memory.c revision d41dee369bff3b9dcb6328d4d822926c28cc2594
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
61#ifndef CONFIG_NEED_MULTIPLE_NODES
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none.  Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93	pgd_ERROR(*pgd);
94	pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99	pud_ERROR(*pud);
100	pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105	pmd_ERROR(*pmd);
106	pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114{
115	struct page *page = pmd_page(*pmd);
116	pmd_clear(pmd);
117	pte_free_tlb(tlb, page);
118	dec_page_state(nr_page_table_pages);
119	tlb->mm->nr_ptes--;
120}
121
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123				unsigned long addr, unsigned long end,
124				unsigned long floor, unsigned long ceiling)
125{
126	pmd_t *pmd;
127	unsigned long next;
128	unsigned long start;
129
130	start = addr;
131	pmd = pmd_offset(pud, addr);
132	do {
133		next = pmd_addr_end(addr, end);
134		if (pmd_none_or_clear_bad(pmd))
135			continue;
136		free_pte_range(tlb, pmd);
137	} while (pmd++, addr = next, addr != end);
138
139	start &= PUD_MASK;
140	if (start < floor)
141		return;
142	if (ceiling) {
143		ceiling &= PUD_MASK;
144		if (!ceiling)
145			return;
146	}
147	if (end - 1 > ceiling - 1)
148		return;
149
150	pmd = pmd_offset(pud, start);
151	pud_clear(pud);
152	pmd_free_tlb(tlb, pmd);
153}
154
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156				unsigned long addr, unsigned long end,
157				unsigned long floor, unsigned long ceiling)
158{
159	pud_t *pud;
160	unsigned long next;
161	unsigned long start;
162
163	start = addr;
164	pud = pud_offset(pgd, addr);
165	do {
166		next = pud_addr_end(addr, end);
167		if (pud_none_or_clear_bad(pud))
168			continue;
169		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170	} while (pud++, addr = next, addr != end);
171
172	start &= PGDIR_MASK;
173	if (start < floor)
174		return;
175	if (ceiling) {
176		ceiling &= PGDIR_MASK;
177		if (!ceiling)
178			return;
179	}
180	if (end - 1 > ceiling - 1)
181		return;
182
183	pud = pud_offset(pgd, start);
184	pgd_clear(pgd);
185	pud_free_tlb(tlb, pud);
186}
187
188/*
189 * This function frees user-level page tables of a process.
190 *
191 * Must be called with pagetable lock held.
192 */
193void free_pgd_range(struct mmu_gather **tlb,
194			unsigned long addr, unsigned long end,
195			unsigned long floor, unsigned long ceiling)
196{
197	pgd_t *pgd;
198	unsigned long next;
199	unsigned long start;
200
201	/*
202	 * The next few lines have given us lots of grief...
203	 *
204	 * Why are we testing PMD* at this top level?  Because often
205	 * there will be no work to do at all, and we'd prefer not to
206	 * go all the way down to the bottom just to discover that.
207	 *
208	 * Why all these "- 1"s?  Because 0 represents both the bottom
209	 * of the address space and the top of it (using -1 for the
210	 * top wouldn't help much: the masks would do the wrong thing).
211	 * The rule is that addr 0 and floor 0 refer to the bottom of
212	 * the address space, but end 0 and ceiling 0 refer to the top
213	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214	 * that end 0 case should be mythical).
215	 *
216	 * Wherever addr is brought up or ceiling brought down, we must
217	 * be careful to reject "the opposite 0" before it confuses the
218	 * subsequent tests.  But what about where end is brought down
219	 * by PMD_SIZE below? no, end can't go down to 0 there.
220	 *
221	 * Whereas we round start (addr) and ceiling down, by different
222	 * masks at different levels, in order to test whether a table
223	 * now has no other vmas using it, so can be freed, we don't
224	 * bother to round floor or end up - the tests don't need that.
225	 */
226
227	addr &= PMD_MASK;
228	if (addr < floor) {
229		addr += PMD_SIZE;
230		if (!addr)
231			return;
232	}
233	if (ceiling) {
234		ceiling &= PMD_MASK;
235		if (!ceiling)
236			return;
237	}
238	if (end - 1 > ceiling - 1)
239		end -= PMD_SIZE;
240	if (addr > end - 1)
241		return;
242
243	start = addr;
244	pgd = pgd_offset((*tlb)->mm, addr);
245	do {
246		next = pgd_addr_end(addr, end);
247		if (pgd_none_or_clear_bad(pgd))
248			continue;
249		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250	} while (pgd++, addr = next, addr != end);
251
252	if (!tlb_is_full_mm(*tlb))
253		flush_tlb_pgtables((*tlb)->mm, start, end);
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257		unsigned long floor, unsigned long ceiling)
258{
259	while (vma) {
260		struct vm_area_struct *next = vma->vm_next;
261		unsigned long addr = vma->vm_start;
262
263		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265				floor, next? next->vm_start: ceiling);
266		} else {
267			/*
268			 * Optimization: gather nearby vmas into one call down
269			 */
270			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272							HPAGE_SIZE)) {
273				vma = next;
274				next = vma->vm_next;
275			}
276			free_pgd_range(tlb, addr, vma->vm_end,
277				floor, next? next->vm_start: ceiling);
278		}
279		vma = next;
280	}
281}
282
283pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284				unsigned long address)
285{
286	if (!pmd_present(*pmd)) {
287		struct page *new;
288
289		spin_unlock(&mm->page_table_lock);
290		new = pte_alloc_one(mm, address);
291		spin_lock(&mm->page_table_lock);
292		if (!new)
293			return NULL;
294		/*
295		 * Because we dropped the lock, we should re-check the
296		 * entry, as somebody else could have populated it..
297		 */
298		if (pmd_present(*pmd)) {
299			pte_free(new);
300			goto out;
301		}
302		mm->nr_ptes++;
303		inc_page_state(nr_page_table_pages);
304		pmd_populate(mm, pmd, new);
305	}
306out:
307	return pte_offset_map(pmd, address);
308}
309
310pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311{
312	if (!pmd_present(*pmd)) {
313		pte_t *new;
314
315		spin_unlock(&mm->page_table_lock);
316		new = pte_alloc_one_kernel(mm, address);
317		spin_lock(&mm->page_table_lock);
318		if (!new)
319			return NULL;
320
321		/*
322		 * Because we dropped the lock, we should re-check the
323		 * entry, as somebody else could have populated it..
324		 */
325		if (pmd_present(*pmd)) {
326			pte_free_kernel(new);
327			goto out;
328		}
329		pmd_populate_kernel(mm, pmd, new);
330	}
331out:
332	return pte_offset_kernel(pmd, address);
333}
334
335/*
336 * copy one vm_area from one task to the other. Assumes the page tables
337 * already present in the new task to be cleared in the whole range
338 * covered by this vma.
339 *
340 * dst->page_table_lock is held on entry and exit,
341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342 */
343
344static inline void
345copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346		pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347		unsigned long addr)
348{
349	pte_t pte = *src_pte;
350	struct page *page;
351	unsigned long pfn;
352
353	/* pte contains position in swap or file, so copy. */
354	if (unlikely(!pte_present(pte))) {
355		if (!pte_file(pte)) {
356			swap_duplicate(pte_to_swp_entry(pte));
357			/* make sure dst_mm is on swapoff's mmlist. */
358			if (unlikely(list_empty(&dst_mm->mmlist))) {
359				spin_lock(&mmlist_lock);
360				list_add(&dst_mm->mmlist, &src_mm->mmlist);
361				spin_unlock(&mmlist_lock);
362			}
363		}
364		set_pte_at(dst_mm, addr, dst_pte, pte);
365		return;
366	}
367
368	pfn = pte_pfn(pte);
369	/* the pte points outside of valid memory, the
370	 * mapping is assumed to be good, meaningful
371	 * and not mapped via rmap - duplicate the
372	 * mapping as is.
