memory.c revision c627f9cc046c7cd93b4525d89377fb409e170a18
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53#include <linux/memcontrol.h>
54#include <linux/mmu_notifier.h>
55
56#include <asm/pgalloc.h>
57#include <asm/uaccess.h>
58#include <asm/tlb.h>
59#include <asm/tlbflush.h>
60#include <asm/pgtable.h>
61
62#include <linux/swapops.h>
63#include <linux/elf.h>
64
65#include "internal.h"
66
67#ifndef CONFIG_NEED_MULTIPLE_NODES
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
88
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 *   as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97					1;
98#else
99					2;
100#endif
101
102static int __init disable_randmaps(char *s)
103{
104	randomize_va_space = 0;
105	return 1;
106}
107__setup("norandmaps", disable_randmaps);
108
109
110/*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none.  Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116void pgd_clear_bad(pgd_t *pgd)
117{
118	pgd_ERROR(*pgd);
119	pgd_clear(pgd);
120}
121
122void pud_clear_bad(pud_t *pud)
123{
124	pud_ERROR(*pud);
125	pud_clear(pud);
126}
127
128void pmd_clear_bad(pmd_t *pmd)
129{
130	pmd_ERROR(*pmd);
131	pmd_clear(pmd);
132}
133
134/*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
138static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139{
140	pgtable_t token = pmd_pgtable(*pmd);
141	pmd_clear(pmd);
142	pte_free_tlb(tlb, token);
143	tlb->mm->nr_ptes--;
144}
145
146static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147				unsigned long addr, unsigned long end,
148				unsigned long floor, unsigned long ceiling)
149{
150	pmd_t *pmd;
151	unsigned long next;
152	unsigned long start;
153
154	start = addr;
155	pmd = pmd_offset(pud, addr);
156	do {
157		next = pmd_addr_end(addr, end);
158		if (pmd_none_or_clear_bad(pmd))
159			continue;
160		free_pte_range(tlb, pmd);
161	} while (pmd++, addr = next, addr != end);
162
163	start &= PUD_MASK;
164	if (start < floor)
165		return;
166	if (ceiling) {
167		ceiling &= PUD_MASK;
168		if (!ceiling)
169			return;
170	}
171	if (end - 1 > ceiling - 1)
172		return;
173
174	pmd = pmd_offset(pud, start);
175	pud_clear(pud);
176	pmd_free_tlb(tlb, pmd);
177}
178
179static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180				unsigned long addr, unsigned long end,
181				unsigned long floor, unsigned long ceiling)
182{
183	pud_t *pud;
184	unsigned long next;
185	unsigned long start;
186
187	start = addr;
188	pud = pud_offset(pgd, addr);
189	do {
190		next = pud_addr_end(addr, end);
191		if (pud_none_or_clear_bad(pud))
192			continue;
193		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194	} while (pud++, addr = next, addr != end);
195
196	start &= PGDIR_MASK;
197	if (start < floor)
198		return;
199	if (ceiling) {
200		ceiling &= PGDIR_MASK;
201		if (!ceiling)
202			return;
203	}
204	if (end - 1 > ceiling - 1)
205		return;
206
207	pud = pud_offset(pgd, start);
208	pgd_clear(pgd);
209	pud_free_tlb(tlb, pud);
210}
211
212/*
213 * This function frees user-level page tables of a process.
214 *
215 * Must be called with pagetable lock held.
216 */
217void free_pgd_range(struct mmu_gather *tlb,
218			unsigned long addr, unsigned long end,
219			unsigned long floor, unsigned long ceiling)
220{
221	pgd_t *pgd;
222	unsigned long next;
223	unsigned long start;
224
225	/*
226	 * The next few lines have given us lots of grief...
227	 *
228	 * Why are we testing PMD* at this top level?  Because often
229	 * there will be no work to do at all, and we'd prefer not to
230	 * go all the way down to the bottom just to discover that.
231	 *
232	 * Why all these "- 1"s?  Because 0 represents both the bottom
233	 * of the address space and the top of it (using -1 for the
234	 * top wouldn't help much: the masks would do the wrong thing).
235	 * The rule is that addr 0 and floor 0 refer to the bottom of
236	 * the address space, but end 0 and ceiling 0 refer to the top
237	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238	 * that end 0 case should be mythical).
239	 *
240	 * Wherever addr is brought up or ceiling brought down, we must
241	 * be careful to reject "the opposite 0" before it confuses the
242	 * subsequent tests.  But what about where end is brought down
243	 * by PMD_SIZE below? no, end can't go down to 0 there.
244	 *
245	 * Whereas we round start (addr) and ceiling down, by different
246	 * masks at different levels, in order to test whether a table
247	 * now has no other vmas using it, so can be freed, we don't
248	 * bother to round floor or end up - the tests don't need that.
249	 */
250
251	addr &= PMD_MASK;
252	if (addr < floor) {
253		addr += PMD_SIZE;
254		if (!addr)
255			return;
256	}
257	if (ceiling) {
258		ceiling &= PMD_MASK;
259		if (!ceiling)
260			return;
261	}
262	if (end - 1 > ceiling - 1)
263		end -= PMD_SIZE;
264	if (addr > end - 1)
265		return;
266
267	start = addr;
268	pgd = pgd_offset(tlb->mm, addr);
269	do {
270		next = pgd_addr_end(addr, end);
271		if (pgd_none_or_clear_bad(pgd))
272			continue;
273		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274	} while (pgd++, addr = next, addr != end);
275}
276
277void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278		unsigned long floor, unsigned long ceiling)
279{
280	while (vma) {
281		struct vm_area_struct *next = vma->vm_next;
282		unsigned long addr = vma->vm_start;
283
284		/*
285		 * Hide vma from rmap and vmtruncate before freeing pgtables
286		 */
287		anon_vma_unlink(vma);
288		unlink_file_vma(vma);
289
290		if (is_vm_hugetlb_page(vma)) {
291			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292				floor, next? next->vm_start: ceiling);
293		} else {
294			/*
295			 * Optimization: gather nearby vmas into one call down
296			 */
297			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298			       && !is_vm_hugetlb_page(next)) {
299				vma = next;
300				next = vma->vm_next;
301				anon_vma_unlink(vma);
302				unlink_file_vma(vma);
303			}
304			free_pgd_range(tlb, addr, vma->vm_end,
305				floor, next? next->vm_start: ceiling);
306		}
307		vma = next;
308	}
309}
310
311int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312{
313	pgtable_t new = pte_alloc_one(mm, address);
314	if (!new)
315		return -ENOMEM;
316
317	/*
318	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319	 * visible before the pte is made visible to other CPUs by being
320	 * put into page tables.
321	 *
322	 * The other side of the story is the pointer chasing in the page
323	 * table walking code (when walking the page table without locking;
324	 * ie. most of the time). Fortunately, these data accesses consist
325	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326	 * being the notable exception) will already guarantee loads are
327	 * seen in-order. See the alpha page table accessors for the
328	 * smp_read_barrier_depends() barriers in page table walking code.
329	 */
330	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
332	spin_lock(&mm->page_table_lock);
333	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334		mm->nr_ptes++;
335		pmd_populate(mm, pmd, new);
336		new = NULL;
337	}
338	spin_unlock(&mm->page_table_lock);
339	if (new)
340		pte_free(mm, new);
341	return 0;
342}
343
344int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345{
346	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347	if (!new)
348		return -ENOMEM;
349
350	smp_wmb(); /* See comment in __pte_alloc */
351
352	spin_lock(&init_mm.page_table_lock);
353	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354		pmd_populate_kernel(&init_mm, pmd, new);
355		new = NULL;
356	}
357	spin_unlock(&init_mm.page_table_lock);
358	if (new)
359		pte_free_kernel(&init_mm, new);
360	return 0;
361}
362
363static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364{
365	if (file_rss)
366		add_mm_counter(mm, file_rss, file_rss);
367	if (anon_rss)
368		add_mm_counter(mm, anon_rss, anon_rss);
369}
370
371/*
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
375 *
376 * The calling function must still handle the error.
377 */
378static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379			  unsigned long vaddr)
380{
381	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382			"vm_flags = %lx, vaddr = %lx\n",
383		(long long)pte_val(pte),
384		(vma->vm_mm == current->mm ? current->comm : "???"),
385		vma->vm_flags, vaddr);
386	dump_stack();
387}
388
389static inline int is_cow_mapping(unsigned int flags)
390{
391	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392}
393
394/*
395 * vm_normal_page -- This function gets the "struct page" associated with a pte.
396 *
397 * "Special" mappings do not wish to be associated with a "struct page" (either
398 * it doesn't exist, or it exists but they don't want to touch it). In this
399 * case, NULL is returned here. "Normal" mappings do have a struct page.
400 *
401 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402 * pte bit, in which case this function is trivial. Secondly, an architecture
403 * may not have a spare pte bit, which requires a more complicated scheme,
404 * described below.
405 *
406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407 * special mapping (even if there are underlying and valid "struct pages").
408 * COWed pages of a VM_PFNMAP are always normal.
409 *
410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413 * mapping will always honor the rule
414 *
415 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416 *
417 * And for normal mappings this is false.
418 *
419 * This restricts such mappings to be a linear translation from virtual address
420 * to pfn. To get around this restriction, we allow arbitrary mappings so long
421 * as the vma is not a COW mapping; in that case, we know that all ptes are
422 * special (because none can have been COWed).
423 *
424 *
425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426 *
427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428 * page" backing, however the difference is that _all_ pages with a struct
429 * page (that is, those where pfn_valid is true) are refcounted and considered
430 * normal pages by the VM. The disadvantage is that pages are refcounted
431 * (which can be slower and simply not an option for some PFNMAP users). The
432 * advantage is that we don't have to follow the strict linearity rule of
433 * PFNMAP mappings in order to support COWable mappings.
434 *
435 */
436#ifdef __HAVE_ARCH_PTE_SPECIAL
437# define HAVE_PTE_SPECIAL 1
438#else
439# define HAVE_PTE_SPECIAL 0
440#endif
441struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442				pte_t pte)
443{
444	unsigned long pfn;
445
446	if (HAVE_PTE_SPECIAL) {
447		if (likely(!pte_special(pte))) {
448			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449			return pte_page(pte);
450		}
451		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452		return NULL;
453	}
454
455	/* !HAVE_PTE_SPECIAL case follows: */
456
457	pfn = pte_pfn(pte);
458
459	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460		if (vma->vm_flags & VM_MIXEDMAP) {
461			if (!pfn_valid(pfn))
462				return NULL;
463			goto out;
464		} else {
465			unsigned long off;
466			off = (addr - vma->vm_start) >> PAGE_SHIFT;
467			if (pfn == vma->vm_pgoff + off)
468				return NULL;
469			if (!is_cow_mapping(vma->vm_flags))
470				return NULL;
471		}
472	}
473
474	VM_BUG_ON(!pfn_valid(pfn));
475
476	/*
477	 * NOTE! We still have PageReserved() pages in the page tables.
478	 *
479	 * eg. VDSO mappings can cause them to exist.
480	 */
481out:
482	return pfn_to_page(pfn);
483}
484
485/*
486 * copy one vm_area from one task to the other. Assumes the page tables
487 * already present in the new task to be cleared in the whole range
488 * covered by this vma.
