memory.c revision daa88c8d214ca4ab2f1764b6e503cef4b3cde9b2
1/*
2 *  linux/mm/memory.c
3 *
4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27 *		Found it. Everything seems to work now.
28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94  -  Multi-page memory management added for v1.1.
33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 *		(Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/delayacct.h>
51#include <linux/init.h>
52#include <linux/writeback.h>
53
54#include <asm/pgalloc.h>
55#include <asm/uaccess.h>
56#include <asm/tlb.h>
57#include <asm/tlbflush.h>
58#include <asm/pgtable.h>
59
60#include <linux/swapops.h>
61#include <linux/elf.h>
62
63#ifndef CONFIG_NEED_MULTIPLE_NODES
64/* use the per-pgdat data instead for discontigmem - mbligh */
65unsigned long max_mapnr;
66struct page *mem_map;
67
68EXPORT_SYMBOL(max_mapnr);
69EXPORT_SYMBOL(mem_map);
70#endif
71
72unsigned long num_physpages;
73/*
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
79 */
80void * high_memory;
81unsigned long vmalloc_earlyreserve;
82
83EXPORT_SYMBOL(num_physpages);
84EXPORT_SYMBOL(high_memory);
85EXPORT_SYMBOL(vmalloc_earlyreserve);
86
87int randomize_va_space __read_mostly = 1;
88
89static int __init disable_randmaps(char *s)
90{
91	randomize_va_space = 0;
92	return 1;
93}
94__setup("norandmaps", disable_randmaps);
95
96
97/*
98 * If a p?d_bad entry is found while walking page tables, report
99 * the error, before resetting entry to p?d_none.  Usually (but
100 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 */
102
103void pgd_clear_bad(pgd_t *pgd)
104{
105	pgd_ERROR(*pgd);
106	pgd_clear(pgd);
107}
108
109void pud_clear_bad(pud_t *pud)
110{
111	pud_ERROR(*pud);
112	pud_clear(pud);
113}
114
115void pmd_clear_bad(pmd_t *pmd)
116{
117	pmd_ERROR(*pmd);
118	pmd_clear(pmd);
119}
120
121/*
122 * Note: this doesn't free the actual pages themselves. That
123 * has been handled earlier when unmapping all the memory regions.
124 */
125static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
126{
127	struct page *page = pmd_page(*pmd);
128	pmd_clear(pmd);
129	pte_lock_deinit(page);
130	pte_free_tlb(tlb, page);
131	dec_zone_page_state(page, NR_PAGETABLE);
132	tlb->mm->nr_ptes--;
133}
134
135static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
136				unsigned long addr, unsigned long end,
137				unsigned long floor, unsigned long ceiling)
138{
139	pmd_t *pmd;
140	unsigned long next;
141	unsigned long start;
142
143	start = addr;
144	pmd = pmd_offset(pud, addr);
145	do {
146		next = pmd_addr_end(addr, end);
147		if (pmd_none_or_clear_bad(pmd))
148			continue;
149		free_pte_range(tlb, pmd);
150	} while (pmd++, addr = next, addr != end);
151
152	start &= PUD_MASK;
153	if (start < floor)
154		return;
155	if (ceiling) {
156		ceiling &= PUD_MASK;
157		if (!ceiling)
158			return;
159	}
160	if (end - 1 > ceiling - 1)
161		return;
162
163	pmd = pmd_offset(pud, start);
164	pud_clear(pud);
165	pmd_free_tlb(tlb, pmd);
166}
167
168static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
169				unsigned long addr, unsigned long end,
170				unsigned long floor, unsigned long ceiling)
171{
172	pud_t *pud;
173	unsigned long next;
174	unsigned long start;
175
176	start = addr;
177	pud = pud_offset(pgd, addr);
178	do {
179		next = pud_addr_end(addr, end);
180		if (pud_none_or_clear_bad(pud))
181			continue;
182		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
183	} while (pud++, addr = next, addr != end);
184
185	start &= PGDIR_MASK;
186	if (start < floor)
187		return;
188	if (ceiling) {
189		ceiling &= PGDIR_MASK;
190		if (!ceiling)
191			return;
192	}
193	if (end - 1 > ceiling - 1)
194		return;
195
196	pud = pud_offset(pgd, start);
197	pgd_clear(pgd);
198	pud_free_tlb(tlb, pud);
199}
200
201/*
202 * This function frees user-level page tables of a process.
203 *
204 * Must be called with pagetable lock held.
205 */
206void free_pgd_range(struct mmu_gather **tlb,
207			unsigned long addr, unsigned long end,
208			unsigned long floor, unsigned long ceiling)
209{
210	pgd_t *pgd;
211	unsigned long next;
212	unsigned long start;
213
214	/*
215	 * The next few lines have given us lots of grief...
216	 *
217	 * Why are we testing PMD* at this top level?  Because often
218	 * there will be no work to do at all, and we'd prefer not to
219	 * go all the way down to the bottom just to discover that.
220	 *
221	 * Why all these "- 1"s?  Because 0 represents both the bottom
222	 * of the address space and the top of it (using -1 for the
223	 * top wouldn't help much: the masks would do the wrong thing).
224	 * The rule is that addr 0 and floor 0 refer to the bottom of
225	 * the address space, but end 0 and ceiling 0 refer to the top
226	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
227	 * that end 0 case should be mythical).
228	 *
229	 * Wherever addr is brought up or ceiling brought down, we must
230	 * be careful to reject "the opposite 0" before it confuses the
231	 * subsequent tests.  But what about where end is brought down
232	 * by PMD_SIZE below? no, end can't go down to 0 there.
233	 *
234	 * Whereas we round start (addr) and ceiling down, by different
235	 * masks at different levels, in order to test whether a table
236	 * now has no other vmas using it, so can be freed, we don't
237	 * bother to round floor or end up - the tests don't need that.
238	 */
239
240	addr &= PMD_MASK;
241	if (addr < floor) {
242		addr += PMD_SIZE;
243		if (!addr)
244			return;
245	}
246	if (ceiling) {
247		ceiling &= PMD_MASK;
248		if (!ceiling)
249			return;
250	}
251	if (end - 1 > ceiling - 1)
252		end -= PMD_SIZE;
253	if (addr > end - 1)
254		return;
255
256	start = addr;
257	pgd = pgd_offset((*tlb)->mm, addr);
258	do {
259		next = pgd_addr_end(addr, end);
260		if (pgd_none_or_clear_bad(pgd))
261			continue;
262		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
263	} while (pgd++, addr = next, addr != end);
264
265	if (!(*tlb)->fullmm)
266		flush_tlb_pgtables((*tlb)->mm, start, end);
267}
268
269void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
270		unsigned long floor, unsigned long ceiling)
271{
272	while (vma) {
273		struct vm_area_struct *next = vma->vm_next;
274		unsigned long addr = vma->vm_start;
275
276		/*
277		 * Hide vma from rmap and vmtruncate before freeing pgtables
278		 */
279		anon_vma_unlink(vma);
280		unlink_file_vma(vma);
281
282		if (is_vm_hugetlb_page(vma)) {
283			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
284				floor, next? next->vm_start: ceiling);
285		} else {
286			/*
287			 * Optimization: gather nearby vmas into one call down
288			 */
289			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
290			       && !is_vm_hugetlb_page(next)) {
291				vma = next;
292				next = vma->vm_next;
293				anon_vma_unlink(vma);
294				unlink_file_vma(vma);
295			}
296			free_pgd_range(tlb, addr, vma->vm_end,
297				floor, next? next->vm_start: ceiling);
298		}
299		vma = next;
300	}
301}
302
303int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
304{
305	struct page *new = pte_alloc_one(mm, address);
306	if (!new)
307		return -ENOMEM;
308
309	pte_lock_init(new);
310	spin_lock(&mm->page_table_lock);
311	if (pmd_present(*pmd)) {	/* Another has populated it */
312		pte_lock_deinit(new);
313		pte_free(new);
314	} else {
315		mm->nr_ptes++;
316		inc_zone_page_state(new, NR_PAGETABLE);
317		pmd_populate(mm, pmd, new);
318	}
319	spin_unlock(&mm->page_table_lock);
320	return 0;
321}
322
323int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
324{
325	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
326	if (!new)
327		return -ENOMEM;
328
329	spin_lock(&init_mm.page_table_lock);
330	if (pmd_present(*pmd))		/* Another has populated it */
331		pte_free_kernel(new);
332	else
333		pmd_populate_kernel(&init_mm, pmd, new);
334	spin_unlock(&init_mm.page_table_lock);
335	return 0;
336}
337
338static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
339{
340	if (file_rss)
341		add_mm_counter(mm, file_rss, file_rss);
342	if (anon_rss)
343		add_mm_counter(mm, anon_rss, anon_rss);
344}
345
346/*
347 * This function is called to print an error when a bad pte
348 * is found. For example, we might have a PFN-mapped pte in
349 * a region that doesn't allow it.
350 *
351 * The calling function must still handle the error.
352 */
353void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
354{
355	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
356			"vm_flags = %lx, vaddr = %lx\n",
357		(long long)pte_val(pte),
358		(vma->vm_mm == current->mm ? current->comm : "???"),
359		vma->vm_flags, vaddr);
360	dump_stack();
361}
362
363static inline int is_cow_mapping(unsigned int flags)
364{
365	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
366}
367
368/*
369 * This function gets the "struct page" associated with a pte.
370 *
371 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
372 * will have each page table entry just pointing to a raw page frame
373 * number, and as far as the VM layer is concerned, those do not have
374 * pages associated with them - even if the PFN might point to memory
375 * that otherwise is perfectly fine and has a "struct page".
376 *
377 * The way we recognize those mappings is through the rules set up
378 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
379 * and the vm_pgoff will point to the first PFN mapped: thus every
380 * page that is a raw mapping will always honor the rule
381 *
382 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
383 *
384 * and if that isn't true, the page has been COW'ed (in which case it
385 * _does_ have a "struct page" associated with it even if it is in a
386 * VM_PFNMAP range).
387 */
388struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
389{
390	unsigned long pfn = pte_pfn(pte);
391
392	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
393		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
394		if (pfn == vma->vm_pgoff + off)
395			return NULL;
396		if (!is_cow_mapping(vma->vm_flags))
397			return NULL;
398	}
399
400	/*
401	 * Add some anal sanity checks for now. Eventually,
402	 * we should just do "return pfn_to_page(pfn)", but
403	 * in the meantime we check that we get a valid pfn,
404	 * and that the resulting page looks ok.
