memory.c revision cc03638df20acbec5d0d0d9e07234aadde9e698d
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/module.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60
61#include <asm/io.h>
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
68#include "internal.h"
69
70#ifndef CONFIG_NEED_MULTIPLE_NODES
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
91
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 *   as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100					1;
101#else
102					2;
103#endif
104
105static int __init disable_randmaps(char *s)
106{
107	randomize_va_space = 0;
108	return 1;
109}
110__setup("norandmaps", disable_randmaps);
111
112unsigned long zero_pfn __read_mostly;
113unsigned long highest_memmap_pfn __read_mostly;
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121	return 0;
122}
123core_initcall(init_zero_pfn);
124
125
126#if defined(SPLIT_RSS_COUNTING)
127
128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129{
130	int i;
131
132	for (i = 0; i < NR_MM_COUNTERS; i++) {
133		if (task->rss_stat.count[i]) {
134			add_mm_counter(mm, i, task->rss_stat.count[i]);
135			task->rss_stat.count[i] = 0;
136		}
137	}
138	task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143	struct task_struct *task = current;
144
145	if (likely(task->mm == mm))
146		task->rss_stat.count[member] += val;
147	else
148		add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH	(64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157	if (unlikely(task != current))
158		return;
159	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160		__sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165	long val = 0;
166
167	/*
168	 * Don't use task->mm here...for avoiding to use task_get_mm()..
169	 * The caller must guarantee task->mm is not invalid.
170	 */
171	val = atomic_long_read(&mm->rss_stat.count[member]);
172	/*
173	 * counter is updated in asynchronous manner and may go to minus.
174	 * But it's never be expected number for users.
175	 */
176	if (val < 0)
177		return 0;
178	return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183	__sync_task_rss_stat(task, mm);
184}
185#else
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
194#endif
195
196/*
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none.  Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
200 */
201
202void pgd_clear_bad(pgd_t *pgd)
203{
204	pgd_ERROR(*pgd);
205	pgd_clear(pgd);
206}
207
208void pud_clear_bad(pud_t *pud)
209{
210	pud_ERROR(*pud);
211	pud_clear(pud);
212}
213
214void pmd_clear_bad(pmd_t *pmd)
215{
216	pmd_ERROR(*pmd);
217	pmd_clear(pmd);
218}
219
220/*
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
223 */
224static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225			   unsigned long addr)
226{
227	pgtable_t token = pmd_pgtable(*pmd);
228	pmd_clear(pmd);
229	pte_free_tlb(tlb, token, addr);
230	tlb->mm->nr_ptes--;
231}
232
233static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234				unsigned long addr, unsigned long end,
235				unsigned long floor, unsigned long ceiling)
236{
237	pmd_t *pmd;
238	unsigned long next;
239	unsigned long start;
240
241	start = addr;
242	pmd = pmd_offset(pud, addr);
243	do {
244		next = pmd_addr_end(addr, end);
245		if (pmd_none_or_clear_bad(pmd))
246			continue;
247		free_pte_range(tlb, pmd, addr);
248	} while (pmd++, addr = next, addr != end);
249
250	start &= PUD_MASK;
251	if (start < floor)
252		return;
253	if (ceiling) {
254		ceiling &= PUD_MASK;
255		if (!ceiling)
256			return;
257	}
258	if (end - 1 > ceiling - 1)
259		return;
260
261	pmd = pmd_offset(pud, start);
262	pud_clear(pud);
263	pmd_free_tlb(tlb, pmd, start);
264}
265
266static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267				unsigned long addr, unsigned long end,
268				unsigned long floor, unsigned long ceiling)
269{
270	pud_t *pud;
271	unsigned long next;
272	unsigned long start;
273
274	start = addr;
275	pud = pud_offset(pgd, addr);
276	do {
277		next = pud_addr_end(addr, end);
278		if (pud_none_or_clear_bad(pud))
279			continue;
280		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281	} while (pud++, addr = next, addr != end);
282
283	start &= PGDIR_MASK;
284	if (start < floor)
285		return;
286	if (ceiling) {
287		ceiling &= PGDIR_MASK;
288		if (!ceiling)
289			return;
290	}
291	if (end - 1 > ceiling - 1)
292		return;
293
294	pud = pud_offset(pgd, start);
295	pgd_clear(pgd);
296	pud_free_tlb(tlb, pud, start);
297}
298
299/*
300 * This function frees user-level page tables of a process.
301 *
302 * Must be called with pagetable lock held.
303 */
304void free_pgd_range(struct mmu_gather *tlb,
305			unsigned long addr, unsigned long end,
306			unsigned long floor, unsigned long ceiling)
307{
308	pgd_t *pgd;
309	unsigned long next;
310
311	/*
312	 * The next few lines have given us lots of grief...
313	 *
314	 * Why are we testing PMD* at this top level?  Because often
315	 * there will be no work to do at all, and we'd prefer not to
316	 * go all the way down to the bottom just to discover that.
317	 *
318	 * Why all these "- 1"s?  Because 0 represents both the bottom
319	 * of the address space and the top of it (using -1 for the
320	 * top wouldn't help much: the masks would do the wrong thing).
321	 * The rule is that addr 0 and floor 0 refer to the bottom of
322	 * the address space, but end 0 and ceiling 0 refer to the top
323	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324	 * that end 0 case should be mythical).
325	 *
326	 * Wherever addr is brought up or ceiling brought down, we must
327	 * be careful to reject "the opposite 0" before it confuses the
328	 * subsequent tests.  But what about where end is brought down
329	 * by PMD_SIZE below? no, end can't go down to 0 there.
330	 *
331	 * Whereas we round start (addr) and ceiling down, by different
332	 * masks at different levels, in order to test whether a table
333	 * now has no other vmas using it, so can be freed, we don't
334	 * bother to round floor or end up - the tests don't need that.
335	 */
336
337	addr &= PMD_MASK;
338	if (addr < floor) {
339		addr += PMD_SIZE;
340		if (!addr)
341			return;
342	}
343	if (ceiling) {
344		ceiling &= PMD_MASK;
345		if (!ceiling)
346			return;
347	}
348	if (end - 1 > ceiling - 1)
349		end -= PMD_SIZE;
350	if (addr > end - 1)
351		return;
352
353	pgd = pgd_offset(tlb->mm, addr);
354	do {
355		next = pgd_addr_end(addr, end);
356		if (pgd_none_or_clear_bad(pgd))
357			continue;
358		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
359	} while (pgd++, addr = next, addr != end);
360}
361
362void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
363		unsigned long floor, unsigned long ceiling)
364{
365	while (vma) {
366		struct vm_area_struct *next = vma->vm_next;
367		unsigned long addr = vma->vm_start;
368
369		/*
370		 * Hide vma from rmap and truncate_pagecache before freeing
371		 * pgtables
372		 */
373		unlink_anon_vmas(vma);
374		unlink_file_vma(vma);
375
376		if (is_vm_hugetlb_page(vma)) {
377			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
378				floor, next? next->vm_start: ceiling);
379		} else {
380			/*
381			 * Optimization: gather nearby vmas into one call down
382			 */
383			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
384			       && !is_vm_hugetlb_page(next)) {
385				vma = next;
386				next = vma->vm_next;
387				unlink_anon_vmas(vma);
388				unlink_file_vma(vma);
389			}
390			free_pgd_range(tlb, addr, vma->vm_end,
391				floor, next? next->vm_start: ceiling);
392		}
393		vma = next;
394	}
395}
396
397int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
398		pmd_t *pmd, unsigned long address)
399{
400	pgtable_t new = pte_alloc_one(mm, address);
401	int wait_split_huge_page;
402	if (!new)
403		return -ENOMEM;
404
405	/*
406	 * Ensure all pte setup (eg. pte page lock and page clearing) are
407	 * visible before the pte is made visible to other CPUs by being
408	 * put into page tables.
409	 *
410	 * The other side of the story is the pointer chasing in the page
411	 * table walking code (when walking the page table without locking;
412	 * ie. most of the time). Fortunately, these data accesses consist
413	 * of a chain of data-dependent loads, meaning most CPUs (alpha
414	 * being the notable exception) will already guarantee loads are
415	 * seen in-order. See the alpha page table accessors for the
416	 * smp_read_barrier_depends() barriers in page table walking code.
417	 */
418	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
419
420	spin_lock(&mm->page_table_lock);
421	wait_split_huge_page = 0;
422	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
423		mm->nr_ptes++;
424		pmd_populate(mm, pmd, new);
425		new = NULL;
426	} else if (unlikely(pmd_trans_splitting(*pmd)))
427		wait_split_huge_page = 1;
428	spin_unlock(&mm->page_table_lock);
429	if (new)
430		pte_free(mm, new);
431	if (wait_split_huge_page)
432		wait_split_huge_page(vma->anon_vma, pmd);
433	return 0;
434}
435
436int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
437{
438	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
439	if (!new)
440		return -ENOMEM;
441
442	smp_wmb(); /* See comment in __pte_alloc */
443
444	spin_lock(&init_mm.page_table_lock);
445	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
446		pmd_populate_kernel(&init_mm, pmd, new);
447		new = NULL;
448	} else
449		VM_BUG_ON(pmd_trans_splitting(*pmd));
450	spin_unlock(&init_mm.page_table_lock);
451	if (new)
452		pte_free_kernel(&init_mm, new);
453	return 0;
454}
455
456static inline void init_rss_vec(int *rss)
457{
458	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459}
460
461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
462{
463	int i;
464
465	if (current->mm == mm)
466		sync_mm_rss(current, mm);
467	for (i = 0; i < NR_MM_COUNTERS; i++)
468		if (rss[i])
469			add_mm_counter(mm, i, rss[i]);
470}
471
472/*
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
476 *
477 * The calling function must still handle the error.
478 */
479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480			  pte_t pte, struct page *page)
481{
482	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483	pud_t *pud = pud_offset(pgd, addr);
484	pmd_t *pmd = pmd_offset(pud, addr);
485	struct address_space *mapping;
486	pgoff_t index;
487	static unsigned long resume;
488	static unsigned long nr_shown;
489	static unsigned long nr_unshown;
490
491	/*
492	 * Allow a burst of 60 reports, then keep quiet for that minute;
493	 * or allow a steady drip of one report per second.
494	 */
495	if (nr_shown == 60) {
496		if (time_before(jiffies, resume)) {
497			nr_unshown++;
498			return;
499		}
500		if (nr_unshown) {
501			printk(KERN_ALERT
502				"BUG: Bad page map: %lu messages suppressed\n",
503				nr_unshown);
504			nr_unshown = 0;
505		}
506		nr_shown = 0;
507	}
508	if (nr_shown++ == 0)
509		resume = jiffies + 60 * HZ;
510
511	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512	index = linear_page_index(vma, addr);
513
514	printk(KERN_ALERT
515		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
516		current->comm,
517		(long long)pte_val(pte), (long long)pmd_val(*pmd));
518	if (page)
519		dump_page(page);
520	printk(KERN_ALERT
521		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523	/*
524	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
525	 */
526	if (vma->vm_ops)
527		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
528				(unsigned long)vma->vm_ops->fault);
529	if (vma->vm_file && vma->vm_file->f_op)
530		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
531				(unsigned long)vma->vm_file->f_op->mmap);
532	dump_stack();
533	add_taint(TAINT_BAD_PAGE);
534}
535
536static inline int is_cow_mapping(unsigned int flags)
537{
538	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
539}
540
541#ifndef is_zero_pfn
542static inline int is_zero_pfn(unsigned long pfn)
543{
544	return pfn == zero_pfn;
545}
546#endif
547
548#ifndef my_zero_pfn
549static inline unsigned long my_zero_pfn(unsigned long addr)
550{
551	return zero_pfn;
552}
553#endif
554
555/*
556 * vm_normal_page -- This function gets the "struct page" associated with a pte.
557 *
558 * "Special" mappings do not wish to be associated with a "struct page" (either
559 * it doesn't exist, or it exists but they don't want to touch it). In this
560 * case, NULL is returned here. "Normal" mappings do have a struct page.
561 *
562 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
563 * pte bit, in which case this function is trivial. Secondly, an architecture
564 * may not have a spare pte bit, which requires a more complicated scheme,
565 * described below.
566 *
567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
568 * special mapping (even if there are underlying and valid "struct pages").
569 * COWed pages of a VM_PFNMAP are always normal.
570 *
571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
574 * mapping will always honor the rule
575 *
576 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
577 *
578 * And for normal mappings this is false.
579 *
580 * This restricts such mappings to be a linear translation from virtual address
581 * to pfn. To get around this restriction, we allow arbitrary mappings so long
582 * as the vma is not a COW mapping; in that case, we know that all ptes are
583 * special (because none can have been COWed).
584 *
585 *
586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
587 *
588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
589 * page" backing, however the difference is that _all_ pages with a struct
590 * page (that is, those where pfn_valid is true) are refcounted and considered
591 * normal pages by the VM. The disadvantage is that pages are refcounted
592 * (which can be slower and simply not an option for some PFNMAP users). The
593 * advantage is that we don't have to follow the strict linearity rule of
594 * PFNMAP mappings in order to support COWable mappings.
595 *
596 */
597#ifdef __HAVE_ARCH_PTE_SPECIAL
598# define HAVE_PTE_SPECIAL 1
599#else
600# define HAVE_PTE_SPECIAL 0
601#endif
602struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603				pte_t pte)
604{
605	unsigned long pfn = pte_pfn(pte);
606
607	if (HAVE_PTE_SPECIAL) {
608		if (likely(!pte_special(pte)))
609			goto check_pfn;
610		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
611			return NULL;
612		if (!is_zero_pfn(pfn))
613			print_bad_pte(vma, addr, pte, NULL);
614		return NULL;
615	}
616
617	/* !HAVE_PTE_SPECIAL case follows: */
618
619	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620		if (vma->vm_flags & VM_MIXEDMAP) {
621			if (!pfn_valid(pfn))
622				return NULL;
623			goto out;
624		} else {
625			unsigned long off;
626			off = (addr - vma->vm_start) >> PAGE_SHIFT;
627			if (pfn == vma->vm_pgoff + off)
628				return NULL;
629			if (!is_cow_mapping(vma->vm_flags))
630				return NULL;
631		}
632	}
633
634	if (is_zero_pfn(pfn))
635		return NULL;
636check_pfn:
637	if (unlikely(pfn > highest_memmap_pfn)) {
638		print_bad_pte(vma, addr, pte, NULL);
639		return NULL;
640	}
641
642	/*
643	 * NOTE! We still have PageReserved() pages in the page tables.
644	 * eg. VDSO mappings can cause them to exist.
645	 */
646out:
647	return pfn_to_page(pfn);
648}
649
650/*
651 * copy one vm_area from one task to the other. Assumes the page tables
652 * already present in the new task to be cleared in the whole range
653 * covered by this vma.
