memory.c revision bf3f3bc5e734706730c12a323f9b2068052aa1f0
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53#include <linux/memcontrol.h>
54#include <linux/mmu_notifier.h>
55
56#include <asm/pgalloc.h>
57#include <asm/uaccess.h>
58#include <asm/tlb.h>
59#include <asm/tlbflush.h>
60#include <asm/pgtable.h>
61
62#include <linux/swapops.h>
63#include <linux/elf.h>
64
65#include "internal.h"
66
67#ifndef CONFIG_NEED_MULTIPLE_NODES
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
88
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 *   as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97					1;
98#else
99					2;
100#endif
101
102static int __init disable_randmaps(char *s)
103{
104	randomize_va_space = 0;
105	return 1;
106}
107__setup("norandmaps", disable_randmaps);
108
109
110/*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none.  Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116void pgd_clear_bad(pgd_t *pgd)
117{
118	pgd_ERROR(*pgd);
119	pgd_clear(pgd);
120}
121
122void pud_clear_bad(pud_t *pud)
123{
124	pud_ERROR(*pud);
125	pud_clear(pud);
126}
127
128void pmd_clear_bad(pmd_t *pmd)
129{
130	pmd_ERROR(*pmd);
131	pmd_clear(pmd);
132}
133
134/*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
138static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139{
140	pgtable_t token = pmd_pgtable(*pmd);
141	pmd_clear(pmd);
142	pte_free_tlb(tlb, token);
143	tlb->mm->nr_ptes--;
144}
145
146static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147				unsigned long addr, unsigned long end,
148				unsigned long floor, unsigned long ceiling)
149{
150	pmd_t *pmd;
151	unsigned long next;
152	unsigned long start;
153
154	start = addr;
155	pmd = pmd_offset(pud, addr);
156	do {
157		next = pmd_addr_end(addr, end);
158		if (pmd_none_or_clear_bad(pmd))
159			continue;
160		free_pte_range(tlb, pmd);
161	} while (pmd++, addr = next, addr != end);
162
163	start &= PUD_MASK;
164	if (start < floor)
165		return;
166	if (ceiling) {
167		ceiling &= PUD_MASK;
168		if (!ceiling)
169			return;
170	}
171	if (end - 1 > ceiling - 1)
172		return;
173
174	pmd = pmd_offset(pud, start);
175	pud_clear(pud);
176	pmd_free_tlb(tlb, pmd);
177}
178
179static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180				unsigned long addr, unsigned long end,
181				unsigned long floor, unsigned long ceiling)
182{
183	pud_t *pud;
184	unsigned long next;
185	unsigned long start;
186
187	start = addr;
188	pud = pud_offset(pgd, addr);
189	do {
190		next = pud_addr_end(addr, end);
191		if (pud_none_or_clear_bad(pud))
192			continue;
193		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194	} while (pud++, addr = next, addr != end);
195
196	start &= PGDIR_MASK;
197	if (start < floor)
198		return;
199	if (ceiling) {
200		ceiling &= PGDIR_MASK;
201		if (!ceiling)
202			return;
203	}
204	if (end - 1 > ceiling - 1)
205		return;
206
207	pud = pud_offset(pgd, start);
208	pgd_clear(pgd);
209	pud_free_tlb(tlb, pud);
210}
211
212/*
213 * This function frees user-level page tables of a process.
214 *
215 * Must be called with pagetable lock held.
216 */
217void free_pgd_range(struct mmu_gather *tlb,
218			unsigned long addr, unsigned long end,
219			unsigned long floor, unsigned long ceiling)
220{
221	pgd_t *pgd;
222	unsigned long next;
223	unsigned long start;
224
225	/*
226	 * The next few lines have given us lots of grief...
227	 *
228	 * Why are we testing PMD* at this top level?  Because often
229	 * there will be no work to do at all, and we'd prefer not to
230	 * go all the way down to the bottom just to discover that.
231	 *
232	 * Why all these "- 1"s?  Because 0 represents both the bottom
233	 * of the address space and the top of it (using -1 for the
234	 * top wouldn't help much: the masks would do the wrong thing).
235	 * The rule is that addr 0 and floor 0 refer to the bottom of
236	 * the address space, but end 0 and ceiling 0 refer to the top
237	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238	 * that end 0 case should be mythical).
239	 *
240	 * Wherever addr is brought up or ceiling brought down, we must
241	 * be careful to reject "the opposite 0" before it confuses the
242	 * subsequent tests.  But what about where end is brought down
243	 * by PMD_SIZE below? no, end can't go down to 0 there.
244	 *
245	 * Whereas we round start (addr) and ceiling down, by different
246	 * masks at different levels, in order to test whether a table
247	 * now has no other vmas using it, so can be freed, we don't
248	 * bother to round floor or end up - the tests don't need that.
249	 */
250
251	addr &= PMD_MASK;
252	if (addr < floor) {
253		addr += PMD_SIZE;
254		if (!addr)
255			return;
256	}
257	if (ceiling) {
258		ceiling &= PMD_MASK;
259		if (!ceiling)
260			return;
261	}
262	if (end - 1 > ceiling - 1)
263		end -= PMD_SIZE;
264	if (addr > end - 1)
265		return;
266
267	start = addr;
268	pgd = pgd_offset(tlb->mm, addr);
269	do {
270		next = pgd_addr_end(addr, end);
271		if (pgd_none_or_clear_bad(pgd))
272			continue;
273		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274	} while (pgd++, addr = next, addr != end);
275}
276
277void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278		unsigned long floor, unsigned long ceiling)
279{
280	while (vma) {
281		struct vm_area_struct *next = vma->vm_next;
282		unsigned long addr = vma->vm_start;
283
284		/*
285		 * Hide vma from rmap and vmtruncate before freeing pgtables
286		 */
287		anon_vma_unlink(vma);
288		unlink_file_vma(vma);
289
290		if (is_vm_hugetlb_page(vma)) {
291			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292				floor, next? next->vm_start: ceiling);
293		} else {
294			/*
295			 * Optimization: gather nearby vmas into one call down
296			 */
297			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298			       && !is_vm_hugetlb_page(next)) {
299				vma = next;
300				next = vma->vm_next;
301				anon_vma_unlink(vma);
302				unlink_file_vma(vma);
303			}
304			free_pgd_range(tlb, addr, vma->vm_end,
305				floor, next? next->vm_start: ceiling);
306		}
307		vma = next;
308	}
309}
310
311int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312{
313	pgtable_t new = pte_alloc_one(mm, address);
314	if (!new)
315		return -ENOMEM;
316
317	/*
318	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319	 * visible before the pte is made visible to other CPUs by being
320	 * put into page tables.
321	 *
322	 * The other side of the story is the pointer chasing in the page
323	 * table walking code (when walking the page table without locking;
324	 * ie. most of the time). Fortunately, these data accesses consist
325	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326	 * being the notable exception) will already guarantee loads are
327	 * seen in-order. See the alpha page table accessors for the
328	 * smp_read_barrier_depends() barriers in page table walking code.
329	 */
330	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
332	spin_lock(&mm->page_table_lock);
333	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334		mm->nr_ptes++;
335		pmd_populate(mm, pmd, new);
336		new = NULL;
337	}
338	spin_unlock(&mm->page_table_lock);
339	if (new)
340		pte_free(mm, new);
341	return 0;
342}
343
344int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345{
346	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347	if (!new)
348		return -ENOMEM;
349
350	smp_wmb(); /* See comment in __pte_alloc */
351
352	spin_lock(&init_mm.page_table_lock);
353	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354		pmd_populate_kernel(&init_mm, pmd, new);
355		new = NULL;
356	}
357	spin_unlock(&init_mm.page_table_lock);
358	if (new)
359		pte_free_kernel(&init_mm, new);
360	return 0;
361}
362
363static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364{
365	if (file_rss)
366		add_mm_counter(mm, file_rss, file_rss);
367	if (anon_rss)
368		add_mm_counter(mm, anon_rss, anon_rss);
369}
370
371/*
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
375 *
376 * The calling function must still handle the error.
377 */
378static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379			  unsigned long vaddr)
380{
381	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382			"vm_flags = %lx, vaddr = %lx\n",
383		(long long)pte_val(pte),
384		(vma->vm_mm == current->mm ? current->comm : "???"),
385		vma->vm_flags, vaddr);
386	dump_stack();
387}
388
389static inline int is_cow_mapping(unsigned int flags)
390{
391	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392}
393
394/*
395 * vm_normal_page -- This function gets the "struct page" associated with a pte.
396 *
397 * "Special" mappings do not wish to be associated with a "struct page" (either
398 * it doesn't exist, or it exists but they don't want to touch it). In this
399 * case, NULL is returned here. "Normal" mappings do have a struct page.
400 *
401 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402 * pte bit, in which case this function is trivial. Secondly, an architecture
403 * may not have a spare pte bit, which requires a more complicated scheme,
404 * described below.
405 *
406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407 * special mapping (even if there are underlying and valid "struct pages").
408 * COWed pages of a VM_PFNMAP are always normal.
409 *
410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413 * mapping will always honor the rule
414 *
415 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416 *
417 * And for normal mappings this is false.
418 *
419 * This restricts such mappings to be a linear translation from virtual address
420 * to pfn. To get around this restriction, we allow arbitrary mappings so long
421 * as the vma is not a COW mapping; in that case, we know that all ptes are
422 * special (because none can have been COWed).
423 *
424 *
425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426 *
427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428 * page" backing, however the difference is that _all_ pages with a struct
429 * page (that is, those where pfn_valid is true) are refcounted and considered
430 * normal pages by the VM. The disadvantage is that pages are refcounted
431 * (which can be slower and simply not an option for some PFNMAP users). The
432 * advantage is that we don't have to follow the strict linearity rule of
433 * PFNMAP mappings in order to support COWable mappings.
434 *
435 */
436#ifdef __HAVE_ARCH_PTE_SPECIAL
437# define HAVE_PTE_SPECIAL 1
438#else
439# define HAVE_PTE_SPECIAL 0
440#endif
441struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442				pte_t pte)
443{
444	unsigned long pfn;
445
446	if (HAVE_PTE_SPECIAL) {
447		if (likely(!pte_special(pte))) {
448			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449			return pte_page(pte);
450		}
451		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452		return NULL;
453	}
454
455	/* !HAVE_PTE_SPECIAL case follows: */
456
457	pfn = pte_pfn(pte);
458
459	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460		if (vma->vm_flags & VM_MIXEDMAP) {
461			if (!pfn_valid(pfn))
462				return NULL;
463			goto out;
464		} else {
465			unsigned long off;
466			off = (addr - vma->vm_start) >> PAGE_SHIFT;
467			if (pfn == vma->vm_pgoff + off)
468				return NULL;
469			if (!is_cow_mapping(vma->vm_flags))
470				return NULL;
471		}
472	}
473
474	VM_BUG_ON(!pfn_valid(pfn));
475
476	/*
477	 * NOTE! We still have PageReserved() pages in the page tables.
478	 *
479	 * eg. VDSO mappings can cause them to exist.
480	 */
481out:
482	return pfn_to_page(pfn);
483}
484
485/*
486 * copy one vm_area from one task to the other. Assumes the page tables
487 * already present in the new task to be cleared in the whole range
488 * covered by this vma.
489 */
490
491static inline void
492copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494		unsigned long addr, int *rss)
495{
496	unsigned long vm_flags = vma->vm_flags;
497	pte_t pte = *src_pte;
498	struct page *page;
499
500	/* pte contains position in swap or file, so copy. */
501	if (unlikely(!pte_present(pte))) {
502		if (!pte_file(pte)) {
503			swp_entry_t entry = pte_to_swp_entry(pte);
504
505			swap_duplicate(entry);
506			/* make sure dst_mm is on swapoff's mmlist. */
507			if (unlikely(list_empty(&dst_mm->mmlist))) {
508				spin_lock(&mmlist_lock);
509				if (list_empty(&dst_mm->mmlist))
510					list_add(&dst_mm->mmlist,
511						 &src_mm->mmlist);
512				spin_unlock(&mmlist_lock);
513			}
514			if (is_write_migration_entry(entry) &&
515					is_cow_mapping(vm_flags)) {
516				/*
517				 * COW mappings require pages in both parent
518				 * and child to be set to read.