373	 */
374	page = NULL;
375	if (pfn_valid(pfn))
376		page = pfn_to_page(pfn);
377
378	if (!page || PageReserved(page)) {
379		set_pte_at(dst_mm, addr, dst_pte, pte);
380		return;
381	}
382
383	/*
384	 * If it's a COW mapping, write protect it both
385	 * in the parent and the child
386	 */
387	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388		ptep_set_wrprotect(src_mm, addr, src_pte);
389		pte = *src_pte;
390	}
391
392	/*
393	 * If it's a shared mapping, mark it clean in
394	 * the child
395	 */
396	if (vm_flags & VM_SHARED)
397		pte = pte_mkclean(pte);
398	pte = pte_mkold(pte);
399	get_page(page);
400	inc_mm_counter(dst_mm, rss);
401	if (PageAnon(page))
402		inc_mm_counter(dst_mm, anon_rss);
403	set_pte_at(dst_mm, addr, dst_pte, pte);
404	page_dup_rmap(page);
405}
406
407static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
408		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
409		unsigned long addr, unsigned long end)
410{
411	pte_t *src_pte, *dst_pte;
412	unsigned long vm_flags = vma->vm_flags;
413	int progress;
414
415again:
416	dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
417	if (!dst_pte)
418		return -ENOMEM;
419	src_pte = pte_offset_map_nested(src_pmd, addr);
420
421	progress = 0;
422	spin_lock(&src_mm->page_table_lock);
423	do {
424		/*
425		 * We are holding two locks at this point - either of them
426		 * could generate latencies in another task on another CPU.
427		 */
428		if (progress >= 32 && (need_resched() ||
429		    need_lockbreak(&src_mm->page_table_lock) ||
430		    need_lockbreak(&dst_mm->page_table_lock)))
431			break;
432		if (pte_none(*src_pte)) {
433			progress++;
434			continue;
435		}
436		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
437		progress += 8;
438	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
439	spin_unlock(&src_mm->page_table_lock);
440
441	pte_unmap_nested(src_pte - 1);
442	pte_unmap(dst_pte - 1);
443	cond_resched_lock(&dst_mm->page_table_lock);
444	if (addr != end)
445		goto again;
446	return 0;
447}
448
449static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
450		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
451		unsigned long addr, unsigned long end)
452{
453	pmd_t *src_pmd, *dst_pmd;
454	unsigned long next;
455
456	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
457	if (!dst_pmd)
458		return -ENOMEM;
459	src_pmd = pmd_offset(src_pud, addr);
460	do {
461		next = pmd_addr_end(addr, end);
462		if (pmd_none_or_clear_bad(src_pmd))
463			continue;
464		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
465						vma, addr, next))
466			return -ENOMEM;
467	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
468	return 0;
469}
470
471static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
473		unsigned long addr, unsigned long end)
474{
475	pud_t *src_pud, *dst_pud;
476	unsigned long next;
477
478	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
479	if (!dst_pud)
480		return -ENOMEM;
481	src_pud = pud_offset(src_pgd, addr);
482	do {
483		next = pud_addr_end(addr, end);
484		if (pud_none_or_clear_bad(src_pud))
485			continue;
486		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
487						vma, addr, next))
488			return -ENOMEM;
489	} while (dst_pud++, src_pud++, addr = next, addr != end);
490	return 0;
491}
492
493int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
494		struct vm_area_struct *vma)
495{
496	pgd_t *src_pgd, *dst_pgd;
497	unsigned long next;
498	unsigned long addr = vma->vm_start;
499	unsigned long end = vma->vm_end;
500
501	if (is_vm_hugetlb_page(vma))
502		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
503
504	dst_pgd = pgd_offset(dst_mm, addr);
505	src_pgd = pgd_offset(src_mm, addr);
506	do {
507		next = pgd_addr_end(addr, end);
508		if (pgd_none_or_clear_bad(src_pgd))
509			continue;
510		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
511						vma, addr, next))
512			return -ENOMEM;
513	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
514	return 0;
515}
516
517static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
518				unsigned long addr, unsigned long end,
519				struct zap_details *details)
520{
521	pte_t *pte;
522
523	pte = pte_offset_map(pmd, addr);
524	do {
525		pte_t ptent = *pte;
526		if (pte_none(ptent))
527			continue;
528		if (pte_present(ptent)) {
529			struct page *page = NULL;
530			unsigned long pfn = pte_pfn(ptent);
531			if (pfn_valid(pfn)) {
532				page = pfn_to_page(pfn);
533				if (PageReserved(page))
534					page = NULL;
535			}
536			if (unlikely(details) && page) {
537				/*
538				 * unmap_shared_mapping_pages() wants to
539				 * invalidate cache without truncating:
540				 * unmap shared but keep private pages.
541				 */
542				if (details->check_mapping &&
543				    details->check_mapping != page->mapping)
544					continue;
545				/*
546				 * Each page->index must be checked when
547				 * invalidating or truncating nonlinear.
548				 */
549				if (details->nonlinear_vma &&
550				    (page->index < details->first_index ||
551				     page->index > details->last_index))
552					continue;
553			}
554			ptent = ptep_get_and_clear(tlb->mm, addr, pte);
555			tlb_remove_tlb_entry(tlb, pte, addr);
556			if (unlikely(!page))
557				continue;
558			if (unlikely(details) && details->nonlinear_vma
559			    && linear_page_index(details->nonlinear_vma,
560						addr) != page->index)
561				set_pte_at(tlb->mm, addr, pte,
562					   pgoff_to_pte(page->index));
563			if (pte_dirty(ptent))
564				set_page_dirty(page);
565			if (PageAnon(page))
566				dec_mm_counter(tlb->mm, anon_rss);
567			else if (pte_young(ptent))
568				mark_page_accessed(page);
569			tlb->freed++;
570			page_remove_rmap(page);
571			tlb_remove_page(tlb, page);
572			continue;
573		}
574		/*
575		 * If details->check_mapping, we leave swap entries;
576		 * if details->nonlinear_vma, we leave file entries.
577		 */
578		if (unlikely(details))
579			continue;
580		if (!pte_file(ptent))
581			free_swap_and_cache(pte_to_swp_entry(ptent));
582		pte_clear(tlb->mm, addr, pte);
583	} while (pte++, addr += PAGE_SIZE, addr != end);
584	pte_unmap(pte - 1);
585}
586
587static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
588				unsigned long addr, unsigned long end,
589				struct zap_details *details)
590{
591	pmd_t *pmd;
592	unsigned long next;
593
594	pmd = pmd_offset(pud, addr);
595	do {
596		next = pmd_addr_end(addr, end);
597		if (pmd_none_or_clear_bad(pmd))
598			continue;
599		zap_pte_range(tlb, pmd, addr, next, details);
600	} while (pmd++, addr = next, addr != end);
601}
602
603static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
604				unsigned long addr, unsigned long end,
605				struct zap_details *details)
606{
607	pud_t *pud;
608	unsigned long next;
609
610	pud = pud_offset(pgd, addr);
611	do {
612		next = pud_addr_end(addr, end);
613		if (pud_none_or_clear_bad(pud))
614			continue;
615		zap_pmd_range(tlb, pud, addr, next, details);
616	} while (pud++, addr = next, addr != end);
617}
618
619static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
620				unsigned long addr, unsigned long end,
621				struct zap_details *details)
622{
623	pgd_t *pgd;
624	unsigned long next;
625
626	if (details && !details->check_mapping && !details->nonlinear_vma)
627		details = NULL;
628
629	BUG_ON(addr >= end);
630	tlb_start_vma(tlb, vma);
631	pgd = pgd_offset(vma->vm_mm, addr);
632	do {
633		next = pgd_addr_end(addr, end);
634		if (pgd_none_or_clear_bad(pgd))
635			continue;
636		zap_pud_range(tlb, pgd, addr, next, details);
637	} while (pgd++, addr = next, addr != end);
638	tlb_end_vma(tlb, vma);
639}
640
641#ifdef CONFIG_PREEMPT
642# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
643#else
644/* No preempt: go for improved straight-line efficiency */
645# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
646#endif
647
648/**
649 * unmap_vmas - unmap a range of memory covered by a list of vma's
650 * @tlbp: address of the caller's struct mmu_gather
651 * @mm: the controlling mm_struct
652 * @vma: the starting vma
653 * @start_addr: virtual address at which to start unmapping
654 * @end_addr: virtual address at which to end unmapping
655 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
656 * @details: details of nonlinear truncation or shared cache invalidation
657 *
658 * Returns the end address of the unmapping (restart addr if interrupted).
659 *
660 * Unmap all pages in the vma list.  Called under page_table_lock.
661 *
662 * We aim to not hold page_table_lock for too long (for scheduling latency
663 * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
664 * return the ending mmu_gather to the caller.
665 *
666 * Only addresses between `start' and `end' will be unmapped.
667 *
668 * The VMA list must be sorted in ascending virtual address order.
669 *
670 * unmap_vmas() assumes that the caller will flush the whole unmapped address
671 * range after unmap_vmas() returns.  So the only responsibility here is to
672 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
673 * drops the lock and schedules.