654 */
655
656static inline unsigned long
657copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
659		unsigned long addr, int *rss)
660{
661	unsigned long vm_flags = vma->vm_flags;
662	pte_t pte = *src_pte;
663	struct page *page;
664
665	/* pte contains position in swap or file, so copy. */
666	if (unlikely(!pte_present(pte))) {
667		if (!pte_file(pte)) {
668			swp_entry_t entry = pte_to_swp_entry(pte);
669
670			if (swap_duplicate(entry) < 0)
671				return entry.val;
672
673			/* make sure dst_mm is on swapoff's mmlist. */
674			if (unlikely(list_empty(&dst_mm->mmlist))) {
675				spin_lock(&mmlist_lock);
676				if (list_empty(&dst_mm->mmlist))
677					list_add(&dst_mm->mmlist,
678						 &src_mm->mmlist);
679				spin_unlock(&mmlist_lock);
680			}
681			if (likely(!non_swap_entry(entry)))
682				rss[MM_SWAPENTS]++;
683			else if (is_write_migration_entry(entry) &&
684					is_cow_mapping(vm_flags)) {
685				/*
686				 * COW mappings require pages in both parent
687				 * and child to be set to read.
688				 */
689				make_migration_entry_read(&entry);
690				pte = swp_entry_to_pte(entry);
691				set_pte_at(src_mm, addr, src_pte, pte);
692			}
693		}
694		goto out_set_pte;
695	}
696
697	/*
698	 * If it's a COW mapping, write protect it both
699	 * in the parent and the child
700	 */
701	if (is_cow_mapping(vm_flags)) {
702		ptep_set_wrprotect(src_mm, addr, src_pte);
703		pte = pte_wrprotect(pte);
704	}
705
706	/*
707	 * If it's a shared mapping, mark it clean in
708	 * the child
709	 */
710	if (vm_flags & VM_SHARED)
711		pte = pte_mkclean(pte);
712	pte = pte_mkold(pte);
713
714	page = vm_normal_page(vma, addr, pte);
715	if (page) {
716		get_page(page);
717		page_dup_rmap(page);
718		if (PageAnon(page))
719			rss[MM_ANONPAGES]++;
720		else
721			rss[MM_FILEPAGES]++;
722	}
723
724out_set_pte:
725	set_pte_at(dst_mm, addr, dst_pte, pte);
726	return 0;
727}
728
729int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
730		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
731		   unsigned long addr, unsigned long end)
732{
733	pte_t *orig_src_pte, *orig_dst_pte;
734	pte_t *src_pte, *dst_pte;
735	spinlock_t *src_ptl, *dst_ptl;
736	int progress = 0;
737	int rss[NR_MM_COUNTERS];
738	swp_entry_t entry = (swp_entry_t){0};
739
740again:
741	init_rss_vec(rss);
742
743	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
744	if (!dst_pte)
745		return -ENOMEM;
746	src_pte = pte_offset_map(src_pmd, addr);
747	src_ptl = pte_lockptr(src_mm, src_pmd);
748	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
749	orig_src_pte = src_pte;
750	orig_dst_pte = dst_pte;
751	arch_enter_lazy_mmu_mode();
752
753	do {
754		/*
755		 * We are holding two locks at this point - either of them
756		 * could generate latencies in another task on another CPU.
757		 */
758		if (progress >= 32) {
759			progress = 0;
760			if (need_resched() ||
761			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
762				break;
763		}
764		if (pte_none(*src_pte)) {
765			progress++;
766			continue;
767		}
768		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
769							vma, addr, rss);
770		if (entry.val)
771			break;
772		progress += 8;
773	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
774
775	arch_leave_lazy_mmu_mode();
776	spin_unlock(src_ptl);
777	pte_unmap(orig_src_pte);
778	add_mm_rss_vec(dst_mm, rss);
779	pte_unmap_unlock(orig_dst_pte, dst_ptl);
780	cond_resched();
781
782	if (entry.val) {
783		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
784			return -ENOMEM;
785		progress = 0;
786	}
787	if (addr != end)
788		goto again;
789	return 0;
790}
791
792static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
794		unsigned long addr, unsigned long end)
795{
796	pmd_t *src_pmd, *dst_pmd;
797	unsigned long next;
798
799	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
800	if (!dst_pmd)
801		return -ENOMEM;
802	src_pmd = pmd_offset(src_pud, addr);
803	do {
804		next = pmd_addr_end(addr, end);
805		if (pmd_trans_huge(*src_pmd)) {
806			int err;
807			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
808			err = copy_huge_pmd(dst_mm, src_mm,
809					    dst_pmd, src_pmd, addr, vma);
810			if (err == -ENOMEM)
811				return -ENOMEM;
812			if (!err)
813				continue;
814			/* fall through */
815		}
816		if (pmd_none_or_clear_bad(src_pmd))
817			continue;
818		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
819						vma, addr, next))
820			return -ENOMEM;
821	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
822	return 0;
823}
824
825static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
826		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
827		unsigned long addr, unsigned long end)
828{
829	pud_t *src_pud, *dst_pud;
830	unsigned long next;
831
832	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
833	if (!dst_pud)
834		return -ENOMEM;
835	src_pud = pud_offset(src_pgd, addr);
836	do {
837		next = pud_addr_end(addr, end);
838		if (pud_none_or_clear_bad(src_pud))
839			continue;
840		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
841						vma, addr, next))
842			return -ENOMEM;
843	} while (dst_pud++, src_pud++, addr = next, addr != end);
844	return 0;
845}
846
847int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848		struct vm_area_struct *vma)
849{
850	pgd_t *src_pgd, *dst_pgd;
851	unsigned long next;
852	unsigned long addr = vma->vm_start;
853	unsigned long end = vma->vm_end;
854	int ret;
855
856	/*
857	 * Don't copy ptes where a page fault will fill them correctly.
858	 * Fork becomes much lighter when there are big shared or private
859	 * readonly mappings. The tradeoff is that copy_page_range is more
860	 * efficient than faulting.
861	 */
862	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
863		if (!vma->anon_vma)
864			return 0;
865	}
866
867	if (is_vm_hugetlb_page(vma))
868		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
869
870	if (unlikely(is_pfn_mapping(vma))) {
871		/*
872		 * We do not free on error cases below as remove_vma
873		 * gets called on error from higher level routine
874		 */
875		ret = track_pfn_vma_copy(vma);
876		if (ret)
877			return ret;
878	}
879
880	/*
881	 * We need to invalidate the secondary MMU mappings only when
882	 * there could be a permission downgrade on the ptes of the
883	 * parent mm. And a permission downgrade will only happen if
884	 * is_cow_mapping() returns true.
885	 */
886	if (is_cow_mapping(vma->vm_flags))
887		mmu_notifier_invalidate_range_start(src_mm, addr, end);
888
889	ret = 0;
890	dst_pgd = pgd_offset(dst_mm, addr);
891	src_pgd = pgd_offset(src_mm, addr);
892	do {
893		next = pgd_addr_end(addr, end);
894		if (pgd_none_or_clear_bad(src_pgd))
895			continue;
896		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
897					    vma, addr, next))) {
898			ret = -ENOMEM;
899			break;
900		}
901	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
902
903	if (is_cow_mapping(vma->vm_flags))
904		mmu_notifier_invalidate_range_end(src_mm,
905						  vma->vm_start, end);
906	return ret;
907}
908
909static unsigned long zap_pte_range(struct mmu_gather *tlb,
910				struct vm_area_struct *vma, pmd_t *pmd,
911				unsigned long addr, unsigned long end,
912				long *zap_work, struct zap_details *details)
913{
914	struct mm_struct *mm = tlb->mm;
915	pte_t *pte;
916	spinlock_t *ptl;
917	int rss[NR_MM_COUNTERS];
918
919	init_rss_vec(rss);
920
921	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
922	arch_enter_lazy_mmu_mode();
923	do {
924		pte_t ptent = *pte;
925		if (pte_none(ptent)) {
926			(*zap_work)--;
927			continue;
928		}
929
930		(*zap_work) -= PAGE_SIZE;
931
932		if (pte_present(ptent)) {
933			struct page *page;
934
935			page = vm_normal_page(vma, addr, ptent);
936			if (unlikely(details) && page) {
937				/*
938				 * unmap_shared_mapping_pages() wants to
939				 * invalidate cache without truncating:
940				 * unmap shared but keep private pages.
941				 */
942				if (details->check_mapping &&
943				    details->check_mapping != page->mapping)
944					continue;
945				/*
946				 * Each page->index must be checked when
947				 * invalidating or truncating nonlinear.
948				 */
949				if (details->nonlinear_vma &&
950				    (page->index < details->first_index ||
951				     page->index > details->last_index))
952					continue;
953			}
954			ptent = ptep_get_and_clear_full(mm, addr, pte,
955							tlb->fullmm);
956			tlb_remove_tlb_entry(tlb, pte, addr);
957			if (unlikely(!page))
958				continue;
959			if (unlikely(details) && details->nonlinear_vma
960			    && linear_page_index(details->nonlinear_vma,
961						addr) != page->index)
962				set_pte_at(mm, addr, pte,
963					   pgoff_to_pte(page->index));
964			if (PageAnon(page))
965				rss[MM_ANONPAGES]--;
966			else {
967				if (pte_dirty(ptent))
968					set_page_dirty(page);
969				if (pte_young(ptent) &&
970				    likely(!VM_SequentialReadHint(vma)))
971					mark_page_accessed(page);
972				rss[MM_FILEPAGES]--;
973			}
974			page_remove_rmap(page);
975			if (unlikely(page_mapcount(page) < 0))
976				print_bad_pte(vma, addr, ptent, page);
977			tlb_remove_page(tlb, page);
978			continue;
979		}
980		/*
981		 * If details->check_mapping, we leave swap entries;
982		 * if details->nonlinear_vma, we leave file entries.
983		 */
984		if (unlikely(details))
985			continue;
986		if (pte_file(ptent)) {
987			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
988				print_bad_pte(vma, addr, ptent, NULL);
989		} else {
990			swp_entry_t entry = pte_to_swp_entry(ptent);
991
992			if (!non_swap_entry(entry))
993				rss[MM_SWAPENTS]--;
994			if (unlikely(!free_swap_and_cache(entry)))
995				print_bad_pte(vma, addr, ptent, NULL);
996		}
997		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
998	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
999
1000	add_mm_rss_vec(mm, rss);
1001	arch_leave_lazy_mmu_mode();
1002	pte_unmap_unlock(pte - 1, ptl);
1003
1004	return addr;
1005}
1006
1007static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1008				struct vm_area_struct *vma, pud_t *pud,
1009				unsigned long addr, unsigned long end,
1010				long *zap_work, struct zap_details *details)
1011{
1012	pmd_t *pmd;
1013	unsigned long next;
1014
1015	pmd = pmd_offset(pud, addr);
1016	do {
1017		next = pmd_addr_end(addr, end);
1018		if (pmd_trans_huge(*pmd)) {
1019			if (next-addr != HPAGE_PMD_SIZE) {
1020				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1021				split_huge_page_pmd(vma->vm_mm, pmd);
1022			} else if (zap_huge_pmd(tlb, vma, pmd)) {
1023				(*zap_work)--;
1024				continue;
1025			}
1026			/* fall through */
1027		}
1028		if (pmd_none_or_clear_bad(pmd)) {
1029			(*zap_work)--;
1030			continue;
1031		}
1032		next = zap_pte_range(tlb, vma, pmd, addr, next,
1033						zap_work, details);
1034	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
1035
1036	return addr;
1037}
1038
1039static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1040				struct vm_area_struct *vma, pgd_t *pgd,
1041				unsigned long addr, unsigned long end,
1042				long *zap_work, struct zap_details *details)
1043{
1044	pud_t *pud;
1045	unsigned long next;
1046
1047	pud = pud_offset(pgd, addr);
1048	do {
1049		next = pud_addr_end(addr, end);
1050		if (pud_none_or_clear_bad(pud)) {
1051			(*zap_work)--;
1052			continue;
1053		}
1054		next = zap_pmd_range(tlb, vma, pud, addr, next,
1055						zap_work, details);
1056	} while (pud++, addr = next, (addr != end && *zap_work > 0));
1057
1058	return addr;
1059}
1060
1061static unsigned long unmap_page_range(struct mmu_gather *tlb,
1062				struct vm_area_struct *vma,
1063				unsigned long addr, unsigned long end,
1064				long *zap_work, struct zap_details *details)
1065{
1066	pgd_t *pgd;
1067	unsigned long next;
1068
1069	if (details && !details->check_mapping && !details->nonlinear_vma)
1070		details = NULL;
1071
1072	BUG_ON(addr >= end);
1073	mem_cgroup_uncharge_start();
1074	tlb_start_vma(tlb, vma);
1075	pgd = pgd_offset(vma->vm_mm, addr);
1076	do {
1077		next = pgd_addr_end(addr, end);
1078		if (pgd_none_or_clear_bad(pgd)) {
1079			(*zap_work)--;
1080			continue;
1081		}
1082		next = zap_pud_range(tlb, vma, pgd, addr, next,
1083						zap_work, details);
1084	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
1085	tlb_end_vma(tlb, vma);
1086	mem_cgroup_uncharge_end();
1087
1088	return addr;
1089}
1090
1091#ifdef CONFIG_PREEMPT
1092# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
1093#else
1094/* No preempt: go for improved straight-line efficiency */
1095# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
1096#endif
1097
1098/**
1099 * unmap_vmas - unmap a range of memory covered by a list of vma's
1100 * @tlbp: address of the caller's struct mmu_gather
1101 * @vma: the starting vma
1102 * @start_addr: virtual address at which to start unmapping
1103 * @end_addr: virtual address at which to end unmapping
1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1105 * @details: details of nonlinear truncation or shared cache invalidation
1106 *
1107 * Returns the end address of the unmapping (restart addr if interrupted).
1108 *
1109 * Unmap all pages in the vma list.
1110 *
1111 * We aim to not hold locks for too long (for scheduling latency reasons).
1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
1113 * return the ending mmu_gather to the caller.
1114 *
1115 * Only addresses between `start' and `end' will be unmapped.
1116 *
1117 * The VMA list must be sorted in ascending virtual address order.
1118 *
1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1120 * range after unmap_vmas() returns.  So the only responsibility here is to
1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1122 * drops the lock and schedules.