489 */
490
491static inline void
492copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494		unsigned long addr, int *rss)
495{
496	unsigned long vm_flags = vma->vm_flags;
497	pte_t pte = *src_pte;
498	struct page *page;
499
500	/* pte contains position in swap or file, so copy. */
501	if (unlikely(!pte_present(pte))) {
502		if (!pte_file(pte)) {
503			swp_entry_t entry = pte_to_swp_entry(pte);
504
505			swap_duplicate(entry);
506			/* make sure dst_mm is on swapoff's mmlist. */
507			if (unlikely(list_empty(&dst_mm->mmlist))) {
508				spin_lock(&mmlist_lock);
509				if (list_empty(&dst_mm->mmlist))
510					list_add(&dst_mm->mmlist,
511						 &src_mm->mmlist);
512				spin_unlock(&mmlist_lock);
513			}
514			if (is_write_migration_entry(entry) &&
515					is_cow_mapping(vm_flags)) {
516				/*
517				 * COW mappings require pages in both parent
518				 * and child to be set to read.
519				 */
520				make_migration_entry_read(&entry);
521				pte = swp_entry_to_pte(entry);
522				set_pte_at(src_mm, addr, src_pte, pte);
523			}
524		}
525		goto out_set_pte;
526	}
527
528	/*
529	 * If it's a COW mapping, write protect it both
530	 * in the parent and the child
531	 */
532	if (is_cow_mapping(vm_flags)) {
533		ptep_set_wrprotect(src_mm, addr, src_pte);
534		pte = pte_wrprotect(pte);
535	}
536
537	/*
538	 * If it's a shared mapping, mark it clean in
539	 * the child
540	 */
541	if (vm_flags & VM_SHARED)
542		pte = pte_mkclean(pte);
543	pte = pte_mkold(pte);
544
545	page = vm_normal_page(vma, addr, pte);
546	if (page) {
547		get_page(page);
548		page_dup_rmap(page, vma, addr);
549		rss[!!PageAnon(page)]++;
550	}
551
552out_set_pte:
553	set_pte_at(dst_mm, addr, dst_pte, pte);
554}
555
556static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558		unsigned long addr, unsigned long end)
559{
560	pte_t *src_pte, *dst_pte;
561	spinlock_t *src_ptl, *dst_ptl;
562	int progress = 0;
563	int rss[2];
564
565again:
566	rss[1] = rss[0] = 0;
567	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568	if (!dst_pte)
569		return -ENOMEM;
570	src_pte = pte_offset_map_nested(src_pmd, addr);
571	src_ptl = pte_lockptr(src_mm, src_pmd);
572	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573	arch_enter_lazy_mmu_mode();
574
575	do {
576		/*
577		 * We are holding two locks at this point - either of them
578		 * could generate latencies in another task on another CPU.
579		 */
580		if (progress >= 32) {
581			progress = 0;
582			if (need_resched() ||
583			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584				break;
585		}
586		if (pte_none(*src_pte)) {
587			progress++;
588			continue;
589		}
590		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591		progress += 8;
592	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593
594	arch_leave_lazy_mmu_mode();
595	spin_unlock(src_ptl);
596	pte_unmap_nested(src_pte - 1);
597	add_mm_rss(dst_mm, rss[0], rss[1]);
598	pte_unmap_unlock(dst_pte - 1, dst_ptl);
599	cond_resched();
600	if (addr != end)
601		goto again;
602	return 0;
603}
604
605static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607		unsigned long addr, unsigned long end)
608{
609	pmd_t *src_pmd, *dst_pmd;
610	unsigned long next;
611
612	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613	if (!dst_pmd)
614		return -ENOMEM;
615	src_pmd = pmd_offset(src_pud, addr);
616	do {
617		next = pmd_addr_end(addr, end);
618		if (pmd_none_or_clear_bad(src_pmd))
619			continue;
620		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621						vma, addr, next))
622			return -ENOMEM;
623	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
624	return 0;
625}
626
627static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629		unsigned long addr, unsigned long end)
630{
631	pud_t *src_pud, *dst_pud;
632	unsigned long next;
633
634	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635	if (!dst_pud)
636		return -ENOMEM;
637	src_pud = pud_offset(src_pgd, addr);
638	do {
639		next = pud_addr_end(addr, end);
640		if (pud_none_or_clear_bad(src_pud))
641			continue;
642		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643						vma, addr, next))
644			return -ENOMEM;
645	} while (dst_pud++, src_pud++, addr = next, addr != end);
646	return 0;
647}
648
649int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650		struct vm_area_struct *vma)
651{
652	pgd_t *src_pgd, *dst_pgd;
653	unsigned long next;
654	unsigned long addr = vma->vm_start;
655	unsigned long end = vma->vm_end;
656	int ret;
657
658	/*
659	 * Don't copy ptes where a page fault will fill them correctly.
660	 * Fork becomes much lighter when there are big shared or private
661	 * readonly mappings. The tradeoff is that copy_page_range is more
662	 * efficient than faulting.
663	 */
664	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665		if (!vma->anon_vma)
666			return 0;
667	}
668
669	if (is_vm_hugetlb_page(vma))
670		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671
672	/*
673	 * We need to invalidate the secondary MMU mappings only when
674	 * there could be a permission downgrade on the ptes of the
675	 * parent mm. And a permission downgrade will only happen if
676	 * is_cow_mapping() returns true.
677	 */
678	if (is_cow_mapping(vma->vm_flags))
679		mmu_notifier_invalidate_range_start(src_mm, addr, end);
680
681	ret = 0;
682	dst_pgd = pgd_offset(dst_mm, addr);
683	src_pgd = pgd_offset(src_mm, addr);
684	do {
685		next = pgd_addr_end(addr, end);
686		if (pgd_none_or_clear_bad(src_pgd))
687			continue;
688		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
689					    vma, addr, next))) {
690			ret = -ENOMEM;
691			break;
692		}
693	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
694
695	if (is_cow_mapping(vma->vm_flags))
696		mmu_notifier_invalidate_range_end(src_mm,
697						  vma->vm_start, end);
698	return ret;
699}
700
701static unsigned long zap_pte_range(struct mmu_gather *tlb,
702				struct vm_area_struct *vma, pmd_t *pmd,
703				unsigned long addr, unsigned long end,
704				long *zap_work, struct zap_details *details)
705{
706	struct mm_struct *mm = tlb->mm;
707	pte_t *pte;
708	spinlock_t *ptl;
709	int file_rss = 0;
710	int anon_rss = 0;
711
712	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
713	arch_enter_lazy_mmu_mode();
714	do {
715		pte_t ptent = *pte;
716		if (pte_none(ptent)) {
717			(*zap_work)--;
718			continue;
719		}
720
721		(*zap_work) -= PAGE_SIZE;
722
723		if (pte_present(ptent)) {
724			struct page *page;
725
726			page = vm_normal_page(vma, addr, ptent);
727			if (unlikely(details) && page) {
728				/*
729				 * unmap_shared_mapping_pages() wants to
730				 * invalidate cache without truncating:
731				 * unmap shared but keep private pages.
732				 */
733				if (details->check_mapping &&
734				    details->check_mapping != page->mapping)
735					continue;
736				/*
737				 * Each page->index must be checked when
738				 * invalidating or truncating nonlinear.
739				 */
740				if (details->nonlinear_vma &&
741				    (page->index < details->first_index ||
742				     page->index > details->last_index))
743					continue;
744			}
745			ptent = ptep_get_and_clear_full(mm, addr, pte,
746							tlb->fullmm);
747			tlb_remove_tlb_entry(tlb, pte, addr);
748			if (unlikely(!page))
749				continue;
750			if (unlikely(details) && details->nonlinear_vma
751			    && linear_page_index(details->nonlinear_vma,
752						addr) != page->index)
753				set_pte_at(mm, addr, pte,
754					   pgoff_to_pte(page->index));
755			if (PageAnon(page))
756				anon_rss--;
757			else {
758				if (pte_dirty(ptent))
759					set_page_dirty(page);
760				if (pte_young(ptent))
761					SetPageReferenced(page);
762				file_rss--;
763			}
764			page_remove_rmap(page, vma);
765			tlb_remove_page(tlb, page);
766			continue;
767		}
768		/*
769		 * If details->check_mapping, we leave swap entries;
770		 * if details->nonlinear_vma, we leave file entries.
771		 */
772		if (unlikely(details))
773			continue;
774		if (!pte_file(ptent))
775			free_swap_and_cache(pte_to_swp_entry(ptent));
776		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
777	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
778
779	add_mm_rss(mm, file_rss, anon_rss);
780	arch_leave_lazy_mmu_mode();
781	pte_unmap_unlock(pte - 1, ptl);
782
783	return addr;
784}
785
786static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
787				struct vm_area_struct *vma, pud_t *pud,
788				unsigned long addr, unsigned long end,
789				long *zap_work, struct zap_details *details)
790{
791	pmd_t *pmd;
792	unsigned long next;
793
794	pmd = pmd_offset(pud, addr);
795	do {
796		next = pmd_addr_end(addr, end);
797		if (pmd_none_or_clear_bad(pmd)) {
798			(*zap_work)--;
799			continue;
800		}
801		next = zap_pte_range(tlb, vma, pmd, addr, next,
802						zap_work, details);
803	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
804
805	return addr;
806}
807
808static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
809				struct vm_area_struct *vma, pgd_t *pgd,
810				unsigned long addr, unsigned long end,
811				long *zap_work, struct zap_details *details)
812{
813	pud_t *pud;
814	unsigned long next;
815
816	pud = pud_offset(pgd, addr);
817	do {
818		next = pud_addr_end(addr, end);
819		if (pud_none_or_clear_bad(pud)) {
820			(*zap_work)--;
821			continue;
822		}
823		next = zap_pmd_range(tlb, vma, pud, addr, next,
824						zap_work, details);
825	} while (pud++, addr = next, (addr != end && *zap_work > 0));
826
827	return addr;
828}
829
830static unsigned long unmap_page_range(struct mmu_gather *tlb,
831				struct vm_area_struct *vma,
832				unsigned long addr, unsigned long end,
833				long *zap_work, struct zap_details *details)
834{
835	pgd_t *pgd;
836	unsigned long next;
837
838	if (details && !details->check_mapping && !details->nonlinear_vma)
839		details = NULL;
840
841	BUG_ON(addr >= end);
842	tlb_start_vma(tlb, vma);
843	pgd = pgd_offset(vma->vm_mm, addr);
844	do {
845		next = pgd_addr_end(addr, end);
846		if (pgd_none_or_clear_bad(pgd)) {
847			(*zap_work)--;
848			continue;
849		}
850		next = zap_pud_range(tlb, vma, pgd, addr, next,
851						zap_work, details);
852	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
853	tlb_end_vma(tlb, vma);
854
855	return addr;
856}
857
858#ifdef CONFIG_PREEMPT
859# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
860#else
861/* No preempt: go for improved straight-line efficiency */
862# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
863#endif
864
865/**
866 * unmap_vmas - unmap a range of memory covered by a list of vma's
867 * @tlbp: address of the caller's struct mmu_gather
868 * @vma: the starting vma
869 * @start_addr: virtual address at which to start unmapping
870 * @end_addr: virtual address at which to end unmapping
871 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
872 * @details: details of nonlinear truncation or shared cache invalidation
873 *
874 * Returns the end address of the unmapping (restart addr if interrupted).
875 *
876 * Unmap all pages in the vma list.
877 *
878 * We aim to not hold locks for too long (for scheduling latency reasons).
879 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
880 * return the ending mmu_gather to the caller.
881 *
882 * Only addresses between `start' and `end' will be unmapped.
