memory.c revision a6f36be32622730710b2fadacb6e2649defa4371
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53
54#include <asm/pgalloc.h>
55#include <asm/uaccess.h>
56#include <asm/tlb.h>
57#include <asm/tlbflush.h>
58#include <asm/pgtable.h>
59
60#include <linux/swapops.h>
61#include <linux/elf.h>
62
63#ifndef CONFIG_NEED_MULTIPLE_NODES
64/* use the per-pgdat data instead for discontigmem - mbligh */
65unsigned long max_mapnr;
66struct page *mem_map;
67
68EXPORT_SYMBOL(max_mapnr);
69EXPORT_SYMBOL(mem_map);
70#endif
71
72unsigned long num_physpages;
73/*
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
79 */
80void * high_memory;
81unsigned long vmalloc_earlyreserve;
82
83EXPORT_SYMBOL(num_physpages);
84EXPORT_SYMBOL(high_memory);
85EXPORT_SYMBOL(vmalloc_earlyreserve);
86
87int randomize_va_space __read_mostly = 1;
88
89static int __init disable_randmaps(char *s)
90{
91	randomize_va_space = 0;
92	return 1;
93}
94__setup("norandmaps", disable_randmaps);
95
96
97/*
98 * If a p?d_bad entry is found while walking page tables, report
99 * the error, before resetting entry to p?d_none.  Usually (but
100 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 */
102
103void pgd_clear_bad(pgd_t *pgd)
104{
105	pgd_ERROR(*pgd);
106	pgd_clear(pgd);
107}
108
109void pud_clear_bad(pud_t *pud)
110{
111	pud_ERROR(*pud);
112	pud_clear(pud);
113}
114
115void pmd_clear_bad(pmd_t *pmd)
116{
117	pmd_ERROR(*pmd);
118	pmd_clear(pmd);
119}
120
121/*
122 * Note: this doesn't free the actual pages themselves. That
123 * has been handled earlier when unmapping all the memory regions.
124 */
125static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
126{
127	struct page *page = pmd_page(*pmd);
128	pmd_clear(pmd);
129	pte_lock_deinit(page);
130	pte_free_tlb(tlb, page);
131	dec_zone_page_state(page, NR_PAGETABLE);
132	tlb->mm->nr_ptes--;
133}
134
135static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
136				unsigned long addr, unsigned long end,
137				unsigned long floor, unsigned long ceiling)
138{
139	pmd_t *pmd;
140	unsigned long next;
141	unsigned long start;
142
143	start = addr;
144	pmd = pmd_offset(pud, addr);
145	do {
146		next = pmd_addr_end(addr, end);
147		if (pmd_none_or_clear_bad(pmd))
148			continue;
149		free_pte_range(tlb, pmd);
150	} while (pmd++, addr = next, addr != end);
151
152	start &= PUD_MASK;
153	if (start < floor)
154		return;
155	if (ceiling) {
156		ceiling &= PUD_MASK;
157		if (!ceiling)
158			return;
159	}
160	if (end - 1 > ceiling - 1)
161		return;
162
163	pmd = pmd_offset(pud, start);
164	pud_clear(pud);
165	pmd_free_tlb(tlb, pmd);
166}
167
168static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
169				unsigned long addr, unsigned long end,
170				unsigned long floor, unsigned long ceiling)
171{
172	pud_t *pud;
173	unsigned long next;
174	unsigned long start;
175
176	start = addr;
177	pud = pud_offset(pgd, addr);
178	do {
179		next = pud_addr_end(addr, end);
180		if (pud_none_or_clear_bad(pud))
181			continue;
182		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
183	} while (pud++, addr = next, addr != end);
184
185	start &= PGDIR_MASK;
186	if (start < floor)
187		return;
188	if (ceiling) {
189		ceiling &= PGDIR_MASK;
190		if (!ceiling)
191			return;
192	}
193	if (end - 1 > ceiling - 1)
194		return;
195
196	pud = pud_offset(pgd, start);
197	pgd_clear(pgd);
198	pud_free_tlb(tlb, pud);
199}
200
201/*
202 * This function frees user-level page tables of a process.
203 *
204 * Must be called with pagetable lock held.
205 */
206void free_pgd_range(struct mmu_gather **tlb,
207			unsigned long addr, unsigned long end,
208			unsigned long floor, unsigned long ceiling)
209{
210	pgd_t *pgd;
211	unsigned long next;
212	unsigned long start;
213
214	/*
215	 * The next few lines have given us lots of grief...
216	 *
217	 * Why are we testing PMD* at this top level?  Because often
218	 * there will be no work to do at all, and we'd prefer not to
219	 * go all the way down to the bottom just to discover that.
220	 *
221	 * Why all these "- 1"s?  Because 0 represents both the bottom
222	 * of the address space and the top of it (using -1 for the
223	 * top wouldn't help much: the masks would do the wrong thing).
224	 * The rule is that addr 0 and floor 0 refer to the bottom of
225	 * the address space, but end 0 and ceiling 0 refer to the top
226	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
227	 * that end 0 case should be mythical).
228	 *
229	 * Wherever addr is brought up or ceiling brought down, we must
230	 * be careful to reject "the opposite 0" before it confuses the
231	 * subsequent tests.  But what about where end is brought down
232	 * by PMD_SIZE below? no, end can't go down to 0 there.
233	 *
234	 * Whereas we round start (addr) and ceiling down, by different
235	 * masks at different levels, in order to test whether a table
236	 * now has no other vmas using it, so can be freed, we don't
237	 * bother to round floor or end up - the tests don't need that.
238	 */
239
240	addr &= PMD_MASK;
241	if (addr < floor) {
242		addr += PMD_SIZE;
243		if (!addr)
244			return;
245	}
246	if (ceiling) {
247		ceiling &= PMD_MASK;
248		if (!ceiling)
249			return;
250	}
251	if (end - 1 > ceiling - 1)
252		end -= PMD_SIZE;
253	if (addr > end - 1)
254		return;
255
256	start = addr;
257	pgd = pgd_offset((*tlb)->mm, addr);
258	do {
259		next = pgd_addr_end(addr, end);
260		if (pgd_none_or_clear_bad(pgd))
261			continue;
262		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
263	} while (pgd++, addr = next, addr != end);
264
265	if (!(*tlb)->fullmm)
266		flush_tlb_pgtables((*tlb)->mm, start, end);
267}
268
269void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
270		unsigned long floor, unsigned long ceiling)
271{
272	while (vma) {
273		struct vm_area_struct *next = vma->vm_next;
274		unsigned long addr = vma->vm_start;
275
276		/*
277		 * Hide vma from rmap and vmtruncate before freeing pgtables
278		 */
279		anon_vma_unlink(vma);
280		unlink_file_vma(vma);
281
282		if (is_vm_hugetlb_page(vma)) {
283			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
284				floor, next? next->vm_start: ceiling);
285		} else {
286			/*
287			 * Optimization: gather nearby vmas into one call down
288			 */
289			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
290			       && !is_vm_hugetlb_page(next)) {
291				vma = next;
292				next = vma->vm_next;
293				anon_vma_unlink(vma);
294				unlink_file_vma(vma);
295			}
296			free_pgd_range(tlb, addr, vma->vm_end,
297				floor, next? next->vm_start: ceiling);
298		}
299		vma = next;
300	}
301}
302
303int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
304{
305	struct page *new = pte_alloc_one(mm, address);
306	if (!new)
307		return -ENOMEM;
308
309	pte_lock_init(new);
310	spin_lock(&mm->page_table_lock);
311	if (pmd_present(*pmd)) {	/* Another has populated it */
312		pte_lock_deinit(new);
313		pte_free(new);
314	} else {
315		mm->nr_ptes++;
316		inc_zone_page_state(new, NR_PAGETABLE);
317		pmd_populate(mm, pmd, new);
318	}
319	spin_unlock(&mm->page_table_lock);
320	return 0;
321}
322
323int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
324{
325	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
326	if (!new)
327		return -ENOMEM;
328
329	spin_lock(&init_mm.page_table_lock);
330	if (pmd_present(*pmd))		/* Another has populated it */
331		pte_free_kernel(new);
332	else
333		pmd_populate_kernel(&init_mm, pmd, new);
334	spin_unlock(&init_mm.page_table_lock);
335	return 0;
336}
337
338static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
339{
340	if (file_rss)
341		add_mm_counter(mm, file_rss, file_rss);
342	if (anon_rss)
343		add_mm_counter(mm, anon_rss, anon_rss);
344}
345
346/*
347 * This function is called to print an error when a bad pte
348 * is found. For example, we might have a PFN-mapped pte in
349 * a region that doesn't allow it.
350 *
351 * The calling function must still handle the error.
352 */
353void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
354{
355	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
356			"vm_flags = %lx, vaddr = %lx\n",
357		(long long)pte_val(pte),
358		(vma->vm_mm == current->mm ? current->comm : "???"),
359		vma->vm_flags, vaddr);
360	dump_stack();
361}
362
363static inline int is_cow_mapping(unsigned int flags)
364{
365	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
366}
367
368/*
369 * This function gets the "struct page" associated with a pte.
370 *
371 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
372 * will have each page table entry just pointing to a raw page frame
373 * number, and as far as the VM layer is concerned, those do not have
374 * pages associated with them - even if the PFN might point to memory
375 * that otherwise is perfectly fine and has a "struct page".
376 *
377 * The way we recognize those mappings is through the rules set up
378 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
379 * and the vm_pgoff will point to the first PFN mapped: thus every
380 * page that is a raw mapping will always honor the rule
381 *
382 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
383 *
384 * and if that isn't true, the page has been COW'ed (in which case it
385 * _does_ have a "struct page" associated with it even if it is in a
386 * VM_PFNMAP range).
387 */
388struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
389{
390	unsigned long pfn = pte_pfn(pte);
391
392	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
393		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
394		if (pfn == vma->vm_pgoff + off)
395			return NULL;
396		if (!is_cow_mapping(vma->vm_flags))
397			return NULL;
398	}
399
400	/*
401	 * Add some anal sanity checks for now. Eventually,
402	 * we should just do "return pfn_to_page(pfn)", but
403	 * in the meantime we check that we get a valid pfn,
404	 * and that the resulting page looks ok.
405	 */
406	if (unlikely(!pfn_valid(pfn))) {
407		print_bad_pte(vma, pte, addr);
408		return NULL;
409	}
410
411	/*
412	 * NOTE! We still have PageReserved() pages in the page
413	 * tables.