1123 */
1124unsigned long unmap_vmas(struct mmu_gather **tlbp,
1125		struct vm_area_struct *vma, unsigned long start_addr,
1126		unsigned long end_addr, unsigned long *nr_accounted,
1127		struct zap_details *details)
1128{
1129	long zap_work = ZAP_BLOCK_SIZE;
1130	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
1131	int tlb_start_valid = 0;
1132	unsigned long start = start_addr;
1133	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1134	int fullmm = (*tlbp)->fullmm;
1135	struct mm_struct *mm = vma->vm_mm;
1136
1137	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1138	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1139		unsigned long end;
1140
1141		start = max(vma->vm_start, start_addr);
1142		if (start >= vma->vm_end)
1143			continue;
1144		end = min(vma->vm_end, end_addr);
1145		if (end <= vma->vm_start)
1146			continue;
1147
1148		if (vma->vm_flags & VM_ACCOUNT)
1149			*nr_accounted += (end - start) >> PAGE_SHIFT;
1150
1151		if (unlikely(is_pfn_mapping(vma)))
1152			untrack_pfn_vma(vma, 0, 0);
1153
1154		while (start != end) {
1155			if (!tlb_start_valid) {
1156				tlb_start = start;
1157				tlb_start_valid = 1;
1158			}
1159
1160			if (unlikely(is_vm_hugetlb_page(vma))) {
1161				/*
1162				 * It is undesirable to test vma->vm_file as it
1163				 * should be non-null for valid hugetlb area.
1164				 * However, vm_file will be NULL in the error
1165				 * cleanup path of do_mmap_pgoff. When
1166				 * hugetlbfs ->mmap method fails,
1167				 * do_mmap_pgoff() nullifies vma->vm_file
1168				 * before calling this function to clean up.
1169				 * Since no pte has actually been setup, it is
1170				 * safe to do nothing in this case.
1171				 */
1172				if (vma->vm_file) {
1173					unmap_hugepage_range(vma, start, end, NULL);
1174					zap_work -= (end - start) /
1175					pages_per_huge_page(hstate_vma(vma));
1176				}
1177
1178				start = end;
1179			} else
1180				start = unmap_page_range(*tlbp, vma,
1181						start, end, &zap_work, details);
1182
1183			if (zap_work > 0) {
1184				BUG_ON(start != end);
1185				break;
1186			}
1187
1188			tlb_finish_mmu(*tlbp, tlb_start, start);
1189
1190			if (need_resched() ||
1191				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1192				if (i_mmap_lock) {
1193					*tlbp = NULL;
1194					goto out;
1195				}
1196				cond_resched();
1197			}
1198
1199			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1200			tlb_start_valid = 0;
1201			zap_work = ZAP_BLOCK_SIZE;
1202		}
1203	}
1204out:
1205	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1206	return start;	/* which is now the end (or restart) address */
1207}
1208
1209/**
1210 * zap_page_range - remove user pages in a given range
1211 * @vma: vm_area_struct holding the applicable pages
1212 * @address: starting address of pages to zap
1213 * @size: number of bytes to zap
1214 * @details: details of nonlinear truncation or shared cache invalidation
1215 */
1216unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1217		unsigned long size, struct zap_details *details)
1218{
1219	struct mm_struct *mm = vma->vm_mm;
1220	struct mmu_gather *tlb;
1221	unsigned long end = address + size;
1222	unsigned long nr_accounted = 0;
1223
1224	lru_add_drain();
1225	tlb = tlb_gather_mmu(mm, 0);
1226	update_hiwater_rss(mm);
1227	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1228	if (tlb)
1229		tlb_finish_mmu(tlb, address, end);
1230	return end;
1231}
1232
1233/**
1234 * zap_vma_ptes - remove ptes mapping the vma
1235 * @vma: vm_area_struct holding ptes to be zapped
1236 * @address: starting address of pages to zap
1237 * @size: number of bytes to zap
1238 *
1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1240 *
1241 * The entire address range must be fully contained within the vma.
1242 *
1243 * Returns 0 if successful.
1244 */
1245int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1246		unsigned long size)
1247{
1248	if (address < vma->vm_start || address + size > vma->vm_end ||
1249	    		!(vma->vm_flags & VM_PFNMAP))
1250		return -1;
1251	zap_page_range(vma, address, size, NULL);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(zap_vma_ptes);
1255
1256/**
1257 * follow_page - look up a page descriptor from a user-virtual address
1258 * @vma: vm_area_struct mapping @address
1259 * @address: virtual address to look up
1260 * @flags: flags modifying lookup behaviour
1261 *
1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1263 *
1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1265 * an error pointer if there is a mapping to something not represented
1266 * by a page descriptor (see also vm_normal_page()).
1267 */
1268struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1269			unsigned int flags)
1270{
1271	pgd_t *pgd;
1272	pud_t *pud;
1273	pmd_t *pmd;
1274	pte_t *ptep, pte;
1275	spinlock_t *ptl;
1276	struct page *page;
1277	struct mm_struct *mm = vma->vm_mm;
1278
1279	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1280	if (!IS_ERR(page)) {
1281		BUG_ON(flags & FOLL_GET);
1282		goto out;
1283	}
1284
1285	page = NULL;
1286	pgd = pgd_offset(mm, address);
1287	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1288		goto no_page_table;
1289
1290	pud = pud_offset(pgd, address);
1291	if (pud_none(*pud))
1292		goto no_page_table;
1293	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1294		BUG_ON(flags & FOLL_GET);
1295		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1296		goto out;
1297	}
1298	if (unlikely(pud_bad(*pud)))
1299		goto no_page_table;
1300
1301	pmd = pmd_offset(pud, address);
1302	if (pmd_none(*pmd))
1303		goto no_page_table;
1304	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1305		BUG_ON(flags & FOLL_GET);
1306		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1307		goto out;
1308	}
1309	if (pmd_trans_huge(*pmd)) {
1310		if (flags & FOLL_SPLIT) {
1311			split_huge_page_pmd(mm, pmd);
1312			goto split_fallthrough;
1313		}
1314		spin_lock(&mm->page_table_lock);
1315		if (likely(pmd_trans_huge(*pmd))) {
1316			if (unlikely(pmd_trans_splitting(*pmd))) {
1317				spin_unlock(&mm->page_table_lock);
1318				wait_split_huge_page(vma->anon_vma, pmd);
1319			} else {
1320				page = follow_trans_huge_pmd(mm, address,
1321							     pmd, flags);
1322				spin_unlock(&mm->page_table_lock);
1323				goto out;
1324			}
1325		} else
1326			spin_unlock(&mm->page_table_lock);
1327		/* fall through */
1328	}
1329split_fallthrough:
1330	if (unlikely(pmd_bad(*pmd)))
1331		goto no_page_table;
1332
1333	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1334
1335	pte = *ptep;
1336	if (!pte_present(pte))
1337		goto no_page;
1338	if ((flags & FOLL_WRITE) && !pte_write(pte))
1339		goto unlock;
1340
1341	page = vm_normal_page(vma, address, pte);
1342	if (unlikely(!page)) {
1343		if ((flags & FOLL_DUMP) ||
1344		    !is_zero_pfn(pte_pfn(pte)))
1345			goto bad_page;
1346		page = pte_page(pte);
1347	}
1348
1349	if (flags & FOLL_GET)
1350		get_page(page);
1351	if (flags & FOLL_TOUCH) {
1352		if ((flags & FOLL_WRITE) &&
1353		    !pte_dirty(pte) && !PageDirty(page))
1354			set_page_dirty(page);
1355		/*
1356		 * pte_mkyoung() would be more correct here, but atomic care
1357		 * is needed to avoid losing the dirty bit: it is easier to use
1358		 * mark_page_accessed().
1359		 */
1360		mark_page_accessed(page);
1361	}
1362	if (flags & FOLL_MLOCK) {
1363		/*
1364		 * The preliminary mapping check is mainly to avoid the
1365		 * pointless overhead of lock_page on the ZERO_PAGE
1366		 * which might bounce very badly if there is contention.
1367		 *
1368		 * If the page is already locked, we don't need to
1369		 * handle it now - vmscan will handle it later if and
1370		 * when it attempts to reclaim the page.
1371		 */
1372		if (page->mapping && trylock_page(page)) {
1373			lru_add_drain();  /* push cached pages to LRU */
1374			/*
1375			 * Because we lock page here and migration is
1376			 * blocked by the pte's page reference, we need
1377			 * only check for file-cache page truncation.
1378			 */
1379			if (page->mapping)
1380				mlock_vma_page(page);
1381			unlock_page(page);
1382		}
1383	}
1384unlock:
1385	pte_unmap_unlock(ptep, ptl);
1386out:
1387	return page;
1388
1389bad_page:
1390	pte_unmap_unlock(ptep, ptl);
1391	return ERR_PTR(-EFAULT);
1392
1393no_page:
1394	pte_unmap_unlock(ptep, ptl);
1395	if (!pte_none(pte))
1396		return page;
1397
1398no_page_table:
1399	/*
1400	 * When core dumping an enormous anonymous area that nobody
1401	 * has touched so far, we don't want to allocate unnecessary pages or
1402	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1403	 * then get_dump_page() will return NULL to leave a hole in the dump.
1404	 * But we can only make this optimization where a hole would surely
1405	 * be zero-filled if handle_mm_fault() actually did handle it.
1406	 */
1407	if ((flags & FOLL_DUMP) &&
1408	    (!vma->vm_ops || !vma->vm_ops->fault))
1409		return ERR_PTR(-EFAULT);
1410	return page;
1411}
1412
1413static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1414{
1415	return (vma->vm_flags & VM_GROWSDOWN) &&
1416		(vma->vm_start == addr) &&
1417		!vma_stack_continue(vma->vm_prev, addr);
1418}
1419
1420/**
1421 * __get_user_pages() - pin user pages in memory
1422 * @tsk:	task_struct of target task
1423 * @mm:		mm_struct of target mm
1424 * @start:	starting user address
1425 * @nr_pages:	number of pages from start to pin
1426 * @gup_flags:	flags modifying pin behaviour
1427 * @pages:	array that receives pointers to the pages pinned.
1428 *		Should be at least nr_pages long. Or NULL, if caller
1429 *		only intends to ensure the pages are faulted in.
1430 * @vmas:	array of pointers to vmas corresponding to each page.
1431 *		Or NULL if the caller does not require them.
1432 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1433 *
1434 * Returns number of pages pinned. This may be fewer than the number
1435 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1436 * were pinned, returns -errno. Each page returned must be released
1437 * with a put_page() call when it is finished with. vmas will only
1438 * remain valid while mmap_sem is held.
1439 *
1440 * Must be called with mmap_sem held for read or write.
1441 *
1442 * __get_user_pages walks a process's page tables and takes a reference to
1443 * each struct page that each user address corresponds to at a given
1444 * instant. That is, it takes the page that would be accessed if a user
1445 * thread accesses the given user virtual address at that instant.
1446 *
1447 * This does not guarantee that the page exists in the user mappings when
1448 * __get_user_pages returns, and there may even be a completely different
1449 * page there in some cases (eg. if mmapped pagecache has been invalidated
1450 * and subsequently re faulted). However it does guarantee that the page
1451 * won't be freed completely. And mostly callers simply care that the page
1452 * contains data that was valid *at some point in time*. Typically, an IO
1453 * or similar operation cannot guarantee anything stronger anyway because
1454 * locks can't be held over the syscall boundary.
1455 *
1456 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1457 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1458 * appropriate) must be called after the page is finished with, and
1459 * before put_page is called.
1460 *
1461 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1462 * or mmap_sem contention, and if waiting is needed to pin all pages,
1463 * *@nonblocking will be set to 0.
1464 *
1465 * In most cases, get_user_pages or get_user_pages_fast should be used
1466 * instead of __get_user_pages. __get_user_pages should be used only if
1467 * you need some special @gup_flags.
1468 */
1469int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1470		     unsigned long start, int nr_pages, unsigned int gup_flags,
1471		     struct page **pages, struct vm_area_struct **vmas,
1472		     int *nonblocking)
1473{
1474	int i;
1475	unsigned long vm_flags;
1476
1477	if (nr_pages <= 0)
1478		return 0;
1479
1480	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1481
1482	/*
1483	 * Require read or write permissions.
1484	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1485	 */
1486	vm_flags  = (gup_flags & FOLL_WRITE) ?
1487			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1488	vm_flags &= (gup_flags & FOLL_FORCE) ?
1489			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1490	i = 0;
1491
1492	do {
1493		struct vm_area_struct *vma;
1494
1495		vma = find_extend_vma(mm, start);
1496		if (!vma && in_gate_area(mm, start)) {
1497			unsigned long pg = start & PAGE_MASK;
1498			pgd_t *pgd;
1499			pud_t *pud;
1500			pmd_t *pmd;
1501			pte_t *pte;
1502
1503			/* user gate pages are read-only */
1504			if (gup_flags & FOLL_WRITE)
1505				return i ? : -EFAULT;
1506			if (pg > TASK_SIZE)
1507				pgd = pgd_offset_k(pg);
1508			else
1509				pgd = pgd_offset_gate(mm, pg);
1510			BUG_ON(pgd_none(*pgd));
1511			pud = pud_offset(pgd, pg);
1512			BUG_ON(pud_none(*pud));
1513			pmd = pmd_offset(pud, pg);
1514			if (pmd_none(*pmd))
1515				return i ? : -EFAULT;
1516			VM_BUG_ON(pmd_trans_huge(*pmd));
1517			pte = pte_offset_map(pmd, pg);
1518			if (pte_none(*pte)) {
1519				pte_unmap(pte);
1520				return i ? : -EFAULT;
1521			}
1522			vma = get_gate_vma(mm);
1523			if (pages) {
1524				struct page *page;
1525
1526				page = vm_normal_page(vma, start, *pte);
1527				if (!page) {
1528					if (!(gup_flags & FOLL_DUMP) &&
1529					     is_zero_pfn(pte_pfn(*pte)))
1530						page = pte_page(*pte);
1531					else {
1532						pte_unmap(pte);
1533						return i ? : -EFAULT;
1534					}
1535				}
1536				pages[i] = page;
1537				get_page(page);
1538			}
1539			pte_unmap(pte);
1540			goto next_page;
1541		}
1542
1543		if (!vma ||
1544		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1545		    !(vm_flags & vma->vm_flags))
1546			return i ? : -EFAULT;
1547
1548		if (is_vm_hugetlb_page(vma)) {
1549			i = follow_hugetlb_page(mm, vma, pages, vmas,
1550					&start, &nr_pages, i, gup_flags);
1551			continue;
1552		}
1553
1554		/*
1555		 * If we don't actually want the page itself,
1556		 * and it's the stack guard page, just skip it.
1557		 */
1558		if (!pages && stack_guard_page(vma, start))
1559			goto next_page;
1560
1561		do {
1562			struct page *page;
1563			unsigned int foll_flags = gup_flags;
1564
1565			/*
1566			 * If we have a pending SIGKILL, don't keep faulting
1567			 * pages and potentially allocating memory.