519				 */
520				make_migration_entry_read(&entry);
521				pte = swp_entry_to_pte(entry);
522				set_pte_at(src_mm, addr, src_pte, pte);
523			}
524		}
525		goto out_set_pte;
526	}
527
528	/*
529	 * If it's a COW mapping, write protect it both
530	 * in the parent and the child
531	 */
532	if (is_cow_mapping(vm_flags)) {
533		ptep_set_wrprotect(src_mm, addr, src_pte);
534		pte = pte_wrprotect(pte);
535	}
536
537	/*
538	 * If it's a shared mapping, mark it clean in
539	 * the child
540	 */
541	if (vm_flags & VM_SHARED)
542		pte = pte_mkclean(pte);
543	pte = pte_mkold(pte);
544
545	page = vm_normal_page(vma, addr, pte);
546	if (page) {
547		get_page(page);
548		page_dup_rmap(page, vma, addr);
549		rss[!!PageAnon(page)]++;
550	}
551
552out_set_pte:
553	set_pte_at(dst_mm, addr, dst_pte, pte);
554}
555
556static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558		unsigned long addr, unsigned long end)
559{
560	pte_t *src_pte, *dst_pte;
561	spinlock_t *src_ptl, *dst_ptl;
562	int progress = 0;
563	int rss[2];
564
565again:
566	rss[1] = rss[0] = 0;
567	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568	if (!dst_pte)
569		return -ENOMEM;
570	src_pte = pte_offset_map_nested(src_pmd, addr);
571	src_ptl = pte_lockptr(src_mm, src_pmd);
572	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573	arch_enter_lazy_mmu_mode();
574
575	do {
576		/*
577		 * We are holding two locks at this point - either of them
578		 * could generate latencies in another task on another CPU.
579		 */
580		if (progress >= 32) {
581			progress = 0;
582			if (need_resched() ||
583			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584				break;
585		}
586		if (pte_none(*src_pte)) {
587			progress++;
588			continue;
589		}
590		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591		progress += 8;
592	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593
594	arch_leave_lazy_mmu_mode();
595	spin_unlock(src_ptl);
596	pte_unmap_nested(src_pte - 1);
597	add_mm_rss(dst_mm, rss[0], rss[1]);
598	pte_unmap_unlock(dst_pte - 1, dst_ptl);
599	cond_resched();
600	if (addr != end)
601		goto again;
602	return 0;
603}
604
605static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607		unsigned long addr, unsigned long end)
608{
609	pmd_t *src_pmd, *dst_pmd;
610	unsigned long next;
611
612	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613	if (!dst_pmd)
614		return -ENOMEM;
615	src_pmd = pmd_offset(src_pud, addr);
616	do {
617		next = pmd_addr_end(addr, end);
618		if (pmd_none_or_clear_bad(src_pmd))
619			continue;
620		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621						vma, addr, next))
622			return -ENOMEM;
623	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
624	return 0;
625}
626
627static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629		unsigned long addr, unsigned long end)
630{
631	pud_t *src_pud, *dst_pud;
632	unsigned long next;
633
634	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635	if (!dst_pud)
636		return -ENOMEM;
637	src_pud = pud_offset(src_pgd, addr);
638	do {
639		next = pud_addr_end(addr, end);
640		if (pud_none_or_clear_bad(src_pud))
641			continue;
642		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643						vma, addr, next))
644			return -ENOMEM;
645	} while (dst_pud++, src_pud++, addr = next, addr != end);
646	return 0;
647}
648
649int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650		struct vm_area_struct *vma)
651{
652	pgd_t *src_pgd, *dst_pgd;
653	unsigned long next;
654	unsigned long addr = vma->vm_start;
655	unsigned long end = vma->vm_end;
656	int ret;
657
658	/*
659	 * Don't copy ptes where a page fault will fill them correctly.
660	 * Fork becomes much lighter when there are big shared or private
661	 * readonly mappings. The tradeoff is that copy_page_range is more
662	 * efficient than faulting.
663	 */
664	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665		if (!vma->anon_vma)
666			return 0;
667	}
668
669	if (is_vm_hugetlb_page(vma))
670		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671
672	if (unlikely(is_pfn_mapping(vma))) {
673		/*
674		 * We do not free on error cases below as remove_vma
675		 * gets called on error from higher level routine
676		 */
677		ret = track_pfn_vma_copy(vma);
678		if (ret)
679			return ret;
680	}
681
682	/*
683	 * We need to invalidate the secondary MMU mappings only when
684	 * there could be a permission downgrade on the ptes of the
685	 * parent mm. And a permission downgrade will only happen if
686	 * is_cow_mapping() returns true.
687	 */
688	if (is_cow_mapping(vma->vm_flags))
689		mmu_notifier_invalidate_range_start(src_mm, addr, end);
690
691	ret = 0;
692	dst_pgd = pgd_offset(dst_mm, addr);
693	src_pgd = pgd_offset(src_mm, addr);
694	do {
695		next = pgd_addr_end(addr, end);
696		if (pgd_none_or_clear_bad(src_pgd))
697			continue;
698		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
699					    vma, addr, next))) {
700			ret = -ENOMEM;
701			break;
702		}
703	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
704
705	if (is_cow_mapping(vma->vm_flags))
706		mmu_notifier_invalidate_range_end(src_mm,
707						  vma->vm_start, end);
708	return ret;
709}
710
711static unsigned long zap_pte_range(struct mmu_gather *tlb,
712				struct vm_area_struct *vma, pmd_t *pmd,
713				unsigned long addr, unsigned long end,
714				long *zap_work, struct zap_details *details)
715{
716	struct mm_struct *mm = tlb->mm;
717	pte_t *pte;
718	spinlock_t *ptl;
719	int file_rss = 0;
720	int anon_rss = 0;
721
722	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
723	arch_enter_lazy_mmu_mode();
724	do {
725		pte_t ptent = *pte;
726		if (pte_none(ptent)) {
727			(*zap_work)--;
728			continue;
729		}
730
731		(*zap_work) -= PAGE_SIZE;
732
733		if (pte_present(ptent)) {
734			struct page *page;
735
736			page = vm_normal_page(vma, addr, ptent);
737			if (unlikely(details) && page) {
738				/*
739				 * unmap_shared_mapping_pages() wants to
740				 * invalidate cache without truncating:
741				 * unmap shared but keep private pages.
742				 */
743				if (details->check_mapping &&
744				    details->check_mapping != page->mapping)
745					continue;
746				/*
747				 * Each page->index must be checked when
748				 * invalidating or truncating nonlinear.
749				 */
750				if (details->nonlinear_vma &&
751				    (page->index < details->first_index ||
752				     page->index > details->last_index))
753					continue;
754			}
755			ptent = ptep_get_and_clear_full(mm, addr, pte,
756							tlb->fullmm);
757			tlb_remove_tlb_entry(tlb, pte, addr);
758			if (unlikely(!page))
759				continue;
760			if (unlikely(details) && details->nonlinear_vma
761			    && linear_page_index(details->nonlinear_vma,
762						addr) != page->index)
763				set_pte_at(mm, addr, pte,
764					   pgoff_to_pte(page->index));
765			if (PageAnon(page))
766				anon_rss--;
767			else {
768				if (pte_dirty(ptent))
769					set_page_dirty(page);
770				if (pte_young(ptent))
771					mark_page_accessed(page);
772				file_rss--;
773			}
774			page_remove_rmap(page, vma);
775			tlb_remove_page(tlb, page);
776			continue;
777		}
778		/*
779		 * If details->check_mapping, we leave swap entries;
780		 * if details->nonlinear_vma, we leave file entries.
781		 */
782		if (unlikely(details))
783			continue;
784		if (!pte_file(ptent))
785			free_swap_and_cache(pte_to_swp_entry(ptent));
786		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
787	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
788
789	add_mm_rss(mm, file_rss, anon_rss);
790	arch_leave_lazy_mmu_mode();
791	pte_unmap_unlock(pte - 1, ptl);
792
793	return addr;
794}
795
796static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
797				struct vm_area_struct *vma, pud_t *pud,
798				unsigned long addr, unsigned long end,
799				long *zap_work, struct zap_details *details)
800{
801	pmd_t *pmd;
802	unsigned long next;
803
804	pmd = pmd_offset(pud, addr);
805	do {
806		next = pmd_addr_end(addr, end);
807		if (pmd_none_or_clear_bad(pmd)) {
808			(*zap_work)--;
809			continue;
810		}
811		next = zap_pte_range(tlb, vma, pmd, addr, next,
812						zap_work, details);
813	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
814
815	return addr;
816}
817
818static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
819				struct vm_area_struct *vma, pgd_t *pgd,
820				unsigned long addr, unsigned long end,
821				long *zap_work, struct zap_details *details)
822{
823	pud_t *pud;
824	unsigned long next;
825
826	pud = pud_offset(pgd, addr);
827	do {
828		next = pud_addr_end(addr, end);
829		if (pud_none_or_clear_bad(pud)) {
830			(*zap_work)--;
831			continue;
832		}
833		next = zap_pmd_range(tlb, vma, pud, addr, next,
834						zap_work, details);
835	} while (pud++, addr = next, (addr != end && *zap_work > 0));
836
837	return addr;
838}
839
840static unsigned long unmap_page_range(struct mmu_gather *tlb,
841				struct vm_area_struct *vma,
842				unsigned long addr, unsigned long end,
843				long *zap_work, struct zap_details *details)
844{
845	pgd_t *pgd;
846	unsigned long next;
847
848	if (details && !details->check_mapping && !details->nonlinear_vma)
849		details = NULL;
850
851	BUG_ON(addr >= end);
852	tlb_start_vma(tlb, vma);
853	pgd = pgd_offset(vma->vm_mm, addr);
854	do {
855		next = pgd_addr_end(addr, end);
856		if (pgd_none_or_clear_bad(pgd)) {
857			(*zap_work)--;
858			continue;
859		}
860		next = zap_pud_range(tlb, vma, pgd, addr, next,
861						zap_work, details);
862	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
863	tlb_end_vma(tlb, vma);
864
865	return addr;
866}
867
868#ifdef CONFIG_PREEMPT
869# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
870#else
871/* No preempt: go for improved straight-line efficiency */
872# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
873#endif
874
875/**
876 * unmap_vmas - unmap a range of memory covered by a list of vma's
877 * @tlbp: address of the caller's struct mmu_gather
878 * @vma: the starting vma
879 * @start_addr: virtual address at which to start unmapping
880 * @end_addr: virtual address at which to end unmapping
881 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
882 * @details: details of nonlinear truncation or shared cache invalidation
883 *
884 * Returns the end address of the unmapping (restart addr if interrupted).
885 *
886 * Unmap all pages in the vma list.
887 *
888 * We aim to not hold locks for too long (for scheduling latency reasons).
889 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
890 * return the ending mmu_gather to the caller.
891 *
892 * Only addresses between `start' and `end' will be unmapped.
893 *
894 * The VMA list must be sorted in ascending virtual address order.
895 *
896 * unmap_vmas() assumes that the caller will flush the whole unmapped address
897 * range after unmap_vmas() returns.  So the only responsibility here is to
898 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
899 * drops the lock and schedules.