405	 */
406	if (unlikely(!pfn_valid(pfn))) {
407		print_bad_pte(vma, pte, addr);
408		return NULL;
409	}
410
411	/*
412	 * NOTE! We still have PageReserved() pages in the page
413	 * tables.
414	 *
415	 * The PAGE_ZERO() pages and various VDSO mappings can
416	 * cause them to exist.
417	 */
418	return pfn_to_page(pfn);
419}
420
421/*
422 * copy one vm_area from one task to the other. Assumes the page tables
423 * already present in the new task to be cleared in the whole range
424 * covered by this vma.
425 */
426
427static inline void
428copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
429		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
430		unsigned long addr, int *rss)
431{
432	unsigned long vm_flags = vma->vm_flags;
433	pte_t pte = *src_pte;
434	struct page *page;
435
436	/* pte contains position in swap or file, so copy. */
437	if (unlikely(!pte_present(pte))) {
438		if (!pte_file(pte)) {
439			swp_entry_t entry = pte_to_swp_entry(pte);
440
441			swap_duplicate(entry);
442			/* make sure dst_mm is on swapoff's mmlist. */
443			if (unlikely(list_empty(&dst_mm->mmlist))) {
444				spin_lock(&mmlist_lock);
445				if (list_empty(&dst_mm->mmlist))
446					list_add(&dst_mm->mmlist,
447						 &src_mm->mmlist);
448				spin_unlock(&mmlist_lock);
449			}
450			if (is_write_migration_entry(entry) &&
451					is_cow_mapping(vm_flags)) {
452				/*
453				 * COW mappings require pages in both parent
454				 * and child to be set to read.
455				 */
456				make_migration_entry_read(&entry);
457				pte = swp_entry_to_pte(entry);
458				set_pte_at(src_mm, addr, src_pte, pte);
459			}
460		}
461		goto out_set_pte;
462	}
463
464	/*
465	 * If it's a COW mapping, write protect it both
466	 * in the parent and the child
467	 */
468	if (is_cow_mapping(vm_flags)) {
469		ptep_set_wrprotect(src_mm, addr, src_pte);
470		pte = pte_wrprotect(pte);
471	}
472
473	/*
474	 * If it's a shared mapping, mark it clean in
475	 * the child
476	 */
477	if (vm_flags & VM_SHARED)
478		pte = pte_mkclean(pte);
479	pte = pte_mkold(pte);
480
481	page = vm_normal_page(vma, addr, pte);
482	if (page) {
483		get_page(page);
484		page_dup_rmap(page);
485		rss[!!PageAnon(page)]++;
486	}
487
488out_set_pte:
489	set_pte_at(dst_mm, addr, dst_pte, pte);
490}
491
492static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
494		unsigned long addr, unsigned long end)
495{
496	pte_t *src_pte, *dst_pte;
497	spinlock_t *src_ptl, *dst_ptl;
498	int progress = 0;
499	int rss[2];
500
501again:
502	rss[1] = rss[0] = 0;
503	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
504	if (!dst_pte)
505		return -ENOMEM;
506	src_pte = pte_offset_map_nested(src_pmd, addr);
507	src_ptl = pte_lockptr(src_mm, src_pmd);
508	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
509	arch_enter_lazy_mmu_mode();
510
511	do {
512		/*
513		 * We are holding two locks at this point - either of them
514		 * could generate latencies in another task on another CPU.
515		 */
516		if (progress >= 32) {
517			progress = 0;
518			if (need_resched() ||
519			    need_lockbreak(src_ptl) ||
520			    need_lockbreak(dst_ptl))
521				break;
522		}
523		if (pte_none(*src_pte)) {
524			progress++;
525			continue;
526		}
527		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
528		progress += 8;
529	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
530
531	arch_leave_lazy_mmu_mode();
532	spin_unlock(src_ptl);
533	pte_unmap_nested(src_pte - 1);
534	add_mm_rss(dst_mm, rss[0], rss[1]);
535	pte_unmap_unlock(dst_pte - 1, dst_ptl);
536	cond_resched();
537	if (addr != end)
538		goto again;
539	return 0;
540}
541
542static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
544		unsigned long addr, unsigned long end)
545{
546	pmd_t *src_pmd, *dst_pmd;
547	unsigned long next;
548
549	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
550	if (!dst_pmd)
551		return -ENOMEM;
552	src_pmd = pmd_offset(src_pud, addr);
553	do {
554		next = pmd_addr_end(addr, end);
555		if (pmd_none_or_clear_bad(src_pmd))
556			continue;
557		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
558						vma, addr, next))
559			return -ENOMEM;
560	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
561	return 0;
562}
563
564static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
565		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
566		unsigned long addr, unsigned long end)
567{
568	pud_t *src_pud, *dst_pud;
569	unsigned long next;
570
571	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
572	if (!dst_pud)
573		return -ENOMEM;
574	src_pud = pud_offset(src_pgd, addr);
575	do {
576		next = pud_addr_end(addr, end);
577		if (pud_none_or_clear_bad(src_pud))
578			continue;
579		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
580						vma, addr, next))
581			return -ENOMEM;
582	} while (dst_pud++, src_pud++, addr = next, addr != end);
583	return 0;
584}
585
586int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
587		struct vm_area_struct *vma)
588{
589	pgd_t *src_pgd, *dst_pgd;
590	unsigned long next;
591	unsigned long addr = vma->vm_start;
592	unsigned long end = vma->vm_end;
593
594	/*
595	 * Don't copy ptes where a page fault will fill them correctly.
596	 * Fork becomes much lighter when there are big shared or private
597	 * readonly mappings. The tradeoff is that copy_page_range is more
598	 * efficient than faulting.
599	 */
600	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
601		if (!vma->anon_vma)
602			return 0;
603	}
604
605	if (is_vm_hugetlb_page(vma))
606		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
607
608	dst_pgd = pgd_offset(dst_mm, addr);
609	src_pgd = pgd_offset(src_mm, addr);
610	do {
611		next = pgd_addr_end(addr, end);
612		if (pgd_none_or_clear_bad(src_pgd))
613			continue;
614		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
615						vma, addr, next))
616			return -ENOMEM;
617	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
618	return 0;
619}
620
621static unsigned long zap_pte_range(struct mmu_gather *tlb,
622				struct vm_area_struct *vma, pmd_t *pmd,
623				unsigned long addr, unsigned long end,
624				long *zap_work, struct zap_details *details)
625{
626	struct mm_struct *mm = tlb->mm;
627	pte_t *pte;
628	spinlock_t *ptl;
629	int file_rss = 0;
630	int anon_rss = 0;
631
632	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
633	arch_enter_lazy_mmu_mode();
634	do {
635		pte_t ptent = *pte;
636		if (pte_none(ptent)) {
637			(*zap_work)--;
638			continue;
639		}
640
641		(*zap_work) -= PAGE_SIZE;
642
643		if (pte_present(ptent)) {
644			struct page *page;
645
646			page = vm_normal_page(vma, addr, ptent);
647			if (unlikely(details) && page) {
648				/*
649				 * unmap_shared_mapping_pages() wants to
650				 * invalidate cache without truncating:
651				 * unmap shared but keep private pages.
652				 */
653				if (details->check_mapping &&
654				    details->check_mapping != page->mapping)
655					continue;
656				/*
657				 * Each page->index must be checked when
658				 * invalidating or truncating nonlinear.
659				 */
660				if (details->nonlinear_vma &&
661				    (page->index < details->first_index ||
662				     page->index > details->last_index))
663					continue;
664			}
665			ptent = ptep_get_and_clear_full(mm, addr, pte,
666							tlb->fullmm);
667			tlb_remove_tlb_entry(tlb, pte, addr);
668			if (unlikely(!page))
669				continue;
670			if (unlikely(details) && details->nonlinear_vma
671			    && linear_page_index(details->nonlinear_vma,
672						addr) != page->index)
673				set_pte_at(mm, addr, pte,
674					   pgoff_to_pte(page->index));
675			if (PageAnon(page))
676				anon_rss--;
677			else {
678				if (pte_dirty(ptent))
679					set_page_dirty(page);
680				if (pte_young(ptent))
681					SetPageReferenced(page);
682				file_rss--;
683			}
684			page_remove_rmap(page, vma);
685			tlb_remove_page(tlb, page);
686			continue;
687		}
688		/*
689		 * If details->check_mapping, we leave swap entries;
690		 * if details->nonlinear_vma, we leave file entries.
691		 */
692		if (unlikely(details))
693			continue;
694		if (!pte_file(ptent))
695			free_swap_and_cache(pte_to_swp_entry(ptent));
696		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
697	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
698
699	add_mm_rss(mm, file_rss, anon_rss);
700	arch_leave_lazy_mmu_mode();
701	pte_unmap_unlock(pte - 1, ptl);
702
703	return addr;
704}
705
706static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
707				struct vm_area_struct *vma, pud_t *pud,
708				unsigned long addr, unsigned long end,
709				long *zap_work, struct zap_details *details)
710{
711	pmd_t *pmd;
712	unsigned long next;
713
714	pmd = pmd_offset(pud, addr);
715	do {
716		next = pmd_addr_end(addr, end);
717		if (pmd_none_or_clear_bad(pmd)) {
718			(*zap_work)--;
719			continue;
720		}
721		next = zap_pte_range(tlb, vma, pmd, addr, next,
722						zap_work, details);
723	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
724
725	return addr;
726}
727
728static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
729				struct vm_area_struct *vma, pgd_t *pgd,
730				unsigned long addr, unsigned long end,
731				long *zap_work, struct zap_details *details)
732{
733	pud_t *pud;
734	unsigned long next;
735
736	pud = pud_offset(pgd, addr);
737	do {
738		next = pud_addr_end(addr, end);
739		if (pud_none_or_clear_bad(pud)) {
740			(*zap_work)--;
741			continue;
742		}
743		next = zap_pmd_range(tlb, vma, pud, addr, next,
744						zap_work, details);
745	} while (pud++, addr = next, (addr != end && *zap_work > 0));
746
747	return addr;
748}
749
750static unsigned long unmap_page_range(struct mmu_gather *tlb,
751				struct vm_area_struct *vma,
752				unsigned long addr, unsigned long end,
753				long *zap_work, struct zap_details *details)
754{
755	pgd_t *pgd;
756	unsigned long next;
757
758	if (details && !details->check_mapping && !details->nonlinear_vma)
759		details = NULL;
760
761	BUG_ON(addr >= end);
762	tlb_start_vma(tlb, vma);
763	pgd = pgd_offset(vma->vm_mm, addr);
764	do {
765		next = pgd_addr_end(addr, end);
766		if (pgd_none_or_clear_bad(pgd)) {
767			(*zap_work)--;
768			continue;
769		}
770		next = zap_pud_range(tlb, vma, pgd, addr, next,
771						zap_work, details);
772	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
773	tlb_end_vma(tlb, vma);
774
775	return addr;
776}
777
778#ifdef CONFIG_PREEMPT
779# define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
780#else
781/* No preempt: go for improved straight-line efficiency */
782# define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
783#endif
784
785/**
786 * unmap_vmas - unmap a range of memory covered by a list of vma's
787 * @tlbp: address of the caller's struct mmu_gather
788 * @vma: the starting vma
789 * @start_addr: virtual address at which to start unmapping
790 * @end_addr: virtual address at which to end unmapping
791 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
792 * @details: details of nonlinear truncation or shared cache invalidation
793 *
794 * Returns the end address of the unmapping (restart addr if interrupted).