883 *
884 * The VMA list must be sorted in ascending virtual address order.
885 *
886 * unmap_vmas() assumes that the caller will flush the whole unmapped address
887 * range after unmap_vmas() returns.  So the only responsibility here is to
888 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
889 * drops the lock and schedules.
890 */
891unsigned long unmap_vmas(struct mmu_gather **tlbp,
892		struct vm_area_struct *vma, unsigned long start_addr,
893		unsigned long end_addr, unsigned long *nr_accounted,
894		struct zap_details *details)
895{
896	long zap_work = ZAP_BLOCK_SIZE;
897	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
898	int tlb_start_valid = 0;
899	unsigned long start = start_addr;
900	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
901	int fullmm = (*tlbp)->fullmm;
902	struct mm_struct *mm = vma->vm_mm;
903
904	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
905	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
906		unsigned long end;
907
908		start = max(vma->vm_start, start_addr);
909		if (start >= vma->vm_end)
910			continue;
911		end = min(vma->vm_end, end_addr);
912		if (end <= vma->vm_start)
913			continue;
914
915		if (vma->vm_flags & VM_ACCOUNT)
916			*nr_accounted += (end - start) >> PAGE_SHIFT;
917
918		while (start != end) {
919			if (!tlb_start_valid) {
920				tlb_start = start;
921				tlb_start_valid = 1;
922			}
923
924			if (unlikely(is_vm_hugetlb_page(vma))) {
925				/*
926				 * It is undesirable to test vma->vm_file as it
927				 * should be non-null for valid hugetlb area.
928				 * However, vm_file will be NULL in the error
929				 * cleanup path of do_mmap_pgoff. When
930				 * hugetlbfs ->mmap method fails,
931				 * do_mmap_pgoff() nullifies vma->vm_file
932				 * before calling this function to clean up.
933				 * Since no pte has actually been setup, it is
934				 * safe to do nothing in this case.
935				 */
936				if (vma->vm_file) {
937					unmap_hugepage_range(vma, start, end, NULL);
938					zap_work -= (end - start) /
939					pages_per_huge_page(hstate_vma(vma));
940				}
941
942				start = end;
943			} else
944				start = unmap_page_range(*tlbp, vma,
945						start, end, &zap_work, details);
946
947			if (zap_work > 0) {
948				BUG_ON(start != end);
949				break;
950			}
951
952			tlb_finish_mmu(*tlbp, tlb_start, start);
953
954			if (need_resched() ||
955				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
956				if (i_mmap_lock) {
957					*tlbp = NULL;
958					goto out;
959				}
960				cond_resched();
961			}
962
963			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
964			tlb_start_valid = 0;
965			zap_work = ZAP_BLOCK_SIZE;
966		}
967	}
968out:
969	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
970	return start;	/* which is now the end (or restart) address */
971}
972
973/**
974 * zap_page_range - remove user pages in a given range
975 * @vma: vm_area_struct holding the applicable pages
976 * @address: starting address of pages to zap
977 * @size: number of bytes to zap
978 * @details: details of nonlinear truncation or shared cache invalidation
979 */
980unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
981		unsigned long size, struct zap_details *details)
982{
983	struct mm_struct *mm = vma->vm_mm;
984	struct mmu_gather *tlb;
985	unsigned long end = address + size;
986	unsigned long nr_accounted = 0;
987
988	lru_add_drain();
989	tlb = tlb_gather_mmu(mm, 0);
990	update_hiwater_rss(mm);
991	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
992	if (tlb)
993		tlb_finish_mmu(tlb, address, end);
994	return end;
995}
996
997/**
998 * zap_vma_ptes - remove ptes mapping the vma
999 * @vma: vm_area_struct holding ptes to be zapped
1000 * @address: starting address of pages to zap
1001 * @size: number of bytes to zap
1002 *
1003 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1004 *
1005 * The entire address range must be fully contained within the vma.
1006 *
1007 * Returns 0 if successful.
1008 */
1009int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1010		unsigned long size)
1011{
1012	if (address < vma->vm_start || address + size > vma->vm_end ||
1013	    		!(vma->vm_flags & VM_PFNMAP))
1014		return -1;
1015	zap_page_range(vma, address, size, NULL);
1016	return 0;
1017}
1018EXPORT_SYMBOL_GPL(zap_vma_ptes);
1019
1020/*
1021 * Do a quick page-table lookup for a single page.
1022 */
1023struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1024			unsigned int flags)
1025{
1026	pgd_t *pgd;
1027	pud_t *pud;
1028	pmd_t *pmd;
1029	pte_t *ptep, pte;
1030	spinlock_t *ptl;
1031	struct page *page;
1032	struct mm_struct *mm = vma->vm_mm;
1033
1034	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1035	if (!IS_ERR(page)) {
1036		BUG_ON(flags & FOLL_GET);
1037		goto out;
1038	}
1039
1040	page = NULL;
1041	pgd = pgd_offset(mm, address);
1042	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1043		goto no_page_table;
1044
1045	pud = pud_offset(pgd, address);
1046	if (pud_none(*pud))
1047		goto no_page_table;
1048	if (pud_huge(*pud)) {
1049		BUG_ON(flags & FOLL_GET);
1050		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1051		goto out;
1052	}
1053	if (unlikely(pud_bad(*pud)))
1054		goto no_page_table;
1055
1056	pmd = pmd_offset(pud, address);
1057	if (pmd_none(*pmd))
1058		goto no_page_table;
1059	if (pmd_huge(*pmd)) {
1060		BUG_ON(flags & FOLL_GET);
1061		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1062		goto out;
1063	}
1064	if (unlikely(pmd_bad(*pmd)))
1065		goto no_page_table;
1066
1067	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1068
1069	pte = *ptep;
1070	if (!pte_present(pte))
1071		goto no_page;
1072	if ((flags & FOLL_WRITE) && !pte_write(pte))
1073		goto unlock;
1074	page = vm_normal_page(vma, address, pte);
1075	if (unlikely(!page))
1076		goto bad_page;
1077
1078	if (flags & FOLL_GET)
1079		get_page(page);
1080	if (flags & FOLL_TOUCH) {
1081		if ((flags & FOLL_WRITE) &&
1082		    !pte_dirty(pte) && !PageDirty(page))
1083			set_page_dirty(page);
1084		mark_page_accessed(page);
1085	}
1086unlock:
1087	pte_unmap_unlock(ptep, ptl);
1088out:
1089	return page;
1090
1091bad_page:
1092	pte_unmap_unlock(ptep, ptl);
1093	return ERR_PTR(-EFAULT);
1094
1095no_page:
1096	pte_unmap_unlock(ptep, ptl);
1097	if (!pte_none(pte))
1098		return page;
1099	/* Fall through to ZERO_PAGE handling */
1100no_page_table:
1101	/*
1102	 * When core dumping an enormous anonymous area that nobody
1103	 * has touched so far, we don't want to allocate page tables.
1104	 */
1105	if (flags & FOLL_ANON) {
1106		page = ZERO_PAGE(0);
1107		if (flags & FOLL_GET)
1108			get_page(page);
1109		BUG_ON(flags & FOLL_WRITE);
1110	}
1111	return page;
1112}
1113
1114/* Can we do the FOLL_ANON optimization? */
1115static inline int use_zero_page(struct vm_area_struct *vma)
1116{
1117	/*
1118	 * We don't want to optimize FOLL_ANON for make_pages_present()
1119	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1120	 * we want to get the page from the page tables to make sure
1121	 * that we serialize and update with any other user of that
1122	 * mapping.
1123	 */
1124	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1125		return 0;
1126	/*
1127	 * And if we have a fault routine, it's not an anonymous region.
1128	 */
1129	return !vma->vm_ops || !vma->vm_ops->fault;
1130}
1131
1132int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1133		unsigned long start, int len, int write, int force,
1134		struct page **pages, struct vm_area_struct **vmas)
1135{
1136	int i;
1137	unsigned int vm_flags;
1138
1139	if (len <= 0)
1140		return 0;
1141	/*
1142	 * Require read or write permissions.
1143	 * If 'force' is set, we only require the "MAY" flags.
1144	 */
1145	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1146	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1147	i = 0;
1148
1149	do {
1150		struct vm_area_struct *vma;
1151		unsigned int foll_flags;
1152
1153		vma = find_extend_vma(mm, start);
1154		if (!vma && in_gate_area(tsk, start)) {
1155			unsigned long pg = start & PAGE_MASK;
1156			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1157			pgd_t *pgd;
1158			pud_t *pud;
1159			pmd_t *pmd;
1160			pte_t *pte;
1161			if (write) /* user gate pages are read-only */
1162				return i ? : -EFAULT;
1163			if (pg > TASK_SIZE)
1164				pgd = pgd_offset_k(pg);
1165			else
1166				pgd = pgd_offset_gate(mm, pg);
1167			BUG_ON(pgd_none(*pgd));
1168			pud = pud_offset(pgd, pg);
1169			BUG_ON(pud_none(*pud));
1170			pmd = pmd_offset(pud, pg);
1171			if (pmd_none(*pmd))
1172				return i ? : -EFAULT;
1173			pte = pte_offset_map(pmd, pg);
1174			if (pte_none(*pte)) {
1175				pte_unmap(pte);
1176				return i ? : -EFAULT;
1177			}
1178			if (pages) {
1179				struct page *page = vm_normal_page(gate_vma, start, *pte);
1180				pages[i] = page;
1181				if (page)
1182					get_page(page);
1183			}
1184			pte_unmap(pte);
1185			if (vmas)
1186				vmas[i] = gate_vma;
1187			i++;
1188			start += PAGE_SIZE;
1189			len--;
1190			continue;
1191		}
1192
1193		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1194				|| !(vm_flags & vma->vm_flags))
1195			return i ? : -EFAULT;
1196
1197		if (is_vm_hugetlb_page(vma)) {
1198			i = follow_hugetlb_page(mm, vma, pages, vmas,
1199						&start, &len, i, write);
1200			continue;
1201		}
1202
1203		foll_flags = FOLL_TOUCH;
1204		if (pages)
1205			foll_flags |= FOLL_GET;
1206		if (!write && use_zero_page(vma))
1207			foll_flags |= FOLL_ANON;
1208
1209		do {
1210			struct page *page;
1211
1212			/*
1213			 * If tsk is ooming, cut off its access to large memory
1214			 * allocations. It has a pending SIGKILL, but it can't
1215			 * be processed until returning to user space.
1216			 */
1217			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1218				return i ? i : -ENOMEM;
1219
1220			if (write)
1221				foll_flags |= FOLL_WRITE;
1222
1223			cond_resched();
1224			while (!(page = follow_page(vma, start, foll_flags))) {
1225				int ret;
1226				ret = handle_mm_fault(mm, vma, start,
1227						foll_flags & FOLL_WRITE);
1228				if (ret & VM_FAULT_ERROR) {
1229					if (ret & VM_FAULT_OOM)
1230						return i ? i : -ENOMEM;
1231					else if (ret & VM_FAULT_SIGBUS)
1232						return i ? i : -EFAULT;
1233					BUG();
1234				}
1235				if (ret & VM_FAULT_MAJOR)
1236					tsk->maj_flt++;
1237				else
1238					tsk->min_flt++;
1239
1240				/*
1241				 * The VM_FAULT_WRITE bit tells us that
1242				 * do_wp_page has broken COW when necessary,
1243				 * even if maybe_mkwrite decided not to set
1244				 * pte_write. We can thus safely do subsequent
1245				 * page lookups as if they were reads.
