memory.c revision a137e1cc6d6e7d315fef03962a2a5a113348b13b
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53#include <linux/memcontrol.h>
54
55#include <asm/pgalloc.h>
56#include <asm/uaccess.h>
57#include <asm/tlb.h>
58#include <asm/tlbflush.h>
59#include <asm/pgtable.h>
60
61#include <linux/swapops.h>
62#include <linux/elf.h>
63
64#include "internal.h"
65
66#ifndef CONFIG_NEED_MULTIPLE_NODES
67/* use the per-pgdat data instead for discontigmem - mbligh */
68unsigned long max_mapnr;
69struct page *mem_map;
70
71EXPORT_SYMBOL(max_mapnr);
72EXPORT_SYMBOL(mem_map);
73#endif
74
75unsigned long num_physpages;
76/*
77 * A number of key systems in x86 including ioremap() rely on the assumption
78 * that high_memory defines the upper bound on direct map memory, then end
79 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
80 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
81 * and ZONE_HIGHMEM.
82 */
83void * high_memory;
84
85EXPORT_SYMBOL(num_physpages);
86EXPORT_SYMBOL(high_memory);
87
88/*
89 * Randomize the address space (stacks, mmaps, brk, etc.).
90 *
91 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
92 *   as ancient (libc5 based) binaries can segfault. )
93 */
94int randomize_va_space __read_mostly =
95#ifdef CONFIG_COMPAT_BRK
96					1;
97#else
98					2;
99#endif
100
101static int __init disable_randmaps(char *s)
102{
103	randomize_va_space = 0;
104	return 1;
105}
106__setup("norandmaps", disable_randmaps);
107
108
109/*
110 * If a p?d_bad entry is found while walking page tables, report
111 * the error, before resetting entry to p?d_none.  Usually (but
112 * very seldom) called out from the p?d_none_or_clear_bad macros.
113 */
114
115void pgd_clear_bad(pgd_t *pgd)
116{
117	pgd_ERROR(*pgd);
118	pgd_clear(pgd);
119}
120
121void pud_clear_bad(pud_t *pud)
122{
123	pud_ERROR(*pud);
124	pud_clear(pud);
125}
126
127void pmd_clear_bad(pmd_t *pmd)
128{
129	pmd_ERROR(*pmd);
130	pmd_clear(pmd);
131}
132
133/*
134 * Note: this doesn't free the actual pages themselves. That
135 * has been handled earlier when unmapping all the memory regions.
136 */
137static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
138{
139	pgtable_t token = pmd_pgtable(*pmd);
140	pmd_clear(pmd);
141	pte_free_tlb(tlb, token);
142	tlb->mm->nr_ptes--;
143}
144
145static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
146				unsigned long addr, unsigned long end,
147				unsigned long floor, unsigned long ceiling)
148{
149	pmd_t *pmd;
150	unsigned long next;
151	unsigned long start;
152
153	start = addr;
154	pmd = pmd_offset(pud, addr);
155	do {
156		next = pmd_addr_end(addr, end);
157		if (pmd_none_or_clear_bad(pmd))
158			continue;
159		free_pte_range(tlb, pmd);
160	} while (pmd++, addr = next, addr != end);
161
162	start &= PUD_MASK;
163	if (start < floor)
164		return;
165	if (ceiling) {
166		ceiling &= PUD_MASK;
167		if (!ceiling)
168			return;
169	}
170	if (end - 1 > ceiling - 1)
171		return;
172
173	pmd = pmd_offset(pud, start);
174	pud_clear(pud);
175	pmd_free_tlb(tlb, pmd);
176}
177
178static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
179				unsigned long addr, unsigned long end,
180				unsigned long floor, unsigned long ceiling)
181{
182	pud_t *pud;
183	unsigned long next;
184	unsigned long start;
185
186	start = addr;
187	pud = pud_offset(pgd, addr);
188	do {
189		next = pud_addr_end(addr, end);
190		if (pud_none_or_clear_bad(pud))
191			continue;
192		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
193	} while (pud++, addr = next, addr != end);
194
195	start &= PGDIR_MASK;
196	if (start < floor)
197		return;
198	if (ceiling) {
199		ceiling &= PGDIR_MASK;
200		if (!ceiling)
201			return;
202	}
203	if (end - 1 > ceiling - 1)
204		return;
205
206	pud = pud_offset(pgd, start);
207	pgd_clear(pgd);
208	pud_free_tlb(tlb, pud);
209}
210
211/*
212 * This function frees user-level page tables of a process.
213 *
214 * Must be called with pagetable lock held.
215 */
216void free_pgd_range(struct mmu_gather *tlb,
217			unsigned long addr, unsigned long end,
218			unsigned long floor, unsigned long ceiling)
219{
220	pgd_t *pgd;
221	unsigned long next;
222	unsigned long start;
223
224	/*
225	 * The next few lines have given us lots of grief...
226	 *
227	 * Why are we testing PMD* at this top level?  Because often
228	 * there will be no work to do at all, and we'd prefer not to
229	 * go all the way down to the bottom just to discover that.
230	 *
231	 * Why all these "- 1"s?  Because 0 represents both the bottom
232	 * of the address space and the top of it (using -1 for the
233	 * top wouldn't help much: the masks would do the wrong thing).
234	 * The rule is that addr 0 and floor 0 refer to the bottom of
235	 * the address space, but end 0 and ceiling 0 refer to the top
236	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
237	 * that end 0 case should be mythical).
238	 *
239	 * Wherever addr is brought up or ceiling brought down, we must
240	 * be careful to reject "the opposite 0" before it confuses the
241	 * subsequent tests.  But what about where end is brought down
242	 * by PMD_SIZE below? no, end can't go down to 0 there.
243	 *
244	 * Whereas we round start (addr) and ceiling down, by different
245	 * masks at different levels, in order to test whether a table
246	 * now has no other vmas using it, so can be freed, we don't
247	 * bother to round floor or end up - the tests don't need that.
248	 */
249
250	addr &= PMD_MASK;
251	if (addr < floor) {
252		addr += PMD_SIZE;
253		if (!addr)
254			return;
255	}
256	if (ceiling) {
257		ceiling &= PMD_MASK;
258		if (!ceiling)
259			return;
260	}
261	if (end - 1 > ceiling - 1)
262		end -= PMD_SIZE;
263	if (addr > end - 1)
264		return;
265
266	start = addr;
267	pgd = pgd_offset(tlb->mm, addr);
268	do {
269		next = pgd_addr_end(addr, end);
270		if (pgd_none_or_clear_bad(pgd))
271			continue;
272		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
273	} while (pgd++, addr = next, addr != end);
274}
275
276void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
277		unsigned long floor, unsigned long ceiling)
278{
279	while (vma) {
280		struct vm_area_struct *next = vma->vm_next;
281		unsigned long addr = vma->vm_start;
282
283		/*
284		 * Hide vma from rmap and vmtruncate before freeing pgtables
285		 */
286		anon_vma_unlink(vma);
287		unlink_file_vma(vma);
288
289		if (is_vm_hugetlb_page(vma)) {
290			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
291				floor, next? next->vm_start: ceiling);
292		} else {
293			/*
294			 * Optimization: gather nearby vmas into one call down
295			 */
296			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
297			       && !is_vm_hugetlb_page(next)) {
298				vma = next;
299				next = vma->vm_next;
300				anon_vma_unlink(vma);
301				unlink_file_vma(vma);
302			}
303			free_pgd_range(tlb, addr, vma->vm_end,
304				floor, next? next->vm_start: ceiling);
305		}
306		vma = next;
307	}
308}
309
310int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311{
312	pgtable_t new = pte_alloc_one(mm, address);
313	if (!new)
314		return -ENOMEM;
315
316	/*
317	 * Ensure all pte setup (eg. pte page lock and page clearing) are
318	 * visible before the pte is made visible to other CPUs by being
319	 * put into page tables.
320	 *
321	 * The other side of the story is the pointer chasing in the page
322	 * table walking code (when walking the page table without locking;
323	 * ie. most of the time). Fortunately, these data accesses consist
324	 * of a chain of data-dependent loads, meaning most CPUs (alpha
325	 * being the notable exception) will already guarantee loads are
326	 * seen in-order. See the alpha page table accessors for the
327	 * smp_read_barrier_depends() barriers in page table walking code.
328	 */
329	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
330
331	spin_lock(&mm->page_table_lock);
332	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
333		mm->nr_ptes++;
334		pmd_populate(mm, pmd, new);
335		new = NULL;
336	}
337	spin_unlock(&mm->page_table_lock);
338	if (new)
339		pte_free(mm, new);
340	return 0;
341}
342
343int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
344{
345	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
346	if (!new)
347		return -ENOMEM;
348
349	smp_wmb(); /* See comment in __pte_alloc */
350
351	spin_lock(&init_mm.page_table_lock);
352	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
353		pmd_populate_kernel(&init_mm, pmd, new);
354		new = NULL;
355	}
356	spin_unlock(&init_mm.page_table_lock);
357	if (new)
358		pte_free_kernel(&init_mm, new);
359	return 0;
360}
361
362static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
363{
364	if (file_rss)
365		add_mm_counter(mm, file_rss, file_rss);
366	if (anon_rss)
367		add_mm_counter(mm, anon_rss, anon_rss);
368}
369
370/*
371 * This function is called to print an error when a bad pte
372 * is found. For example, we might have a PFN-mapped pte in
373 * a region that doesn't allow it.
374 *
375 * The calling function must still handle the error.
376 */
377void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
378{
379	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
380			"vm_flags = %lx, vaddr = %lx\n",
381		(long long)pte_val(pte),
382		(vma->vm_mm == current->mm ? current->comm : "???"),
383		vma->vm_flags, vaddr);
384	dump_stack();
385}
386
387static inline int is_cow_mapping(unsigned int flags)
388{
389	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
390}
391
392/*
393 * vm_normal_page -- This function gets the "struct page" associated with a pte.
394 *
395 * "Special" mappings do not wish to be associated with a "struct page" (either
396 * it doesn't exist, or it exists but they don't want to touch it). In this
397 * case, NULL is returned here. "Normal" mappings do have a struct page.
398 *
399 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
400 * pte bit, in which case this function is trivial. Secondly, an architecture
401 * may not have a spare pte bit, which requires a more complicated scheme,
402 * described below.
403 *
404 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
405 * special mapping (even if there are underlying and valid "struct pages").
406 * COWed pages of a VM_PFNMAP are always normal.
407 *
408 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
409 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
410 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
411 * mapping will always honor the rule
412 *
413 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
414 *
415 * And for normal mappings this is false.
416 *
417 * This restricts such mappings to be a linear translation from virtual address
418 * to pfn. To get around this restriction, we allow arbitrary mappings so long
419 * as the vma is not a COW mapping; in that case, we know that all ptes are
420 * special (because none can have been COWed).
421 *
422 *
423 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
424 *
425 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
426 * page" backing, however the difference is that _all_ pages with a struct
427 * page (that is, those where pfn_valid is true) are refcounted and considered
428 * normal pages by the VM. The disadvantage is that pages are refcounted
429 * (which can be slower and simply not an option for some PFNMAP users). The
430 * advantage is that we don't have to follow the strict linearity rule of
431 * PFNMAP mappings in order to support COWable mappings.