414	 *
415	 * The PAGE_ZERO() pages and various VDSO mappings can
416	 * cause them to exist.
417	 */
418	return pfn_to_page(pfn);
419}
420
421/*
422 * copy one vm_area from one task to the other. Assumes the page tables
423 * already present in the new task to be cleared in the whole range
424 * covered by this vma.
425 */
426
427static inline void
428copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
429		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
430		unsigned long addr, int *rss)
431{
432	unsigned long vm_flags = vma->vm_flags;
433	pte_t pte = *src_pte;
434	struct page *page;
435
436	/* pte contains position in swap or file, so copy. */
437	if (unlikely(!pte_present(pte))) {
438		if (!pte_file(pte)) {
439			swp_entry_t entry = pte_to_swp_entry(pte);
440
441			swap_duplicate(entry);
442			/* make sure dst_mm is on swapoff's mmlist. */
443			if (unlikely(list_empty(&dst_mm->mmlist))) {
444				spin_lock(&mmlist_lock);
445				if (list_empty(&dst_mm->mmlist))
446					list_add(&dst_mm->mmlist,
447						 &src_mm->mmlist);
448				spin_unlock(&mmlist_lock);
449			}
450			if (is_write_migration_entry(entry) &&
451					is_cow_mapping(vm_flags)) {
452				/*
453				 * COW mappings require pages in both parent
454				 * and child to be set to read.
455				 */
456				make_migration_entry_read(&entry);
457				pte = swp_entry_to_pte(entry);
458				set_pte_at(src_mm, addr, src_pte, pte);
459			}
460		}
461		goto out_set_pte;
462	}
463
464	/*
465	 * If it's a COW mapping, write protect it both
466	 * in the parent and the child
467	 */
468	if (is_cow_mapping(vm_flags)) {
469		ptep_set_wrprotect(src_mm, addr, src_pte);
470		pte = pte_wrprotect(pte);
471	}
472
473	/*
474	 * If it's a shared mapping, mark it clean in
475	 * the child
476	 */
477	if (vm_flags & VM_SHARED)
478		pte = pte_mkclean(pte);
479	pte = pte_mkold(pte);
480
481	page = vm_normal_page(vma, addr, pte);
482	if (page) {
483		get_page(page);
484		page_dup_rmap(page);
485		rss[!!PageAnon(page)]++;
486	}
487
488out_set_pte:
489	set_pte_at(dst_mm, addr, dst_pte, pte);
490}
491
492static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
494		unsigned long addr, unsigned long end)
495{
496	pte_t *src_pte, *dst_pte;
497	spinlock_t *src_ptl, *dst_ptl;
498	int progress = 0;
499	int rss[2];
500
501again:
502	rss[1] = rss[0] = 0;
503	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
504	if (!dst_pte)
505		return -ENOMEM;
506	src_pte = pte_offset_map_nested(src_pmd, addr);
507	src_ptl = pte_lockptr(src_mm, src_pmd);
508	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
509	arch_enter_lazy_mmu_mode();
510
511	do {
512		/*
513		 * We are holding two locks at this point - either of them
514		 * could generate latencies in another task on another CPU.
515		 */
516		if (progress >= 32) {
517			progress = 0;
518			if (need_resched() ||
519			    need_lockbreak(src_ptl) ||
520			    need_lockbreak(dst_ptl))
521				break;
522		}
523		if (pte_none(*src_pte)) {
524			progress++;
525			continue;
526		}
527		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
528		progress += 8;
529	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
530
531	arch_leave_lazy_mmu_mode();
532	spin_unlock(src_ptl);
533	pte_unmap_nested(src_pte - 1);
534	add_mm_rss(dst_mm, rss[0], rss[1]);
535	pte_unmap_unlock(dst_pte - 1, dst_ptl);
536	cond_resched();
537	if (addr != end)
538		goto again;
539	return 0;
540}
541
542static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
544		unsigned long addr, unsigned long end)
545{
546	pmd_t *src_pmd, *dst_pmd;
547	unsigned long next;
548
549	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
550	if (!dst_pmd)
551		return -ENOMEM;
552	src_pmd = pmd_offset(src_pud, addr);
553	do {
554		next = pmd_addr_end(addr, end);
555		if (pmd_none_or_clear_bad(src_pmd))
556			continue;
557		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
558						vma, addr, next))
559			return -ENOMEM;
560	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
561	return 0;
562}
563
564static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
565		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
566		unsigned long addr, unsigned long end)
567{
568	pud_t *src_pud, *dst_pud;
569	unsigned long next;
570
571	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
572	if (!dst_pud)
573		return -ENOMEM;
574	src_pud = pud_offset(src_pgd, addr);
575	do {
576		next = pud_addr_end(addr, end);
577		if (pud_none_or_clear_bad(src_pud))
578			continue;
579		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
580						vma, addr, next))
581			return -ENOMEM;
582	} while (dst_pud++, src_pud++, addr = next, addr != end);
583	return 0;
584}
585
586int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
587		struct vm_area_struct *vma)
588{
589	pgd_t *src_pgd, *dst_pgd;
590	unsigned long next;
591	unsigned long addr = vma->vm_start;
592	unsigned long end = vma->vm_end;
593
594	/*
595	 * Don't copy ptes where a page fault will fill them correctly.
596	 * Fork becomes much lighter when there are big shared or private
597	 * readonly mappings. The tradeoff is that copy_page_range is more
598	 * efficient than faulting.
599	 */
600	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
601		if (!vma->anon_vma)
602			return 0;
603	}
604
605	if (is_vm_hugetlb_page(vma))
606		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
607
608	dst_pgd = pgd_offset(dst_mm, addr);
609	src_pgd = pgd_offset(src_mm, addr);
610	do {
611		next = pgd_addr_end(addr, end);
612		if (pgd_none_or_clear_bad(src_pgd))
613			continue;
614		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
615						vma, addr, next))
616			return -ENOMEM;
617	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
618	return 0;
619}
620
621static unsigned long zap_pte_range(struct mmu_gather *tlb,
622				struct vm_area_struct *vma, pmd_t *pmd,
623				unsigned long addr, unsigned long end,
624				long *zap_work, struct zap_details *details)
625{
626	struct mm_struct *mm = tlb->mm;
627	pte_t *pte;
628	spinlock_t *ptl;
629	int file_rss = 0;
630	int anon_rss = 0;
631
632	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
633	arch_enter_lazy_mmu_mode();
634	do {
635		pte_t ptent = *pte;
636		if (pte_none(ptent)) {
637			(*zap_work)--;
638			continue;
639		}
640
641		(*zap_work) -= PAGE_SIZE;
642
643		if (pte_present(ptent)) {
644			struct page *page;
645
646			page = vm_normal_page(vma, addr, ptent);
647			if (unlikely(details) && page) {
648				/*
649				 * unmap_shared_mapping_pages() wants to
650				 * invalidate cache without truncating:
651				 * unmap shared but keep private pages.
652				 */
653				if (details->check_mapping &&
654				    details->check_mapping != page->mapping)
655					continue;
656				/*
657				 * Each page->index must be checked when
658				 * invalidating or truncating nonlinear.
659				 */
660				if (details->nonlinear_vma &&
661				    (page->index < details->first_index ||
662				     page->index > details->last_index))
663					continue;
664			}
665			ptent = ptep_get_and_clear_full(mm, addr, pte,
666							tlb->fullmm);
667			tlb_remove_tlb_entry(tlb, pte, addr);
668			if (unlikely(!page))
669				continue;
670			if (unlikely(details) && details->nonlinear_vma
671			    && linear_page_index(details->nonlinear_vma,
672						addr) != page->index)
673				set_pte_at(mm, addr, pte,
674					   pgoff_to_pte(page->index));
675			if (PageAnon(page))
676				anon_rss--;
677			else {
678				if (pte_dirty(ptent))
679					set_page_dirty(page);
680				if (pte_young(ptent))
681					mark_page_accessed(page);
682				file_rss--;
683			}
684			page_remove_rmap(page, vma);
685			tlb_remove_page(tlb, page);
686			continue;
687		}
688		/*
689		 * If details->check_mapping, we leave swap entries;
690		 * if details->nonlinear_vma, we leave file entries.
691		 */
692		if (unlikely(details))
693			continue;
694		if (!pte_file(ptent))
695			free_swap_and_cache(pte_to_swp_entry(ptent));
696		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
697	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
698
699	add_mm_rss(mm, file_rss, anon_rss);
700	arch_leave_lazy_mmu_mode();
701	pte_unmap_unlock(pte - 1, ptl);
702
703	return addr;
704}
705
706static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
707				struct vm_area_struct *vma, pud_t *pud,
708				unsigned long addr, unsigned long end,
709				long *zap_work, struct zap_details *details)
710{
711	pmd_t *pmd;
712	unsigned long next;
713
714	pmd = pmd_offset(pud, addr);
715	do {
716		next = pmd_addr_end(addr, end);
717		if (pmd_none_or_clear_bad(pmd)) {
718			(*zap_work)--;
719			continue;
720		}
721		next = zap_pte_range(tlb, vma, pmd, addr, next,
722						zap_work, details);
723	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
724
725	return addr;
726}
727
728static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
729				struct vm_area_struct *vma, pgd_t *pgd,
730				unsigned long addr, unsigned long end,
731				long *zap_work, struct zap_details *details)
732{
733	pud_t *pud;
734	unsigned long next;
735
736	pud = pud_offset(pgd, addr);
737	do {
738		next = pud_addr_end(addr, end);
739		if (pud_none_or_clear_bad(pud)) {
740			(*zap_work)--;
741			continue;
742		}
743		next = zap_pmd_range(tlb, vma, pud, addr, next,
744						zap_work, details);
745	} while (pud++, addr = next, (addr != end && *zap_work > 0));
746
747	return addr;
748}
749
750static unsigned long unmap_page_range(struct mmu_gather *tlb,
751				struct vm_area_struct *vma,
752				unsigned long addr, unsigned long end,
753				long *zap_work, struct zap_details *details)
754{
755	pgd_t *pgd;
756	unsigned long next;
757
758	if (details && !details->check_mapping && !details->nonlinear_vma)
759		details = NULL;
760
761	BUG_ON(addr >= end);
762	tlb_start_vma(tlb, vma);
763	pgd = pgd_offset(vma->vm_mm, addr);
764	do {
765		next = pgd_addr_end(addr, end);
766		if (pgd_none_or_clear_bad(pgd)) {
767			(*zap_work)--;
768			continue;
769		}
770		next = zap_pud_range(tlb, vma, pgd, addr, next,
771						zap_work, details);
772	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
773	tlb_end_vma(tlb, vma);
774
775	return addr;
776}
777
778#ifdef CONFIG_PREEMPT
779# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
780#else
781/* No preempt: go for improved straight-line efficiency */
782# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
783#endif
784
785/**
786 * unmap_vmas - unmap a range of memory covered by a list of vma's
787 * @tlbp: address of the caller's struct mmu_gather
788 * @vma: the starting vma
789 * @start_addr: virtual address at which to start unmapping
790 * @end_addr: virtual address at which to end unmapping
791 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
792 * @details: details of nonlinear truncation or shared cache invalidation
793 *
794 * Returns the end address of the unmapping (restart addr if interrupted).