1246				 */
1247				if (ret & VM_FAULT_WRITE)
1248					foll_flags &= ~FOLL_WRITE;
1249
1250				cond_resched();
1251			}
1252			if (IS_ERR(page))
1253				return i ? i : PTR_ERR(page);
1254			if (pages) {
1255				pages[i] = page;
1256
1257				flush_anon_page(vma, page, start);
1258				flush_dcache_page(page);
1259			}
1260			if (vmas)
1261				vmas[i] = vma;
1262			i++;
1263			start += PAGE_SIZE;
1264			len--;
1265		} while (len && start < vma->vm_end);
1266	} while (len);
1267	return i;
1268}
1269EXPORT_SYMBOL(get_user_pages);
1270
1271pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1272			spinlock_t **ptl)
1273{
1274	pgd_t * pgd = pgd_offset(mm, addr);
1275	pud_t * pud = pud_alloc(mm, pgd, addr);
1276	if (pud) {
1277		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1278		if (pmd)
1279			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1280	}
1281	return NULL;
1282}
1283
1284/*
1285 * This is the old fallback for page remapping.
1286 *
1287 * For historical reasons, it only allows reserved pages. Only
1288 * old drivers should use this, and they needed to mark their
1289 * pages reserved for the old functions anyway.
1290 */
1291static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1292			struct page *page, pgprot_t prot)
1293{
1294	struct mm_struct *mm = vma->vm_mm;
1295	int retval;
1296	pte_t *pte;
1297	spinlock_t *ptl;
1298
1299	retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1300	if (retval)
1301		goto out;
1302
1303	retval = -EINVAL;
1304	if (PageAnon(page))
1305		goto out_uncharge;
1306	retval = -ENOMEM;
1307	flush_dcache_page(page);
1308	pte = get_locked_pte(mm, addr, &ptl);
1309	if (!pte)
1310		goto out_uncharge;
1311	retval = -EBUSY;
1312	if (!pte_none(*pte))
1313		goto out_unlock;
1314
1315	/* Ok, finally just insert the thing.. */
1316	get_page(page);
1317	inc_mm_counter(mm, file_rss);
1318	page_add_file_rmap(page);
1319	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1320
1321	retval = 0;
1322	pte_unmap_unlock(pte, ptl);
1323	return retval;
1324out_unlock:
1325	pte_unmap_unlock(pte, ptl);
1326out_uncharge:
1327	mem_cgroup_uncharge_page(page);
1328out:
1329	return retval;
1330}
1331
1332/**
1333 * vm_insert_page - insert single page into user vma
1334 * @vma: user vma to map to
1335 * @addr: target user address of this page
1336 * @page: source kernel page
1337 *
1338 * This allows drivers to insert individual pages they've allocated
1339 * into a user vma.
1340 *
1341 * The page has to be a nice clean _individual_ kernel allocation.
1342 * If you allocate a compound page, you need to have marked it as
1343 * such (__GFP_COMP), or manually just split the page up yourself
1344 * (see split_page()).
1345 *
1346 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1347 * took an arbitrary page protection parameter. This doesn't allow
1348 * that. Your vma protection will have to be set up correctly, which
1349 * means that if you want a shared writable mapping, you'd better
1350 * ask for a shared writable mapping!
1351 *
1352 * The page does not need to be reserved.
1353 */
1354int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1355			struct page *page)
1356{
1357	if (addr < vma->vm_start || addr >= vma->vm_end)
1358		return -EFAULT;
1359	if (!page_count(page))
1360		return -EINVAL;
1361	vma->vm_flags |= VM_INSERTPAGE;
1362	return insert_page(vma, addr, page, vma->vm_page_prot);
1363}
1364EXPORT_SYMBOL(vm_insert_page);
1365
1366static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1367			unsigned long pfn, pgprot_t prot)
1368{
1369	struct mm_struct *mm = vma->vm_mm;
1370	int retval;
1371	pte_t *pte, entry;
1372	spinlock_t *ptl;
1373
1374	retval = -ENOMEM;
1375	pte = get_locked_pte(mm, addr, &ptl);
1376	if (!pte)
1377		goto out;
1378	retval = -EBUSY;
1379	if (!pte_none(*pte))
1380		goto out_unlock;
1381
1382	/* Ok, finally just insert the thing.. */
1383	entry = pte_mkspecial(pfn_pte(pfn, prot));
1384	set_pte_at(mm, addr, pte, entry);
1385	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1386
1387	retval = 0;
1388out_unlock:
1389	pte_unmap_unlock(pte, ptl);
1390out:
1391	return retval;
1392}
1393
1394/**
1395 * vm_insert_pfn - insert single pfn into user vma
1396 * @vma: user vma to map to
1397 * @addr: target user address of this page
1398 * @pfn: source kernel pfn
1399 *
1400 * Similar to vm_inert_page, this allows drivers to insert individual pages
1401 * they've allocated into a user vma. Same comments apply.
1402 *
1403 * This function should only be called from a vm_ops->fault handler, and
1404 * in that case the handler should return NULL.
1405 *
1406 * vma cannot be a COW mapping.
1407 *
1408 * As this is called only for pages that do not currently exist, we
1409 * do not need to flush old virtual caches or the TLB.
1410 */
1411int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1412			unsigned long pfn)
1413{
1414	/*
1415	 * Technically, architectures with pte_special can avoid all these
1416	 * restrictions (same for remap_pfn_range).  However we would like
1417	 * consistency in testing and feature parity among all, so we should
1418	 * try to keep these invariants in place for everybody.
1419	 */
1420	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1421	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1422						(VM_PFNMAP|VM_MIXEDMAP));
1423	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1424	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1425
1426	if (addr < vma->vm_start || addr >= vma->vm_end)
1427		return -EFAULT;
1428	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1429}
1430EXPORT_SYMBOL(vm_insert_pfn);
1431
1432int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1433			unsigned long pfn)
1434{
1435	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1436
1437	if (addr < vma->vm_start || addr >= vma->vm_end)
1438		return -EFAULT;
1439
1440	/*
1441	 * If we don't have pte special, then we have to use the pfn_valid()
1442	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1443	 * refcount the page if pfn_valid is true (hence insert_page rather
1444	 * than insert_pfn).
1445	 */
1446	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1447		struct page *page;
1448
1449		page = pfn_to_page(pfn);
1450		return insert_page(vma, addr, page, vma->vm_page_prot);
1451	}
1452	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1453}
1454EXPORT_SYMBOL(vm_insert_mixed);
1455
1456/*
1457 * maps a range of physical memory into the requested pages. the old
1458 * mappings are removed. any references to nonexistent pages results
1459 * in null mappings (currently treated as "copy-on-access")
1460 */
1461static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1462			unsigned long addr, unsigned long end,
1463			unsigned long pfn, pgprot_t prot)
1464{
1465	pte_t *pte;
1466	spinlock_t *ptl;
1467
1468	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1469	if (!pte)
1470		return -ENOMEM;
1471	arch_enter_lazy_mmu_mode();
1472	do {
1473		BUG_ON(!pte_none(*pte));
1474		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1475		pfn++;
1476	} while (pte++, addr += PAGE_SIZE, addr != end);
1477	arch_leave_lazy_mmu_mode();
1478	pte_unmap_unlock(pte - 1, ptl);
1479	return 0;
1480}
1481
1482static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1483			unsigned long addr, unsigned long end,
1484			unsigned long pfn, pgprot_t prot)
1485{
1486	pmd_t *pmd;
1487	unsigned long next;
1488
1489	pfn -= addr >> PAGE_SHIFT;
1490	pmd = pmd_alloc(mm, pud, addr);
1491	if (!pmd)
1492		return -ENOMEM;
1493	do {
1494		next = pmd_addr_end(addr, end);
1495		if (remap_pte_range(mm, pmd, addr, next,
1496				pfn + (addr >> PAGE_SHIFT), prot))
1497			return -ENOMEM;
1498	} while (pmd++, addr = next, addr != end);
1499	return 0;
1500}
1501
1502static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1503			unsigned long addr, unsigned long end,
1504			unsigned long pfn, pgprot_t prot)
1505{
1506	pud_t *pud;
1507	unsigned long next;
1508
1509	pfn -= addr >> PAGE_SHIFT;
1510	pud = pud_alloc(mm, pgd, addr);
1511	if (!pud)
1512		return -ENOMEM;
1513	do {
1514		next = pud_addr_end(addr, end);
1515		if (remap_pmd_range(mm, pud, addr, next,
1516				pfn + (addr >> PAGE_SHIFT), prot))
1517			return -ENOMEM;
1518	} while (pud++, addr = next, addr != end);
1519	return 0;
1520}
1521
1522/**
1523 * remap_pfn_range - remap kernel memory to userspace
1524 * @vma: user vma to map to
1525 * @addr: target user address to start at
1526 * @pfn: physical address of kernel memory
1527 * @size: size of map area
1528 * @prot: page protection flags for this mapping
1529 *
1530 *  Note: this is only safe if the mm semaphore is held when called.
1531 */
1532int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1533		    unsigned long pfn, unsigned long size, pgprot_t prot)
1534{
1535	pgd_t *pgd;
1536	unsigned long next;
1537	unsigned long end = addr + PAGE_ALIGN(size);
1538	struct mm_struct *mm = vma->vm_mm;
1539	int err;
1540
1541	/*
1542	 * Physically remapped pages are special. Tell the
1543	 * rest of the world about it:
1544	 *   VM_IO tells people not to look at these pages
1545	 *	(accesses can have side effects).
1546	 *   VM_RESERVED is specified all over the place, because
1547	 *	in 2.4 it kept swapout's vma scan off this vma; but
1548	 *	in 2.6 the LRU scan won't even find its pages, so this
1549	 *	flag means no more than count its pages in reserved_vm,
1550	 * 	and omit it from core dump, even when VM_IO turned off.
1551	 *   VM_PFNMAP tells the core MM that the base pages are just
1552	 *	raw PFN mappings, and do not have a "struct page" associated
1553	 *	with them.
1554	 *
1555	 * There's a horrible special case to handle copy-on-write
1556	 * behaviour that some programs depend on. We mark the "original"
1557	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1558	 */
1559	if (is_cow_mapping(vma->vm_flags)) {
1560		if (addr != vma->vm_start || end != vma->vm_end)
1561			return -EINVAL;
1562		vma->vm_pgoff = pfn;
1563	}
1564
1565	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1566
1567	BUG_ON(addr >= end);
1568	pfn -= addr >> PAGE_SHIFT;
1569	pgd = pgd_offset(mm, addr);
1570	flush_cache_range(vma, addr, end);
1571	do {
1572		next = pgd_addr_end(addr, end);
1573		err = remap_pud_range(mm, pgd, addr, next,
1574				pfn + (addr >> PAGE_SHIFT), prot);
1575		if (err)
1576			break;
1577	} while (pgd++, addr = next, addr != end);
1578	return err;
1579}
1580EXPORT_SYMBOL(remap_pfn_range);
1581
1582static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1583				     unsigned long addr, unsigned long end,
1584				     pte_fn_t fn, void *data)
1585{
1586	pte_t *pte;
1587	int err;
1588	pgtable_t token;
1589	spinlock_t *uninitialized_var(ptl);
1590
1591	pte = (mm == &init_mm) ?