900 */
901unsigned long unmap_vmas(struct mmu_gather **tlbp,
902		struct vm_area_struct *vma, unsigned long start_addr,
903		unsigned long end_addr, unsigned long *nr_accounted,
904		struct zap_details *details)
905{
906	long zap_work = ZAP_BLOCK_SIZE;
907	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
908	int tlb_start_valid = 0;
909	unsigned long start = start_addr;
910	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
911	int fullmm = (*tlbp)->fullmm;
912	struct mm_struct *mm = vma->vm_mm;
913
914	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
915	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
916		unsigned long end;
917
918		start = max(vma->vm_start, start_addr);
919		if (start >= vma->vm_end)
920			continue;
921		end = min(vma->vm_end, end_addr);
922		if (end <= vma->vm_start)
923			continue;
924
925		if (vma->vm_flags & VM_ACCOUNT)
926			*nr_accounted += (end - start) >> PAGE_SHIFT;
927
928		if (unlikely(is_pfn_mapping(vma)))
929			untrack_pfn_vma(vma, 0, 0);
930
931		while (start != end) {
932			if (!tlb_start_valid) {
933				tlb_start = start;
934				tlb_start_valid = 1;
935			}
936
937			if (unlikely(is_vm_hugetlb_page(vma))) {
938				/*
939				 * It is undesirable to test vma->vm_file as it
940				 * should be non-null for valid hugetlb area.
941				 * However, vm_file will be NULL in the error
942				 * cleanup path of do_mmap_pgoff. When
943				 * hugetlbfs ->mmap method fails,
944				 * do_mmap_pgoff() nullifies vma->vm_file
945				 * before calling this function to clean up.
946				 * Since no pte has actually been setup, it is
947				 * safe to do nothing in this case.
948				 */
949				if (vma->vm_file) {
950					unmap_hugepage_range(vma, start, end, NULL);
951					zap_work -= (end - start) /
952					pages_per_huge_page(hstate_vma(vma));
953				}
954
955				start = end;
956			} else
957				start = unmap_page_range(*tlbp, vma,
958						start, end, &zap_work, details);
959
960			if (zap_work > 0) {
961				BUG_ON(start != end);
962				break;
963			}
964
965			tlb_finish_mmu(*tlbp, tlb_start, start);
966
967			if (need_resched() ||
968				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
969				if (i_mmap_lock) {
970					*tlbp = NULL;
971					goto out;
972				}
973				cond_resched();
974			}
975
976			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
977			tlb_start_valid = 0;
978			zap_work = ZAP_BLOCK_SIZE;
979		}
980	}
981out:
982	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
983	return start;	/* which is now the end (or restart) address */
984}
985
986/**
987 * zap_page_range - remove user pages in a given range
988 * @vma: vm_area_struct holding the applicable pages
989 * @address: starting address of pages to zap
990 * @size: number of bytes to zap
991 * @details: details of nonlinear truncation or shared cache invalidation
992 */
993unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
994		unsigned long size, struct zap_details *details)
995{
996	struct mm_struct *mm = vma->vm_mm;
997	struct mmu_gather *tlb;
998	unsigned long end = address + size;
999	unsigned long nr_accounted = 0;
1000
1001	lru_add_drain();
1002	tlb = tlb_gather_mmu(mm, 0);
1003	update_hiwater_rss(mm);
1004	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1005	if (tlb)
1006		tlb_finish_mmu(tlb, address, end);
1007	return end;
1008}
1009
1010/**
1011 * zap_vma_ptes - remove ptes mapping the vma
1012 * @vma: vm_area_struct holding ptes to be zapped
1013 * @address: starting address of pages to zap
1014 * @size: number of bytes to zap
1015 *
1016 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1017 *
1018 * The entire address range must be fully contained within the vma.
1019 *
1020 * Returns 0 if successful.
1021 */
1022int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1023		unsigned long size)
1024{
1025	if (address < vma->vm_start || address + size > vma->vm_end ||
1026	    		!(vma->vm_flags & VM_PFNMAP))
1027		return -1;
1028	zap_page_range(vma, address, size, NULL);
1029	return 0;
1030}
1031EXPORT_SYMBOL_GPL(zap_vma_ptes);
1032
1033/*
1034 * Do a quick page-table lookup for a single page.
1035 */
1036struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1037			unsigned int flags)
1038{
1039	pgd_t *pgd;
1040	pud_t *pud;
1041	pmd_t *pmd;
1042	pte_t *ptep, pte;
1043	spinlock_t *ptl;
1044	struct page *page;
1045	struct mm_struct *mm = vma->vm_mm;
1046
1047	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1048	if (!IS_ERR(page)) {
1049		BUG_ON(flags & FOLL_GET);
1050		goto out;
1051	}
1052
1053	page = NULL;
1054	pgd = pgd_offset(mm, address);
1055	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1056		goto no_page_table;
1057
1058	pud = pud_offset(pgd, address);
1059	if (pud_none(*pud))
1060		goto no_page_table;
1061	if (pud_huge(*pud)) {
1062		BUG_ON(flags & FOLL_GET);
1063		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1064		goto out;
1065	}
1066	if (unlikely(pud_bad(*pud)))
1067		goto no_page_table;
1068
1069	pmd = pmd_offset(pud, address);
1070	if (pmd_none(*pmd))
1071		goto no_page_table;
1072	if (pmd_huge(*pmd)) {
1073		BUG_ON(flags & FOLL_GET);
1074		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1075		goto out;
1076	}
1077	if (unlikely(pmd_bad(*pmd)))
1078		goto no_page_table;
1079
1080	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1081
1082	pte = *ptep;
1083	if (!pte_present(pte))
1084		goto no_page;
1085	if ((flags & FOLL_WRITE) && !pte_write(pte))
1086		goto unlock;
1087	page = vm_normal_page(vma, address, pte);
1088	if (unlikely(!page))
1089		goto bad_page;
1090
1091	if (flags & FOLL_GET)
1092		get_page(page);
1093	if (flags & FOLL_TOUCH) {
1094		if ((flags & FOLL_WRITE) &&
1095		    !pte_dirty(pte) && !PageDirty(page))
1096			set_page_dirty(page);
1097		mark_page_accessed(page);
1098	}
1099unlock:
1100	pte_unmap_unlock(ptep, ptl);
1101out:
1102	return page;
1103
1104bad_page:
1105	pte_unmap_unlock(ptep, ptl);
1106	return ERR_PTR(-EFAULT);
1107
1108no_page:
1109	pte_unmap_unlock(ptep, ptl);
1110	if (!pte_none(pte))
1111		return page;
1112	/* Fall through to ZERO_PAGE handling */
1113no_page_table:
1114	/*
1115	 * When core dumping an enormous anonymous area that nobody
1116	 * has touched so far, we don't want to allocate page tables.
1117	 */
1118	if (flags & FOLL_ANON) {
1119		page = ZERO_PAGE(0);
1120		if (flags & FOLL_GET)
1121			get_page(page);
1122		BUG_ON(flags & FOLL_WRITE);
1123	}
1124	return page;
1125}
1126
1127/* Can we do the FOLL_ANON optimization? */
1128static inline int use_zero_page(struct vm_area_struct *vma)
1129{
1130	/*
1131	 * We don't want to optimize FOLL_ANON for make_pages_present()
1132	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1133	 * we want to get the page from the page tables to make sure
1134	 * that we serialize and update with any other user of that
1135	 * mapping.
1136	 */
1137	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1138		return 0;
1139	/*
1140	 * And if we have a fault routine, it's not an anonymous region.
1141	 */
1142	return !vma->vm_ops || !vma->vm_ops->fault;
1143}
1144
1145
1146
1147int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1148		     unsigned long start, int len, int flags,
1149		struct page **pages, struct vm_area_struct **vmas)
1150{
1151	int i;
1152	unsigned int vm_flags = 0;
1153	int write = !!(flags & GUP_FLAGS_WRITE);
1154	int force = !!(flags & GUP_FLAGS_FORCE);
1155	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1156
1157	if (len <= 0)
1158		return 0;
1159	/*
1160	 * Require read or write permissions.
1161	 * If 'force' is set, we only require the "MAY" flags.
1162	 */
1163	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1164	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1165	i = 0;
1166
1167	do {
1168		struct vm_area_struct *vma;
1169		unsigned int foll_flags;
1170
1171		vma = find_extend_vma(mm, start);
1172		if (!vma && in_gate_area(tsk, start)) {
1173			unsigned long pg = start & PAGE_MASK;
1174			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1175			pgd_t *pgd;
1176			pud_t *pud;
1177			pmd_t *pmd;
1178			pte_t *pte;
1179
1180			/* user gate pages are read-only */
1181			if (!ignore && write)
1182				return i ? : -EFAULT;
1183			if (pg > TASK_SIZE)
1184				pgd = pgd_offset_k(pg);
1185			else
1186				pgd = pgd_offset_gate(mm, pg);
1187			BUG_ON(pgd_none(*pgd));
1188			pud = pud_offset(pgd, pg);
1189			BUG_ON(pud_none(*pud));
1190			pmd = pmd_offset(pud, pg);
1191			if (pmd_none(*pmd))
1192				return i ? : -EFAULT;
1193			pte = pte_offset_map(pmd, pg);
1194			if (pte_none(*pte)) {
1195				pte_unmap(pte);
1196				return i ? : -EFAULT;
1197			}
1198			if (pages) {
1199				struct page *page = vm_normal_page(gate_vma, start, *pte);
1200				pages[i] = page;
1201				if (page)
1202					get_page(page);
1203			}
1204			pte_unmap(pte);
1205			if (vmas)
1206				vmas[i] = gate_vma;
1207			i++;
1208			start += PAGE_SIZE;
1209			len--;
1210			continue;
1211		}
1212
1213		if (!vma ||
1214		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1215		    (!ignore && !(vm_flags & vma->vm_flags)))
1216			return i ? : -EFAULT;
1217
1218		if (is_vm_hugetlb_page(vma)) {
1219			i = follow_hugetlb_page(mm, vma, pages, vmas,
1220						&start, &len, i, write);
1221			continue;
1222		}
1223
1224		foll_flags = FOLL_TOUCH;
1225		if (pages)
1226			foll_flags |= FOLL_GET;
1227		if (!write && use_zero_page(vma))
1228			foll_flags |= FOLL_ANON;
1229
1230		do {
1231			struct page *page;
1232
1233			/*
1234			 * If tsk is ooming, cut off its access to large memory
1235			 * allocations. It has a pending SIGKILL, but it can't
1236			 * be processed until returning to user space.
1237			 */
1238			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1239				return i ? i : -ENOMEM;
1240
1241			if (write)
1242				foll_flags |= FOLL_WRITE;
1243
1244			cond_resched();
1245			while (!(page = follow_page(vma, start, foll_flags))) {
1246				int ret;
1247				ret = handle_mm_fault(mm, vma, start,
1248						foll_flags & FOLL_WRITE);
1249				if (ret & VM_FAULT_ERROR) {
1250					if (ret & VM_FAULT_OOM)
1251						return i ? i : -ENOMEM;
1252					else if (ret & VM_FAULT_SIGBUS)
1253						return i ? i : -EFAULT;
1254					BUG();
1255				}
1256				if (ret & VM_FAULT_MAJOR)
1257					tsk->maj_flt++;
1258				else
1259					tsk->min_flt++;
1260
1261				/*
1262				 * The VM_FAULT_WRITE bit tells us that
1263				 * do_wp_page has broken COW when necessary,
1264				 * even if maybe_mkwrite decided not to set
1265				 * pte_write. We can thus safely do subsequent
1266				 * page lookups as if they were reads.