795 *
796 * Unmap all pages in the vma list.
797 *
798 * We aim to not hold locks for too long (for scheduling latency reasons).
799 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
800 * return the ending mmu_gather to the caller.
801 *
802 * Only addresses between `start' and `end' will be unmapped.
803 *
804 * The VMA list must be sorted in ascending virtual address order.
805 *
806 * unmap_vmas() assumes that the caller will flush the whole unmapped address
807 * range after unmap_vmas() returns.  So the only responsibility here is to
808 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
809 * drops the lock and schedules.
810 */
811unsigned long unmap_vmas(struct mmu_gather **tlbp,
812		struct vm_area_struct *vma, unsigned long start_addr,
813		unsigned long end_addr, unsigned long *nr_accounted,
814		struct zap_details *details)
815{
816	long zap_work = ZAP_BLOCK_SIZE;
817	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
818	int tlb_start_valid = 0;
819	unsigned long start = start_addr;
820	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
821	int fullmm = (*tlbp)->fullmm;
822
823	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
824		unsigned long end;
825
826		start = max(vma->vm_start, start_addr);
827		if (start >= vma->vm_end)
828			continue;
829		end = min(vma->vm_end, end_addr);
830		if (end <= vma->vm_start)
831			continue;
832
833		if (vma->vm_flags & VM_ACCOUNT)
834			*nr_accounted += (end - start) >> PAGE_SHIFT;
835
836		while (start != end) {
837			if (!tlb_start_valid) {
838				tlb_start = start;
839				tlb_start_valid = 1;
840			}
841
842			if (unlikely(is_vm_hugetlb_page(vma))) {
843				unmap_hugepage_range(vma, start, end);
844				zap_work -= (end - start) /
845						(HPAGE_SIZE / PAGE_SIZE);
846				start = end;
847			} else
848				start = unmap_page_range(*tlbp, vma,
849						start, end, &zap_work, details);
850
851			if (zap_work > 0) {
852				BUG_ON(start != end);
853				break;
854			}
855
856			tlb_finish_mmu(*tlbp, tlb_start, start);
857
858			if (need_resched() ||
859				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
860				if (i_mmap_lock) {
861					*tlbp = NULL;
862					goto out;
863				}
864				cond_resched();
865			}
866
867			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
868			tlb_start_valid = 0;
869			zap_work = ZAP_BLOCK_SIZE;
870		}
871	}
872out:
873	return start;	/* which is now the end (or restart) address */
874}
875
876/**
877 * zap_page_range - remove user pages in a given range
878 * @vma: vm_area_struct holding the applicable pages
879 * @address: starting address of pages to zap
880 * @size: number of bytes to zap
881 * @details: details of nonlinear truncation or shared cache invalidation
882 */
883unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
884		unsigned long size, struct zap_details *details)
885{
886	struct mm_struct *mm = vma->vm_mm;
887	struct mmu_gather *tlb;
888	unsigned long end = address + size;
889	unsigned long nr_accounted = 0;
890
891	lru_add_drain();
892	tlb = tlb_gather_mmu(mm, 0);
893	update_hiwater_rss(mm);
894	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
895	if (tlb)
896		tlb_finish_mmu(tlb, address, end);
897	return end;
898}
899
900/*
901 * Do a quick page-table lookup for a single page.
902 */
903struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904			unsigned int flags)
905{
906	pgd_t *pgd;
907	pud_t *pud;
908	pmd_t *pmd;
909	pte_t *ptep, pte;
910	spinlock_t *ptl;
911	struct page *page;
912	struct mm_struct *mm = vma->vm_mm;
913
914	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
915	if (!IS_ERR(page)) {
916		BUG_ON(flags & FOLL_GET);
917		goto out;
918	}
919
920	page = NULL;
921	pgd = pgd_offset(mm, address);
922	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
923		goto no_page_table;
924
925	pud = pud_offset(pgd, address);
926	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
927		goto no_page_table;
928
929	pmd = pmd_offset(pud, address);
930	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
931		goto no_page_table;
932
933	if (pmd_huge(*pmd)) {
934		BUG_ON(flags & FOLL_GET);
935		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
936		goto out;
937	}
938
939	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
940	if (!ptep)
941		goto out;
942
943	pte = *ptep;
944	if (!pte_present(pte))
945		goto unlock;
946	if ((flags & FOLL_WRITE) && !pte_write(pte))
947		goto unlock;
948	page = vm_normal_page(vma, address, pte);
949	if (unlikely(!page))
950		goto unlock;
951
952	if (flags & FOLL_GET)
953		get_page(page);
954	if (flags & FOLL_TOUCH) {
955		if ((flags & FOLL_WRITE) &&
956		    !pte_dirty(pte) && !PageDirty(page))
957			set_page_dirty(page);
958		mark_page_accessed(page);
959	}
960unlock:
961	pte_unmap_unlock(ptep, ptl);
962out:
963	return page;
964
965no_page_table:
966	/*
967	 * When core dumping an enormous anonymous area that nobody
968	 * has touched so far, we don't want to allocate page tables.
969	 */
970	if (flags & FOLL_ANON) {
971		page = ZERO_PAGE(address);
972		if (flags & FOLL_GET)
973			get_page(page);
974		BUG_ON(flags & FOLL_WRITE);
975	}
976	return page;
977}
978
979int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
980		unsigned long start, int len, int write, int force,
981		struct page **pages, struct vm_area_struct **vmas)
982{
983	int i;
984	unsigned int vm_flags;
985
986	/*
987	 * Require read or write permissions.
988	 * If 'force' is set, we only require the "MAY" flags.
989	 */
990	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
991	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
992	i = 0;
993
994	do {
995		struct vm_area_struct *vma;
996		unsigned int foll_flags;
997
998		vma = find_extend_vma(mm, start);
999		if (!vma && in_gate_area(tsk, start)) {
1000			unsigned long pg = start & PAGE_MASK;
1001			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1002			pgd_t *pgd;
1003			pud_t *pud;
1004			pmd_t *pmd;
1005			pte_t *pte;
1006			if (write) /* user gate pages are read-only */
1007				return i ? : -EFAULT;
1008			if (pg > TASK_SIZE)
1009				pgd = pgd_offset_k(pg);
1010			else
1011				pgd = pgd_offset_gate(mm, pg);
1012			BUG_ON(pgd_none(*pgd));
1013			pud = pud_offset(pgd, pg);
1014			BUG_ON(pud_none(*pud));
1015			pmd = pmd_offset(pud, pg);
1016			if (pmd_none(*pmd))
1017				return i ? : -EFAULT;
1018			pte = pte_offset_map(pmd, pg);
1019			if (pte_none(*pte)) {
1020				pte_unmap(pte);
1021				return i ? : -EFAULT;
1022			}
1023			if (pages) {
1024				struct page *page = vm_normal_page(gate_vma, start, *pte);
1025				pages[i] = page;
1026				if (page)
1027					get_page(page);
1028			}
1029			pte_unmap(pte);
1030			if (vmas)
1031				vmas[i] = gate_vma;
1032			i++;
1033			start += PAGE_SIZE;
1034			len--;
1035			continue;
1036		}
1037
1038		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1039				|| !(vm_flags & vma->vm_flags))
1040			return i ? : -EFAULT;
1041
1042		if (is_vm_hugetlb_page(vma)) {
1043			i = follow_hugetlb_page(mm, vma, pages, vmas,
1044						&start, &len, i);
1045			continue;
1046		}
1047
1048		foll_flags = FOLL_TOUCH;
1049		if (pages)
1050			foll_flags |= FOLL_GET;
1051		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1052		    (!vma->vm_ops || !vma->vm_ops->nopage))
1053			foll_flags |= FOLL_ANON;
1054
1055		do {
1056			struct page *page;
1057
1058			if (write)
1059				foll_flags |= FOLL_WRITE;
1060
1061			cond_resched();
1062			while (!(page = follow_page(vma, start, foll_flags))) {
1063				int ret;
1064				ret = __handle_mm_fault(mm, vma, start,
1065						foll_flags & FOLL_WRITE);
1066				/*
1067				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1068				 * broken COW when necessary, even if maybe_mkwrite
1069				 * decided not to set pte_write. We can thus safely do
1070				 * subsequent page lookups as if they were reads.