1568			 */
1569			if (unlikely(fatal_signal_pending(current)))
1570				return i ? i : -ERESTARTSYS;
1571
1572			cond_resched();
1573			while (!(page = follow_page(vma, start, foll_flags))) {
1574				int ret;
1575				unsigned int fault_flags = 0;
1576
1577				if (foll_flags & FOLL_WRITE)
1578					fault_flags |= FAULT_FLAG_WRITE;
1579				if (nonblocking)
1580					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1581				if (foll_flags & FOLL_NOWAIT)
1582					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1583
1584				ret = handle_mm_fault(mm, vma, start,
1585							fault_flags);
1586
1587				if (ret & VM_FAULT_ERROR) {
1588					if (ret & VM_FAULT_OOM)
1589						return i ? i : -ENOMEM;
1590					if (ret & (VM_FAULT_HWPOISON |
1591						   VM_FAULT_HWPOISON_LARGE)) {
1592						if (i)
1593							return i;
1594						else if (gup_flags & FOLL_HWPOISON)
1595							return -EHWPOISON;
1596						else
1597							return -EFAULT;
1598					}
1599					if (ret & VM_FAULT_SIGBUS)
1600						return i ? i : -EFAULT;
1601					BUG();
1602				}
1603
1604				if (tsk) {
1605					if (ret & VM_FAULT_MAJOR)
1606						tsk->maj_flt++;
1607					else
1608						tsk->min_flt++;
1609				}
1610
1611				if (ret & VM_FAULT_RETRY) {
1612					if (nonblocking)
1613						*nonblocking = 0;
1614					return i;
1615				}
1616
1617				/*
1618				 * The VM_FAULT_WRITE bit tells us that
1619				 * do_wp_page has broken COW when necessary,
1620				 * even if maybe_mkwrite decided not to set
1621				 * pte_write. We can thus safely do subsequent
1622				 * page lookups as if they were reads. But only
1623				 * do so when looping for pte_write is futile:
1624				 * in some cases userspace may also be wanting
1625				 * to write to the gotten user page, which a
1626				 * read fault here might prevent (a readonly
1627				 * page might get reCOWed by userspace write).
1628				 */
1629				if ((ret & VM_FAULT_WRITE) &&
1630				    !(vma->vm_flags & VM_WRITE))
1631					foll_flags &= ~FOLL_WRITE;
1632
1633				cond_resched();
1634			}
1635			if (IS_ERR(page))
1636				return i ? i : PTR_ERR(page);
1637			if (pages) {
1638				pages[i] = page;
1639
1640				flush_anon_page(vma, page, start);
1641				flush_dcache_page(page);
1642			}
1643next_page:
1644			if (vmas)
1645				vmas[i] = vma;
1646			i++;
1647			start += PAGE_SIZE;
1648			nr_pages--;
1649		} while (nr_pages && start < vma->vm_end);
1650	} while (nr_pages);
1651	return i;
1652}
1653EXPORT_SYMBOL(__get_user_pages);
1654
1655/**
1656 * get_user_pages() - pin user pages in memory
1657 * @tsk:	the task_struct to use for page fault accounting, or
1658 *		NULL if faults are not to be recorded.
1659 * @mm:		mm_struct of target mm
1660 * @start:	starting user address
1661 * @nr_pages:	number of pages from start to pin
1662 * @write:	whether pages will be written to by the caller
1663 * @force:	whether to force write access even if user mapping is
1664 *		readonly. This will result in the page being COWed even
1665 *		in MAP_SHARED mappings. You do not want this.
1666 * @pages:	array that receives pointers to the pages pinned.
1667 *		Should be at least nr_pages long. Or NULL, if caller
1668 *		only intends to ensure the pages are faulted in.
1669 * @vmas:	array of pointers to vmas corresponding to each page.
1670 *		Or NULL if the caller does not require them.
1671 *
1672 * Returns number of pages pinned. This may be fewer than the number
1673 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1674 * were pinned, returns -errno. Each page returned must be released
1675 * with a put_page() call when it is finished with. vmas will only
1676 * remain valid while mmap_sem is held.
1677 *
1678 * Must be called with mmap_sem held for read or write.
1679 *
1680 * get_user_pages walks a process's page tables and takes a reference to
1681 * each struct page that each user address corresponds to at a given
1682 * instant. That is, it takes the page that would be accessed if a user
1683 * thread accesses the given user virtual address at that instant.
1684 *
1685 * This does not guarantee that the page exists in the user mappings when
1686 * get_user_pages returns, and there may even be a completely different
1687 * page there in some cases (eg. if mmapped pagecache has been invalidated
1688 * and subsequently re faulted). However it does guarantee that the page
1689 * won't be freed completely. And mostly callers simply care that the page
1690 * contains data that was valid *at some point in time*. Typically, an IO
1691 * or similar operation cannot guarantee anything stronger anyway because
1692 * locks can't be held over the syscall boundary.
1693 *
1694 * If write=0, the page must not be written to. If the page is written to,
1695 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1696 * after the page is finished with, and before put_page is called.
1697 *
1698 * get_user_pages is typically used for fewer-copy IO operations, to get a
1699 * handle on the memory by some means other than accesses via the user virtual
1700 * addresses. The pages may be submitted for DMA to devices or accessed via
1701 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1702 * use the correct cache flushing APIs.
1703 *
1704 * See also get_user_pages_fast, for performance critical applications.
1705 */
1706int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1707		unsigned long start, int nr_pages, int write, int force,
1708		struct page **pages, struct vm_area_struct **vmas)
1709{
1710	int flags = FOLL_TOUCH;
1711
1712	if (pages)
1713		flags |= FOLL_GET;
1714	if (write)
1715		flags |= FOLL_WRITE;
1716	if (force)
1717		flags |= FOLL_FORCE;
1718
1719	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1720				NULL);
1721}
1722EXPORT_SYMBOL(get_user_pages);
1723
1724/**
1725 * get_dump_page() - pin user page in memory while writing it to core dump
1726 * @addr: user address
1727 *
1728 * Returns struct page pointer of user page pinned for dump,
1729 * to be freed afterwards by page_cache_release() or put_page().
1730 *
1731 * Returns NULL on any kind of failure - a hole must then be inserted into
1732 * the corefile, to preserve alignment with its headers; and also returns
1733 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1734 * allowing a hole to be left in the corefile to save diskspace.
1735 *
1736 * Called without mmap_sem, but after all other threads have been killed.
1737 */
1738#ifdef CONFIG_ELF_CORE
1739struct page *get_dump_page(unsigned long addr)
1740{
1741	struct vm_area_struct *vma;
1742	struct page *page;
1743
1744	if (__get_user_pages(current, current->mm, addr, 1,
1745			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1746			     NULL) < 1)
1747		return NULL;
1748	flush_cache_page(vma, addr, page_to_pfn(page));
1749	return page;
1750}
1751#endif /* CONFIG_ELF_CORE */
1752
1753pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1754			spinlock_t **ptl)
1755{
1756	pgd_t * pgd = pgd_offset(mm, addr);
1757	pud_t * pud = pud_alloc(mm, pgd, addr);
1758	if (pud) {
1759		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1760		if (pmd) {
1761			VM_BUG_ON(pmd_trans_huge(*pmd));
1762			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1763		}
1764	}
1765	return NULL;
1766}
1767
1768/*
1769 * This is the old fallback for page remapping.
1770 *
1771 * For historical reasons, it only allows reserved pages. Only
1772 * old drivers should use this, and they needed to mark their
1773 * pages reserved for the old functions anyway.
1774 */
1775static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1776			struct page *page, pgprot_t prot)
1777{
1778	struct mm_struct *mm = vma->vm_mm;
1779	int retval;
1780	pte_t *pte;
1781	spinlock_t *ptl;
1782
1783	retval = -EINVAL;
1784	if (PageAnon(page))
1785		goto out;
1786	retval = -ENOMEM;
1787	flush_dcache_page(page);
1788	pte = get_locked_pte(mm, addr, &ptl);
1789	if (!pte)
1790		goto out;
1791	retval = -EBUSY;
1792	if (!pte_none(*pte))
1793		goto out_unlock;
1794
1795	/* Ok, finally just insert the thing.. */
1796	get_page(page);
1797	inc_mm_counter_fast(mm, MM_FILEPAGES);
1798	page_add_file_rmap(page);
1799	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1800
1801	retval = 0;
1802	pte_unmap_unlock(pte, ptl);
1803	return retval;
1804out_unlock:
1805	pte_unmap_unlock(pte, ptl);
1806out:
1807	return retval;
1808}
1809
1810/**
1811 * vm_insert_page - insert single page into user vma
1812 * @vma: user vma to map to
1813 * @addr: target user address of this page
1814 * @page: source kernel page
1815 *
1816 * This allows drivers to insert individual pages they've allocated
1817 * into a user vma.
1818 *
1819 * The page has to be a nice clean _individual_ kernel allocation.
1820 * If you allocate a compound page, you need to have marked it as
1821 * such (__GFP_COMP), or manually just split the page up yourself
1822 * (see split_page()).
1823 *
1824 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1825 * took an arbitrary page protection parameter. This doesn't allow
1826 * that. Your vma protection will have to be set up correctly, which
1827 * means that if you want a shared writable mapping, you'd better
1828 * ask for a shared writable mapping!
1829 *
1830 * The page does not need to be reserved.
1831 */
1832int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1833			struct page *page)
1834{
1835	if (addr < vma->vm_start || addr >= vma->vm_end)
1836		return -EFAULT;
1837	if (!page_count(page))
1838		return -EINVAL;
1839	vma->vm_flags |= VM_INSERTPAGE;
1840	return insert_page(vma, addr, page, vma->vm_page_prot);
1841}
1842EXPORT_SYMBOL(vm_insert_page);
1843
1844static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1845			unsigned long pfn, pgprot_t prot)
1846{
1847	struct mm_struct *mm = vma->vm_mm;
1848	int retval;
1849	pte_t *pte, entry;
1850	spinlock_t *ptl;
1851
1852	retval = -ENOMEM;
1853	pte = get_locked_pte(mm, addr, &ptl);
1854	if (!pte)
1855		goto out;
1856	retval = -EBUSY;
1857	if (!pte_none(*pte))
1858		goto out_unlock;
1859
1860	/* Ok, finally just insert the thing.. */
1861	entry = pte_mkspecial(pfn_pte(pfn, prot));
1862	set_pte_at(mm, addr, pte, entry);
1863	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1864
1865	retval = 0;
1866out_unlock:
1867	pte_unmap_unlock(pte, ptl);
1868out:
1869	return retval;
1870}
1871
1872/**
1873 * vm_insert_pfn - insert single pfn into user vma
1874 * @vma: user vma to map to
1875 * @addr: target user address of this page
1876 * @pfn: source kernel pfn
1877 *
1878 * Similar to vm_inert_page, this allows drivers to insert individual pages
1879 * they've allocated into a user vma. Same comments apply.
1880 *
1881 * This function should only be called from a vm_ops->fault handler, and
1882 * in that case the handler should return NULL.
1883 *
1884 * vma cannot be a COW mapping.
1885 *
1886 * As this is called only for pages that do not currently exist, we
1887 * do not need to flush old virtual caches or the TLB.
1888 */
1889int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1890			unsigned long pfn)
1891{
1892	int ret;
1893	pgprot_t pgprot = vma->vm_page_prot;
1894	/*
1895	 * Technically, architectures with pte_special can avoid all these
1896	 * restrictions (same for remap_pfn_range).  However we would like
1897	 * consistency in testing and feature parity among all, so we should
1898	 * try to keep these invariants in place for everybody.
1899	 */
1900	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1901	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1902						(VM_PFNMAP|VM_MIXEDMAP));
1903	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1904	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1905
1906	if (addr < vma->vm_start || addr >= vma->vm_end)
1907		return -EFAULT;
1908	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1909		return -EINVAL;
1910
1911	ret = insert_pfn(vma, addr, pfn, pgprot);
1912
1913	if (ret)
1914		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1915
1916	return ret;
1917}
1918EXPORT_SYMBOL(vm_insert_pfn);
1919
1920int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1921			unsigned long pfn)
1922{
1923	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1924
1925	if (addr < vma->vm_start || addr >= vma->vm_end)
1926		return -EFAULT;
1927
1928	/*
1929	 * If we don't have pte special, then we have to use the pfn_valid()
1930	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1931	 * refcount the page if pfn_valid is true (hence insert_page rather
1932	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1933	 * without pte special, it would there be refcounted as a normal page.
1934	 */
1935	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1936		struct page *page;
1937
1938		page = pfn_to_page(pfn);
1939		return insert_page(vma, addr, page, vma->vm_page_prot);
1940	}
1941	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1942}
1943EXPORT_SYMBOL(vm_insert_mixed);
1944
1945/*
1946 * maps a range of physical memory into the requested pages. the old
1947 * mappings are removed. any references to nonexistent pages results
1948 * in null mappings (currently treated as "copy-on-access")
1949 */
1950static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1951			unsigned long addr, unsigned long end,
1952			unsigned long pfn, pgprot_t prot)
1953{
1954	pte_t *pte;
1955	spinlock_t *ptl;
1956
1957	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1958	if (!pte)
1959		return -ENOMEM;
1960	arch_enter_lazy_mmu_mode();
1961	do {
1962		BUG_ON(!pte_none(*pte));
1963		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1964		pfn++;
1965	} while (pte++, addr += PAGE_SIZE, addr != end);
1966	arch_leave_lazy_mmu_mode();
1967	pte_unmap_unlock(pte - 1, ptl);
1968	return 0;
1969}
1970
1971static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1972			unsigned long addr, unsigned long end,
1973			unsigned long pfn, pgprot_t prot)
1974{
1975	pmd_t *pmd;
1976	unsigned long next;
1977
1978	pfn -= addr >> PAGE_SHIFT;
1979	pmd = pmd_alloc(mm, pud, addr);
1980	if (!pmd)
1981		return -ENOMEM;
1982	VM_BUG_ON(pmd_trans_huge(*pmd));
1983	do {
1984		next = pmd_addr_end(addr, end);
1985		if (remap_pte_range(mm, pmd, addr, next,
1986				pfn + (addr >> PAGE_SHIFT), prot))
1987			return -ENOMEM;
1988	} while (pmd++, addr = next, addr != end);
1989	return 0;
1990}
1991
1992static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1993			unsigned long addr, unsigned long end,
1994			unsigned long pfn, pgprot_t prot)
1995{
1996	pud_t *pud;
1997	unsigned long next;
1998
1999	pfn -= addr >> PAGE_SHIFT;
2000	pud = pud_alloc(mm, pgd, addr);
2001	if (!pud)
2002		return -ENOMEM;
2003	do {
2004		next = pud_addr_end(addr, end);
2005		if (remap_pmd_range(mm, pud, addr, next,
2006				pfn + (addr >> PAGE_SHIFT), prot))
2007			return -ENOMEM;
2008	} while (pud++, addr = next, addr != end);
2009	return 0;
2010}
2011
2012/**
2013 * remap_pfn_range - remap kernel memory to userspace
2014 * @vma: user vma to map to
2015 * @addr: target user address to start at
2016 * @pfn: physical address of kernel memory
2017 * @size: size of map area
2018 * @prot: page protection flags for this mapping
2019 *
2020 *  Note: this is only safe if the mm semaphore is held when called.