432 *
433 */
434#ifdef __HAVE_ARCH_PTE_SPECIAL
435# define HAVE_PTE_SPECIAL 1
436#else
437# define HAVE_PTE_SPECIAL 0
438#endif
439struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
440				pte_t pte)
441{
442	unsigned long pfn;
443
444	if (HAVE_PTE_SPECIAL) {
445		if (likely(!pte_special(pte))) {
446			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
447			return pte_page(pte);
448		}
449		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
450		return NULL;
451	}
452
453	/* !HAVE_PTE_SPECIAL case follows: */
454
455	pfn = pte_pfn(pte);
456
457	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
458		if (vma->vm_flags & VM_MIXEDMAP) {
459			if (!pfn_valid(pfn))
460				return NULL;
461			goto out;
462		} else {
463			unsigned long off;
464			off = (addr - vma->vm_start) >> PAGE_SHIFT;
465			if (pfn == vma->vm_pgoff + off)
466				return NULL;
467			if (!is_cow_mapping(vma->vm_flags))
468				return NULL;
469		}
470	}
471
472	VM_BUG_ON(!pfn_valid(pfn));
473
474	/*
475	 * NOTE! We still have PageReserved() pages in the page tables.
476	 *
477	 * eg. VDSO mappings can cause them to exist.
478	 */
479out:
480	return pfn_to_page(pfn);
481}
482
483/*
484 * copy one vm_area from one task to the other. Assumes the page tables
485 * already present in the new task to be cleared in the whole range
486 * covered by this vma.
487 */
488
489static inline void
490copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
492		unsigned long addr, int *rss)
493{
494	unsigned long vm_flags = vma->vm_flags;
495	pte_t pte = *src_pte;
496	struct page *page;
497
498	/* pte contains position in swap or file, so copy. */
499	if (unlikely(!pte_present(pte))) {
500		if (!pte_file(pte)) {
501			swp_entry_t entry = pte_to_swp_entry(pte);
502
503			swap_duplicate(entry);
504			/* make sure dst_mm is on swapoff's mmlist. */
505			if (unlikely(list_empty(&dst_mm->mmlist))) {
506				spin_lock(&mmlist_lock);
507				if (list_empty(&dst_mm->mmlist))
508					list_add(&dst_mm->mmlist,
509						 &src_mm->mmlist);
510				spin_unlock(&mmlist_lock);
511			}
512			if (is_write_migration_entry(entry) &&
513					is_cow_mapping(vm_flags)) {
514				/*
515				 * COW mappings require pages in both parent
516				 * and child to be set to read.
517				 */
518				make_migration_entry_read(&entry);
519				pte = swp_entry_to_pte(entry);
520				set_pte_at(src_mm, addr, src_pte, pte);
521			}
522		}
523		goto out_set_pte;
524	}
525
526	/*
527	 * If it's a COW mapping, write protect it both
528	 * in the parent and the child
529	 */
530	if (is_cow_mapping(vm_flags)) {
531		ptep_set_wrprotect(src_mm, addr, src_pte);
532		pte = pte_wrprotect(pte);
533	}
534
535	/*
536	 * If it's a shared mapping, mark it clean in
537	 * the child
538	 */
539	if (vm_flags & VM_SHARED)
540		pte = pte_mkclean(pte);
541	pte = pte_mkold(pte);
542
543	page = vm_normal_page(vma, addr, pte);
544	if (page) {
545		get_page(page);
546		page_dup_rmap(page, vma, addr);
547		rss[!!PageAnon(page)]++;
548	}
549
550out_set_pte:
551	set_pte_at(dst_mm, addr, dst_pte, pte);
552}
553
554static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
555		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
556		unsigned long addr, unsigned long end)
557{
558	pte_t *src_pte, *dst_pte;
559	spinlock_t *src_ptl, *dst_ptl;
560	int progress = 0;
561	int rss[2];
562
563again:
564	rss[1] = rss[0] = 0;
565	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
566	if (!dst_pte)
567		return -ENOMEM;
568	src_pte = pte_offset_map_nested(src_pmd, addr);
569	src_ptl = pte_lockptr(src_mm, src_pmd);
570	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
571	arch_enter_lazy_mmu_mode();
572
573	do {
574		/*
575		 * We are holding two locks at this point - either of them
576		 * could generate latencies in another task on another CPU.
577		 */
578		if (progress >= 32) {
579			progress = 0;
580			if (need_resched() ||
581			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
582				break;
583		}
584		if (pte_none(*src_pte)) {
585			progress++;
586			continue;
587		}
588		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
589		progress += 8;
590	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
591
592	arch_leave_lazy_mmu_mode();
593	spin_unlock(src_ptl);
594	pte_unmap_nested(src_pte - 1);
595	add_mm_rss(dst_mm, rss[0], rss[1]);
596	pte_unmap_unlock(dst_pte - 1, dst_ptl);
597	cond_resched();
598	if (addr != end)
599		goto again;
600	return 0;
601}
602
603static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
604		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
605		unsigned long addr, unsigned long end)
606{
607	pmd_t *src_pmd, *dst_pmd;
608	unsigned long next;
609
610	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
611	if (!dst_pmd)
612		return -ENOMEM;
613	src_pmd = pmd_offset(src_pud, addr);
614	do {
615		next = pmd_addr_end(addr, end);
616		if (pmd_none_or_clear_bad(src_pmd))
617			continue;
618		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
619						vma, addr, next))
620			return -ENOMEM;
621	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
622	return 0;
623}
624
625static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
626		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
627		unsigned long addr, unsigned long end)
628{
629	pud_t *src_pud, *dst_pud;
630	unsigned long next;
631
632	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
633	if (!dst_pud)
634		return -ENOMEM;
635	src_pud = pud_offset(src_pgd, addr);
636	do {
637		next = pud_addr_end(addr, end);
638		if (pud_none_or_clear_bad(src_pud))
639			continue;
640		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
641						vma, addr, next))
642			return -ENOMEM;
643	} while (dst_pud++, src_pud++, addr = next, addr != end);
644	return 0;
645}
646
647int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
648		struct vm_area_struct *vma)
649{
650	pgd_t *src_pgd, *dst_pgd;
651	unsigned long next;
652	unsigned long addr = vma->vm_start;
653	unsigned long end = vma->vm_end;
654
655	/*
656	 * Don't copy ptes where a page fault will fill them correctly.
657	 * Fork becomes much lighter when there are big shared or private
658	 * readonly mappings. The tradeoff is that copy_page_range is more
659	 * efficient than faulting.
660	 */
661	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
662		if (!vma->anon_vma)
663			return 0;
664	}
665
666	if (is_vm_hugetlb_page(vma))
667		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
668
669	dst_pgd = pgd_offset(dst_mm, addr);
670	src_pgd = pgd_offset(src_mm, addr);
671	do {
672		next = pgd_addr_end(addr, end);
673		if (pgd_none_or_clear_bad(src_pgd))
674			continue;
675		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
676						vma, addr, next))
677			return -ENOMEM;
678	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
679	return 0;
680}
681
682static unsigned long zap_pte_range(struct mmu_gather *tlb,
683				struct vm_area_struct *vma, pmd_t *pmd,
684				unsigned long addr, unsigned long end,
685				long *zap_work, struct zap_details *details)
686{
687	struct mm_struct *mm = tlb->mm;
688	pte_t *pte;
689	spinlock_t *ptl;
690	int file_rss = 0;
691	int anon_rss = 0;
692
693	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
694	arch_enter_lazy_mmu_mode();
695	do {
696		pte_t ptent = *pte;
697		if (pte_none(ptent)) {
698			(*zap_work)--;
699			continue;
700		}
701
702		(*zap_work) -= PAGE_SIZE;
703
704		if (pte_present(ptent)) {
705			struct page *page;
706
707			page = vm_normal_page(vma, addr, ptent);
708			if (unlikely(details) && page) {
709				/*
710				 * unmap_shared_mapping_pages() wants to
711				 * invalidate cache without truncating:
712				 * unmap shared but keep private pages.
713				 */
714				if (details->check_mapping &&
715				    details->check_mapping != page->mapping)
716					continue;
717				/*
718				 * Each page->index must be checked when
719				 * invalidating or truncating nonlinear.
720				 */
721				if (details->nonlinear_vma &&
722				    (page->index < details->first_index ||
723				     page->index > details->last_index))
724					continue;
725			}
726			ptent = ptep_get_and_clear_full(mm, addr, pte,
727							tlb->fullmm);
728			tlb_remove_tlb_entry(tlb, pte, addr);
729			if (unlikely(!page))
730				continue;
731			if (unlikely(details) && details->nonlinear_vma
732			    && linear_page_index(details->nonlinear_vma,
733						addr) != page->index)
734				set_pte_at(mm, addr, pte,
735					   pgoff_to_pte(page->index));
736			if (PageAnon(page))
737				anon_rss--;
738			else {
739				if (pte_dirty(ptent))
740					set_page_dirty(page);
741				if (pte_young(ptent))
742					SetPageReferenced(page);
743				file_rss--;
744			}
745			page_remove_rmap(page, vma);
746			tlb_remove_page(tlb, page);
747			continue;
748		}
749		/*
750		 * If details->check_mapping, we leave swap entries;
751		 * if details->nonlinear_vma, we leave file entries.
752		 */
753		if (unlikely(details))
754			continue;
755		if (!pte_file(ptent))
756			free_swap_and_cache(pte_to_swp_entry(ptent));
757		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
758	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
759
760	add_mm_rss(mm, file_rss, anon_rss);
761	arch_leave_lazy_mmu_mode();
762	pte_unmap_unlock(pte - 1, ptl);
763
764	return addr;
765}
766
767static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
768				struct vm_area_struct *vma, pud_t *pud,
769				unsigned long addr, unsigned long end,
770				long *zap_work, struct zap_details *details)
771{
772	pmd_t *pmd;
773	unsigned long next;
774
775	pmd = pmd_offset(pud, addr);
776	do {
777		next = pmd_addr_end(addr, end);
778		if (pmd_none_or_clear_bad(pmd)) {
779			(*zap_work)--;
780			continue;
781		}
782		next = zap_pte_range(tlb, vma, pmd, addr, next,
783						zap_work, details);
784	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
785
786	return addr;
787}
788
789static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
790				struct vm_area_struct *vma, pgd_t *pgd,
791				unsigned long addr, unsigned long end,
792				long *zap_work, struct zap_details *details)
793{
794	pud_t *pud;
795	unsigned long next;
796
797	pud = pud_offset(pgd, addr);
798	do {
799		next = pud_addr_end(addr, end);
800		if (pud_none_or_clear_bad(pud)) {
801			(*zap_work)--;
802			continue;
803		}
804		next = zap_pmd_range(tlb, vma, pud, addr, next,
805						zap_work, details);
806	} while (pud++, addr = next, (addr != end && *zap_work > 0));
807
808	return addr;
809}
810
811static unsigned long unmap_page_range(struct mmu_gather *tlb,
812				struct vm_area_struct *vma,
813				unsigned long addr, unsigned long end,
814				long *zap_work, struct zap_details *details)
815{
816	pgd_t *pgd;
817	unsigned long next;
818
819	if (details && !details->check_mapping && !details->nonlinear_vma)
820		details = NULL;
821
822	BUG_ON(addr >= end);
823	tlb_start_vma(tlb, vma);
824	pgd = pgd_offset(vma->vm_mm, addr);
825	do {
826		next = pgd_addr_end(addr, end);
827		if (pgd_none_or_clear_bad(pgd)) {
828			(*zap_work)--;
829			continue;
830		}
831		next = zap_pud_range(tlb, vma, pgd, addr, next,
832						zap_work, details);
833	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
834	tlb_end_vma(tlb, vma);
835
836	return addr;
837}
838
839#ifdef CONFIG_PREEMPT
840# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
841#else
842/* No preempt: go for improved straight-line efficiency */
843# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
844#endif
845
846/**
847 * unmap_vmas - unmap a range of memory covered by a list of vma's
848 * @tlbp: address of the caller's struct mmu_gather
849 * @vma: the starting vma
850 * @start_addr: virtual address at which to start unmapping
851 * @end_addr: virtual address at which to end unmapping
852 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
853 * @details: details of nonlinear truncation or shared cache invalidation
854 *
855 * Returns the end address of the unmapping (restart addr if interrupted).