1592		pte_alloc_kernel(pmd, addr) :
1593		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1594	if (!pte)
1595		return -ENOMEM;
1596
1597	BUG_ON(pmd_huge(*pmd));
1598
1599	token = pmd_pgtable(*pmd);
1600
1601	do {
1602		err = fn(pte, token, addr, data);
1603		if (err)
1604			break;
1605	} while (pte++, addr += PAGE_SIZE, addr != end);
1606
1607	if (mm != &init_mm)
1608		pte_unmap_unlock(pte-1, ptl);
1609	return err;
1610}
1611
1612static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1613				     unsigned long addr, unsigned long end,
1614				     pte_fn_t fn, void *data)
1615{
1616	pmd_t *pmd;
1617	unsigned long next;
1618	int err;
1619
1620	BUG_ON(pud_huge(*pud));
1621
1622	pmd = pmd_alloc(mm, pud, addr);
1623	if (!pmd)
1624		return -ENOMEM;
1625	do {
1626		next = pmd_addr_end(addr, end);
1627		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1628		if (err)
1629			break;
1630	} while (pmd++, addr = next, addr != end);
1631	return err;
1632}
1633
1634static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1635				     unsigned long addr, unsigned long end,
1636				     pte_fn_t fn, void *data)
1637{
1638	pud_t *pud;
1639	unsigned long next;
1640	int err;
1641
1642	pud = pud_alloc(mm, pgd, addr);
1643	if (!pud)
1644		return -ENOMEM;
1645	do {
1646		next = pud_addr_end(addr, end);
1647		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1648		if (err)
1649			break;
1650	} while (pud++, addr = next, addr != end);
1651	return err;
1652}
1653
1654/*
1655 * Scan a region of virtual memory, filling in page tables as necessary
1656 * and calling a provided function on each leaf page table.
1657 */
1658int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1659			unsigned long size, pte_fn_t fn, void *data)
1660{
1661	pgd_t *pgd;
1662	unsigned long next;
1663	unsigned long start = addr, end = addr + size;
1664	int err;
1665
1666	BUG_ON(addr >= end);
1667	mmu_notifier_invalidate_range_start(mm, start, end);
1668	pgd = pgd_offset(mm, addr);
1669	do {
1670		next = pgd_addr_end(addr, end);
1671		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1672		if (err)
1673			break;
1674	} while (pgd++, addr = next, addr != end);
1675	mmu_notifier_invalidate_range_end(mm, start, end);
1676	return err;
1677}
1678EXPORT_SYMBOL_GPL(apply_to_page_range);
1679
1680/*
1681 * handle_pte_fault chooses page fault handler according to an entry
1682 * which was read non-atomically.  Before making any commitment, on
1683 * those architectures or configurations (e.g. i386 with PAE) which
1684 * might give a mix of unmatched parts, do_swap_page and do_file_page
1685 * must check under lock before unmapping the pte and proceeding
1686 * (but do_wp_page is only called after already making such a check;
1687 * and do_anonymous_page and do_no_page can safely check later on).
1688 */
1689static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1690				pte_t *page_table, pte_t orig_pte)
1691{
1692	int same = 1;
1693#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1694	if (sizeof(pte_t) > sizeof(unsigned long)) {
1695		spinlock_t *ptl = pte_lockptr(mm, pmd);
1696		spin_lock(ptl);
1697		same = pte_same(*page_table, orig_pte);
1698		spin_unlock(ptl);
1699	}
1700#endif
1701	pte_unmap(page_table);
1702	return same;
1703}
1704
1705/*
1706 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1707 * servicing faults for write access.  In the normal case, do always want
1708 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1709 * that do not have writing enabled, when used by access_process_vm.
1710 */
1711static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1712{
1713	if (likely(vma->vm_flags & VM_WRITE))
1714		pte = pte_mkwrite(pte);
1715	return pte;
1716}
1717
1718static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1719{
1720	/*
1721	 * If the source page was a PFN mapping, we don't have
1722	 * a "struct page" for it. We do a best-effort copy by
1723	 * just copying from the original user address. If that
1724	 * fails, we just zero-fill it. Live with it.
1725	 */
1726	if (unlikely(!src)) {
1727		void *kaddr = kmap_atomic(dst, KM_USER0);
1728		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1729
1730		/*
1731		 * This really shouldn't fail, because the page is there
1732		 * in the page tables. But it might just be unreadable,
1733		 * in which case we just give up and fill the result with
1734		 * zeroes.
1735		 */
1736		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1737			memset(kaddr, 0, PAGE_SIZE);
1738		kunmap_atomic(kaddr, KM_USER0);
1739		flush_dcache_page(dst);
1740	} else
1741		copy_user_highpage(dst, src, va, vma);
1742}
1743
1744/*
1745 * This routine handles present pages, when users try to write
1746 * to a shared page. It is done by copying the page to a new address
1747 * and decrementing the shared-page counter for the old page.
1748 *
1749 * Note that this routine assumes that the protection checks have been
1750 * done by the caller (the low-level page fault routine in most cases).
1751 * Thus we can safely just mark it writable once we've done any necessary
1752 * COW.
1753 *
1754 * We also mark the page dirty at this point even though the page will
1755 * change only once the write actually happens. This avoids a few races,
1756 * and potentially makes it more efficient.
1757 *
1758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1759 * but allow concurrent faults), with pte both mapped and locked.
1760 * We return with mmap_sem still held, but pte unmapped and unlocked.
1761 */
1762static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1763		unsigned long address, pte_t *page_table, pmd_t *pmd,
1764		spinlock_t *ptl, pte_t orig_pte)
1765{
1766	struct page *old_page, *new_page;
1767	pte_t entry;
1768	int reuse = 0, ret = 0;
1769	int page_mkwrite = 0;
1770	struct page *dirty_page = NULL;
1771
1772	old_page = vm_normal_page(vma, address, orig_pte);
1773	if (!old_page) {
1774		/*
1775		 * VM_MIXEDMAP !pfn_valid() case
1776		 *
1777		 * We should not cow pages in a shared writeable mapping.
1778		 * Just mark the pages writable as we can't do any dirty
1779		 * accounting on raw pfn maps.
1780		 */
1781		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1782				     (VM_WRITE|VM_SHARED))
1783			goto reuse;
1784		goto gotten;
1785	}
1786
1787	/*
1788	 * Take out anonymous pages first, anonymous shared vmas are
1789	 * not dirty accountable.
1790	 */
1791	if (PageAnon(old_page)) {
1792		if (!TestSetPageLocked(old_page)) {
1793			reuse = can_share_swap_page(old_page);
1794			unlock_page(old_page);
1795		}
1796	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1797					(VM_WRITE|VM_SHARED))) {
1798		/*
1799		 * Only catch write-faults on shared writable pages,
1800		 * read-only shared pages can get COWed by
1801		 * get_user_pages(.write=1, .force=1).
1802		 */
1803		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1804			/*
1805			 * Notify the address space that the page is about to
1806			 * become writable so that it can prohibit this or wait
1807			 * for the page to get into an appropriate state.
1808			 *
1809			 * We do this without the lock held, so that it can
1810			 * sleep if it needs to.
1811			 */
1812			page_cache_get(old_page);
1813			pte_unmap_unlock(page_table, ptl);
1814
1815			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1816				goto unwritable_page;
1817
1818			/*
1819			 * Since we dropped the lock we need to revalidate
1820			 * the PTE as someone else may have changed it.  If
1821			 * they did, we just return, as we can count on the
1822			 * MMU to tell us if they didn't also make it writable.
1823			 */
1824			page_table = pte_offset_map_lock(mm, pmd, address,
1825							 &ptl);
1826			page_cache_release(old_page);
1827			if (!pte_same(*page_table, orig_pte))
1828				goto unlock;
1829
1830			page_mkwrite = 1;
1831		}
1832		dirty_page = old_page;
1833		get_page(dirty_page);
1834		reuse = 1;
1835	}
1836
1837	if (reuse) {
1838reuse:
1839		flush_cache_page(vma, address, pte_pfn(orig_pte));
1840		entry = pte_mkyoung(orig_pte);
1841		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1842		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1843			update_mmu_cache(vma, address, entry);
1844		ret |= VM_FAULT_WRITE;
1845		goto unlock;
1846	}
1847
1848	/*
1849	 * Ok, we need to copy. Oh, well..
1850	 */
1851	page_cache_get(old_page);
1852gotten:
1853	pte_unmap_unlock(page_table, ptl);
1854
1855	if (unlikely(anon_vma_prepare(vma)))
1856		goto oom;
1857	VM_BUG_ON(old_page == ZERO_PAGE(0));
1858	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1859	if (!new_page)
1860		goto oom;
1861	cow_user_page(new_page, old_page, address, vma);
1862	__SetPageUptodate(new_page);
1863
1864	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1865		goto oom_free_new;
1866
1867	/*
1868	 * Re-check the pte - we dropped the lock
1869	 */
1870	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1871	if (likely(pte_same(*page_table, orig_pte))) {
1872		if (old_page) {
1873			if (!PageAnon(old_page)) {
1874				dec_mm_counter(mm, file_rss);
1875				inc_mm_counter(mm, anon_rss);
1876			}
1877		} else
1878			inc_mm_counter(mm, anon_rss);
1879		flush_cache_page(vma, address, pte_pfn(orig_pte));
1880		entry = mk_pte(new_page, vma->vm_page_prot);
1881		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1882		/*
1883		 * Clear the pte entry and flush it first, before updating the
1884		 * pte with the new entry. This will avoid a race condition
1885		 * seen in the presence of one thread doing SMC and another
1886		 * thread doing COW.
1887		 */
1888		ptep_clear_flush_notify(vma, address, page_table);
1889		set_pte_at(mm, address, page_table, entry);
1890		update_mmu_cache(vma, address, entry);
1891		lru_cache_add_active(new_page);
1892		page_add_new_anon_rmap(new_page, vma, address);
1893
1894		if (old_page) {
1895			/*
1896			 * Only after switching the pte to the new page may
1897			 * we remove the mapcount here. Otherwise another
1898			 * process may come and find the rmap count decremented
1899			 * before the pte is switched to the new page, and
1900			 * "reuse" the old page writing into it while our pte
1901			 * here still points into it and can be read by other
1902			 * threads.
1903			 *
1904			 * The critical issue is to order this
1905			 * page_remove_rmap with the ptp_clear_flush above.
1906			 * Those stores are ordered by (if nothing else,)
1907			 * the barrier present in the atomic_add_negative
1908			 * in page_remove_rmap.
1909			 *
1910			 * Then the TLB flush in ptep_clear_flush ensures that
1911			 * no process can access the old page before the
1912			 * decremented mapcount is visible. And the old page
1913			 * cannot be reused until after the decremented
1914			 * mapcount is visible. So transitively, TLBs to
1915			 * old page will be flushed before it can be reused.
1916			 */
1917			page_remove_rmap(old_page, vma);
1918		}
1919
1920		/* Free the old page.. */
1921		new_page = old_page;
1922		ret |= VM_FAULT_WRITE;
1923	} else
1924		mem_cgroup_uncharge_page(new_page);
1925
1926	if (new_page)
1927		page_cache_release(new_page);
1928	if (old_page)
1929		page_cache_release(old_page);
1930unlock:
1931	pte_unmap_unlock(page_table, ptl);
1932	if (dirty_page) {
1933		if (vma->vm_file)
1934			file_update_time(vma->vm_file);
1935
1936		/*
1937		 * Yes, Virginia, this is actually required to prevent a race
1938		 * with clear_page_dirty_for_io() from clearing the page dirty
1939		 * bit after it clear all dirty ptes, but before a racing
1940		 * do_wp_page installs a dirty pte.