1071				 */
1072				if (ret & VM_FAULT_WRITE)
1073					foll_flags &= ~FOLL_WRITE;
1074
1075				switch (ret & ~VM_FAULT_WRITE) {
1076				case VM_FAULT_MINOR:
1077					tsk->min_flt++;
1078					break;
1079				case VM_FAULT_MAJOR:
1080					tsk->maj_flt++;
1081					break;
1082				case VM_FAULT_SIGBUS:
1083					return i ? i : -EFAULT;
1084				case VM_FAULT_OOM:
1085					return i ? i : -ENOMEM;
1086				default:
1087					BUG();
1088				}
1089				cond_resched();
1090			}
1091			if (pages) {
1092				pages[i] = page;
1093
1094				flush_anon_page(vma, page, start);
1095				flush_dcache_page(page);
1096			}
1097			if (vmas)
1098				vmas[i] = vma;
1099			i++;
1100			start += PAGE_SIZE;
1101			len--;
1102		} while (len && start < vma->vm_end);
1103	} while (len);
1104	return i;
1105}
1106EXPORT_SYMBOL(get_user_pages);
1107
1108static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1109			unsigned long addr, unsigned long end, pgprot_t prot)
1110{
1111	pte_t *pte;
1112	spinlock_t *ptl;
1113	int err = 0;
1114
1115	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1116	if (!pte)
1117		return -EAGAIN;
1118	arch_enter_lazy_mmu_mode();
1119	do {
1120		struct page *page = ZERO_PAGE(addr);
1121		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1122
1123		if (unlikely(!pte_none(*pte))) {
1124			err = -EEXIST;
1125			pte++;
1126			break;
1127		}
1128		page_cache_get(page);
1129		page_add_file_rmap(page);
1130		inc_mm_counter(mm, file_rss);
1131		set_pte_at(mm, addr, pte, zero_pte);
1132	} while (pte++, addr += PAGE_SIZE, addr != end);
1133	arch_leave_lazy_mmu_mode();
1134	pte_unmap_unlock(pte - 1, ptl);
1135	return err;
1136}
1137
1138static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1139			unsigned long addr, unsigned long end, pgprot_t prot)
1140{
1141	pmd_t *pmd;
1142	unsigned long next;
1143	int err;
1144
1145	pmd = pmd_alloc(mm, pud, addr);
1146	if (!pmd)
1147		return -EAGAIN;
1148	do {
1149		next = pmd_addr_end(addr, end);
1150		err = zeromap_pte_range(mm, pmd, addr, next, prot);
1151		if (err)
1152			break;
1153	} while (pmd++, addr = next, addr != end);
1154	return err;
1155}
1156
1157static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1158			unsigned long addr, unsigned long end, pgprot_t prot)
1159{
1160	pud_t *pud;
1161	unsigned long next;
1162	int err;
1163
1164	pud = pud_alloc(mm, pgd, addr);
1165	if (!pud)
1166		return -EAGAIN;
1167	do {
1168		next = pud_addr_end(addr, end);
1169		err = zeromap_pmd_range(mm, pud, addr, next, prot);
1170		if (err)
1171			break;
1172	} while (pud++, addr = next, addr != end);
1173	return err;
1174}
1175
1176int zeromap_page_range(struct vm_area_struct *vma,
1177			unsigned long addr, unsigned long size, pgprot_t prot)
1178{
1179	pgd_t *pgd;
1180	unsigned long next;
1181	unsigned long end = addr + size;
1182	struct mm_struct *mm = vma->vm_mm;
1183	int err;
1184
1185	BUG_ON(addr >= end);
1186	pgd = pgd_offset(mm, addr);
1187	flush_cache_range(vma, addr, end);
1188	do {
1189		next = pgd_addr_end(addr, end);
1190		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1191		if (err)
1192			break;
1193	} while (pgd++, addr = next, addr != end);
1194	return err;
1195}
1196
1197pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1198{
1199	pgd_t * pgd = pgd_offset(mm, addr);
1200	pud_t * pud = pud_alloc(mm, pgd, addr);
1201	if (pud) {
1202		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1203		if (pmd)
1204			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1205	}
1206	return NULL;
1207}
1208
1209/*
1210 * This is the old fallback for page remapping.
1211 *
1212 * For historical reasons, it only allows reserved pages. Only
1213 * old drivers should use this, and they needed to mark their
1214 * pages reserved for the old functions anyway.
1215 */
1216static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1217{
1218	int retval;
1219	pte_t *pte;
1220	spinlock_t *ptl;
1221
1222	retval = -EINVAL;
1223	if (PageAnon(page))
1224		goto out;
1225	retval = -ENOMEM;
1226	flush_dcache_page(page);
1227	pte = get_locked_pte(mm, addr, &ptl);
1228	if (!pte)
1229		goto out;
1230	retval = -EBUSY;
1231	if (!pte_none(*pte))
1232		goto out_unlock;
1233
1234	/* Ok, finally just insert the thing.. */
1235	get_page(page);
1236	inc_mm_counter(mm, file_rss);
1237	page_add_file_rmap(page);
1238	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1239
1240	retval = 0;
1241out_unlock:
1242	pte_unmap_unlock(pte, ptl);
1243out:
1244	return retval;
1245}
1246
1247/**
1248 * vm_insert_page - insert single page into user vma
1249 * @vma: user vma to map to
1250 * @addr: target user address of this page
1251 * @page: source kernel page
1252 *
1253 * This allows drivers to insert individual pages they've allocated
1254 * into a user vma.
1255 *
1256 * The page has to be a nice clean _individual_ kernel allocation.
1257 * If you allocate a compound page, you need to have marked it as
1258 * such (__GFP_COMP), or manually just split the page up yourself
1259 * (see split_page()).
1260 *
1261 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1262 * took an arbitrary page protection parameter. This doesn't allow
1263 * that. Your vma protection will have to be set up correctly, which
1264 * means that if you want a shared writable mapping, you'd better
1265 * ask for a shared writable mapping!
1266 *
1267 * The page does not need to be reserved.
1268 */
1269int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1270{
1271	if (addr < vma->vm_start || addr >= vma->vm_end)
1272		return -EFAULT;
1273	if (!page_count(page))
1274		return -EINVAL;
1275	vma->vm_flags |= VM_INSERTPAGE;
1276	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1277}
1278EXPORT_SYMBOL(vm_insert_page);
1279
1280/*
1281 * maps a range of physical memory into the requested pages. the old
1282 * mappings are removed. any references to nonexistent pages results
1283 * in null mappings (currently treated as "copy-on-access")
1284 */
1285static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1286			unsigned long addr, unsigned long end,
1287			unsigned long pfn, pgprot_t prot)
1288{
1289	pte_t *pte;
1290	spinlock_t *ptl;
1291
1292	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1293	if (!pte)
1294		return -ENOMEM;
1295	arch_enter_lazy_mmu_mode();
1296	do {
1297		BUG_ON(!pte_none(*pte));
1298		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1299		pfn++;
1300	} while (pte++, addr += PAGE_SIZE, addr != end);
1301	arch_leave_lazy_mmu_mode();
1302	pte_unmap_unlock(pte - 1, ptl);
1303	return 0;
1304}
1305
1306static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1307			unsigned long addr, unsigned long end,
1308			unsigned long pfn, pgprot_t prot)
1309{
1310	pmd_t *pmd;
1311	unsigned long next;
1312
1313	pfn -= addr >> PAGE_SHIFT;
1314	pmd = pmd_alloc(mm, pud, addr);
1315	if (!pmd)
1316		return -ENOMEM;
1317	do {
1318		next = pmd_addr_end(addr, end);
1319		if (remap_pte_range(mm, pmd, addr, next,
1320				pfn + (addr >> PAGE_SHIFT), prot))
1321			return -ENOMEM;
1322	} while (pmd++, addr = next, addr != end);
1323	return 0;
1324}
1325
1326static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1327			unsigned long addr, unsigned long end,
1328			unsigned long pfn, pgprot_t prot)
1329{
1330	pud_t *pud;
1331	unsigned long next;
1332
1333	pfn -= addr >> PAGE_SHIFT;
1334	pud = pud_alloc(mm, pgd, addr);
1335	if (!pud)
1336		return -ENOMEM;
1337	do {
1338		next = pud_addr_end(addr, end);
1339		if (remap_pmd_range(mm, pud, addr, next,
1340				pfn + (addr >> PAGE_SHIFT), prot))
1341			return -ENOMEM;
1342	} while (pud++, addr = next, addr != end);
1343	return 0;
1344}
1345
1346/**
1347 * remap_pfn_range - remap kernel memory to userspace
1348 * @vma: user vma to map to
1349 * @addr: target user address to start at
1350 * @pfn: physical address of kernel memory
1351 * @size: size of map area
1352 * @prot: page protection flags for this mapping
1353 *
1354 *  Note: this is only safe if the mm semaphore is held when called.
1355 */
1356int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1357		    unsigned long pfn, unsigned long size, pgprot_t prot)
1358{
1359	pgd_t *pgd;
1360	unsigned long next;
1361	unsigned long end = addr + PAGE_ALIGN(size);
1362	struct mm_struct *mm = vma->vm_mm;
1363	int err;
1364
1365	/*
1366	 * Physically remapped pages are special. Tell the
1367	 * rest of the world about it:
1368	 *   VM_IO tells people not to look at these pages
1369	 *	(accesses can have side effects).
1370	 *   VM_RESERVED is specified all over the place, because
1371	 *	in 2.4 it kept swapout's vma scan off this vma; but
1372	 *	in 2.6 the LRU scan won't even find its pages, so this
1373	 *	flag means no more than count its pages in reserved_vm,
1374	 * 	and omit it from core dump, even when VM_IO turned off.
1375	 *   VM_PFNMAP tells the core MM that the base pages are just
1376	 *	raw PFN mappings, and do not have a "struct page" associated
1377	 *	with them.
1378	 *
1379	 * There's a horrible special case to handle copy-on-write
1380	 * behaviour that some programs depend on. We mark the "original"
1381	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1382	 */
1383	if (is_cow_mapping(vma->vm_flags)) {
1384		if (addr != vma->vm_start || end != vma->vm_end)
1385			return -EINVAL;
1386		vma->vm_pgoff = pfn;
1387	}
1388
1389	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1390
1391	BUG_ON(addr >= end);
1392	pfn -= addr >> PAGE_SHIFT;
1393	pgd = pgd_offset(mm, addr);
1394	flush_cache_range(vma, addr, end);
1395	do {
1396		next = pgd_addr_end(addr, end);
1397		err = remap_pud_range(mm, pgd, addr, next,
1398				pfn + (addr >> PAGE_SHIFT), prot);
1399		if (err)
1400			break;
1401	} while (pgd++, addr = next, addr != end);
1402	return err;
1403}
1404EXPORT_SYMBOL(remap_pfn_range);
1405
1406/*
1407 * handle_pte_fault chooses page fault handler according to an entry
1408 * which was read non-atomically.  Before making any commitment, on
1409 * those architectures or configurations (e.g. i386 with PAE) which
1410 * might give a mix of unmatched parts, do_swap_page and do_file_page
1411 * must check under lock before unmapping the pte and proceeding
1412 * (but do_wp_page is only called after already making such a check;
1413 * and do_anonymous_page and do_no_page can safely check later on).
1414 */
1415static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1416				pte_t *page_table, pte_t orig_pte)
1417{
1418	int same = 1;
1419#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1420	if (sizeof(pte_t) > sizeof(unsigned long)) {
1421		spinlock_t *ptl = pte_lockptr(mm, pmd);
1422		spin_lock(ptl);
1423		same = pte_same(*page_table, orig_pte);
1424		spin_unlock(ptl);
1425	}
1426#endif
1427	pte_unmap(page_table);
1428	return same;
1429}
1430
1431/*
1432 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1433 * servicing faults for write access.  In the normal case, do always want
1434 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1435 * that do not have writing enabled, when used by access_process_vm.