674 */
675unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
676		struct vm_area_struct *vma, unsigned long start_addr,
677		unsigned long end_addr, unsigned long *nr_accounted,
678		struct zap_details *details)
679{
680	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
681	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
682	int tlb_start_valid = 0;
683	unsigned long start = start_addr;
684	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
685	int fullmm = tlb_is_full_mm(*tlbp);
686
687	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
688		unsigned long end;
689
690		start = max(vma->vm_start, start_addr);
691		if (start >= vma->vm_end)
692			continue;
693		end = min(vma->vm_end, end_addr);
694		if (end <= vma->vm_start)
695			continue;
696
697		if (vma->vm_flags & VM_ACCOUNT)
698			*nr_accounted += (end - start) >> PAGE_SHIFT;
699
700		while (start != end) {
701			unsigned long block;
702
703			if (!tlb_start_valid) {
704				tlb_start = start;
705				tlb_start_valid = 1;
706			}
707
708			if (is_vm_hugetlb_page(vma)) {
709				block = end - start;
710				unmap_hugepage_range(vma, start, end);
711			} else {
712				block = min(zap_bytes, end - start);
713				unmap_page_range(*tlbp, vma, start,
714						start + block, details);
715			}
716
717			start += block;
718			zap_bytes -= block;
719			if ((long)zap_bytes > 0)
720				continue;
721
722			tlb_finish_mmu(*tlbp, tlb_start, start);
723
724			if (need_resched() ||
725				need_lockbreak(&mm->page_table_lock) ||
726				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
727				if (i_mmap_lock) {
728					/* must reset count of rss freed */
729					*tlbp = tlb_gather_mmu(mm, fullmm);
730					goto out;
731				}
732				spin_unlock(&mm->page_table_lock);
733				cond_resched();
734				spin_lock(&mm->page_table_lock);
735			}
736
737			*tlbp = tlb_gather_mmu(mm, fullmm);
738			tlb_start_valid = 0;
739			zap_bytes = ZAP_BLOCK_SIZE;
740		}
741	}
742out:
743	return start;	/* which is now the end (or restart) address */
744}
745
746/**
747 * zap_page_range - remove user pages in a given range
748 * @vma: vm_area_struct holding the applicable pages
749 * @address: starting address of pages to zap
750 * @size: number of bytes to zap
751 * @details: details of nonlinear truncation or shared cache invalidation
752 */
753unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
754		unsigned long size, struct zap_details *details)
755{
756	struct mm_struct *mm = vma->vm_mm;
757	struct mmu_gather *tlb;
758	unsigned long end = address + size;
759	unsigned long nr_accounted = 0;
760
761	if (is_vm_hugetlb_page(vma)) {
762		zap_hugepage_range(vma, address, size);
763		return end;
764	}
765
766	lru_add_drain();
767	spin_lock(&mm->page_table_lock);
768	tlb = tlb_gather_mmu(mm, 0);
769	end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
770	tlb_finish_mmu(tlb, address, end);
771	spin_unlock(&mm->page_table_lock);
772	return end;
773}
774
775/*
776 * Do a quick page-table lookup for a single page.
777 * mm->page_table_lock must be held.
778 */
779static struct page *
780__follow_page(struct mm_struct *mm, unsigned long address, int read, int write)
781{
782	pgd_t *pgd;
783	pud_t *pud;
784	pmd_t *pmd;
785	pte_t *ptep, pte;
786	unsigned long pfn;
787	struct page *page;
788
789	page = follow_huge_addr(mm, address, write);
790	if (! IS_ERR(page))
791		return page;
792
793	pgd = pgd_offset(mm, address);
794	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
795		goto out;
796
797	pud = pud_offset(pgd, address);
798	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
799		goto out;
800
801	pmd = pmd_offset(pud, address);
802	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
803		goto out;
804	if (pmd_huge(*pmd))
805		return follow_huge_pmd(mm, address, pmd, write);
806
807	ptep = pte_offset_map(pmd, address);
808	if (!ptep)
809		goto out;
810
811	pte = *ptep;
812	pte_unmap(ptep);
813	if (pte_present(pte)) {
814		if (write && !pte_write(pte))
815			goto out;
816		if (read && !pte_read(pte))
817			goto out;
818		pfn = pte_pfn(pte);
819		if (pfn_valid(pfn)) {
820			page = pfn_to_page(pfn);
821			if (write && !pte_dirty(pte) && !PageDirty(page))
822				set_page_dirty(page);
823			mark_page_accessed(page);
824			return page;
825		}
826	}
827
828out:
829	return NULL;
830}
831
832struct page *
833follow_page(struct mm_struct *mm, unsigned long address, int write)
834{
835	return __follow_page(mm, address, /*read*/0, write);
836}
837
838int
839check_user_page_readable(struct mm_struct *mm, unsigned long address)
840{
841	return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL;
842}
843EXPORT_SYMBOL(check_user_page_readable);
844
845static inline int
846untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
847			 unsigned long address)
848{
849	pgd_t *pgd;
850	pud_t *pud;
851	pmd_t *pmd;
852
853	/* Check if the vma is for an anonymous mapping. */
854	if (vma->vm_ops && vma->vm_ops->nopage)
855		return 0;
856
857	/* Check if page directory entry exists. */
858	pgd = pgd_offset(mm, address);
859	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
860		return 1;
861
862	pud = pud_offset(pgd, address);
863	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
864		return 1;
865
866	/* Check if page middle directory entry exists. */
867	pmd = pmd_offset(pud, address);
868	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
869		return 1;
870
871	/* There is a pte slot for 'address' in 'mm'. */
872	return 0;
873}
874
875int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
876		unsigned long start, int len, int write, int force,
877		struct page **pages, struct vm_area_struct **vmas)
878{
879	int i;
880	unsigned int flags;
881
882	/*
883	 * Require read or write permissions.
884	 * If 'force' is set, we only require the "MAY" flags.
885	 */
886	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
887	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
888	i = 0;
889
890	do {
891		struct vm_area_struct *	vma;
892
893		vma = find_extend_vma(mm, start);
894		if (!vma && in_gate_area(tsk, start)) {
895			unsigned long pg = start & PAGE_MASK;
896			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
897			pgd_t *pgd;
898			pud_t *pud;
899			pmd_t *pmd;
900			pte_t *pte;
901			if (write) /* user gate pages are read-only */
902				return i ? : -EFAULT;
903			if (pg > TASK_SIZE)
904				pgd = pgd_offset_k(pg);
905			else
906				pgd = pgd_offset_gate(mm, pg);
907			BUG_ON(pgd_none(*pgd));
908			pud = pud_offset(pgd, pg);
909			BUG_ON(pud_none(*pud));
910			pmd = pmd_offset(pud, pg);
911			BUG_ON(pmd_none(*pmd));
912			pte = pte_offset_map(pmd, pg);
913			BUG_ON(pte_none(*pte));
914			if (pages) {
915				pages[i] = pte_page(*pte);
916				get_page(pages[i]);
917			}
918			pte_unmap(pte);
919			if (vmas)
920				vmas[i] = gate_vma;
921			i++;
922			start += PAGE_SIZE;
923			len--;
924			continue;
925		}
926
927		if (!vma || (vma->vm_flags & VM_IO)
928				|| !(flags & vma->vm_flags))
929			return i ? : -EFAULT;
930
931		if (is_vm_hugetlb_page(vma)) {
932			i = follow_hugetlb_page(mm, vma, pages, vmas,
933						&start, &len, i);
934			continue;
935		}
936		spin_lock(&mm->page_table_lock);
937		do {
938			struct page *page;
939			int lookup_write = write;
940
941			cond_resched_lock(&mm->page_table_lock);
942			while (!(page = follow_page(mm, start, lookup_write))) {
943				/*
944				 * Shortcut for anonymous pages. We don't want
945				 * to force the creation of pages tables for
946				 * insanely big anonymously mapped areas that
947				 * nobody touched so far. This is important
948				 * for doing a core dump for these mappings.
949				 */
950				if (!lookup_write &&
951				    untouched_anonymous_page(mm,vma,start)) {
952					page = ZERO_PAGE(start);
953					break;
954				}
955				spin_unlock(&mm->page_table_lock);
956				switch (handle_mm_fault(mm,vma,start,write)) {
957				case VM_FAULT_MINOR:
958					tsk->min_flt++;
959					break;
960				case VM_FAULT_MAJOR:
961					tsk->maj_flt++;
962					break;
963				case VM_FAULT_SIGBUS:
964					return i ? i : -EFAULT;
965				case VM_FAULT_OOM:
966					return i ? i : -ENOMEM;
967				default:
968					BUG();
969				}
970				/*
971				 * Now that we have performed a write fault
972				 * and surely no longer have a shared page we
973				 * shouldn't write, we shouldn't ignore an
974				 * unwritable page in the page table if
975				 * we are forcing write access.