795 *
796 * Unmap all pages in the vma list.
797 *
798 * We aim to not hold locks for too long (for scheduling latency reasons).
799 * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
800 * return the ending mmu_gather to the caller.
801 *
802 * Only addresses between `start' and `end' will be unmapped.
803 *
804 * The VMA list must be sorted in ascending virtual address order.
805 *
806 * unmap_vmas() assumes that the caller will flush the whole unmapped address
807 * range after unmap_vmas() returns.  So the only responsibility here is to
808 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
809 * drops the lock and schedules.
810 */
811unsigned long unmap_vmas(struct mmu_gather **tlbp,
812		struct vm_area_struct *vma, unsigned long start_addr,
813		unsigned long end_addr, unsigned long *nr_accounted,
814		struct zap_details *details)
815{
816	long zap_work = ZAP_BLOCK_SIZE;
817	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
818	int tlb_start_valid = 0;
819	unsigned long start = start_addr;
820	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
821	int fullmm = (*tlbp)->fullmm;
822
823	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
824		unsigned long end;
825
826		start = max(vma->vm_start, start_addr);
827		if (start >= vma->vm_end)
828			continue;
829		end = min(vma->vm_end, end_addr);
830		if (end <= vma->vm_start)
831			continue;
832
833		if (vma->vm_flags & VM_ACCOUNT)
834			*nr_accounted += (end - start) >> PAGE_SHIFT;
835
836		while (start != end) {
837			if (!tlb_start_valid) {
838				tlb_start = start;
839				tlb_start_valid = 1;
840			}
841
842			if (unlikely(is_vm_hugetlb_page(vma))) {
843				unmap_hugepage_range(vma, start, end);
844				zap_work -= (end - start) /
845						(HPAGE_SIZE / PAGE_SIZE);
846				start = end;
847			} else
848				start = unmap_page_range(*tlbp, vma,
849						start, end, &zap_work, details);
850
851			if (zap_work > 0) {
852				BUG_ON(start != end);
853				break;
854			}
855
856			tlb_finish_mmu(*tlbp, tlb_start, start);
857
858			if (need_resched() ||
859				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
860				if (i_mmap_lock) {
861					*tlbp = NULL;
862					goto out;
863				}
864				cond_resched();
865			}
866
867			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
868			tlb_start_valid = 0;
869			zap_work = ZAP_BLOCK_SIZE;
870		}
871	}
872out:
873	return start;	/* which is now the end (or restart) address */
874}
875
876/**
877 * zap_page_range - remove user pages in a given range
878 * @vma: vm_area_struct holding the applicable pages
879 * @address: starting address of pages to zap
880 * @size: number of bytes to zap
881 * @details: details of nonlinear truncation or shared cache invalidation
882 */
883unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
884		unsigned long size, struct zap_details *details)
885{
886	struct mm_struct *mm = vma->vm_mm;
887	struct mmu_gather *tlb;
888	unsigned long end = address + size;
889	unsigned long nr_accounted = 0;
890
891	lru_add_drain();
892	tlb = tlb_gather_mmu(mm, 0);
893	update_hiwater_rss(mm);
894	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
895	if (tlb)
896		tlb_finish_mmu(tlb, address, end);
897	return end;
898}
899
900/*
901 * Do a quick page-table lookup for a single page.
902 */
903struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
904			unsigned int flags)
905{
906	pgd_t *pgd;
907	pud_t *pud;
908	pmd_t *pmd;
909	pte_t *ptep, pte;
910	spinlock_t *ptl;
911	struct page *page;
912	struct mm_struct *mm = vma->vm_mm;
913
914	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
915	if (!IS_ERR(page)) {
916		BUG_ON(flags & FOLL_GET);
917		goto out;
918	}
919
920	page = NULL;
921	pgd = pgd_offset(mm, address);
922	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
923		goto no_page_table;
924
925	pud = pud_offset(pgd, address);
926	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
927		goto no_page_table;
928
929	pmd = pmd_offset(pud, address);
930	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
931		goto no_page_table;
932
933	if (pmd_huge(*pmd)) {
934		BUG_ON(flags & FOLL_GET);
935		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
936		goto out;
937	}
938
939	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
940	if (!ptep)
941		goto out;
942
943	pte = *ptep;
944	if (!pte_present(pte))
945		goto unlock;
946	if ((flags & FOLL_WRITE) && !pte_write(pte))
947		goto unlock;
948	page = vm_normal_page(vma, address, pte);
949	if (unlikely(!page))
950		goto unlock;
951
952	if (flags & FOLL_GET)
953		get_page(page);
954	if (flags & FOLL_TOUCH) {
955		if ((flags & FOLL_WRITE) &&
956		    !pte_dirty(pte) && !PageDirty(page))
957			set_page_dirty(page);
958		mark_page_accessed(page);
959	}
960unlock:
961	pte_unmap_unlock(ptep, ptl);
962out:
963	return page;
964
965no_page_table:
966	/*
967	 * When core dumping an enormous anonymous area that nobody
968	 * has touched so far, we don't want to allocate page tables.
969	 */
970	if (flags & FOLL_ANON) {
971		page = ZERO_PAGE(address);
972		if (flags & FOLL_GET)
973			get_page(page);
974		BUG_ON(flags & FOLL_WRITE);
975	}
976	return page;
977}
978
979int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
980		unsigned long start, int len, int write, int force,
981		struct page **pages, struct vm_area_struct **vmas)
982{
983	int i;
984	unsigned int vm_flags;
985
986	/*
987	 * Require read or write permissions.
988	 * If 'force' is set, we only require the "MAY" flags.
989	 */
990	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
991	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
992	i = 0;
993
994	do {
995		struct vm_area_struct *vma;
996		unsigned int foll_flags;
997
998		vma = find_extend_vma(mm, start);
999		if (!vma && in_gate_area(tsk, start)) {
1000			unsigned long pg = start & PAGE_MASK;
1001			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1002			pgd_t *pgd;
1003			pud_t *pud;
1004			pmd_t *pmd;
1005			pte_t *pte;
1006			if (write) /* user gate pages are read-only */
1007				return i ? : -EFAULT;
1008			if (pg > TASK_SIZE)
1009				pgd = pgd_offset_k(pg);
1010			else
1011				pgd = pgd_offset_gate(mm, pg);
1012			BUG_ON(pgd_none(*pgd));
1013			pud = pud_offset(pgd, pg);
1014			BUG_ON(pud_none(*pud));
1015			pmd = pmd_offset(pud, pg);
1016			if (pmd_none(*pmd))
1017				return i ? : -EFAULT;
1018			pte = pte_offset_map(pmd, pg);
1019			if (pte_none(*pte)) {
1020				pte_unmap(pte);
1021				return i ? : -EFAULT;
1022			}
1023			if (pages) {
1024				struct page *page = vm_normal_page(gate_vma, start, *pte);
1025				pages[i] = page;
1026				if (page)
1027					get_page(page);
1028			}
1029			pte_unmap(pte);
1030			if (vmas)
1031				vmas[i] = gate_vma;
1032			i++;
1033			start += PAGE_SIZE;
1034			len--;
1035			continue;
1036		}
1037
1038		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1039				|| !(vm_flags & vma->vm_flags))
1040			return i ? : -EFAULT;
1041
1042		if (is_vm_hugetlb_page(vma)) {
1043			i = follow_hugetlb_page(mm, vma, pages, vmas,
1044						&start, &len, i);
1045			continue;
1046		}
1047
1048		foll_flags = FOLL_TOUCH;
1049		if (pages)
1050			foll_flags |= FOLL_GET;
1051		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1052		    (!vma->vm_ops || !vma->vm_ops->nopage))
1053			foll_flags |= FOLL_ANON;
1054
1055		do {
1056			struct page *page;
1057
1058			if (write)
1059				foll_flags |= FOLL_WRITE;
1060
1061			cond_resched();
1062			while (!(page = follow_page(vma, start, foll_flags))) {
1063				int ret;
1064				ret = __handle_mm_fault(mm, vma, start,
1065						foll_flags & FOLL_WRITE);
1066				/*
1067				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1068				 * broken COW when necessary, even if maybe_mkwrite
1069				 * decided not to set pte_write. We can thus safely do
1070				 * subsequent page lookups as if they were reads.