1436 */
1437static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1438{
1439	if (likely(vma->vm_flags & VM_WRITE))
1440		pte = pte_mkwrite(pte);
1441	return pte;
1442}
1443
1444static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1445{
1446	/*
1447	 * If the source page was a PFN mapping, we don't have
1448	 * a "struct page" for it. We do a best-effort copy by
1449	 * just copying from the original user address. If that
1450	 * fails, we just zero-fill it. Live with it.
1451	 */
1452	if (unlikely(!src)) {
1453		void *kaddr = kmap_atomic(dst, KM_USER0);
1454		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1455
1456		/*
1457		 * This really shouldn't fail, because the page is there
1458		 * in the page tables. But it might just be unreadable,
1459		 * in which case we just give up and fill the result with
1460		 * zeroes.
1461		 */
1462		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1463			memset(kaddr, 0, PAGE_SIZE);
1464		kunmap_atomic(kaddr, KM_USER0);
1465		flush_dcache_page(dst);
1466		return;
1467
1468	}
1469	copy_user_highpage(dst, src, va, vma);
1470}
1471
1472/*
1473 * This routine handles present pages, when users try to write
1474 * to a shared page. It is done by copying the page to a new address
1475 * and decrementing the shared-page counter for the old page.
1476 *
1477 * Note that this routine assumes that the protection checks have been
1478 * done by the caller (the low-level page fault routine in most cases).
1479 * Thus we can safely just mark it writable once we've done any necessary
1480 * COW.
1481 *
1482 * We also mark the page dirty at this point even though the page will
1483 * change only once the write actually happens. This avoids a few races,
1484 * and potentially makes it more efficient.
1485 *
1486 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1487 * but allow concurrent faults), with pte both mapped and locked.
1488 * We return with mmap_sem still held, but pte unmapped and unlocked.
1489 */
1490static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1491		unsigned long address, pte_t *page_table, pmd_t *pmd,
1492		spinlock_t *ptl, pte_t orig_pte)
1493{
1494	struct page *old_page, *new_page;
1495	pte_t entry;
1496	int reuse = 0, ret = VM_FAULT_MINOR;
1497	struct page *dirty_page = NULL;
1498
1499	old_page = vm_normal_page(vma, address, orig_pte);
1500	if (!old_page)
1501		goto gotten;
1502
1503	/*
1504	 * Take out anonymous pages first, anonymous shared vmas are
1505	 * not dirty accountable.
1506	 */
1507	if (PageAnon(old_page)) {
1508		if (!TestSetPageLocked(old_page)) {
1509			reuse = can_share_swap_page(old_page);
1510			unlock_page(old_page);
1511		}
1512	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1513					(VM_WRITE|VM_SHARED))) {
1514		/*
1515		 * Only catch write-faults on shared writable pages,
1516		 * read-only shared pages can get COWed by
1517		 * get_user_pages(.write=1, .force=1).
1518		 */
1519		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1520			/*
1521			 * Notify the address space that the page is about to
1522			 * become writable so that it can prohibit this or wait
1523			 * for the page to get into an appropriate state.
1524			 *
1525			 * We do this without the lock held, so that it can
1526			 * sleep if it needs to.
1527			 */
1528			page_cache_get(old_page);
1529			pte_unmap_unlock(page_table, ptl);
1530
1531			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1532				goto unwritable_page;
1533
1534			page_cache_release(old_page);
1535
1536			/*
1537			 * Since we dropped the lock we need to revalidate
1538			 * the PTE as someone else may have changed it.  If
1539			 * they did, we just return, as we can count on the
1540			 * MMU to tell us if they didn't also make it writable.
1541			 */
1542			page_table = pte_offset_map_lock(mm, pmd, address,
1543							 &ptl);
1544			if (!pte_same(*page_table, orig_pte))
1545				goto unlock;
1546		}
1547		dirty_page = old_page;
1548		get_page(dirty_page);
1549		reuse = 1;
1550	}
1551
1552	if (reuse) {
1553		flush_cache_page(vma, address, pte_pfn(orig_pte));
1554		entry = pte_mkyoung(orig_pte);
1555		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1556		ptep_set_access_flags(vma, address, page_table, entry, 1);
1557		update_mmu_cache(vma, address, entry);
1558		lazy_mmu_prot_update(entry);
1559		ret |= VM_FAULT_WRITE;
1560		goto unlock;
1561	}
1562
1563	/*
1564	 * Ok, we need to copy. Oh, well..
1565	 */
1566	page_cache_get(old_page);
1567gotten:
1568	pte_unmap_unlock(page_table, ptl);
1569
1570	if (unlikely(anon_vma_prepare(vma)))
1571		goto oom;
1572	if (old_page == ZERO_PAGE(address)) {
1573		new_page = alloc_zeroed_user_highpage(vma, address);
1574		if (!new_page)
1575			goto oom;
1576	} else {
1577		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1578		if (!new_page)
1579			goto oom;
1580		cow_user_page(new_page, old_page, address, vma);
1581	}
1582
1583	/*
1584	 * Re-check the pte - we dropped the lock
1585	 */
1586	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1587	if (likely(pte_same(*page_table, orig_pte))) {
1588		if (old_page) {
1589			page_remove_rmap(old_page, vma);
1590			if (!PageAnon(old_page)) {
1591				dec_mm_counter(mm, file_rss);
1592				inc_mm_counter(mm, anon_rss);
1593			}
1594		} else
1595			inc_mm_counter(mm, anon_rss);
1596		flush_cache_page(vma, address, pte_pfn(orig_pte));
1597		entry = mk_pte(new_page, vma->vm_page_prot);
1598		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1599		lazy_mmu_prot_update(entry);
1600		/*
1601		 * Clear the pte entry and flush it first, before updating the
1602		 * pte with the new entry. This will avoid a race condition
1603		 * seen in the presence of one thread doing SMC and another
1604		 * thread doing COW.
1605		 */
1606		ptep_clear_flush(vma, address, page_table);
1607		set_pte_at(mm, address, page_table, entry);
1608		update_mmu_cache(vma, address, entry);
1609		lru_cache_add_active(new_page);
1610		page_add_new_anon_rmap(new_page, vma, address);
1611
1612		/* Free the old page.. */
1613		new_page = old_page;
1614		ret |= VM_FAULT_WRITE;
1615	}
1616	if (new_page)
1617		page_cache_release(new_page);
1618	if (old_page)
1619		page_cache_release(old_page);
1620unlock:
1621	pte_unmap_unlock(page_table, ptl);
1622	if (dirty_page) {
1623		set_page_dirty_balance(dirty_page);
1624		put_page(dirty_page);
1625	}
1626	return ret;
1627oom:
1628	if (old_page)
1629		page_cache_release(old_page);
1630	return VM_FAULT_OOM;
1631
1632unwritable_page:
1633	page_cache_release(old_page);
1634	return VM_FAULT_SIGBUS;
1635}
1636
1637/*
1638 * Helper functions for unmap_mapping_range().
1639 *
1640 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1641 *
1642 * We have to restart searching the prio_tree whenever we drop the lock,
1643 * since the iterator is only valid while the lock is held, and anyway
1644 * a later vma might be split and reinserted earlier while lock dropped.
1645 *
1646 * The list of nonlinear vmas could be handled more efficiently, using
1647 * a placeholder, but handle it in the same way until a need is shown.
1648 * It is important to search the prio_tree before nonlinear list: a vma
1649 * may become nonlinear and be shifted from prio_tree to nonlinear list
1650 * while the lock is dropped; but never shifted from list to prio_tree.
1651 *
1652 * In order to make forward progress despite restarting the search,
1653 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1654 * quickly skip it next time around.  Since the prio_tree search only
1655 * shows us those vmas affected by unmapping the range in question, we
1656 * can't efficiently keep all vmas in step with mapping->truncate_count:
1657 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1658 * mapping->truncate_count and vma->vm_truncate_count are protected by
1659 * i_mmap_lock.
1660 *
1661 * In order to make forward progress despite repeatedly restarting some
1662 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1663 * and restart from that address when we reach that vma again.  It might
1664 * have been split or merged, shrunk or extended, but never shifted: so
1665 * restart_addr remains valid so long as it remains in the vma's range.
1666 * unmap_mapping_range forces truncate_count to leap over page-aligned
1667 * values so we can save vma's restart_addr in its truncate_count field.
1668 */
1669#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1670
1671static void reset_vma_truncate_counts(struct address_space *mapping)
1672{
1673	struct vm_area_struct *vma;
1674	struct prio_tree_iter iter;
1675
1676	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1677		vma->vm_truncate_count = 0;
1678	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1679		vma->vm_truncate_count = 0;
1680}
1681
1682static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1683		unsigned long start_addr, unsigned long end_addr,
1684		struct zap_details *details)
1685{
1686	unsigned long restart_addr;
1687	int need_break;
1688
1689again:
1690	restart_addr = vma->vm_truncate_count;
1691	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1692		start_addr = restart_addr;
1693		if (start_addr >= end_addr) {
1694			/* Top of vma has been split off since last time */
1695			vma->vm_truncate_count = details->truncate_count;
1696			return 0;
1697		}
1698	}
1699
1700	restart_addr = zap_page_range(vma, start_addr,
1701					end_addr - start_addr, details);
1702	need_break = need_resched() ||
1703			need_lockbreak(details->i_mmap_lock);
1704
1705	if (restart_addr >= end_addr) {
1706		/* We have now completed this vma: mark it so */
1707		vma->vm_truncate_count = details->truncate_count;
1708		if (!need_break)
1709			return 0;
1710	} else {
1711		/* Note restart_addr in vma's truncate_count field */
1712		vma->vm_truncate_count = restart_addr;
1713		if (!need_break)
1714			goto again;
1715	}
1716
1717	spin_unlock(details->i_mmap_lock);
1718	cond_resched();
1719	spin_lock(details->i_mmap_lock);
1720	return -EINTR;
1721}
1722
1723static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1724					    struct zap_details *details)
1725{
1726	struct vm_area_struct *vma;
1727	struct prio_tree_iter iter;
1728	pgoff_t vba, vea, zba, zea;
1729
1730restart:
1731	vma_prio_tree_foreach(vma, &iter, root,
1732			details->first_index, details->last_index) {
1733		/* Skip quickly over those we have already dealt with */
1734		if (vma->vm_truncate_count == details->truncate_count)
1735			continue;
1736
1737		vba = vma->vm_pgoff;
1738		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1739		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1740		zba = details->first_index;
1741		if (zba < vba)
1742			zba = vba;
1743		zea = details->last_index;
1744		if (zea > vea)
1745			zea = vea;
1746
1747		if (unmap_mapping_range_vma(vma,
1748			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1749			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1750				details) < 0)
1751			goto restart;
1752	}
1753}
1754
1755static inline void unmap_mapping_range_list(struct list_head *head,
1756					    struct zap_details *details)
1757{
1758	struct vm_area_struct *vma;
1759
1760	/*
1761	 * In nonlinear VMAs there is no correspondence between virtual address
1762	 * offset and file offset.  So we must perform an exhaustive search
1763	 * across *all* the pages in each nonlinear VMA, not just the pages
1764	 * whose virtual address lies outside the file truncation point.