2021 */
2022int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2023		    unsigned long pfn, unsigned long size, pgprot_t prot)
2024{
2025	pgd_t *pgd;
2026	unsigned long next;
2027	unsigned long end = addr + PAGE_ALIGN(size);
2028	struct mm_struct *mm = vma->vm_mm;
2029	int err;
2030
2031	/*
2032	 * Physically remapped pages are special. Tell the
2033	 * rest of the world about it:
2034	 *   VM_IO tells people not to look at these pages
2035	 *	(accesses can have side effects).
2036	 *   VM_RESERVED is specified all over the place, because
2037	 *	in 2.4 it kept swapout's vma scan off this vma; but
2038	 *	in 2.6 the LRU scan won't even find its pages, so this
2039	 *	flag means no more than count its pages in reserved_vm,
2040	 * 	and omit it from core dump, even when VM_IO turned off.
2041	 *   VM_PFNMAP tells the core MM that the base pages are just
2042	 *	raw PFN mappings, and do not have a "struct page" associated
2043	 *	with them.
2044	 *
2045	 * There's a horrible special case to handle copy-on-write
2046	 * behaviour that some programs depend on. We mark the "original"
2047	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2048	 */
2049	if (addr == vma->vm_start && end == vma->vm_end) {
2050		vma->vm_pgoff = pfn;
2051		vma->vm_flags |= VM_PFN_AT_MMAP;
2052	} else if (is_cow_mapping(vma->vm_flags))
2053		return -EINVAL;
2054
2055	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2056
2057	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2058	if (err) {
2059		/*
2060		 * To indicate that track_pfn related cleanup is not
2061		 * needed from higher level routine calling unmap_vmas
2062		 */
2063		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2064		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2065		return -EINVAL;
2066	}
2067
2068	BUG_ON(addr >= end);
2069	pfn -= addr >> PAGE_SHIFT;
2070	pgd = pgd_offset(mm, addr);
2071	flush_cache_range(vma, addr, end);
2072	do {
2073		next = pgd_addr_end(addr, end);
2074		err = remap_pud_range(mm, pgd, addr, next,
2075				pfn + (addr >> PAGE_SHIFT), prot);
2076		if (err)
2077			break;
2078	} while (pgd++, addr = next, addr != end);
2079
2080	if (err)
2081		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2082
2083	return err;
2084}
2085EXPORT_SYMBOL(remap_pfn_range);
2086
2087static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2088				     unsigned long addr, unsigned long end,
2089				     pte_fn_t fn, void *data)
2090{
2091	pte_t *pte;
2092	int err;
2093	pgtable_t token;
2094	spinlock_t *uninitialized_var(ptl);
2095
2096	pte = (mm == &init_mm) ?
2097		pte_alloc_kernel(pmd, addr) :
2098		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2099	if (!pte)
2100		return -ENOMEM;
2101
2102	BUG_ON(pmd_huge(*pmd));
2103
2104	arch_enter_lazy_mmu_mode();
2105
2106	token = pmd_pgtable(*pmd);
2107
2108	do {
2109		err = fn(pte++, token, addr, data);
2110		if (err)
2111			break;
2112	} while (addr += PAGE_SIZE, addr != end);
2113
2114	arch_leave_lazy_mmu_mode();
2115
2116	if (mm != &init_mm)
2117		pte_unmap_unlock(pte-1, ptl);
2118	return err;
2119}
2120
2121static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2122				     unsigned long addr, unsigned long end,
2123				     pte_fn_t fn, void *data)
2124{
2125	pmd_t *pmd;
2126	unsigned long next;
2127	int err;
2128
2129	BUG_ON(pud_huge(*pud));
2130
2131	pmd = pmd_alloc(mm, pud, addr);
2132	if (!pmd)
2133		return -ENOMEM;
2134	do {
2135		next = pmd_addr_end(addr, end);
2136		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2137		if (err)
2138			break;
2139	} while (pmd++, addr = next, addr != end);
2140	return err;
2141}
2142
2143static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2144				     unsigned long addr, unsigned long end,
2145				     pte_fn_t fn, void *data)
2146{
2147	pud_t *pud;
2148	unsigned long next;
2149	int err;
2150
2151	pud = pud_alloc(mm, pgd, addr);
2152	if (!pud)
2153		return -ENOMEM;
2154	do {
2155		next = pud_addr_end(addr, end);
2156		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2157		if (err)
2158			break;
2159	} while (pud++, addr = next, addr != end);
2160	return err;
2161}
2162
2163/*
2164 * Scan a region of virtual memory, filling in page tables as necessary
2165 * and calling a provided function on each leaf page table.
2166 */
2167int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2168			unsigned long size, pte_fn_t fn, void *data)
2169{
2170	pgd_t *pgd;
2171	unsigned long next;
2172	unsigned long end = addr + size;
2173	int err;
2174
2175	BUG_ON(addr >= end);
2176	pgd = pgd_offset(mm, addr);
2177	do {
2178		next = pgd_addr_end(addr, end);
2179		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2180		if (err)
2181			break;
2182	} while (pgd++, addr = next, addr != end);
2183
2184	return err;
2185}
2186EXPORT_SYMBOL_GPL(apply_to_page_range);
2187
2188/*
2189 * handle_pte_fault chooses page fault handler according to an entry
2190 * which was read non-atomically.  Before making any commitment, on
2191 * those architectures or configurations (e.g. i386 with PAE) which
2192 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2193 * must check under lock before unmapping the pte and proceeding
2194 * (but do_wp_page is only called after already making such a check;
2195 * and do_anonymous_page can safely check later on).
2196 */
2197static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2198				pte_t *page_table, pte_t orig_pte)
2199{
2200	int same = 1;
2201#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2202	if (sizeof(pte_t) > sizeof(unsigned long)) {
2203		spinlock_t *ptl = pte_lockptr(mm, pmd);
2204		spin_lock(ptl);
2205		same = pte_same(*page_table, orig_pte);
2206		spin_unlock(ptl);
2207	}
2208#endif
2209	pte_unmap(page_table);
2210	return same;
2211}
2212
2213static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2214{
2215	/*
2216	 * If the source page was a PFN mapping, we don't have
2217	 * a "struct page" for it. We do a best-effort copy by
2218	 * just copying from the original user address. If that
2219	 * fails, we just zero-fill it. Live with it.
2220	 */
2221	if (unlikely(!src)) {
2222		void *kaddr = kmap_atomic(dst, KM_USER0);
2223		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2224
2225		/*
2226		 * This really shouldn't fail, because the page is there
2227		 * in the page tables. But it might just be unreadable,
2228		 * in which case we just give up and fill the result with
2229		 * zeroes.
2230		 */
2231		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2232			clear_page(kaddr);
2233		kunmap_atomic(kaddr, KM_USER0);
2234		flush_dcache_page(dst);
2235	} else
2236		copy_user_highpage(dst, src, va, vma);
2237}
2238
2239/*
2240 * This routine handles present pages, when users try to write
2241 * to a shared page. It is done by copying the page to a new address
2242 * and decrementing the shared-page counter for the old page.
2243 *
2244 * Note that this routine assumes that the protection checks have been
2245 * done by the caller (the low-level page fault routine in most cases).
2246 * Thus we can safely just mark it writable once we've done any necessary
2247 * COW.
2248 *
2249 * We also mark the page dirty at this point even though the page will
2250 * change only once the write actually happens. This avoids a few races,
2251 * and potentially makes it more efficient.
2252 *
2253 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2254 * but allow concurrent faults), with pte both mapped and locked.
2255 * We return with mmap_sem still held, but pte unmapped and unlocked.
2256 */
2257static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2258		unsigned long address, pte_t *page_table, pmd_t *pmd,
2259		spinlock_t *ptl, pte_t orig_pte)
2260	__releases(ptl)
2261{
2262	struct page *old_page, *new_page;
2263	pte_t entry;
2264	int ret = 0;
2265	int page_mkwrite = 0;
2266	struct page *dirty_page = NULL;
2267
2268	old_page = vm_normal_page(vma, address, orig_pte);
2269	if (!old_page) {
2270		/*
2271		 * VM_MIXEDMAP !pfn_valid() case
2272		 *
2273		 * We should not cow pages in a shared writeable mapping.
2274		 * Just mark the pages writable as we can't do any dirty
2275		 * accounting on raw pfn maps.
2276		 */
2277		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2278				     (VM_WRITE|VM_SHARED))
2279			goto reuse;
2280		goto gotten;
2281	}
2282
2283	/*
2284	 * Take out anonymous pages first, anonymous shared vmas are
2285	 * not dirty accountable.
2286	 */
2287	if (PageAnon(old_page) && !PageKsm(old_page)) {
2288		if (!trylock_page(old_page)) {
2289			page_cache_get(old_page);
2290			pte_unmap_unlock(page_table, ptl);
2291			lock_page(old_page);
2292			page_table = pte_offset_map_lock(mm, pmd, address,
2293							 &ptl);
2294			if (!pte_same(*page_table, orig_pte)) {
2295				unlock_page(old_page);
2296				goto unlock;
2297			}
2298			page_cache_release(old_page);
2299		}
2300		if (reuse_swap_page(old_page)) {
2301			/*
2302			 * The page is all ours.  Move it to our anon_vma so
2303			 * the rmap code will not search our parent or siblings.
2304			 * Protected against the rmap code by the page lock.
2305			 */
2306			page_move_anon_rmap(old_page, vma, address);
2307			unlock_page(old_page);
2308			goto reuse;
2309		}
2310		unlock_page(old_page);
2311	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2312					(VM_WRITE|VM_SHARED))) {
2313		/*
2314		 * Only catch write-faults on shared writable pages,
2315		 * read-only shared pages can get COWed by
2316		 * get_user_pages(.write=1, .force=1).
2317		 */
2318		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2319			struct vm_fault vmf;
2320			int tmp;
2321
2322			vmf.virtual_address = (void __user *)(address &
2323								PAGE_MASK);
2324			vmf.pgoff = old_page->index;
2325			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2326			vmf.page = old_page;
2327
2328			/*
2329			 * Notify the address space that the page is about to
2330			 * become writable so that it can prohibit this or wait
2331			 * for the page to get into an appropriate state.
2332			 *
2333			 * We do this without the lock held, so that it can
2334			 * sleep if it needs to.
2335			 */
2336			page_cache_get(old_page);
2337			pte_unmap_unlock(page_table, ptl);
2338
2339			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2340			if (unlikely(tmp &
2341					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2342				ret = tmp;
2343				goto unwritable_page;
2344			}
2345			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2346				lock_page(old_page);
2347				if (!old_page->mapping) {
2348					ret = 0; /* retry the fault */
2349					unlock_page(old_page);
2350					goto unwritable_page;
2351				}
2352			} else
2353				VM_BUG_ON(!PageLocked(old_page));
2354
2355			/*
2356			 * Since we dropped the lock we need to revalidate
2357			 * the PTE as someone else may have changed it.  If
2358			 * they did, we just return, as we can count on the
2359			 * MMU to tell us if they didn't also make it writable.
2360			 */
2361			page_table = pte_offset_map_lock(mm, pmd, address,
2362							 &ptl);
2363			if (!pte_same(*page_table, orig_pte)) {
2364				unlock_page(old_page);
2365				goto unlock;
2366			}
2367
2368			page_mkwrite = 1;
2369		}
2370		dirty_page = old_page;
2371		get_page(dirty_page);
2372
2373reuse:
2374		flush_cache_page(vma, address, pte_pfn(orig_pte));
2375		entry = pte_mkyoung(orig_pte);
2376		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2377		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2378			update_mmu_cache(vma, address, page_table);
2379		pte_unmap_unlock(page_table, ptl);
2380		ret |= VM_FAULT_WRITE;
2381
2382		if (!dirty_page)
2383			return ret;
2384
2385		/*
2386		 * Yes, Virginia, this is actually required to prevent a race
2387		 * with clear_page_dirty_for_io() from clearing the page dirty
2388		 * bit after it clear all dirty ptes, but before a racing
2389		 * do_wp_page installs a dirty pte.
2390		 *
2391		 * __do_fault is protected similarly.
2392		 */
2393		if (!page_mkwrite) {
2394			wait_on_page_locked(dirty_page);
2395			set_page_dirty_balance(dirty_page, page_mkwrite);
2396		}
2397		put_page(dirty_page);
2398		if (page_mkwrite) {
2399			struct address_space *mapping = dirty_page->mapping;
2400
2401			set_page_dirty(dirty_page);
2402			unlock_page(dirty_page);
2403			page_cache_release(dirty_page);
2404			if (mapping)	{
2405				/*
2406				 * Some device drivers do not set page.mapping
2407				 * but still dirty their pages
2408				 */
2409				balance_dirty_pages_ratelimited(mapping);
2410			}
2411		}
2412
2413		/* file_update_time outside page_lock */
2414		if (vma->vm_file)
2415			file_update_time(vma->vm_file);
2416
2417		return ret;
2418	}
2419
2420	/*
2421	 * Ok, we need to copy. Oh, well..
2422	 */
2423	page_cache_get(old_page);
2424gotten:
2425	pte_unmap_unlock(page_table, ptl);
2426
2427	if (unlikely(anon_vma_prepare(vma)))
2428		goto oom;
2429
2430	if (is_zero_pfn(pte_pfn(orig_pte))) {
2431		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2432		if (!new_page)
2433			goto oom;
2434	} else {
2435		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2436		if (!new_page)
2437			goto oom;
2438		cow_user_page(new_page, old_page, address, vma);
2439	}
2440	__SetPageUptodate(new_page);
2441
2442	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2443		goto oom_free_new;
2444
2445	/*
2446	 * Re-check the pte - we dropped the lock
2447	 */
2448	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2449	if (likely(pte_same(*page_table, orig_pte))) {
2450		if (old_page) {
2451			if (!PageAnon(old_page)) {
2452				dec_mm_counter_fast(mm, MM_FILEPAGES);
2453				inc_mm_counter_fast(mm, MM_ANONPAGES);
2454			}
2455		} else
2456			inc_mm_counter_fast(mm, MM_ANONPAGES);
2457		flush_cache_page(vma, address, pte_pfn(orig_pte));
2458		entry = mk_pte(new_page, vma->vm_page_prot);
2459		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2460		/*
2461		 * Clear the pte entry and flush it first, before updating the
2462		 * pte with the new entry. This will avoid a race condition
2463		 * seen in the presence of one thread doing SMC and another
2464		 * thread doing COW.
2465		 */
2466		ptep_clear_flush(vma, address, page_table);
2467		page_add_new_anon_rmap(new_page, vma, address);
2468		/*
2469		 * We call the notify macro here because, when using secondary
2470		 * mmu page tables (such as kvm shadow page tables), we want the
2471		 * new page to be mapped directly into the secondary page table.
2472		 */
2473		set_pte_at_notify(mm, address, page_table, entry);
2474		update_mmu_cache(vma, address, page_table);
2475		if (old_page) {
2476			/*
2477			 * Only after switching the pte to the new page may
2478			 * we remove the mapcount here. Otherwise another
2479			 * process may come and find the rmap count decremented
2480			 * before the pte is switched to the new page, and
2481			 * "reuse" the old page writing into it while our pte
2482			 * here still points into it and can be read by other
2483			 * threads.