976				 */
977				lookup_write = write && !force;
978				spin_lock(&mm->page_table_lock);
979			}
980			if (pages) {
981				pages[i] = page;
982				flush_dcache_page(page);
983				if (!PageReserved(page))
984					page_cache_get(page);
985			}
986			if (vmas)
987				vmas[i] = vma;
988			i++;
989			start += PAGE_SIZE;
990			len--;
991		} while (len && start < vma->vm_end);
992		spin_unlock(&mm->page_table_lock);
993	} while (len);
994	return i;
995}
996EXPORT_SYMBOL(get_user_pages);
997
998static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
999			unsigned long addr, unsigned long end, pgprot_t prot)
1000{
1001	pte_t *pte;
1002
1003	pte = pte_alloc_map(mm, pmd, addr);
1004	if (!pte)
1005		return -ENOMEM;
1006	do {
1007		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1008		BUG_ON(!pte_none(*pte));
1009		set_pte_at(mm, addr, pte, zero_pte);
1010	} while (pte++, addr += PAGE_SIZE, addr != end);
1011	pte_unmap(pte - 1);
1012	return 0;
1013}
1014
1015static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1016			unsigned long addr, unsigned long end, pgprot_t prot)
1017{
1018	pmd_t *pmd;
1019	unsigned long next;
1020
1021	pmd = pmd_alloc(mm, pud, addr);
1022	if (!pmd)
1023		return -ENOMEM;
1024	do {
1025		next = pmd_addr_end(addr, end);
1026		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1027			return -ENOMEM;
1028	} while (pmd++, addr = next, addr != end);
1029	return 0;
1030}
1031
1032static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1033			unsigned long addr, unsigned long end, pgprot_t prot)
1034{
1035	pud_t *pud;
1036	unsigned long next;
1037
1038	pud = pud_alloc(mm, pgd, addr);
1039	if (!pud)
1040		return -ENOMEM;
1041	do {
1042		next = pud_addr_end(addr, end);
1043		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1044			return -ENOMEM;
1045	} while (pud++, addr = next, addr != end);
1046	return 0;
1047}
1048
1049int zeromap_page_range(struct vm_area_struct *vma,
1050			unsigned long addr, unsigned long size, pgprot_t prot)
1051{
1052	pgd_t *pgd;
1053	unsigned long next;
1054	unsigned long end = addr + size;
1055	struct mm_struct *mm = vma->vm_mm;
1056	int err;
1057
1058	BUG_ON(addr >= end);
1059	pgd = pgd_offset(mm, addr);
1060	flush_cache_range(vma, addr, end);
1061	spin_lock(&mm->page_table_lock);
1062	do {
1063		next = pgd_addr_end(addr, end);
1064		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1065		if (err)
1066			break;
1067	} while (pgd++, addr = next, addr != end);
1068	spin_unlock(&mm->page_table_lock);
1069	return err;
1070}
1071
1072/*
1073 * maps a range of physical memory into the requested pages. the old
1074 * mappings are removed. any references to nonexistent pages results
1075 * in null mappings (currently treated as "copy-on-access")
1076 */
1077static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1078			unsigned long addr, unsigned long end,
1079			unsigned long pfn, pgprot_t prot)
1080{
1081	pte_t *pte;
1082
1083	pte = pte_alloc_map(mm, pmd, addr);
1084	if (!pte)
1085		return -ENOMEM;
1086	do {
1087		BUG_ON(!pte_none(*pte));
1088		if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1089			set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1090		pfn++;
1091	} while (pte++, addr += PAGE_SIZE, addr != end);
1092	pte_unmap(pte - 1);
1093	return 0;
1094}
1095
1096static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1097			unsigned long addr, unsigned long end,
1098			unsigned long pfn, pgprot_t prot)
1099{
1100	pmd_t *pmd;
1101	unsigned long next;
1102
1103	pfn -= addr >> PAGE_SHIFT;
1104	pmd = pmd_alloc(mm, pud, addr);
1105	if (!pmd)
1106		return -ENOMEM;
1107	do {
1108		next = pmd_addr_end(addr, end);
1109		if (remap_pte_range(mm, pmd, addr, next,
1110				pfn + (addr >> PAGE_SHIFT), prot))
1111			return -ENOMEM;
1112	} while (pmd++, addr = next, addr != end);
1113	return 0;
1114}
1115
1116static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1117			unsigned long addr, unsigned long end,
1118			unsigned long pfn, pgprot_t prot)
1119{
1120	pud_t *pud;
1121	unsigned long next;
1122
1123	pfn -= addr >> PAGE_SHIFT;
1124	pud = pud_alloc(mm, pgd, addr);
1125	if (!pud)
1126		return -ENOMEM;
1127	do {
1128		next = pud_addr_end(addr, end);
1129		if (remap_pmd_range(mm, pud, addr, next,
1130				pfn + (addr >> PAGE_SHIFT), prot))
1131			return -ENOMEM;
1132	} while (pud++, addr = next, addr != end);
1133	return 0;
1134}
1135
1136/*  Note: this is only safe if the mm semaphore is held when called. */
1137int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1138		    unsigned long pfn, unsigned long size, pgprot_t prot)
1139{
1140	pgd_t *pgd;
1141	unsigned long next;
1142	unsigned long end = addr + size;
1143	struct mm_struct *mm = vma->vm_mm;
1144	int err;
1145
1146	/*
1147	 * Physically remapped pages are special. Tell the
1148	 * rest of the world about it:
1149	 *   VM_IO tells people not to look at these pages
1150	 *	(accesses can have side effects).
1151	 *   VM_RESERVED tells swapout not to try to touch
1152	 *	this region.
1153	 */
1154	vma->vm_flags |= VM_IO | VM_RESERVED;
1155
1156	BUG_ON(addr >= end);
1157	pfn -= addr >> PAGE_SHIFT;
1158	pgd = pgd_offset(mm, addr);
1159	flush_cache_range(vma, addr, end);
1160	spin_lock(&mm->page_table_lock);
1161	do {
1162		next = pgd_addr_end(addr, end);
1163		err = remap_pud_range(mm, pgd, addr, next,
1164				pfn + (addr >> PAGE_SHIFT), prot);
1165		if (err)
1166			break;
1167	} while (pgd++, addr = next, addr != end);
1168	spin_unlock(&mm->page_table_lock);
1169	return err;
1170}
1171EXPORT_SYMBOL(remap_pfn_range);
1172
1173/*
1174 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1175 * servicing faults for write access.  In the normal case, do always want
1176 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1177 * that do not have writing enabled, when used by access_process_vm.
1178 */
1179static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1180{
1181	if (likely(vma->vm_flags & VM_WRITE))
1182		pte = pte_mkwrite(pte);
1183	return pte;
1184}
1185
1186/*
1187 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1188 */
1189static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1190		pte_t *page_table)
1191{
1192	pte_t entry;
1193
1194	entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1195			      vma);
1196	ptep_establish(vma, address, page_table, entry);
1197	update_mmu_cache(vma, address, entry);
1198	lazy_mmu_prot_update(entry);
1199}
1200
1201/*
1202 * This routine handles present pages, when users try to write
1203 * to a shared page. It is done by copying the page to a new address
1204 * and decrementing the shared-page counter for the old page.
1205 *
1206 * Goto-purists beware: the only reason for goto's here is that it results
1207 * in better assembly code.. The "default" path will see no jumps at all.
1208 *
1209 * Note that this routine assumes that the protection checks have been
1210 * done by the caller (the low-level page fault routine in most cases).
1211 * Thus we can safely just mark it writable once we've done any necessary
1212 * COW.
1213 *
1214 * We also mark the page dirty at this point even though the page will
1215 * change only once the write actually happens. This avoids a few races,
1216 * and potentially makes it more efficient.
1217 *
1218 * We hold the mm semaphore and the page_table_lock on entry and exit
1219 * with the page_table_lock released.