1765	 */
1766restart:
1767	list_for_each_entry(vma, head, shared.vm_set.list) {
1768		/* Skip quickly over those we have already dealt with */
1769		if (vma->vm_truncate_count == details->truncate_count)
1770			continue;
1771		details->nonlinear_vma = vma;
1772		if (unmap_mapping_range_vma(vma, vma->vm_start,
1773					vma->vm_end, details) < 0)
1774			goto restart;
1775	}
1776}
1777
1778/**
1779 * unmap_mapping_range - unmap the portion of all mmaps
1780 * in the specified address_space corresponding to the specified
1781 * page range in the underlying file.
1782 * @mapping: the address space containing mmaps to be unmapped.
1783 * @holebegin: byte in first page to unmap, relative to the start of
1784 * the underlying file.  This will be rounded down to a PAGE_SIZE
1785 * boundary.  Note that this is different from vmtruncate(), which
1786 * must keep the partial page.  In contrast, we must get rid of
1787 * partial pages.
1788 * @holelen: size of prospective hole in bytes.  This will be rounded
1789 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1790 * end of the file.
1791 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1792 * but 0 when invalidating pagecache, don't throw away private data.
1793 */
1794void unmap_mapping_range(struct address_space *mapping,
1795		loff_t const holebegin, loff_t const holelen, int even_cows)
1796{
1797	struct zap_details details;
1798	pgoff_t hba = holebegin >> PAGE_SHIFT;
1799	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1800
1801	/* Check for overflow. */
1802	if (sizeof(holelen) > sizeof(hlen)) {
1803		long long holeend =
1804			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1805		if (holeend & ~(long long)ULONG_MAX)
1806			hlen = ULONG_MAX - hba + 1;
1807	}
1808
1809	details.check_mapping = even_cows? NULL: mapping;
1810	details.nonlinear_vma = NULL;
1811	details.first_index = hba;
1812	details.last_index = hba + hlen - 1;
1813	if (details.last_index < details.first_index)
1814		details.last_index = ULONG_MAX;
1815	details.i_mmap_lock = &mapping->i_mmap_lock;
1816
1817	spin_lock(&mapping->i_mmap_lock);
1818
1819	/* serialize i_size write against truncate_count write */
1820	smp_wmb();
1821	/* Protect against page faults, and endless unmapping loops */
1822	mapping->truncate_count++;
1823	/*
1824	 * For archs where spin_lock has inclusive semantics like ia64
1825	 * this smp_mb() will prevent to read pagetable contents
1826	 * before the truncate_count increment is visible to
1827	 * other cpus.
1828	 */
1829	smp_mb();
1830	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1831		if (mapping->truncate_count == 0)
1832			reset_vma_truncate_counts(mapping);
1833		mapping->truncate_count++;
1834	}
1835	details.truncate_count = mapping->truncate_count;
1836
1837	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1838		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1839	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1840		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1841	spin_unlock(&mapping->i_mmap_lock);
1842}
1843EXPORT_SYMBOL(unmap_mapping_range);
1844
1845/**
1846 * vmtruncate - unmap mappings "freed" by truncate() syscall
1847 * @inode: inode of the file used
1848 * @offset: file offset to start truncating
1849 *
1850 * NOTE! We have to be ready to update the memory sharing
1851 * between the file and the memory map for a potential last
1852 * incomplete page.  Ugly, but necessary.
1853 */
1854int vmtruncate(struct inode * inode, loff_t offset)
1855{
1856	struct address_space *mapping = inode->i_mapping;
1857	unsigned long limit;
1858
1859	if (inode->i_size < offset)
1860		goto do_expand;
1861	/*
1862	 * truncation of in-use swapfiles is disallowed - it would cause
1863	 * subsequent swapout to scribble on the now-freed blocks.
1864	 */
1865	if (IS_SWAPFILE(inode))
1866		goto out_busy;
1867	i_size_write(inode, offset);
1868	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1869	truncate_inode_pages(mapping, offset);
1870	goto out_truncate;
1871
1872do_expand:
1873	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1874	if (limit != RLIM_INFINITY && offset > limit)
1875		goto out_sig;
1876	if (offset > inode->i_sb->s_maxbytes)
1877		goto out_big;
1878	i_size_write(inode, offset);
1879
1880out_truncate:
1881	if (inode->i_op && inode->i_op->truncate)
1882		inode->i_op->truncate(inode);
1883	return 0;
1884out_sig:
1885	send_sig(SIGXFSZ, current, 0);
1886out_big:
1887	return -EFBIG;
1888out_busy:
1889	return -ETXTBSY;
1890}
1891EXPORT_SYMBOL(vmtruncate);
1892
1893int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1894{
1895	struct address_space *mapping = inode->i_mapping;
1896
1897	/*
1898	 * If the underlying filesystem is not going to provide
1899	 * a way to truncate a range of blocks (punch a hole) -
1900	 * we should return failure right now.
1901	 */
1902	if (!inode->i_op || !inode->i_op->truncate_range)
1903		return -ENOSYS;
1904
1905	mutex_lock(&inode->i_mutex);
1906	down_write(&inode->i_alloc_sem);
1907	unmap_mapping_range(mapping, offset, (end - offset), 1);
1908	truncate_inode_pages_range(mapping, offset, end);
1909	inode->i_op->truncate_range(inode, offset, end);
1910	up_write(&inode->i_alloc_sem);
1911	mutex_unlock(&inode->i_mutex);
1912
1913	return 0;
1914}
1915
1916/**
1917 * swapin_readahead - swap in pages in hope we need them soon
1918 * @entry: swap entry of this memory
1919 * @addr: address to start
1920 * @vma: user vma this addresses belong to
1921 *
1922 * Primitive swap readahead code. We simply read an aligned block of
1923 * (1 << page_cluster) entries in the swap area. This method is chosen
1924 * because it doesn't cost us any seek time.  We also make sure to queue
1925 * the 'original' request together with the readahead ones...
1926 *
1927 * This has been extended to use the NUMA policies from the mm triggering
1928 * the readahead.
1929 *
1930 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1931 */
1932void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1933{
1934#ifdef CONFIG_NUMA
1935	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1936#endif
1937	int i, num;
1938	struct page *new_page;
1939	unsigned long offset;
1940
1941	/*
1942	 * Get the number of handles we should do readahead io to.
1943	 */
1944	num = valid_swaphandles(entry, &offset);
1945	for (i = 0; i < num; offset++, i++) {
1946		/* Ok, do the async read-ahead now */
1947		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1948							   offset), vma, addr);
1949		if (!new_page)
1950			break;
1951		page_cache_release(new_page);
1952#ifdef CONFIG_NUMA
1953		/*
1954		 * Find the next applicable VMA for the NUMA policy.
1955		 */
1956		addr += PAGE_SIZE;
1957		if (addr == 0)
1958			vma = NULL;
1959		if (vma) {
1960			if (addr >= vma->vm_end) {
1961				vma = next_vma;
1962				next_vma = vma ? vma->vm_next : NULL;
1963			}
1964			if (vma && addr < vma->vm_start)
1965				vma = NULL;
1966		} else {
1967			if (next_vma && addr >= next_vma->vm_start) {
1968				vma = next_vma;
1969				next_vma = vma->vm_next;
1970			}
1971		}
1972#endif
1973	}
1974	lru_add_drain();	/* Push any new pages onto the LRU now */
1975}
1976
1977/*
1978 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1979 * but allow concurrent faults), and pte mapped but not yet locked.
1980 * We return with mmap_sem still held, but pte unmapped and unlocked.
1981 */
1982static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1983		unsigned long address, pte_t *page_table, pmd_t *pmd,
1984		int write_access, pte_t orig_pte)
1985{
1986	spinlock_t *ptl;
1987	struct page *page;
1988	swp_entry_t entry;
1989	pte_t pte;
1990	int ret = VM_FAULT_MINOR;
1991
1992	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1993		goto out;
1994
1995	entry = pte_to_swp_entry(orig_pte);
1996	if (is_migration_entry(entry)) {
1997		migration_entry_wait(mm, pmd, address);
1998		goto out;
1999	}
2000	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2001	page = lookup_swap_cache(entry);
2002	if (!page) {
2003		grab_swap_token(); /* Contend for token _before_ read-in */
2004 		swapin_readahead(entry, address, vma);
2005 		page = read_swap_cache_async(entry, vma, address);
2006		if (!page) {
2007			/*
2008			 * Back out if somebody else faulted in this pte
2009			 * while we released the pte lock.
2010			 */
2011			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2012			if (likely(pte_same(*page_table, orig_pte)))
2013				ret = VM_FAULT_OOM;
2014			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2015			goto unlock;
2016		}
2017
2018		/* Had to read the page from swap area: Major fault */
2019		ret = VM_FAULT_MAJOR;
2020		count_vm_event(PGMAJFAULT);
2021	}
2022
2023	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2024	mark_page_accessed(page);
2025	lock_page(page);
2026
2027	/*
2028	 * Back out if somebody else already faulted in this pte.
2029	 */
2030	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2031	if (unlikely(!pte_same(*page_table, orig_pte)))
2032		goto out_nomap;
2033
2034	if (unlikely(!PageUptodate(page))) {
2035		ret = VM_FAULT_SIGBUS;
2036		goto out_nomap;
2037	}
2038
2039	/* The page isn't present yet, go ahead with the fault. */
2040
2041	inc_mm_counter(mm, anon_rss);
2042	pte = mk_pte(page, vma->vm_page_prot);
2043	if (write_access && can_share_swap_page(page)) {
2044		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2045		write_access = 0;
2046	}
2047
2048	flush_icache_page(vma, page);
2049	set_pte_at(mm, address, page_table, pte);
2050	page_add_anon_rmap(page, vma, address);
2051
2052	swap_free(entry);
2053	if (vm_swap_full())
2054		remove_exclusive_swap_page(page);
2055	unlock_page(page);
2056
2057	if (write_access) {
2058		if (do_wp_page(mm, vma, address,
2059				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2060			ret = VM_FAULT_OOM;
2061		goto out;
2062	}
2063
2064	/* No need to invalidate - it was non-present before */
2065	update_mmu_cache(vma, address, pte);
2066	lazy_mmu_prot_update(pte);
2067unlock:
2068	pte_unmap_unlock(page_table, ptl);
2069out:
2070	return ret;
2071out_nomap:
2072	pte_unmap_unlock(page_table, ptl);
2073	unlock_page(page);
2074	page_cache_release(page);
2075	return ret;
2076}
2077
2078/*
2079 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2080 * but allow concurrent faults), and pte mapped but not yet locked.