1267				 */
1268				if (ret & VM_FAULT_WRITE)
1269					foll_flags &= ~FOLL_WRITE;
1270
1271				cond_resched();
1272			}
1273			if (IS_ERR(page))
1274				return i ? i : PTR_ERR(page);
1275			if (pages) {
1276				pages[i] = page;
1277
1278				flush_anon_page(vma, page, start);
1279				flush_dcache_page(page);
1280			}
1281			if (vmas)
1282				vmas[i] = vma;
1283			i++;
1284			start += PAGE_SIZE;
1285			len--;
1286		} while (len && start < vma->vm_end);
1287	} while (len);
1288	return i;
1289}
1290
1291int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1292		unsigned long start, int len, int write, int force,
1293		struct page **pages, struct vm_area_struct **vmas)
1294{
1295	int flags = 0;
1296
1297	if (write)
1298		flags |= GUP_FLAGS_WRITE;
1299	if (force)
1300		flags |= GUP_FLAGS_FORCE;
1301
1302	return __get_user_pages(tsk, mm,
1303				start, len, flags,
1304				pages, vmas);
1305}
1306
1307EXPORT_SYMBOL(get_user_pages);
1308
1309pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1310			spinlock_t **ptl)
1311{
1312	pgd_t * pgd = pgd_offset(mm, addr);
1313	pud_t * pud = pud_alloc(mm, pgd, addr);
1314	if (pud) {
1315		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1316		if (pmd)
1317			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1318	}
1319	return NULL;
1320}
1321
1322/*
1323 * This is the old fallback for page remapping.
1324 *
1325 * For historical reasons, it only allows reserved pages. Only
1326 * old drivers should use this, and they needed to mark their
1327 * pages reserved for the old functions anyway.
1328 */
1329static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1330			struct page *page, pgprot_t prot)
1331{
1332	struct mm_struct *mm = vma->vm_mm;
1333	int retval;
1334	pte_t *pte;
1335	spinlock_t *ptl;
1336
1337	retval = -EINVAL;
1338	if (PageAnon(page))
1339		goto out;
1340	retval = -ENOMEM;
1341	flush_dcache_page(page);
1342	pte = get_locked_pte(mm, addr, &ptl);
1343	if (!pte)
1344		goto out;
1345	retval = -EBUSY;
1346	if (!pte_none(*pte))
1347		goto out_unlock;
1348
1349	/* Ok, finally just insert the thing.. */
1350	get_page(page);
1351	inc_mm_counter(mm, file_rss);
1352	page_add_file_rmap(page);
1353	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1354
1355	retval = 0;
1356	pte_unmap_unlock(pte, ptl);
1357	return retval;
1358out_unlock:
1359	pte_unmap_unlock(pte, ptl);
1360out:
1361	return retval;
1362}
1363
1364/**
1365 * vm_insert_page - insert single page into user vma
1366 * @vma: user vma to map to
1367 * @addr: target user address of this page
1368 * @page: source kernel page
1369 *
1370 * This allows drivers to insert individual pages they've allocated
1371 * into a user vma.
1372 *
1373 * The page has to be a nice clean _individual_ kernel allocation.
1374 * If you allocate a compound page, you need to have marked it as
1375 * such (__GFP_COMP), or manually just split the page up yourself
1376 * (see split_page()).
1377 *
1378 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1379 * took an arbitrary page protection parameter. This doesn't allow
1380 * that. Your vma protection will have to be set up correctly, which
1381 * means that if you want a shared writable mapping, you'd better
1382 * ask for a shared writable mapping!
1383 *
1384 * The page does not need to be reserved.
1385 */
1386int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1387			struct page *page)
1388{
1389	if (addr < vma->vm_start || addr >= vma->vm_end)
1390		return -EFAULT;
1391	if (!page_count(page))
1392		return -EINVAL;
1393	vma->vm_flags |= VM_INSERTPAGE;
1394	return insert_page(vma, addr, page, vma->vm_page_prot);
1395}
1396EXPORT_SYMBOL(vm_insert_page);
1397
1398static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1399			unsigned long pfn, pgprot_t prot)
1400{
1401	struct mm_struct *mm = vma->vm_mm;
1402	int retval;
1403	pte_t *pte, entry;
1404	spinlock_t *ptl;
1405
1406	retval = -ENOMEM;
1407	pte = get_locked_pte(mm, addr, &ptl);
1408	if (!pte)
1409		goto out;
1410	retval = -EBUSY;
1411	if (!pte_none(*pte))
1412		goto out_unlock;
1413
1414	/* Ok, finally just insert the thing.. */
1415	entry = pte_mkspecial(pfn_pte(pfn, prot));
1416	set_pte_at(mm, addr, pte, entry);
1417	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1418
1419	retval = 0;
1420out_unlock:
1421	pte_unmap_unlock(pte, ptl);
1422out:
1423	return retval;
1424}
1425
1426/**
1427 * vm_insert_pfn - insert single pfn into user vma
1428 * @vma: user vma to map to
1429 * @addr: target user address of this page
1430 * @pfn: source kernel pfn
1431 *
1432 * Similar to vm_inert_page, this allows drivers to insert individual pages
1433 * they've allocated into a user vma. Same comments apply.
1434 *
1435 * This function should only be called from a vm_ops->fault handler, and
1436 * in that case the handler should return NULL.
1437 *
1438 * vma cannot be a COW mapping.
1439 *
1440 * As this is called only for pages that do not currently exist, we
1441 * do not need to flush old virtual caches or the TLB.
1442 */
1443int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1444			unsigned long pfn)
1445{
1446	int ret;
1447	/*
1448	 * Technically, architectures with pte_special can avoid all these
1449	 * restrictions (same for remap_pfn_range).  However we would like
1450	 * consistency in testing and feature parity among all, so we should
1451	 * try to keep these invariants in place for everybody.
1452	 */
1453	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1454	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1455						(VM_PFNMAP|VM_MIXEDMAP));
1456	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1457	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1458
1459	if (addr < vma->vm_start || addr >= vma->vm_end)
1460		return -EFAULT;
1461	if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1462		return -EINVAL;
1463
1464	ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1465
1466	if (ret)
1467		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1468
1469	return ret;
1470}
1471EXPORT_SYMBOL(vm_insert_pfn);
1472
1473int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1474			unsigned long pfn)
1475{
1476	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1477
1478	if (addr < vma->vm_start || addr >= vma->vm_end)
1479		return -EFAULT;
1480
1481	/*
1482	 * If we don't have pte special, then we have to use the pfn_valid()
1483	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1484	 * refcount the page if pfn_valid is true (hence insert_page rather
1485	 * than insert_pfn).
1486	 */
1487	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1488		struct page *page;
1489
1490		page = pfn_to_page(pfn);
1491		return insert_page(vma, addr, page, vma->vm_page_prot);
1492	}
1493	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1494}
1495EXPORT_SYMBOL(vm_insert_mixed);
1496
1497/*
1498 * maps a range of physical memory into the requested pages. the old
1499 * mappings are removed. any references to nonexistent pages results
1500 * in null mappings (currently treated as "copy-on-access")
1501 */
1502static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1503			unsigned long addr, unsigned long end,
1504			unsigned long pfn, pgprot_t prot)
1505{
1506	pte_t *pte;
1507	spinlock_t *ptl;
1508
1509	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1510	if (!pte)
1511		return -ENOMEM;
1512	arch_enter_lazy_mmu_mode();
1513	do {
1514		BUG_ON(!pte_none(*pte));
1515		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1516		pfn++;
1517	} while (pte++, addr += PAGE_SIZE, addr != end);
1518	arch_leave_lazy_mmu_mode();
1519	pte_unmap_unlock(pte - 1, ptl);
1520	return 0;
1521}
1522
1523static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1524			unsigned long addr, unsigned long end,
1525			unsigned long pfn, pgprot_t prot)
1526{
1527	pmd_t *pmd;
1528	unsigned long next;
1529
1530	pfn -= addr >> PAGE_SHIFT;
1531	pmd = pmd_alloc(mm, pud, addr);
1532	if (!pmd)
1533		return -ENOMEM;
1534	do {
1535		next = pmd_addr_end(addr, end);
1536		if (remap_pte_range(mm, pmd, addr, next,
1537				pfn + (addr >> PAGE_SHIFT), prot))
1538			return -ENOMEM;
1539	} while (pmd++, addr = next, addr != end);
1540	return 0;
1541}
1542
1543static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1544			unsigned long addr, unsigned long end,
1545			unsigned long pfn, pgprot_t prot)
1546{
1547	pud_t *pud;
1548	unsigned long next;
1549
1550	pfn -= addr >> PAGE_SHIFT;
1551	pud = pud_alloc(mm, pgd, addr);
1552	if (!pud)
1553		return -ENOMEM;
1554	do {
1555		next = pud_addr_end(addr, end);
1556		if (remap_pmd_range(mm, pud, addr, next,
1557				pfn + (addr >> PAGE_SHIFT), prot))
1558			return -ENOMEM;
1559	} while (pud++, addr = next, addr != end);
1560	return 0;
1561}
1562
1563/**
1564 * remap_pfn_range - remap kernel memory to userspace
1565 * @vma: user vma to map to
1566 * @addr: target user address to start at
1567 * @pfn: physical address of kernel memory
1568 * @size: size of map area
1569 * @prot: page protection flags for this mapping
1570 *
1571 *  Note: this is only safe if the mm semaphore is held when called.
1572 */
1573int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1574		    unsigned long pfn, unsigned long size, pgprot_t prot)
1575{
1576	pgd_t *pgd;
1577	unsigned long next;
1578	unsigned long end = addr + PAGE_ALIGN(size);
1579	struct mm_struct *mm = vma->vm_mm;
1580	int err;
1581
1582	/*
1583	 * Physically remapped pages are special. Tell the
1584	 * rest of the world about it:
1585	 *   VM_IO tells people not to look at these pages
1586	 *	(accesses can have side effects).
1587	 *   VM_RESERVED is specified all over the place, because
1588	 *	in 2.4 it kept swapout's vma scan off this vma; but
1589	 *	in 2.6 the LRU scan won't even find its pages, so this
1590	 *	flag means no more than count its pages in reserved_vm,
1591	 * 	and omit it from core dump, even when VM_IO turned off.
1592	 *   VM_PFNMAP tells the core MM that the base pages are just
1593	 *	raw PFN mappings, and do not have a "struct page" associated
1594	 *	with them.
1595	 *
1596	 * There's a horrible special case to handle copy-on-write
1597	 * behaviour that some programs depend on. We mark the "original"
1598	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1599	 */
1600	if (addr == vma->vm_start && end == vma->vm_end)
1601		vma->vm_pgoff = pfn;
1602	else if (is_cow_mapping(vma->vm_flags))
1603		return -EINVAL;
1604
1605	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1606
1607	err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1608	if (err)
1609		return -EINVAL;
1610
1611	BUG_ON(addr >= end);
1612	pfn -= addr >> PAGE_SHIFT;
1613	pgd = pgd_offset(mm, addr);
1614	flush_cache_range(vma, addr, end);
1615	do {
1616		next = pgd_addr_end(addr, end);
1617		err = remap_pud_range(mm, pgd, addr, next,
1618				pfn + (addr >> PAGE_SHIFT), prot);
1619		if (err)
1620			break;
1621	} while (pgd++, addr = next, addr != end);
1622
1623	if (err)
1624		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1625
1626	return err;
1627}
1628EXPORT_SYMBOL(remap_pfn_range);
1629
1630static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1631				     unsigned long addr, unsigned long end,
1632				     pte_fn_t fn, void *data)
1633{
1634	pte_t *pte;
1635	int err;
1636	pgtable_t token;
1637	spinlock_t *uninitialized_var(ptl);
1638
1639	pte = (mm == &init_mm) ?