1220 */
1221static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1222	unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1223{
1224	struct page *old_page, *new_page;
1225	unsigned long pfn = pte_pfn(pte);
1226	pte_t entry;
1227
1228	if (unlikely(!pfn_valid(pfn))) {
1229		/*
1230		 * This should really halt the system so it can be debugged or
1231		 * at least the kernel stops what it's doing before it corrupts
1232		 * data, but for the moment just pretend this is OOM.
1233		 */
1234		pte_unmap(page_table);
1235		printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1236				address);
1237		spin_unlock(&mm->page_table_lock);
1238		return VM_FAULT_OOM;
1239	}
1240	old_page = pfn_to_page(pfn);
1241
1242	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1243		int reuse = can_share_swap_page(old_page);
1244		unlock_page(old_page);
1245		if (reuse) {
1246			flush_cache_page(vma, address, pfn);
1247			entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1248					      vma);
1249			ptep_set_access_flags(vma, address, page_table, entry, 1);
1250			update_mmu_cache(vma, address, entry);
1251			lazy_mmu_prot_update(entry);
1252			pte_unmap(page_table);
1253			spin_unlock(&mm->page_table_lock);
1254			return VM_FAULT_MINOR;
1255		}
1256	}
1257	pte_unmap(page_table);
1258
1259	/*
1260	 * Ok, we need to copy. Oh, well..
1261	 */
1262	if (!PageReserved(old_page))
1263		page_cache_get(old_page);
1264	spin_unlock(&mm->page_table_lock);
1265
1266	if (unlikely(anon_vma_prepare(vma)))
1267		goto no_new_page;
1268	if (old_page == ZERO_PAGE(address)) {
1269		new_page = alloc_zeroed_user_highpage(vma, address);
1270		if (!new_page)
1271			goto no_new_page;
1272	} else {
1273		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1274		if (!new_page)
1275			goto no_new_page;
1276		copy_user_highpage(new_page, old_page, address);
1277	}
1278	/*
1279	 * Re-check the pte - we dropped the lock
1280	 */
1281	spin_lock(&mm->page_table_lock);
1282	page_table = pte_offset_map(pmd, address);
1283	if (likely(pte_same(*page_table, pte))) {
1284		if (PageAnon(old_page))
1285			dec_mm_counter(mm, anon_rss);
1286		if (PageReserved(old_page))
1287			inc_mm_counter(mm, rss);
1288		else
1289			page_remove_rmap(old_page);
1290		flush_cache_page(vma, address, pfn);
1291		break_cow(vma, new_page, address, page_table);
1292		lru_cache_add_active(new_page);
1293		page_add_anon_rmap(new_page, vma, address);
1294
1295		/* Free the old page.. */
1296		new_page = old_page;
1297	}
1298	pte_unmap(page_table);
1299	page_cache_release(new_page);
1300	page_cache_release(old_page);
1301	spin_unlock(&mm->page_table_lock);
1302	return VM_FAULT_MINOR;
1303
1304no_new_page:
1305	page_cache_release(old_page);
1306	return VM_FAULT_OOM;
1307}
1308
1309/*
1310 * Helper functions for unmap_mapping_range().
1311 *
1312 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1313 *
1314 * We have to restart searching the prio_tree whenever we drop the lock,
1315 * since the iterator is only valid while the lock is held, and anyway
1316 * a later vma might be split and reinserted earlier while lock dropped.
1317 *
1318 * The list of nonlinear vmas could be handled more efficiently, using
1319 * a placeholder, but handle it in the same way until a need is shown.
1320 * It is important to search the prio_tree before nonlinear list: a vma
1321 * may become nonlinear and be shifted from prio_tree to nonlinear list
1322 * while the lock is dropped; but never shifted from list to prio_tree.
1323 *
1324 * In order to make forward progress despite restarting the search,
1325 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1326 * quickly skip it next time around.  Since the prio_tree search only
1327 * shows us those vmas affected by unmapping the range in question, we
1328 * can't efficiently keep all vmas in step with mapping->truncate_count:
1329 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1330 * mapping->truncate_count and vma->vm_truncate_count are protected by
1331 * i_mmap_lock.
1332 *
1333 * In order to make forward progress despite repeatedly restarting some
1334 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1335 * and restart from that address when we reach that vma again.  It might
1336 * have been split or merged, shrunk or extended, but never shifted: so
1337 * restart_addr remains valid so long as it remains in the vma's range.
1338 * unmap_mapping_range forces truncate_count to leap over page-aligned
1339 * values so we can save vma's restart_addr in its truncate_count field.
1340 */
1341#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1342
1343static void reset_vma_truncate_counts(struct address_space *mapping)
1344{
1345	struct vm_area_struct *vma;
1346	struct prio_tree_iter iter;
1347
1348	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1349		vma->vm_truncate_count = 0;
1350	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1351		vma->vm_truncate_count = 0;
1352}
1353
1354static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1355		unsigned long start_addr, unsigned long end_addr,
1356		struct zap_details *details)
1357{
1358	unsigned long restart_addr;
1359	int need_break;
1360
1361again:
1362	restart_addr = vma->vm_truncate_count;
1363	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1364		start_addr = restart_addr;
1365		if (start_addr >= end_addr) {
1366			/* Top of vma has been split off since last time */
1367			vma->vm_truncate_count = details->truncate_count;
1368			return 0;
1369		}
1370	}
1371
1372	restart_addr = zap_page_range(vma, start_addr,
1373					end_addr - start_addr, details);
1374
1375	/*
1376	 * We cannot rely on the break test in unmap_vmas:
1377	 * on the one hand, we don't want to restart our loop
1378	 * just because that broke out for the page_table_lock;
1379	 * on the other hand, it does no test when vma is small.
1380	 */
1381	need_break = need_resched() ||
1382			need_lockbreak(details->i_mmap_lock);
1383
1384	if (restart_addr >= end_addr) {
1385		/* We have now completed this vma: mark it so */
1386		vma->vm_truncate_count = details->truncate_count;
1387		if (!need_break)
1388			return 0;
1389	} else {
1390		/* Note restart_addr in vma's truncate_count field */
1391		vma->vm_truncate_count = restart_addr;
1392		if (!need_break)
1393			goto again;
1394	}
1395
1396	spin_unlock(details->i_mmap_lock);
1397	cond_resched();
1398	spin_lock(details->i_mmap_lock);
1399	return -EINTR;
1400}
1401
1402static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1403					    struct zap_details *details)
1404{
1405	struct vm_area_struct *vma;
1406	struct prio_tree_iter iter;
1407	pgoff_t vba, vea, zba, zea;
1408
1409restart:
1410	vma_prio_tree_foreach(vma, &iter, root,
1411			details->first_index, details->last_index) {
1412		/* Skip quickly over those we have already dealt with */
1413		if (vma->vm_truncate_count == details->truncate_count)
1414			continue;
1415
1416		vba = vma->vm_pgoff;
1417		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1418		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1419		zba = details->first_index;
1420		if (zba < vba)
1421			zba = vba;
1422		zea = details->last_index;
1423		if (zea > vea)
1424			zea = vea;
1425
1426		if (unmap_mapping_range_vma(vma,
1427			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1428			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1429				details) < 0)
1430			goto restart;
1431	}
1432}
1433
1434static inline void unmap_mapping_range_list(struct list_head *head,
1435					    struct zap_details *details)
1436{
1437	struct vm_area_struct *vma;
1438
1439	/*
1440	 * In nonlinear VMAs there is no correspondence between virtual address
1441	 * offset and file offset.  So we must perform an exhaustive search
1442	 * across *all* the pages in each nonlinear VMA, not just the pages
1443	 * whose virtual address lies outside the file truncation point.
1444	 */
1445restart:
1446	list_for_each_entry(vma, head, shared.vm_set.list) {
1447		/* Skip quickly over those we have already dealt with */
1448		if (vma->vm_truncate_count == details->truncate_count)
1449			continue;
1450		details->nonlinear_vma = vma;
1451		if (unmap_mapping_range_vma(vma, vma->vm_start,
1452					vma->vm_end, details) < 0)
1453			goto restart;
1454	}
1455}
1456
1457/**
1458 * unmap_mapping_range - unmap the portion of all mmaps
1459 * in the specified address_space corresponding to the specified
1460 * page range in the underlying file.
1461 * @address_space: the address space containing mmaps to be unmapped.
1462 * @holebegin: byte in first page to unmap, relative to the start of
1463 * the underlying file.  This will be rounded down to a PAGE_SIZE
1464 * boundary.  Note that this is different from vmtruncate(), which
1465 * must keep the partial page.  In contrast, we must get rid of
1466 * partial pages.