856 *
857 * Unmap all pages in the vma list.
858 *
859 * We aim to not hold locks for too long (for scheduling latency reasons).
860 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
861 * return the ending mmu_gather to the caller.
862 *
863 * Only addresses between `start' and `end' will be unmapped.
864 *
865 * The VMA list must be sorted in ascending virtual address order.
866 *
867 * unmap_vmas() assumes that the caller will flush the whole unmapped address
868 * range after unmap_vmas() returns.  So the only responsibility here is to
869 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
870 * drops the lock and schedules.
871 */
872unsigned long unmap_vmas(struct mmu_gather **tlbp,
873		struct vm_area_struct *vma, unsigned long start_addr,
874		unsigned long end_addr, unsigned long *nr_accounted,
875		struct zap_details *details)
876{
877	long zap_work = ZAP_BLOCK_SIZE;
878	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
879	int tlb_start_valid = 0;
880	unsigned long start = start_addr;
881	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
882	int fullmm = (*tlbp)->fullmm;
883
884	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
885		unsigned long end;
886
887		start = max(vma->vm_start, start_addr);
888		if (start >= vma->vm_end)
889			continue;
890		end = min(vma->vm_end, end_addr);
891		if (end <= vma->vm_start)
892			continue;
893
894		if (vma->vm_flags & VM_ACCOUNT)
895			*nr_accounted += (end - start) >> PAGE_SHIFT;
896
897		while (start != end) {
898			if (!tlb_start_valid) {
899				tlb_start = start;
900				tlb_start_valid = 1;
901			}
902
903			if (unlikely(is_vm_hugetlb_page(vma))) {
904				/*
905				 * It is undesirable to test vma->vm_file as it
906				 * should be non-null for valid hugetlb area.
907				 * However, vm_file will be NULL in the error
908				 * cleanup path of do_mmap_pgoff. When
909				 * hugetlbfs ->mmap method fails,
910				 * do_mmap_pgoff() nullifies vma->vm_file
911				 * before calling this function to clean up.
912				 * Since no pte has actually been setup, it is
913				 * safe to do nothing in this case.
914				 */
915				if (vma->vm_file) {
916					unmap_hugepage_range(vma, start, end, NULL);
917					zap_work -= (end - start) /
918					pages_per_huge_page(hstate_vma(vma));
919				}
920
921				start = end;
922			} else
923				start = unmap_page_range(*tlbp, vma,
924						start, end, &zap_work, details);
925
926			if (zap_work > 0) {
927				BUG_ON(start != end);
928				break;
929			}
930
931			tlb_finish_mmu(*tlbp, tlb_start, start);
932
933			if (need_resched() ||
934				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
935				if (i_mmap_lock) {
936					*tlbp = NULL;
937					goto out;
938				}
939				cond_resched();
940			}
941
942			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
943			tlb_start_valid = 0;
944			zap_work = ZAP_BLOCK_SIZE;
945		}
946	}
947out:
948	return start;	/* which is now the end (or restart) address */
949}
950
951/**
952 * zap_page_range - remove user pages in a given range
953 * @vma: vm_area_struct holding the applicable pages
954 * @address: starting address of pages to zap
955 * @size: number of bytes to zap
956 * @details: details of nonlinear truncation or shared cache invalidation
957 */
958unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
959		unsigned long size, struct zap_details *details)
960{
961	struct mm_struct *mm = vma->vm_mm;
962	struct mmu_gather *tlb;
963	unsigned long end = address + size;
964	unsigned long nr_accounted = 0;
965
966	lru_add_drain();
967	tlb = tlb_gather_mmu(mm, 0);
968	update_hiwater_rss(mm);
969	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
970	if (tlb)
971		tlb_finish_mmu(tlb, address, end);
972	return end;
973}
974
975/*
976 * Do a quick page-table lookup for a single page.
977 */
978struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
979			unsigned int flags)
980{
981	pgd_t *pgd;
982	pud_t *pud;
983	pmd_t *pmd;
984	pte_t *ptep, pte;
985	spinlock_t *ptl;
986	struct page *page;
987	struct mm_struct *mm = vma->vm_mm;
988
989	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
990	if (!IS_ERR(page)) {
991		BUG_ON(flags & FOLL_GET);
992		goto out;
993	}
994
995	page = NULL;
996	pgd = pgd_offset(mm, address);
997	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
998		goto no_page_table;
999
1000	pud = pud_offset(pgd, address);
1001	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
1002		goto no_page_table;
1003
1004	pmd = pmd_offset(pud, address);
1005	if (pmd_none(*pmd))
1006		goto no_page_table;
1007
1008	if (pmd_huge(*pmd)) {
1009		BUG_ON(flags & FOLL_GET);
1010		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1011		goto out;
1012	}
1013
1014	if (unlikely(pmd_bad(*pmd)))
1015		goto no_page_table;
1016
1017	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1018
1019	pte = *ptep;
1020	if (!pte_present(pte))
1021		goto no_page;
1022	if ((flags & FOLL_WRITE) && !pte_write(pte))
1023		goto unlock;
1024	page = vm_normal_page(vma, address, pte);
1025	if (unlikely(!page))
1026		goto bad_page;
1027
1028	if (flags & FOLL_GET)
1029		get_page(page);
1030	if (flags & FOLL_TOUCH) {
1031		if ((flags & FOLL_WRITE) &&
1032		    !pte_dirty(pte) && !PageDirty(page))
1033			set_page_dirty(page);
1034		mark_page_accessed(page);
1035	}
1036unlock:
1037	pte_unmap_unlock(ptep, ptl);
1038out:
1039	return page;
1040
1041bad_page:
1042	pte_unmap_unlock(ptep, ptl);
1043	return ERR_PTR(-EFAULT);
1044
1045no_page:
1046	pte_unmap_unlock(ptep, ptl);
1047	if (!pte_none(pte))
1048		return page;
1049	/* Fall through to ZERO_PAGE handling */
1050no_page_table:
1051	/*
1052	 * When core dumping an enormous anonymous area that nobody
1053	 * has touched so far, we don't want to allocate page tables.
1054	 */
1055	if (flags & FOLL_ANON) {
1056		page = ZERO_PAGE(0);
1057		if (flags & FOLL_GET)
1058			get_page(page);
1059		BUG_ON(flags & FOLL_WRITE);
1060	}
1061	return page;
1062}
1063
1064/* Can we do the FOLL_ANON optimization? */
1065static inline int use_zero_page(struct vm_area_struct *vma)
1066{
1067	/*
1068	 * We don't want to optimize FOLL_ANON for make_pages_present()
1069	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1070	 * we want to get the page from the page tables to make sure
1071	 * that we serialize and update with any other user of that
1072	 * mapping.
1073	 */
1074	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1075		return 0;
1076	/*
1077	 * And if we have a fault routine, it's not an anonymous region.
1078	 */
1079	return !vma->vm_ops || !vma->vm_ops->fault;
1080}
1081
1082int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1083		unsigned long start, int len, int write, int force,
1084		struct page **pages, struct vm_area_struct **vmas)
1085{
1086	int i;
1087	unsigned int vm_flags;
1088
1089	if (len <= 0)
1090		return 0;
1091	/*
1092	 * Require read or write permissions.
1093	 * If 'force' is set, we only require the "MAY" flags.
1094	 */
1095	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1096	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1097	i = 0;
1098
1099	do {
1100		struct vm_area_struct *vma;
1101		unsigned int foll_flags;
1102
1103		vma = find_extend_vma(mm, start);
1104		if (!vma && in_gate_area(tsk, start)) {
1105			unsigned long pg = start & PAGE_MASK;
1106			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1107			pgd_t *pgd;
1108			pud_t *pud;
1109			pmd_t *pmd;
1110			pte_t *pte;
1111			if (write) /* user gate pages are read-only */
1112				return i ? : -EFAULT;
1113			if (pg > TASK_SIZE)
1114				pgd = pgd_offset_k(pg);
1115			else
1116				pgd = pgd_offset_gate(mm, pg);
1117			BUG_ON(pgd_none(*pgd));
1118			pud = pud_offset(pgd, pg);
1119			BUG_ON(pud_none(*pud));
1120			pmd = pmd_offset(pud, pg);
1121			if (pmd_none(*pmd))
1122				return i ? : -EFAULT;
1123			pte = pte_offset_map(pmd, pg);
1124			if (pte_none(*pte)) {
1125				pte_unmap(pte);
1126				return i ? : -EFAULT;
1127			}
1128			if (pages) {
1129				struct page *page = vm_normal_page(gate_vma, start, *pte);
1130				pages[i] = page;
1131				if (page)
1132					get_page(page);
1133			}
1134			pte_unmap(pte);
1135			if (vmas)
1136				vmas[i] = gate_vma;
1137			i++;
1138			start += PAGE_SIZE;
1139			len--;
1140			continue;
1141		}
1142
1143		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1144				|| !(vm_flags & vma->vm_flags))
1145			return i ? : -EFAULT;
1146
1147		if (is_vm_hugetlb_page(vma)) {
1148			i = follow_hugetlb_page(mm, vma, pages, vmas,
1149						&start, &len, i, write);
1150			continue;
1151		}
1152
1153		foll_flags = FOLL_TOUCH;
1154		if (pages)
1155			foll_flags |= FOLL_GET;
1156		if (!write && use_zero_page(vma))
1157			foll_flags |= FOLL_ANON;
1158
1159		do {
1160			struct page *page;
1161
1162			/*
1163			 * If tsk is ooming, cut off its access to large memory
1164			 * allocations. It has a pending SIGKILL, but it can't
1165			 * be processed until returning to user space.
1166			 */
1167			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1168				return i ? i : -ENOMEM;
1169
1170			if (write)
1171				foll_flags |= FOLL_WRITE;
1172
1173			cond_resched();
1174			while (!(page = follow_page(vma, start, foll_flags))) {
1175				int ret;
1176				ret = handle_mm_fault(mm, vma, start,
1177						foll_flags & FOLL_WRITE);
1178				if (ret & VM_FAULT_ERROR) {
1179					if (ret & VM_FAULT_OOM)
1180						return i ? i : -ENOMEM;
1181					else if (ret & VM_FAULT_SIGBUS)
1182						return i ? i : -EFAULT;
1183					BUG();
1184				}
1185				if (ret & VM_FAULT_MAJOR)
1186					tsk->maj_flt++;
1187				else
1188					tsk->min_flt++;
1189
1190				/*
1191				 * The VM_FAULT_WRITE bit tells us that
1192				 * do_wp_page has broken COW when necessary,
1193				 * even if maybe_mkwrite decided not to set
1194				 * pte_write. We can thus safely do subsequent
1195				 * page lookups as if they were reads.