2484			 *
2485			 * The critical issue is to order this
2486			 * page_remove_rmap with the ptp_clear_flush above.
2487			 * Those stores are ordered by (if nothing else,)
2488			 * the barrier present in the atomic_add_negative
2489			 * in page_remove_rmap.
2490			 *
2491			 * Then the TLB flush in ptep_clear_flush ensures that
2492			 * no process can access the old page before the
2493			 * decremented mapcount is visible. And the old page
2494			 * cannot be reused until after the decremented
2495			 * mapcount is visible. So transitively, TLBs to
2496			 * old page will be flushed before it can be reused.
2497			 */
2498			page_remove_rmap(old_page);
2499		}
2500
2501		/* Free the old page.. */
2502		new_page = old_page;
2503		ret |= VM_FAULT_WRITE;
2504	} else
2505		mem_cgroup_uncharge_page(new_page);
2506
2507	if (new_page)
2508		page_cache_release(new_page);
2509unlock:
2510	pte_unmap_unlock(page_table, ptl);
2511	if (old_page) {
2512		/*
2513		 * Don't let another task, with possibly unlocked vma,
2514		 * keep the mlocked page.
2515		 */
2516		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2517			lock_page(old_page);	/* LRU manipulation */
2518			munlock_vma_page(old_page);
2519			unlock_page(old_page);
2520		}
2521		page_cache_release(old_page);
2522	}
2523	return ret;
2524oom_free_new:
2525	page_cache_release(new_page);
2526oom:
2527	if (old_page) {
2528		if (page_mkwrite) {
2529			unlock_page(old_page);
2530			page_cache_release(old_page);
2531		}
2532		page_cache_release(old_page);
2533	}
2534	return VM_FAULT_OOM;
2535
2536unwritable_page:
2537	page_cache_release(old_page);
2538	return ret;
2539}
2540
2541/*
2542 * Helper functions for unmap_mapping_range().
2543 *
2544 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2545 *
2546 * We have to restart searching the prio_tree whenever we drop the lock,
2547 * since the iterator is only valid while the lock is held, and anyway
2548 * a later vma might be split and reinserted earlier while lock dropped.
2549 *
2550 * The list of nonlinear vmas could be handled more efficiently, using
2551 * a placeholder, but handle it in the same way until a need is shown.
2552 * It is important to search the prio_tree before nonlinear list: a vma
2553 * may become nonlinear and be shifted from prio_tree to nonlinear list
2554 * while the lock is dropped; but never shifted from list to prio_tree.
2555 *
2556 * In order to make forward progress despite restarting the search,
2557 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2558 * quickly skip it next time around.  Since the prio_tree search only
2559 * shows us those vmas affected by unmapping the range in question, we
2560 * can't efficiently keep all vmas in step with mapping->truncate_count:
2561 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2562 * mapping->truncate_count and vma->vm_truncate_count are protected by
2563 * i_mmap_lock.
2564 *
2565 * In order to make forward progress despite repeatedly restarting some
2566 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2567 * and restart from that address when we reach that vma again.  It might
2568 * have been split or merged, shrunk or extended, but never shifted: so
2569 * restart_addr remains valid so long as it remains in the vma's range.
2570 * unmap_mapping_range forces truncate_count to leap over page-aligned
2571 * values so we can save vma's restart_addr in its truncate_count field.
2572 */
2573#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2574
2575static void reset_vma_truncate_counts(struct address_space *mapping)
2576{
2577	struct vm_area_struct *vma;
2578	struct prio_tree_iter iter;
2579
2580	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2581		vma->vm_truncate_count = 0;
2582	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2583		vma->vm_truncate_count = 0;
2584}
2585
2586static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2587		unsigned long start_addr, unsigned long end_addr,
2588		struct zap_details *details)
2589{
2590	unsigned long restart_addr;
2591	int need_break;
2592
2593	/*
2594	 * files that support invalidating or truncating portions of the
2595	 * file from under mmaped areas must have their ->fault function
2596	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2597	 * This provides synchronisation against concurrent unmapping here.
2598	 */
2599
2600again:
2601	restart_addr = vma->vm_truncate_count;
2602	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2603		start_addr = restart_addr;
2604		if (start_addr >= end_addr) {
2605			/* Top of vma has been split off since last time */
2606			vma->vm_truncate_count = details->truncate_count;
2607			return 0;
2608		}
2609	}
2610
2611	restart_addr = zap_page_range(vma, start_addr,
2612					end_addr - start_addr, details);
2613	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2614
2615	if (restart_addr >= end_addr) {
2616		/* We have now completed this vma: mark it so */
2617		vma->vm_truncate_count = details->truncate_count;
2618		if (!need_break)
2619			return 0;
2620	} else {
2621		/* Note restart_addr in vma's truncate_count field */
2622		vma->vm_truncate_count = restart_addr;
2623		if (!need_break)
2624			goto again;
2625	}
2626
2627	spin_unlock(details->i_mmap_lock);
2628	cond_resched();
2629	spin_lock(details->i_mmap_lock);
2630	return -EINTR;
2631}
2632
2633static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2634					    struct zap_details *details)
2635{
2636	struct vm_area_struct *vma;
2637	struct prio_tree_iter iter;
2638	pgoff_t vba, vea, zba, zea;
2639
2640restart:
2641	vma_prio_tree_foreach(vma, &iter, root,
2642			details->first_index, details->last_index) {
2643		/* Skip quickly over those we have already dealt with */
2644		if (vma->vm_truncate_count == details->truncate_count)
2645			continue;
2646
2647		vba = vma->vm_pgoff;
2648		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2649		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2650		zba = details->first_index;
2651		if (zba < vba)
2652			zba = vba;
2653		zea = details->last_index;
2654		if (zea > vea)
2655			zea = vea;
2656
2657		if (unmap_mapping_range_vma(vma,
2658			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2659			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2660				details) < 0)
2661			goto restart;
2662	}
2663}
2664
2665static inline void unmap_mapping_range_list(struct list_head *head,
2666					    struct zap_details *details)
2667{
2668	struct vm_area_struct *vma;
2669
2670	/*
2671	 * In nonlinear VMAs there is no correspondence between virtual address
2672	 * offset and file offset.  So we must perform an exhaustive search
2673	 * across *all* the pages in each nonlinear VMA, not just the pages
2674	 * whose virtual address lies outside the file truncation point.
2675	 */
2676restart:
2677	list_for_each_entry(vma, head, shared.vm_set.list) {
2678		/* Skip quickly over those we have already dealt with */
2679		if (vma->vm_truncate_count == details->truncate_count)
2680			continue;
2681		details->nonlinear_vma = vma;
2682		if (unmap_mapping_range_vma(vma, vma->vm_start,
2683					vma->vm_end, details) < 0)
2684			goto restart;
2685	}
2686}
2687
2688/**
2689 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2690 * @mapping: the address space containing mmaps to be unmapped.
2691 * @holebegin: byte in first page to unmap, relative to the start of
2692 * the underlying file.  This will be rounded down to a PAGE_SIZE
2693 * boundary.  Note that this is different from truncate_pagecache(), which
2694 * must keep the partial page.  In contrast, we must get rid of
2695 * partial pages.
2696 * @holelen: size of prospective hole in bytes.  This will be rounded
2697 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2698 * end of the file.
2699 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2700 * but 0 when invalidating pagecache, don't throw away private data.
2701 */
2702void unmap_mapping_range(struct address_space *mapping,
2703		loff_t const holebegin, loff_t const holelen, int even_cows)
2704{
2705	struct zap_details details;
2706	pgoff_t hba = holebegin >> PAGE_SHIFT;
2707	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2708
2709	/* Check for overflow. */
2710	if (sizeof(holelen) > sizeof(hlen)) {
2711		long long holeend =
2712			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2713		if (holeend & ~(long long)ULONG_MAX)
2714			hlen = ULONG_MAX - hba + 1;
2715	}
2716
2717	details.check_mapping = even_cows? NULL: mapping;
2718	details.nonlinear_vma = NULL;
2719	details.first_index = hba;
2720	details.last_index = hba + hlen - 1;
2721	if (details.last_index < details.first_index)
2722		details.last_index = ULONG_MAX;
2723	details.i_mmap_lock = &mapping->i_mmap_lock;
2724
2725	mutex_lock(&mapping->unmap_mutex);
2726	spin_lock(&mapping->i_mmap_lock);
2727
2728	/* Protect against endless unmapping loops */
2729	mapping->truncate_count++;
2730	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2731		if (mapping->truncate_count == 0)
2732			reset_vma_truncate_counts(mapping);
2733		mapping->truncate_count++;
2734	}
2735	details.truncate_count = mapping->truncate_count;
2736
2737	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2738		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2739	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2740		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2741	spin_unlock(&mapping->i_mmap_lock);
2742	mutex_unlock(&mapping->unmap_mutex);
2743}
2744EXPORT_SYMBOL(unmap_mapping_range);
2745
2746int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2747{
2748	struct address_space *mapping = inode->i_mapping;
2749
2750	/*
2751	 * If the underlying filesystem is not going to provide
2752	 * a way to truncate a range of blocks (punch a hole) -
2753	 * we should return failure right now.
2754	 */
2755	if (!inode->i_op->truncate_range)
2756		return -ENOSYS;
2757
2758	mutex_lock(&inode->i_mutex);
2759	down_write(&inode->i_alloc_sem);
2760	unmap_mapping_range(mapping, offset, (end - offset), 1);
2761	truncate_inode_pages_range(mapping, offset, end);
2762	unmap_mapping_range(mapping, offset, (end - offset), 1);
2763	inode->i_op->truncate_range(inode, offset, end);
2764	up_write(&inode->i_alloc_sem);
2765	mutex_unlock(&inode->i_mutex);
2766
2767	return 0;
2768}
2769
2770/*
2771 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2772 * but allow concurrent faults), and pte mapped but not yet locked.
2773 * We return with mmap_sem still held, but pte unmapped and unlocked.
2774 */
2775static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2776		unsigned long address, pte_t *page_table, pmd_t *pmd,
2777		unsigned int flags, pte_t orig_pte)
2778{
2779	spinlock_t *ptl;
2780	struct page *page, *swapcache = NULL;
2781	swp_entry_t entry;
2782	pte_t pte;
2783	int locked;
2784	struct mem_cgroup *ptr;
2785	int exclusive = 0;
2786	int ret = 0;
2787
2788	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2789		goto out;
2790
2791	entry = pte_to_swp_entry(orig_pte);
2792	if (unlikely(non_swap_entry(entry))) {
2793		if (is_migration_entry(entry)) {
2794			migration_entry_wait(mm, pmd, address);
2795		} else if (is_hwpoison_entry(entry)) {
2796			ret = VM_FAULT_HWPOISON;
2797		} else {
2798			print_bad_pte(vma, address, orig_pte, NULL);
2799			ret = VM_FAULT_SIGBUS;
2800		}
2801		goto out;
2802	}
2803	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2804	page = lookup_swap_cache(entry);
2805	if (!page) {
2806		grab_swap_token(mm); /* Contend for token _before_ read-in */
2807		page = swapin_readahead(entry,
2808					GFP_HIGHUSER_MOVABLE, vma, address);
2809		if (!page) {
2810			/*
2811			 * Back out if somebody else faulted in this pte
2812			 * while we released the pte lock.
2813			 */
2814			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2815			if (likely(pte_same(*page_table, orig_pte)))
2816				ret = VM_FAULT_OOM;
2817			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2818			goto unlock;
2819		}
2820
2821		/* Had to read the page from swap area: Major fault */
2822		ret = VM_FAULT_MAJOR;
2823		count_vm_event(PGMAJFAULT);
2824	} else if (PageHWPoison(page)) {
2825		/*
2826		 * hwpoisoned dirty swapcache pages are kept for killing
2827		 * owner processes (which may be unknown at hwpoison time)
2828		 */
2829		ret = VM_FAULT_HWPOISON;
2830		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2831		goto out_release;
2832	}
2833
2834	locked = lock_page_or_retry(page, mm, flags);
2835	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2836	if (!locked) {
2837		ret |= VM_FAULT_RETRY;
2838		goto out_release;
2839	}
2840
2841	/*
2842	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2843	 * release the swapcache from under us.  The page pin, and pte_same
2844	 * test below, are not enough to exclude that.  Even if it is still
2845	 * swapcache, we need to check that the page's swap has not changed.
2846	 */
2847	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2848		goto out_page;
2849
2850	if (ksm_might_need_to_copy(page, vma, address)) {
2851		swapcache = page;
2852		page = ksm_does_need_to_copy(page, vma, address);
2853
2854		if (unlikely(!page)) {
2855			ret = VM_FAULT_OOM;
2856			page = swapcache;
2857			swapcache = NULL;
2858			goto out_page;
2859		}
2860	}
2861
2862	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2863		ret = VM_FAULT_OOM;
2864		goto out_page;
2865	}
2866
2867	/*
2868	 * Back out if somebody else already faulted in this pte.
2869	 */
2870	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2871	if (unlikely(!pte_same(*page_table, orig_pte)))
2872		goto out_nomap;
2873
2874	if (unlikely(!PageUptodate(page))) {
2875		ret = VM_FAULT_SIGBUS;
2876		goto out_nomap;
2877	}
2878
2879	/*
2880	 * The page isn't present yet, go ahead with the fault.
2881	 *
2882	 * Be careful about the sequence of operations here.
2883	 * To get its accounting right, reuse_swap_page() must be called
2884	 * while the page is counted on swap but not yet in mapcount i.e.
2885	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2886	 * must be called after the swap_free(), or it will never succeed.
2887	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2888	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2889	 * in page->private. In this case, a record in swap_cgroup  is silently
2890	 * discarded at swap_free().
2891	 */
2892
2893	inc_mm_counter_fast(mm, MM_ANONPAGES);
2894	dec_mm_counter_fast(mm, MM_SWAPENTS);
2895	pte = mk_pte(page, vma->vm_page_prot);
2896	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2897		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2898		flags &= ~FAULT_FLAG_WRITE;
2899		ret |= VM_FAULT_WRITE;
2900		exclusive = 1;
2901	}
2902	flush_icache_page(vma, page);
2903	set_pte_at(mm, address, page_table, pte);
2904	do_page_add_anon_rmap(page, vma, address, exclusive);
2905	/* It's better to call commit-charge after rmap is established */
2906	mem_cgroup_commit_charge_swapin(page, ptr);
2907
2908	swap_free(entry);
2909	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2910		try_to_free_swap(page);
2911	unlock_page(page);
2912	if (swapcache) {
2913		/*
2914		 * Hold the lock to avoid the swap entry to be reused
2915		 * until we take the PT lock for the pte_same() check
2916		 * (to avoid false positives from pte_same). For
2917		 * further safety release the lock after the swap_free
2918		 * so that the swap count won't change under a
2919		 * parallel locked swapcache.