1467 * @holelen: size of prospective hole in bytes.  This will be rounded
1468 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1469 * end of the file.
1470 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1471 * but 0 when invalidating pagecache, don't throw away private data.
1472 */
1473void unmap_mapping_range(struct address_space *mapping,
1474		loff_t const holebegin, loff_t const holelen, int even_cows)
1475{
1476	struct zap_details details;
1477	pgoff_t hba = holebegin >> PAGE_SHIFT;
1478	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1479
1480	/* Check for overflow. */
1481	if (sizeof(holelen) > sizeof(hlen)) {
1482		long long holeend =
1483			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1484		if (holeend & ~(long long)ULONG_MAX)
1485			hlen = ULONG_MAX - hba + 1;
1486	}
1487
1488	details.check_mapping = even_cows? NULL: mapping;
1489	details.nonlinear_vma = NULL;
1490	details.first_index = hba;
1491	details.last_index = hba + hlen - 1;
1492	if (details.last_index < details.first_index)
1493		details.last_index = ULONG_MAX;
1494	details.i_mmap_lock = &mapping->i_mmap_lock;
1495
1496	spin_lock(&mapping->i_mmap_lock);
1497
1498	/* serialize i_size write against truncate_count write */
1499	smp_wmb();
1500	/* Protect against page faults, and endless unmapping loops */
1501	mapping->truncate_count++;
1502	/*
1503	 * For archs where spin_lock has inclusive semantics like ia64
1504	 * this smp_mb() will prevent to read pagetable contents
1505	 * before the truncate_count increment is visible to
1506	 * other cpus.
1507	 */
1508	smp_mb();
1509	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1510		if (mapping->truncate_count == 0)
1511			reset_vma_truncate_counts(mapping);
1512		mapping->truncate_count++;
1513	}
1514	details.truncate_count = mapping->truncate_count;
1515
1516	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1517		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1518	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1519		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1520	spin_unlock(&mapping->i_mmap_lock);
1521}
1522EXPORT_SYMBOL(unmap_mapping_range);
1523
1524/*
1525 * Handle all mappings that got truncated by a "truncate()"
1526 * system call.
1527 *
1528 * NOTE! We have to be ready to update the memory sharing
1529 * between the file and the memory map for a potential last
1530 * incomplete page.  Ugly, but necessary.
1531 */
1532int vmtruncate(struct inode * inode, loff_t offset)
1533{
1534	struct address_space *mapping = inode->i_mapping;
1535	unsigned long limit;
1536
1537	if (inode->i_size < offset)
1538		goto do_expand;
1539	/*
1540	 * truncation of in-use swapfiles is disallowed - it would cause
1541	 * subsequent swapout to scribble on the now-freed blocks.
1542	 */
1543	if (IS_SWAPFILE(inode))
1544		goto out_busy;
1545	i_size_write(inode, offset);
1546	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1547	truncate_inode_pages(mapping, offset);
1548	goto out_truncate;
1549
1550do_expand:
1551	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1552	if (limit != RLIM_INFINITY && offset > limit)
1553		goto out_sig;
1554	if (offset > inode->i_sb->s_maxbytes)
1555		goto out_big;
1556	i_size_write(inode, offset);
1557
1558out_truncate:
1559	if (inode->i_op && inode->i_op->truncate)
1560		inode->i_op->truncate(inode);
1561	return 0;
1562out_sig:
1563	send_sig(SIGXFSZ, current, 0);
1564out_big:
1565	return -EFBIG;
1566out_busy:
1567	return -ETXTBSY;
1568}
1569
1570EXPORT_SYMBOL(vmtruncate);
1571
1572/*
1573 * Primitive swap readahead code. We simply read an aligned block of
1574 * (1 << page_cluster) entries in the swap area. This method is chosen
1575 * because it doesn't cost us any seek time.  We also make sure to queue
1576 * the 'original' request together with the readahead ones...
1577 *
1578 * This has been extended to use the NUMA policies from the mm triggering
1579 * the readahead.
1580 *
1581 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1582 */
1583void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1584{
1585#ifdef CONFIG_NUMA
1586	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1587#endif
1588	int i, num;
1589	struct page *new_page;
1590	unsigned long offset;
1591
1592	/*
1593	 * Get the number of handles we should do readahead io to.
1594	 */
1595	num = valid_swaphandles(entry, &offset);
1596	for (i = 0; i < num; offset++, i++) {
1597		/* Ok, do the async read-ahead now */
1598		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1599							   offset), vma, addr);
1600		if (!new_page)
1601			break;
1602		page_cache_release(new_page);
1603#ifdef CONFIG_NUMA
1604		/*
1605		 * Find the next applicable VMA for the NUMA policy.
1606		 */
1607		addr += PAGE_SIZE;
1608		if (addr == 0)
1609			vma = NULL;
1610		if (vma) {
1611			if (addr >= vma->vm_end) {
1612				vma = next_vma;
1613				next_vma = vma ? vma->vm_next : NULL;
1614			}
1615			if (vma && addr < vma->vm_start)
1616				vma = NULL;
1617		} else {
1618			if (next_vma && addr >= next_vma->vm_start) {
1619				vma = next_vma;
1620				next_vma = vma->vm_next;
1621			}
1622		}
1623#endif
1624	}
1625	lru_add_drain();	/* Push any new pages onto the LRU now */
1626}
1627
1628/*
1629 * We hold the mm semaphore and the page_table_lock on entry and
1630 * should release the pagetable lock on exit..
1631 */
1632static int do_swap_page(struct mm_struct * mm,
1633	struct vm_area_struct * vma, unsigned long address,
1634	pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1635{
1636	struct page *page;
1637	swp_entry_t entry = pte_to_swp_entry(orig_pte);
1638	pte_t pte;
1639	int ret = VM_FAULT_MINOR;
1640
1641	pte_unmap(page_table);
1642	spin_unlock(&mm->page_table_lock);
1643	page = lookup_swap_cache(entry);
1644	if (!page) {
1645 		swapin_readahead(entry, address, vma);
1646 		page = read_swap_cache_async(entry, vma, address);
1647		if (!page) {
1648			/*
1649			 * Back out if somebody else faulted in this pte while
1650			 * we released the page table lock.
1651			 */
1652			spin_lock(&mm->page_table_lock);
1653			page_table = pte_offset_map(pmd, address);
1654			if (likely(pte_same(*page_table, orig_pte)))
1655				ret = VM_FAULT_OOM;
1656			else
1657				ret = VM_FAULT_MINOR;
1658			pte_unmap(page_table);
1659			spin_unlock(&mm->page_table_lock);
1660			goto out;
1661		}
1662
1663		/* Had to read the page from swap area: Major fault */
1664		ret = VM_FAULT_MAJOR;
1665		inc_page_state(pgmajfault);
1666		grab_swap_token();
1667	}
1668
1669	mark_page_accessed(page);
1670	lock_page(page);
1671
1672	/*
1673	 * Back out if somebody else faulted in this pte while we
1674	 * released the page table lock.
1675	 */
1676	spin_lock(&mm->page_table_lock);
1677	page_table = pte_offset_map(pmd, address);
1678	if (unlikely(!pte_same(*page_table, orig_pte))) {
1679		ret = VM_FAULT_MINOR;
1680		goto out_nomap;
1681	}
1682
1683	if (unlikely(!PageUptodate(page))) {
1684		ret = VM_FAULT_SIGBUS;
1685		goto out_nomap;
1686	}
1687
1688	/* The page isn't present yet, go ahead with the fault. */
1689
1690	inc_mm_counter(mm, rss);
1691	pte = mk_pte(page, vma->vm_page_prot);
1692	if (write_access && can_share_swap_page(page)) {
1693		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1694		write_access = 0;
1695	}
1696
1697	flush_icache_page(vma, page);
1698	set_pte_at(mm, address, page_table, pte);
1699	page_add_anon_rmap(page, vma, address);
1700
1701	swap_free(entry);
1702	if (vm_swap_full())
1703		remove_exclusive_swap_page(page);
1704	unlock_page(page);
1705
1706	if (write_access) {
1707		if (do_wp_page(mm, vma, address,
1708				page_table, pmd, pte) == VM_FAULT_OOM)
1709			ret = VM_FAULT_OOM;
1710		goto out;
1711	}
1712
1713	/* No need to invalidate - it was non-present before */
1714	update_mmu_cache(vma, address, pte);
1715	lazy_mmu_prot_update(pte);
1716	pte_unmap(page_table);
1717	spin_unlock(&mm->page_table_lock);
1718out:
1719	return ret;
1720out_nomap:
1721	pte_unmap(page_table);
1722	spin_unlock(&mm->page_table_lock);
1723	unlock_page(page);
1724	page_cache_release(page);
1725	goto out;
1726}
1727
1728/*
1729 * We are called with the MM semaphore and page_table_lock
1730 * spinlock held to protect against concurrent faults in
1731 * multithreaded programs.