1196				 */
1197				if (ret & VM_FAULT_WRITE)
1198					foll_flags &= ~FOLL_WRITE;
1199
1200				cond_resched();
1201			}
1202			if (IS_ERR(page))
1203				return i ? i : PTR_ERR(page);
1204			if (pages) {
1205				pages[i] = page;
1206
1207				flush_anon_page(vma, page, start);
1208				flush_dcache_page(page);
1209			}
1210			if (vmas)
1211				vmas[i] = vma;
1212			i++;
1213			start += PAGE_SIZE;
1214			len--;
1215		} while (len && start < vma->vm_end);
1216	} while (len);
1217	return i;
1218}
1219EXPORT_SYMBOL(get_user_pages);
1220
1221pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1222			spinlock_t **ptl)
1223{
1224	pgd_t * pgd = pgd_offset(mm, addr);
1225	pud_t * pud = pud_alloc(mm, pgd, addr);
1226	if (pud) {
1227		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1228		if (pmd)
1229			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1230	}
1231	return NULL;
1232}
1233
1234/*
1235 * This is the old fallback for page remapping.
1236 *
1237 * For historical reasons, it only allows reserved pages. Only
1238 * old drivers should use this, and they needed to mark their
1239 * pages reserved for the old functions anyway.
1240 */
1241static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1242			struct page *page, pgprot_t prot)
1243{
1244	struct mm_struct *mm = vma->vm_mm;
1245	int retval;
1246	pte_t *pte;
1247	spinlock_t *ptl;
1248
1249	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1250	if (retval)
1251		goto out;
1252
1253	retval = -EINVAL;
1254	if (PageAnon(page))
1255		goto out_uncharge;
1256	retval = -ENOMEM;
1257	flush_dcache_page(page);
1258	pte = get_locked_pte(mm, addr, &ptl);
1259	if (!pte)
1260		goto out_uncharge;
1261	retval = -EBUSY;
1262	if (!pte_none(*pte))
1263		goto out_unlock;
1264
1265	/* Ok, finally just insert the thing.. */
1266	get_page(page);
1267	inc_mm_counter(mm, file_rss);
1268	page_add_file_rmap(page);
1269	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1270
1271	retval = 0;
1272	pte_unmap_unlock(pte, ptl);
1273	return retval;
1274out_unlock:
1275	pte_unmap_unlock(pte, ptl);
1276out_uncharge:
1277	mem_cgroup_uncharge_page(page);
1278out:
1279	return retval;
1280}
1281
1282/**
1283 * vm_insert_page - insert single page into user vma
1284 * @vma: user vma to map to
1285 * @addr: target user address of this page
1286 * @page: source kernel page
1287 *
1288 * This allows drivers to insert individual pages they've allocated
1289 * into a user vma.
1290 *
1291 * The page has to be a nice clean _individual_ kernel allocation.
1292 * If you allocate a compound page, you need to have marked it as
1293 * such (__GFP_COMP), or manually just split the page up yourself
1294 * (see split_page()).
1295 *
1296 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1297 * took an arbitrary page protection parameter. This doesn't allow
1298 * that. Your vma protection will have to be set up correctly, which
1299 * means that if you want a shared writable mapping, you'd better
1300 * ask for a shared writable mapping!
1301 *
1302 * The page does not need to be reserved.
1303 */
1304int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1305			struct page *page)
1306{
1307	if (addr < vma->vm_start || addr >= vma->vm_end)
1308		return -EFAULT;
1309	if (!page_count(page))
1310		return -EINVAL;
1311	vma->vm_flags |= VM_INSERTPAGE;
1312	return insert_page(vma, addr, page, vma->vm_page_prot);
1313}
1314EXPORT_SYMBOL(vm_insert_page);
1315
1316static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1317			unsigned long pfn, pgprot_t prot)
1318{
1319	struct mm_struct *mm = vma->vm_mm;
1320	int retval;
1321	pte_t *pte, entry;
1322	spinlock_t *ptl;
1323
1324	retval = -ENOMEM;
1325	pte = get_locked_pte(mm, addr, &ptl);
1326	if (!pte)
1327		goto out;
1328	retval = -EBUSY;
1329	if (!pte_none(*pte))
1330		goto out_unlock;
1331
1332	/* Ok, finally just insert the thing.. */
1333	entry = pte_mkspecial(pfn_pte(pfn, prot));
1334	set_pte_at(mm, addr, pte, entry);
1335	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1336
1337	retval = 0;
1338out_unlock:
1339	pte_unmap_unlock(pte, ptl);
1340out:
1341	return retval;
1342}
1343
1344/**
1345 * vm_insert_pfn - insert single pfn into user vma
1346 * @vma: user vma to map to
1347 * @addr: target user address of this page
1348 * @pfn: source kernel pfn
1349 *
1350 * Similar to vm_inert_page, this allows drivers to insert individual pages
1351 * they've allocated into a user vma. Same comments apply.
1352 *
1353 * This function should only be called from a vm_ops->fault handler, and
1354 * in that case the handler should return NULL.
1355 *
1356 * vma cannot be a COW mapping.
1357 *
1358 * As this is called only for pages that do not currently exist, we
1359 * do not need to flush old virtual caches or the TLB.
1360 */
1361int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1362			unsigned long pfn)
1363{
1364	/*
1365	 * Technically, architectures with pte_special can avoid all these
1366	 * restrictions (same for remap_pfn_range).  However we would like
1367	 * consistency in testing and feature parity among all, so we should
1368	 * try to keep these invariants in place for everybody.
1369	 */
1370	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1371	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1372						(VM_PFNMAP|VM_MIXEDMAP));
1373	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1374	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1375
1376	if (addr < vma->vm_start || addr >= vma->vm_end)
1377		return -EFAULT;
1378	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1379}
1380EXPORT_SYMBOL(vm_insert_pfn);
1381
1382int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1383			unsigned long pfn)
1384{
1385	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1386
1387	if (addr < vma->vm_start || addr >= vma->vm_end)
1388		return -EFAULT;
1389
1390	/*
1391	 * If we don't have pte special, then we have to use the pfn_valid()
1392	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1393	 * refcount the page if pfn_valid is true (hence insert_page rather
1394	 * than insert_pfn).
1395	 */
1396	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1397		struct page *page;
1398
1399		page = pfn_to_page(pfn);
1400		return insert_page(vma, addr, page, vma->vm_page_prot);
1401	}
1402	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1403}
1404EXPORT_SYMBOL(vm_insert_mixed);
1405
1406/*
1407 * maps a range of physical memory into the requested pages. the old
1408 * mappings are removed. any references to nonexistent pages results
1409 * in null mappings (currently treated as "copy-on-access")
1410 */
1411static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1412			unsigned long addr, unsigned long end,
1413			unsigned long pfn, pgprot_t prot)
1414{
1415	pte_t *pte;
1416	spinlock_t *ptl;
1417
1418	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1419	if (!pte)
1420		return -ENOMEM;
1421	arch_enter_lazy_mmu_mode();
1422	do {
1423		BUG_ON(!pte_none(*pte));
1424		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1425		pfn++;
1426	} while (pte++, addr += PAGE_SIZE, addr != end);
1427	arch_leave_lazy_mmu_mode();
1428	pte_unmap_unlock(pte - 1, ptl);
1429	return 0;
1430}
1431
1432static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1433			unsigned long addr, unsigned long end,
1434			unsigned long pfn, pgprot_t prot)
1435{
1436	pmd_t *pmd;
1437	unsigned long next;
1438
1439	pfn -= addr >> PAGE_SHIFT;
1440	pmd = pmd_alloc(mm, pud, addr);
1441	if (!pmd)
1442		return -ENOMEM;
1443	do {
1444		next = pmd_addr_end(addr, end);
1445		if (remap_pte_range(mm, pmd, addr, next,
1446				pfn + (addr >> PAGE_SHIFT), prot))
1447			return -ENOMEM;
1448	} while (pmd++, addr = next, addr != end);
1449	return 0;
1450}
1451
1452static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1453			unsigned long addr, unsigned long end,
1454			unsigned long pfn, pgprot_t prot)
1455{
1456	pud_t *pud;
1457	unsigned long next;
1458
1459	pfn -= addr >> PAGE_SHIFT;
1460	pud = pud_alloc(mm, pgd, addr);
1461	if (!pud)
1462		return -ENOMEM;
1463	do {
1464		next = pud_addr_end(addr, end);
1465		if (remap_pmd_range(mm, pud, addr, next,
1466				pfn + (addr >> PAGE_SHIFT), prot))
1467			return -ENOMEM;
1468	} while (pud++, addr = next, addr != end);
1469	return 0;
1470}
1471
1472/**
1473 * remap_pfn_range - remap kernel memory to userspace
1474 * @vma: user vma to map to
1475 * @addr: target user address to start at
1476 * @pfn: physical address of kernel memory
1477 * @size: size of map area
1478 * @prot: page protection flags for this mapping
1479 *
1480 *  Note: this is only safe if the mm semaphore is held when called.
1481 */
1482int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1483		    unsigned long pfn, unsigned long size, pgprot_t prot)
1484{
1485	pgd_t *pgd;
1486	unsigned long next;
1487	unsigned long end = addr + PAGE_ALIGN(size);
1488	struct mm_struct *mm = vma->vm_mm;
1489	int err;
1490
1491	/*
1492	 * Physically remapped pages are special. Tell the
1493	 * rest of the world about it:
1494	 *   VM_IO tells people not to look at these pages
1495	 *	(accesses can have side effects).
1496	 *   VM_RESERVED is specified all over the place, because
1497	 *	in 2.4 it kept swapout's vma scan off this vma; but
1498	 *	in 2.6 the LRU scan won't even find its pages, so this
1499	 *	flag means no more than count its pages in reserved_vm,
1500	 * 	and omit it from core dump, even when VM_IO turned off.
1501	 *   VM_PFNMAP tells the core MM that the base pages are just
1502	 *	raw PFN mappings, and do not have a "struct page" associated
1503	 *	with them.
1504	 *
1505	 * There's a horrible special case to handle copy-on-write
1506	 * behaviour that some programs depend on. We mark the "original"
1507	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1508	 */
1509	if (is_cow_mapping(vma->vm_flags)) {
1510		if (addr != vma->vm_start || end != vma->vm_end)
1511			return -EINVAL;
1512		vma->vm_pgoff = pfn;
1513	}
1514
1515	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1516
1517	BUG_ON(addr >= end);
1518	pfn -= addr >> PAGE_SHIFT;
1519	pgd = pgd_offset(mm, addr);
1520	flush_cache_range(vma, addr, end);
1521	do {
1522		next = pgd_addr_end(addr, end);
1523		err = remap_pud_range(mm, pgd, addr, next,
1524				pfn + (addr >> PAGE_SHIFT), prot);
1525		if (err)
1526			break;
1527	} while (pgd++, addr = next, addr != end);
1528	return err;
1529}
1530EXPORT_SYMBOL(remap_pfn_range);
1531
1532static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1533				     unsigned long addr, unsigned long end,
1534				     pte_fn_t fn, void *data)
1535{
1536	pte_t *pte;
1537	int err;
1538	pgtable_t token;
1539	spinlock_t *uninitialized_var(ptl);
1540
1541	pte = (mm == &init_mm) ?