1071				 */
1072				if (ret & VM_FAULT_WRITE)
1073					foll_flags &= ~FOLL_WRITE;
1074
1075				switch (ret & ~VM_FAULT_WRITE) {
1076				case VM_FAULT_MINOR:
1077					tsk->min_flt++;
1078					break;
1079				case VM_FAULT_MAJOR:
1080					tsk->maj_flt++;
1081					break;
1082				case VM_FAULT_SIGBUS:
1083					return i ? i : -EFAULT;
1084				case VM_FAULT_OOM:
1085					return i ? i : -ENOMEM;
1086				default:
1087					BUG();
1088				}
1089				cond_resched();
1090			}
1091			if (pages) {
1092				pages[i] = page;
1093
1094				flush_anon_page(vma, page, start);
1095				flush_dcache_page(page);
1096			}
1097			if (vmas)
1098				vmas[i] = vma;
1099			i++;
1100			start += PAGE_SIZE;
1101			len--;
1102		} while (len && start < vma->vm_end);
1103	} while (len);
1104	return i;
1105}
1106EXPORT_SYMBOL(get_user_pages);
1107
1108static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1109			unsigned long addr, unsigned long end, pgprot_t prot)
1110{
1111	pte_t *pte;
1112	spinlock_t *ptl;
1113	int err = 0;
1114
1115	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1116	if (!pte)
1117		return -EAGAIN;
1118	arch_enter_lazy_mmu_mode();
1119	do {
1120		struct page *page = ZERO_PAGE(addr);
1121		pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1122
1123		if (unlikely(!pte_none(*pte))) {
1124			err = -EEXIST;
1125			pte++;
1126			break;
1127		}
1128		page_cache_get(page);
1129		page_add_file_rmap(page);
1130		inc_mm_counter(mm, file_rss);
1131		set_pte_at(mm, addr, pte, zero_pte);
1132	} while (pte++, addr += PAGE_SIZE, addr != end);
1133	arch_leave_lazy_mmu_mode();
1134	pte_unmap_unlock(pte - 1, ptl);
1135	return err;
1136}
1137
1138static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1139			unsigned long addr, unsigned long end, pgprot_t prot)
1140{
1141	pmd_t *pmd;
1142	unsigned long next;
1143	int err;
1144
1145	pmd = pmd_alloc(mm, pud, addr);
1146	if (!pmd)
1147		return -EAGAIN;
1148	do {
1149		next = pmd_addr_end(addr, end);
1150		err = zeromap_pte_range(mm, pmd, addr, next, prot);
1151		if (err)
1152			break;
1153	} while (pmd++, addr = next, addr != end);
1154	return err;
1155}
1156
1157static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1158			unsigned long addr, unsigned long end, pgprot_t prot)
1159{
1160	pud_t *pud;
1161	unsigned long next;
1162	int err;
1163
1164	pud = pud_alloc(mm, pgd, addr);
1165	if (!pud)
1166		return -EAGAIN;
1167	do {
1168		next = pud_addr_end(addr, end);
1169		err = zeromap_pmd_range(mm, pud, addr, next, prot);
1170		if (err)
1171			break;
1172	} while (pud++, addr = next, addr != end);
1173	return err;
1174}
1175
1176int zeromap_page_range(struct vm_area_struct *vma,
1177			unsigned long addr, unsigned long size, pgprot_t prot)
1178{
1179	pgd_t *pgd;
1180	unsigned long next;
1181	unsigned long end = addr + size;
1182	struct mm_struct *mm = vma->vm_mm;
1183	int err;
1184
1185	BUG_ON(addr >= end);
1186	pgd = pgd_offset(mm, addr);
1187	flush_cache_range(vma, addr, end);
1188	do {
1189		next = pgd_addr_end(addr, end);
1190		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1191		if (err)
1192			break;
1193	} while (pgd++, addr = next, addr != end);
1194	return err;
1195}
1196
1197pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1198{
1199	pgd_t * pgd = pgd_offset(mm, addr);
1200	pud_t * pud = pud_alloc(mm, pgd, addr);
1201	if (pud) {
1202		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1203		if (pmd)
1204			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1205	}
1206	return NULL;
1207}
1208
1209/*
1210 * This is the old fallback for page remapping.
1211 *
1212 * For historical reasons, it only allows reserved pages. Only
1213 * old drivers should use this, and they needed to mark their
1214 * pages reserved for the old functions anyway.
1215 */
1216static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1217{
1218	int retval;
1219	pte_t *pte;
1220	spinlock_t *ptl;
1221
1222	retval = -EINVAL;
1223	if (PageAnon(page))
1224		goto out;
1225	retval = -ENOMEM;
1226	flush_dcache_page(page);
1227	pte = get_locked_pte(mm, addr, &ptl);
1228	if (!pte)
1229		goto out;
1230	retval = -EBUSY;
1231	if (!pte_none(*pte))
1232		goto out_unlock;
1233
1234	/* Ok, finally just insert the thing.. */
1235	get_page(page);
1236	inc_mm_counter(mm, file_rss);
1237	page_add_file_rmap(page);
1238	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1239
1240	retval = 0;
1241out_unlock:
1242	pte_unmap_unlock(pte, ptl);
1243out:
1244	return retval;
1245}
1246
1247/**
1248 * vm_insert_page - insert single page into user vma
1249 * @vma: user vma to map to
1250 * @addr: target user address of this page
1251 * @page: source kernel page
1252 *
1253 * This allows drivers to insert individual pages they've allocated
1254 * into a user vma.
1255 *
1256 * The page has to be a nice clean _individual_ kernel allocation.
1257 * If you allocate a compound page, you need to have marked it as
1258 * such (__GFP_COMP), or manually just split the page up yourself
1259 * (see split_page()).
1260 *
1261 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1262 * took an arbitrary page protection parameter. This doesn't allow
1263 * that. Your vma protection will have to be set up correctly, which
1264 * means that if you want a shared writable mapping, you'd better
1265 * ask for a shared writable mapping!
1266 *
1267 * The page does not need to be reserved.
1268 */
1269int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1270{
1271	if (addr < vma->vm_start || addr >= vma->vm_end)
1272		return -EFAULT;
1273	if (!page_count(page))
1274		return -EINVAL;
1275	vma->vm_flags |= VM_INSERTPAGE;
1276	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1277}
1278EXPORT_SYMBOL(vm_insert_page);
1279
1280/*
1281 * maps a range of physical memory into the requested pages. the old
1282 * mappings are removed. any references to nonexistent pages results
1283 * in null mappings (currently treated as "copy-on-access")
1284 */
1285static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1286			unsigned long addr, unsigned long end,
1287			unsigned long pfn, pgprot_t prot)
1288{
1289	pte_t *pte;
1290	spinlock_t *ptl;
1291
1292	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1293	if (!pte)
1294		return -ENOMEM;
1295	arch_enter_lazy_mmu_mode();
1296	do {
1297		BUG_ON(!pte_none(*pte));
1298		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1299		pfn++;
1300	} while (pte++, addr += PAGE_SIZE, addr != end);
1301	arch_leave_lazy_mmu_mode();
1302	pte_unmap_unlock(pte - 1, ptl);
1303	return 0;
1304}
1305
1306static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1307			unsigned long addr, unsigned long end,
1308			unsigned long pfn, pgprot_t prot)
1309{
1310	pmd_t *pmd;
1311	unsigned long next;
1312
1313	pfn -= addr >> PAGE_SHIFT;
1314	pmd = pmd_alloc(mm, pud, addr);
1315	if (!pmd)
1316		return -ENOMEM;
1317	do {
1318		next = pmd_addr_end(addr, end);
1319		if (remap_pte_range(mm, pmd, addr, next,
1320				pfn + (addr >> PAGE_SHIFT), prot))
1321			return -ENOMEM;
1322	} while (pmd++, addr = next, addr != end);
1323	return 0;
1324}
1325
1326static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1327			unsigned long addr, unsigned long end,
1328			unsigned long pfn, pgprot_t prot)
1329{
1330	pud_t *pud;
1331	unsigned long next;
1332
1333	pfn -= addr >> PAGE_SHIFT;
1334	pud = pud_alloc(mm, pgd, addr);
1335	if (!pud)
1336		return -ENOMEM;
1337	do {
1338		next = pud_addr_end(addr, end);
1339		if (remap_pmd_range(mm, pud, addr, next,
1340				pfn + (addr >> PAGE_SHIFT), prot))
1341			return -ENOMEM;
1342	} while (pud++, addr = next, addr != end);
1343	return 0;
1344}
1345
1346/**
1347 * remap_pfn_range - remap kernel memory to userspace
1348 * @vma: user vma to map to
1349 * @addr: target user address to start at
1350 * @pfn: physical address of kernel memory
1351 * @size: size of map area
1352 * @prot: page protection flags for this mapping
1353 *
1354 *  Note: this is only safe if the mm semaphore is held when called.
1355 */
1356int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1357		    unsigned long pfn, unsigned long size, pgprot_t prot)
1358{
1359	pgd_t *pgd;
1360	unsigned long next;
1361	unsigned long end = addr + PAGE_ALIGN(size);
1362	struct mm_struct *mm = vma->vm_mm;
1363	int err;
1364
1365	/*
1366	 * Physically remapped pages are special. Tell the
1367	 * rest of the world about it:
1368	 *   VM_IO tells people not to look at these pages
1369	 *	(accesses can have side effects).
1370	 *   VM_RESERVED is specified all over the place, because
1371	 *	in 2.4 it kept swapout's vma scan off this vma; but
1372	 *	in 2.6 the LRU scan won't even find its pages, so this
1373	 *	flag means no more than count its pages in reserved_vm,
1374	 * 	and omit it from core dump, even when VM_IO turned off.
1375	 *   VM_PFNMAP tells the core MM that the base pages are just
1376	 *	raw PFN mappings, and do not have a "struct page" associated
1377	 *	with them.
1378	 *
1379	 * There's a horrible special case to handle copy-on-write
1380	 * behaviour that some programs depend on. We mark the "original"
1381	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1382	 */
1383	if (is_cow_mapping(vma->vm_flags)) {
1384		if (addr != vma->vm_start || end != vma->vm_end)
1385			return -EINVAL;
1386		vma->vm_pgoff = pfn;
1387	}
1388
1389	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1390
1391	BUG_ON(addr >= end);
1392	pfn -= addr >> PAGE_SHIFT;
1393	pgd = pgd_offset(mm, addr);
1394	flush_cache_range(vma, addr, end);
1395	do {
1396		next = pgd_addr_end(addr, end);
1397		err = remap_pud_range(mm, pgd, addr, next,
1398				pfn + (addr >> PAGE_SHIFT), prot);
1399		if (err)
1400			break;
1401	} while (pgd++, addr = next, addr != end);
1402	return err;
1403}
1404EXPORT_SYMBOL(remap_pfn_range);
1405
1406/*
1407 * handle_pte_fault chooses page fault handler according to an entry
1408 * which was read non-atomically.  Before making any commitment, on
1409 * those architectures or configurations (e.g. i386 with PAE) which
1410 * might give a mix of unmatched parts, do_swap_page and do_file_page
1411 * must check under lock before unmapping the pte and proceeding
1412 * (but do_wp_page is only called after already making such a check;
1413 * and do_anonymous_page and do_no_page can safely check later on).
1414 */
1415static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1416				pte_t *page_table, pte_t orig_pte)
1417{
1418	int same = 1;
1419#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1420	if (sizeof(pte_t) > sizeof(unsigned long)) {
1421		spinlock_t *ptl = pte_lockptr(mm, pmd);
1422		spin_lock(ptl);
1423		same = pte_same(*page_table, orig_pte);
1424		spin_unlock(ptl);
1425	}
1426#endif
1427	pte_unmap(page_table);
1428	return same;
1429}
1430
1431/*
1432 * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1433 * servicing faults for write access.  In the normal case, do always want
1434 * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1435 * that do not have writing enabled, when used by access_process_vm.