2920		 */
2921		unlock_page(swapcache);
2922		page_cache_release(swapcache);
2923	}
2924
2925	if (flags & FAULT_FLAG_WRITE) {
2926		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2927		if (ret & VM_FAULT_ERROR)
2928			ret &= VM_FAULT_ERROR;
2929		goto out;
2930	}
2931
2932	/* No need to invalidate - it was non-present before */
2933	update_mmu_cache(vma, address, page_table);
2934unlock:
2935	pte_unmap_unlock(page_table, ptl);
2936out:
2937	return ret;
2938out_nomap:
2939	mem_cgroup_cancel_charge_swapin(ptr);
2940	pte_unmap_unlock(page_table, ptl);
2941out_page:
2942	unlock_page(page);
2943out_release:
2944	page_cache_release(page);
2945	if (swapcache) {
2946		unlock_page(swapcache);
2947		page_cache_release(swapcache);
2948	}
2949	return ret;
2950}
2951
2952/*
2953 * This is like a special single-page "expand_{down|up}wards()",
2954 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2955 * doesn't hit another vma.
2956 */
2957static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2958{
2959	address &= PAGE_MASK;
2960	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2961		struct vm_area_struct *prev = vma->vm_prev;
2962
2963		/*
2964		 * Is there a mapping abutting this one below?
2965		 *
2966		 * That's only ok if it's the same stack mapping
2967		 * that has gotten split..
2968		 */
2969		if (prev && prev->vm_end == address)
2970			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2971
2972		expand_stack(vma, address - PAGE_SIZE);
2973	}
2974	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2975		struct vm_area_struct *next = vma->vm_next;
2976
2977		/* As VM_GROWSDOWN but s/below/above/ */
2978		if (next && next->vm_start == address + PAGE_SIZE)
2979			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2980
2981		expand_upwards(vma, address + PAGE_SIZE);
2982	}
2983	return 0;
2984}
2985
2986/*
2987 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2988 * but allow concurrent faults), and pte mapped but not yet locked.
2989 * We return with mmap_sem still held, but pte unmapped and unlocked.
2990 */
2991static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2992		unsigned long address, pte_t *page_table, pmd_t *pmd,
2993		unsigned int flags)
2994{
2995	struct page *page;
2996	spinlock_t *ptl;
2997	pte_t entry;
2998
2999	pte_unmap(page_table);
3000
3001	/* Check if we need to add a guard page to the stack */
3002	if (check_stack_guard_page(vma, address) < 0)
3003		return VM_FAULT_SIGBUS;
3004
3005	/* Use the zero-page for reads */
3006	if (!(flags & FAULT_FLAG_WRITE)) {
3007		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3008						vma->vm_page_prot));
3009		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3010		if (!pte_none(*page_table))
3011			goto unlock;
3012		goto setpte;
3013	}
3014
3015	/* Allocate our own private page. */
3016	if (unlikely(anon_vma_prepare(vma)))
3017		goto oom;
3018	page = alloc_zeroed_user_highpage_movable(vma, address);
3019	if (!page)
3020		goto oom;
3021	__SetPageUptodate(page);
3022
3023	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3024		goto oom_free_page;
3025
3026	entry = mk_pte(page, vma->vm_page_prot);
3027	if (vma->vm_flags & VM_WRITE)
3028		entry = pte_mkwrite(pte_mkdirty(entry));
3029
3030	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3031	if (!pte_none(*page_table))
3032		goto release;
3033
3034	inc_mm_counter_fast(mm, MM_ANONPAGES);
3035	page_add_new_anon_rmap(page, vma, address);
3036setpte:
3037	set_pte_at(mm, address, page_table, entry);
3038
3039	/* No need to invalidate - it was non-present before */
3040	update_mmu_cache(vma, address, page_table);
3041unlock:
3042	pte_unmap_unlock(page_table, ptl);
3043	return 0;
3044release:
3045	mem_cgroup_uncharge_page(page);
3046	page_cache_release(page);
3047	goto unlock;
3048oom_free_page:
3049	page_cache_release(page);
3050oom:
3051	return VM_FAULT_OOM;
3052}
3053
3054/*
3055 * __do_fault() tries to create a new page mapping. It aggressively
3056 * tries to share with existing pages, but makes a separate copy if
3057 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3058 * the next page fault.
3059 *
3060 * As this is called only for pages that do not currently exist, we
3061 * do not need to flush old virtual caches or the TLB.
3062 *
3063 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3064 * but allow concurrent faults), and pte neither mapped nor locked.
3065 * We return with mmap_sem still held, but pte unmapped and unlocked.
3066 */
3067static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3068		unsigned long address, pmd_t *pmd,
3069		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3070{
3071	pte_t *page_table;
3072	spinlock_t *ptl;
3073	struct page *page;
3074	pte_t entry;
3075	int anon = 0;
3076	int charged = 0;
3077	struct page *dirty_page = NULL;
3078	struct vm_fault vmf;
3079	int ret;
3080	int page_mkwrite = 0;
3081
3082	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3083	vmf.pgoff = pgoff;
3084	vmf.flags = flags;
3085	vmf.page = NULL;
3086
3087	ret = vma->vm_ops->fault(vma, &vmf);
3088	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3089			    VM_FAULT_RETRY)))
3090		return ret;
3091
3092	if (unlikely(PageHWPoison(vmf.page))) {
3093		if (ret & VM_FAULT_LOCKED)
3094			unlock_page(vmf.page);
3095		return VM_FAULT_HWPOISON;
3096	}
3097
3098	/*
3099	 * For consistency in subsequent calls, make the faulted page always
3100	 * locked.
3101	 */
3102	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3103		lock_page(vmf.page);
3104	else
3105		VM_BUG_ON(!PageLocked(vmf.page));
3106
3107	/*
3108	 * Should we do an early C-O-W break?
3109	 */
3110	page = vmf.page;
3111	if (flags & FAULT_FLAG_WRITE) {
3112		if (!(vma->vm_flags & VM_SHARED)) {
3113			anon = 1;
3114			if (unlikely(anon_vma_prepare(vma))) {
3115				ret = VM_FAULT_OOM;
3116				goto out;
3117			}
3118			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3119						vma, address);
3120			if (!page) {
3121				ret = VM_FAULT_OOM;
3122				goto out;
3123			}
3124			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3125				ret = VM_FAULT_OOM;
3126				page_cache_release(page);
3127				goto out;
3128			}
3129			charged = 1;
3130			copy_user_highpage(page, vmf.page, address, vma);
3131			__SetPageUptodate(page);
3132		} else {
3133			/*
3134			 * If the page will be shareable, see if the backing
3135			 * address space wants to know that the page is about
3136			 * to become writable
3137			 */
3138			if (vma->vm_ops->page_mkwrite) {
3139				int tmp;
3140
3141				unlock_page(page);
3142				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3143				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3144				if (unlikely(tmp &
3145					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3146					ret = tmp;
3147					goto unwritable_page;
3148				}
3149				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3150					lock_page(page);
3151					if (!page->mapping) {
3152						ret = 0; /* retry the fault */
3153						unlock_page(page);
3154						goto unwritable_page;
3155					}
3156				} else
3157					VM_BUG_ON(!PageLocked(page));
3158				page_mkwrite = 1;
3159			}
3160		}
3161
3162	}
3163
3164	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3165
3166	/*
3167	 * This silly early PAGE_DIRTY setting removes a race
3168	 * due to the bad i386 page protection. But it's valid
3169	 * for other architectures too.
3170	 *
3171	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3172	 * an exclusive copy of the page, or this is a shared mapping,
3173	 * so we can make it writable and dirty to avoid having to
3174	 * handle that later.
3175	 */
3176	/* Only go through if we didn't race with anybody else... */
3177	if (likely(pte_same(*page_table, orig_pte))) {
3178		flush_icache_page(vma, page);
3179		entry = mk_pte(page, vma->vm_page_prot);
3180		if (flags & FAULT_FLAG_WRITE)
3181			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3182		if (anon) {
3183			inc_mm_counter_fast(mm, MM_ANONPAGES);
3184			page_add_new_anon_rmap(page, vma, address);
3185		} else {
3186			inc_mm_counter_fast(mm, MM_FILEPAGES);
3187			page_add_file_rmap(page);
3188			if (flags & FAULT_FLAG_WRITE) {
3189				dirty_page = page;
3190				get_page(dirty_page);
3191			}
3192		}
3193		set_pte_at(mm, address, page_table, entry);
3194
3195		/* no need to invalidate: a not-present page won't be cached */
3196		update_mmu_cache(vma, address, page_table);
3197	} else {
3198		if (charged)
3199			mem_cgroup_uncharge_page(page);
3200		if (anon)
3201			page_cache_release(page);
3202		else
3203			anon = 1; /* no anon but release faulted_page */
3204	}
3205
3206	pte_unmap_unlock(page_table, ptl);
3207
3208out:
3209	if (dirty_page) {
3210		struct address_space *mapping = page->mapping;
3211
3212		if (set_page_dirty(dirty_page))
3213			page_mkwrite = 1;
3214		unlock_page(dirty_page);
3215		put_page(dirty_page);
3216		if (page_mkwrite && mapping) {
3217			/*
3218			 * Some device drivers do not set page.mapping but still
3219			 * dirty their pages
3220			 */
3221			balance_dirty_pages_ratelimited(mapping);
3222		}
3223
3224		/* file_update_time outside page_lock */
3225		if (vma->vm_file)
3226			file_update_time(vma->vm_file);
3227	} else {
3228		unlock_page(vmf.page);
3229		if (anon)
3230			page_cache_release(vmf.page);
3231	}
3232
3233	return ret;
3234
3235unwritable_page:
3236	page_cache_release(page);
3237	return ret;
3238}
3239
3240static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3241		unsigned long address, pte_t *page_table, pmd_t *pmd,
3242		unsigned int flags, pte_t orig_pte)
3243{
3244	pgoff_t pgoff = (((address & PAGE_MASK)
3245			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3246
3247	pte_unmap(page_table);
3248	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3249}
3250
3251/*
3252 * Fault of a previously existing named mapping. Repopulate the pte
3253 * from the encoded file_pte if possible. This enables swappable
3254 * nonlinear vmas.
3255 *
3256 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3257 * but allow concurrent faults), and pte mapped but not yet locked.
3258 * We return with mmap_sem still held, but pte unmapped and unlocked.
3259 */
3260static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3261		unsigned long address, pte_t *page_table, pmd_t *pmd,
3262		unsigned int flags, pte_t orig_pte)
3263{
3264	pgoff_t pgoff;
3265
3266	flags |= FAULT_FLAG_NONLINEAR;
3267
3268	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3269		return 0;
3270
3271	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3272		/*
3273		 * Page table corrupted: show pte and kill process.
3274		 */
3275		print_bad_pte(vma, address, orig_pte, NULL);
3276		return VM_FAULT_SIGBUS;
3277	}
3278
3279	pgoff = pte_to_pgoff(orig_pte);
3280	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3281}
3282
3283/*
3284 * These routines also need to handle stuff like marking pages dirty
3285 * and/or accessed for architectures that don't do it in hardware (most
3286 * RISC architectures).  The early dirtying is also good on the i386.
3287 *
3288 * There is also a hook called "update_mmu_cache()" that architectures
3289 * with external mmu caches can use to update those (ie the Sparc or
3290 * PowerPC hashed page tables that act as extended TLBs).
3291 *
3292 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3293 * but allow concurrent faults), and pte mapped but not yet locked.
3294 * We return with mmap_sem still held, but pte unmapped and unlocked.
3295 */
3296int handle_pte_fault(struct mm_struct *mm,
3297		     struct vm_area_struct *vma, unsigned long address,
3298		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3299{
3300	pte_t entry;
3301	spinlock_t *ptl;
3302
3303	entry = *pte;
3304	if (!pte_present(entry)) {
3305		if (pte_none(entry)) {
3306			if (vma->vm_ops) {
3307				if (likely(vma->vm_ops->fault))
3308					return do_linear_fault(mm, vma, address,
3309						pte, pmd, flags, entry);
3310			}
3311			return do_anonymous_page(mm, vma, address,
3312						 pte, pmd, flags);
3313		}
3314		if (pte_file(entry))
3315			return do_nonlinear_fault(mm, vma, address,
3316					pte, pmd, flags, entry);
3317		return do_swap_page(mm, vma, address,
3318					pte, pmd, flags, entry);
3319	}
3320
3321	ptl = pte_lockptr(mm, pmd);
3322	spin_lock(ptl);
3323	if (unlikely(!pte_same(*pte, entry)))
3324		goto unlock;
3325	if (flags & FAULT_FLAG_WRITE) {
3326		if (!pte_write(entry))
3327			return do_wp_page(mm, vma, address,
3328					pte, pmd, ptl, entry);
3329		entry = pte_mkdirty(entry);
3330	}
3331	entry = pte_mkyoung(entry);
3332	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3333		update_mmu_cache(vma, address, pte);
3334	} else {
3335		/*
3336		 * This is needed only for protection faults but the arch code
3337		 * is not yet telling us if this is a protection fault or not.
3338		 * This still avoids useless tlb flushes for .text page faults
3339		 * with threads.
3340		 */
3341		if (flags & FAULT_FLAG_WRITE)
3342			flush_tlb_fix_spurious_fault(vma, address);
3343	}
3344unlock:
3345	pte_unmap_unlock(pte, ptl);
3346	return 0;
3347}
3348
3349/*
3350 * By the time we get here, we already hold the mm semaphore
3351 */
3352int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3353		unsigned long address, unsigned int flags)
3354{
3355	pgd_t *pgd;
3356	pud_t *pud;
3357	pmd_t *pmd;
3358	pte_t *pte;
3359
3360	__set_current_state(TASK_RUNNING);
3361
3362	count_vm_event(PGFAULT);
3363
3364	/* do counter updates before entering really critical section. */
3365	check_sync_rss_stat(current);
3366
3367	if (unlikely(is_vm_hugetlb_page(vma)))
3368		return hugetlb_fault(mm, vma, address, flags);
3369
3370	pgd = pgd_offset(mm, address);
3371	pud = pud_alloc(mm, pgd, address);
3372	if (!pud)
3373		return VM_FAULT_OOM;
3374	pmd = pmd_alloc(mm, pud, address);
3375	if (!pmd)
3376		return VM_FAULT_OOM;
3377	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3378		if (!vma->vm_ops)
3379			return do_huge_pmd_anonymous_page(mm, vma, address,
3380							  pmd, flags);
3381	} else {
3382		pmd_t orig_pmd = *pmd;
3383		barrier();
3384		if (pmd_trans_huge(orig_pmd)) {
3385			if (flags & FAULT_FLAG_WRITE &&
3386			    !pmd_write(orig_pmd) &&
3387			    !pmd_trans_splitting(orig_pmd))
3388				return do_huge_pmd_wp_page(mm, vma, address,
3389							   pmd, orig_pmd);
3390			return 0;
3391		}
3392	}
3393
3394	/*
3395	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3396	 * run pte_offset_map on the pmd, if an huge pmd could
3397	 * materialize from under us from a different thread.