1542		pte_alloc_kernel(pmd, addr) :
1543		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1544	if (!pte)
1545		return -ENOMEM;
1546
1547	BUG_ON(pmd_huge(*pmd));
1548
1549	token = pmd_pgtable(*pmd);
1550
1551	do {
1552		err = fn(pte, token, addr, data);
1553		if (err)
1554			break;
1555	} while (pte++, addr += PAGE_SIZE, addr != end);
1556
1557	if (mm != &init_mm)
1558		pte_unmap_unlock(pte-1, ptl);
1559	return err;
1560}
1561
1562static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1563				     unsigned long addr, unsigned long end,
1564				     pte_fn_t fn, void *data)
1565{
1566	pmd_t *pmd;
1567	unsigned long next;
1568	int err;
1569
1570	pmd = pmd_alloc(mm, pud, addr);
1571	if (!pmd)
1572		return -ENOMEM;
1573	do {
1574		next = pmd_addr_end(addr, end);
1575		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1576		if (err)
1577			break;
1578	} while (pmd++, addr = next, addr != end);
1579	return err;
1580}
1581
1582static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1583				     unsigned long addr, unsigned long end,
1584				     pte_fn_t fn, void *data)
1585{
1586	pud_t *pud;
1587	unsigned long next;
1588	int err;
1589
1590	pud = pud_alloc(mm, pgd, addr);
1591	if (!pud)
1592		return -ENOMEM;
1593	do {
1594		next = pud_addr_end(addr, end);
1595		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1596		if (err)
1597			break;
1598	} while (pud++, addr = next, addr != end);
1599	return err;
1600}
1601
1602/*
1603 * Scan a region of virtual memory, filling in page tables as necessary
1604 * and calling a provided function on each leaf page table.
1605 */
1606int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1607			unsigned long size, pte_fn_t fn, void *data)
1608{
1609	pgd_t *pgd;
1610	unsigned long next;
1611	unsigned long end = addr + size;
1612	int err;
1613
1614	BUG_ON(addr >= end);
1615	pgd = pgd_offset(mm, addr);
1616	do {
1617		next = pgd_addr_end(addr, end);
1618		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1619		if (err)
1620			break;
1621	} while (pgd++, addr = next, addr != end);
1622	return err;
1623}
1624EXPORT_SYMBOL_GPL(apply_to_page_range);
1625
1626/*
1627 * handle_pte_fault chooses page fault handler according to an entry
1628 * which was read non-atomically.  Before making any commitment, on
1629 * those architectures or configurations (e.g. i386 with PAE) which
1630 * might give a mix of unmatched parts, do_swap_page and do_file_page
1631 * must check under lock before unmapping the pte and proceeding
1632 * (but do_wp_page is only called after already making such a check;
1633 * and do_anonymous_page and do_no_page can safely check later on).
1634 */
1635static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1636				pte_t *page_table, pte_t orig_pte)
1637{
1638	int same = 1;
1639#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1640	if (sizeof(pte_t) > sizeof(unsigned long)) {
1641		spinlock_t *ptl = pte_lockptr(mm, pmd);
1642		spin_lock(ptl);
1643		same = pte_same(*page_table, orig_pte);
1644		spin_unlock(ptl);
1645	}
1646#endif
1647	pte_unmap(page_table);
1648	return same;
1649}
1650
1651/*
1652 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1653 * servicing faults for write access.  In the normal case, do always want
1654 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1655 * that do not have writing enabled, when used by access_process_vm.
1656 */
1657static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1658{
1659	if (likely(vma->vm_flags & VM_WRITE))
1660		pte = pte_mkwrite(pte);
1661	return pte;
1662}
1663
1664static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1665{
1666	/*
1667	 * If the source page was a PFN mapping, we don't have
1668	 * a "struct page" for it. We do a best-effort copy by
1669	 * just copying from the original user address. If that
1670	 * fails, we just zero-fill it. Live with it.
1671	 */
1672	if (unlikely(!src)) {
1673		void *kaddr = kmap_atomic(dst, KM_USER0);
1674		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1675
1676		/*
1677		 * This really shouldn't fail, because the page is there
1678		 * in the page tables. But it might just be unreadable,
1679		 * in which case we just give up and fill the result with
1680		 * zeroes.
1681		 */
1682		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1683			memset(kaddr, 0, PAGE_SIZE);
1684		kunmap_atomic(kaddr, KM_USER0);
1685		flush_dcache_page(dst);
1686	} else
1687		copy_user_highpage(dst, src, va, vma);
1688}
1689
1690/*
1691 * This routine handles present pages, when users try to write
1692 * to a shared page. It is done by copying the page to a new address
1693 * and decrementing the shared-page counter for the old page.
1694 *
1695 * Note that this routine assumes that the protection checks have been
1696 * done by the caller (the low-level page fault routine in most cases).
1697 * Thus we can safely just mark it writable once we've done any necessary
1698 * COW.
1699 *
1700 * We also mark the page dirty at this point even though the page will
1701 * change only once the write actually happens. This avoids a few races,
1702 * and potentially makes it more efficient.
1703 *
1704 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1705 * but allow concurrent faults), with pte both mapped and locked.
1706 * We return with mmap_sem still held, but pte unmapped and unlocked.
1707 */
1708static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1709		unsigned long address, pte_t *page_table, pmd_t *pmd,
1710		spinlock_t *ptl, pte_t orig_pte)
1711{
1712	struct page *old_page, *new_page;
1713	pte_t entry;
1714	int reuse = 0, ret = 0;
1715	int page_mkwrite = 0;
1716	struct page *dirty_page = NULL;
1717
1718	old_page = vm_normal_page(vma, address, orig_pte);
1719	if (!old_page) {
1720		/*
1721		 * VM_MIXEDMAP !pfn_valid() case
1722		 *
1723		 * We should not cow pages in a shared writeable mapping.
1724		 * Just mark the pages writable as we can't do any dirty
1725		 * accounting on raw pfn maps.
1726		 */
1727		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1728				     (VM_WRITE|VM_SHARED))
1729			goto reuse;
1730		goto gotten;
1731	}
1732
1733	/*
1734	 * Take out anonymous pages first, anonymous shared vmas are
1735	 * not dirty accountable.
1736	 */
1737	if (PageAnon(old_page)) {
1738		if (!TestSetPageLocked(old_page)) {
1739			reuse = can_share_swap_page(old_page);
1740			unlock_page(old_page);
1741		}
1742	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1743					(VM_WRITE|VM_SHARED))) {
1744		/*
1745		 * Only catch write-faults on shared writable pages,
1746		 * read-only shared pages can get COWed by
1747		 * get_user_pages(.write=1, .force=1).
1748		 */
1749		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1750			/*
1751			 * Notify the address space that the page is about to
1752			 * become writable so that it can prohibit this or wait
1753			 * for the page to get into an appropriate state.
1754			 *
1755			 * We do this without the lock held, so that it can
1756			 * sleep if it needs to.
1757			 */
1758			page_cache_get(old_page);
1759			pte_unmap_unlock(page_table, ptl);
1760
1761			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1762				goto unwritable_page;
1763
1764			/*
1765			 * Since we dropped the lock we need to revalidate
1766			 * the PTE as someone else may have changed it.  If
1767			 * they did, we just return, as we can count on the
1768			 * MMU to tell us if they didn't also make it writable.
1769			 */
1770			page_table = pte_offset_map_lock(mm, pmd, address,
1771							 &ptl);
1772			page_cache_release(old_page);
1773			if (!pte_same(*page_table, orig_pte))
1774				goto unlock;
1775
1776			page_mkwrite = 1;
1777		}
1778		dirty_page = old_page;
1779		get_page(dirty_page);
1780		reuse = 1;
1781	}
1782
1783	if (reuse) {
1784reuse:
1785		flush_cache_page(vma, address, pte_pfn(orig_pte));
1786		entry = pte_mkyoung(orig_pte);
1787		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1789			update_mmu_cache(vma, address, entry);
1790		ret |= VM_FAULT_WRITE;
1791		goto unlock;
1792	}
1793
1794	/*
1795	 * Ok, we need to copy. Oh, well..
1796	 */
1797	page_cache_get(old_page);
1798gotten:
1799	pte_unmap_unlock(page_table, ptl);
1800
1801	if (unlikely(anon_vma_prepare(vma)))
1802		goto oom;
1803	VM_BUG_ON(old_page == ZERO_PAGE(0));
1804	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1805	if (!new_page)
1806		goto oom;
1807	cow_user_page(new_page, old_page, address, vma);
1808	__SetPageUptodate(new_page);
1809
1810	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1811		goto oom_free_new;
1812
1813	/*
1814	 * Re-check the pte - we dropped the lock
1815	 */
1816	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1817	if (likely(pte_same(*page_table, orig_pte))) {
1818		if (old_page) {
1819			if (!PageAnon(old_page)) {
1820				dec_mm_counter(mm, file_rss);
1821				inc_mm_counter(mm, anon_rss);
1822			}
1823		} else
1824			inc_mm_counter(mm, anon_rss);
1825		flush_cache_page(vma, address, pte_pfn(orig_pte));
1826		entry = mk_pte(new_page, vma->vm_page_prot);
1827		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1828		/*
1829		 * Clear the pte entry and flush it first, before updating the
1830		 * pte with the new entry. This will avoid a race condition
1831		 * seen in the presence of one thread doing SMC and another
1832		 * thread doing COW.
1833		 */
1834		ptep_clear_flush(vma, address, page_table);
1835		set_pte_at(mm, address, page_table, entry);
1836		update_mmu_cache(vma, address, entry);
1837		lru_cache_add_active(new_page);
1838		page_add_new_anon_rmap(new_page, vma, address);
1839
1840		if (old_page) {
1841			/*
1842			 * Only after switching the pte to the new page may
1843			 * we remove the mapcount here. Otherwise another
1844			 * process may come and find the rmap count decremented
1845			 * before the pte is switched to the new page, and
1846			 * "reuse" the old page writing into it while our pte
1847			 * here still points into it and can be read by other
1848			 * threads.
1849			 *
1850			 * The critical issue is to order this
1851			 * page_remove_rmap with the ptp_clear_flush above.
1852			 * Those stores are ordered by (if nothing else,)
1853			 * the barrier present in the atomic_add_negative
1854			 * in page_remove_rmap.
1855			 *
1856			 * Then the TLB flush in ptep_clear_flush ensures that
1857			 * no process can access the old page before the
1858			 * decremented mapcount is visible. And the old page
1859			 * cannot be reused until after the decremented
1860			 * mapcount is visible. So transitively, TLBs to
1861			 * old page will be flushed before it can be reused.
1862			 */
1863			page_remove_rmap(old_page, vma);
1864		}
1865
1866		/* Free the old page.. */
1867		new_page = old_page;
1868		ret |= VM_FAULT_WRITE;
1869	} else
1870		mem_cgroup_uncharge_page(new_page);
1871
1872	if (new_page)
1873		page_cache_release(new_page);
1874	if (old_page)
1875		page_cache_release(old_page);
1876unlock:
1877	pte_unmap_unlock(page_table, ptl);
1878	if (dirty_page) {
1879		if (vma->vm_file)
1880			file_update_time(vma->vm_file);
1881
1882		/*
1883		 * Yes, Virginia, this is actually required to prevent a race
1884		 * with clear_page_dirty_for_io() from clearing the page dirty
1885		 * bit after it clear all dirty ptes, but before a racing
1886		 * do_wp_page installs a dirty pte.