1436 */
1437static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1438{
1439	if (likely(vma->vm_flags & VM_WRITE))
1440		pte = pte_mkwrite(pte);
1441	return pte;
1442}
1443
1444static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1445{
1446	/*
1447	 * If the source page was a PFN mapping, we don't have
1448	 * a "struct page" for it. We do a best-effort copy by
1449	 * just copying from the original user address. If that
1450	 * fails, we just zero-fill it. Live with it.
1451	 */
1452	if (unlikely(!src)) {
1453		void *kaddr = kmap_atomic(dst, KM_USER0);
1454		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1455
1456		/*
1457		 * This really shouldn't fail, because the page is there
1458		 * in the page tables. But it might just be unreadable,
1459		 * in which case we just give up and fill the result with
1460		 * zeroes.
1461		 */
1462		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1463			memset(kaddr, 0, PAGE_SIZE);
1464		kunmap_atomic(kaddr, KM_USER0);
1465		flush_dcache_page(dst);
1466		return;
1467
1468	}
1469	copy_user_highpage(dst, src, va, vma);
1470}
1471
1472/*
1473 * This routine handles present pages, when users try to write
1474 * to a shared page. It is done by copying the page to a new address
1475 * and decrementing the shared-page counter for the old page.
1476 *
1477 * Note that this routine assumes that the protection checks have been
1478 * done by the caller (the low-level page fault routine in most cases).
1479 * Thus we can safely just mark it writable once we've done any necessary
1480 * COW.
1481 *
1482 * We also mark the page dirty at this point even though the page will
1483 * change only once the write actually happens. This avoids a few races,
1484 * and potentially makes it more efficient.
1485 *
1486 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1487 * but allow concurrent faults), with pte both mapped and locked.
1488 * We return with mmap_sem still held, but pte unmapped and unlocked.
1489 */
1490static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1491		unsigned long address, pte_t *page_table, pmd_t *pmd,
1492		spinlock_t *ptl, pte_t orig_pte)
1493{
1494	struct page *old_page, *new_page;
1495	pte_t entry;
1496	int reuse = 0, ret = VM_FAULT_MINOR;
1497	struct page *dirty_page = NULL;
1498
1499	old_page = vm_normal_page(vma, address, orig_pte);
1500	if (!old_page)
1501		goto gotten;
1502
1503	/*
1504	 * Take out anonymous pages first, anonymous shared vmas are
1505	 * not dirty accountable.
1506	 */
1507	if (PageAnon(old_page)) {
1508		if (!TestSetPageLocked(old_page)) {
1509			reuse = can_share_swap_page(old_page);
1510			unlock_page(old_page);
1511		}
1512	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1513					(VM_WRITE|VM_SHARED))) {
1514		/*
1515		 * Only catch write-faults on shared writable pages,
1516		 * read-only shared pages can get COWed by
1517		 * get_user_pages(.write=1, .force=1).
1518		 */
1519		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1520			/*
1521			 * Notify the address space that the page is about to
1522			 * become writable so that it can prohibit this or wait
1523			 * for the page to get into an appropriate state.
1524			 *
1525			 * We do this without the lock held, so that it can
1526			 * sleep if it needs to.
1527			 */
1528			page_cache_get(old_page);
1529			pte_unmap_unlock(page_table, ptl);
1530
1531			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1532				goto unwritable_page;
1533
1534			/*
1535			 * Since we dropped the lock we need to revalidate
1536			 * the PTE as someone else may have changed it.  If
1537			 * they did, we just return, as we can count on the
1538			 * MMU to tell us if they didn't also make it writable.
1539			 */
1540			page_table = pte_offset_map_lock(mm, pmd, address,
1541							 &ptl);
1542			page_cache_release(old_page);
1543			if (!pte_same(*page_table, orig_pte))
1544				goto unlock;
1545		}
1546		dirty_page = old_page;
1547		get_page(dirty_page);
1548		reuse = 1;
1549	}
1550
1551	if (reuse) {
1552		flush_cache_page(vma, address, pte_pfn(orig_pte));
1553		entry = pte_mkyoung(orig_pte);
1554		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1555		ptep_set_access_flags(vma, address, page_table, entry, 1);
1556		update_mmu_cache(vma, address, entry);
1557		lazy_mmu_prot_update(entry);
1558		ret |= VM_FAULT_WRITE;
1559		goto unlock;
1560	}
1561
1562	/*
1563	 * Ok, we need to copy. Oh, well..
1564	 */
1565	page_cache_get(old_page);
1566gotten:
1567	pte_unmap_unlock(page_table, ptl);
1568
1569	if (unlikely(anon_vma_prepare(vma)))
1570		goto oom;
1571	if (old_page == ZERO_PAGE(address)) {
1572		new_page = alloc_zeroed_user_highpage(vma, address);
1573		if (!new_page)
1574			goto oom;
1575	} else {
1576		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1577		if (!new_page)
1578			goto oom;
1579		cow_user_page(new_page, old_page, address, vma);
1580	}
1581
1582	/*
1583	 * Re-check the pte - we dropped the lock
1584	 */
1585	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1586	if (likely(pte_same(*page_table, orig_pte))) {
1587		if (old_page) {
1588			page_remove_rmap(old_page, vma);
1589			if (!PageAnon(old_page)) {
1590				dec_mm_counter(mm, file_rss);
1591				inc_mm_counter(mm, anon_rss);
1592			}
1593		} else
1594			inc_mm_counter(mm, anon_rss);
1595		flush_cache_page(vma, address, pte_pfn(orig_pte));
1596		entry = mk_pte(new_page, vma->vm_page_prot);
1597		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1598		lazy_mmu_prot_update(entry);
1599		/*
1600		 * Clear the pte entry and flush it first, before updating the
1601		 * pte with the new entry. This will avoid a race condition
1602		 * seen in the presence of one thread doing SMC and another
1603		 * thread doing COW.
1604		 */
1605		ptep_clear_flush(vma, address, page_table);
1606		set_pte_at(mm, address, page_table, entry);
1607		update_mmu_cache(vma, address, entry);
1608		lru_cache_add_active(new_page);
1609		page_add_new_anon_rmap(new_page, vma, address);
1610
1611		/* Free the old page.. */
1612		new_page = old_page;
1613		ret |= VM_FAULT_WRITE;
1614	}
1615	if (new_page)
1616		page_cache_release(new_page);
1617	if (old_page)
1618		page_cache_release(old_page);
1619unlock:
1620	pte_unmap_unlock(page_table, ptl);
1621	if (dirty_page) {
1622		set_page_dirty_balance(dirty_page);
1623		put_page(dirty_page);
1624	}
1625	return ret;
1626oom:
1627	if (old_page)
1628		page_cache_release(old_page);
1629	return VM_FAULT_OOM;
1630
1631unwritable_page:
1632	page_cache_release(old_page);
1633	return VM_FAULT_SIGBUS;
1634}
1635
1636/*
1637 * Helper functions for unmap_mapping_range().
1638 *
1639 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1640 *
1641 * We have to restart searching the prio_tree whenever we drop the lock,
1642 * since the iterator is only valid while the lock is held, and anyway
1643 * a later vma might be split and reinserted earlier while lock dropped.
1644 *
1645 * The list of nonlinear vmas could be handled more efficiently, using
1646 * a placeholder, but handle it in the same way until a need is shown.
1647 * It is important to search the prio_tree before nonlinear list: a vma
1648 * may become nonlinear and be shifted from prio_tree to nonlinear list
1649 * while the lock is dropped; but never shifted from list to prio_tree.
1650 *
1651 * In order to make forward progress despite restarting the search,
1652 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1653 * quickly skip it next time around.  Since the prio_tree search only
1654 * shows us those vmas affected by unmapping the range in question, we
1655 * can't efficiently keep all vmas in step with mapping->truncate_count:
1656 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1657 * mapping->truncate_count and vma->vm_truncate_count are protected by
1658 * i_mmap_lock.
1659 *
1660 * In order to make forward progress despite repeatedly restarting some
1661 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1662 * and restart from that address when we reach that vma again.  It might
1663 * have been split or merged, shrunk or extended, but never shifted: so
1664 * restart_addr remains valid so long as it remains in the vma's range.
1665 * unmap_mapping_range forces truncate_count to leap over page-aligned
1666 * values so we can save vma's restart_addr in its truncate_count field.
1667 */
1668#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1669
1670static void reset_vma_truncate_counts(struct address_space *mapping)
1671{
1672	struct vm_area_struct *vma;
1673	struct prio_tree_iter iter;
1674
1675	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1676		vma->vm_truncate_count = 0;
1677	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1678		vma->vm_truncate_count = 0;
1679}
1680
1681static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1682		unsigned long start_addr, unsigned long end_addr,
1683		struct zap_details *details)
1684{
1685	unsigned long restart_addr;
1686	int need_break;
1687
1688again:
1689	restart_addr = vma->vm_truncate_count;
1690	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1691		start_addr = restart_addr;
1692		if (start_addr >= end_addr) {
1693			/* Top of vma has been split off since last time */
1694			vma->vm_truncate_count = details->truncate_count;
1695			return 0;
1696		}
1697	}
1698
1699	restart_addr = zap_page_range(vma, start_addr,
1700					end_addr - start_addr, details);
1701	need_break = need_resched() ||
1702			need_lockbreak(details->i_mmap_lock);
1703
1704	if (restart_addr >= end_addr) {
1705		/* We have now completed this vma: mark it so */
1706		vma->vm_truncate_count = details->truncate_count;
1707		if (!need_break)
1708			return 0;
1709	} else {
1710		/* Note restart_addr in vma's truncate_count field */
1711		vma->vm_truncate_count = restart_addr;
1712		if (!need_break)
1713			goto again;
1714	}
1715
1716	spin_unlock(details->i_mmap_lock);
1717	cond_resched();
1718	spin_lock(details->i_mmap_lock);
1719	return -EINTR;
1720}
1721
1722static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1723					    struct zap_details *details)
1724{
1725	struct vm_area_struct *vma;
1726	struct prio_tree_iter iter;
1727	pgoff_t vba, vea, zba, zea;
1728
1729restart:
1730	vma_prio_tree_foreach(vma, &iter, root,
1731			details->first_index, details->last_index) {
1732		/* Skip quickly over those we have already dealt with */
1733		if (vma->vm_truncate_count == details->truncate_count)
1734			continue;
1735
1736		vba = vma->vm_pgoff;
1737		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1738		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1739		zba = details->first_index;
1740		if (zba < vba)
1741			zba = vba;
1742		zea = details->last_index;
1743		if (zea > vea)
1744			zea = vea;
1745
1746		if (unmap_mapping_range_vma(vma,
1747			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1748			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1749				details) < 0)
1750			goto restart;
1751	}
1752}
1753
1754static inline void unmap_mapping_range_list(struct list_head *head,
1755					    struct zap_details *details)
1756{
1757	struct vm_area_struct *vma;
1758
1759	/*
1760	 * In nonlinear VMAs there is no correspondence between virtual address
1761	 * offset and file offset.  So we must perform an exhaustive search
1762	 * across *all* the pages in each nonlinear VMA, not just the pages
1763	 * whose virtual address lies outside the file truncation point.