1732 */
1733static int
1734do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1735		pte_t *page_table, pmd_t *pmd, int write_access,
1736		unsigned long addr)
1737{
1738	pte_t entry;
1739	struct page * page = ZERO_PAGE(addr);
1740
1741	/* Read-only mapping of ZERO_PAGE. */
1742	entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1743
1744	/* ..except if it's a write access */
1745	if (write_access) {
1746		/* Allocate our own private page. */
1747		pte_unmap(page_table);
1748		spin_unlock(&mm->page_table_lock);
1749
1750		if (unlikely(anon_vma_prepare(vma)))
1751			goto no_mem;
1752		page = alloc_zeroed_user_highpage(vma, addr);
1753		if (!page)
1754			goto no_mem;
1755
1756		spin_lock(&mm->page_table_lock);
1757		page_table = pte_offset_map(pmd, addr);
1758
1759		if (!pte_none(*page_table)) {
1760			pte_unmap(page_table);
1761			page_cache_release(page);
1762			spin_unlock(&mm->page_table_lock);
1763			goto out;
1764		}
1765		inc_mm_counter(mm, rss);
1766		entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1767							 vma->vm_page_prot)),
1768				      vma);
1769		lru_cache_add_active(page);
1770		SetPageReferenced(page);
1771		page_add_anon_rmap(page, vma, addr);
1772	}
1773
1774	set_pte_at(mm, addr, page_table, entry);
1775	pte_unmap(page_table);
1776
1777	/* No need to invalidate - it was non-present before */
1778	update_mmu_cache(vma, addr, entry);
1779	lazy_mmu_prot_update(entry);
1780	spin_unlock(&mm->page_table_lock);
1781out:
1782	return VM_FAULT_MINOR;
1783no_mem:
1784	return VM_FAULT_OOM;
1785}
1786
1787/*
1788 * do_no_page() tries to create a new page mapping. It aggressively
1789 * tries to share with existing pages, but makes a separate copy if
1790 * the "write_access" parameter is true in order to avoid the next
1791 * page fault.
1792 *
1793 * As this is called only for pages that do not currently exist, we
1794 * do not need to flush old virtual caches or the TLB.
1795 *
1796 * This is called with the MM semaphore held and the page table
1797 * spinlock held. Exit with the spinlock released.
1798 */
1799static int
1800do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1801	unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1802{
1803	struct page * new_page;
1804	struct address_space *mapping = NULL;
1805	pte_t entry;
1806	unsigned int sequence = 0;
1807	int ret = VM_FAULT_MINOR;
1808	int anon = 0;
1809
1810	if (!vma->vm_ops || !vma->vm_ops->nopage)
1811		return do_anonymous_page(mm, vma, page_table,
1812					pmd, write_access, address);
1813	pte_unmap(page_table);
1814	spin_unlock(&mm->page_table_lock);
1815
1816	if (vma->vm_file) {
1817		mapping = vma->vm_file->f_mapping;
1818		sequence = mapping->truncate_count;
1819		smp_rmb(); /* serializes i_size against truncate_count */
1820	}
1821retry:
1822	cond_resched();
1823	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1824	/*
1825	 * No smp_rmb is needed here as long as there's a full
1826	 * spin_lock/unlock sequence inside the ->nopage callback
1827	 * (for the pagecache lookup) that acts as an implicit
1828	 * smp_mb() and prevents the i_size read to happen
1829	 * after the next truncate_count read.
1830	 */
1831
1832	/* no page was available -- either SIGBUS or OOM */
1833	if (new_page == NOPAGE_SIGBUS)
1834		return VM_FAULT_SIGBUS;
1835	if (new_page == NOPAGE_OOM)
1836		return VM_FAULT_OOM;
1837
1838	/*
1839	 * Should we do an early C-O-W break?
1840	 */
1841	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1842		struct page *page;
1843
1844		if (unlikely(anon_vma_prepare(vma)))
1845			goto oom;
1846		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1847		if (!page)
1848			goto oom;
1849		copy_user_highpage(page, new_page, address);
1850		page_cache_release(new_page);
1851		new_page = page;
1852		anon = 1;
1853	}
1854
1855	spin_lock(&mm->page_table_lock);
1856	/*
1857	 * For a file-backed vma, someone could have truncated or otherwise
1858	 * invalidated this page.  If unmap_mapping_range got called,
1859	 * retry getting the page.
1860	 */
1861	if (mapping && unlikely(sequence != mapping->truncate_count)) {
1862		sequence = mapping->truncate_count;
1863		spin_unlock(&mm->page_table_lock);
1864		page_cache_release(new_page);
1865		goto retry;
1866	}
1867	page_table = pte_offset_map(pmd, address);
1868
1869	/*
1870	 * This silly early PAGE_DIRTY setting removes a race
1871	 * due to the bad i386 page protection. But it's valid
1872	 * for other architectures too.
1873	 *
1874	 * Note that if write_access is true, we either now have
1875	 * an exclusive copy of the page, or this is a shared mapping,
1876	 * so we can make it writable and dirty to avoid having to
1877	 * handle that later.
1878	 */
1879	/* Only go through if we didn't race with anybody else... */
1880	if (pte_none(*page_table)) {
1881		if (!PageReserved(new_page))
1882			inc_mm_counter(mm, rss);
1883
1884		flush_icache_page(vma, new_page);
1885		entry = mk_pte(new_page, vma->vm_page_prot);
1886		if (write_access)
1887			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1888		set_pte_at(mm, address, page_table, entry);
1889		if (anon) {
1890			lru_cache_add_active(new_page);
1891			page_add_anon_rmap(new_page, vma, address);
1892		} else
1893			page_add_file_rmap(new_page);
1894		pte_unmap(page_table);
1895	} else {
1896		/* One of our sibling threads was faster, back out. */
1897		pte_unmap(page_table);
1898		page_cache_release(new_page);
1899		spin_unlock(&mm->page_table_lock);
1900		goto out;
1901	}
1902
1903	/* no need to invalidate: a not-present page shouldn't be cached */
1904	update_mmu_cache(vma, address, entry);
1905	lazy_mmu_prot_update(entry);
1906	spin_unlock(&mm->page_table_lock);
1907out:
1908	return ret;
1909oom:
1910	page_cache_release(new_page);
1911	ret = VM_FAULT_OOM;
1912	goto out;
1913}
1914
1915/*
1916 * Fault of a previously existing named mapping. Repopulate the pte
1917 * from the encoded file_pte if possible. This enables swappable
1918 * nonlinear vmas.
1919 */
1920static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1921	unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1922{
1923	unsigned long pgoff;
1924	int err;
1925
1926	BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1927	/*
1928	 * Fall back to the linear mapping if the fs does not support
1929	 * ->populate:
1930	 */
1931	if (!vma->vm_ops || !vma->vm_ops->populate ||
1932			(write_access && !(vma->vm_flags & VM_SHARED))) {
1933		pte_clear(mm, address, pte);
1934		return do_no_page(mm, vma, address, write_access, pte, pmd);
1935	}
1936
1937	pgoff = pte_to_pgoff(*pte);
1938
1939	pte_unmap(pte);
1940	spin_unlock(&mm->page_table_lock);
1941
1942	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1943	if (err == -ENOMEM)
1944		return VM_FAULT_OOM;
1945	if (err)
1946		return VM_FAULT_SIGBUS;
1947	return VM_FAULT_MAJOR;
1948}
1949
1950/*
1951 * These routines also need to handle stuff like marking pages dirty
1952 * and/or accessed for architectures that don't do it in hardware (most
1953 * RISC architectures).  The early dirtying is also good on the i386.
1954 *
1955 * There is also a hook called "update_mmu_cache()" that architectures
1956 * with external mmu caches can use to update those (ie the Sparc or
1957 * PowerPC hashed page tables that act as extended TLBs).
1958 *
1959 * Note the "page_table_lock". It is to protect against kswapd removing
1960 * pages from under us. Note that kswapd only ever _removes_ pages, never
1961 * adds them. As such, once we have noticed that the page is not present,
1962 * we can drop the lock early.