1887		 *
1888		 * do_no_page is protected similarly.
1889		 */
1890		wait_on_page_locked(dirty_page);
1891		set_page_dirty_balance(dirty_page, page_mkwrite);
1892		put_page(dirty_page);
1893	}
1894	return ret;
1895oom_free_new:
1896	page_cache_release(new_page);
1897oom:
1898	if (old_page)
1899		page_cache_release(old_page);
1900	return VM_FAULT_OOM;
1901
1902unwritable_page:
1903	page_cache_release(old_page);
1904	return VM_FAULT_SIGBUS;
1905}
1906
1907/*
1908 * Helper functions for unmap_mapping_range().
1909 *
1910 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1911 *
1912 * We have to restart searching the prio_tree whenever we drop the lock,
1913 * since the iterator is only valid while the lock is held, and anyway
1914 * a later vma might be split and reinserted earlier while lock dropped.
1915 *
1916 * The list of nonlinear vmas could be handled more efficiently, using
1917 * a placeholder, but handle it in the same way until a need is shown.
1918 * It is important to search the prio_tree before nonlinear list: a vma
1919 * may become nonlinear and be shifted from prio_tree to nonlinear list
1920 * while the lock is dropped; but never shifted from list to prio_tree.
1921 *
1922 * In order to make forward progress despite restarting the search,
1923 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1924 * quickly skip it next time around.  Since the prio_tree search only
1925 * shows us those vmas affected by unmapping the range in question, we
1926 * can't efficiently keep all vmas in step with mapping->truncate_count:
1927 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1928 * mapping->truncate_count and vma->vm_truncate_count are protected by
1929 * i_mmap_lock.
1930 *
1931 * In order to make forward progress despite repeatedly restarting some
1932 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1933 * and restart from that address when we reach that vma again.  It might
1934 * have been split or merged, shrunk or extended, but never shifted: so
1935 * restart_addr remains valid so long as it remains in the vma's range.
1936 * unmap_mapping_range forces truncate_count to leap over page-aligned
1937 * values so we can save vma's restart_addr in its truncate_count field.
1938 */
1939#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1940
1941static void reset_vma_truncate_counts(struct address_space *mapping)
1942{
1943	struct vm_area_struct *vma;
1944	struct prio_tree_iter iter;
1945
1946	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1947		vma->vm_truncate_count = 0;
1948	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1949		vma->vm_truncate_count = 0;
1950}
1951
1952static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1953		unsigned long start_addr, unsigned long end_addr,
1954		struct zap_details *details)
1955{
1956	unsigned long restart_addr;
1957	int need_break;
1958
1959	/*
1960	 * files that support invalidating or truncating portions of the
1961	 * file from under mmaped areas must have their ->fault function
1962	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1963	 * This provides synchronisation against concurrent unmapping here.
1964	 */
1965
1966again:
1967	restart_addr = vma->vm_truncate_count;
1968	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1969		start_addr = restart_addr;
1970		if (start_addr >= end_addr) {
1971			/* Top of vma has been split off since last time */
1972			vma->vm_truncate_count = details->truncate_count;
1973			return 0;
1974		}
1975	}
1976
1977	restart_addr = zap_page_range(vma, start_addr,
1978					end_addr - start_addr, details);
1979	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1980
1981	if (restart_addr >= end_addr) {
1982		/* We have now completed this vma: mark it so */
1983		vma->vm_truncate_count = details->truncate_count;
1984		if (!need_break)
1985			return 0;
1986	} else {
1987		/* Note restart_addr in vma's truncate_count field */
1988		vma->vm_truncate_count = restart_addr;
1989		if (!need_break)
1990			goto again;
1991	}
1992
1993	spin_unlock(details->i_mmap_lock);
1994	cond_resched();
1995	spin_lock(details->i_mmap_lock);
1996	return -EINTR;
1997}
1998
1999static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2000					    struct zap_details *details)
2001{
2002	struct vm_area_struct *vma;
2003	struct prio_tree_iter iter;
2004	pgoff_t vba, vea, zba, zea;
2005
2006restart:
2007	vma_prio_tree_foreach(vma, &iter, root,
2008			details->first_index, details->last_index) {
2009		/* Skip quickly over those we have already dealt with */
2010		if (vma->vm_truncate_count == details->truncate_count)
2011			continue;
2012
2013		vba = vma->vm_pgoff;
2014		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2015		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2016		zba = details->first_index;
2017		if (zba < vba)
2018			zba = vba;
2019		zea = details->last_index;
2020		if (zea > vea)
2021			zea = vea;
2022
2023		if (unmap_mapping_range_vma(vma,
2024			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2025			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2026				details) < 0)
2027			goto restart;
2028	}
2029}
2030
2031static inline void unmap_mapping_range_list(struct list_head *head,
2032					    struct zap_details *details)
2033{
2034	struct vm_area_struct *vma;
2035
2036	/*
2037	 * In nonlinear VMAs there is no correspondence between virtual address
2038	 * offset and file offset.  So we must perform an exhaustive search
2039	 * across *all* the pages in each nonlinear VMA, not just the pages
2040	 * whose virtual address lies outside the file truncation point.
2041	 */
2042restart:
2043	list_for_each_entry(vma, head, shared.vm_set.list) {
2044		/* Skip quickly over those we have already dealt with */
2045		if (vma->vm_truncate_count == details->truncate_count)
2046			continue;
2047		details->nonlinear_vma = vma;
2048		if (unmap_mapping_range_vma(vma, vma->vm_start,
2049					vma->vm_end, details) < 0)
2050			goto restart;
2051	}
2052}
2053
2054/**
2055 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2056 * @mapping: the address space containing mmaps to be unmapped.
2057 * @holebegin: byte in first page to unmap, relative to the start of
2058 * the underlying file.  This will be rounded down to a PAGE_SIZE
2059 * boundary.  Note that this is different from vmtruncate(), which
2060 * must keep the partial page.  In contrast, we must get rid of
2061 * partial pages.
2062 * @holelen: size of prospective hole in bytes.  This will be rounded
2063 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2064 * end of the file.
2065 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2066 * but 0 when invalidating pagecache, don't throw away private data.
2067 */
2068void unmap_mapping_range(struct address_space *mapping,
2069		loff_t const holebegin, loff_t const holelen, int even_cows)
2070{
2071	struct zap_details details;
2072	pgoff_t hba = holebegin >> PAGE_SHIFT;
2073	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2074
2075	/* Check for overflow. */
2076	if (sizeof(holelen) > sizeof(hlen)) {
2077		long long holeend =
2078			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2079		if (holeend & ~(long long)ULONG_MAX)
2080			hlen = ULONG_MAX - hba + 1;
2081	}
2082
2083	details.check_mapping = even_cows? NULL: mapping;
2084	details.nonlinear_vma = NULL;
2085	details.first_index = hba;
2086	details.last_index = hba + hlen - 1;
2087	if (details.last_index < details.first_index)
2088		details.last_index = ULONG_MAX;
2089	details.i_mmap_lock = &mapping->i_mmap_lock;
2090
2091	spin_lock(&mapping->i_mmap_lock);
2092
2093	/* Protect against endless unmapping loops */
2094	mapping->truncate_count++;
2095	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2096		if (mapping->truncate_count == 0)
2097			reset_vma_truncate_counts(mapping);
2098		mapping->truncate_count++;
2099	}
2100	details.truncate_count = mapping->truncate_count;
2101
2102	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2103		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2104	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2105		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2106	spin_unlock(&mapping->i_mmap_lock);
2107}
2108EXPORT_SYMBOL(unmap_mapping_range);
2109
2110/**
2111 * vmtruncate - unmap mappings "freed" by truncate() syscall
2112 * @inode: inode of the file used
2113 * @offset: file offset to start truncating
2114 *
2115 * NOTE! We have to be ready to update the memory sharing
2116 * between the file and the memory map for a potential last
2117 * incomplete page.  Ugly, but necessary.
2118 */
2119int vmtruncate(struct inode * inode, loff_t offset)
2120{
2121	if (inode->i_size < offset) {
2122		unsigned long limit;
2123
2124		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2125		if (limit != RLIM_INFINITY && offset > limit)
2126			goto out_sig;
2127		if (offset > inode->i_sb->s_maxbytes)
2128			goto out_big;
2129		i_size_write(inode, offset);
2130	} else {
2131		struct address_space *mapping = inode->i_mapping;
2132
2133		/*
2134		 * truncation of in-use swapfiles is disallowed - it would
2135		 * cause subsequent swapout to scribble on the now-freed
2136		 * blocks.
2137		 */
2138		if (IS_SWAPFILE(inode))
2139			return -ETXTBSY;
2140		i_size_write(inode, offset);
2141
2142		/*
2143		 * unmap_mapping_range is called twice, first simply for
2144		 * efficiency so that truncate_inode_pages does fewer
2145		 * single-page unmaps.  However after this first call, and
2146		 * before truncate_inode_pages finishes, it is possible for
2147		 * private pages to be COWed, which remain after
2148		 * truncate_inode_pages finishes, hence the second
2149		 * unmap_mapping_range call must be made for correctness.
2150		 */
2151		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2152		truncate_inode_pages(mapping, offset);
2153		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2154	}
2155
2156	if (inode->i_op && inode->i_op->truncate)
2157		inode->i_op->truncate(inode);
2158	return 0;
2159
2160out_sig:
2161	send_sig(SIGXFSZ, current, 0);
2162out_big:
2163	return -EFBIG;
2164}
2165EXPORT_SYMBOL(vmtruncate);
2166
2167int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2168{
2169	struct address_space *mapping = inode->i_mapping;
2170
2171	/*
2172	 * If the underlying filesystem is not going to provide
2173	 * a way to truncate a range of blocks (punch a hole) -
2174	 * we should return failure right now.
2175	 */
2176	if (!inode->i_op || !inode->i_op->truncate_range)
2177		return -ENOSYS;
2178
2179	mutex_lock(&inode->i_mutex);
2180	down_write(&inode->i_alloc_sem);
2181	unmap_mapping_range(mapping, offset, (end - offset), 1);
2182	truncate_inode_pages_range(mapping, offset, end);
2183	unmap_mapping_range(mapping, offset, (end - offset), 1);
2184	inode->i_op->truncate_range(inode, offset, end);
2185	up_write(&inode->i_alloc_sem);
2186	mutex_unlock(&inode->i_mutex);
2187
2188	return 0;
2189}
2190
2191/*
2192 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2193 * but allow concurrent faults), and pte mapped but not yet locked.
2194 * We return with mmap_sem still held, but pte unmapped and unlocked.
2195 */
2196static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2197		unsigned long address, pte_t *page_table, pmd_t *pmd,
2198		int write_access, pte_t orig_pte)
2199{
2200	spinlock_t *ptl;
2201	struct page *page;
2202	swp_entry_t entry;
2203	pte_t pte;
2204	int ret = 0;
2205
2206	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2207		goto out;
2208
2209	entry = pte_to_swp_entry(orig_pte);
2210	if (is_migration_entry(entry)) {
2211		migration_entry_wait(mm, pmd, address);
2212		goto out;
2213	}
2214	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2215	page = lookup_swap_cache(entry);
2216	if (!page) {
2217		grab_swap_token(); /* Contend for token _before_ read-in */
2218		page = swapin_readahead(entry,
2219					GFP_HIGHUSER_MOVABLE, vma, address);
2220		if (!page) {
2221			/*
2222			 * Back out if somebody else faulted in this pte
2223			 * while we released the pte lock.