1764	 */
1765restart:
1766	list_for_each_entry(vma, head, shared.vm_set.list) {
1767		/* Skip quickly over those we have already dealt with */
1768		if (vma->vm_truncate_count == details->truncate_count)
1769			continue;
1770		details->nonlinear_vma = vma;
1771		if (unmap_mapping_range_vma(vma, vma->vm_start,
1772					vma->vm_end, details) < 0)
1773			goto restart;
1774	}
1775}
1776
1777/**
1778 * unmap_mapping_range - unmap the portion of all mmaps
1779 * in the specified address_space corresponding to the specified
1780 * page range in the underlying file.
1781 * @mapping: the address space containing mmaps to be unmapped.
1782 * @holebegin: byte in first page to unmap, relative to the start of
1783 * the underlying file.  This will be rounded down to a PAGE_SIZE
1784 * boundary.  Note that this is different from vmtruncate(), which
1785 * must keep the partial page.  In contrast, we must get rid of
1786 * partial pages.
1787 * @holelen: size of prospective hole in bytes.  This will be rounded
1788 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1789 * end of the file.
1790 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1791 * but 0 when invalidating pagecache, don't throw away private data.
1792 */
1793void unmap_mapping_range(struct address_space *mapping,
1794		loff_t const holebegin, loff_t const holelen, int even_cows)
1795{
1796	struct zap_details details;
1797	pgoff_t hba = holebegin >> PAGE_SHIFT;
1798	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1799
1800	/* Check for overflow. */
1801	if (sizeof(holelen) > sizeof(hlen)) {
1802		long long holeend =
1803			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1804		if (holeend & ~(long long)ULONG_MAX)
1805			hlen = ULONG_MAX - hba + 1;
1806	}
1807
1808	details.check_mapping = even_cows? NULL: mapping;
1809	details.nonlinear_vma = NULL;
1810	details.first_index = hba;
1811	details.last_index = hba + hlen - 1;
1812	if (details.last_index < details.first_index)
1813		details.last_index = ULONG_MAX;
1814	details.i_mmap_lock = &mapping->i_mmap_lock;
1815
1816	spin_lock(&mapping->i_mmap_lock);
1817
1818	/* serialize i_size write against truncate_count write */
1819	smp_wmb();
1820	/* Protect against page faults, and endless unmapping loops */
1821	mapping->truncate_count++;
1822	/*
1823	 * For archs where spin_lock has inclusive semantics like ia64
1824	 * this smp_mb() will prevent to read pagetable contents
1825	 * before the truncate_count increment is visible to
1826	 * other cpus.
1827	 */
1828	smp_mb();
1829	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1830		if (mapping->truncate_count == 0)
1831			reset_vma_truncate_counts(mapping);
1832		mapping->truncate_count++;
1833	}
1834	details.truncate_count = mapping->truncate_count;
1835
1836	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1837		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1838	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1839		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1840	spin_unlock(&mapping->i_mmap_lock);
1841}
1842EXPORT_SYMBOL(unmap_mapping_range);
1843
1844/**
1845 * vmtruncate - unmap mappings "freed" by truncate() syscall
1846 * @inode: inode of the file used
1847 * @offset: file offset to start truncating
1848 *
1849 * NOTE! We have to be ready to update the memory sharing
1850 * between the file and the memory map for a potential last
1851 * incomplete page.  Ugly, but necessary.
1852 */
1853int vmtruncate(struct inode * inode, loff_t offset)
1854{
1855	struct address_space *mapping = inode->i_mapping;
1856	unsigned long limit;
1857
1858	if (inode->i_size < offset)
1859		goto do_expand;
1860	/*
1861	 * truncation of in-use swapfiles is disallowed - it would cause
1862	 * subsequent swapout to scribble on the now-freed blocks.
1863	 */
1864	if (IS_SWAPFILE(inode))
1865		goto out_busy;
1866	i_size_write(inode, offset);
1867	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1868	truncate_inode_pages(mapping, offset);
1869	goto out_truncate;
1870
1871do_expand:
1872	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1873	if (limit != RLIM_INFINITY && offset > limit)
1874		goto out_sig;
1875	if (offset > inode->i_sb->s_maxbytes)
1876		goto out_big;
1877	i_size_write(inode, offset);
1878
1879out_truncate:
1880	if (inode->i_op && inode->i_op->truncate)
1881		inode->i_op->truncate(inode);
1882	return 0;
1883out_sig:
1884	send_sig(SIGXFSZ, current, 0);
1885out_big:
1886	return -EFBIG;
1887out_busy:
1888	return -ETXTBSY;
1889}
1890EXPORT_SYMBOL(vmtruncate);
1891
1892int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1893{
1894	struct address_space *mapping = inode->i_mapping;
1895
1896	/*
1897	 * If the underlying filesystem is not going to provide
1898	 * a way to truncate a range of blocks (punch a hole) -
1899	 * we should return failure right now.
1900	 */
1901	if (!inode->i_op || !inode->i_op->truncate_range)
1902		return -ENOSYS;
1903
1904	mutex_lock(&inode->i_mutex);
1905	down_write(&inode->i_alloc_sem);
1906	unmap_mapping_range(mapping, offset, (end - offset), 1);
1907	truncate_inode_pages_range(mapping, offset, end);
1908	inode->i_op->truncate_range(inode, offset, end);
1909	up_write(&inode->i_alloc_sem);
1910	mutex_unlock(&inode->i_mutex);
1911
1912	return 0;
1913}
1914
1915/**
1916 * swapin_readahead - swap in pages in hope we need them soon
1917 * @entry: swap entry of this memory
1918 * @addr: address to start
1919 * @vma: user vma this addresses belong to
1920 *
1921 * Primitive swap readahead code. We simply read an aligned block of
1922 * (1 << page_cluster) entries in the swap area. This method is chosen
1923 * because it doesn't cost us any seek time.  We also make sure to queue
1924 * the 'original' request together with the readahead ones...
1925 *
1926 * This has been extended to use the NUMA policies from the mm triggering
1927 * the readahead.
1928 *
1929 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1930 */
1931void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1932{
1933#ifdef CONFIG_NUMA
1934	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1935#endif
1936	int i, num;
1937	struct page *new_page;
1938	unsigned long offset;
1939
1940	/*
1941	 * Get the number of handles we should do readahead io to.
1942	 */
1943	num = valid_swaphandles(entry, &offset);
1944	for (i = 0; i < num; offset++, i++) {
1945		/* Ok, do the async read-ahead now */
1946		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1947							   offset), vma, addr);
1948		if (!new_page)
1949			break;
1950		page_cache_release(new_page);
1951#ifdef CONFIG_NUMA
1952		/*
1953		 * Find the next applicable VMA for the NUMA policy.
1954		 */
1955		addr += PAGE_SIZE;
1956		if (addr == 0)
1957			vma = NULL;
1958		if (vma) {
1959			if (addr >= vma->vm_end) {
1960				vma = next_vma;
1961				next_vma = vma ? vma->vm_next : NULL;
1962			}
1963			if (vma && addr < vma->vm_start)
1964				vma = NULL;
1965		} else {
1966			if (next_vma && addr >= next_vma->vm_start) {
1967				vma = next_vma;
1968				next_vma = vma->vm_next;
1969			}
1970		}
1971#endif
1972	}
1973	lru_add_drain();	/* Push any new pages onto the LRU now */
1974}
1975
1976/*
1977 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1978 * but allow concurrent faults), and pte mapped but not yet locked.
1979 * We return with mmap_sem still held, but pte unmapped and unlocked.
1980 */
1981static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1982		unsigned long address, pte_t *page_table, pmd_t *pmd,
1983		int write_access, pte_t orig_pte)
1984{
1985	spinlock_t *ptl;
1986	struct page *page;
1987	swp_entry_t entry;
1988	pte_t pte;
1989	int ret = VM_FAULT_MINOR;
1990
1991	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
1992		goto out;
1993
1994	entry = pte_to_swp_entry(orig_pte);
1995	if (is_migration_entry(entry)) {
1996		migration_entry_wait(mm, pmd, address);
1997		goto out;
1998	}
1999	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2000	page = lookup_swap_cache(entry);
2001	if (!page) {
2002		grab_swap_token(); /* Contend for token _before_ read-in */
2003 		swapin_readahead(entry, address, vma);
2004 		page = read_swap_cache_async(entry, vma, address);
2005		if (!page) {
2006			/*
2007			 * Back out if somebody else faulted in this pte
2008			 * while we released the pte lock.
2009			 */
2010			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2011			if (likely(pte_same(*page_table, orig_pte)))
2012				ret = VM_FAULT_OOM;
2013			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2014			goto unlock;
2015		}
2016
2017		/* Had to read the page from swap area: Major fault */
2018		ret = VM_FAULT_MAJOR;
2019		count_vm_event(PGMAJFAULT);
2020	}
2021
2022	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2023	mark_page_accessed(page);
2024	lock_page(page);
2025
2026	/*
2027	 * Back out if somebody else already faulted in this pte.
2028	 */
2029	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2030	if (unlikely(!pte_same(*page_table, orig_pte)))
2031		goto out_nomap;
2032
2033	if (unlikely(!PageUptodate(page))) {
2034		ret = VM_FAULT_SIGBUS;
2035		goto out_nomap;
2036	}
2037
2038	/* The page isn't present yet, go ahead with the fault. */
2039
2040	inc_mm_counter(mm, anon_rss);
2041	pte = mk_pte(page, vma->vm_page_prot);
2042	if (write_access && can_share_swap_page(page)) {
2043		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2044		write_access = 0;
2045	}
2046
2047	flush_icache_page(vma, page);
2048	set_pte_at(mm, address, page_table, pte);
2049	page_add_anon_rmap(page, vma, address);
2050
2051	swap_free(entry);
2052	if (vm_swap_full())
2053		remove_exclusive_swap_page(page);
2054	unlock_page(page);
2055
2056	if (write_access) {
2057		if (do_wp_page(mm, vma, address,
2058				page_table, pmd, ptl, pte) == VM_FAULT_OOM)
2059			ret = VM_FAULT_OOM;
2060		goto out;
2061	}
2062
2063	/* No need to invalidate - it was non-present before */
2064	update_mmu_cache(vma, address, pte);
2065	lazy_mmu_prot_update(pte);
2066unlock:
2067	pte_unmap_unlock(page_table, ptl);
2068out:
2069	return ret;
2070out_nomap:
2071	pte_unmap_unlock(page_table, ptl);
2072	unlock_page(page);
2073	page_cache_release(page);
2074	return ret;
2075}
2076
2077/*
2078 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2079 * but allow concurrent faults), and pte mapped but not yet locked.