1640		pte_alloc_kernel(pmd, addr) :
1641		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1642	if (!pte)
1643		return -ENOMEM;
1644
1645	BUG_ON(pmd_huge(*pmd));
1646
1647	token = pmd_pgtable(*pmd);
1648
1649	do {
1650		err = fn(pte, token, addr, data);
1651		if (err)
1652			break;
1653	} while (pte++, addr += PAGE_SIZE, addr != end);
1654
1655	if (mm != &init_mm)
1656		pte_unmap_unlock(pte-1, ptl);
1657	return err;
1658}
1659
1660static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1661				     unsigned long addr, unsigned long end,
1662				     pte_fn_t fn, void *data)
1663{
1664	pmd_t *pmd;
1665	unsigned long next;
1666	int err;
1667
1668	BUG_ON(pud_huge(*pud));
1669
1670	pmd = pmd_alloc(mm, pud, addr);
1671	if (!pmd)
1672		return -ENOMEM;
1673	do {
1674		next = pmd_addr_end(addr, end);
1675		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1676		if (err)
1677			break;
1678	} while (pmd++, addr = next, addr != end);
1679	return err;
1680}
1681
1682static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1683				     unsigned long addr, unsigned long end,
1684				     pte_fn_t fn, void *data)
1685{
1686	pud_t *pud;
1687	unsigned long next;
1688	int err;
1689
1690	pud = pud_alloc(mm, pgd, addr);
1691	if (!pud)
1692		return -ENOMEM;
1693	do {
1694		next = pud_addr_end(addr, end);
1695		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1696		if (err)
1697			break;
1698	} while (pud++, addr = next, addr != end);
1699	return err;
1700}
1701
1702/*
1703 * Scan a region of virtual memory, filling in page tables as necessary
1704 * and calling a provided function on each leaf page table.
1705 */
1706int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1707			unsigned long size, pte_fn_t fn, void *data)
1708{
1709	pgd_t *pgd;
1710	unsigned long next;
1711	unsigned long start = addr, end = addr + size;
1712	int err;
1713
1714	BUG_ON(addr >= end);
1715	mmu_notifier_invalidate_range_start(mm, start, end);
1716	pgd = pgd_offset(mm, addr);
1717	do {
1718		next = pgd_addr_end(addr, end);
1719		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1720		if (err)
1721			break;
1722	} while (pgd++, addr = next, addr != end);
1723	mmu_notifier_invalidate_range_end(mm, start, end);
1724	return err;
1725}
1726EXPORT_SYMBOL_GPL(apply_to_page_range);
1727
1728/*
1729 * handle_pte_fault chooses page fault handler according to an entry
1730 * which was read non-atomically.  Before making any commitment, on
1731 * those architectures or configurations (e.g. i386 with PAE) which
1732 * might give a mix of unmatched parts, do_swap_page and do_file_page
1733 * must check under lock before unmapping the pte and proceeding
1734 * (but do_wp_page is only called after already making such a check;
1735 * and do_anonymous_page and do_no_page can safely check later on).
1736 */
1737static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1738				pte_t *page_table, pte_t orig_pte)
1739{
1740	int same = 1;
1741#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1742	if (sizeof(pte_t) > sizeof(unsigned long)) {
1743		spinlock_t *ptl = pte_lockptr(mm, pmd);
1744		spin_lock(ptl);
1745		same = pte_same(*page_table, orig_pte);
1746		spin_unlock(ptl);
1747	}
1748#endif
1749	pte_unmap(page_table);
1750	return same;
1751}
1752
1753/*
1754 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1755 * servicing faults for write access.  In the normal case, do always want
1756 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1757 * that do not have writing enabled, when used by access_process_vm.
1758 */
1759static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1760{
1761	if (likely(vma->vm_flags & VM_WRITE))
1762		pte = pte_mkwrite(pte);
1763	return pte;
1764}
1765
1766static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1767{
1768	/*
1769	 * If the source page was a PFN mapping, we don't have
1770	 * a "struct page" for it. We do a best-effort copy by
1771	 * just copying from the original user address. If that
1772	 * fails, we just zero-fill it. Live with it.
1773	 */
1774	if (unlikely(!src)) {
1775		void *kaddr = kmap_atomic(dst, KM_USER0);
1776		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1777
1778		/*
1779		 * This really shouldn't fail, because the page is there
1780		 * in the page tables. But it might just be unreadable,
1781		 * in which case we just give up and fill the result with
1782		 * zeroes.
1783		 */
1784		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1785			memset(kaddr, 0, PAGE_SIZE);
1786		kunmap_atomic(kaddr, KM_USER0);
1787		flush_dcache_page(dst);
1788	} else
1789		copy_user_highpage(dst, src, va, vma);
1790}
1791
1792/*
1793 * This routine handles present pages, when users try to write
1794 * to a shared page. It is done by copying the page to a new address
1795 * and decrementing the shared-page counter for the old page.
1796 *
1797 * Note that this routine assumes that the protection checks have been
1798 * done by the caller (the low-level page fault routine in most cases).
1799 * Thus we can safely just mark it writable once we've done any necessary
1800 * COW.
1801 *
1802 * We also mark the page dirty at this point even though the page will
1803 * change only once the write actually happens. This avoids a few races,
1804 * and potentially makes it more efficient.
1805 *
1806 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1807 * but allow concurrent faults), with pte both mapped and locked.
1808 * We return with mmap_sem still held, but pte unmapped and unlocked.
1809 */
1810static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1811		unsigned long address, pte_t *page_table, pmd_t *pmd,
1812		spinlock_t *ptl, pte_t orig_pte)
1813{
1814	struct page *old_page, *new_page;
1815	pte_t entry;
1816	int reuse = 0, ret = 0;
1817	int page_mkwrite = 0;
1818	struct page *dirty_page = NULL;
1819
1820	old_page = vm_normal_page(vma, address, orig_pte);
1821	if (!old_page) {
1822		/*
1823		 * VM_MIXEDMAP !pfn_valid() case
1824		 *
1825		 * We should not cow pages in a shared writeable mapping.
1826		 * Just mark the pages writable as we can't do any dirty
1827		 * accounting on raw pfn maps.
1828		 */
1829		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1830				     (VM_WRITE|VM_SHARED))
1831			goto reuse;
1832		goto gotten;
1833	}
1834
1835	/*
1836	 * Take out anonymous pages first, anonymous shared vmas are
1837	 * not dirty accountable.
1838	 */
1839	if (PageAnon(old_page)) {
1840		if (trylock_page(old_page)) {
1841			reuse = can_share_swap_page(old_page);
1842			unlock_page(old_page);
1843		}
1844	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1845					(VM_WRITE|VM_SHARED))) {
1846		/*
1847		 * Only catch write-faults on shared writable pages,
1848		 * read-only shared pages can get COWed by
1849		 * get_user_pages(.write=1, .force=1).
1850		 */
1851		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1852			/*
1853			 * Notify the address space that the page is about to
1854			 * become writable so that it can prohibit this or wait
1855			 * for the page to get into an appropriate state.
1856			 *
1857			 * We do this without the lock held, so that it can
1858			 * sleep if it needs to.
1859			 */
1860			page_cache_get(old_page);
1861			pte_unmap_unlock(page_table, ptl);
1862
1863			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1864				goto unwritable_page;
1865
1866			/*
1867			 * Since we dropped the lock we need to revalidate
1868			 * the PTE as someone else may have changed it.  If
1869			 * they did, we just return, as we can count on the
1870			 * MMU to tell us if they didn't also make it writable.
1871			 */
1872			page_table = pte_offset_map_lock(mm, pmd, address,
1873							 &ptl);
1874			page_cache_release(old_page);
1875			if (!pte_same(*page_table, orig_pte))
1876				goto unlock;
1877
1878			page_mkwrite = 1;
1879		}
1880		dirty_page = old_page;
1881		get_page(dirty_page);
1882		reuse = 1;
1883	}
1884
1885	if (reuse) {
1886reuse:
1887		flush_cache_page(vma, address, pte_pfn(orig_pte));
1888		entry = pte_mkyoung(orig_pte);
1889		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1890		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1891			update_mmu_cache(vma, address, entry);
1892		ret |= VM_FAULT_WRITE;
1893		goto unlock;
1894	}
1895
1896	/*
1897	 * Ok, we need to copy. Oh, well..
1898	 */
1899	page_cache_get(old_page);
1900gotten:
1901	pte_unmap_unlock(page_table, ptl);
1902
1903	if (unlikely(anon_vma_prepare(vma)))
1904		goto oom;
1905	VM_BUG_ON(old_page == ZERO_PAGE(0));
1906	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1907	if (!new_page)
1908		goto oom;
1909	/*
1910	 * Don't let another task, with possibly unlocked vma,
1911	 * keep the mlocked page.
1912	 */
1913	if (vma->vm_flags & VM_LOCKED) {
1914		lock_page(old_page);	/* for LRU manipulation */
1915		clear_page_mlock(old_page);
1916		unlock_page(old_page);
1917	}
1918	cow_user_page(new_page, old_page, address, vma);
1919	__SetPageUptodate(new_page);
1920
1921	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1922		goto oom_free_new;
1923
1924	/*
1925	 * Re-check the pte - we dropped the lock
1926	 */
1927	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1928	if (likely(pte_same(*page_table, orig_pte))) {
1929		if (old_page) {
1930			if (!PageAnon(old_page)) {
1931				dec_mm_counter(mm, file_rss);
1932				inc_mm_counter(mm, anon_rss);
1933			}
1934		} else
1935			inc_mm_counter(mm, anon_rss);
1936		flush_cache_page(vma, address, pte_pfn(orig_pte));
1937		entry = mk_pte(new_page, vma->vm_page_prot);
1938		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1939		/*
1940		 * Clear the pte entry and flush it first, before updating the
1941		 * pte with the new entry. This will avoid a race condition
1942		 * seen in the presence of one thread doing SMC and another
1943		 * thread doing COW.
1944		 */
1945		ptep_clear_flush_notify(vma, address, page_table);
1946		SetPageSwapBacked(new_page);
1947		lru_cache_add_active_or_unevictable(new_page, vma);
1948		page_add_new_anon_rmap(new_page, vma, address);
1949
1950//TODO:  is this safe?  do_anonymous_page() does it this way.
1951		set_pte_at(mm, address, page_table, entry);
1952		update_mmu_cache(vma, address, entry);
1953		if (old_page) {
1954			/*
1955			 * Only after switching the pte to the new page may
1956			 * we remove the mapcount here. Otherwise another
1957			 * process may come and find the rmap count decremented
1958			 * before the pte is switched to the new page, and
1959			 * "reuse" the old page writing into it while our pte
1960			 * here still points into it and can be read by other
1961			 * threads.
1962			 *
1963			 * The critical issue is to order this
1964			 * page_remove_rmap with the ptp_clear_flush above.
1965			 * Those stores are ordered by (if nothing else,)
1966			 * the barrier present in the atomic_add_negative
1967			 * in page_remove_rmap.
1968			 *
1969			 * Then the TLB flush in ptep_clear_flush ensures that
1970			 * no process can access the old page before the
1971			 * decremented mapcount is visible. And the old page
1972			 * cannot be reused until after the decremented
1973			 * mapcount is visible. So transitively, TLBs to
1974			 * old page will be flushed before it can be reused.
1975			 */
1976			page_remove_rmap(old_page, vma);
1977		}
1978
1979		/* Free the old page.. */
1980		new_page = old_page;
1981		ret |= VM_FAULT_WRITE;
1982	} else
1983		mem_cgroup_uncharge_page(new_page);
1984
1985	if (new_page)
1986		page_cache_release(new_page);
1987	if (old_page)
1988		page_cache_release(old_page);
1989unlock:
1990	pte_unmap_unlock(page_table, ptl);
1991	if (dirty_page) {
1992		if (vma->vm_file)
1993			file_update_time(vma->vm_file);
1994
1995		/*
1996		 * Yes, Virginia, this is actually required to prevent a race
1997		 * with clear_page_dirty_for_io() from clearing the page dirty
1998		 * bit after it clear all dirty ptes, but before a racing
1999		 * do_wp_page installs a dirty pte.