1941		 *
1942		 * do_no_page is protected similarly.
1943		 */
1944		wait_on_page_locked(dirty_page);
1945		set_page_dirty_balance(dirty_page, page_mkwrite);
1946		put_page(dirty_page);
1947	}
1948	return ret;
1949oom_free_new:
1950	page_cache_release(new_page);
1951oom:
1952	if (old_page)
1953		page_cache_release(old_page);
1954	return VM_FAULT_OOM;
1955
1956unwritable_page:
1957	page_cache_release(old_page);
1958	return VM_FAULT_SIGBUS;
1959}
1960
1961/*
1962 * Helper functions for unmap_mapping_range().
1963 *
1964 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1965 *
1966 * We have to restart searching the prio_tree whenever we drop the lock,
1967 * since the iterator is only valid while the lock is held, and anyway
1968 * a later vma might be split and reinserted earlier while lock dropped.
1969 *
1970 * The list of nonlinear vmas could be handled more efficiently, using
1971 * a placeholder, but handle it in the same way until a need is shown.
1972 * It is important to search the prio_tree before nonlinear list: a vma
1973 * may become nonlinear and be shifted from prio_tree to nonlinear list
1974 * while the lock is dropped; but never shifted from list to prio_tree.
1975 *
1976 * In order to make forward progress despite restarting the search,
1977 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1978 * quickly skip it next time around.  Since the prio_tree search only
1979 * shows us those vmas affected by unmapping the range in question, we
1980 * can't efficiently keep all vmas in step with mapping->truncate_count:
1981 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1982 * mapping->truncate_count and vma->vm_truncate_count are protected by
1983 * i_mmap_lock.
1984 *
1985 * In order to make forward progress despite repeatedly restarting some
1986 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1987 * and restart from that address when we reach that vma again.  It might
1988 * have been split or merged, shrunk or extended, but never shifted: so
1989 * restart_addr remains valid so long as it remains in the vma's range.
1990 * unmap_mapping_range forces truncate_count to leap over page-aligned
1991 * values so we can save vma's restart_addr in its truncate_count field.
1992 */
1993#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1994
1995static void reset_vma_truncate_counts(struct address_space *mapping)
1996{
1997	struct vm_area_struct *vma;
1998	struct prio_tree_iter iter;
1999
2000	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2001		vma->vm_truncate_count = 0;
2002	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2003		vma->vm_truncate_count = 0;
2004}
2005
2006static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2007		unsigned long start_addr, unsigned long end_addr,
2008		struct zap_details *details)
2009{
2010	unsigned long restart_addr;
2011	int need_break;
2012
2013	/*
2014	 * files that support invalidating or truncating portions of the
2015	 * file from under mmaped areas must have their ->fault function
2016	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2017	 * This provides synchronisation against concurrent unmapping here.
2018	 */
2019
2020again:
2021	restart_addr = vma->vm_truncate_count;
2022	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2023		start_addr = restart_addr;
2024		if (start_addr >= end_addr) {
2025			/* Top of vma has been split off since last time */
2026			vma->vm_truncate_count = details->truncate_count;
2027			return 0;
2028		}
2029	}
2030
2031	restart_addr = zap_page_range(vma, start_addr,
2032					end_addr - start_addr, details);
2033	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2034
2035	if (restart_addr >= end_addr) {
2036		/* We have now completed this vma: mark it so */
2037		vma->vm_truncate_count = details->truncate_count;
2038		if (!need_break)
2039			return 0;
2040	} else {
2041		/* Note restart_addr in vma's truncate_count field */
2042		vma->vm_truncate_count = restart_addr;
2043		if (!need_break)
2044			goto again;
2045	}
2046
2047	spin_unlock(details->i_mmap_lock);
2048	cond_resched();
2049	spin_lock(details->i_mmap_lock);
2050	return -EINTR;
2051}
2052
2053static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2054					    struct zap_details *details)
2055{
2056	struct vm_area_struct *vma;
2057	struct prio_tree_iter iter;
2058	pgoff_t vba, vea, zba, zea;
2059
2060restart:
2061	vma_prio_tree_foreach(vma, &iter, root,
2062			details->first_index, details->last_index) {
2063		/* Skip quickly over those we have already dealt with */
2064		if (vma->vm_truncate_count == details->truncate_count)
2065			continue;
2066
2067		vba = vma->vm_pgoff;
2068		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2069		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2070		zba = details->first_index;
2071		if (zba < vba)
2072			zba = vba;
2073		zea = details->last_index;
2074		if (zea > vea)
2075			zea = vea;
2076
2077		if (unmap_mapping_range_vma(vma,
2078			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2079			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2080				details) < 0)
2081			goto restart;
2082	}
2083}
2084
2085static inline void unmap_mapping_range_list(struct list_head *head,
2086					    struct zap_details *details)
2087{
2088	struct vm_area_struct *vma;
2089
2090	/*
2091	 * In nonlinear VMAs there is no correspondence between virtual address
2092	 * offset and file offset.  So we must perform an exhaustive search
2093	 * across *all* the pages in each nonlinear VMA, not just the pages
2094	 * whose virtual address lies outside the file truncation point.
2095	 */
2096restart:
2097	list_for_each_entry(vma, head, shared.vm_set.list) {
2098		/* Skip quickly over those we have already dealt with */
2099		if (vma->vm_truncate_count == details->truncate_count)
2100			continue;
2101		details->nonlinear_vma = vma;
2102		if (unmap_mapping_range_vma(vma, vma->vm_start,
2103					vma->vm_end, details) < 0)
2104			goto restart;
2105	}
2106}
2107
2108/**
2109 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2110 * @mapping: the address space containing mmaps to be unmapped.
2111 * @holebegin: byte in first page to unmap, relative to the start of
2112 * the underlying file.  This will be rounded down to a PAGE_SIZE
2113 * boundary.  Note that this is different from vmtruncate(), which
2114 * must keep the partial page.  In contrast, we must get rid of
2115 * partial pages.
2116 * @holelen: size of prospective hole in bytes.  This will be rounded
2117 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2118 * end of the file.
2119 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2120 * but 0 when invalidating pagecache, don't throw away private data.
2121 */
2122void unmap_mapping_range(struct address_space *mapping,
2123		loff_t const holebegin, loff_t const holelen, int even_cows)
2124{
2125	struct zap_details details;
2126	pgoff_t hba = holebegin >> PAGE_SHIFT;
2127	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2128
2129	/* Check for overflow. */
2130	if (sizeof(holelen) > sizeof(hlen)) {
2131		long long holeend =
2132			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2133		if (holeend & ~(long long)ULONG_MAX)
2134			hlen = ULONG_MAX - hba + 1;
2135	}
2136
2137	details.check_mapping = even_cows? NULL: mapping;
2138	details.nonlinear_vma = NULL;
2139	details.first_index = hba;
2140	details.last_index = hba + hlen - 1;
2141	if (details.last_index < details.first_index)
2142		details.last_index = ULONG_MAX;
2143	details.i_mmap_lock = &mapping->i_mmap_lock;
2144
2145	spin_lock(&mapping->i_mmap_lock);
2146
2147	/* Protect against endless unmapping loops */
2148	mapping->truncate_count++;
2149	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2150		if (mapping->truncate_count == 0)
2151			reset_vma_truncate_counts(mapping);
2152		mapping->truncate_count++;
2153	}
2154	details.truncate_count = mapping->truncate_count;
2155
2156	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2157		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2158	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2159		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2160	spin_unlock(&mapping->i_mmap_lock);
2161}
2162EXPORT_SYMBOL(unmap_mapping_range);
2163
2164/**
2165 * vmtruncate - unmap mappings "freed" by truncate() syscall
2166 * @inode: inode of the file used
2167 * @offset: file offset to start truncating
2168 *
2169 * NOTE! We have to be ready to update the memory sharing
2170 * between the file and the memory map for a potential last
2171 * incomplete page.  Ugly, but necessary.
2172 */
2173int vmtruncate(struct inode * inode, loff_t offset)
2174{
2175	if (inode->i_size < offset) {
2176		unsigned long limit;
2177
2178		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2179		if (limit != RLIM_INFINITY && offset > limit)
2180			goto out_sig;
2181		if (offset > inode->i_sb->s_maxbytes)
2182			goto out_big;
2183		i_size_write(inode, offset);
2184	} else {
2185		struct address_space *mapping = inode->i_mapping;
2186
2187		/*
2188		 * truncation of in-use swapfiles is disallowed - it would
2189		 * cause subsequent swapout to scribble on the now-freed
2190		 * blocks.
2191		 */
2192		if (IS_SWAPFILE(inode))
2193			return -ETXTBSY;
2194		i_size_write(inode, offset);
2195
2196		/*
2197		 * unmap_mapping_range is called twice, first simply for
2198		 * efficiency so that truncate_inode_pages does fewer
2199		 * single-page unmaps.  However after this first call, and
2200		 * before truncate_inode_pages finishes, it is possible for
2201		 * private pages to be COWed, which remain after
2202		 * truncate_inode_pages finishes, hence the second
2203		 * unmap_mapping_range call must be made for correctness.
2204		 */
2205		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2206		truncate_inode_pages(mapping, offset);
2207		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2208	}
2209
2210	if (inode->i_op && inode->i_op->truncate)
2211		inode->i_op->truncate(inode);
2212	return 0;
2213
2214out_sig:
2215	send_sig(SIGXFSZ, current, 0);
2216out_big:
2217	return -EFBIG;
2218}
2219EXPORT_SYMBOL(vmtruncate);
2220
2221int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2222{
2223	struct address_space *mapping = inode->i_mapping;
2224
2225	/*
2226	 * If the underlying filesystem is not going to provide
2227	 * a way to truncate a range of blocks (punch a hole) -
2228	 * we should return failure right now.
2229	 */
2230	if (!inode->i_op || !inode->i_op->truncate_range)
2231		return -ENOSYS;
2232
2233	mutex_lock(&inode->i_mutex);
2234	down_write(&inode->i_alloc_sem);
2235	unmap_mapping_range(mapping, offset, (end - offset), 1);
2236	truncate_inode_pages_range(mapping, offset, end);
2237	unmap_mapping_range(mapping, offset, (end - offset), 1);
2238	inode->i_op->truncate_range(inode, offset, end);
2239	up_write(&inode->i_alloc_sem);
2240	mutex_unlock(&inode->i_mutex);
2241
2242	return 0;
2243}
2244
2245/*
2246 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2247 * but allow concurrent faults), and pte mapped but not yet locked.
2248 * We return with mmap_sem still held, but pte unmapped and unlocked.
2249 */
2250static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2251		unsigned long address, pte_t *page_table, pmd_t *pmd,
2252		int write_access, pte_t orig_pte)
2253{
2254	spinlock_t *ptl;
2255	struct page *page;
2256	swp_entry_t entry;
2257	pte_t pte;
2258	int ret = 0;
2259
2260	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2261		goto out;
2262
2263	entry = pte_to_swp_entry(orig_pte);
2264	if (is_migration_entry(entry)) {
2265		migration_entry_wait(mm, pmd, address);
2266		goto out;
2267	}
2268	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2269	page = lookup_swap_cache(entry);
2270	if (!page) {
2271		grab_swap_token(); /* Contend for token _before_ read-in */
2272		page = swapin_readahead(entry,
2273					GFP_HIGHUSER_MOVABLE, vma, address);
2274		if (!page) {
2275			/*
2276			 * Back out if somebody else faulted in this pte
2277			 * while we released the pte lock.