2080 * We return with mmap_sem still held, but pte unmapped and unlocked.
2081 */
2082static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2083		unsigned long address, pte_t *page_table, pmd_t *pmd,
2084		int write_access)
2085{
2086	struct page *page;
2087	spinlock_t *ptl;
2088	pte_t entry;
2089
2090	if (write_access) {
2091		/* Allocate our own private page. */
2092		pte_unmap(page_table);
2093
2094		if (unlikely(anon_vma_prepare(vma)))
2095			goto oom;
2096		page = alloc_zeroed_user_highpage(vma, address);
2097		if (!page)
2098			goto oom;
2099
2100		entry = mk_pte(page, vma->vm_page_prot);
2101		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2102
2103		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2104		if (!pte_none(*page_table))
2105			goto release;
2106		inc_mm_counter(mm, anon_rss);
2107		lru_cache_add_active(page);
2108		page_add_new_anon_rmap(page, vma, address);
2109	} else {
2110		/* Map the ZERO_PAGE - vm_page_prot is readonly */
2111		page = ZERO_PAGE(address);
2112		page_cache_get(page);
2113		entry = mk_pte(page, vma->vm_page_prot);
2114
2115		ptl = pte_lockptr(mm, pmd);
2116		spin_lock(ptl);
2117		if (!pte_none(*page_table))
2118			goto release;
2119		inc_mm_counter(mm, file_rss);
2120		page_add_file_rmap(page);
2121	}
2122
2123	set_pte_at(mm, address, page_table, entry);
2124
2125	/* No need to invalidate - it was non-present before */
2126	update_mmu_cache(vma, address, entry);
2127	lazy_mmu_prot_update(entry);
2128unlock:
2129	pte_unmap_unlock(page_table, ptl);
2130	return VM_FAULT_MINOR;
2131release:
2132	page_cache_release(page);
2133	goto unlock;
2134oom:
2135	return VM_FAULT_OOM;
2136}
2137
2138/*
2139 * do_no_page() tries to create a new page mapping. It aggressively
2140 * tries to share with existing pages, but makes a separate copy if
2141 * the "write_access" parameter is true in order to avoid the next
2142 * page fault.
2143 *
2144 * As this is called only for pages that do not currently exist, we
2145 * do not need to flush old virtual caches or the TLB.
2146 *
2147 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2148 * but allow concurrent faults), and pte mapped but not yet locked.
2149 * We return with mmap_sem still held, but pte unmapped and unlocked.
2150 */
2151static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2152		unsigned long address, pte_t *page_table, pmd_t *pmd,
2153		int write_access)
2154{
2155	spinlock_t *ptl;
2156	struct page *new_page;
2157	struct address_space *mapping = NULL;
2158	pte_t entry;
2159	unsigned int sequence = 0;
2160	int ret = VM_FAULT_MINOR;
2161	int anon = 0;
2162	struct page *dirty_page = NULL;
2163
2164	pte_unmap(page_table);
2165	BUG_ON(vma->vm_flags & VM_PFNMAP);
2166
2167	if (vma->vm_file) {
2168		mapping = vma->vm_file->f_mapping;
2169		sequence = mapping->truncate_count;
2170		smp_rmb(); /* serializes i_size against truncate_count */
2171	}
2172retry:
2173	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2174	/*
2175	 * No smp_rmb is needed here as long as there's a full
2176	 * spin_lock/unlock sequence inside the ->nopage callback
2177	 * (for the pagecache lookup) that acts as an implicit
2178	 * smp_mb() and prevents the i_size read to happen
2179	 * after the next truncate_count read.
2180	 */
2181
2182	/* no page was available -- either SIGBUS, OOM or REFAULT */
2183	if (unlikely(new_page == NOPAGE_SIGBUS))
2184		return VM_FAULT_SIGBUS;
2185	else if (unlikely(new_page == NOPAGE_OOM))
2186		return VM_FAULT_OOM;
2187	else if (unlikely(new_page == NOPAGE_REFAULT))
2188		return VM_FAULT_MINOR;
2189
2190	/*
2191	 * Should we do an early C-O-W break?
2192	 */
2193	if (write_access) {
2194		if (!(vma->vm_flags & VM_SHARED)) {
2195			struct page *page;
2196
2197			if (unlikely(anon_vma_prepare(vma)))
2198				goto oom;
2199			page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2200			if (!page)
2201				goto oom;
2202			copy_user_highpage(page, new_page, address, vma);
2203			page_cache_release(new_page);
2204			new_page = page;
2205			anon = 1;
2206
2207		} else {
2208			/* if the page will be shareable, see if the backing
2209			 * address space wants to know that the page is about
2210			 * to become writable */
2211			if (vma->vm_ops->page_mkwrite &&
2212			    vma->vm_ops->page_mkwrite(vma, new_page) < 0
2213			    ) {
2214				page_cache_release(new_page);
2215				return VM_FAULT_SIGBUS;
2216			}
2217		}
2218	}
2219
2220	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2221	/*
2222	 * For a file-backed vma, someone could have truncated or otherwise
2223	 * invalidated this page.  If unmap_mapping_range got called,
2224	 * retry getting the page.
2225	 */
2226	if (mapping && unlikely(sequence != mapping->truncate_count)) {
2227		pte_unmap_unlock(page_table, ptl);
2228		page_cache_release(new_page);
2229		cond_resched();
2230		sequence = mapping->truncate_count;
2231		smp_rmb();
2232		goto retry;
2233	}
2234
2235	/*
2236	 * This silly early PAGE_DIRTY setting removes a race
2237	 * due to the bad i386 page protection. But it's valid
2238	 * for other architectures too.
2239	 *
2240	 * Note that if write_access is true, we either now have
2241	 * an exclusive copy of the page, or this is a shared mapping,
2242	 * so we can make it writable and dirty to avoid having to
2243	 * handle that later.
2244	 */
2245	/* Only go through if we didn't race with anybody else... */
2246	if (pte_none(*page_table)) {
2247		flush_icache_page(vma, new_page);
2248		entry = mk_pte(new_page, vma->vm_page_prot);
2249		if (write_access)
2250			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2251		set_pte_at(mm, address, page_table, entry);
2252		if (anon) {
2253			inc_mm_counter(mm, anon_rss);
2254			lru_cache_add_active(new_page);
2255			page_add_new_anon_rmap(new_page, vma, address);
2256		} else {
2257			inc_mm_counter(mm, file_rss);
2258			page_add_file_rmap(new_page);
2259			if (write_access) {
2260				dirty_page = new_page;
2261				get_page(dirty_page);
2262			}
2263		}
2264	} else {
2265		/* One of our sibling threads was faster, back out. */
2266		page_cache_release(new_page);
2267		goto unlock;
2268	}
2269
2270	/* no need to invalidate: a not-present page shouldn't be cached */
2271	update_mmu_cache(vma, address, entry);
2272	lazy_mmu_prot_update(entry);
2273unlock:
2274	pte_unmap_unlock(page_table, ptl);
2275	if (dirty_page) {
2276		set_page_dirty_balance(dirty_page);
2277		put_page(dirty_page);
2278	}
2279	return ret;
2280oom:
2281	page_cache_release(new_page);
2282	return VM_FAULT_OOM;
2283}
2284
2285/*
2286 * do_no_pfn() tries to create a new page mapping for a page without
2287 * a struct_page backing it
2288 *
2289 * As this is called only for pages that do not currently exist, we
2290 * do not need to flush old virtual caches or the TLB.
2291 *
2292 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2293 * but allow concurrent faults), and pte mapped but not yet locked.
2294 * We return with mmap_sem still held, but pte unmapped and unlocked.
2295 *
2296 * It is expected that the ->nopfn handler always returns the same pfn
2297 * for a given virtual mapping.
2298 *
2299 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2300 */
2301static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2302		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2303		     int write_access)
2304{
2305	spinlock_t *ptl;
2306	pte_t entry;
2307	unsigned long pfn;
2308	int ret = VM_FAULT_MINOR;
2309
2310	pte_unmap(page_table);
2311	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2312	BUG_ON(is_cow_mapping(vma->vm_flags));
2313
2314	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2315	if (pfn == NOPFN_OOM)
2316		return VM_FAULT_OOM;
2317	if (pfn == NOPFN_SIGBUS)
2318		return VM_FAULT_SIGBUS;
2319
2320	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2321
2322	/* Only go through if we didn't race with anybody else... */
2323	if (pte_none(*page_table)) {
2324		entry = pfn_pte(pfn, vma->vm_page_prot);
2325		if (write_access)
2326			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2327		set_pte_at(mm, address, page_table, entry);
2328	}
2329	pte_unmap_unlock(page_table, ptl);
2330	return ret;
2331}
2332
2333/*
2334 * Fault of a previously existing named mapping. Repopulate the pte
2335 * from the encoded file_pte if possible. This enables swappable
2336 * nonlinear vmas.
2337 *
2338 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2339 * but allow concurrent faults), and pte mapped but not yet locked.
2340 * We return with mmap_sem still held, but pte unmapped and unlocked.
2341 */
2342static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2343		unsigned long address, pte_t *page_table, pmd_t *pmd,
2344		int write_access, pte_t orig_pte)
2345{
2346	pgoff_t pgoff;
2347	int err;
2348
2349	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2350		return VM_FAULT_MINOR;
2351
2352	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2353		/*
2354		 * Page table corrupted: show pte and kill process.
2355		 */
2356		print_bad_pte(vma, orig_pte, address);
2357		return VM_FAULT_OOM;
2358	}
2359	/* We can then assume vm->vm_ops && vma->vm_ops->populate */
2360
2361	pgoff = pte_to_pgoff(orig_pte);
2362	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2363					vma->vm_page_prot, pgoff, 0);
2364	if (err == -ENOMEM)
2365		return VM_FAULT_OOM;
2366	if (err)
2367		return VM_FAULT_SIGBUS;
2368	return VM_FAULT_MAJOR;
2369}
2370
2371/*
2372 * These routines also need to handle stuff like marking pages dirty
2373 * and/or accessed for architectures that don't do it in hardware (most
2374 * RISC architectures).  The early dirtying is also good on the i386.