2224			 */
2225			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2226			if (likely(pte_same(*page_table, orig_pte)))
2227				ret = VM_FAULT_OOM;
2228			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2229			goto unlock;
2230		}
2231
2232		/* Had to read the page from swap area: Major fault */
2233		ret = VM_FAULT_MAJOR;
2234		count_vm_event(PGMAJFAULT);
2235	}
2236
2237	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2238		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2239		ret = VM_FAULT_OOM;
2240		goto out;
2241	}
2242
2243	mark_page_accessed(page);
2244	lock_page(page);
2245	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2246
2247	/*
2248	 * Back out if somebody else already faulted in this pte.
2249	 */
2250	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2251	if (unlikely(!pte_same(*page_table, orig_pte)))
2252		goto out_nomap;
2253
2254	if (unlikely(!PageUptodate(page))) {
2255		ret = VM_FAULT_SIGBUS;
2256		goto out_nomap;
2257	}
2258
2259	/* The page isn't present yet, go ahead with the fault. */
2260
2261	inc_mm_counter(mm, anon_rss);
2262	pte = mk_pte(page, vma->vm_page_prot);
2263	if (write_access && can_share_swap_page(page)) {
2264		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2265		write_access = 0;
2266	}
2267
2268	flush_icache_page(vma, page);
2269	set_pte_at(mm, address, page_table, pte);
2270	page_add_anon_rmap(page, vma, address);
2271
2272	swap_free(entry);
2273	if (vm_swap_full())
2274		remove_exclusive_swap_page(page);
2275	unlock_page(page);
2276
2277	if (write_access) {
2278		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2279		if (ret & VM_FAULT_ERROR)
2280			ret &= VM_FAULT_ERROR;
2281		goto out;
2282	}
2283
2284	/* No need to invalidate - it was non-present before */
2285	update_mmu_cache(vma, address, pte);
2286unlock:
2287	pte_unmap_unlock(page_table, ptl);
2288out:
2289	return ret;
2290out_nomap:
2291	mem_cgroup_uncharge_page(page);
2292	pte_unmap_unlock(page_table, ptl);
2293	unlock_page(page);
2294	page_cache_release(page);
2295	return ret;
2296}
2297
2298/*
2299 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2300 * but allow concurrent faults), and pte mapped but not yet locked.
2301 * We return with mmap_sem still held, but pte unmapped and unlocked.
2302 */
2303static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2304		unsigned long address, pte_t *page_table, pmd_t *pmd,
2305		int write_access)
2306{
2307	struct page *page;
2308	spinlock_t *ptl;
2309	pte_t entry;
2310
2311	/* Allocate our own private page. */
2312	pte_unmap(page_table);
2313
2314	if (unlikely(anon_vma_prepare(vma)))
2315		goto oom;
2316	page = alloc_zeroed_user_highpage_movable(vma, address);
2317	if (!page)
2318		goto oom;
2319	__SetPageUptodate(page);
2320
2321	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2322		goto oom_free_page;
2323
2324	entry = mk_pte(page, vma->vm_page_prot);
2325	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2326
2327	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2328	if (!pte_none(*page_table))
2329		goto release;
2330	inc_mm_counter(mm, anon_rss);
2331	lru_cache_add_active(page);
2332	page_add_new_anon_rmap(page, vma, address);
2333	set_pte_at(mm, address, page_table, entry);
2334
2335	/* No need to invalidate - it was non-present before */
2336	update_mmu_cache(vma, address, entry);
2337unlock:
2338	pte_unmap_unlock(page_table, ptl);
2339	return 0;
2340release:
2341	mem_cgroup_uncharge_page(page);
2342	page_cache_release(page);
2343	goto unlock;
2344oom_free_page:
2345	page_cache_release(page);
2346oom:
2347	return VM_FAULT_OOM;
2348}
2349
2350/*
2351 * __do_fault() tries to create a new page mapping. It aggressively
2352 * tries to share with existing pages, but makes a separate copy if
2353 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2354 * the next page fault.
2355 *
2356 * As this is called only for pages that do not currently exist, we
2357 * do not need to flush old virtual caches or the TLB.
2358 *
2359 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2360 * but allow concurrent faults), and pte neither mapped nor locked.
2361 * We return with mmap_sem still held, but pte unmapped and unlocked.
2362 */
2363static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2364		unsigned long address, pmd_t *pmd,
2365		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2366{
2367	pte_t *page_table;
2368	spinlock_t *ptl;
2369	struct page *page;
2370	pte_t entry;
2371	int anon = 0;
2372	struct page *dirty_page = NULL;
2373	struct vm_fault vmf;
2374	int ret;
2375	int page_mkwrite = 0;
2376
2377	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2378	vmf.pgoff = pgoff;
2379	vmf.flags = flags;
2380	vmf.page = NULL;
2381
2382	ret = vma->vm_ops->fault(vma, &vmf);
2383	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2384		return ret;
2385
2386	/*
2387	 * For consistency in subsequent calls, make the faulted page always
2388	 * locked.
2389	 */
2390	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2391		lock_page(vmf.page);
2392	else
2393		VM_BUG_ON(!PageLocked(vmf.page));
2394
2395	/*
2396	 * Should we do an early C-O-W break?
2397	 */
2398	page = vmf.page;
2399	if (flags & FAULT_FLAG_WRITE) {
2400		if (!(vma->vm_flags & VM_SHARED)) {
2401			anon = 1;
2402			if (unlikely(anon_vma_prepare(vma))) {
2403				ret = VM_FAULT_OOM;
2404				goto out;
2405			}
2406			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2407						vma, address);
2408			if (!page) {
2409				ret = VM_FAULT_OOM;
2410				goto out;
2411			}
2412			copy_user_highpage(page, vmf.page, address, vma);
2413			__SetPageUptodate(page);
2414		} else {
2415			/*
2416			 * If the page will be shareable, see if the backing
2417			 * address space wants to know that the page is about
2418			 * to become writable
2419			 */
2420			if (vma->vm_ops->page_mkwrite) {
2421				unlock_page(page);
2422				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2423					ret = VM_FAULT_SIGBUS;
2424					anon = 1; /* no anon but release vmf.page */
2425					goto out_unlocked;
2426				}
2427				lock_page(page);
2428				/*
2429				 * XXX: this is not quite right (racy vs
2430				 * invalidate) to unlock and relock the page
2431				 * like this, however a better fix requires
2432				 * reworking page_mkwrite locking API, which
2433				 * is better done later.
2434				 */
2435				if (!page->mapping) {
2436					ret = 0;
2437					anon = 1; /* no anon but release vmf.page */
2438					goto out;
2439				}
2440				page_mkwrite = 1;
2441			}
2442		}
2443
2444	}
2445
2446	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2447		ret = VM_FAULT_OOM;
2448		goto out;
2449	}
2450
2451	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2452
2453	/*
2454	 * This silly early PAGE_DIRTY setting removes a race
2455	 * due to the bad i386 page protection. But it's valid
2456	 * for other architectures too.
2457	 *
2458	 * Note that if write_access is true, we either now have
2459	 * an exclusive copy of the page, or this is a shared mapping,
2460	 * so we can make it writable and dirty to avoid having to
2461	 * handle that later.
2462	 */
2463	/* Only go through if we didn't race with anybody else... */
2464	if (likely(pte_same(*page_table, orig_pte))) {
2465		flush_icache_page(vma, page);
2466		entry = mk_pte(page, vma->vm_page_prot);
2467		if (flags & FAULT_FLAG_WRITE)
2468			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2469		set_pte_at(mm, address, page_table, entry);
2470		if (anon) {
2471                        inc_mm_counter(mm, anon_rss);
2472                        lru_cache_add_active(page);
2473                        page_add_new_anon_rmap(page, vma, address);
2474		} else {
2475			inc_mm_counter(mm, file_rss);
2476			page_add_file_rmap(page);
2477			if (flags & FAULT_FLAG_WRITE) {
2478				dirty_page = page;
2479				get_page(dirty_page);
2480			}
2481		}
2482
2483		/* no need to invalidate: a not-present page won't be cached */
2484		update_mmu_cache(vma, address, entry);
2485	} else {
2486		mem_cgroup_uncharge_page(page);
2487		if (anon)
2488			page_cache_release(page);
2489		else
2490			anon = 1; /* no anon but release faulted_page */
2491	}
2492
2493	pte_unmap_unlock(page_table, ptl);
2494
2495out:
2496	unlock_page(vmf.page);
2497out_unlocked:
2498	if (anon)
2499		page_cache_release(vmf.page);
2500	else if (dirty_page) {
2501		if (vma->vm_file)
2502			file_update_time(vma->vm_file);
2503
2504		set_page_dirty_balance(dirty_page, page_mkwrite);
2505		put_page(dirty_page);
2506	}
2507
2508	return ret;
2509}
2510
2511static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2512		unsigned long address, pte_t *page_table, pmd_t *pmd,
2513		int write_access, pte_t orig_pte)
2514{
2515	pgoff_t pgoff = (((address & PAGE_MASK)
2516			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2517	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2518
2519	pte_unmap(page_table);
2520	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2521}
2522
2523/*
2524 * Fault of a previously existing named mapping. Repopulate the pte
2525 * from the encoded file_pte if possible. This enables swappable
2526 * nonlinear vmas.
2527 *
2528 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2529 * but allow concurrent faults), and pte mapped but not yet locked.
2530 * We return with mmap_sem still held, but pte unmapped and unlocked.
2531 */
2532static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2533		unsigned long address, pte_t *page_table, pmd_t *pmd,
2534		int write_access, pte_t orig_pte)
2535{
2536	unsigned int flags = FAULT_FLAG_NONLINEAR |
2537				(write_access ? FAULT_FLAG_WRITE : 0);
2538	pgoff_t pgoff;
2539
2540	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2541		return 0;
2542
2543	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2544			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2545		/*
2546		 * Page table corrupted: show pte and kill process.
2547		 */
2548		print_bad_pte(vma, orig_pte, address);
2549		return VM_FAULT_OOM;
2550	}
2551
2552	pgoff = pte_to_pgoff(orig_pte);
2553	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2554}
2555
2556/*
2557 * These routines also need to handle stuff like marking pages dirty
2558 * and/or accessed for architectures that don't do it in hardware (most
2559 * RISC architectures).  The early dirtying is also good on the i386.
2560 *
2561 * There is also a hook called "update_mmu_cache()" that architectures
2562 * with external mmu caches can use to update those (ie the Sparc or
2563 * PowerPC hashed page tables that act as extended TLBs).
2564 *
2565 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2566 * but allow concurrent faults), and pte mapped but not yet locked.
2567 * We return with mmap_sem still held, but pte unmapped and unlocked.