2278			 */
2279			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2280			if (likely(pte_same(*page_table, orig_pte)))
2281				ret = VM_FAULT_OOM;
2282			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2283			goto unlock;
2284		}
2285
2286		/* Had to read the page from swap area: Major fault */
2287		ret = VM_FAULT_MAJOR;
2288		count_vm_event(PGMAJFAULT);
2289	}
2290
2291	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2292		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2293		ret = VM_FAULT_OOM;
2294		goto out;
2295	}
2296
2297	mark_page_accessed(page);
2298	lock_page(page);
2299	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2300
2301	/*
2302	 * Back out if somebody else already faulted in this pte.
2303	 */
2304	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2305	if (unlikely(!pte_same(*page_table, orig_pte)))
2306		goto out_nomap;
2307
2308	if (unlikely(!PageUptodate(page))) {
2309		ret = VM_FAULT_SIGBUS;
2310		goto out_nomap;
2311	}
2312
2313	/* The page isn't present yet, go ahead with the fault. */
2314
2315	inc_mm_counter(mm, anon_rss);
2316	pte = mk_pte(page, vma->vm_page_prot);
2317	if (write_access && can_share_swap_page(page)) {
2318		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2319		write_access = 0;
2320	}
2321
2322	flush_icache_page(vma, page);
2323	set_pte_at(mm, address, page_table, pte);
2324	page_add_anon_rmap(page, vma, address);
2325
2326	swap_free(entry);
2327	if (vm_swap_full())
2328		remove_exclusive_swap_page(page);
2329	unlock_page(page);
2330
2331	if (write_access) {
2332		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2333		if (ret & VM_FAULT_ERROR)
2334			ret &= VM_FAULT_ERROR;
2335		goto out;
2336	}
2337
2338	/* No need to invalidate - it was non-present before */
2339	update_mmu_cache(vma, address, pte);
2340unlock:
2341	pte_unmap_unlock(page_table, ptl);
2342out:
2343	return ret;
2344out_nomap:
2345	mem_cgroup_uncharge_page(page);
2346	pte_unmap_unlock(page_table, ptl);
2347	unlock_page(page);
2348	page_cache_release(page);
2349	return ret;
2350}
2351
2352/*
2353 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2354 * but allow concurrent faults), and pte mapped but not yet locked.
2355 * We return with mmap_sem still held, but pte unmapped and unlocked.
2356 */
2357static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2358		unsigned long address, pte_t *page_table, pmd_t *pmd,
2359		int write_access)
2360{
2361	struct page *page;
2362	spinlock_t *ptl;
2363	pte_t entry;
2364
2365	/* Allocate our own private page. */
2366	pte_unmap(page_table);
2367
2368	if (unlikely(anon_vma_prepare(vma)))
2369		goto oom;
2370	page = alloc_zeroed_user_highpage_movable(vma, address);
2371	if (!page)
2372		goto oom;
2373	__SetPageUptodate(page);
2374
2375	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2376		goto oom_free_page;
2377
2378	entry = mk_pte(page, vma->vm_page_prot);
2379	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2380
2381	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2382	if (!pte_none(*page_table))
2383		goto release;
2384	inc_mm_counter(mm, anon_rss);
2385	lru_cache_add_active(page);
2386	page_add_new_anon_rmap(page, vma, address);
2387	set_pte_at(mm, address, page_table, entry);
2388
2389	/* No need to invalidate - it was non-present before */
2390	update_mmu_cache(vma, address, entry);
2391unlock:
2392	pte_unmap_unlock(page_table, ptl);
2393	return 0;
2394release:
2395	mem_cgroup_uncharge_page(page);
2396	page_cache_release(page);
2397	goto unlock;
2398oom_free_page:
2399	page_cache_release(page);
2400oom:
2401	return VM_FAULT_OOM;
2402}
2403
2404/*
2405 * __do_fault() tries to create a new page mapping. It aggressively
2406 * tries to share with existing pages, but makes a separate copy if
2407 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2408 * the next page fault.
2409 *
2410 * As this is called only for pages that do not currently exist, we
2411 * do not need to flush old virtual caches or the TLB.
2412 *
2413 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2414 * but allow concurrent faults), and pte neither mapped nor locked.
2415 * We return with mmap_sem still held, but pte unmapped and unlocked.
2416 */
2417static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2418		unsigned long address, pmd_t *pmd,
2419		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2420{
2421	pte_t *page_table;
2422	spinlock_t *ptl;
2423	struct page *page;
2424	pte_t entry;
2425	int anon = 0;
2426	struct page *dirty_page = NULL;
2427	struct vm_fault vmf;
2428	int ret;
2429	int page_mkwrite = 0;
2430
2431	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2432	vmf.pgoff = pgoff;
2433	vmf.flags = flags;
2434	vmf.page = NULL;
2435
2436	ret = vma->vm_ops->fault(vma, &vmf);
2437	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2438		return ret;
2439
2440	/*
2441	 * For consistency in subsequent calls, make the faulted page always
2442	 * locked.
2443	 */
2444	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2445		lock_page(vmf.page);
2446	else
2447		VM_BUG_ON(!PageLocked(vmf.page));
2448
2449	/*
2450	 * Should we do an early C-O-W break?
2451	 */
2452	page = vmf.page;
2453	if (flags & FAULT_FLAG_WRITE) {
2454		if (!(vma->vm_flags & VM_SHARED)) {
2455			anon = 1;
2456			if (unlikely(anon_vma_prepare(vma))) {
2457				ret = VM_FAULT_OOM;
2458				goto out;
2459			}
2460			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2461						vma, address);
2462			if (!page) {
2463				ret = VM_FAULT_OOM;
2464				goto out;
2465			}
2466			copy_user_highpage(page, vmf.page, address, vma);
2467			__SetPageUptodate(page);
2468		} else {
2469			/*
2470			 * If the page will be shareable, see if the backing
2471			 * address space wants to know that the page is about
2472			 * to become writable
2473			 */
2474			if (vma->vm_ops->page_mkwrite) {
2475				unlock_page(page);
2476				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2477					ret = VM_FAULT_SIGBUS;
2478					anon = 1; /* no anon but release vmf.page */
2479					goto out_unlocked;
2480				}
2481				lock_page(page);
2482				/*
2483				 * XXX: this is not quite right (racy vs
2484				 * invalidate) to unlock and relock the page
2485				 * like this, however a better fix requires
2486				 * reworking page_mkwrite locking API, which
2487				 * is better done later.
2488				 */
2489				if (!page->mapping) {
2490					ret = 0;
2491					anon = 1; /* no anon but release vmf.page */
2492					goto out;
2493				}
2494				page_mkwrite = 1;
2495			}
2496		}
2497
2498	}
2499
2500	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2501		ret = VM_FAULT_OOM;
2502		goto out;
2503	}
2504
2505	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2506
2507	/*
2508	 * This silly early PAGE_DIRTY setting removes a race
2509	 * due to the bad i386 page protection. But it's valid
2510	 * for other architectures too.
2511	 *
2512	 * Note that if write_access is true, we either now have
2513	 * an exclusive copy of the page, or this is a shared mapping,
2514	 * so we can make it writable and dirty to avoid having to
2515	 * handle that later.
2516	 */
2517	/* Only go through if we didn't race with anybody else... */
2518	if (likely(pte_same(*page_table, orig_pte))) {
2519		flush_icache_page(vma, page);
2520		entry = mk_pte(page, vma->vm_page_prot);
2521		if (flags & FAULT_FLAG_WRITE)
2522			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2523		set_pte_at(mm, address, page_table, entry);
2524		if (anon) {
2525                        inc_mm_counter(mm, anon_rss);
2526                        lru_cache_add_active(page);
2527                        page_add_new_anon_rmap(page, vma, address);
2528		} else {
2529			inc_mm_counter(mm, file_rss);
2530			page_add_file_rmap(page);
2531			if (flags & FAULT_FLAG_WRITE) {
2532				dirty_page = page;
2533				get_page(dirty_page);
2534			}
2535		}
2536
2537		/* no need to invalidate: a not-present page won't be cached */
2538		update_mmu_cache(vma, address, entry);
2539	} else {
2540		mem_cgroup_uncharge_page(page);
2541		if (anon)
2542			page_cache_release(page);
2543		else
2544			anon = 1; /* no anon but release faulted_page */
2545	}
2546
2547	pte_unmap_unlock(page_table, ptl);
2548
2549out:
2550	unlock_page(vmf.page);
2551out_unlocked:
2552	if (anon)
2553		page_cache_release(vmf.page);
2554	else if (dirty_page) {
2555		if (vma->vm_file)
2556			file_update_time(vma->vm_file);
2557
2558		set_page_dirty_balance(dirty_page, page_mkwrite);
2559		put_page(dirty_page);
2560	}
2561
2562	return ret;
2563}
2564
2565static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2566		unsigned long address, pte_t *page_table, pmd_t *pmd,
2567		int write_access, pte_t orig_pte)
2568{
2569	pgoff_t pgoff = (((address & PAGE_MASK)
2570			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2571	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2572
2573	pte_unmap(page_table);
2574	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2575}
2576
2577/*
2578 * Fault of a previously existing named mapping. Repopulate the pte
2579 * from the encoded file_pte if possible. This enables swappable
2580 * nonlinear vmas.
2581 *
2582 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2583 * but allow concurrent faults), and pte mapped but not yet locked.
2584 * We return with mmap_sem still held, but pte unmapped and unlocked.
2585 */
2586static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2587		unsigned long address, pte_t *page_table, pmd_t *pmd,
2588		int write_access, pte_t orig_pte)
2589{
2590	unsigned int flags = FAULT_FLAG_NONLINEAR |
2591				(write_access ? FAULT_FLAG_WRITE : 0);
2592	pgoff_t pgoff;
2593
2594	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2595		return 0;
2596
2597	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2598			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2599		/*
2600		 * Page table corrupted: show pte and kill process.
2601		 */
2602		print_bad_pte(vma, orig_pte, address);
2603		return VM_FAULT_OOM;
2604	}
2605
2606	pgoff = pte_to_pgoff(orig_pte);
2607	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2608}
2609
2610/*
2611 * These routines also need to handle stuff like marking pages dirty
2612 * and/or accessed for architectures that don't do it in hardware (most
2613 * RISC architectures).  The early dirtying is also good on the i386.
2614 *
2615 * There is also a hook called "update_mmu_cache()" that architectures
2616 * with external mmu caches can use to update those (ie the Sparc or
2617 * PowerPC hashed page tables that act as extended TLBs).
2618 *
2619 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2620 * but allow concurrent faults), and pte mapped but not yet locked.
2621 * We return with mmap_sem still held, but pte unmapped and unlocked.