2375 *
2376 * There is also a hook called "update_mmu_cache()" that architectures
2377 * with external mmu caches can use to update those (ie the Sparc or
2378 * PowerPC hashed page tables that act as extended TLBs).
2379 *
2380 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2381 * but allow concurrent faults), and pte mapped but not yet locked.
2382 * We return with mmap_sem still held, but pte unmapped and unlocked.
2383 */
2384static inline int handle_pte_fault(struct mm_struct *mm,
2385		struct vm_area_struct *vma, unsigned long address,
2386		pte_t *pte, pmd_t *pmd, int write_access)
2387{
2388	pte_t entry;
2389	pte_t old_entry;
2390	spinlock_t *ptl;
2391
2392	old_entry = entry = *pte;
2393	if (!pte_present(entry)) {
2394		if (pte_none(entry)) {
2395			if (vma->vm_ops) {
2396				if (vma->vm_ops->nopage)
2397					return do_no_page(mm, vma, address,
2398							  pte, pmd,
2399							  write_access);
2400				if (unlikely(vma->vm_ops->nopfn))
2401					return do_no_pfn(mm, vma, address, pte,
2402							 pmd, write_access);
2403			}
2404			return do_anonymous_page(mm, vma, address,
2405						 pte, pmd, write_access);
2406		}
2407		if (pte_file(entry))
2408			return do_file_page(mm, vma, address,
2409					pte, pmd, write_access, entry);
2410		return do_swap_page(mm, vma, address,
2411					pte, pmd, write_access, entry);
2412	}
2413
2414	ptl = pte_lockptr(mm, pmd);
2415	spin_lock(ptl);
2416	if (unlikely(!pte_same(*pte, entry)))
2417		goto unlock;
2418	if (write_access) {
2419		if (!pte_write(entry))
2420			return do_wp_page(mm, vma, address,
2421					pte, pmd, ptl, entry);
2422		entry = pte_mkdirty(entry);
2423	}
2424	entry = pte_mkyoung(entry);
2425	if (!pte_same(old_entry, entry)) {
2426		ptep_set_access_flags(vma, address, pte, entry, write_access);
2427		update_mmu_cache(vma, address, entry);
2428		lazy_mmu_prot_update(entry);
2429	} else {
2430		/*
2431		 * This is needed only for protection faults but the arch code
2432		 * is not yet telling us if this is a protection fault or not.
2433		 * This still avoids useless tlb flushes for .text page faults
2434		 * with threads.
2435		 */
2436		if (write_access)
2437			flush_tlb_page(vma, address);
2438	}
2439unlock:
2440	pte_unmap_unlock(pte, ptl);
2441	return VM_FAULT_MINOR;
2442}
2443
2444/*
2445 * By the time we get here, we already hold the mm semaphore
2446 */
2447int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2448		unsigned long address, int write_access)
2449{
2450	pgd_t *pgd;
2451	pud_t *pud;
2452	pmd_t *pmd;
2453	pte_t *pte;
2454
2455	__set_current_state(TASK_RUNNING);
2456
2457	count_vm_event(PGFAULT);
2458
2459	if (unlikely(is_vm_hugetlb_page(vma)))
2460		return hugetlb_fault(mm, vma, address, write_access);
2461
2462	pgd = pgd_offset(mm, address);
2463	pud = pud_alloc(mm, pgd, address);
2464	if (!pud)
2465		return VM_FAULT_OOM;
2466	pmd = pmd_alloc(mm, pud, address);
2467	if (!pmd)
2468		return VM_FAULT_OOM;
2469	pte = pte_alloc_map(mm, pmd, address);
2470	if (!pte)
2471		return VM_FAULT_OOM;
2472
2473	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2474}
2475
2476EXPORT_SYMBOL_GPL(__handle_mm_fault);
2477
2478#ifndef __PAGETABLE_PUD_FOLDED
2479/*
2480 * Allocate page upper directory.
2481 * We've already handled the fast-path in-line.
2482 */
2483int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2484{
2485	pud_t *new = pud_alloc_one(mm, address);
2486	if (!new)
2487		return -ENOMEM;
2488
2489	spin_lock(&mm->page_table_lock);
2490	if (pgd_present(*pgd))		/* Another has populated it */
2491		pud_free(new);
2492	else
2493		pgd_populate(mm, pgd, new);
2494	spin_unlock(&mm->page_table_lock);
2495	return 0;
2496}
2497#else
2498/* Workaround for gcc 2.96 */
2499int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2500{
2501	return 0;
2502}
2503#endif /* __PAGETABLE_PUD_FOLDED */
2504
2505#ifndef __PAGETABLE_PMD_FOLDED
2506/*
2507 * Allocate page middle directory.
2508 * We've already handled the fast-path in-line.
2509 */
2510int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2511{
2512	pmd_t *new = pmd_alloc_one(mm, address);
2513	if (!new)
2514		return -ENOMEM;
2515
2516	spin_lock(&mm->page_table_lock);
2517#ifndef __ARCH_HAS_4LEVEL_HACK
2518	if (pud_present(*pud))		/* Another has populated it */
2519		pmd_free(new);
2520	else
2521		pud_populate(mm, pud, new);
2522#else
2523	if (pgd_present(*pud))		/* Another has populated it */
2524		pmd_free(new);
2525	else
2526		pgd_populate(mm, pud, new);
2527#endif /* __ARCH_HAS_4LEVEL_HACK */
2528	spin_unlock(&mm->page_table_lock);
2529	return 0;
2530}
2531#else
2532/* Workaround for gcc 2.96 */
2533int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2534{
2535	return 0;
2536}
2537#endif /* __PAGETABLE_PMD_FOLDED */
2538
2539int make_pages_present(unsigned long addr, unsigned long end)
2540{
2541	int ret, len, write;
2542	struct vm_area_struct * vma;
2543
2544	vma = find_vma(current->mm, addr);
2545	if (!vma)
2546		return -1;
2547	write = (vma->vm_flags & VM_WRITE) != 0;
2548	BUG_ON(addr >= end);
2549	BUG_ON(end > vma->vm_end);
2550	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2551	ret = get_user_pages(current, current->mm, addr,
2552			len, write, 0, NULL, NULL);
2553	if (ret < 0)
2554		return ret;
2555	return ret == len ? 0 : -1;
2556}
2557
2558/*
2559 * Map a vmalloc()-space virtual address to the physical page.
2560 */
2561struct page * vmalloc_to_page(void * vmalloc_addr)
2562{
2563	unsigned long addr = (unsigned long) vmalloc_addr;
2564	struct page *page = NULL;
2565	pgd_t *pgd = pgd_offset_k(addr);
2566	pud_t *pud;
2567	pmd_t *pmd;
2568	pte_t *ptep, pte;
2569
2570	if (!pgd_none(*pgd)) {
2571		pud = pud_offset(pgd, addr);
2572		if (!pud_none(*pud)) {
2573			pmd = pmd_offset(pud, addr);
2574			if (!pmd_none(*pmd)) {
2575				ptep = pte_offset_map(pmd, addr);
2576				pte = *ptep;
2577				if (pte_present(pte))
2578					page = pte_page(pte);
2579				pte_unmap(ptep);
2580			}
2581		}
2582	}
2583	return page;
2584}
2585
2586EXPORT_SYMBOL(vmalloc_to_page);
2587
2588/*
2589 * Map a vmalloc()-space virtual address to the physical page frame number.
2590 */
2591unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2592{
2593	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2594}
2595
2596EXPORT_SYMBOL(vmalloc_to_pfn);
2597
2598#if !defined(__HAVE_ARCH_GATE_AREA)
2599
2600#if defined(AT_SYSINFO_EHDR)
2601static struct vm_area_struct gate_vma;
2602
2603static int __init gate_vma_init(void)
2604{
2605	gate_vma.vm_mm = NULL;
2606	gate_vma.vm_start = FIXADDR_USER_START;
2607	gate_vma.vm_end = FIXADDR_USER_END;
2608	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2609	gate_vma.vm_page_prot = __P101;
2610	/*
2611	 * Make sure the vDSO gets into every core dump.
2612	 * Dumping its contents makes post-mortem fully interpretable later
2613	 * without matching up the same kernel and hardware config to see
2614	 * what PC values meant.
2615	 */
2616	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2617	return 0;
2618}
2619__initcall(gate_vma_init);
2620#endif
2621
2622struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2623{
2624#ifdef AT_SYSINFO_EHDR
2625	return &gate_vma;
2626#else
2627	return NULL;
2628#endif
2629}
2630
2631int in_gate_area_no_task(unsigned long addr)
2632{
2633#ifdef AT_SYSINFO_EHDR
2634	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2635		return 1;
2636#endif
2637	return 0;
2638}
2639
2640#endif	/* __HAVE_ARCH_GATE_AREA */
2641
2642/*
2643 * Access another process' address space.
2644 * Source/target buffer must be kernel space,
2645 * Do not walk the page table directly, use get_user_pages
2646 */
2647int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2648{
2649	struct mm_struct *mm;
2650	struct vm_area_struct *vma;
2651	struct page *page;
2652	void *old_buf = buf;
2653
2654	mm = get_task_mm(tsk);
2655	if (!mm)
2656		return 0;
2657
2658	down_read(&mm->mmap_sem);
2659	/* ignore errors, just check how much was sucessfully transfered */
2660	while (len) {
2661		int bytes, ret, offset;
2662		void *maddr;
2663
2664		ret = get_user_pages(tsk, mm, addr, 1,
2665				write, 1, &page, &vma);
2666		if (ret <= 0)
2667			break;
2668
2669		bytes = len;
2670		offset = addr & (PAGE_SIZE-1);
2671		if (bytes > PAGE_SIZE-offset)
2672			bytes = PAGE_SIZE-offset;
2673
2674		maddr = kmap(page);
2675		if (write) {
2676			copy_to_user_page(vma, page, addr,
2677					  maddr + offset, buf, bytes);
2678			set_page_dirty_lock(page);
2679		} else {
2680			copy_from_user_page(vma, page, addr,
2681					    buf, maddr + offset, bytes);
2682		}
2683		kunmap(page);
2684		page_cache_release(page);
2685		len -= bytes;
2686		buf += bytes;
2687		addr += bytes;
2688	}
2689	up_read(&mm->mmap_sem);
2690	mmput(mm);
2691
2692	return buf - old_buf;
2693}
2694