pmd_t *pmd;
2063	pte_t *pte;
2064
2065	__set_current_state(TASK_RUNNING);
2066
2067	inc_page_state(pgfault);
2068
2069	if (unlikely(is_vm_hugetlb_page(vma)))
2070		return hugetlb_fault(mm, vma, address, write_access);
2071
2072	pgd = pgd_offset(mm, address);
2073	pud = pud_alloc(mm, pgd, address);
2074	if (!pud)
2075		return VM_FAULT_OOM;
2076	pmd = pmd_alloc(mm, pud, address);
2077	if (!pmd)
2078		return VM_FAULT_OOM;
2079	pte = pte_alloc_map(mm, pmd, address);
2080	if (!pte)
2081		return VM_FAULT_OOM;
2082
2083	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2084}
2085
2086#ifndef __PAGETABLE_PUD_FOLDED
2087/*
2088 * Allocate page upper directory.
2089 * We've already handled the fast-path in-line.
2090 */
2091int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2092{
2093	pud_t *new = pud_alloc_one(mm, address);
2094	if (!new)
2095		return -ENOMEM;
2096
2097	spin_lock(&mm->page_table_lock);
2098	if (pgd_present(*pgd))		/* Another has populated it */
2099		pud_free(new);
2100	else
2101		pgd_populate(mm, pgd, new);
2102	spin_unlock(&mm->page_table_lock);
2103	return 0;
2104}
2105#endif /* __PAGETABLE_PUD_FOLDED */
2106
2107#ifndef __PAGETABLE_PMD_FOLDED
2108/*
2109 * Allocate page middle directory.
2110 * We've already handled the fast-path in-line.
2111 */
2112int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2113{
2114	pmd_t *new = pmd_alloc_one(mm, address);
2115	if (!new)
2116		return -ENOMEM;
2117
2118	spin_lock(&mm->page_table_lock);
2119#ifndef __ARCH_HAS_4LEVEL_HACK
2120	if (pud_present(*pud))		/* Another has populated it */
2121		pmd_free(new);
2122	else
2123		pud_populate(mm, pud, new);
2124#else
2125	if (pgd_present(*pud))		/* Another has populated it */
2126		pmd_free(new);
2127	else
2128		pgd_populate(mm, pud, new);
2129#endif /* __ARCH_HAS_4LEVEL_HACK */
2130	spin_unlock(&mm->page_table_lock);
2131	return 0;
2132}
2133#endif /* __PAGETABLE_PMD_FOLDED */
2134
2135int make_pages_present(unsigned long addr, unsigned long end)
2136{
2137	int ret, len, write;
2138	struct vm_area_struct * vma;
2139
2140	vma = find_vma(current->mm, addr);
2141	if (!vma)
2142		return -1;
2143	write = (vma->vm_flags & VM_WRITE) != 0;
2144	if (addr >= end)
2145		BUG();
2146	if (end > vma->vm_end)
2147		BUG();
2148	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2149	ret = get_user_pages(current, current->mm, addr,
2150			len, write, 0, NULL, NULL);
2151	if (ret < 0)
2152		return ret;
2153	return ret == len ? 0 : -1;
2154}
2155
2156/*
2157 * Map a vmalloc()-space virtual address to the physical page.
2158 */
2159struct page * vmalloc_to_page(void * vmalloc_addr)
2160{
2161	unsigned long addr = (unsigned long) vmalloc_addr;
2162	struct page *page = NULL;
2163	pgd_t *pgd = pgd_offset_k(addr);
2164	pud_t *pud;
2165	pmd_t *pmd;
2166	pte_t *ptep, pte;
2167
2168	if (!pgd_none(*pgd)) {
2169		pud = pud_offset(pgd, addr);
2170		if (!pud_none(*pud)) {
2171			pmd = pmd_offset(pud, addr);
2172			if (!pmd_none(*pmd)) {
2173				ptep = pte_offset_map(pmd, addr);
2174				pte = *ptep;
2175				if (pte_present(pte))
2176					page = pte_page(pte);
2177				pte_unmap(ptep);
2178			}
2179		}
2180	}
2181	return page;
2182}
2183
2184EXPORT_SYMBOL(vmalloc_to_page);
2185
2186/*
2187 * Map a vmalloc()-space virtual address to the physical page frame number.
2188 */
2189unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2190{
2191	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2192}
2193
2194EXPORT_SYMBOL(vmalloc_to_pfn);
2195
2196#if !defined(__HAVE_ARCH_GATE_AREA)
2197
2198#if defined(AT_SYSINFO_EHDR)
2199static struct vm_area_struct gate_vma;
2200
2201static int __init gate_vma_init(void)
2202{
2203	gate_vma.vm_mm = NULL;
2204	gate_vma.vm_start = FIXADDR_USER_START;
2205	gate_vma.vm_end = FIXADDR_USER_END;
2206	gate_vma.vm_page_prot = PAGE_READONLY;
2207	gate_vma.vm_flags = VM_RESERVED;
2208	return 0;
2209}
2210__initcall(gate_vma_init);
2211#endif
2212
2213struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2214{
2215#ifdef AT_SYSINFO_EHDR
2216	return &gate_vma;
2217#else
2218	return NULL;
2219#endif
2220}
2221
2222int in_gate_area_no_task(unsigned long addr)
2223{
2224#ifdef AT_SYSINFO_EHDR
2225	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2226		return 1;
2227#endif
2228	return 0;
2229}
2230
2231#endif	/* __HAVE_ARCH_GATE_AREA */
2232