1963 *
1964 * The adding of pages is protected by the MM semaphore (which we hold),
1965 * so we don't need to worry about a page being suddenly been added into
1966 * our VM.
1967 *
1968 * We enter with the pagetable spinlock held, we are supposed to
1969 * release it when done.
1970 */
1971static inline int handle_pte_fault(struct mm_struct *mm,
1972	struct vm_area_struct * vma, unsigned long address,
1973	int write_access, pte_t *pte, pmd_t *pmd)
1974{
1975	pte_t entry;
1976
1977	entry = *pte;
1978	if (!pte_present(entry)) {
1979		/*
1980		 * If it truly wasn't present, we know that kswapd
1981		 * and the PTE updates will not touch it later. So
1982		 * drop the lock.
1983		 */
1984		if (pte_none(entry))
1985			return do_no_page(mm, vma, address, write_access, pte, pmd);
1986		if (pte_file(entry))
1987			return do_file_page(mm, vma, address, write_access, pte, pmd);
1988		return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1989	}
1990
1991	if (write_access) {
1992		if (!pte_write(entry))
1993			return do_wp_page(mm, vma, address, pte, pmd, entry);
1994
1995		entry = pte_mkdirty(entry);
1996	}
1997	entry = pte_mkyoung(entry);
1998	ptep_set_access_flags(vma, address, pte, entry, write_access);
1999	update_mmu_cache(vma, address, entry);
2000	lazy_mmu_prot_update(entry);
2001	pte_unmap(pte);
2002	spin_unlock(&mm->page_table_lock);
2003	return VM_FAULT_MINOR;
2004}
2005
2006/*
2007 * By the time we get here, we already hold the mm semaphore
2008 */
2009int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2010		unsigned long address, int write_access)
2011{
2012	pgd_t *pgd;
2013	pud_t *pud;
2014	pmd_t *pmd;
2015	pte_t *pte;
2016
2017	__set_current_state(TASK_RUNNING);
2018
2019	inc_page_state(pgfault);
2020
2021	if (is_vm_hugetlb_page(vma))
2022		return VM_FAULT_SIGBUS;	/* mapping truncation does this. */
2023
2024	/*
2025	 * We need the page table lock to synchronize with kswapd
2026	 * and the SMP-safe atomic PTE updates.
2027	 */
2028	pgd = pgd_offset(mm, address);
2029	spin_lock(&mm->page_table_lock);
2030
2031	pud = pud_alloc(mm, pgd, address);
2032	if (!pud)
2033		goto oom;
2034
2035	pmd = pmd_alloc(mm, pud, address);
2036	if (!pmd)
2037		goto oom;
2038
2039	pte = pte_alloc_map(mm, pmd, address);
2040	if (!pte)
2041		goto oom;
2042
2043	return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2044
2045 oom:
2046	spin_unlock(&mm->page_table_lock);
2047	return VM_FAULT_OOM;
2048}
2049
2050#ifndef __PAGETABLE_PUD_FOLDED
2051/*
2052 * Allocate page upper directory.
2053 *
2054 * We've already handled the fast-path in-line, and we own the
2055 * page table lock.
2056 */
2057pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2058{
2059	pud_t *new;
2060
2061	spin_unlock(&mm->page_table_lock);
2062	new = pud_alloc_one(mm, address);
2063	spin_lock(&mm->page_table_lock);
2064	if (!new)
2065		return NULL;
2066
2067	/*
2068	 * Because we dropped the lock, we should re-check the
2069	 * entry, as somebody else could have populated it..
2070	 */
2071	if (pgd_present(*pgd)) {
2072		pud_free(new);
2073		goto out;
2074	}
2075	pgd_populate(mm, pgd, new);
2076 out:
2077	return pud_offset(pgd, address);
2078}
2079#endif /* __PAGETABLE_PUD_FOLDED */
2080
2081#ifndef __PAGETABLE_PMD_FOLDED
2082/*
2083 * Allocate page middle directory.
2084 *
2085 * We've already handled the fast-path in-line, and we own the
2086 * page table lock.
2087 */
2088pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2089{
2090	pmd_t *new;
2091
2092	spin_unlock(&mm->page_table_lock);
2093	new = pmd_alloc_one(mm, address);
2094	spin_lock(&mm->page_table_lock);
2095	if (!new)
2096		return NULL;
2097
2098	/*
2099	 * Because we dropped the lock, we should re-check the
2100	 * entry, as somebody else could have populated it..
2101	 */
2102#ifndef __ARCH_HAS_4LEVEL_HACK
2103	if (pud_present(*pud)) {
2104		pmd_free(new);
2105		goto out;
2106	}
2107	pud_populate(mm, pud, new);
2108#else
2109	if (pgd_present(*pud)) {
2110		pmd_free(new);
2111		goto out;
2112	}
2113	pgd_populate(mm, pud, new);
2114#endif /* __ARCH_HAS_4LEVEL_HACK */
2115
2116 out:
2117	return pmd_offset(pud, address);
2118}
2119#endif /* __PAGETABLE_PMD_FOLDED */
2120
2121int make_pages_present(unsigned long addr, unsigned long end)
2122{
2123	int ret, len, write;
2124	struct vm_area_struct * vma;
2125
2126	vma = find_vma(current->mm, addr);
2127	if (!vma)
2128		return -1;
2129	write = (vma->vm_flags & VM_WRITE) != 0;
2130	if (addr >= end)
2131		BUG();
2132	if (end > vma->vm_end)
2133		BUG();
2134	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2135	ret = get_user_pages(current, current->mm, addr,
2136			len, write, 0, NULL, NULL);
2137	if (ret < 0)
2138		return ret;
2139	return ret == len ? 0 : -1;
2140}
2141
2142/*
2143 * Map a vmalloc()-space virtual address to the physical page.
2144 */
2145struct page * vmalloc_to_page(void * vmalloc_addr)
2146{
2147	unsigned long addr = (unsigned long) vmalloc_addr;
2148	struct page *page = NULL;
2149	pgd_t *pgd = pgd_offset_k(addr);
2150	pud_t *pud;
2151	pmd_t *pmd;
2152	pte_t *ptep, pte;
2153
2154	if (!pgd_none(*pgd)) {
2155		pud = pud_offset(pgd, addr);
2156		if (!pud_none(*pud)) {
2157			pmd = pmd_offset(pud, addr);
2158			if (!pmd_none(*pmd)) {
2159				ptep = pte_offset_map(pmd, addr);
2160				pte = *ptep;
2161				if (pte_present(pte))
2162					page = pte_page(pte);
2163				pte_unmap(ptep);
2164			}
2165		}
2166	}
2167	return page;
2168}
2169
2170EXPORT_SYMBOL(vmalloc_to_page);
2171
2172/*
2173 * Map a vmalloc()-space virtual address to the physical page frame number.
2174 */
2175unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2176{
2177	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2178}
2179
2180EXPORT_SYMBOL(vmalloc_to_pfn);
2181
2182/*
2183 * update_mem_hiwater
2184 *	- update per process rss and vm high water data
2185 */
2186void update_mem_hiwater(struct task_struct *tsk)
2187{
2188	if (tsk->mm) {
2189		unsigned long rss = get_mm_counter(tsk->mm, rss);
2190
2191		if (tsk->mm->hiwater_rss < rss)
2192			tsk->mm->hiwater_rss = rss;
2193		if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2194			tsk->mm->hiwater_vm = tsk->mm->total_vm;
2195	}
2196}
2197
2198#if !defined(__HAVE_ARCH_GATE_AREA)
2199
2200#if defined(AT_SYSINFO_EHDR)
2201struct vm_area_struct gate_vma;
2202
2203static int __init gate_vma_init(void)
2204{
2205	gate_vma.vm_mm = NULL;
2206	gate_vma.vm_start = FIXADDR_USER_START;
2207	gate_vma.vm_end = FIXADDR_USER_END;
2208	gate_vma.vm_page_prot = PAGE_READONLY;
2209	gate_vma.vm_flags = 0;
2210	return 0;
2211}
2212__initcall(gate_vma_init);
2213#endif
2214
2215struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2216{
2217#ifdef AT_SYSINFO_EHDR
2218	return &gate_vma;
2219#else
2220	return NULL;
2221#endif
2222}
2223
2224int in_gate_area_no_task(unsigned long addr)
2225{
2226#ifdef AT_SYSINFO_EHDR
2227	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2228		return 1;
2229#endif
2230	return 0;
2231}
2232
2233#endif	/* __HAVE_ARCH_GATE_AREA */
2234