2000		 *
2001		 * do_no_page is protected similarly.
2002		 */
2003		wait_on_page_locked(dirty_page);
2004		set_page_dirty_balance(dirty_page, page_mkwrite);
2005		put_page(dirty_page);
2006	}
2007	return ret;
2008oom_free_new:
2009	page_cache_release(new_page);
2010oom:
2011	if (old_page)
2012		page_cache_release(old_page);
2013	return VM_FAULT_OOM;
2014
2015unwritable_page:
2016	page_cache_release(old_page);
2017	return VM_FAULT_SIGBUS;
2018}
2019
2020/*
2021 * Helper functions for unmap_mapping_range().
2022 *
2023 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2024 *
2025 * We have to restart searching the prio_tree whenever we drop the lock,
2026 * since the iterator is only valid while the lock is held, and anyway
2027 * a later vma might be split and reinserted earlier while lock dropped.
2028 *
2029 * The list of nonlinear vmas could be handled more efficiently, using
2030 * a placeholder, but handle it in the same way until a need is shown.
2031 * It is important to search the prio_tree before nonlinear list: a vma
2032 * may become nonlinear and be shifted from prio_tree to nonlinear list
2033 * while the lock is dropped; but never shifted from list to prio_tree.
2034 *
2035 * In order to make forward progress despite restarting the search,
2036 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2037 * quickly skip it next time around.  Since the prio_tree search only
2038 * shows us those vmas affected by unmapping the range in question, we
2039 * can't efficiently keep all vmas in step with mapping->truncate_count:
2040 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2041 * mapping->truncate_count and vma->vm_truncate_count are protected by
2042 * i_mmap_lock.
2043 *
2044 * In order to make forward progress despite repeatedly restarting some
2045 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2046 * and restart from that address when we reach that vma again.  It might
2047 * have been split or merged, shrunk or extended, but never shifted: so
2048 * restart_addr remains valid so long as it remains in the vma's range.
2049 * unmap_mapping_range forces truncate_count to leap over page-aligned
2050 * values so we can save vma's restart_addr in its truncate_count field.
2051 */
2052#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2053
2054static void reset_vma_truncate_counts(struct address_space *mapping)
2055{
2056	struct vm_area_struct *vma;
2057	struct prio_tree_iter iter;
2058
2059	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2060		vma->vm_truncate_count = 0;
2061	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2062		vma->vm_truncate_count = 0;
2063}
2064
2065static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2066		unsigned long start_addr, unsigned long end_addr,
2067		struct zap_details *details)
2068{
2069	unsigned long restart_addr;
2070	int need_break;
2071
2072	/*
2073	 * files that support invalidating or truncating portions of the
2074	 * file from under mmaped areas must have their ->fault function
2075	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2076	 * This provides synchronisation against concurrent unmapping here.
2077	 */
2078
2079again:
2080	restart_addr = vma->vm_truncate_count;
2081	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2082		start_addr = restart_addr;
2083		if (start_addr >= end_addr) {
2084			/* Top of vma has been split off since last time */
2085			vma->vm_truncate_count = details->truncate_count;
2086			return 0;
2087		}
2088	}
2089
2090	restart_addr = zap_page_range(vma, start_addr,
2091					end_addr - start_addr, details);
2092	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2093
2094	if (restart_addr >= end_addr) {
2095		/* We have now completed this vma: mark it so */
2096		vma->vm_truncate_count = details->truncate_count;
2097		if (!need_break)
2098			return 0;
2099	} else {
2100		/* Note restart_addr in vma's truncate_count field */
2101		vma->vm_truncate_count = restart_addr;
2102		if (!need_break)
2103			goto again;
2104	}
2105
2106	spin_unlock(details->i_mmap_lock);
2107	cond_resched();
2108	spin_lock(details->i_mmap_lock);
2109	return -EINTR;
2110}
2111
2112static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2113					    struct zap_details *details)
2114{
2115	struct vm_area_struct *vma;
2116	struct prio_tree_iter iter;
2117	pgoff_t vba, vea, zba, zea;
2118
2119restart:
2120	vma_prio_tree_foreach(vma, &iter, root,
2121			details->first_index, details->last_index) {
2122		/* Skip quickly over those we have already dealt with */
2123		if (vma->vm_truncate_count == details->truncate_count)
2124			continue;
2125
2126		vba = vma->vm_pgoff;
2127		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2128		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2129		zba = details->first_index;
2130		if (zba < vba)
2131			zba = vba;
2132		zea = details->last_index;
2133		if (zea > vea)
2134			zea = vea;
2135
2136		if (unmap_mapping_range_vma(vma,
2137			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2138			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2139				details) < 0)
2140			goto restart;
2141	}
2142}
2143
2144static inline void unmap_mapping_range_list(struct list_head *head,
2145					    struct zap_details *details)
2146{
2147	struct vm_area_struct *vma;
2148
2149	/*
2150	 * In nonlinear VMAs there is no correspondence between virtual address
2151	 * offset and file offset.  So we must perform an exhaustive search
2152	 * across *all* the pages in each nonlinear VMA, not just the pages
2153	 * whose virtual address lies outside the file truncation point.
2154	 */
2155restart:
2156	list_for_each_entry(vma, head, shared.vm_set.list) {
2157		/* Skip quickly over those we have already dealt with */
2158		if (vma->vm_truncate_count == details->truncate_count)
2159			continue;
2160		details->nonlinear_vma = vma;
2161		if (unmap_mapping_range_vma(vma, vma->vm_start,
2162					vma->vm_end, details) < 0)
2163			goto restart;
2164	}
2165}
2166
2167/**
2168 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2169 * @mapping: the address space containing mmaps to be unmapped.
2170 * @holebegin: byte in first page to unmap, relative to the start of
2171 * the underlying file.  This will be rounded down to a PAGE_SIZE
2172 * boundary.  Note that this is different from vmtruncate(), which
2173 * must keep the partial page.  In contrast, we must get rid of
2174 * partial pages.
2175 * @holelen: size of prospective hole in bytes.  This will be rounded
2176 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2177 * end of the file.
2178 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2179 * but 0 when invalidating pagecache, don't throw away private data.
2180 */
2181void unmap_mapping_range(struct address_space *mapping,
2182		loff_t const holebegin, loff_t const holelen, int even_cows)
2183{
2184	struct zap_details details;
2185	pgoff_t hba = holebegin >> PAGE_SHIFT;
2186	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2187
2188	/* Check for overflow. */
2189	if (sizeof(holelen) > sizeof(hlen)) {
2190		long long holeend =
2191			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2192		if (holeend & ~(long long)ULONG_MAX)
2193			hlen = ULONG_MAX - hba + 1;
2194	}
2195
2196	details.check_mapping = even_cows? NULL: mapping;
2197	details.nonlinear_vma = NULL;
2198	details.first_index = hba;
2199	details.last_index = hba + hlen - 1;
2200	if (details.last_index < details.first_index)
2201		details.last_index = ULONG_MAX;
2202	details.i_mmap_lock = &mapping->i_mmap_lock;
2203
2204	spin_lock(&mapping->i_mmap_lock);
2205
2206	/* Protect against endless unmapping loops */
2207	mapping->truncate_count++;
2208	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2209		if (mapping->truncate_count == 0)
2210			reset_vma_truncate_counts(mapping);
2211		mapping->truncate_count++;
2212	}
2213	details.truncate_count = mapping->truncate_count;
2214
2215	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2216		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2217	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2218		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2219	spin_unlock(&mapping->i_mmap_lock);
2220}
2221EXPORT_SYMBOL(unmap_mapping_range);
2222
2223/**
2224 * vmtruncate - unmap mappings "freed" by truncate() syscall
2225 * @inode: inode of the file used
2226 * @offset: file offset to start truncating
2227 *
2228 * NOTE! We have to be ready to update the memory sharing
2229 * between the file and the memory map for a potential last
2230 * incomplete page.  Ugly, but necessary.
2231 */
2232int vmtruncate(struct inode * inode, loff_t offset)
2233{
2234	if (inode->i_size < offset) {
2235		unsigned long limit;
2236
2237		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2238		if (limit != RLIM_INFINITY && offset > limit)
2239			goto out_sig;
2240		if (offset > inode->i_sb->s_maxbytes)
2241			goto out_big;
2242		i_size_write(inode, offset);
2243	} else {
2244		struct address_space *mapping = inode->i_mapping;
2245
2246		/*
2247		 * truncation of in-use swapfiles is disallowed - it would
2248		 * cause subsequent swapout to scribble on the now-freed
2249		 * blocks.
2250		 */
2251		if (IS_SWAPFILE(inode))
2252			return -ETXTBSY;
2253		i_size_write(inode, offset);
2254
2255		/*
2256		 * unmap_mapping_range is called twice, first simply for
2257		 * efficiency so that truncate_inode_pages does fewer
2258		 * single-page unmaps.  However after this first call, and
2259		 * before truncate_inode_pages finishes, it is possible for
2260		 * private pages to be COWed, which remain after
2261		 * truncate_inode_pages finishes, hence the second
2262		 * unmap_mapping_range call must be made for correctness.
2263		 */
2264		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2265		truncate_inode_pages(mapping, offset);
2266		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2267	}
2268
2269	if (inode->i_op->truncate)
2270		inode->i_op->truncate(inode);
2271	return 0;
2272
2273out_sig:
2274	send_sig(SIGXFSZ, current, 0);
2275out_big:
2276	return -EFBIG;
2277}
2278EXPORT_SYMBOL(vmtruncate);
2279
2280int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2281{
2282	struct address_space *mapping = inode->i_mapping;
2283
2284	/*
2285	 * If the underlying filesystem is not going to provide
2286	 * a way to truncate a range of blocks (punch a hole) -
2287	 * we should return failure right now.
2288	 */
2289	if (!inode->i_op->truncate_range)
2290		return -ENOSYS;
2291
2292	mutex_lock(&inode->i_mutex);
2293	down_write(&inode->i_alloc_sem);
2294	unmap_mapping_range(mapping, offset, (end - offset), 1);
2295	truncate_inode_pages_range(mapping, offset, end);
2296	unmap_mapping_range(mapping, offset, (end - offset), 1);
2297	inode->i_op->truncate_range(inode, offset, end);
2298	up_write(&inode->i_alloc_sem);
2299	mutex_unlock(&inode->i_mutex);
2300
2301	return 0;
2302}
2303
2304/*
2305 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2306 * but allow concurrent faults), and pte mapped but not yet locked.
2307 * We return with mmap_sem still held, but pte unmapped and unlocked.
2308 */
2309static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2310		unsigned long address, pte_t *page_table, pmd_t *pmd,
2311		int write_access, pte_t orig_pte)
2312{
2313	spinlock_t *ptl;
2314	struct page *page;
2315	swp_entry_t entry;
2316	pte_t pte;
2317	int ret = 0;
2318
2319	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2320		goto out;
2321
2322	entry = pte_to_swp_entry(orig_pte);
2323	if (is_migration_entry(entry)) {
2324		migration_entry_wait(mm, pmd, address);
2325		goto out;
2326	}
2327	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2328	page = lookup_swap_cache(entry);
2329	if (!page) {
2330		grab_swap_token(); /* Contend for token _before_ read-in */
2331		page = swapin_readahead(entry,
2332					GFP_HIGHUSER_MOVABLE, vma, address);
2333		if (!page) {
2334			/*
2335			 * Back out if somebody else faulted in this pte
2336			 * while we released the pte lock.