2568 */
2569static inline int handle_pte_fault(struct mm_struct *mm,
2570		struct vm_area_struct *vma, unsigned long address,
2571		pte_t *pte, pmd_t *pmd, int write_access)
2572{
2573	pte_t entry;
2574	spinlock_t *ptl;
2575
2576	entry = *pte;
2577	if (!pte_present(entry)) {
2578		if (pte_none(entry)) {
2579			if (vma->vm_ops) {
2580				if (likely(vma->vm_ops->fault))
2581					return do_linear_fault(mm, vma, address,
2582						pte, pmd, write_access, entry);
2583			}
2584			return do_anonymous_page(mm, vma, address,
2585						 pte, pmd, write_access);
2586		}
2587		if (pte_file(entry))
2588			return do_nonlinear_fault(mm, vma, address,
2589					pte, pmd, write_access, entry);
2590		return do_swap_page(mm, vma, address,
2591					pte, pmd, write_access, entry);
2592	}
2593
2594	ptl = pte_lockptr(mm, pmd);
2595	spin_lock(ptl);
2596	if (unlikely(!pte_same(*pte, entry)))
2597		goto unlock;
2598	if (write_access) {
2599		if (!pte_write(entry))
2600			return do_wp_page(mm, vma, address,
2601					pte, pmd, ptl, entry);
2602		entry = pte_mkdirty(entry);
2603	}
2604	entry = pte_mkyoung(entry);
2605	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2606		update_mmu_cache(vma, address, entry);
2607	} else {
2608		/*
2609		 * This is needed only for protection faults but the arch code
2610		 * is not yet telling us if this is a protection fault or not.
2611		 * This still avoids useless tlb flushes for .text page faults
2612		 * with threads.
2613		 */
2614		if (write_access)
2615			flush_tlb_page(vma, address);
2616	}
2617unlock:
2618	pte_unmap_unlock(pte, ptl);
2619	return 0;
2620}
2621
2622/*
2623 * By the time we get here, we already hold the mm semaphore
2624 */
2625int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2626		unsigned long address, int write_access)
2627{
2628	pgd_t *pgd;
2629	pud_t *pud;
2630	pmd_t *pmd;
2631	pte_t *pte;
2632
2633	__set_current_state(TASK_RUNNING);
2634
2635	count_vm_event(PGFAULT);
2636
2637	if (unlikely(is_vm_hugetlb_page(vma)))
2638		return hugetlb_fault(mm, vma, address, write_access);
2639
2640	pgd = pgd_offset(mm, address);
2641	pud = pud_alloc(mm, pgd, address);
2642	if (!pud)
2643		return VM_FAULT_OOM;
2644	pmd = pmd_alloc(mm, pud, address);
2645	if (!pmd)
2646		return VM_FAULT_OOM;
2647	pte = pte_alloc_map(mm, pmd, address);
2648	if (!pte)
2649		return VM_FAULT_OOM;
2650
2651	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2652}
2653
2654#ifndef __PAGETABLE_PUD_FOLDED
2655/*
2656 * Allocate page upper directory.
2657 * We've already handled the fast-path in-line.
2658 */
2659int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2660{
2661	pud_t *new = pud_alloc_one(mm, address);
2662	if (!new)
2663		return -ENOMEM;
2664
2665	smp_wmb(); /* See comment in __pte_alloc */
2666
2667	spin_lock(&mm->page_table_lock);
2668	if (pgd_present(*pgd))		/* Another has populated it */
2669		pud_free(mm, new);
2670	else
2671		pgd_populate(mm, pgd, new);
2672	spin_unlock(&mm->page_table_lock);
2673	return 0;
2674}
2675#endif /* __PAGETABLE_PUD_FOLDED */
2676
2677#ifndef __PAGETABLE_PMD_FOLDED
2678/*
2679 * Allocate page middle directory.
2680 * We've already handled the fast-path in-line.
2681 */
2682int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2683{
2684	pmd_t *new = pmd_alloc_one(mm, address);
2685	if (!new)
2686		return -ENOMEM;
2687
2688	smp_wmb(); /* See comment in __pte_alloc */
2689
2690	spin_lock(&mm->page_table_lock);
2691#ifndef __ARCH_HAS_4LEVEL_HACK
2692	if (pud_present(*pud))		/* Another has populated it */
2693		pmd_free(mm, new);
2694	else
2695		pud_populate(mm, pud, new);
2696#else
2697	if (pgd_present(*pud))		/* Another has populated it */
2698		pmd_free(mm, new);
2699	else
2700		pgd_populate(mm, pud, new);
2701#endif /* __ARCH_HAS_4LEVEL_HACK */
2702	spin_unlock(&mm->page_table_lock);
2703	return 0;
2704}
2705#endif /* __PAGETABLE_PMD_FOLDED */
2706
2707int make_pages_present(unsigned long addr, unsigned long end)
2708{
2709	int ret, len, write;
2710	struct vm_area_struct * vma;
2711
2712	vma = find_vma(current->mm, addr);
2713	if (!vma)
2714		return -1;
2715	write = (vma->vm_flags & VM_WRITE) != 0;
2716	BUG_ON(addr >= end);
2717	BUG_ON(end > vma->vm_end);
2718	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2719	ret = get_user_pages(current, current->mm, addr,
2720			len, write, 0, NULL, NULL);
2721	if (ret < 0)
2722		return ret;
2723	return ret == len ? 0 : -1;
2724}
2725
2726#if !defined(__HAVE_ARCH_GATE_AREA)
2727
2728#if defined(AT_SYSINFO_EHDR)
2729static struct vm_area_struct gate_vma;
2730
2731static int __init gate_vma_init(void)
2732{
2733	gate_vma.vm_mm = NULL;
2734	gate_vma.vm_start = FIXADDR_USER_START;
2735	gate_vma.vm_end = FIXADDR_USER_END;
2736	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2737	gate_vma.vm_page_prot = __P101;
2738	/*
2739	 * Make sure the vDSO gets into every core dump.
2740	 * Dumping its contents makes post-mortem fully interpretable later
2741	 * without matching up the same kernel and hardware config to see
2742	 * what PC values meant.
2743	 */
2744	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2745	return 0;
2746}
2747__initcall(gate_vma_init);
2748#endif
2749
2750struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2751{
2752#ifdef AT_SYSINFO_EHDR
2753	return &gate_vma;
2754#else
2755	return NULL;
2756#endif
2757}
2758
2759int in_gate_area_no_task(unsigned long addr)
2760{
2761#ifdef AT_SYSINFO_EHDR
2762	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2763		return 1;
2764#endif
2765	return 0;
2766}
2767
2768#endif	/* __HAVE_ARCH_GATE_AREA */
2769
2770#ifdef CONFIG_HAVE_IOREMAP_PROT
2771static resource_size_t follow_phys(struct vm_area_struct *vma,
2772			unsigned long address, unsigned int flags,
2773			unsigned long *prot)
2774{
2775	pgd_t *pgd;
2776	pud_t *pud;
2777	pmd_t *pmd;
2778	pte_t *ptep, pte;
2779	spinlock_t *ptl;
2780	resource_size_t phys_addr = 0;
2781	struct mm_struct *mm = vma->vm_mm;
2782
2783	VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2784
2785	pgd = pgd_offset(mm, address);
2786	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2787		goto no_page_table;
2788
2789	pud = pud_offset(pgd, address);
2790	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2791		goto no_page_table;
2792
2793	pmd = pmd_offset(pud, address);
2794	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2795		goto no_page_table;
2796
2797	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2798	if (pmd_huge(*pmd))
2799		goto no_page_table;
2800
2801	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2802	if (!ptep)
2803		goto out;
2804
2805	pte = *ptep;
2806	if (!pte_present(pte))
2807		goto unlock;
2808	if ((flags & FOLL_WRITE) && !pte_write(pte))
2809		goto unlock;
2810	phys_addr = pte_pfn(pte);
2811	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2812
2813	*prot = pgprot_val(pte_pgprot(pte));
2814
2815unlock:
2816	pte_unmap_unlock(ptep, ptl);
2817out:
2818	return phys_addr;
2819no_page_table:
2820	return 0;
2821}
2822
2823int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2824			void *buf, int len, int write)
2825{
2826	resource_size_t phys_addr;
2827	unsigned long prot = 0;
2828	void *maddr;
2829	int offset = addr & (PAGE_SIZE-1);
2830
2831	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2832		return -EINVAL;
2833
2834	phys_addr = follow_phys(vma, addr, write, &prot);
2835
2836	if (!phys_addr)
2837		return -EINVAL;
2838
2839	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2840	if (write)
2841		memcpy_toio(maddr + offset, buf, len);
2842	else
2843		memcpy_fromio(buf, maddr + offset, len);
2844	iounmap(maddr);
2845
2846	return len;
2847}
2848#endif
2849
2850/*
2851 * Access another process' address space.
2852 * Source/target buffer must be kernel space,
2853 * Do not walk the page table directly, use get_user_pages
2854 */
2855int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2856{
2857	struct mm_struct *mm;
2858	struct vm_area_struct *vma;
2859	void *old_buf = buf;
2860
2861	mm = get_task_mm(tsk);
2862	if (!mm)
2863		return 0;
2864
2865	down_read(&mm->mmap_sem);
2866	/* ignore errors, just check how much was successfully transferred */
2867	while (len) {
2868		int bytes, ret, offset;
2869		void *maddr;
2870		struct page *page = NULL;
2871
2872		ret = get_user_pages(tsk, mm, addr, 1,
2873				write, 1, &page, &vma);
2874		if (ret <= 0) {
2875			/*
2876			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2877			 * we can access using slightly different code.
2878			 */
2879#ifdef CONFIG_HAVE_IOREMAP_PROT
2880			vma = find_vma(mm, addr);
2881			if (!vma)
2882				break;
2883			if (vma->vm_ops && vma->vm_ops->access)
2884				ret = vma->vm_ops->access(vma, addr, buf,
2885							  len, write);
2886			if (ret <= 0)
2887#endif
2888				break;
2889			bytes = ret;
2890		} else {
2891			bytes = len;
2892			offset = addr & (PAGE_SIZE-1);
2893			if (bytes > PAGE_SIZE-offset)
2894				bytes = PAGE_SIZE-offset;
2895
2896			maddr = kmap(page);
2897			if (write) {
2898				copy_to_user_page(vma, page, addr,
2899						  maddr + offset, buf, bytes);
2900				set_page_dirty_lock(page);
2901			} else {
2902				copy_from_user_page(vma, page, addr,
2903						    buf, maddr + offset, bytes);
2904			}
2905			kunmap(page);
2906			page_cache_release(page);
2907		}
2908		len -= bytes;
2909		buf += bytes;
2910		addr += bytes;
2911	}
2912	up_read(&mm->mmap_sem);
2913	mmput(mm);
2914
2915	return buf - old_buf;
2916}
2917
2918/*
2919 * Print the name of a VMA.
2920 */
2921void print_vma_addr(char *prefix, unsigned long ip)
2922{
2923	struct mm_struct *mm = current->mm;
2924	struct vm_area_struct *vma;
2925
2926	/*
2927	 * Do not print if we are in atomic
2928	 * contexts (in exception stacks, etc.):
2929	 */
2930	if (preempt_count())
2931		return;
2932
2933	down_read(&mm->mmap_sem);
2934	vma = find_vma(mm, ip);
2935	if (vma && vma->vm_file) {
2936		struct file *f = vma->vm_file;
2937		char *buf = (char *)__get_free_page(GFP_KERNEL);
2938		if (buf) {
2939			char *p, *s;
2940
2941			p = d_path(&f->f_path, buf, PAGE_SIZE);
2942			if (IS_ERR(p))
2943				p = "?";
2944			s = strrchr(p, '/');
2945			if (s)
2946				p = s+1;
2947			printk("%s%s[%lx+%lx]", prefix, p,
2948					vma->vm_start,
2949					vma->vm_end - vma->vm_start);
2950			free_page((unsigned long)buf);
2951		}
2952	}
2953	up_read(&current->mm->mmap_sem);
2954}
2955