3398	 */
3399	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3400		return VM_FAULT_OOM;
3401	/* if an huge pmd materialized from under us just retry later */
3402	if (unlikely(pmd_trans_huge(*pmd)))
3403		return 0;
3404	/*
3405	 * A regular pmd is established and it can't morph into a huge pmd
3406	 * from under us anymore at this point because we hold the mmap_sem
3407	 * read mode and khugepaged takes it in write mode. So now it's
3408	 * safe to run pte_offset_map().
3409	 */
3410	pte = pte_offset_map(pmd, address);
3411
3412	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3413}
3414
3415#ifndef __PAGETABLE_PUD_FOLDED
3416/*
3417 * Allocate page upper directory.
3418 * We've already handled the fast-path in-line.
3419 */
3420int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3421{
3422	pud_t *new = pud_alloc_one(mm, address);
3423	if (!new)
3424		return -ENOMEM;
3425
3426	smp_wmb(); /* See comment in __pte_alloc */
3427
3428	spin_lock(&mm->page_table_lock);
3429	if (pgd_present(*pgd))		/* Another has populated it */
3430		pud_free(mm, new);
3431	else
3432		pgd_populate(mm, pgd, new);
3433	spin_unlock(&mm->page_table_lock);
3434	return 0;
3435}
3436#endif /* __PAGETABLE_PUD_FOLDED */
3437
3438#ifndef __PAGETABLE_PMD_FOLDED
3439/*
3440 * Allocate page middle directory.
3441 * We've already handled the fast-path in-line.
3442 */
3443int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3444{
3445	pmd_t *new = pmd_alloc_one(mm, address);
3446	if (!new)
3447		return -ENOMEM;
3448
3449	smp_wmb(); /* See comment in __pte_alloc */
3450
3451	spin_lock(&mm->page_table_lock);
3452#ifndef __ARCH_HAS_4LEVEL_HACK
3453	if (pud_present(*pud))		/* Another has populated it */
3454		pmd_free(mm, new);
3455	else
3456		pud_populate(mm, pud, new);
3457#else
3458	if (pgd_present(*pud))		/* Another has populated it */
3459		pmd_free(mm, new);
3460	else
3461		pgd_populate(mm, pud, new);
3462#endif /* __ARCH_HAS_4LEVEL_HACK */
3463	spin_unlock(&mm->page_table_lock);
3464	return 0;
3465}
3466#endif /* __PAGETABLE_PMD_FOLDED */
3467
3468int make_pages_present(unsigned long addr, unsigned long end)
3469{
3470	int ret, len, write;
3471	struct vm_area_struct * vma;
3472
3473	vma = find_vma(current->mm, addr);
3474	if (!vma)
3475		return -ENOMEM;
3476	/*
3477	 * We want to touch writable mappings with a write fault in order
3478	 * to break COW, except for shared mappings because these don't COW
3479	 * and we would not want to dirty them for nothing.
3480	 */
3481	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3482	BUG_ON(addr >= end);
3483	BUG_ON(end > vma->vm_end);
3484	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3485	ret = get_user_pages(current, current->mm, addr,
3486			len, write, 0, NULL, NULL);
3487	if (ret < 0)
3488		return ret;
3489	return ret == len ? 0 : -EFAULT;
3490}
3491
3492#if !defined(__HAVE_ARCH_GATE_AREA)
3493
3494#if defined(AT_SYSINFO_EHDR)
3495static struct vm_area_struct gate_vma;
3496
3497static int __init gate_vma_init(void)
3498{
3499	gate_vma.vm_mm = NULL;
3500	gate_vma.vm_start = FIXADDR_USER_START;
3501	gate_vma.vm_end = FIXADDR_USER_END;
3502	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3503	gate_vma.vm_page_prot = __P101;
3504	/*
3505	 * Make sure the vDSO gets into every core dump.
3506	 * Dumping its contents makes post-mortem fully interpretable later
3507	 * without matching up the same kernel and hardware config to see
3508	 * what PC values meant.
3509	 */
3510	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3511	return 0;
3512}
3513__initcall(gate_vma_init);
3514#endif
3515
3516struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3517{
3518#ifdef AT_SYSINFO_EHDR
3519	return &gate_vma;
3520#else
3521	return NULL;
3522#endif
3523}
3524
3525int in_gate_area_no_mm(unsigned long addr)
3526{
3527#ifdef AT_SYSINFO_EHDR
3528	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3529		return 1;
3530#endif
3531	return 0;
3532}
3533
3534#endif	/* __HAVE_ARCH_GATE_AREA */
3535
3536static int __follow_pte(struct mm_struct *mm, unsigned long address,
3537		pte_t **ptepp, spinlock_t **ptlp)
3538{
3539	pgd_t *pgd;
3540	pud_t *pud;
3541	pmd_t *pmd;
3542	pte_t *ptep;
3543
3544	pgd = pgd_offset(mm, address);
3545	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3546		goto out;
3547
3548	pud = pud_offset(pgd, address);
3549	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3550		goto out;
3551
3552	pmd = pmd_offset(pud, address);
3553	VM_BUG_ON(pmd_trans_huge(*pmd));
3554	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3555		goto out;
3556
3557	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3558	if (pmd_huge(*pmd))
3559		goto out;
3560
3561	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3562	if (!ptep)
3563		goto out;
3564	if (!pte_present(*ptep))
3565		goto unlock;
3566	*ptepp = ptep;
3567	return 0;
3568unlock:
3569	pte_unmap_unlock(ptep, *ptlp);
3570out:
3571	return -EINVAL;
3572}
3573
3574static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3575			     pte_t **ptepp, spinlock_t **ptlp)
3576{
3577	int res;
3578
3579	/* (void) is needed to make gcc happy */
3580	(void) __cond_lock(*ptlp,
3581			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3582	return res;
3583}
3584
3585/**
3586 * follow_pfn - look up PFN at a user virtual address
3587 * @vma: memory mapping
3588 * @address: user virtual address
3589 * @pfn: location to store found PFN
3590 *
3591 * Only IO mappings and raw PFN mappings are allowed.
3592 *
3593 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3594 */
3595int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3596	unsigned long *pfn)
3597{
3598	int ret = -EINVAL;
3599	spinlock_t *ptl;
3600	pte_t *ptep;
3601
3602	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3603		return ret;
3604
3605	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3606	if (ret)
3607		return ret;
3608	*pfn = pte_pfn(*ptep);
3609	pte_unmap_unlock(ptep, ptl);
3610	return 0;
3611}
3612EXPORT_SYMBOL(follow_pfn);
3613
3614#ifdef CONFIG_HAVE_IOREMAP_PROT
3615int follow_phys(struct vm_area_struct *vma,
3616		unsigned long address, unsigned int flags,
3617		unsigned long *prot, resource_size_t *phys)
3618{
3619	int ret = -EINVAL;
3620	pte_t *ptep, pte;
3621	spinlock_t *ptl;
3622
3623	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3624		goto out;
3625
3626	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3627		goto out;
3628	pte = *ptep;
3629
3630	if ((flags & FOLL_WRITE) && !pte_write(pte))
3631		goto unlock;
3632
3633	*prot = pgprot_val(pte_pgprot(pte));
3634	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3635
3636	ret = 0;
3637unlock:
3638	pte_unmap_unlock(ptep, ptl);
3639out:
3640	return ret;
3641}
3642
3643int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3644			void *buf, int len, int write)
3645{
3646	resource_size_t phys_addr;
3647	unsigned long prot = 0;
3648	void __iomem *maddr;
3649	int offset = addr & (PAGE_SIZE-1);
3650
3651	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3652		return -EINVAL;
3653
3654	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3655	if (write)
3656		memcpy_toio(maddr + offset, buf, len);
3657	else
3658		memcpy_fromio(buf, maddr + offset, len);
3659	iounmap(maddr);
3660
3661	return len;
3662}
3663#endif
3664
3665/*
3666 * Access another process' address space as given in mm.  If non-NULL, use the
3667 * given task for page fault accounting.
3668 */
3669static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3670		unsigned long addr, void *buf, int len, int write)
3671{
3672	struct vm_area_struct *vma;
3673	void *old_buf = buf;
3674
3675	down_read(&mm->mmap_sem);
3676	/* ignore errors, just check how much was successfully transferred */
3677	while (len) {
3678		int bytes, ret, offset;
3679		void *maddr;
3680		struct page *page = NULL;
3681
3682		ret = get_user_pages(tsk, mm, addr, 1,
3683				write, 1, &page, &vma);
3684		if (ret <= 0) {
3685			/*
3686			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3687			 * we can access using slightly different code.
3688			 */
3689#ifdef CONFIG_HAVE_IOREMAP_PROT
3690			vma = find_vma(mm, addr);
3691			if (!vma || vma->vm_start > addr)
3692				break;
3693			if (vma->vm_ops && vma->vm_ops->access)
3694				ret = vma->vm_ops->access(vma, addr, buf,
3695							  len, write);
3696			if (ret <= 0)
3697#endif
3698				break;
3699			bytes = ret;
3700		} else {
3701			bytes = len;
3702			offset = addr & (PAGE_SIZE-1);
3703			if (bytes > PAGE_SIZE-offset)
3704				bytes = PAGE_SIZE-offset;
3705
3706			maddr = kmap(page);
3707			if (write) {
3708				copy_to_user_page(vma, page, addr,
3709						  maddr + offset, buf, bytes);
3710				set_page_dirty_lock(page);
3711			} else {
3712				copy_from_user_page(vma, page, addr,
3713						    buf, maddr + offset, bytes);
3714			}
3715			kunmap(page);
3716			page_cache_release(page);
3717		}
3718		len -= bytes;
3719		buf += bytes;
3720		addr += bytes;
3721	}
3722	up_read(&mm->mmap_sem);
3723
3724	return buf - old_buf;
3725}
3726
3727/**
3728 * access_remote_vm - access another process' address space
3729 * @mm:		the mm_struct of the target address space
3730 * @addr:	start address to access
3731 * @buf:	source or destination buffer
3732 * @len:	number of bytes to transfer
3733 * @write:	whether the access is a write
3734 *
3735 * The caller must hold a reference on @mm.
3736 */
3737int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3738		void *buf, int len, int write)
3739{
3740	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3741}
3742
3743/*
3744 * Access another process' address space.
3745 * Source/target buffer must be kernel space,
3746 * Do not walk the page table directly, use get_user_pages
3747 */
3748int access_process_vm(struct task_struct *tsk, unsigned long addr,
3749		void *buf, int len, int write)
3750{
3751	struct mm_struct *mm;
3752	int ret;
3753
3754	mm = get_task_mm(tsk);
3755	if (!mm)
3756		return 0;
3757
3758	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3759	mmput(mm);
3760
3761	return ret;
3762}
3763
3764/*
3765 * Print the name of a VMA.
3766 */
3767void print_vma_addr(char *prefix, unsigned long ip)
3768{
3769	struct mm_struct *mm = current->mm;
3770	struct vm_area_struct *vma;
3771
3772	/*
3773	 * Do not print if we are in atomic
3774	 * contexts (in exception stacks, etc.):
3775	 */
3776	if (preempt_count())
3777		return;
3778
3779	down_read(&mm->mmap_sem);
3780	vma = find_vma(mm, ip);
3781	if (vma && vma->vm_file) {
3782		struct file *f = vma->vm_file;
3783		char *buf = (char *)__get_free_page(GFP_KERNEL);
3784		if (buf) {
3785			char *p, *s;
3786
3787			p = d_path(&f->f_path, buf, PAGE_SIZE);
3788			if (IS_ERR(p))
3789				p = "?";
3790			s = strrchr(p, '/');
3791			if (s)
3792				p = s+1;
3793			printk("%s%s[%lx+%lx]", prefix, p,
3794					vma->vm_start,
3795					vma->vm_end - vma->vm_start);
3796			free_page((unsigned long)buf);
3797		}
3798	}
3799	up_read(&current->mm->mmap_sem);
3800}
3801
3802#ifdef CONFIG_PROVE_LOCKING
3803void might_fault(void)
3804{
3805	/*
3806	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3807	 * holding the mmap_sem, this is safe because kernel memory doesn't
3808	 * get paged out, therefore we'll never actually fault, and the
3809	 * below annotations will generate false positives.
3810	 */
3811	if (segment_eq(get_fs(), KERNEL_DS))
3812		return;
3813
3814	might_sleep();
3815	/*
3816	 * it would be nicer only to annotate paths which are not under
3817	 * pagefault_disable, however that requires a larger audit and
3818	 * providing helpers like get_user_atomic.
3819	 */
3820	if (!in_atomic() && current->mm)
3821		might_lock_read(&current->mm->mmap_sem);
3822}
3823EXPORT_SYMBOL(might_fault);
3824#endif
3825
3826#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3827static void clear_gigantic_page(struct page *page,
3828				unsigned long addr,
3829				unsigned int pages_per_huge_page)
3830{
3831	int i;
3832	struct page *p = page;
3833
3834	might_sleep();
3835	for (i = 0; i < pages_per_huge_page;
3836	     i++, p = mem_map_next(p, page, i)) {
3837		cond_resched();
3838		clear_user_highpage(p, addr + i * PAGE_SIZE);
3839	}
3840}
3841void clear_huge_page(struct page *page,
3842		     unsigned long addr, unsigned int pages_per_huge_page)
3843{
3844	int i;
3845
3846	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3847		clear_gigantic_page(page, addr, pages_per_huge_page);
3848		return;
3849	}
3850
3851	might_sleep();
3852	for (i = 0; i < pages_per_huge_page; i++) {
3853		cond_resched();
3854		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3855	}
3856}
3857
3858static void copy_user_gigantic_page(struct page *dst, struct page *src,
3859				    unsigned long addr,
3860				    struct vm_area_struct *vma,
3861				    unsigned int pages_per_huge_page)
3862{
3863	int i;
3864	struct page *dst_base = dst;
3865	struct page *src_base = src;
3866
3867	for (i = 0; i < pages_per_huge_page; ) {
3868		cond_resched();
3869		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3870
3871		i++;
3872		dst = mem_map_next(dst, dst_base, i);
3873		src = mem_map_next(src, src_base, i);
3874	}
3875}
3876
3877void copy_user_huge_page(struct page *dst, struct page *src,
3878			 unsigned long addr, struct vm_area_struct *vma,
3879			 unsigned int pages_per_huge_page)
3880{
3881	int i;
3882
3883	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3884		copy_user_gigantic_page(dst, src, addr, vma,
3885					pages_per_huge_page);
3886		return;
3887	}
3888
3889	might_sleep();
3890	for (i = 0; i < pages_per_huge_page; i++) {
3891		cond_resched();
3892		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3893	}
3894}
3895#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3896