2081 * We return with mmap_sem still held, but pte unmapped and unlocked.
2082 */
2083static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2084		unsigned long address, pte_t *page_table, pmd_t *pmd,
2085		int write_access)
2086{
2087	struct page *page;
2088	spinlock_t *ptl;
2089	pte_t entry;
2090
2091	if (write_access) {
2092		/* Allocate our own private page. */
2093		pte_unmap(page_table);
2094
2095		if (unlikely(anon_vma_prepare(vma)))
2096			goto oom;
2097		page = alloc_zeroed_user_highpage(vma, address);
2098		if (!page)
2099			goto oom;
2100
2101		entry = mk_pte(page, vma->vm_page_prot);
2102		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2103
2104		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2105		if (!pte_none(*page_table))
2106			goto release;
2107		inc_mm_counter(mm, anon_rss);
2108		lru_cache_add_active(page);
2109		page_add_new_anon_rmap(page, vma, address);
2110	} else {
2111		/* Map the ZERO_PAGE - vm_page_prot is readonly */
2112		page = ZERO_PAGE(address);
2113		page_cache_get(page);
2114		entry = mk_pte(page, vma->vm_page_prot);
2115
2116		ptl = pte_lockptr(mm, pmd);
2117		spin_lock(ptl);
2118		if (!pte_none(*page_table))
2119			goto release;
2120		inc_mm_counter(mm, file_rss);
2121		page_add_file_rmap(page);
2122	}
2123
2124	set_pte_at(mm, address, page_table, entry);
2125
2126	/* No need to invalidate - it was non-present before */
2127	update_mmu_cache(vma, address, entry);
2128	lazy_mmu_prot_update(entry);
2129unlock:
2130	pte_unmap_unlock(page_table, ptl);
2131	return VM_FAULT_MINOR;
2132release:
2133	page_cache_release(page);
2134	goto unlock;
2135oom:
2136	return VM_FAULT_OOM;
2137}
2138
2139/*
2140 * do_no_page() tries to create a new page mapping. It aggressively
2141 * tries to share with existing pages, but makes a separate copy if
2142 * the "write_access" parameter is true in order to avoid the next
2143 * page fault.
2144 *
2145 * As this is called only for pages that do not currently exist, we
2146 * do not need to flush old virtual caches or the TLB.
2147 *
2148 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2149 * but allow concurrent faults), and pte mapped but not yet locked.
2150 * We return with mmap_sem still held, but pte unmapped and unlocked.
2151 */
2152static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2153		unsigned long address, pte_t *page_table, pmd_t *pmd,
2154		int write_access)
2155{
2156	spinlock_t *ptl;
2157	struct page *new_page;
2158	struct address_space *mapping = NULL;
2159	pte_t entry;
2160	unsigned int sequence = 0;
2161	int ret = VM_FAULT_MINOR;
2162	int anon = 0;
2163	struct page *dirty_page = NULL;
2164
2165	pte_unmap(page_table);
2166	BUG_ON(vma->vm_flags & VM_PFNMAP);
2167
2168	if (vma->vm_file) {
2169		mapping = vma->vm_file->f_mapping;
2170		sequence = mapping->truncate_count;
2171		smp_rmb(); /* serializes i_size against truncate_count */
2172	}
2173retry:
2174	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2175	/*
2176	 * No smp_rmb is needed here as long as there's a full
2177	 * spin_lock/unlock sequence inside the ->nopage callback
2178	 * (for the pagecache lookup) that acts as an implicit
2179	 * smp_mb() and prevents the i_size read to happen
2180	 * after the next truncate_count read.
2181	 */
2182
2183	/* no page was available -- either SIGBUS, OOM or REFAULT */
2184	if (unlikely(new_page == NOPAGE_SIGBUS))
2185		return VM_FAULT_SIGBUS;
2186	else if (unlikely(new_page == NOPAGE_OOM))
2187		return VM_FAULT_OOM;
2188	else if (unlikely(new_page == NOPAGE_REFAULT))
2189		return VM_FAULT_MINOR;
2190
2191	/*
2192	 * Should we do an early C-O-W break?
2193	 */
2194	if (write_access) {
2195		if (!(vma->vm_flags & VM_SHARED)) {
2196			struct page *page;
2197
2198			if (unlikely(anon_vma_prepare(vma)))
2199				goto oom;
2200			page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2201			if (!page)
2202				goto oom;
2203			copy_user_highpage(page, new_page, address, vma);
2204			page_cache_release(new_page);
2205			new_page = page;
2206			anon = 1;
2207
2208		} else {
2209			/* if the page will be shareable, see if the backing
2210			 * address space wants to know that the page is about
2211			 * to become writable */
2212			if (vma->vm_ops->page_mkwrite &&
2213			    vma->vm_ops->page_mkwrite(vma, new_page) < 0
2214			    ) {
2215				page_cache_release(new_page);
2216				return VM_FAULT_SIGBUS;
2217			}
2218		}
2219	}
2220
2221	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2222	/*
2223	 * For a file-backed vma, someone could have truncated or otherwise
2224	 * invalidated this page.  If unmap_mapping_range got called,
2225	 * retry getting the page.
2226	 */
2227	if (mapping && unlikely(sequence != mapping->truncate_count)) {
2228		pte_unmap_unlock(page_table, ptl);
2229		page_cache_release(new_page);
2230		cond_resched();
2231		sequence = mapping->truncate_count;
2232		smp_rmb();
2233		goto retry;
2234	}
2235
2236	/*
2237	 * This silly early PAGE_DIRTY setting removes a race
2238	 * due to the bad i386 page protection. But it's valid
2239	 * for other architectures too.
2240	 *
2241	 * Note that if write_access is true, we either now have
2242	 * an exclusive copy of the page, or this is a shared mapping,
2243	 * so we can make it writable and dirty to avoid having to
2244	 * handle that later.
2245	 */
2246	/* Only go through if we didn't race with anybody else... */
2247	if (pte_none(*page_table)) {
2248		flush_icache_page(vma, new_page);
2249		entry = mk_pte(new_page, vma->vm_page_prot);
2250		if (write_access)
2251			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2252		set_pte_at(mm, address, page_table, entry);
2253		if (anon) {
2254			inc_mm_counter(mm, anon_rss);
2255			lru_cache_add_active(new_page);
2256			page_add_new_anon_rmap(new_page, vma, address);
2257		} else {
2258			inc_mm_counter(mm, file_rss);
2259			page_add_file_rmap(new_page);
2260			if (write_access) {
2261				dirty_page = new_page;
2262				get_page(dirty_page);
2263			}
2264		}
2265	} else {
2266		/* One of our sibling threads was faster, back out. */
2267		page_cache_release(new_page);
2268		goto unlock;
2269	}
2270
2271	/* no need to invalidate: a not-present page shouldn't be cached */
2272	update_mmu_cache(vma, address, entry);
2273	lazy_mmu_prot_update(entry);
2274unlock:
2275	pte_unmap_unlock(page_table, ptl);
2276	if (dirty_page) {
2277		set_page_dirty_balance(dirty_page);
2278		put_page(dirty_page);
2279	}
2280	return ret;
2281oom:
2282	page_cache_release(new_page);
2283	return VM_FAULT_OOM;
2284}
2285
2286/*
2287 * do_no_pfn() tries to create a new page mapping for a page without
2288 * a struct_page backing it
2289 *
2290 * As this is called only for pages that do not currently exist, we
2291 * do not need to flush old virtual caches or the TLB.
2292 *
2293 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2294 * but allow concurrent faults), and pte mapped but not yet locked.
2295 * We return with mmap_sem still held, but pte unmapped and unlocked.
2296 *
2297 * It is expected that the ->nopfn handler always returns the same pfn
2298 * for a given virtual mapping.
2299 *
2300 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2301 */
2302static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2303		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2304		     int write_access)
2305{
2306	spinlock_t *ptl;
2307	pte_t entry;
2308	unsigned long pfn;
2309	int ret = VM_FAULT_MINOR;
2310
2311	pte_unmap(page_table);
2312	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2313	BUG_ON(is_cow_mapping(vma->vm_flags));
2314
2315	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2316	if (pfn == NOPFN_OOM)
2317		return VM_FAULT_OOM;
2318	if (pfn == NOPFN_SIGBUS)
2319		return VM_FAULT_SIGBUS;
2320
2321	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2322
2323	/* Only go through if we didn't race with anybody else... */
2324	if (pte_none(*page_table)) {
2325		entry = pfn_pte(pfn, vma->vm_page_prot);
2326		if (write_access)
2327			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2328		set_pte_at(mm, address, page_table, entry);
2329	}
2330	pte_unmap_unlock(page_table, ptl);
2331	return ret;
2332}
2333
2334/*
2335 * Fault of a previously existing named mapping. Repopulate the pte
2336 * from the encoded file_pte if possible. This enables swappable
2337 * nonlinear vmas.
2338 *
2339 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2340 * but allow concurrent faults), and pte mapped but not yet locked.
2341 * We return with mmap_sem still held, but pte unmapped and unlocked.
2342 */
2343static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2344		unsigned long address, pte_t *page_table, pmd_t *pmd,
2345		int write_access, pte_t orig_pte)
2346{
2347	pgoff_t pgoff;
2348	int err;
2349
2350	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2351		return VM_FAULT_MINOR;
2352
2353	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2354		/*
2355		 * Page table corrupted: show pte and kill process.
2356		 */
2357		print_bad_pte(vma, orig_pte, address);
2358		return VM_FAULT_OOM;
2359	}
2360	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
2361
2362	pgoff = pte_to_pgoff(orig_pte);
2363	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2364					vma->vm_page_prot, pgoff, 0);
2365	if (err == -ENOMEM)
2366		return VM_FAULT_OOM;
2367	if (err)
2368		return VM_FAULT_SIGBUS;
2369	return VM_FAULT_MAJOR;
2370}
2371
2372/*
2373 * These routines also need to handle stuff like marking pages dirty
2374 * and/or accessed for architectures that don't do it in hardware (most
2375 * RISC architectures).  The early dirtying is also good on the i386.