2622 */
2623static inline int handle_pte_fault(struct mm_struct *mm,
2624		struct vm_area_struct *vma, unsigned long address,
2625		pte_t *pte, pmd_t *pmd, int write_access)
2626{
2627	pte_t entry;
2628	spinlock_t *ptl;
2629
2630	entry = *pte;
2631	if (!pte_present(entry)) {
2632		if (pte_none(entry)) {
2633			if (vma->vm_ops) {
2634				if (likely(vma->vm_ops->fault))
2635					return do_linear_fault(mm, vma, address,
2636						pte, pmd, write_access, entry);
2637			}
2638			return do_anonymous_page(mm, vma, address,
2639						 pte, pmd, write_access);
2640		}
2641		if (pte_file(entry))
2642			return do_nonlinear_fault(mm, vma, address,
2643					pte, pmd, write_access, entry);
2644		return do_swap_page(mm, vma, address,
2645					pte, pmd, write_access, entry);
2646	}
2647
2648	ptl = pte_lockptr(mm, pmd);
2649	spin_lock(ptl);
2650	if (unlikely(!pte_same(*pte, entry)))
2651		goto unlock;
2652	if (write_access) {
2653		if (!pte_write(entry))
2654			return do_wp_page(mm, vma, address,
2655					pte, pmd, ptl, entry);
2656		entry = pte_mkdirty(entry);
2657	}
2658	entry = pte_mkyoung(entry);
2659	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2660		update_mmu_cache(vma, address, entry);
2661	} else {
2662		/*
2663		 * This is needed only for protection faults but the arch code
2664		 * is not yet telling us if this is a protection fault or not.
2665		 * This still avoids useless tlb flushes for .text page faults
2666		 * with threads.
2667		 */
2668		if (write_access)
2669			flush_tlb_page(vma, address);
2670	}
2671unlock:
2672	pte_unmap_unlock(pte, ptl);
2673	return 0;
2674}
2675
2676/*
2677 * By the time we get here, we already hold the mm semaphore
2678 */
2679int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2680		unsigned long address, int write_access)
2681{
2682	pgd_t *pgd;
2683	pud_t *pud;
2684	pmd_t *pmd;
2685	pte_t *pte;
2686
2687	__set_current_state(TASK_RUNNING);
2688
2689	count_vm_event(PGFAULT);
2690
2691	if (unlikely(is_vm_hugetlb_page(vma)))
2692		return hugetlb_fault(mm, vma, address, write_access);
2693
2694	pgd = pgd_offset(mm, address);
2695	pud = pud_alloc(mm, pgd, address);
2696	if (!pud)
2697		return VM_FAULT_OOM;
2698	pmd = pmd_alloc(mm, pud, address);
2699	if (!pmd)
2700		return VM_FAULT_OOM;
2701	pte = pte_alloc_map(mm, pmd, address);
2702	if (!pte)
2703		return VM_FAULT_OOM;
2704
2705	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2706}
2707
2708#ifndef __PAGETABLE_PUD_FOLDED
2709/*
2710 * Allocate page upper directory.
2711 * We've already handled the fast-path in-line.
2712 */
2713int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2714{
2715	pud_t *new = pud_alloc_one(mm, address);
2716	if (!new)
2717		return -ENOMEM;
2718
2719	smp_wmb(); /* See comment in __pte_alloc */
2720
2721	spin_lock(&mm->page_table_lock);
2722	if (pgd_present(*pgd))		/* Another has populated it */
2723		pud_free(mm, new);
2724	else
2725		pgd_populate(mm, pgd, new);
2726	spin_unlock(&mm->page_table_lock);
2727	return 0;
2728}
2729#endif /* __PAGETABLE_PUD_FOLDED */
2730
2731#ifndef __PAGETABLE_PMD_FOLDED
2732/*
2733 * Allocate page middle directory.
2734 * We've already handled the fast-path in-line.
2735 */
2736int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2737{
2738	pmd_t *new = pmd_alloc_one(mm, address);
2739	if (!new)
2740		return -ENOMEM;
2741
2742	smp_wmb(); /* See comment in __pte_alloc */
2743
2744	spin_lock(&mm->page_table_lock);
2745#ifndef __ARCH_HAS_4LEVEL_HACK
2746	if (pud_present(*pud))		/* Another has populated it */
2747		pmd_free(mm, new);
2748	else
2749		pud_populate(mm, pud, new);
2750#else
2751	if (pgd_present(*pud))		/* Another has populated it */
2752		pmd_free(mm, new);
2753	else
2754		pgd_populate(mm, pud, new);
2755#endif /* __ARCH_HAS_4LEVEL_HACK */
2756	spin_unlock(&mm->page_table_lock);
2757	return 0;
2758}
2759#endif /* __PAGETABLE_PMD_FOLDED */
2760
2761int make_pages_present(unsigned long addr, unsigned long end)
2762{
2763	int ret, len, write;
2764	struct vm_area_struct * vma;
2765
2766	vma = find_vma(current->mm, addr);
2767	if (!vma)
2768		return -1;
2769	write = (vma->vm_flags & VM_WRITE) != 0;
2770	BUG_ON(addr >= end);
2771	BUG_ON(end > vma->vm_end);
2772	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2773	ret = get_user_pages(current, current->mm, addr,
2774			len, write, 0, NULL, NULL);
2775	if (ret < 0)
2776		return ret;
2777	return ret == len ? 0 : -1;
2778}
2779
2780#if !defined(__HAVE_ARCH_GATE_AREA)
2781
2782#if defined(AT_SYSINFO_EHDR)
2783static struct vm_area_struct gate_vma;
2784
2785static int __init gate_vma_init(void)
2786{
2787	gate_vma.vm_mm = NULL;
2788	gate_vma.vm_start = FIXADDR_USER_START;
2789	gate_vma.vm_end = FIXADDR_USER_END;
2790	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2791	gate_vma.vm_page_prot = __P101;
2792	/*
2793	 * Make sure the vDSO gets into every core dump.
2794	 * Dumping its contents makes post-mortem fully interpretable later
2795	 * without matching up the same kernel and hardware config to see
2796	 * what PC values meant.
2797	 */
2798	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2799	return 0;
2800}
2801__initcall(gate_vma_init);
2802#endif
2803
2804struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2805{
2806#ifdef AT_SYSINFO_EHDR
2807	return &gate_vma;
2808#else
2809	return NULL;
2810#endif
2811}
2812
2813int in_gate_area_no_task(unsigned long addr)
2814{
2815#ifdef AT_SYSINFO_EHDR
2816	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2817		return 1;
2818#endif
2819	return 0;
2820}
2821
2822#endif	/* __HAVE_ARCH_GATE_AREA */
2823
2824#ifdef CONFIG_HAVE_IOREMAP_PROT
2825static resource_size_t follow_phys(struct vm_area_struct *vma,
2826			unsigned long address, unsigned int flags,
2827			unsigned long *prot)
2828{
2829	pgd_t *pgd;
2830	pud_t *pud;
2831	pmd_t *pmd;
2832	pte_t *ptep, pte;
2833	spinlock_t *ptl;
2834	resource_size_t phys_addr = 0;
2835	struct mm_struct *mm = vma->vm_mm;
2836
2837	VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2838
2839	pgd = pgd_offset(mm, address);
2840	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2841		goto no_page_table;
2842
2843	pud = pud_offset(pgd, address);
2844	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2845		goto no_page_table;
2846
2847	pmd = pmd_offset(pud, address);
2848	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2849		goto no_page_table;
2850
2851	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2852	if (pmd_huge(*pmd))
2853		goto no_page_table;
2854
2855	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2856	if (!ptep)
2857		goto out;
2858
2859	pte = *ptep;
2860	if (!pte_present(pte))
2861		goto unlock;
2862	if ((flags & FOLL_WRITE) && !pte_write(pte))
2863		goto unlock;
2864	phys_addr = pte_pfn(pte);
2865	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2866
2867	*prot = pgprot_val(pte_pgprot(pte));
2868
2869unlock:
2870	pte_unmap_unlock(ptep, ptl);
2871out:
2872	return phys_addr;
2873no_page_table:
2874	return 0;
2875}
2876
2877int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2878			void *buf, int len, int write)
2879{
2880	resource_size_t phys_addr;
2881	unsigned long prot = 0;
2882	void *maddr;
2883	int offset = addr & (PAGE_SIZE-1);
2884
2885	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2886		return -EINVAL;
2887
2888	phys_addr = follow_phys(vma, addr, write, &prot);
2889
2890	if (!phys_addr)
2891		return -EINVAL;
2892
2893	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2894	if (write)
2895		memcpy_toio(maddr + offset, buf, len);
2896	else
2897		memcpy_fromio(buf, maddr + offset, len);
2898	iounmap(maddr);
2899
2900	return len;
2901}
2902#endif
2903
2904/*
2905 * Access another process' address space.
2906 * Source/target buffer must be kernel space,
2907 * Do not walk the page table directly, use get_user_pages
2908 */
2909int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2910{
2911	struct mm_struct *mm;
2912	struct vm_area_struct *vma;
2913	void *old_buf = buf;
2914
2915	mm = get_task_mm(tsk);
2916	if (!mm)
2917		return 0;
2918
2919	down_read(&mm->mmap_sem);
2920	/* ignore errors, just check how much was successfully transferred */
2921	while (len) {
2922		int bytes, ret, offset;
2923		void *maddr;
2924		struct page *page = NULL;
2925
2926		ret = get_user_pages(tsk, mm, addr, 1,
2927				write, 1, &page, &vma);
2928		if (ret <= 0) {
2929			/*
2930			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2931			 * we can access using slightly different code.
2932			 */
2933#ifdef CONFIG_HAVE_IOREMAP_PROT
2934			vma = find_vma(mm, addr);
2935			if (!vma)
2936				break;
2937			if (vma->vm_ops && vma->vm_ops->access)
2938				ret = vma->vm_ops->access(vma, addr, buf,
2939							  len, write);
2940			if (ret <= 0)
2941#endif
2942				break;
2943			bytes = ret;
2944		} else {
2945			bytes = len;
2946			offset = addr & (PAGE_SIZE-1);
2947			if (bytes > PAGE_SIZE-offset)
2948				bytes = PAGE_SIZE-offset;
2949
2950			maddr = kmap(page);
2951			if (write) {
2952				copy_to_user_page(vma, page, addr,
2953						  maddr + offset, buf, bytes);
2954				set_page_dirty_lock(page);
2955			} else {
2956				copy_from_user_page(vma, page, addr,
2957						    buf, maddr + offset, bytes);
2958			}
2959			kunmap(page);
2960			page_cache_release(page);
2961		}
2962		len -= bytes;
2963		buf += bytes;
2964		addr += bytes;
2965	}
2966	up_read(&mm->mmap_sem);
2967	mmput(mm);
2968
2969	return buf - old_buf;
2970}
2971
2972/*
2973 * Print the name of a VMA.
2974 */
2975void print_vma_addr(char *prefix, unsigned long ip)
2976{
2977	struct mm_struct *mm = current->mm;
2978	struct vm_area_struct *vma;
2979
2980	/*
2981	 * Do not print if we are in atomic
2982	 * contexts (in exception stacks, etc.):
2983	 */
2984	if (preempt_count())
2985		return;
2986
2987	down_read(&mm->mmap_sem);
2988	vma = find_vma(mm, ip);
2989	if (vma && vma->vm_file) {
2990		struct file *f = vma->vm_file;
2991		char *buf = (char *)__get_free_page(GFP_KERNEL);
2992		if (buf) {
2993			char *p, *s;
2994
2995			p = d_path(&f->f_path, buf, PAGE_SIZE);
2996			if (IS_ERR(p))
2997				p = "?";
2998			s = strrchr(p, '/');
2999			if (s)
3000				p = s+1;
3001			printk("%s%s[%lx+%lx]", prefix, p,
3002					vma->vm_start,
3003					vma->vm_end - vma->vm_start);
3004			free_page((unsigned long)buf);
3005		}
3006	}
3007	up_read(&current->mm->mmap_sem);
3008}
3009