2337			 */
2338			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2339			if (likely(pte_same(*page_table, orig_pte)))
2340				ret = VM_FAULT_OOM;
2341			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2342			goto unlock;
2343		}
2344
2345		/* Had to read the page from swap area: Major fault */
2346		ret = VM_FAULT_MAJOR;
2347		count_vm_event(PGMAJFAULT);
2348	}
2349
2350	mark_page_accessed(page);
2351
2352	lock_page(page);
2353	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2354
2355	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2356		ret = VM_FAULT_OOM;
2357		unlock_page(page);
2358		goto out;
2359	}
2360
2361	/*
2362	 * Back out if somebody else already faulted in this pte.
2363	 */
2364	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2365	if (unlikely(!pte_same(*page_table, orig_pte)))
2366		goto out_nomap;
2367
2368	if (unlikely(!PageUptodate(page))) {
2369		ret = VM_FAULT_SIGBUS;
2370		goto out_nomap;
2371	}
2372
2373	/* The page isn't present yet, go ahead with the fault. */
2374
2375	inc_mm_counter(mm, anon_rss);
2376	pte = mk_pte(page, vma->vm_page_prot);
2377	if (write_access && can_share_swap_page(page)) {
2378		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2379		write_access = 0;
2380	}
2381
2382	flush_icache_page(vma, page);
2383	set_pte_at(mm, address, page_table, pte);
2384	page_add_anon_rmap(page, vma, address);
2385
2386	swap_free(entry);
2387	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2388		remove_exclusive_swap_page(page);
2389	unlock_page(page);
2390
2391	if (write_access) {
2392		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2393		if (ret & VM_FAULT_ERROR)
2394			ret &= VM_FAULT_ERROR;
2395		goto out;
2396	}
2397
2398	/* No need to invalidate - it was non-present before */
2399	update_mmu_cache(vma, address, pte);
2400unlock:
2401	pte_unmap_unlock(page_table, ptl);
2402out:
2403	return ret;
2404out_nomap:
2405	mem_cgroup_uncharge_page(page);
2406	pte_unmap_unlock(page_table, ptl);
2407	unlock_page(page);
2408	page_cache_release(page);
2409	return ret;
2410}
2411
2412/*
2413 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2414 * but allow concurrent faults), and pte mapped but not yet locked.
2415 * We return with mmap_sem still held, but pte unmapped and unlocked.
2416 */
2417static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2418		unsigned long address, pte_t *page_table, pmd_t *pmd,
2419		int write_access)
2420{
2421	struct page *page;
2422	spinlock_t *ptl;
2423	pte_t entry;
2424
2425	/* Allocate our own private page. */
2426	pte_unmap(page_table);
2427
2428	if (unlikely(anon_vma_prepare(vma)))
2429		goto oom;
2430	page = alloc_zeroed_user_highpage_movable(vma, address);
2431	if (!page)
2432		goto oom;
2433	__SetPageUptodate(page);
2434
2435	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2436		goto oom_free_page;
2437
2438	entry = mk_pte(page, vma->vm_page_prot);
2439	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2440
2441	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2442	if (!pte_none(*page_table))
2443		goto release;
2444	inc_mm_counter(mm, anon_rss);
2445	SetPageSwapBacked(page);
2446	lru_cache_add_active_or_unevictable(page, vma);
2447	page_add_new_anon_rmap(page, vma, address);
2448	set_pte_at(mm, address, page_table, entry);
2449
2450	/* No need to invalidate - it was non-present before */
2451	update_mmu_cache(vma, address, entry);
2452unlock:
2453	pte_unmap_unlock(page_table, ptl);
2454	return 0;
2455release:
2456	mem_cgroup_uncharge_page(page);
2457	page_cache_release(page);
2458	goto unlock;
2459oom_free_page:
2460	page_cache_release(page);
2461oom:
2462	return VM_FAULT_OOM;
2463}
2464
2465/*
2466 * __do_fault() tries to create a new page mapping. It aggressively
2467 * tries to share with existing pages, but makes a separate copy if
2468 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2469 * the next page fault.
2470 *
2471 * As this is called only for pages that do not currently exist, we
2472 * do not need to flush old virtual caches or the TLB.
2473 *
2474 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2475 * but allow concurrent faults), and pte neither mapped nor locked.
2476 * We return with mmap_sem still held, but pte unmapped and unlocked.
2477 */
2478static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2479		unsigned long address, pmd_t *pmd,
2480		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2481{
2482	pte_t *page_table;
2483	spinlock_t *ptl;
2484	struct page *page;
2485	pte_t entry;
2486	int anon = 0;
2487	int charged = 0;
2488	struct page *dirty_page = NULL;
2489	struct vm_fault vmf;
2490	int ret;
2491	int page_mkwrite = 0;
2492
2493	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2494	vmf.pgoff = pgoff;
2495	vmf.flags = flags;
2496	vmf.page = NULL;
2497
2498	ret = vma->vm_ops->fault(vma, &vmf);
2499	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2500		return ret;
2501
2502	/*
2503	 * For consistency in subsequent calls, make the faulted page always
2504	 * locked.
2505	 */
2506	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2507		lock_page(vmf.page);
2508	else
2509		VM_BUG_ON(!PageLocked(vmf.page));
2510
2511	/*
2512	 * Should we do an early C-O-W break?
2513	 */
2514	page = vmf.page;
2515	if (flags & FAULT_FLAG_WRITE) {
2516		if (!(vma->vm_flags & VM_SHARED)) {
2517			anon = 1;
2518			if (unlikely(anon_vma_prepare(vma))) {
2519				ret = VM_FAULT_OOM;
2520				goto out;
2521			}
2522			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2523						vma, address);
2524			if (!page) {
2525				ret = VM_FAULT_OOM;
2526				goto out;
2527			}
2528			if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2529				ret = VM_FAULT_OOM;
2530				page_cache_release(page);
2531				goto out;
2532			}
2533			charged = 1;
2534			/*
2535			 * Don't let another task, with possibly unlocked vma,
2536			 * keep the mlocked page.
2537			 */
2538			if (vma->vm_flags & VM_LOCKED)
2539				clear_page_mlock(vmf.page);
2540			copy_user_highpage(page, vmf.page, address, vma);
2541			__SetPageUptodate(page);
2542		} else {
2543			/*
2544			 * If the page will be shareable, see if the backing
2545			 * address space wants to know that the page is about
2546			 * to become writable
2547			 */
2548			if (vma->vm_ops->page_mkwrite) {
2549				unlock_page(page);
2550				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2551					ret = VM_FAULT_SIGBUS;
2552					anon = 1; /* no anon but release vmf.page */
2553					goto out_unlocked;
2554				}
2555				lock_page(page);
2556				/*
2557				 * XXX: this is not quite right (racy vs
2558				 * invalidate) to unlock and relock the page
2559				 * like this, however a better fix requires
2560				 * reworking page_mkwrite locking API, which
2561				 * is better done later.
2562				 */
2563				if (!page->mapping) {
2564					ret = 0;
2565					anon = 1; /* no anon but release vmf.page */
2566					goto out;
2567				}
2568				page_mkwrite = 1;
2569			}
2570		}
2571
2572	}
2573
2574	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2575
2576	/*
2577	 * This silly early PAGE_DIRTY setting removes a race
2578	 * due to the bad i386 page protection. But it's valid
2579	 * for other architectures too.
2580	 *
2581	 * Note that if write_access is true, we either now have
2582	 * an exclusive copy of the page, or this is a shared mapping,
2583	 * so we can make it writable and dirty to avoid having to
2584	 * handle that later.
2585	 */
2586	/* Only go through if we didn't race with anybody else... */
2587	if (likely(pte_same(*page_table, orig_pte))) {
2588		flush_icache_page(vma, page);
2589		entry = mk_pte(page, vma->vm_page_prot);
2590		if (flags & FAULT_FLAG_WRITE)
2591			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2592		if (anon) {
2593			inc_mm_counter(mm, anon_rss);
2594			SetPageSwapBacked(page);
2595			lru_cache_add_active_or_unevictable(page, vma);
2596			page_add_new_anon_rmap(page, vma, address);
2597		} else {
2598			inc_mm_counter(mm, file_rss);
2599			page_add_file_rmap(page);
2600			if (flags & FAULT_FLAG_WRITE) {
2601				dirty_page = page;
2602				get_page(dirty_page);
2603			}
2604		}
2605//TODO:  is this safe?  do_anonymous_page() does it this way.
2606		set_pte_at(mm, address, page_table, entry);
2607
2608		/* no need to invalidate: a not-present page won't be cached */
2609		update_mmu_cache(vma, address, entry);
2610	} else {
2611		if (charged)
2612			mem_cgroup_uncharge_page(page);
2613		if (anon)
2614			page_cache_release(page);
2615		else
2616			anon = 1; /* no anon but release faulted_page */
2617	}
2618
2619	pte_unmap_unlock(page_table, ptl);
2620
2621out:
2622	unlock_page(vmf.page);
2623out_unlocked:
2624	if (anon)
2625		page_cache_release(vmf.page);
2626	else if (dirty_page) {
2627		if (vma->vm_file)
2628			file_update_time(vma->vm_file);
2629
2630		set_page_dirty_balance(dirty_page, page_mkwrite);
2631		put_page(dirty_page);
2632	}
2633
2634	return ret;
2635}
2636
2637static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2638		unsigned long address, pte_t *page_table, pmd_t *pmd,
2639		int write_access, pte_t orig_pte)
2640{
2641	pgoff_t pgoff = (((address & PAGE_MASK)
2642			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2643	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2644
2645	pte_unmap(page_table);
2646	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2647}
2648
2649/*
2650 * Fault of a previously existing named mapping. Repopulate the pte
2651 * from the encoded file_pte if possible. This enables swappable
2652 * nonlinear vmas.
2653 *
2654 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2655 * but allow concurrent faults), and pte mapped but not yet locked.
2656 * We return with mmap_sem still held, but pte unmapped and unlocked.
2657 */
2658static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2659		unsigned long address, pte_t *page_table, pmd_t *pmd,
2660		int write_access, pte_t orig_pte)
2661{
2662	unsigned int flags = FAULT_FLAG_NONLINEAR |
2663				(write_access ? FAULT_FLAG_WRITE : 0);
2664	pgoff_t pgoff;
2665
2666	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2667		return 0;
2668
2669	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2670			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2671		/*
2672		 * Page table corrupted: show pte and kill process.
2673		 */
2674		print_bad_pte(vma, orig_pte, address);
2675		return VM_FAULT_OOM;
2676	}
2677
2678	pgoff = pte_to_pgoff(orig_pte);
2679	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2680}
2681
2682/*
2683 * These routines also need to handle stuff like marking pages dirty
2684 * and/or accessed for architectures that don't do it in hardware (most
2685 * RISC architectures).  The early dirtying is also good on the i386.
2686 *
2687 * There is also a hook called "update_mmu_cache()" that architectures
2688 * with external mmu caches can use to update those (ie the Sparc or
2689 * PowerPC hashed page tables that act as extended TLBs).
2690 *
2691 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2692 * but allow concurrent faults), and pte mapped but not yet locked.
2693 * We return with mmap_sem still held, but pte unmapped and unlocked.