2376 *
2377 * There is also a hook called "update_mmu_cache()" that architectures
2378 * with external mmu caches can use to update those (ie the Sparc or
2379 * PowerPC hashed page tables that act as extended TLBs).
2380 *
2381 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2382 * but allow concurrent faults), and pte mapped but not yet locked.
2383 * We return with mmap_sem still held, but pte unmapped and unlocked.
2384 */
2385static inline int handle_pte_fault(struct mm_struct *mm,
2386		struct vm_area_struct *vma, unsigned long address,
2387		pte_t *pte, pmd_t *pmd, int write_access)
2388{
2389	pte_t entry;
2390	pte_t old_entry;
2391	spinlock_t *ptl;
2392
2393	old_entry = entry = *pte;
2394	if (!pte_present(entry)) {
2395		if (pte_none(entry)) {
2396			if (vma->vm_ops) {
2397				if (vma->vm_ops->nopage)
2398					return do_no_page(mm, vma, address,
2399							  pte, pmd,
2400							  write_access);
2401				if (unlikely(vma->vm_ops->nopfn))
2402					return do_no_pfn(mm, vma, address, pte,
2403							 pmd, write_access);
2404			}
2405			return do_anonymous_page(mm, vma, address,
2406						 pte, pmd, write_access);
2407		}
2408		if (pte_file(entry))
2409			return do_file_page(mm, vma, address,
2410					pte, pmd, write_access, entry);
2411		return do_swap_page(mm, vma, address,
2412					pte, pmd, write_access, entry);
2413	}
2414
2415	ptl = pte_lockptr(mm, pmd);
2416	spin_lock(ptl);
2417	if (unlikely(!pte_same(*pte, entry)))
2418		goto unlock;
2419	if (write_access) {
2420		if (!pte_write(entry))
2421			return do_wp_page(mm, vma, address,
2422					pte, pmd, ptl, entry);
2423		entry = pte_mkdirty(entry);
2424	}
2425	entry = pte_mkyoung(entry);
2426	if (!pte_same(old_entry, entry)) {
2427		ptep_set_access_flags(vma, address, pte, entry, write_access);
2428		update_mmu_cache(vma, address, entry);
2429		lazy_mmu_prot_update(entry);
2430	} else {
2431		/*
2432		 * This is needed only for protection faults but the arch code
2433		 * is not yet telling us if this is a protection fault or not.
2434		 * This still avoids useless tlb flushes for .text page faults
2435		 * with threads.
2436		 */
2437		if (write_access)
2438			flush_tlb_page(vma, address);
2439	}
2440unlock:
2441	pte_unmap_unlock(pte, ptl);
2442	return VM_FAULT_MINOR;
2443}
2444
2445/*
2446 * By the time we get here, we already hold the mm semaphore
2447 */
2448int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2449		unsigned long address, int write_access)
2450{
2451	pgd_t *pgd;
2452	pud_t *pud;
2453	pmd_t *pmd;
2454	pte_t *pte;
2455
2456	__set_current_state(TASK_RUNNING);
2457
2458	count_vm_event(PGFAULT);
2459
2460	if (unlikely(is_vm_hugetlb_page(vma)))
2461		return hugetlb_fault(mm, vma, address, write_access);
2462
2463	pgd = pgd_offset(mm, address);
2464	pud = pud_alloc(mm, pgd, address);
2465	if (!pud)
2466		return VM_FAULT_OOM;
2467	pmd = pmd_alloc(mm, pud, address);
2468	if (!pmd)
2469		return VM_FAULT_OOM;
2470	pte = pte_alloc_map(mm, pmd, address);
2471	if (!pte)
2472		return VM_FAULT_OOM;
2473
2474	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2475}
2476
2477EXPORT_SYMBOL_GPL(__handle_mm_fault);
2478
2479#ifndef __PAGETABLE_PUD_FOLDED
2480/*
2481 * Allocate page upper directory.
2482 * We've already handled the fast-path in-line.
2483 */
2484int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2485{
2486	pud_t *new = pud_alloc_one(mm, address);
2487	if (!new)
2488		return -ENOMEM;
2489
2490	spin_lock(&mm->page_table_lock);
2491	if (pgd_present(*pgd))		/* Another has populated it */
2492		pud_free(new);
2493	else
2494		pgd_populate(mm, pgd, new);
2495	spin_unlock(&mm->page_table_lock);
2496	return 0;
2497}
2498#else
2499/* Workaround for gcc 2.96 */
2500int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2501{
2502	return 0;
2503}
2504#endif /* __PAGETABLE_PUD_FOLDED */
2505
2506#ifndef __PAGETABLE_PMD_FOLDED
2507/*
2508 * Allocate page middle directory.
2509 * We've already handled the fast-path in-line.
2510 */
2511int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2512{
2513	pmd_t *new = pmd_alloc_one(mm, address);
2514	if (!new)
2515		return -ENOMEM;
2516
2517	spin_lock(&mm->page_table_lock);
2518#ifndef __ARCH_HAS_4LEVEL_HACK
2519	if (pud_present(*pud))		/* Another has populated it */
2520		pmd_free(new);
2521	else
2522		pud_populate(mm, pud, new);
2523#else
2524	if (pgd_present(*pud))		/* Another has populated it */
2525		pmd_free(new);
2526	else
2527		pgd_populate(mm, pud, new);
2528#endif /* __ARCH_HAS_4LEVEL_HACK */
2529	spin_unlock(&mm->page_table_lock);
2530	return 0;
2531}
2532#else
2533/* Workaround for gcc 2.96 */
2534int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2535{
2536	return 0;
2537}
2538#endif /* __PAGETABLE_PMD_FOLDED */
2539
2540int make_pages_present(unsigned long addr, unsigned long end)
2541{
2542	int ret, len, write;
2543	struct vm_area_struct * vma;
2544
2545	vma = find_vma(current->mm, addr);
2546	if (!vma)
2547		return -1;
2548	write = (vma->vm_flags & VM_WRITE) != 0;
2549	BUG_ON(addr >= end);
2550	BUG_ON(end > vma->vm_end);
2551	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2552	ret = get_user_pages(current, current->mm, addr,
2553			len, write, 0, NULL, NULL);
2554	if (ret < 0)
2555		return ret;
2556	return ret == len ? 0 : -1;
2557}
2558
2559/*
2560 * Map a vmalloc()-space virtual address to the physical page.
2561 */
2562struct page * vmalloc_to_page(void * vmalloc_addr)
2563{
2564	unsigned long addr = (unsigned long) vmalloc_addr;
2565	struct page *page = NULL;
2566	pgd_t *pgd = pgd_offset_k(addr);
2567	pud_t *pud;
2568	pmd_t *pmd;
2569	pte_t *ptep, pte;
2570
2571	if (!pgd_none(*pgd)) {
2572		pud = pud_offset(pgd, addr);
2573		if (!pud_none(*pud)) {
2574			pmd = pmd_offset(pud, addr);
2575			if (!pmd_none(*pmd)) {
2576				ptep = pte_offset_map(pmd, addr);
2577				pte = *ptep;
2578				if (pte_present(pte))
2579					page = pte_page(pte);
2580				pte_unmap(ptep);
2581			}
2582		}
2583	}
2584	return page;
2585}
2586
2587EXPORT_SYMBOL(vmalloc_to_page);
2588
2589/*
2590 * Map a vmalloc()-space virtual address to the physical page frame number.
2591 */
2592unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2593{
2594	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2595}
2596
2597EXPORT_SYMBOL(vmalloc_to_pfn);
2598
2599#if !defined(__HAVE_ARCH_GATE_AREA)
2600
2601#if defined(AT_SYSINFO_EHDR)
2602static struct vm_area_struct gate_vma;
2603
2604static int __init gate_vma_init(void)
2605{
2606	gate_vma.vm_mm = NULL;
2607	gate_vma.vm_start = FIXADDR_USER_START;
2608	gate_vma.vm_end = FIXADDR_USER_END;
2609	gate_vma.vm_page_prot = PAGE_READONLY;
2610	gate_vma.vm_flags = 0;
2611	return 0;
2612}
2613__initcall(gate_vma_init);
2614#endif
2615
2616struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2617{
2618#ifdef AT_SYSINFO_EHDR
2619	return &gate_vma;
2620#else
2621	return NULL;
2622#endif
2623}
2624
2625int in_gate_area_no_task(unsigned long addr)
2626{
2627#ifdef AT_SYSINFO_EHDR
2628	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2629		return 1;
2630#endif
2631	return 0;
2632}
2633
2634#endif	/* __HAVE_ARCH_GATE_AREA */
2635
2636/*
2637 * Access another process' address space.
2638 * Source/target buffer must be kernel space,
2639 * Do not walk the page table directly, use get_user_pages
2640 */
2641int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2642{
2643	struct mm_struct *mm;
2644	struct vm_area_struct *vma;
2645	struct page *page;
2646	void *old_buf = buf;
2647
2648	mm = get_task_mm(tsk);
2649	if (!mm)
2650		return 0;
2651
2652	down_read(&mm->mmap_sem);
2653	/* ignore errors, just check how much was sucessfully transfered */
2654	while (len) {
2655		int bytes, ret, offset;
2656		void *maddr;
2657
2658		ret = get_user_pages(tsk, mm, addr, 1,
2659				write, 1, &page, &vma);
2660		if (ret <= 0)
2661			break;
2662
2663		bytes = len;
2664		offset = addr & (PAGE_SIZE-1);
2665		if (bytes > PAGE_SIZE-offset)
2666			bytes = PAGE_SIZE-offset;
2667
2668		maddr = kmap(page);
2669		if (write) {
2670			copy_to_user_page(vma, page, addr,
2671					  maddr + offset, buf, bytes);
2672			set_page_dirty_lock(page);
2673		} else {
2674			copy_from_user_page(vma, page, addr,
2675					    buf, maddr + offset, bytes);
2676		}
2677		kunmap(page);
2678		page_cache_release(page);
2679		len -= bytes;
2680		buf += bytes;
2681		addr += bytes;
2682	}
2683	up_read(&mm->mmap_sem);
2684	mmput(mm);
2685
2686	return buf - old_buf;
2687}
2688