2694 */
2695static inline int handle_pte_fault(struct mm_struct *mm,
2696		struct vm_area_struct *vma, unsigned long address,
2697		pte_t *pte, pmd_t *pmd, int write_access)
2698{
2699	pte_t entry;
2700	spinlock_t *ptl;
2701
2702	entry = *pte;
2703	if (!pte_present(entry)) {
2704		if (pte_none(entry)) {
2705			if (vma->vm_ops) {
2706				if (likely(vma->vm_ops->fault))
2707					return do_linear_fault(mm, vma, address,
2708						pte, pmd, write_access, entry);
2709			}
2710			return do_anonymous_page(mm, vma, address,
2711						 pte, pmd, write_access);
2712		}
2713		if (pte_file(entry))
2714			return do_nonlinear_fault(mm, vma, address,
2715					pte, pmd, write_access, entry);
2716		return do_swap_page(mm, vma, address,
2717					pte, pmd, write_access, entry);
2718	}
2719
2720	ptl = pte_lockptr(mm, pmd);
2721	spin_lock(ptl);
2722	if (unlikely(!pte_same(*pte, entry)))
2723		goto unlock;
2724	if (write_access) {
2725		if (!pte_write(entry))
2726			return do_wp_page(mm, vma, address,
2727					pte, pmd, ptl, entry);
2728		entry = pte_mkdirty(entry);
2729	}
2730	entry = pte_mkyoung(entry);
2731	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2732		update_mmu_cache(vma, address, entry);
2733	} else {
2734		/*
2735		 * This is needed only for protection faults but the arch code
2736		 * is not yet telling us if this is a protection fault or not.
2737		 * This still avoids useless tlb flushes for .text page faults
2738		 * with threads.
2739		 */
2740		if (write_access)
2741			flush_tlb_page(vma, address);
2742	}
2743unlock:
2744	pte_unmap_unlock(pte, ptl);
2745	return 0;
2746}
2747
2748/*
2749 * By the time we get here, we already hold the mm semaphore
2750 */
2751int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2752		unsigned long address, int write_access)
2753{
2754	pgd_t *pgd;
2755	pud_t *pud;
2756	pmd_t *pmd;
2757	pte_t *pte;
2758
2759	__set_current_state(TASK_RUNNING);
2760
2761	count_vm_event(PGFAULT);
2762
2763	if (unlikely(is_vm_hugetlb_page(vma)))
2764		return hugetlb_fault(mm, vma, address, write_access);
2765
2766	pgd = pgd_offset(mm, address);
2767	pud = pud_alloc(mm, pgd, address);
2768	if (!pud)
2769		return VM_FAULT_OOM;
2770	pmd = pmd_alloc(mm, pud, address);
2771	if (!pmd)
2772		return VM_FAULT_OOM;
2773	pte = pte_alloc_map(mm, pmd, address);
2774	if (!pte)
2775		return VM_FAULT_OOM;
2776
2777	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2778}
2779
2780#ifndef __PAGETABLE_PUD_FOLDED
2781/*
2782 * Allocate page upper directory.
2783 * We've already handled the fast-path in-line.
2784 */
2785int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2786{
2787	pud_t *new = pud_alloc_one(mm, address);
2788	if (!new)
2789		return -ENOMEM;
2790
2791	smp_wmb(); /* See comment in __pte_alloc */
2792
2793	spin_lock(&mm->page_table_lock);
2794	if (pgd_present(*pgd))		/* Another has populated it */
2795		pud_free(mm, new);
2796	else
2797		pgd_populate(mm, pgd, new);
2798	spin_unlock(&mm->page_table_lock);
2799	return 0;
2800}
2801#endif /* __PAGETABLE_PUD_FOLDED */
2802
2803#ifndef __PAGETABLE_PMD_FOLDED
2804/*
2805 * Allocate page middle directory.
2806 * We've already handled the fast-path in-line.
2807 */
2808int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2809{
2810	pmd_t *new = pmd_alloc_one(mm, address);
2811	if (!new)
2812		return -ENOMEM;
2813
2814	smp_wmb(); /* See comment in __pte_alloc */
2815
2816	spin_lock(&mm->page_table_lock);
2817#ifndef __ARCH_HAS_4LEVEL_HACK
2818	if (pud_present(*pud))		/* Another has populated it */
2819		pmd_free(mm, new);
2820	else
2821		pud_populate(mm, pud, new);
2822#else
2823	if (pgd_present(*pud))		/* Another has populated it */
2824		pmd_free(mm, new);
2825	else
2826		pgd_populate(mm, pud, new);
2827#endif /* __ARCH_HAS_4LEVEL_HACK */
2828	spin_unlock(&mm->page_table_lock);
2829	return 0;
2830}
2831#endif /* __PAGETABLE_PMD_FOLDED */
2832
2833int make_pages_present(unsigned long addr, unsigned long end)
2834{
2835	int ret, len, write;
2836	struct vm_area_struct * vma;
2837
2838	vma = find_vma(current->mm, addr);
2839	if (!vma)
2840		return -ENOMEM;
2841	write = (vma->vm_flags & VM_WRITE) != 0;
2842	BUG_ON(addr >= end);
2843	BUG_ON(end > vma->vm_end);
2844	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2845	ret = get_user_pages(current, current->mm, addr,
2846			len, write, 0, NULL, NULL);
2847	if (ret < 0)
2848		return ret;
2849	return ret == len ? 0 : -EFAULT;
2850}
2851
2852#if !defined(__HAVE_ARCH_GATE_AREA)
2853
2854#if defined(AT_SYSINFO_EHDR)
2855static struct vm_area_struct gate_vma;
2856
2857static int __init gate_vma_init(void)
2858{
2859	gate_vma.vm_mm = NULL;
2860	gate_vma.vm_start = FIXADDR_USER_START;
2861	gate_vma.vm_end = FIXADDR_USER_END;
2862	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2863	gate_vma.vm_page_prot = __P101;
2864	/*
2865	 * Make sure the vDSO gets into every core dump.
2866	 * Dumping its contents makes post-mortem fully interpretable later
2867	 * without matching up the same kernel and hardware config to see
2868	 * what PC values meant.
2869	 */
2870	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2871	return 0;
2872}
2873__initcall(gate_vma_init);
2874#endif
2875
2876struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2877{
2878#ifdef AT_SYSINFO_EHDR
2879	return &gate_vma;
2880#else
2881	return NULL;
2882#endif
2883}
2884
2885int in_gate_area_no_task(unsigned long addr)
2886{
2887#ifdef AT_SYSINFO_EHDR
2888	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2889		return 1;
2890#endif
2891	return 0;
2892}
2893
2894#endif	/* __HAVE_ARCH_GATE_AREA */
2895
2896#ifdef CONFIG_HAVE_IOREMAP_PROT
2897int follow_phys(struct vm_area_struct *vma,
2898		unsigned long address, unsigned int flags,
2899		unsigned long *prot, resource_size_t *phys)
2900{
2901	pgd_t *pgd;
2902	pud_t *pud;
2903	pmd_t *pmd;
2904	pte_t *ptep, pte;
2905	spinlock_t *ptl;
2906	resource_size_t phys_addr = 0;
2907	struct mm_struct *mm = vma->vm_mm;
2908	int ret = -EINVAL;
2909
2910	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2911		goto out;
2912
2913	pgd = pgd_offset(mm, address);
2914	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2915		goto out;
2916
2917	pud = pud_offset(pgd, address);
2918	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2919		goto out;
2920
2921	pmd = pmd_offset(pud, address);
2922	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2923		goto out;
2924
2925	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2926	if (pmd_huge(*pmd))
2927		goto out;
2928
2929	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2930	if (!ptep)
2931		goto out;
2932
2933	pte = *ptep;
2934	if (!pte_present(pte))
2935		goto unlock;
2936	if ((flags & FOLL_WRITE) && !pte_write(pte))
2937		goto unlock;
2938	phys_addr = pte_pfn(pte);
2939	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2940
2941	*prot = pgprot_val(pte_pgprot(pte));
2942	*phys = phys_addr;
2943	ret = 0;
2944
2945unlock:
2946	pte_unmap_unlock(ptep, ptl);
2947out:
2948	return ret;
2949}
2950
2951int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2952			void *buf, int len, int write)
2953{
2954	resource_size_t phys_addr;
2955	unsigned long prot = 0;
2956	void *maddr;
2957	int offset = addr & (PAGE_SIZE-1);
2958
2959	if (follow_phys(vma, addr, write, &prot, &phys_addr))
2960		return -EINVAL;
2961
2962	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2963	if (write)
2964		memcpy_toio(maddr + offset, buf, len);
2965	else
2966		memcpy_fromio(buf, maddr + offset, len);
2967	iounmap(maddr);
2968
2969	return len;
2970}
2971#endif
2972
2973/*
2974 * Access another process' address space.
2975 * Source/target buffer must be kernel space,
2976 * Do not walk the page table directly, use get_user_pages
2977 */
2978int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2979{
2980	struct mm_struct *mm;
2981	struct vm_area_struct *vma;
2982	void *old_buf = buf;
2983
2984	mm = get_task_mm(tsk);
2985	if (!mm)
2986		return 0;
2987
2988	down_read(&mm->mmap_sem);
2989	/* ignore errors, just check how much was successfully transferred */
2990	while (len) {
2991		int bytes, ret, offset;
2992		void *maddr;
2993		struct page *page = NULL;
2994
2995		ret = get_user_pages(tsk, mm, addr, 1,
2996				write, 1, &page, &vma);
2997		if (ret <= 0) {
2998			/*
2999			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3000			 * we can access using slightly different code.
3001			 */
3002#ifdef CONFIG_HAVE_IOREMAP_PROT
3003			vma = find_vma(mm, addr);
3004			if (!vma)
3005				break;
3006			if (vma->vm_ops && vma->vm_ops->access)
3007				ret = vma->vm_ops->access(vma, addr, buf,
3008							  len, write);
3009			if (ret <= 0)
3010#endif
3011				break;
3012			bytes = ret;
3013		} else {
3014			bytes = len;
3015			offset = addr & (PAGE_SIZE-1);
3016			if (bytes > PAGE_SIZE-offset)
3017				bytes = PAGE_SIZE-offset;
3018
3019			maddr = kmap(page);
3020			if (write) {
3021				copy_to_user_page(vma, page, addr,
3022						  maddr + offset, buf, bytes);
3023				set_page_dirty_lock(page);
3024			} else {
3025				copy_from_user_page(vma, page, addr,
3026						    buf, maddr + offset, bytes);
3027			}
3028			kunmap(page);
3029			page_cache_release(page);
3030		}
3031		len -= bytes;
3032		buf += bytes;
3033		addr += bytes;
3034	}
3035	up_read(&mm->mmap_sem);
3036	mmput(mm);
3037
3038	return buf - old_buf;
3039}
3040
3041/*
3042 * Print the name of a VMA.
3043 */
3044void print_vma_addr(char *prefix, unsigned long ip)
3045{
3046	struct mm_struct *mm = current->mm;
3047	struct vm_area_struct *vma;
3048
3049	/*
3050	 * Do not print if we are in atomic
3051	 * contexts (in exception stacks, etc.):
3052	 */
3053	if (preempt_count())
3054		return;
3055
3056	down_read(&mm->mmap_sem);
3057	vma = find_vma(mm, ip);
3058	if (vma && vma->vm_file) {
3059		struct file *f = vma->vm_file;
3060		char *buf = (char *)__get_free_page(GFP_KERNEL);
3061		if (buf) {
3062			char *p, *s;
3063
3064			p = d_path(&f->f_path, buf, PAGE_SIZE);
3065			if (IS_ERR(p))
3066				p = "?";
3067			s = strrchr(p, '/');
3068			if (s)
3069				p = s+1;
3070			printk("%s%s[%lx+%lx]", prefix, p,
3071					vma->vm_start,
3072					vma->vm_end - vma->vm_start);
3073			free_page((unsigned long)buf);
3074		}
3075	}
3076	up_read(&current->mm->mmap_sem);
3077}
3078
3079#ifdef CONFIG_PROVE_LOCKING
3080void might_fault(void)
3081{
3082	might_sleep();
3083	/*
3084	 * it would be nicer only to annotate paths which are not under
3085	 * pagefault_disable, however that requires a larger audit and
3086	 * providing helpers like get_user_atomic.
3087	 */
3088	if (!in_atomic() && current->mm)
3089		might_lock_read(&current->mm->mmap_sem);
3090}
3091EXPORT_SYMBOL(might_fault);
3092#endif
3093